
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Hybrid STM/HTM for nested transactions in Java
Keith G. Chapman
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Chapman, Keith G., "Hybrid STM/HTM for nested transactions in Java" (2016). Open Access Dissertations. 912.
https://docs.lib.purdue.edu/open_access_dissertations/912

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/145190723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/912?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages

HYBRID STM/HTM FOR NESTED TRANSACTIONS IN JAVA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Keith G. Chapman

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Keith Godwin Chapman

Entitled
Hybrid HTM/STM for Nested Transactions in Java

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

Altony L Hosking Walid G. Aref
Chair

J. Eliot B. Moss

Mathias Payer

Tiark Romph

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): Antony L. Hosking

Approved by:

Sunil Prabhakar / William J. Gorman 12/5/2016

Head of the Departmental Graduate Program Date

ii

To my parents, wife, daughter and son.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Professor Antony Hosking for

his invaluable guidance and advice through my PhD studies. I would also like to thank

Professor Eliot Moss for his input and advice through the project. After Professor Hosking

moved to Australia we moved out weekly hangout to 9 PM eastern time to which Professor

Moss attended without fail. I appreciate your commitment to making this project a success.

Also I would like to thank the members of my advisory committee, Professor Mathias

Payer, Professor Tiark Rompf and Professor Walid Aref for agreeing to serve.

Many people have helped me through this endeavor. My lab mate and good friend

Ahmed Hussein has helped me with word and deed throughout my stay at Purdue, for

which I’m ever so grateful. A special note of thanks goes out to Dr. Sanjiva Weerawarana

for motivating me to pursue graduate studies. I’d like to thank Dr. David Grove and Dr.

Vijay Saraswat at IBM T.J Watson research center, Dr. Jan Rellermeyer and Dr. John

Carter from IBM Research, Austin, TX and Dr. Herman Venter from Microsoft Research,

Redmond, WA for supervising and mentoring me during my various internships and giving

me advice.

While at Purdue, I maintained my sanity largely with the help and support of the won-

derful Sri Lankan community at West Lafayette. I’d also like to extend my gratitude to all

the members of the First United Methodist Church and the Wesley Foundation for been my

family away from home.

Last but not least I would like to thank my wife Madara, daughter Hazelle, son Tristan,

my parents and my sister for your love and patience. Non of this would have been possible

without the many sacrifices you’ve made.

iv

PREFACE

In all chapters and related publications of the thesis, my contributions are: researching

background knowledge and related work; design and implementation of the XJ language;

implementation of the XJ framework; conducting experiments; and writing and polishing

the writing. My co-authors supported me in refining the ideas and design, pointing me to

missing related work, providing feedback on earlier drafts, and polishing the writing. The

XJ language extends the work of Ni et al. [42] while the XJ rewriting framework builds on

the work of McGachey et al. [39]

All of the work presented henceforth has been published at peer reviewed conferences

as follows.

1. K. Chapman, A. L. Hosking, J. E. B. Moss, and T. Richards. Closed and open nested

atomic actions for Java: Language design and prototype implementation. In Interna-

tional Conference on the Principles and Practice of Programming on the Java plat-

form: virtual machines, languages, and tools, PPPJ, pages 169–180, Cracow, Poland,

Sept. 2014. doi: 10.1145/2647508.2647525 (Chapter 3)

2. K. Chapman, A. L. Hosking, and J. E. B. Moss. Hybrid STM/HTM for nested trans-

actions on OpenJDK. In ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA, pages 569–585, Amsterdam,

The Netherlands, Oct. 2016. doi: 10.1145/2983990.2984029. Distinguished Paper

Award (Chapters 4 and 5)

3. K. Chapman, A. L. Hosking, and J. E. B. Moss. Extending OpenJDK to support

hybrid STM/HTM: Preliminary design. In ACM SIGPLAN Workshop on Virtual

Machines and Intermediate Languages, VMIL, Amsterdam, The Netherlands, Oct.

2016. doi: 10.1145/2998415.2998417 (Chapter 6)

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . x

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Overview . 3
1.2 XJ Framework . 4
1.3 Principles and Approach . 5
1.4 Contributions . 8

2 BACKGROUND . 10
2.1 Flattening . 10
2.2 Closed Nesting . 11
2.3 Open Nesting . 11
2.4 Boosting . 13
2.5 Related Work . 14

2.5.1 Unbounded Transactional Memory(UTM) 15
2.5.2 Kumar’s Hybrid TM . 15
2.5.3 Virtual Transactional Memory (VTM) 16
2.5.4 Hybrid Transactional Memory (HyTM) 16
2.5.5 Phased Transactional Memory (PhTM) 17
2.5.6 Hybrid NOrec . 17
2.5.7 Deuce STM . 17
2.5.8 Adapt STM . 17

3 XJ LANGUAGE . 19
3.1 Atomic Actions . 19

3.1.1 Effect Logging . 20
3.1.2 Concurrency Control . 20
3.1.3 Retry Statement . 21
3.1.4 Require Statement . 21
3.1.5 Exceptions . 22

3.2 Open Atomic Classes . 22
3.2.1 Open Atomic Fields . 23

vi

Page
3.2.2 Open Atomic Methods . 23
3.2.3 Open Atomic Method Execution 24
3.2.4 Inheritance, Overriding, and Nesting 25
3.2.5 Open Atomic Method Suffix Clauses 27
3.2.6 Open Atomic Method Locking Clause 28
3.2.7 Acquiring Locks at Return or Throw 33
3.2.8 Open Atomic Concurrency Control 34
3.2.9 Open Atomic Actions and New 34
3.2.10 Concerning Volatile and Synchronized 35

3.3 Boosting . 35

4 XJ FRAMEWORK . 36
4.1 STM Implementation . 36
4.2 Hardware Transactional Memory . 37
4.3 Example: An Open Atomic Map . 38
4.4 XJ Compiler . 41

4.4.1 Handlers on Open Atomic Methods 44
4.5 OpenJDK Modifications . 45
4.6 Bytecode Rewriter . 46

4.6.1 Statics . 47
4.6.2 Arrays . 48
4.6.3 Object Creation . 48
4.6.4 Java Agent . 49
4.6.5 Instrumenter Process . 50
4.6.6 Accessor Objects . 51

4.7 Transactional Methods in XJ . 52
4.7.1 Generated Method Variants 54
4.7.2 STM Specific Rewrites . 58
4.7.3 HTM Specific Rewrites . 58
4.7.4 Transaction Control . 61

4.8 Run-Time Library . 67

5 EVALUATION . 69
5.1 Workload . 69

5.1.1 Open Atomic Workload . 69
5.1.2 Closed Atomic Workload . 70
5.1.3 Boosted Workload . 70
5.1.4 Support for Varying Transaction Sizes 72
5.1.5 Support for Thread Pinning 73
5.1.6 Modified Transaction Friendly Data Structure 74
5.1.7 Modified Throughput Reporting for Accuracy 75

5.2 Experiments . 76
5.3 Results . 78

vii

Page
5.3.1 HTM versus STM . 83
5.3.2 Closed, Open, and Boosted 84
5.3.3 Smaller Data Structure Size 84

6 FUTURE WORK . 86
6.1 Locking Protocol . 86

6.1.1 Integrating Per-Object Transactional Metadata 87
6.1.2 Handling Statics . 90
6.1.3 Handling Arrays . 90

6.2 Interpreter and Compiler Concerns . 90
6.2.1 Using HTM Failure Codes . 92
6.2.2 Maintaining Correlated Code Versions 93
6.2.3 Further Optimizations . 94

7 SUMMARY . 95
7.1 Conclusions . 95

LIST OF REFERENCES . 97

VITA . 103

viii

LIST OF TABLES

Table Page

4.1 Generated method variants by source type 55

4.2 Transitions and actions of method variations 57

5.1 Synchrobench parameters for experiments 77

ix

LIST OF FIGURES

Figure Page

1.1 XJ Tool Chain . 4

4.1 Transformation of direct classes . 47

4.2 Transformation of wrapped classes . 47

4.3 Transformation of array types . 49

4.4 Method call diagrams . 53

5.1 Committed operations versus aborts . 76

5.2 Deuce (elastic), varying g . 79

5.3 Closed, varying g . 80

5.4 Open, varying g . 81

5.5 Boosted, varying g . 82

5.6 5% updates, varying g for tree size of 16K 85

6.1 HotSpot standard synchronization . 87

6.2 Proposed extension to the object header mark word 89

x

ABBREVIATIONS

API Application Programming Interface

ASF Advanced Synchronization Facility

AST Abstract Syntax Tree

CPU Central Processing Unit

DSTM Dynamic Software Transactional Memory

HLE Hardware Lock Elision

HTM Hardware Transactional Memory

HyTM Hybrid Transactional Memory

I/O Input/Output

JIT Just In Time

JNI Java Native Interface

JVM Java Virtual Machine

JVMTI Java Virtual Machine Tool Interface

LTM Large Transactional Memory

PhTM Phased Transactional Memory

RTM Restricted Transactional Memory

SDE Software Development Emulator

STM Software Transactional Memory

TCC Transactional Coherence and Consistency

TLR Transactional Lock Removal

TM Transactional Memory

TSX Transactional Synchronization Extensions

UTM Unbounded Trans- actional Memory

VM Virtual Machine

xi

VTM Virtual Transactional Memory

XJ Transactional Java

xii

ABSTRACT

Chapman, Keith G. Ph.D., Purdue University, December 2016. Hybrid STM/HTM for
Nested Transactions in Java. Major Professor: Antony L. Hosking.

Transactional memory (TM) has long been advocated as a promising pathway to more

automated concurrency control for scaling concurrent programs running on parallel hard-

ware. Software TM (STM) has the benefit of being able to run general transactional pro-

grams, but at the significant cost of overheads imposed to log memory accesses, mediate

access conflicts, and maintain other transaction metadata. Recently, hardware manufac-

turers have begun to offer commodity hardware TM (HTM) support in their processors

wherein the transaction metadata is maintained “for free” in hardware. However, HTM

approaches are only best-effort: they cannot successfully run all transactional programs,

whether because of hardware capacity issues (causing large transactions to fail), or com-

patibility restrictions on the processor instructions permitted within hardware transactions

(causing transactions that execute those instructions to fail). In such cases, programs must

include failure-handling code to attempt the computation by some other software means,

since retrying the transaction would be futile.

This dissertation describes the design and prototype implementation of a dialect of Java,

XJ, that supports closed, open nested and boosted transactions. The design of XJ, allows

natural expression of layered abstractions for concurrent data structures, while promoting

improved concurrency for operations on those abstractions. We also describe how software

and hardware schemes can combine seamlessly into a hybrid system in support of transac-

tional programs, allowing use of low-cost HTM when it works, but reverting to STM when

it doesn’t. We describe heuristics used to make this choice dynamically and automatically,

but allowing the transition back to HTM opportunistically. Both schemes are compati-

ble to allow different threads to run concurrently with either mechanism, while preserving

xiii

transaction safety. Using a standard synthetic benchmark we demonstrate that HTM offers

significant acceleration of both closed and open nested transactions, while yielding parallel

scaling up to the limits of the hardware, whereupon scaling in software continues but with

the penalty to throughput imposed by software mechanisms.

1

1 INTRODUCTION

The XJ language provides full blown support for closed, open nested and boosted

transactions. The hybrid transactional memory system supported by the XJ framework

allows hardware transactions and software transactions to proceed concurrently. Open

nesting increases the envelope of concurrency and transaction sizes that can be

accommodated in hardware.

Transactional memory (TM) allows programmers to group memory operations into

transactions that appear to execute atomically: no transaction sees the intermediate states

of other transactions executing in other threads, and all work of a transaction either hap-

pens (the transaction commits) or not (the transaction aborts). Transactional memory is

more abstract than locking, and avoids many of the problems encountered with locks, such

as deadlock, priority inversion, convoying, pre-emption, and reduced concurrency.

Transactional memory systems track memory read and write operations performed

against disjoint memory units. When two transactions access the same memory unit and at

least one of the accesses is a write then there is a conflict: one of the transactions must abort

(discarding its pending writes) and restart. The transaction system must also manage atom-

icity: either all of a transaction’s writes occur, or none of them, and to other transactions

the writes appear to occur all at a single instant in time.

Software transactional memory (STM) systems track memory accesses in software,

usually at the logical level of fields or objects of a host programming language. The over-

head of this software instrumentation results in loss of throughput for memory accesses.

Nevertheless, STM systems can still scale better than non-transactional synchronization

schemes (such as locking) because of increased concurrency.

2

In contrast, hardware transactional memory (HTM) systems track memory accesses in

hardware at the physical level of bytes, words, or cache lines, with little or no throughput

overhead. However, current HTM proposals and implementations such as Intel’s Transac-

tional Synchronization Extensions (TSX), IBM’s System Z, and AMD’s Advanced Syn-

chronization Facility (ASF), offer only best-effort hardware transactions: they can fail even

when there are no conflicts [14; 16; 19; 30; 51; 56]. Such reasons for failure include lack

of hardware capacity to track accesses, compatibility restrictions on instructions permitted

to execute with transactions, page faults, and other hardware interrupts. As a result, HTM

systems require software to take over when a hardware transaction cannot profitably be

retried. For example, hardware lock elision (HLE) replaces lock regions with transactions,

retrying some number of times in the case of conflicts, but falling back to lock acquisition

when HTM otherwise fails [17; 48].

Proponents of transactional memory have long devised various models for aggregat-

ing nested execution of atomic actions into larger transactions. Most systems (including

existing commercial HTM) simply fold the operations of nested transactions into the top-

level outermost transaction, forming one large flat transaction. In this case, any conflict

arising in a nested transaction will cause the top-level transaction to abort, discarding all

of its effects. However, some systems allow nested transactions to abort independently of

the parent while preserving the parent’s atomicity, avoiding the loss of work performed by

the parent due to a conflict by the child. Closed nesting [40] still aggregates the effects

of nested transactions into their parent on commit, but allows retry of a nested transaction

when it aborts, without necessarily aborting the parent. Other work [41; 42] has proposed

open nesting as an extension to closed nesting, allowing improved concurrency at the cost

of some programmer effort. This approach relies on having programmers annotate open

transactions with an abstract undo action that can be used by the parent to revert the effects

of the child if the parent aborts. The nested atomic actions still execute as transactions, with

the usual conflict detection for their memory operations to ensure atomicity, but when they

commit their memory effects become permanent and globally visible. The undo action al-

lows their effects to be rolled back if the parent aborts. Open nesting also requires abstract

3

concurrency control, so as to detect abstract conflicts between transactions that occur at the

level of the abstract operations encapsulated by the open nested transactions.

1.1 Overview

We describe the design and prototype implementation of a dialect of Java, XJ, that

supports a range of transactional programming abstractions, including open/closed nested

transactions, and transactional boosting. This dissertation shows the extent to which these

alternatives for nesting transactions can be accelerated by using HTM where possible, to

avoid the respective overheads of their STM implementations, while allowing fallback to

STM execution when the hardware fails to provide. In particular, we desire a system that

presents a full-blown general transactional programming framework for Java, while auto-

matically and dynamically choosing when to use HTM versus STM, and where hardware

and software variants can execute concurrently and seamlessly while preserving transaction

semantics.

The dissertation is structured as follows:

• The remainder of this Introduction chapter gives an overview of the XJ framework,

and enumerates the contributions of this work.

• Chapter 2 discusses the prior work in this area, and summarizes some closely related

fields.

• Chapter 3 details the language extensions we propose and discusses the syntax and

semantics of the XJ language.

• Chapter 4 outlines the XJ framework that provides the prototype implementation. We

discuss the major components of the XJ architecture and its implementation.

• Chapter 5 provides an evaluation of the XJ framework showing how open nesting

increases the envelope of concurrency for HTM.

4

XJ source code

XJ Compiler

standard Java
bytecode

XJ Rewriter

bytecode
+ run-time calls

HTM-enabled
JVM

XJ run-time
library

compile

load

run

Figure 1.1.: XJ Tool Chain

• Chapter 6 discuss future work, detailing how the XJ framework can be integrated

further into a production VM.

• Finally, Chapter 7 summarizes the dissertation.

1.2 XJ Framework

The XJ Framework consists of many integrated components as shown in Figure 1.1. It

consists of a compiler that compiles XJ source code to standard java bytecode, a bytecode

rewriting framework that instruments classes at load time, a runtime library that provides

the functionality to track transactions and abstract locks, and a minimally modified JVM to

provide HTM support. If run on an unmodified JVM, XJ could still function with its STM

capabilities.

5

1.3 Principles and Approach

Transactions are usually described in terms of read and write operations performed

against disjoint memory locations. Hardware and software transactional memory work in

terms of either hardware memory units such as bytes, words, or cache lines, or, when incor-

porated into a programming language, in terms of variables/fields or objects. Regardless of

the memory units in play, the transaction mechanism tracks reads and writes of those units

to detect conflicts (two transactions access the same unit and at least one of them writes it)

and manage atomicity (either all of a transaction’s writes occur, or none of them, and they

appear to occur at a single instant in time).

Here we will describe a design for Java that performs conflict detection on the unit of

objects, and that tracks writes at the level of object (and static) fields. We adopt pessimistic

concurrency control for objects modified by a transaction (i.e., writing requires acquiring

a lock) and handle atomicity of update by allowing updates in place and undoing a trans-

action’s uncommitted writes if the transaction aborts. Thus we will use an undo log. In

principle any of these decisions could be varied; some would have a degree of visible im-

pact on the language design, though much would remain the same. While we agree that no

particular transaction management policy offers the best performance under all workloads,

this seems to be a reasonable “middle of the road” choice. Nevertheless, we have designed

our prototype implementation to allow future experimentation with alternative approaches.

What we just described briefly characterizes flat, non-nested, transactions. Here is a

correspondingly short description of closed nesting. A closed nested transaction is either

top-level, or a child subtransaction nested within a parent transaction. Logically, trans-

actions accumulate read and write sets, which determine conflicts as well as what writes

become visible upon commit.

Updates become globally visible only when a top-level transaction commits. When a

transaction reads a value, it sees the value in its own read or write set (if there is one),

otherwise the value seen by its parent. A top-level transaction will see the latest (globally

6

committed) value, subject to subsequent overriding of the parent’s values when the child

commits, as follows.

When a nested transaction commits, its read and write sets merge with its parent’s, the

child’s writes overriding any previous value in the parent. When a top-level transaction

commits, its writes become permanent. When a transaction aborts, its read and write sets

(and associated updates) are discarded or rolled back.1 A transaction can succeed only if it

has no conflicts with other transactions. Nested transactions refine the earlier definition of

conflict (two transactions both accessing the same unit, at least one of them writing it) to

say that there is conflict only when neither transaction is an ancestor of the other. In case

of conflict, either or both must abort to prevent violation of transaction semantics, in which

a legal execution is equivalent to a serial execution of the committed transactions (only), in

some order (i.e., serializability [44]).

Nested transactions allow decomposition of a large transaction into smaller subtrans-

actions, each of which can attempt some portion of work, and possibly fail (and perhaps

be retried) without aborting work already accomplished by the parent. However, the parent

still accumulates the read and write sets of all of its committed children (so writes by a child

become visible to other unrelated transactions only when the top-most ancestor commits).

Thus, as large transactions accumulate ever larger read and write sets from their children

they will become more prone to failure due to higher probability of conflict. These failures

reduce system throughput (the effective degree of concurrency).

Open nesting allows further increases in concurrency [42], by releasing concrete re-

sources (e.g., memory reads and writes) earlier and applying conflict detection (and roll

back) at a higher abstraction level. For example, transactions that increment and decrement

a shared memory location would normally conflict, since they write to the same location.

But, since increment and decrement commute as abstract operations, they can be imple-

mented correctly with open nesting. An increment (say) does: read, add-one, write. The

open nested transaction would be over and the updated field would not be part of the parent

1If the system performs updates in place and keeps an undo log, on commit of a child transaction the child’s
undo log is appended to the parent’s. Thus, abort of the parent will remove the effects of the child and any
other preceding effects recorded earlier in the parent’s undo log.

7

transaction’s read or write set. However, if the parent later aborts, it needs to run a compen-

sating decrement to roll back the logical effect of the committed open nested transaction.

The only difference between open and closed nesting in terms of the read/write set

execution model concerns what happens when a transaction commits. When an open nested

transaction commits, it discards its read set, and commits its writes globally at top level.2

To support moving conflict detection from the concrete to the abstract level, when the

committing open nested transaction releases its concrete memory resources (i.e., its mem-

ory reads and writes), it must typically claim some (set of) abstract resource(s) (“abstract

locks”) and provide a corresponding abstract compensation operation (e.g., the decrement

in the earlier example) for use by its ancestors if they need to abort and roll back.

Prior work [42] showed that in some cases open nesting can greatly increase concur-

rency. However it does place more of burden on programmers who use it, since they

(a) need to get the compensating actions right, and (b) likewise need to provide suitable

abstract concurrency control. It has also been observed that if open and closed nesting are

ever applied to the same object, deadlocks can occur that block both the completion of an

open nesting action and a compensating action needed to abort the ongoing transaction.

If we view transaction conflicts and rollback in terms of operations, we can see greater

similarity between closed and open nesting and highlight better the essential difference.

Closed nesting works in terms of read and write operations, with the usual conflict rules on

those operations. The undo of a write is a write that installs the original value of the mem-

ory unit. In the open nesting case we have a programmer-defined set of operations, with

programmer-defined conflict rules and programmer-supplied rollback operations for each

forward operation. So the essential difference when viewed from “outside” the transaction

is the set of operations over which the transaction operates.

2It further discards its written data elements from the read and write sets of all other transactions. Given the
conflict rules, these can only be its ancestors (it cannot commit unless those other unrelated conflicting trans-
actions also abort). Well-structured programs respecting proper abstraction boundaries (not manipulating the
same state at different transaction levels) will avoid this situation, but the rule makes the commit global, as
intended.

8

However, the more abstract3 transactions provided by open nesting—which offer in-

creased concurrency because abstract concurrency control captures the essential semantic

conflict while read/write level conflict detection over-estimates conflicts—must be built

from something, and the individual operations must still appear to execute atomically. More

precisely, they must be linearizable [27]: they must appear to occur at a single instant of

time. Transactions are one way to achieve that linearizability, so it is natural to implement

an open nested transaction using much the same mechanism as for closed nesting.4

1.4 Contributions

While the concept of transactional memory has been around for decades our approach

differs in several ways from previous work (as described in chapter 2). This dissertation

presents several main contributions:

XJ Language. We refine earlier proposals for open nesting constructs to combine open

nested classes with a rich range of abstract locks, used to represent the abstract re-

sources acquired by open nested transactions as they commit. Earlier approaches

to adding open nesting to a programming language were vulnerable to a kind of

internal deadlock that could prevent both forward progress of a transaction and suc-

cessful undo to abort and remove the transaction. The design presented here solves

that problem, overcoming a key reliability concern.

XJ Framework. We present a full-fledged implementation of extended Java language ab-

stractions for nested transactions (where children can fail independently of parents,

as opposed to the flattening of other systems) to gain improved concurrency; we call

this system XJ (for transactional Java).

3We mean “abstract” in that conflicts don’t occur at the physical level.
4Transactional boosting [24], however, recognizes that how that linearizability is achieved does not matter,
and thus naturally supports an approach where existing non-transactional code is extended with transactional
wrappers. It still needs abstract concurrency control of some kind, etc.

9

Hybrid TM design. We describe a hybrid HTM and STM scheme for nested (and boosted)

transactions in Java, allowing HTM and STM to execute concurrently and compati-

bly.

Simple but effective back-off scheme. We demonstrate that are simple but effective back-

off scheme make use of HTM where possible with adaptive seamless reversion to

STM where not, for good performance.

Implemented on a high-performance JVM. We show how the hybrid TM design can be

made to execute under optimized compilation with the high-performance (HotSpot-

based) OpenJDK for Java, with minimal modification to the HotSpot compilers to

add HTM intrinsics.

Performance study. We demonstrate via experiments using an established benchmark that

HTM can significantly boost throughput and that falling back to STM does not com-

promise scalability.

Benefits of open nesting. We show that open nesting increases the envelope of concur-

rency and transaction sizes that can be accommodated in hardware.

The broader implications of our work are that programmers can easily make use of

transactional programming abstractions to build scalable concurrent data structures without

needing to devise complicated implementations using low-level synchronization primitives.

Moreover, these transactional implementations can benefit from hardware acceleration on

current hardware for modest transaction sizes and degrees of concurrency. We also suggest

that HTM would be even more useful if its capacity were higher.

10

2 BACKGROUND

Researchers and implementers have explored a number ways in which transactions might

be nested. A natural form of nesting for transactional constructs in a programming language

is linear nesting, which allows a parent transaction to invoke a sequence of sub-operations,

some of which may themselves also execute as child subtransactions. How these sub-

transactions are managed may vary, so long as the atomicity of the parent transaction is

preserved. If the parent transaction aborts and its effects are discarded, then the effects

of its committed children must also be discarded. Nesting is desirable when aggregating

atomic operations against underlying data structures into larger transactions. For example,

a transaction transferring a balance from one bank account to another needs to debit from

one account while crediting the other, both operations ideally appearing to occur simulta-

neously, perhaps to avoid arbitrage. The debit and credit operations must themselves be

implemented as atomic operations. Performing the transfer as a transaction that executes

the nested debit and credit actions (in either order, it does not matter) satisfies the require-

ment that the balance be seen to be in one account or the other at all times. Linear nesting

matches well both static nesting of program blocks in one another and the dynamic nest-

ing patterns of calls and returns. Hence our transactionalized version of Java uses linear

nesting.

Approaches to handling linear nested transactions that we consider in this dissertation

include flattening, closed and open nesting, and boosting.

2.1 Flattening

Flattening ignores the nesting structure and runs the operations of any nested transaction

as part of its parent. If a nested transaction aborts, then the entire top-level transaction

also aborts. Thus, all the work of the top-level transaction must be discarded and retried.

11

Flattening means that no metadata for nested transactions needs to be maintained, other

than a simple counter to track nesting depth—entering a nested transaction increments the

counter, and committing decrements the counter. When the counter decrements to zero the

top-level transaction commits its writes and they become globally visible.

Current HTM implementations, such as Intel’s TSX, flatten hardware transactions. As

a result, they are susceptible to failure if they run for a long time (increasing the likelihood

of conflicts or interrupts) or touch a large amount of memory (exceeding capacity).

2.2 Closed Nesting

Closed nesting allows a nested transaction to abort independently of its parent. A closed

nested transaction can successfully commit, in which case its reads and writes accrue to its

parent. If the child aborts then its writes are discarded and the nested transaction can be

retried. After some number of unsuccessful retries the parent itself may be aborted (or

the parent might attempt some other action). Closed nesting sometimes avoids the need to

discard the accumulated effects of a parent. On the other hand, as the write sets of a series

of linear nested transactions accrue to the parent, its chances of failure due to conflict with

other transactions will increase, because the write sets are larger and held longer.

Two nested transactions conflict as before (if they both access the same memory unit

and at least one of them writes it), excepting that a child never conflicts with its ancestors.

Thus, writes by children override writes of their ancestors without conflicting. Similarly,

reads by children do not conflict with writes of their ancestors (but need to see the value

most recently written by ancestors and previously committed descendants).

2.3 Open Nesting

Open nesting allows further increases in concurrency [42], by releasing concrete re-

sources (e.g., memory reads and writes) earlier and applying conflict detection (and roll

12

back) at a higher level of abstraction. For example, transactions that increment and decre-

ment a shared memory location would normally conflict, since they write to the same lo-

cation. But, since increment and decrement commute as abstract operations, they can be

implemented correctly with open nesting. An increment (say) does: read, add-one, write.

The open nested transaction would be over, its writes made globally visible, and the up-

dated field would not be part of the parent transaction’s read or write set. Instead, if the

parent later aborts, it must run a compensating decrement to undo the logical effect of its

committed open nested child.

The only difference between open and closed nesting with respect to memory accesses

concerns what happens when a transaction commits. When an open nested transaction

commits then its writes become permanent and globally visible; they do not accrue to its

parent. Moreover, for each of its writes any corresponding read by its ancestors from the

same location is also forgotten (so that its ancestors can no longer have conflicts on that

location).

Instead of conflict detection being performed on the concrete level of memory units,

when a committing open nested transaction releases its concrete reads and writes, it must

typically claim some (set of) abstract resource(s) (“abstract locks”) and provide a corre-

sponding abstract compensation operation (e.g., the decrement in the earlier example) for

use by its ancestors if they need to abort and undo the child.

If we view transaction conflicts and rollback in terms of operations, we can see greater

similarity between closed and open nesting and highlight better the essential difference.

Closed nesting works in terms of read and write operations, with the usual conflict rules

on those operations. The undo of a write is a corresponding write that installs the orig-

inal value of the memory unit. In the open nesting case we have a programmer-defined

set of operations, with programmer-defined conflict rules and programmer-supplied roll-

back operations for each forward operation. So the essential difference when viewed from

“outside” the transaction is the set of operations over which the transaction operates.

13

However, the more abstract1 transactions provided by open nesting—which offer in-

creased concurrency because abstract concurrency control captures the essential semantic

conflict while read/write level conflict detection over-estimates conflicts—must be built

from something, and the individual operations must still appear to execute atomically. More

precisely, they must be linearizable [27]: they must appear to occur at a single instant of

time. Transactions are one way to achieve that linearizability, so it is natural to implement

open nesting using much the same mechanism as for closed.

Interestingly, because open nested children discard their physical reads and writes they

are particularly amenable to acceleration using hardware, even when their parent runs in

software. All that needs to be done is to ensure that the necessary abstract locks are acquired

before the hardware open nested child commits. By storing abstract lock meta-data in

a carefully-implemented (non-transactional) concurrent data structure the abstract locks

can simply be acquired before entering the open nested hardware transaction (so avoiding

placing the burden of managing the locks on the hardware transaction, and leaving it only

to track application-level memory accesses).

2.4 Boosting

Transactional boosting [24] recognizes that how linearizability is achieved does not

matter, and thus naturally supports an approach where existing non-transactional (but

otherwise thread-safe (linearizable)) code is extended with transactional wrappers. For

example, given a thread-safe data structure such as Java’s "ConcurrentHashMap", where

concurrent operations to manipulate the map are linearized using low-level non-blocking

primitives, linearizability of the composition of sets of these operations can be achieved

using the same abstract concurrency control mechanisms as for open nesting. Instead of

using transactions to linearize the sub-operations (say, adding and removing from the map),

transactions are used only to linearize aggregations of those sub-operations.

1We mean “abstract” in that conflicts don’t occur at the physical level.

14

For example, an aggregate operation that adds two elements to a "ConcurrentHashMap"

can be linearized with respect to other operations on the map by locking the visibility

of those elements until the aggregate operation completes, and providing a compensating

action that removes the elements if the aggregate must be rolled back.

The advantage of transactional boosting is that it removes the need to manage low-

level conflicts using transactions, which in the case of software transactional memory can

have significant overhead. Instead, the underlying data structures support linearizability of

their operations using other means, such as low-level hardware atomic operations. Software

transaction mechanisms come into play only when it comes to aggregating these operations,

capturing their resource reservations in the form of abstract locks.

2.5 Related Work

We now briefly discuss other related work. We first discuss how HTM support has

evolved over the years. We then take a look at some key transaction proposals with an

emphasis on hybrid transactional systems.

Ever since Herlihy and Moss [25] introduced Transactional Memory in 1993 there have

been many proposals that exploit hardware to perform transactions. Stone et al. [55] pro-

posed a multi-word Oklahoma Update mechanism around the same time as Herlihy and

Moss. The Oklahoma Update mechanism was an extension of the Jensen et al. [31] pro-

posal to use multiple reservation registers, whereas Herlihy and Moss proposed a transac-

tional cache. Lie [37] and Ananian et al. [1] argued that hardware transactional memory

should support unbounded transactions which led to their proposal, Unbounded Trans-

actional Memory (UTM). Hammond et al. [22] proposed Transactional Coherence and

Consistency (TCC) which was also a form of unbounded transactions but needed radi-

cal changes in hardware. Transactional Lock Removal (TLR) was proposed by Rajwar and

Goodman [49] which is a form of HLE.

More recently hardware vendors have devised extensions for HTM hardware. Ad-

vanced Synchronization Facility (ASF) [10] is a hardware extension for AMD64 that intro-

15

duces new instructions for specifying regions that execute speculatively. Rock [8; 9] was a

multicore SPARC® processor that provided HTM instructions to begin and end speculation

regions similar to ASF. There are commodity processors today that exhibit HTM capability.

Intel’s Transactional Synchronization Extensions (TSX) [56] and HTM support in IBM’s

System Z [30] are noteworthy.

2.5.1 Unbounded Transactional Memory(UTM)

Lie’s hybrid TM system called Unbounded Transactional Memory [37] was one of the

first Hybrid TM systems. UTM supported a form of flat nesting where each nested trans-

action is subsumed by its parent. Its STM design is object based and similar to that of

Dynamic Software Transactional Memory (DSTM) [26]. Its hardware design was such

that small transactions that fit in the cache used cache coherency protocols to detect con-

flicting transactions. This was the common case. Rather than limiting transaction size it

allowed transaction state to overflow from the cache to main memory. UTM supported

transaction sizes as large as what the virtual memory system could support and was an ide-

alized design for HTM. However implementing it required significant changes to both the

processor and the memory subsystem. So it was never fully realized. A restricted version

of UTM was explored as a detailed cycle-level simulation using UVSIM [58]. It was called

Large Transactional Memory (LTM). Transaction sizes in LTM could be as large as the

physical memory and its duration less than a time slice. It did not allow transactions to

migrate between processors. These limitations meant that LTM could be implemented by

modifying the cache and processor core.

2.5.2 Kumar’s Hybrid TM

Kumar et al. [35] proposed a hybrid transactional memory system that was similar to

that of Lie [37]. The system starts in HTM and switches to STM when failures occur.

The hardware mode detected conflicts at the granularity of a cache line while the software

implementation detected conflicts at object granularity similar to DSTM [26]. The hard-

16

ware design introduced a transactional buffer that recorded two versions for each line: the

transactionally updated value and the current value. Two bits were also associated with

each hardware thread, these indicated if the thread was executing in a transaction and if the

execution was in hardware or software mode. Two bit-vectors recording reads and writes

were associated with each cache line, and used by the HTM to detect conflicts. The system

was evaluated on a cycle accurate, execution driven, multiprocessor simulator.

2.5.3 Virtual Transactional Memory (VTM)

Virtual Transactional Memory (VTM) was proposed by Rajwar et al. [50] to virtualize

platform specific resource limits in a user transparent manner. It has a combined hardware/-

software system architecture and enables users to obtain the benefits of TM without having

to explicitly handle resource or scheduling limitations. VTM remapped evicted locations

in virtual memory to new locations when transactions failed because of buffer overflow. If

a transaction failed because of an interrupt VTM would save its state in virtual memory and

resume the transaction later.

2.5.4 Hybrid Transactional Memory (HyTM)

Hybrid Transactional Memory (HyTM) [15; 35] generates separate software paths for

HTM and STM with instrumentation to check the needed metadata. HyTM supported two

simple back-off schemes to transition from HTM to STM in the face of failures. In the “im-

mediate fail-over” scheme a transaction failing in HTM retries itself in STM immediately.

In the “back-off” scheme, a transaction failing in HTM retries for 10 times before retry-

ing under STM. Since the authors used transactions that were very short and with small

memory footprint, the simple approach of trying HTM first for every transaction was a

successful policy. Matveev and Shavit [38] describe a similar back-off policy.

17

2.5.5 Phased Transactional Memory (PhTM)

PhTM [36] took an alternative approach to HyTM by running transactions in phases.

Under this scheme transactions cannot run in HTM and STM concurrently: it is either all

HTM or all STM. This works well when all transactions succeed under HTM, but incurs

major overheads if even one HTM transaction fails.

2.5.6 Hybrid NOrec

Hybrid NOrec [14] attempts to get the best out of both HyTM and PhTM by allowing

concurrent hardware and software transactions without the overhead of per-access instru-

mentation. Its STM implementation is based on NOrec [13]. NOrec does not employ

per-location metadata, but rather depends on a single global sequence lock for concurrency

control. A consequence of this design is that only a single writer can commit and perform

writeback at a time. Thus it scales well when its single-writer commit serialization does not

represent the overall application bottleneck. Hybrid NOrec was evaluated on Rock[8; 9]

and the PTLsim ASF simulator [57].

2.5.7 Deuce STM

Deuce [33] was an STM framework designed for Java that enabled transaction support

without having to modify the JVM. It dynamically instruments classes at load time and

uses an original “field-based” locking strategy to improve concurrency. Deuce relies on the

programmer to annotate his/her code appropriately to mark transaction boundaries. The

framework duplicates each method, one serves as the transactional version while the other

is non-transactional.

2.5.8 Adapt STM

adaptSTM [45; 46] uses online monitoring to tune parameters that could effect STM

performance. The system adapts different parameters such as write-set hash-size, hash-

18

function, and write strategy based on runtime statistics on a per-thread basis. adaptSTM,

was a word-based STM library based on a global clock and an array of combined global

versions (timestamps) and locks.

19

3 XJ LANGUAGE

We now present details of our extensions to Java that add transactions, with open nesting,

closed nesting and boosting, to the language. While closed nesting need not be associated

only with classes, we connect open nesting and boosting with classes. In order to avoid

deadlock internal to the transaction system, the design prevents any given static or instance

field from being accessed by both closed and open nested transactions. Associating open

nesting with classes also facilitates this segregation.

3.1 Atomic Actions

A block (or method) may be designated atomic, by writing the keyword atomic where

the keyword synchronized is permitted. A block (or method) cannot be both atomic and

synchronized.1 Each execution of an atomic block (which includes method bodies)

occurs as an atomic (trans)action.2 An atomic action has three possible outcomes:

• It can succeed, in which case its effects are committed.

• It can abort, in which case its effects are undone, and the action will be retried from

the beginning.

• It can fail (complete abruptly), in which case its effects are undone specially (§3.1.5)

and the action is not retried. Action failure results from throwing of exceptions.

The effects of an atomic action include assignments to (shared) instance and static fields,

and (unshared) local variables and formal method parameters and exception handler pa-

rameters (i.e., all declared variables), as well as the effects of nested atomic actions that it

executes (see §3.2 for consideration of the case of open atomic actions).
1We may propose to remove synchronized entirely.
2We use the term atomic action for brevity, to refer to the execution of an atomic block/method as a transac-
tion.

20

In addition to designating atomic methods individually, one may write atomic as a

class modifier. This causes all methods of the class to be implicitly atomic. Any class that

extends an atomic class is implicitly also atomic, unless the extending class is explicitly

marked openatomic (see §3.2).

3.1.1 Effect Logging

It is helpful to consider the run-time system as (conceptually) associating with each

thread a log of all the thread’s assignments. Each record in the log indicates the variable

that was assigned and the variable’s previous value (§3.2.3 extends this model to include

other kinds of log records). Undoing the effects of an atomic action requires processing

each of the log records since the action started, from last to first, restoring each variable

to its logged prior value.3 Undoing also discards each log record after it is processed.

Likewise, committing a top-level action discards that thread’s log records. Committing a

non-top-level action appends its log to its parent’s log.

3.1.2 Concurrency Control

If a thread reads a variable while executing an atomic action, the variable is said to be

a member of the action’s read set. Likewise, if a thread writes a variable while executing

an atomic action, the variable is said to be a member of the action’s write set. An action’s

accessed variable set is the union of its read set and its write set. If the write set of an action

has a non-empty intersection with the accessed variable set of another thread’s action, the

actions are said to conflict. If two concurrent actions conflict, then at least one of them

must abort.
3Undoubtedly many optimizations are possible!

21

3.1.3 Retry Statement

The retry statement allows explicit programming of abort. It is useful in implementing

open atomic concurrency control (§3.2.6), etc. When a thread executes a retry statement,

the atomic action aborts immediately, and will be retried from the beginning of the action’s

block. Executing a retry statement when not in an atomic action causes a run-time error

exception to be thrown.

RetryStatement :

retry;

Syntactically, a retry statement can appear anywhere a return statement can appear.

3.1.4 Require Statement

The require statement supports conditional atomic actions:4

RequireStatement :

require Expression ;

The Expression must be boolean-valued. The effect of evaluating

require exp ;

is similar to evaluating

if (!exp) retry ;

However, an implementation may be able to use knowledge of the required condition to

avoid retrying if the condition’s value cannot have changed.5

4We considered calling this wait or await, but its semantics are different enough from Java’s current wait/no-
tify model that we prefer to emphasize that it is different.
5We considered as an alternative the watch statement of Atomos [4], but felt that because it is so low level,
it might overly constrain implementation strategies. Also, if a programmer mentions too small a watched
variable set, then the program can surprisingly wait forever.

22

3.1.5 Exceptions

If an exception is thrown and not caught within an atomic action (i.e., the atomic action

would complete abruptly), the atomic action fails, and is undone in a special way, as fol-

lows. Exception objects that are constructed and thrown, and new objects reachable from

them, should not have effects related to them undone. If those effects were undone, the

objects would have their fields reset to the value before any initializers were run (i.e., zero).

Therefore, an implementation must not undo effects on fields of objects created since the

action began. Moreover, at the time of an exception, this enables programmers easily to

capture and communicate the state of previously existing objects using cloning or other

copying of state into the corresponding exception object. This state will survive the failure

of the enclosing action.

3.2 Open Atomic Classes

A class can be declared with the (new) modifier openatomic. This indicates that the

open atomic instance or static fields of the class can be accessed only during execution of

open atomic instance or static methods of the class.

Commentary: As noted with our principles (§1.3), openatomic is a property

of a class because all operations of the abstract data type implemented by the

class need to cooperate in providing suitable abstract concurrency control and

recovery.

The openatomic modifier is independent of the other usual class modifiers (abstract,

final, etc.), and applies equally to enumerations and nested classes. Of course, a class

cannot be both atomic and openatomic. Any class that extends an openatomic class is

implicitly also openatomic. An openatomic class can extend an atomic class, but an

atomic class cannot extend an openatomic class. We detail the reasons for this in §3.2.4.

Interfaces cannot be declared openatomic (which is a semantic and implementation

property, not affecting signature or usage).

23

3.2.1 Open Atomic Fields

All private or protected instance fields of openatomic classes are open atomic.

Only private static fields of openatomic classes are open atomic. All accesses to open

atomic fields are statically guaranteed to occur during the execution of an open atomic ac-

tion. All other fields are not open atomic, and a warning will be emitted at their declaration

in an openatomic class.6 Any field with the final modifier is treated as open atomic

irrespective of its access modifier (this allows a final field to be accessed by open atomic

methods and also from elsewhere, according to its access modifier).

3.2.2 Open Atomic Methods

A method is considered to be open atomic if it has at least one of the following clauses

attached: onabort, oncommit, onvalidate, ontopcommit, or locking. (The first four

are introduced in §3.2.5; locking clauses are described in §3.2.6.) Only an openatomic

class can have open atomic methods. Moreover, all public or package access methods of

an openatomic class are implicitly open atomic; they cannot be atomic.

Commentary: These rules are intended to prevent calls from outside the class

that access open atomic instance fields other than during execution of an open

atomic method on that instance, and likewise to prevent access to open atomic

static fields other than during execution of an open atomic static or instance

method. We assume that open atomic instance methods that directly or indi-

rectly access open atomic static fields provide suitable class-level concurrency

control and recovery.

Private or protected methods of openatomic classes can still be non-atomic. They can

also be atomic, allowing a method that atomically composes invocations of two or more

open atomic methods, for example.
6Because public and package access fields can be accessed directly from outside of the class, we cannot
restrict them to be accessed only during execution of open atomic methods. Similarly, protected static
fields can be accessed directly from subclasses, so we cannot restrict their access to occur during execution
of open atomic methods.

24

3.2.3 Open Atomic Method Execution

An open atomic method always executes as an atomic action. However, if it completes

successfully (commits), its writes are made permanent (globally visible), and its log is

discarded. Moreover, if the open action is also nested then it has the following effects on

its parent’s log:

• Its handler clauses (onabort, oncommit, onvalidate, and ontopcommit, if exist)

take effect (are logged). Clauses in effect may later be executed, under certain con-

ditions.

• It acquires abstract locks, as described in its locking clauses (if any), which are

logged.

Discarding its log means that any clauses in effect from open atomic actions on other in-

stances or classes, committed during this open atomic action, become no longer in effect.

Discarding its log also means releasing locks held from such actions.

Because the open atomic public/package methods of an openatomic class are its only

external entry points, each of which begins an open atomic action on entry, all methods of

an openatomic class are guaranteed to execute in the dynamic context of an open atomic

action, or nested within one. There are occasions when one open atomic method may

internally call another open atomic method in the same class (or superclass), in which case

their effects are aggregated, merging the open atomic callee into the caller’s action. This

avoids the need to duplicate internal subtransaction handlers in their parent’s handlers.

For example, if a linked list class has open atomic add and remove methods, one might

write an open atomic move method to move an item from its current position to the end of

the list. If move is written as remove followed by add, then the onabort actions for both

move and add accrue to move, instead of being discarded when move commits. Otherwise,

one would be forced to duplicate them in the onabort clause for move.

Commentary: One might implement aggregation as follows. For each open

atomic method m create a corresponding “internal method” mInternal having

25

the same signature and body, but not open atomic. Rewrite internal calls of m

to call mInternal.

When an open atomic method completes successfully, its open atomic clauses and

locks, some of which may come from aggregated calls, are logged at that time to its

parent. Thus the log described in §3.1.1 also contains records for onabort, oncommit,

onvalidate, ontopcommit, and locking clauses.

Undoing an atomic action (because of abort or failure), processes its portion of the log

in reverse order (as in §3.1.1). Processing ignores records such as oncommit, onvalidate,

and ontopcommit. It also ignores records corresponding to locking clauses (these are

released as described in §3.2.6). When undoing encounters an onabort record, it executes

the corresponding onabort block as an open atomic action. Notice that undoing of writes

and execution of onabort clauses are interleaved (but not concurrent): all occur in reverse

log order. The processed log records are discarded, as described in §3.1.1. Finally, control

resumes at the beginning of the aborted action, if it is to be retried, or the exception causing

failure is propagated.

Committing an atomic action processes its portion of the log in forward order from the

beginning to the end. Processing first runs the onvalidate records to ensure the transac-

tion is in a state that can be committed. It then processes the oncommit records. If the

committing action is a top level transaction it then processes the ontopcommit records.

Processing these handler records causes their corresponding clauses to be executed as open

atomic actions. Log records for writes, and onabort and locking records, are ignored

when committing. Committing then discards the processed log records and releases all of

the committing action’s abstract locks (see §3.2.6). Control then continues normally.

3.2.4 Inheritance, Overriding, and Nesting

An openatomic class can extend a class having public/package atomic methods, but

inheriting those methods without overriding them in the openatomic class is dangerous

26

because it allows accessing fields of the open atomic instances in both open and closed

execution modes. Mixing access modes in this way can lead to deadlocks [42].

To avoid this, we can either require that all inherited atomic methods be explicitly

overridden with open atomic methods in the openatomic class, or implicitly “copy down”

the inherited method as an open atomic method. The latter may save some typing by the

programmer, but the former has the advantage of forcing her to think through the abstract

locking protocol for all the open atomic methods of the openatomic subclass. Our inclina-

tion is towards forcing the programmer to provide explicit overrides. Invoking the atomic

superclass method with a super call from the body of the overriding open atomic method

(or elsewhere in the subclass) is always safe, because instance field accesses will always

occur in the context of an open atomic action.7

Conversely, an atomic class cannot extend an openatomic class. Otherwise, calls

using super would enable the subclass to access fields in both open and closed modes.8

Similarly, a nested class (either static or non-static), which can directly manipulate the

open atomic fields of its outer class or instance, is implicitly openatomic if its outer class

is openatomic. This ensures that external entry points via the nested class also preserve

the open atomic nature of the enclosing class’s open atomic fields.

One additional piece of mechanism is necessary to ensure proper handling of open

atomic fields. It is possible for an open atomic method on instance o to call methods on

some other objects, resulting in a call chain that comes back to calling a method on o.

Unlike aggregation to construct larger open atomic actions from smaller ones operating

on the same object, where the call chain does not leave the scope of the instance, in

this case the call chain is re-entrant after leaving the instance. In such cases, the re-entrant

open action cannot safely release its physical updates, since the outer open action on that

object is still active. Thus, we also formulate an additional run-time restriction, as follows.

For any given object accessed in an open atomic way, indirect (non-aggregating) re-entrant

7It may not be correct, however, unless the overriding method adds suitable locking and onabort clauses,
etc.
8Alternatively one could have it mean something like “copy down all the methods, removing all their open
atomic clauses”.

27

calls to open atomic actions run instead as closed atomic. The requirement is analogous to

the tracking of re-entrant nesting depth for Java synchronized blocks/methods, where the

lock is released only when exiting the outermost lock level.

3.2.5 Open Atomic Method Suffix Clauses

We now give the syntax for the handler clauses that may be attached to the end of

an open atomic method, namely onabort, oncommit, onvalidate, and ontopcommit

clauses. A given method may have at most one of each kind of clause attached. Moreover,

because the handlers may wish to use values computed at the beginning of the action, an

optional list of local variable declarations can be evaluated before the method body proper.

These pre-declarations (PreDecls) evaluate at the same level as the method body, in the

scope of the formal parameters, and are delimited syntactically by square brackets []. The

variables they declare are in scope for both the method body and the handler clauses.

MethodDeclarator :

Identifier ([FormalParameterList]) [PreDecls]

PreDecls :

[{LocalVariableDeclarationStatement}]

MethodBody :

Block {OpenAtomicClause}

{OpenAtomicClause} ;

OpenAtomicClause :

onabort Block

oncommit Block

onvalidate Block

ontopcommit Block

Supporting these constructs, and supporting use of method parameter values and pre-

declarations, requires generating code that saves the necessary values and makes them

available to the handler clauses if and when they run.

28

public interface LockTable
<LT extends LockTable<LT>> {
public void acquireLock
(LockShape lockShape, LockMode mode,
TxnDescriptor desc) throws LockConflictException;

public void releaseLock(Lock lock);
}

public interface Lock
<S extends LockShape, M extends LockMode> {
public S getLockShape();
public M getLockMode();
public TxnDescriptor getTxnDescriptor();
public LockTable getLockTable();

}

public interface LockSpace
<M extends LockMode<M>, LS extends LockSpace<M,LS>>
extends LockTable<LS> {}

public interface LockShape
<M extends LockMode<M>, LS extends LockShape<M,LS>>{}

Listing 3.1: Lock tables, spaces, shapes, and modes

3.2.6 Open Atomic Method Locking Clause

We provide a framework for users to construct their own abstract locking protocols,

along with several pre-defined abstract lock libraries. The locking framework relies on

the notions of locks, lock spaces, lock shapes, and lock modes. The "locking" clause of

an open atomic method requests locks of particular shapes in particular modes from lock

spaces. The type signatures of these are illustrated in Listing 3.1. (The metaphor here is of

possibly overlapping geometric shapes within some space. A shape indicates what is being

locked, while a lock mode describe how it is being accessed.)

An instance of an open atomic class will typically have some number of lock tables in

which to record abstract locks held by active transactions against the abstract state of the

instance. Lock tables record locks and the mode in which they are held, along with the

29

transaction holding the lock. Locks come in multiple shapes, as defined by a lock space,

allowing a single lock to cover a range of locked values.

An open atomic method invocation can try to obtain one or more abstract locks. These

are specified via locking clauses associated with the method, and return or throw state-

ments in its body. An abstract lock needs to:

1. indicate the lock table instance in which to request the abstract lock;

2. indicate the specific lock shape requested (and any parameters needed for that shape)

within the table’s lock space; and

3. indicate the specific lock mode instance to use.

As an example, consider the design of an open atomic class "Ordered""Set<T>" im-

plementing "java.util.Sorted""Set<T>". A suitable lock space for an ordered set is the

one-dimensional set of all possible "T" instances, having a total order ("OneD""Space").

Within this space one can imagine a number of lock shapes:

Point(x): lock a single “point” object, associated with a particular "T" instance x, which

mathematically could be considered the range [x,x];

GT(x): lock upward “rays” starting at x, meaning (x,∞];

LT(x): lock downward “rays” starting at x, meaning [−∞,x);

Range(x,y): lock ranges defined on values x and y where x≤ y in the total order, meaning

(x,y), etc.

openatomic class OrderedSet<T> ... {

private final

LockSpace<SXMode,OneDSpace<SXMode,T>>

eltSpace;

private final

LockSpace

30

enum SXMode implements LockMode<SXMode> {
SHARED {
public boolean conflictsWith(SXMode other) {
return other != SHARED;

}
},
EXCLUSIVE { public boolean conflictsWith(SXMode other) {
return true;
}

},
}

Listing 3.2: Shared/eXclusive lock modes

enum PCMode implements LockMode<PCMode> {
PIN {
public boolean conflictsWith(PCMode other) {
return other != PIN;
}

},
CHANGE {
public boolean conflictsWith(PCMode other) {
return other != CHANGE;

}
},

}

Listing 3.3: Pin/Change lock modes

<PCMode, UnitSpace<PCMode,OrderedSet<T>>

setSpace;

public boolean add(T elt) locking

(eltSpace : point(elt) : SXMode.EXCLUSIVE),

(setSpace : get() : PCMode.CHANGE) ...

public boolean remove(T elt) locking

(eltSpace : point(elt) : SXMode.EXCLUSIVE),

(setSpace : get() : PCMode.CHANGE) ...

public int size()

31

locking (setSpace : get() : PCMode.PIN) ...

public boolean contains(T elt)

locking (eltSpace : point(elt) : SXMode.SHARED) ...

...

}

Listing 3.4: OrderedSet lock tables

We will use two lock mode classes here, "SXMode", shown in Listing 3.2, and "PC-

Mode", shown in Listing 3.3. "SXMode" provides "SHARED" and "EXCLUSIVE" locks

(also often called read/write locks). "SHARED" and "EXCLUSIVE" modes are used con-

cerning the presence/absence of individual elements of a set. For the set as a whole, we

can pin the state of the set using "PIN" mode, or indicate some change to the set using

"CHANGE" mode: operations like "size" would use "PIN" mode, and "add"/"remove" op-

erations would use "CHANGE" mode on the set (plus "EXCLUSIVE" mode on individual

elements). Note that "CHANGE" conflicts with "PIN" but not with "CHANGE". The two

mode classes "SXMode" and "PCMode" are strictly different.

Lock modes are naturally implemented using Java "enum" classes that implement the

"LockMode" interface.

An "OrderedSet<T>" might then have two lock tables, one for the set of individual

elements and one for gross statistics (current size, total number of insertions/deletions,

etc.) about the set as a whole, as in Listing 3.4. In this example, "UnitSpace" is a space

that allows locking just one object, in this case the set as a whole.

In addition to the suffix clauses, an open atomic method may acquire abstract locks

before it can complete successfully. The locking clause is attached to the method’s header,

revising the syntax of MethodDeclaration :

MethodDeclaration :

MethodHeader [LockingClause] MethodBody

LockingClause :

locking [+] (LockExpressions)

32

LockExpressions :

LockExpression {, LockExpression }

LockExpression :

LockTableExp : LockShapeExp : LockModeExp

LockTableExp :

Expression

LockShapeExp :

Expression

LockModeExp :

Expression

A locking clause is syntactic sugar for acquiring a lock from a lock table.

The LockTableExp must have a type that implements the LockTable interface; it

indicates the lock table in which to request the abstract lock denoted by the locking clause.

A LockTable encapsulates a LockSpace instance and a LockMode type. These are defined

in a standard library as shown in Listing 3.1. An open atomic class will typically have one

or more LockTable instances for representing abstract locks held on itself or its instances.

The LockShapeExp must return a Lock, by invoking the indicated method on the lock table

LockSpace, itself obtained using getSpace(). It indicates the specific shape requested

(and any parameters needed for that shape) within the table’s lock space. The LockModeExp

must be of a type that implements the LockMode interface; it indicates the mode in which

to acquire the lock. A locking clause has the same scoping behavior as the suffix clauses.

An overriding method inherits the overridden method’s locking clause. If an overrid-

ing method supplies its own locking clause, then the overridden clause is not inherited. If

a method needs to extend an inherited locking clause, it can use the optional + sign with

its locking clause.

At the time an open atomic method execution accumulates locks, one evaluates each

LockExpression in turn, in textual order. To evaluate a LockExpression , one first ob-

tains the LockSpace from the LockTable. One then calls the method described by the

LockShapeExp ; this results in a Lock type. The next step is to attempt acquiring the ab-

33

stract lock. This is done by calling the add method on the LockTable instance specified

by the LockTableExp . If the add call completes successfully, then we say that the current

transaction holds a lock on the specified object in the specified mode. The call may fail due

to lock conflict. In this case the current transaction aborts and will be retried.

When a transaction completes (successfully or unsuccessfully) and releases its locks, it

no longer holds them.9

3.2.7 Acquiring Locks at Return or Throw

Sometimes, throwing an exception indicates something about an object’s state. For

example, calling remove() on an empty Queue throws NoSuchElementException. Ar-

guably, this should lock the fact that the queue is empty. However, our interpretation of

exceptions as causing abort prevents remove() from acquiring such an abstract lock on the

queue’s state. Hence, we allow one to attach a locking clause to a throw statement:

ThrowStatement :

throw Expression [LockingClause] ;

The indicated locks are acquired as the exception is thrown, and are logged as part of the

containing action. If execution is not within an atomic action (open or not), the locking

clause has no effect.

Similarly one can have a locking clause attached to a return statement and the locks

are acquired as the result is returned and logged as part of the containing action:

ReturnStatement :

return [Expression] [LockingClause] ;

A LockingClause attached to the MethodDeclaration is inherited by all return and

throw statements by default. A return or throw statement may choose to override

the inherited LockingClause by providing its own. If it wants to extend the inherited

LockingClause it must use the optional + sign with its LockingClause .
9Since release might be implemented in batch in a variety of ways, we do not specify the interface here.
Since each lock is associated with a given transaction, and is held until the transaction completes, one always
releases all of a transaction’s locks at the same time.

34

3.2.8 Open Atomic Concurrency Control

To define open atomic action concurrency control we introduce a conceptual device we

call the augmented log. In addition to recording writes and open atomic clauses, the aug-

mented log records reads of shared variables. An action’s current read set is those variables

that have a read record in the action’s log, and its current write set is those variables that

have an assignment record in the action’s log. In the presence of open atomic actions, read

and write sets can shrink as well as grow, as nested open atomic action commit and dis-

card their related portion of the log. Beyond that, conflict is as in §3.1.2, with the addition

of explicit locking specified in locking clauses and associated conflicts. (Notice that in

this log-based view of concurrency control, the locks that an action holds are exactly those

recorded in its log.)

3.2.9 Open Atomic Actions and New

When an atomic action aborts, what happens to objects it allocated? In the absence of

open atomic actions, it is clear that no other action can have seen, or will see, the newly

allocated objects, so there is no issue. However, in the presence of open atomic actions,

an open atomic action can publish to a globally accessible variable a reference to an object

allocated in a containing action. If the containing action aborts, and the published reference

remains, to what does the reference refer? (The situation is similar to abrupt completion

of constructors as discussed in the Java Language Specification (Sections 12.4 and 12.5

in the Third Edition).) We require that the compiler and run-time system guarantee that

the reference refers to a type-safe instance (of the class indicated in the new expression).

However, the instance may be partially or completely unconstructed, i.e., fields (including

final fields) may have their default initial values. In other words, the situation may be as

if the constructor has not yet run.

It is helpful if we consider instance creation to consist of allocation followed by ini-

tialization (constructor execution), as occurs in the Java Virtual Machine. We require that

allocation be effectively an open atomic action. Constructor execution then proceeds with

35

a type-safe instance of the class being allocated, each of its fields having the default value

for their type. Thus, if a constructor aborts, it unwinds the instance to this default state.

We observe that, as per the Java Language Specification, it is not a good idea to publish a

reference before the referent is fully constructed.10

3.2.10 Concerning Volatile and Synchronized

Given the power of atomic actions, and open atomic actions in particular, there seems

little additional value to volatile fields when used for synchronization. When used for

applications such as access to memory-mapped I/O device registers, in the presence of

atomic actions volatile fields may best be used within oncommit clauses. The same

might be said concerning invocations of library routines and operating system calls.

Concerning Java synchronized blocks and methods, we believe that they, along with

wait and notify support, can be implemented using open atomic actions in stylized ways.

This would replicate their semantics faithfully. The same field should not be accessed in

both atomic and synchronized code, since atomic code’s undo, retry, and oncommit are

somewhat unpredictable as to whether and when they occur.

In the long run, code using synchronized could be converted to either atomic or

openatomic. We note that openatomic can be used to build any ordering and signaling

mechanism desired.

3.3 Boosting

The framework for abstract locks extends naturally to boosting. In place of "ope-

natomic" we allow a class to be declared "boostedatomic". This presumes that the im-

plementations of its methods are inherently linearizable, such as by being implemented

using non-blocking hardware primitives instead of executing as open nested transactions.

10It may also be useful to view constructors as being open atomic, with no onabort or locking clause,
though adjustment may need to be made for their effects on other objects and on any static fields.

36

4 XJ FRAMEWORK

Our implementation comprises of four main components: (1) a compiler front-end based

on OpenJDK’s "javac" which we call the XJ compiler, (2) a minimally modified version of

OpenJDK to support hardware transactional memory using TSX, (3) a Java agent for load-

time bytecode rewriting to inject transaction support, and (4) a run-time library to manage

the dynamics of transactions and abstract locking.

4.1 STM Implementation

Our implementation approach is similar to that of the McRT software transactional

memory (STM) system [52]. McRT associates with each object (or word, the granularity

being determined on a per-type basis) a transaction record. This record contains either a

version number (for an object/word that does not have uncommitted writes) or a (pointer

to) the transaction descriptor of the writing transaction. A transaction (atomic action)

accumulates two lists of transaction records, one for items it reads (and the version number

seen) and one for items it writes (including the old version number and the old value). It

updates fields in place. When a transaction desires to commit, it must first validate its

read set: each item must either contain a version number that is equal to what the read set

recorded, or must point to the descriptor of the committing transaction (i.e., be later written

by this transaction).

In the presence of nesting, open atomic actions commit by validating reads and in-

stalling new version numbers for written items. Commits of non-open atomic actions sim-

ply append their read and write set lists to those of the containing action, first updating

written item transaction descriptors to refer to the parent (or we can introduce an additional

level of indirection). They need not validate read sets, since the read sets need to be vali-

37

dated upon commit of an open atomic or top-level ancestor anyway. (Validating on nested

action commit might detect conflicts earlier, but is extra work for successful transactions.)

We need an additional mechanism to group write entries so that appropriate batches of

them are undone before invoking onabort clauses when undoing. This can be done by

starting a new (closed) nested action after the commit of an open atomic action.

Our STM library’s API is designed to support a range of possible STM implementa-

tions. Transactions read and write fields via accessor functions. We can change the code we

generate for the accessors in order to deploy different strategies. Further, any given transac-

tion must “open” an object before accessing it. An object may be opened for reading only,

or for writing (and reading), and may be upgraded from reading to writing. Accessing an

open for reading (writing) requires having the object open for reading (writing). Thus the

“open” functions and the accessors are “hooks” that can be used to create almost any policy.

The current prototype perform concurrency control on whole scalar objects and on chunks

of arrays. Further, its atomicity strategy is to update in place, saving previous values in a

write log, and to undo when necessary.

4.2 Hardware Transactional Memory

A number of CPU models now support one flavor or another of transactional memory in

hardware [14; 16; 19; 30; 51; 56]. Notable is Intel’s TSX feature, of which RTM, restricted

transactional memory, is a part. RTM is included in recent models of the Haswell line of

processors. How does this fit with our collection of kinds of nested transactions? What

RTM offers is flat transactions, executed in a best effort fashion in hardware. An RTM

transaction can fail for transient causes, such as conflicts with accesses by another hardware

thread, or may always fail. This is because RTM keeps all pending updates in the first level

cache, to make discarding them easy in case of transaction abort. This means that if any

line in the set associative cache overflows a transactional entry, the transaction will abort.

Certainly a transaction cannot access more data than fit in the first level cache.

38

While for some applications it would be painful to provide a software fall-back for

when a hardware transaction fails, in XJ we already have a complete software TM imple-

mentation. Therefore, it is easy for XJ to attempt a transaction in hardware and fall back to

software as necessary.

For the most part, hardware TM implementations of atomic code in XJ do not need to

do as much bookkeeping as STM. Still, in order to work properly with concurrent software

transactions accessing the same objects, HTM code must examine the version/lock field for

objects it accesses, and increment the version number for those it writes. It is easy to see

how the version/lock field appropriately connects the success/failure of both hardware and

software transactions into what is called a hybrid scheme. In the case of open nesting, it

is not necessary to acquire an abstract lock and then discard it. However, it is necessary

to check whether the lock could be acquired. In any case HTM adds more atomic code

variants to the zoo.

In the face of nesting, HTM imposes some restrictions as to how certain transactions

can be nested. Because the current hardware implements flat transactions only, it does

not make sense to have a software transaction running inside of a hardware one. Thus,

once a transaction starts executing under HTM it stays in HTM. With closed nesting you

need to aggregate the log on commit, but running HTM inside of an STM transaction does

not allow this. Thus XJ does not allow running a transaction under HTM when a parent

transaction is running under STM. On the other hand if the parent is running open nested,

then the child transaction can run under either HTM or STM, because abstract locks and

undo semantics can be used to undo any changes.

4.3 Example: An Open Atomic Map

We illustrate using the features of the XJ language by presenting an openatomic im-

plementation of the Map interface. The mechanisms used for open nesting in general sub-

sumes those used for closed nesting and boosting, hence our example focuses on an open

nested implementation. Listing 4.1 shows how an open atomic implementation of the Map

39

interface can be defined as a concurrency-safe wrapper for unsynchronized Map implemen-

tations: OpenMap is declared as an opanatomic class implementing the Map interface, and

permits safe concurrent access to the wrapped map, with get, put, remove, and size

operations defined as openatomic methods.

Generally, onabort handlers are needed only for methods that mutate the abstract state

of the map. The put operation returns the previous value associated with the given key in

the map, or null if there was none. Thus, the onabort handler for put must either revert

the map to contain that previous association if there was one, or simply remove the new

association. Likewise, remove returns the previous value if any, so its onabort handler

must restore that previous association.

1 public openatomic class OpenMap<K, V> implements Map<K, V> {

2 private final Map<K, V> map;

3 private LockSpace<SXMode, PointSpace<SXMode, K>> keySpace

4 = new PointSpace<SXMode, K>();

5 private LockSpace<PCMode, UnitSpace<PCMode, OpenMap<K, V>>> mapSpace

6 = new UnitSpace<PCMode, OpenMap<K, V>>();

7

8 public OpenMap(Map<K, V> map) {

9 this.map = map;

10 }

11

12 public V get(Object key)

13 locking (keySpace:point((K)key):SXMode.SHARED) {

14 return map.get(key);

15 }

16

17 public V put(K key, V val) [V result]

18 locking (keySpace : point(key) : SXMode.EXCLUSIVE,

19 mapSpace : get() : PCMode.CHANGE) {

20 result = map.put(key, val);

40

21 return result;

22 }

23 onabort {

24 if (result == null)

25 map.remove(key);

26 else

27 map.put(key, result);

28 }

29

30 public V remove(Object key) [K k = (K)key, V result]

31 locking (keySpace : point((K)key) : SXMode.EXCLUSIVE,

32 mapSpace : get(): PCMode.CHANGE) {

33 result = map.remove(key);

34 return result;

35 }

36 onabort {

37 if (result != null)

38 map.put(k, result);

39 }

40

41 public int size()

42 locking (mapSpace : get(): PCMode.PIN) {

43 return map.size();

44 }

45

46 // ... other methods of the Map interface

47 }

Listing 4.1: OpenMap class

The example uses the lock modes SHARED and EXCLUSIVE of the "SXMode" class shown

in Listing 3.2, and the PIN and CHANGE modes of the "PCMode" class shown in Listing 3.3,

41

with compatibility defined by their conflictsWith methods. SHARED locks are compatible

with each other since multiple readers can operate on the same data item (i.e., key) at the

same time. On the other hand, one cannot write a data item while it still has readers, nor

read a data item while it has a writer. CHANGE locks reveal, at a coarser granularity, that some

writer is modifying some portion of a larger data item—in this case the map itself. Thus,

to put/remove an association for some key in the map requires a CHANGE lock on the map

as a whole. Two requests to put/remove an association for different keys do not conflict.

However, to put/remove an association for any given key does conflict with requests that

read the state of the map as a whole, such as the size operation. The necessary constraints

are recorded for put/remove by acquiring an EXCLUSIVE lock on the key, to prevent others

from changing that association, along with a CHANGE lock on the map to prevent others

needing shared mode access to the whole map (such as size requires).

4.4 XJ Compiler

Our implementation of the XJ compiler is based on version 1.7.0-ea-b19 of OpenJDK’s

javac. This has been extended to accept the new XJ syntax and generate compliant Java

bytecode that will run on any standard Java virtual machine (though transaction support

comes only when combined with the XJ run-time rewriter and XJ run-time library, the

generated bytecode is transaction protocol agnostic). We modified the parser to accept the

new syntax, the annotation processor to statically check the new constructs, the abstract

syntax tree (AST) to represent handlers and lock expressions, and the lowering phase to

transform the high-level XJ constructs into a standard Java AST. We had no need to modify

the bytecode generation parts of javac.

We focus our explanation of the compile-time transformations on those needed for open

nested methods, which subsume those for closed atomic methods / blocks and boosted

methods, illustrated for the remove method of the OpenMap example shown in Listing 4.1.

The XJ compiler produces Java bytecode for this method equivalent to the Java source

shown in Listing 4.2, as follows.

42

• The PreDecls in a MethodDeclarator transform into local variable declarations in

the method body, allowing the capture of state at the beginning of the open nested

action, as seen at line 3.

• Lock expressions can be inherited by overriding methods. To facilitate this we trans-

form lock expressions into protected methods of a class and invoke the method at the

point the lock needs to be acquired (line 11).

• Suffix clauses are encapsulated as anonymous instances of inner classes that capture

their unbound variables from the enclosing scope as final variable declarations as

described in detail below.

1 public V remove(Object key) {

2 TxnDescriptor _$current_desc = null;

3 K k = (K)key;

4 V result = null;

5 boolean _$succeed = true;

6 while (true) {

7 try {

8 _$succeed = true;

9 TxnDescriptor.beginOpen(_$current_desc);

10 try {

11 this.remove_$locking((K)key,_$current_desc);

12 result = map.remove(key);

13 return result;

14 } catch (TxnException ex) {

15 TxnDescriptor.abortOpen(_$current_desc);

16 _$succeed = false;

17 continue;

18 } catch (Error ex) {

19 TxnDescriptor.abortOpen(_$current_desc);

20 _$succeed = false;

43

21 throw ex;

22 }

23 } finally {

24 if (_$succeed) try {

25 final K _$k = k;

26 _$current_desc.getOpenLog()

27 .logHandler(new TxnHandler() {

28 public void _$abort() {

29 if (result != null) {

30 map.put(_$k, result);

31 }

32 }

33 }, TxnHandler.ON_ABORT_HANDLER);

34 TxnDescriptor.commitOpen(_$current_desc);

35 } catch (TxnException ex) {

36 TxnDescriptor.abortOpen(_$current_desc);

37 continue;

38 }

39 }

40 }

41 }

42

43 protected void remove_$locking (K key, TxnDescriptor _$current_desc) {

44 LockShape shape = ((PointSpace)keySpace).point(key, _$current_desc);

45 keySpace.acquireLock(shape, SXMode.EXCLUSIVE, _$current_desc);

46

47 shape = ((UnitSpace)mapSpace).get(_$current_desc);

48 mapSpace.acquireLock(shape, PCMode.CHANGE, _$current_desc);

49 }

Listing 4.2: Transformed remove method of OpenMap

44

4.4.1 Handlers on Open Atomic Methods

If an open atomic method runs to completion then its handlers need to be logged. In

the case that it fails it must retry from the beginning. To allow retry we wrap the method

body in a try/finally block (line 7 of Listing 4.2) nested within an infinite loop (line 6).

The outer try/finally block is used to detect the successful completion of the method. In

the case that it does complete successfully we then create a new instance of a TxnHandler

class overriding the corresponding method defined in the handler, and log the handler (line

26). We then commit this open atomic transaction. If a TxnException occurs while trying

to log the handler, we abort the transaction and retry it from the beginning. Inside of

the main try/finally block is another nested try/catch block. This is used to run the

corresponding method body (line 12). Prior to running the method body we create a new

nested transaction (line 9). If the collapsed method throws a TxnException we abort the

transaction and retry the transactional method. In the case where an Error is thrown we

abort the transaction and throw the Error. In either of these cases we avoid logging the

handlers; they are logged only when the method completes successfully.

It is possible for a constructor of an open atomic class to have handlers associated with

it. The transformation described above cannot be applied to constructors directly because

the first statement in a constructor should be a call to a superclass constructor or another

constructor in the current class. To get around this issue we use a two phase transformation

for constructors of open atomic classes. The first phase is done by the XJ compiler while

the bytecode instrumenter completes the second phase. The XJ compiler leaves the super

or this call as it is in the constructor (even if it has complex expressions as arguments

to the other constructor) and moves the rest of the statements to a get_$init method. A

call to this get_$init method is added to the constructor. The transformation done in the

second phase is explained in Section 4.6.3.

45

public final class Unsafe {
...

public static int beginHWTxn() { return 0; }
public static void endHWTxn() {}
public static void abortHWTxn(int flag) {}

...
}

Listing 4.3: HTM methods added to sun.misc.Unsafe.java

4.5 OpenJDK Modifications

In order to make use of the new TSX instructions to support HTM we need a modi-

fied Java virtual machine capable of injecting them into compiled code. We augmented

version 7u40-b23-2013-08-26 of OpenJDK. The TSX specification provides two different

interfaces to programmers. While both interfaces make use of the underlying TM hard-

ware, their purpose is quite different. The Hardware Lock Elision (HLE) interface is used

to implement hardware lock elision techniques while the Restricted Transactional Memory

(RTM) interface resemble classic TM proposals. We use RTM since it is more amenable to

implementing HTM.

We modify the non-standard sun.misc.Unsafe class of OpenJDK as shown in Listing

4.3 to provide methods that begin, end, or abort a hardware transaction. We do not provide

any concrete implementations of these methods here, but instead provide their implementa-

tions via HotSpot compiler and interpreter intrinsics [32]. We use sun.misc.Unsafe as a

mere interface to communicate between the user code and the HotSpot compilers (both C1

and C2) and interpreter. Providing intrinsic implementations of these methods avoids the

overhead of calling them as native code routines. These intrinsics were the only extensions

we made to HotSpot.

The beginHWTxn method uses the new XBEGIN instruction. If the transaction completes

successfully it returns −1; in the failure case it returns the corresponding error code stored

in the EAX register. This code can be used to diagnose the reason for the hardware trans-

action’s failure. The endHWTxn method uses the new XEND instruction, which indicates the

46

end (commit point) of a hardware transaction. The abortHWTxn method can be called if

the transaction needs to be aborted explicitly. This method uses the XABORT instruction

and takes an int flag as an argument, which fills in part of the XBEGIN result code in EAX,

allowing the caller of abortHWTxn to convey a few bits of information outside the aborting

transaction.

In our initial experiments, many simple hardware transactions surprisingly failed due

to conflicts even when there were no writes involved. We diagnosed this issue using the

Intel Software Development Emulator (SDE) and found the conflicts to occur on accesses

to a bookkeeping field of the Node class in the tree data structure manipulated by our

benchmark. These conflicts turned out to be due to false sharing because TSX operates at

the granularity of a cache line. Java 8 introduced the @Contended annotation to be used

to prevent such false sharing. We back-ported this feature to Java 7 and added suitable

@Contended annotations to the benchmark code.

4.6 Bytecode Rewriter

To add transaction support to classes we adopt an approach similar to that of the work

in transparent distribution for Java [39], allowing mediation of all accesses to static and in-

stance fields, as well as elements of arrays. The transactional machinery needed by objects

(the lock word, etc.) reside in instances of TxnObject. Ideally, all objects that are going

to be read from or written to inside a transaction extend this class. Also reads and writes

inside transactional methods and transactional blocks need to be logged. We accomplish

this by instrumenting classes at run time. The instrumentation that needs to be performed

on a class depends on the classification of the class. We divide classes into two categories,

direct classes and wrapped classes. Direct classes are ones that can be transformed to in-

herit from TxnObject and on which our rewrites can be performed directly. Figure 4.1

shows the manner in which direct classes are transformed.

There are a few classes in the JVM that cannot be rewritten directly in this ideal manner.

The JVM has intimate knowledge of these classes; e.g., the offsets of fields in these classes

47

Direct Classes (Transformed Originals)Original Classes

Class Object

Class S

Class T

Class TxnObject

Class S′

Class T′

Class S′$_$static_XJ

Class T′$_$static_XJ

Figure 4.1.: Transformation of direct classes

Original Classes Wrapper Classes (Generated)

Class Object

Class S

Class T

Class TxnObject

Class S$_$wrapper_XJ

Class T$_$wrapper_XJ

Class S$_$wrapper_static_XJ

Class T$_$wrapper_static_XJ

Figure 4.2.: Transformation of wrapped classes

are hard coded into the JVM (java.lang.ref.SoftReference in Oracle’s Hotspot JVM

is an example), thus they cannot extend TxnObject. In order to get the transactional ma-

chinery into these classes we wrap them. We also wrap all classes that have native meth-

ods.1 The manner in which wrapped classes are transformed is shown in Figure 4.2.

We preprocess all classes used by the application prior to running it. Preprocessing

helps us classify classes beforehand. The process used is similar to that of McGachey et al.

[39].

4.6.1 Statics

Object locking in XJ is done via a lock field in TxnObject. This mechanism does

not work for static fields, since they are not part of an object. In order to use the same

transactional machinery on static fields we move the static fields and static methods of a

class to a generated class, where they become instance fields and instance methods. We

1This is safe, but it may not always be necessary, depending on how JNI libraries are coded.

48

also generate get/set methods for these moved fields. We guarantee that there is only one

instance of this generated class, which we call the static singleton of the original class. The

static singleton is initialized via the static initializer of the generated class. When a static

singleton is initialized it also initializes its superclass, which would be the static singleton

of the original class’s superclass. Each static singleton class has a static get_$singleton

method to get the single instance. The instrumenter rewrites getstatic and putstatic

bytecodes to first obtain the corresponding singleton for the field and then invoke the ap-

propriate get/set method on it. invokestatic is also rewritten such that the invocation is

on the static singleton instance.

4.6.2 Arrays

We generate special “array classes” for array types. This helps us get the transactional

machinery into arrays. Arrays do not use the same locking mechanism used by scalar ob-

jects. Having a single lock word for the whole array would not perform well. Instead, we

allow customizing of the lock scheme used on arrays, having a lock for each element or a

lock for each portion of the array. The TxnArray interface defines the API for obtaining

locks on an array. The XJ run-time library provides wrappers for each primitive array type

and for the object array type. Each generated array class extends one of these wrapper

classes, enabling it to gain access to the transaction machinery. The structure of the gen-

erated array classes is similar to that of McGachey et al. [39] for arrays. Figure 4.3 shows

the transformation for array types.

4.6.3 Object Creation

As mentioned before, constructors go through a two-phase transformation. The second

transformation is performed by the bytecode rewriter. The purpose of this transformation

is to move all the code from inside the constructor to the get_$init method. We do this

by adding a dummy constructor to each class. The dummy constructor is used purely for

object creation. This enables us to create an empty object for a given class. We then

49

Original Classes Array Wrapper Classes (Generated)

S[]

T[]

Class TxnObjectArrayWrapper

Class gen.Array_of_S_1_XJ

Class gen.Array_of_T_1_XJ

Figure 4.3.: Transformation of array types

transform the constructors such that any call to a superclass constructor is replaced with a

call to the dummy constructor in the superclass. Also, within the corresponding get_$init

method for that constructor we insert a call to the corresponding get_$init method of the

superclass constructor. This transformation enables us to create an empty object first, and

then run all the code of the constructor within the boundary of a transaction.

4.6.4 Java Agent

The load-time bytecode rewriter is a Java agent built using the Java Virtual Machine

Tool Interface (JVMTI). It runs as a separate process, and can rewrite all loaded classes

(including those loaded by the bootstrap class loader). However we do not rewrite all

classes, rather we maintain a clean separation between application code that is rewritten

for transactional execution and the run-time library code that supports transactions avoids

entanglement and complexity. There is no need to produce code that must be made to serve

in both the run-time and the application contexts, with the associated run-time overhead

needed to distinguish the context. For bootstrap classes we generate a new version of the

class under a different package name, while also preserving the original class. The rewritten

class has no relationship to the original, other than that its source was the original class.

Application classes (loaded by the application class loader) are rewritten to refer to the new

bootstrap classes rather than the originals, while the transactional run-time library classes,

50

being infrastructural in nature, continue to use the original versions. This creates a clean

separation between the run-time library and the application.

We use the ASM library [3] for instrumenting Java classes. The instrumenter process

is created in the Agent_OnLoad function. The agent uses the ClassFileLoadHook call-

back to intercept classes loaded by the JVM. Intercepted classes are then presented to the

instrumenter. The agent communicates with the instrumenter via pipes. The result of this

instrumentation process could be a single class or multiple classes. If the result is a single

class, the agent returns the bytes received from the instrumenter as the bytes of the instru-

mented class. If the result consists multiple classes, any additional class files are injected

into the VM via the DefineClass JNI function. In both cases the bytes of the original

loaded class are replaced by the rewritten bytes. Calling the DefineClass function on the

additional classes inside the agent causes those class definitions to be intercepted again (be-

cause of the ClassFileLoadHook), but there is no need to call the instrumenter for them

because the agent already has their instrumented versions. To support this functionality

the agent keeps a local cache for any additional class files obtained from the instrumenter.

When the agent intercepts the loading of any class, it first checks if the class already has an

instrumented version in the local cache, and if so, it uses that version instead of invoking

the instrumenter and then removes the class from the cache. Otherwise it sends the class to

the instrumenter for instrumentation as usual.

4.6.5 Instrumenter Process

The instrumenter runs in a infinite loop polling for messages by the agent. The first

byte of each message from the agent is a code indicating the action requested from the

instrumenter. This control byte indicates the class loader of the object (the bootstrap class

loader or not), or that the VM has been initialized or is being shut down. Once a request

is received for instrumenting a class, the instrumenter performs rewrites based on its clas-

sification. The preprocessed information is used to determine the classification of a class.

51

Although we divide classes into two categories, the general rewrites we perform on indi-

vidual elements of these classes are similar. We now describe those rewrites.

• Generate a static singleton for the given class

• Generate accessor classes for each field in a class. The accessor classes are used for

logging reads/writes in STM methods as explained in Section 4.6.6

• The first rewrite we do is to redirect to newly generated types. This includes redi-

recting to wrapped versions of objects and rewriting getstatic, putstatic, and

invokestatic to refer to static singletons. We also redirect to the newly generated

array and accessor classes

• Transform constructors as described in Section 4.6.3

• Create transactional versions of all methods as described in Section 4.7.

4.6.6 Accessor Objects

We generate accessor classes for each field of a class. Each generated class extends

org.ruggedj.xj.xjrt.runtime.Accessor, which has a single abstract method called

restoreField used by the run-time library to perform undo operations. It takes a Txn-

WriteLog as an argument and returns void. The generated accessor class also has a set

method for setting the value of the field and a get method corresponding to its data type

for getting the value of the field. The set method pushes the object being updated into the

write log along with the accessor instance and the value been written. The corresponding

get method pushes the current object into the read log along with the value being read.
2 The generated accessor class instances are created in the static initializer of a class and

held in new static final fields. During the instrumentation phase, getfield, putfield,

getstatic, and putstatic bytecodes are rewritten to use the accessor object for logging

the field prior to setting and getting a field. The restoreField method pops the object

2Our current system records only a version number of the whole instance, but the API allows for a wide range
of transaction management strategies.

52

from the write log and then pops a value of the corresponding data type from it (one of the

primitive types or Object). It then sets the field of the class to the popped value (cast to the

field’s declared type), restoring its value. The run-time library provides accessor classes

for array types, one for each primitive array type, and one for object arrays, so these do not

need to be generated for each type.

4.7 Transactional Methods in XJ

The XJ framework has evolved through the orderly addition of various transaction con-

structs to the base Java platform. When we first conceived XJ we planned on implementing

at least STM in the form of atomic blocks and methods as first proposed by Harris and

Fraser [23], using rewriting techniques similar to those of Hindman and Grossman [28]. We

also planned to support both closed and open flavors of linear nesting [40; 41; 42], which

allows a parent transaction to invoke a sequence of sub-operations, some of which may

themselves also execute as child subtransactions, and where only one child is ever active at

a time. As such, we envisioned the need for method variants that included: (1) the origi-

nal non-transactional methods, unmodified, for execution outside transactions, (2) transac-

tional code for atomic methods invoked as top-level transactions, containing the machinery

to start a new transaction and control its outcomes (abort or commit), (3) transactionalized

variants for non-atomic methods, modified for invocation from transactional contexts, and

(4) transactional code for atomic methods invoked as nested transactions, containing the

machinery to start and control a new nested transaction. Along with these variants came

rules as to which variant can invoke which. For example, non-transactional methods can

initiate a top-level transaction by calling an atomic method. These in turn may invoke

non-atomic methods, but the variant invoked must contain machinery for transactional ex-

ecution. And nested invocation of an atomic method from an existing transaction context

must dispatch to a nested variant of that atomic method. We capture these rules in the form

of the state transition diagram shown in Fig. 4.4a.

53

Original

Transactional
STM

Nested
Transactional

STM

STM
transactionalized

original

(a) STM method variants

Original

Router Nested Router

Transactional
STM

Nested
Transactional

STM

Transactional
HTM

Nested
Transactional

HTM

HTM
transactionalized

original

STM
transactionalized

original

Optimized Nested
Transactional

HTM

(b) STM and HTM method variants

Original

Router Nested Router

Transactional
STM

Nested
Transactional

STM

Transactional
HTM

Nested
Transactional

HTM

HTM
transactionalized

original

STM
transactionalized

original

Boosted

Nested Boosted

Optimized Nested
Boosted HTM

Optimized Nested
Transactional

HTM

(c) The full set of XJ method variants

Figure 4.4.: Method call diagrams. Solid arrows indicate transitions based on the
transaction semantics of the callee. Dotted arrows indicate transitions from closed
transaction contexts. Dashed arrows indicate transitions from open transaction contexts.

54

Having implemented this scheme for STM, we also desired for comparison between

open nesting and the related boosting approach of Herlihy and Koskinen [24]. This resulted

in two additional method variants, Boosted and Nested Boosted. The first was to be

called from a non-transactional context while the other was to be called from a transactional

context. Their addition to the system was an orthogonal change and did not significantly

affect anything in the STM variants other than the addition of boosted forms to parallel the

open nested forms.

Experience with STM and the arrival of commodity best-effort HTM support with In-

tel’s Haswell processors led to our devising a scheme for HTM-accelerated transactions.

This addition was more complicated than adding boosting. We had to consider how STM

could execute alongside HTM and also what it would mean for HTM to be called from

STM and vice versa. The fact that HTM was best effort threw more complexity into the

mix. This meant that we needed to devise mechanisms for backing off from HTM to STM

in the face of failures, while prioritizing use of HTM whenever possible (to maximize per-

formance gains). Fig. 4.4b summarizes the changes we made to include HTM in the system

(for simplicity we do not include boosting here). The main additions to the state diagram,

in addition to HTM variants of the methods, are the Router and the Nested Router. These

generated variants are responsible for routing a method call to either its HTM or STM ver-

sion, based on run-time heuristics. With the explosion of states occurring when boosting is

included, we found the resulting state diagram in Fig. 4.4c essential to our understanding of

the rules for generating code for these method variants. The following sections describe this

resulting methods of the XJ framework by reference to Fig. 4.4c. Chapter 6 then considers

how this formulation allows us to consider additional extensions to XJ.

4.7.1 Generated Method Variants

The XJ system can generate 13 different method variants. The variants generated de-

pend on the transactional semantics exhibited by the original source code. These semantics

can be divided into four main categories:

55

Table 4.1: Generated method variants by source type

Source method type Generated method types

Non transactional (NT)
Original (O)
STM transactionalized original (STO)
HTM transactionalized original (HTO)

Closed atomic (CA)
Open atomic (OA)

Router (R)
Nested router (NR)
Transactional STM (TS)
Nested transactional STM (NTS)
Transactional HTM (TH)
Nested transactional HTM (NTH)
Optimized nested transactional HTM (ONTH)

Boosted (B)
Boosted (B)
Nested boosted (NB)
Optimized nested boosted HTM (ONBH)

• Non-transactional (NT) methods do not have any specific transaction semantics

associated with them. They do not create new transactions. A majority of methods

fall into this category.

• Closed atomic (CA) methods exhibit closed transaction semantics. They create new

closed atomic transactions. In XJ, these are methods that either belong to a class

marked xatomic or have the xatomic method modifier, or methods that contain an

xatomic block.

• Open atomic (OA) methods exhibit open transaction semantics. They create new

open atomic transactions. Methods that belong to classes marked openatomic are

treated as open atomic methods.

• Boosted (B) methods exhibit boosted transaction semantics. They create new boost-

ed transactions. In XJ, these are methods that belong to a class marked with the

boostedatomic class modifier.

Not all variants are generated for a given source method—only the relevant method variants

are generated. Table 4.1 shows the method types generated for each source method type.

56

These generated method variants create a complex system with method variants appro-

priately calling each other. The transaction semantics of the source method type induces

some restrictions on what method variants it can call. Figure 4.4c captures these restric-

tions and presents them in a structured manner in the form of a state transition diagram.

In this diagram, we represent each generated method variant as a state, with arrows show-

ing variants they are permitted to call (arrows go from caller to callee). Most states have

multiple outgoing arrows; the particular one taken depends on the transaction semantics of

the method being called. Most outgoing arrows in this diagram are solid arrows. This in-

dicates that the transition is solely based on the transaction semantics of the method being

called. The dotted and dashed arrows indicate that the transition taken depends also on the

transaction context of the parent transaction. The transition indicated by the dashed line is

taken if the parent of the current transaction is an open transaction, while the dotted line

is taken if the parent is a closed transaction. The reason for this is subtle, and is explained

in Section 4.2. The rules for all transitions, along with information on what makes these

generated methods unique, appears in Table 4.2.

XJ keeps a copy of the original method, for use in non-transactional contexts. Such

original methods are not subject to any TM-specific instrumentation. However, they do

undergo the general XJ rewrites described in Section 4.6.

Except for the Router and Nested Router variants, all generated methods derive from

the original method. They can be thought of as transactional versions of the original

method, with instrumentation added to carry out various transaction semantics. We re-

fer to these versions of the generated methods as transactional versions of the original

method. Transactional versions include the STM, HTM, and boosted versions of the orig-

inal method. All STM versions of the methods contain STM-specific instrumentation, as

described in Section 4.7.2. Section 4.7.3 describes the HTM-specific rewrites applied to

all HTM versions of the method. Boosted versions of the method do not have much in-

strumentation added. STM, HTM, and boosted methods called from a non-transactional

context create a new TxnDescriptor, while nested transactional methods use the TxnDe-

scriptor passed to them by their parent. Various mechanisms can be used to achieve this

57

Table 4.2: Transitions and actions of method variations

Method type Method call (callee) Object locking Field
logging

Abstract
locks

Txn
ctrl

New
TDNT CA OA B get set

Original (O) O R R B None None None – No –
Router (R) – TH/TS TH/TS – – – – – No –
Nested router (NR) – NTH/NTSa NTH/NTSa – – – – – No –
STM transactionalized
original (STO) STO NTS/NRb NTS/NRb NB Record Lock Log – No –

Transactional STM
(TS) STO NTS/NRb NTS/NRb NB Record Lock Log Obtain Yes Yes

Nested transactional
STM (NTS) STO NTS/NRb NTS/NRb NB Record Lock Log Obtain Yes No

HTM transactionalized
original (HTO) HTO ONTH ONTH ONBH Check

Inc
version None – No –

Transactional HTM
(TH) HTO ONTH ONTH ONBH Check

Inc
version None Check Yes Yes

Nested transactional
HTM (NTH) HTO ONTH ONTH ONBH Check

Inc
version None Check Yes No

Optimized nested
transactional HTM
(ONTH)

HTO ONTH ONTH ONBH Check
Inc

version None Check No No

Boosted (B) O NR NR NB None None None Obtain Yes Yes
Nested boosted (NB) O NR NR NB None None None Obtain Yes No
Optimized nested
boosted HTM (ONBH) O ONTH ONTH ONBH None None None Check No No

a NTH/NTS: Call HTM or STM depending on backoff policy.
b NTS/NR: Call NTS if parent is closed, NR is parent is open.
– indicates not applicable.

goal; in XJ we pass the TxnDescriptor as the last argument to the method. Except for

the optimized version of the nested HTM method, all other transactional methods contain

instrumentation to perform transaction control as described in Section 4.7.4.

In contrast to the other generated methods in the system, which are derived from the

original version of the method, the Router and the Nested Router are synthetic methods.

As their name suggests, these methods are responsible for routing the intended method call

to either the HTM or STM version of the method. This decision is driven by a self-tuning

back-off policy that attempts to use HTM whenever it is likely to commit (so as to improve

performance) and to avoid HTM when it is unlikely to succeed.

58

4.7.2 STM Specific Rewrites

Table 4.2 shows that STM related methods need several constructs instrumented to

carry out transaction semantics. As previously described, getting a field requires that the

transaction check whether the containing object is locked by some other transaction. If it

is locked by another transaction, the current transaction aborts. (In our system, it throws an

exception that is caught by a Java exception handler placed around the transaction, which

then uses the transaction’s log to undo the effects of the transaction.) If the containing

object is not locked at all, then the version number of the object is noted in the log for

later validation at transaction commit time. Finally, if the object is locked by the current

transaction, no further locking work is needed. We implement these locking actions in a

run-time method called openForRead. After the locking actions the field is read as usual.

When a transaction desires to set a field it once more checks the version/lock word. If

the current transaction has locked the containing object, no further locking work is needed.

If a different transaction has locked the object, then the current transaction aborts. Finally,

if the object is not locked, the current transaction attempts to acquire the object’s lock with

an atomic compare-and-swap operation. If it succeeds, it records that fact in its log. If it

fails, the transaction aborts. This locking work is performed by the openForWrite run-time

method. Before setting the field, the transaction records the current value of the field in its

log. Then it sets the field.

In the case of open nesting, the STM transaction will also attempt to acquire the speci-

fied abstract locks, aborting if it cannot, and recording the locks and any abort, etc., handlers

in the log.

4.7.3 HTM Specific Rewrites

HTM versions of the method rely mostly on hardware to take care of transactional

semantics. However, we must guarantee that HTM transactions will inter-operate properly

with STM transactions, so we have HTM versions of openForRead and openForWrite. The

openForReadHTM run-time method reads the version/lock word, and explicitly aborts the

59

current transaction if the object is locked by some other transaction. It does not need to

record the version number in the log. The openForWriteHTM method also examines the

version/lock word. If the object is locked by the current transaction, then it does nothing; if

it locked by some other transaction, it explicitly aborts; and if it is not locked, it increments

the version number. Again, there is no need to log the current value of the field being set.

In the open nesting and boosted cases, HTM does not need to acquire abstract locks.

However, it does need to verify that it could have acquired them. This is better than ac-

tually acquiring and releasing them. Not only is it less work, but it involves only reading

the abstract lock data structure, not updating it, avoiding needless conflicts on that data

structure.

60

method_stm (args /* , txnDescriptor if nested */) {

TxnDescriptor txnDescriptor = TxnDescriptor.newTxnDescriptor() // If not

nested

numRetries = 0;

succeed = true;

while (true) {

try {

succeed = true;

beginTxn(txnDescriptor);

try {

obtain abstract_locks // if open/boosted

// STM instrumented method body

...

} catch (txnException) {

succeed = false;

abortTxn(txnDescriptor, ++numRetries);

continue;

} catch (Error) {

succeed = false;

abortTxn(txnDescriptor);

throw Error;

}

} finally {

if (succeed) {

try {

Log handlers // if open/boosted

commitTxn(txnDescriptor);

} catch (TxnException) {

abortTxn(txnDescriptor, ++numRetries);

continue;

61

}

}

}

}

}

Listing 4.4: Pseudo-code for the STM version of a method

4.7.4 Transaction Control

Most transactional methods in XJ require transaction control code. Transaction con-

trol includes loops for handling retries of transactions, aborting transactions in the face

of conflicts, the back-off policy, and logging handlers when executing open and boosted

transactions. Listing 4.4 shows the transaction control for an STM version of the method.

The back-off policy is not embedded in the generated code; the run-time method that im-

plements abortTxn takes care of it. Note that while the listing shows Java pseudo-code, XJ

actually inserts the bytecode equivalent when rewriting.

// i and j are unique for each transaction

static i = 1;

static j = 0;

method (args /*, txnDescriptor if nested */) {

if (j == 0) {

method_htm(args /*, txnDescriptor if nested */); }

else {

j = j - 1;

method_stm(args /*, txnDescriptor if nested */);

}

}

Listing 4.5: Pseudo-code for the routing method

62

method_htm (args /*, txnDescriptor if nested */, boolean runInSW) {

TxnDescriptor txnDescriptor = TxnDescriptor.getNewDescriptor() // if not

nested

numRetries = 0;

txnStatus = 0;

while (true) {

try {

txnStatus = TxnDescriptor.beginOpenHtm(txnDescriptor, runInSW);

if (txnStatus == -1) { // running in HTM mode

try {

check abstract_locks // if open/boosted

// HTM instrumented method body

...

} catch (TxnException) {

TxnDescriptor.abortOpenHtm(txnDescriptor, numRetries, runInSW);

} catch (Error) {

TxnDescriptor.abortOpenHtm(txnDescriptor, runInSW);

}

} else if (WARMUP_PHASE) {

if (TxnDescriptor.retryInSWMode(txnStatus, numRetries) {

method_htm(args, true);

return;

}

numRetries++;

continue;

} else { // HTM failed

if (TxnDescriptor.retryInHW(txnStatus, numRetries) {

++numRetries;

continue;

}

63

// Back off to SW mode

j = i;

i = i * 2;

method_stm(args);

return;

}

} finally {

if (txnStatus == -1) {

try {

Log handlers // if open/boosted

TxnDescriptor.commitOpenHtm(txnDescriptor, runInSW);

j = 0;

return;

} catch (TxnException) {

TxnDescriptor.abortOpenHtm(txnDescriptor, numRetries, runInSW);

}

}

}

}

}

Listing 4.6: Pseudo-code for the HTM version of a method

Transaction control for HTM methods is a little more complicated: it also needs to back

off to the STM version of the method, something that the STM version of the method need

not do. This is shown in Listing 4.6. Although it looks similar to the STM version of

the method, it has subtle differences. First, the run-time version of the method to start a

hardware transaction returns a value. The returned value is −1 if the transaction was created

successfully (an aborted transaction will never return a value of −1). When an HTM aborts,

this method will return the status code of the aborting transaction. Bits of this value can

be inspected to see the underlying reason for failure. This is used by the retryHTM method

64

to decide if the transaction should to be retried in HTM or STM. Secondly, the i and j

values in this version of the method are used to auto-tune the back-off from HTM to STM.

These are static variables that are unique to each transaction. Also, i and j are packed into

a single word, allowing both to be update with one store (not shown here). The back-off

policy we implement is a self-tuning scheme where we give priority to running under HTM

(because it gives better throughput) but falls back to STM when HTM fails (the number of

times to retry in HTM is driven by the result code of the aborting HTM transaction). After

an HTM method fails, it updates the i and j values that enable the router to take a better

decision the next time around. The router consults the i and j values when directing the

method call to either the HTM or STM version of the method, as shown in Listing 4.5.

As Table 4.2 shows, there are a few transactional methods that do not have transaction

control added to them. The transactionalized original versions of the method do not have

any transaction control because they do not create any transactions. They are merely the

original version of the method with instrumentation for locking and logging where appli-

cable. It should also be noted that although Optimized nested transactional HTM and

Optimized nested boosted HTM create nested transactions, they do not have any transac-

tion control. This is because they are optimized versions of nested HTM transactions that

are always called from a transactional context running under HTM. As mentioned before

our HTM implementation relies on Intel TSX instructions, and thus nested transactions un-

der HTM will always be flattened. We recognize this and generate these optimized versions

of the method with no transaction control.

For each of the generated transactionalized versions of the classes we apply a series of

transformations. These transformations generate new methods, as well as transform exist-

ing methods in order to add the transactional machinery. In general, transactional programs

can run with or without HTM support. When the system is run with support for HTM, the

bytecode instrumenter performs a series of additional method transformations. We generate

a transactional version of the method for both HTM and STM. The STM version calls run-

time routines that support STM, while the HTM versions call routines that support HTM.

Examples of such run-time calls are openForRead (indicating that an object is about to be

65

read), openForWrite (indicating that an object is about to be written), beginTxn, endTxn,

etc. We also generate a routing method that direct the caller to either the STM or HTM

version of the method, with the decision guided by two special variables we generate for

each routing method. Listing 4.5 shows pseudo-code for the routing method, and Listing

4.6 for the HTM version of a method. Although these show i and j as static members of

the class, in reality they are encapsulated in a separate object referenced from a static

final field. This guarantees that updating of i andj will not cause false conflicts with

other transactions. The idea behind the scheme is that we first try to run a transaction in

HTM. In the face of HTM failures we back off to STM aggressively, yet try HTM once in

a while. If a transaction succeeds in HTM, then we will keep trying it in HTM.

This simple scheme worked well when the number of threads was low, but failed to

yield its true potential as the number of threads increased. It was backing off too aggres-

sively and not attempting enough times in HTM, which limited the throughput that we

could achieve. To remedy this, we introduced thread-local counters so that most counting

down occurs per-thread rather than against shared counters. We call the thread-local coun-

ters decrementCounter and updateCounter, and they are initialized to 10. Each time the

shared j would have been decremented, we check if the thread-local decrementCounter

is at 0, and if so we decrement the shared j and reset decrementCounter to 10. Oth-

erwise we just decrement the thread-local decrementCounter. The same goes for up-

dating i and j when backing off from STM to HTM, using updateCounter in place of

decrementCounter. This scheme ensures that the back-off rate does not change drasti-

cally as the number of threads increases. The scheme we use is much simpler than that of

Diegues and Romano [18], who used a reinforcement learning technique to decide when to

use the fallback path for TSX.

One of the main issues we encountered early on with using HTM was that many trans-

actions failed with result code 0 (i.e., no specific reason given). Using the Intel SDE, we

found these aborts to be caused by execution of instructions that are incompatible with

TSX [29]—FXRSTOR and FXSAVE (perhaps among others)—and which are compiled into

HotSpot’s run-time stubs used to control dynamic optimization and linking, and to resolve

66

Java static and virtual method calls. By design, HotSpot patches these call sites at run time

[43]. Thus our hardware transactions always failed, and those failures preventing trigger-

ing of the patching mechanism. Our workaround was to devise a mechanism to “warm” the

system up in STM mode before attempting any hardware transactions. However, so that the

compiler’s optimizations will be triggered appropriately, and so that linking/patching will

occur, these STM transactions must follow the same code path (except for not using the

XBEGIN instruction, etc.) as HTM transactions do. We use a global flag to indicate whether

we are in the software-only warm up phase. The i and j values described above are used

only after warming up.

The bytecode rewriter generates code that preserves many important invariants related

to possible transitions between STM and HTM code. We follow a few simple rules. The

HTM version of a method always calls the nested HTM version of other methods. The

nested HTM version of a method is much simpler than the one presented in Listing 4.6.

Since nested HTM methods will always be called from an HTM context, they do not need

to begin a new transaction, and thus they contain only the instrumented method body. On

the other hand, the STM version of the method calls the method with the original name.

Thus, if the method being called is a transactional method, it will call the routing method.

This enables the new transaction to run under either HTM or STM. There is one caveat

though: a parent transaction running under STM should not create a nested closed hard-

ware transaction (since it will not gather locks and log records and accrue them to the

parent).3 In contrast, if the parent transaction is running under STM then an open nested

child transaction can safely run under HTM. This is because the open nested transaction

will acquire abstract locks and undos and can release all physical locks (making HTM

possibly profitable in this case). We acquire the abstract locks and log undos before start-

ing the hardware transaction, and release/revert them if the hardware transaction fails. We

further optimize the case where an open nested action runs in hardware under a top-level

hardware transaction. Such a child does not need actually to acquire locks or log undos,

since they will be immediately discarded on either success or failure of the hardware trans-
3Doing so is possible, but would mean the HTM version does all the work of the STM version, with the added
overhead of starting and committing an HTM transaction.

67

action. However, to detect conflicts, the child must check that it could have acquired the

locks—i.e., that there are no conflicting locks held by other transactions.

4.8 Run-Time Library

The run-time library provides the dynamic support needed for transactional execution.

It supports both closed and open nested transactions, running under HTM or STM simul-

taneously, as well as boosting. Thus a program can make use of all styles of transactional

execution. Our experiments also configure the run-time library for modes of execution that

support only one of closed, or boosted transactions, so as to isolate the overheads for each

mode. For example, the data structures needed for tracking the reads and writes of open/-

closed nested transactions are not needed for boosting and there is no need to instantiate

them in that case.

The run-time library offers both HTM and STM versions of all important methods. As

previously explained, the HTM version of the method takes an additional boolean argu-

ment indicating whether it should run in “software mode.” The run-time library also main-

tains statistics in a thread-local manner, avoiding false conflicts in the statistics collection

process.

The library performs conflict detection at the level of objects, and tracks writes at the

level of fields using an undo log. Each transactionalized object carries an extra field, which

holds the lock for writes, and otherwise contains a version number for the object, which

is incremented upon commit. In our implementation HTM and STM can safely co-exist

simultaneously. Thus the two mechanisms need to play well with each other. In general,

we adopt pessimistic concurrency control for writes, and optimistic concurrency control

for reads. When running under STM, writes acquire a lock on the object. Reads proceed

optimistically, simply logging the value of this field (a version number), and the log is then

processed at commit time to validate the transaction (if the logged version number does

not match the current value and the owner of a locked object is not the current transaction

68

(or an ancestor) then the transaction aborts). When running under HTM, writes simply

increment the version number, thus invalidating conflicting STM readers and conflicting

with HTM readers or writers. Reads under HTM perform a check to make sure that the

object is not locked by a non-ancestor transaction, explicitly aborting if necessary. In sum,

the lock/version word “glues” together the STM and HTM schemes into a coherent (and

safe!) hybrid TM.

The implementation of PointSpace that we use in our experiments itself requires a

concurrent data structure to store the lock metadata because multiple transactions can try to

acquire abstract locks concurrently. We use the NonBlockingFriendlyHashMap of Crain

et al. [11] for this purpose.

69

5 EVALUATION

5.1 Workload

Our workloads extend Synchrobench [21], which is a micro-benchmark suite for eval-

uating synchronization techniques on collection classes such as sets and maps. It pro-

vides implementations for a variety of differently synchronized data structures in Java (as

well as C/C++). It defines abstract APIs comprising simple add, remove, contains,

and get operations that the data structures must implement. Adding new implementa-

tions to the framework is simply a matter of making them conform to one of these APIs.

The CompositionalIntSet interface abstracts sets, while CompositionalMap abstracts

maps.

We extend Synchrobench for use with nested transactions in several ways. First, we pro-

vide open atomic, closed atomic, and boosted implementations of the CompositionalMap

and CompositionalIntSet interfaces in our language dialect. These classes are compiled

by our modified compiler. We also augment the Synchrobench driver to instantiate these

implementations for measurement. Second, we reconfigure the driver to run transactions

of various sizes, consisting of aggregate operations on the underlying data structures. This

enables benchmarking for throughput while varying transaction granularity. Third, we re-

configure the driver to offer the ability to pin worker threads to specific cores. Finally, we

make refinements to the manner in which the driver calculates throughput numbers. We

now describe these modifications in more detail.

5.1.1 Open Atomic Workload

Listing 5.1 shows the OpenIntSet class, which is an open atomic implementation of

CompositionalIntSet. OpenIntSet provides a concurrency-safe wrapper for unsyn-

70

chronized implementations of CompositionalIntSet. Similarly, OpenMap provides a

concurrency-safe wrapper for unsynchronized CompositionalMap implementations. Here

we give more precise details of the implementation of OpenIntSet; OpenMap is derived

similarly.

As in the earlier OrderedSet example, OpenIntSet defines two distinct lock spaces:

eltSpace manages abstract locks issued on points corresponding to elements in the set,

and setSpace defines abstract locks for the set as a whole. The addInt method attempts

to add the element elt to the set. Thus it needs an X lock on the point represented by

element elt from the eltSpace lock space, and a C lock for the set as a whole from the

setSpace lock space.

Generally, onabort handlers are needed only for methods that change the abstract state

of the set. One such method is addInt, which returns true if the element was added

to the set and false if the element was already present. Thus its onabort handler must

remove the element from the set only if it was not previously there. To achieve this, the

onabort clause captures and uses the result of the committed body of the method. The

other methods can be derived similarly. Our extended transactional Java syntax supports

declarations for variables (like result) outside the body of the open atomic method that

are visible to the body and the onabort clause.

5.1.2 Closed Atomic Workload

The ClosedIntSet class shown in Listing 5.2 provides a concurrency-safe wrapper,

using closed nesting, for an unsynchronized CompositionalIntSet. The methods of

ClosedIntSet execute the set operations in (closed) nested mode.

5.1.3 Boosted Workload

Boosted and open atomic classes look similar since they both must make use of ab-

stract locks to protect the abstract state of the underlying data structure. Listing 5.3 shows

BoostedMap as an implementation of the CompositionalMap interface. Unlike an open

71

public openatomic class OpenIntSet
implements CompositionalIntSet {

private final CompositionalIntSet intSet;
private final
LockSpace
<SXMode,PointSpace<SXMode,Integer>>

eltSpace
= new PointSpace<SXMode,Integer>();

private final
LockSpace
<PCMode,UnitSpace<PCMode,OpenIntSet>>

setSpace
= new UnitSpace<PCMode,OpenIntSet>();

public
OpenIntSet(CompositionalIntSet intSet)
{ this.intSet = intSet; }

public boolean addInt (int elt)
[boolean result = false]
locking
(eltSpace : point(elt) : SXMode.X),
(setSpace : get() : PCMode.C)

{ return (result = intSet.addInt(elt)); }
onabort
{ if (result) intSet.removeInt(elt); }

// etc .
}

Listing 5.1: OpenIntSet class

public xatomic class ClosedIntSet
implements CompositionalIntSet {

private final CompositionalIntSet intSet;
public ClosedIntSet(CompositionalIntSet intSet)
{ this.intSet = intSet; }

public xatomic boolean addInt(int x)
{ return intSet.addInt(x); }

// etc .
}

Listing 5.2: ClosedIntSet class

72

public boostedatomic class BoostedMap<K,V>
implements CompositionalMap<K,V> {

private final ConcurrentMap<K,V> map;
private final
LockSpace<SXMode,PointSpace<SXMode,K>>
keySpace = new PointSpace<SXMode, K>();

private final
LockSpace
<PCMode,UnitSpace<PCMode, BoostedMap<K,V>>>

mapSpace
= new UnitSpace<PCMode, BoostedMap<K,V>>();

public BoostedMap(ConcurrentMap<K,V> map)
{ this.map = map; }

public V put(K key, V val)
[V result]
locking
(keySpace : point(key) : SXMode.X),
(mapSpace : get() : PCMode.C)

{ return (result = map.put(key, val)); }
onabort {
if (result == null) map.remove(key);
else map.put(key, result);

}
// etc .

}

Listing 5.3: BoostedMap class

atomic class which wraps an unsynchronized implementation, a boosted class wraps a

thread-safe implementation of the CompositionalMap interface. This is an important dis-

tinction.

5.1.4 Support for Varying Transaction Sizes

We extend the driver for Synchrobench to aggregate some number of underlying data

structure operations nested within a top-level closed transaction, parameterized by a new

run-time flag g. We modified the worker threads of Synchrobench accordingly as shown in

Listing 5.4. If the parameter g has a value greater than 0 then the operations are performed

73

private xatomic void atomicDoOperation() {
for (int i = 0;

i < Parameters.groupSize;
i++)

doOperation();
}

Listing 5.4: Top-level transaction for nesting

@Atomic(metainf = "elastic")
private void deuceAtomicDoOperation() {
for (int i = 0;

i < Parameters.groupSize;
i++)

doOperation();
}

Listing 5.5: Top-level transaction for Deuce

within a top-level closed transaction by marking atomicDoOperation as xatomic. Then

doOperation will be nested/boosted accordingly within the top-level transaction. We also

compare against Deuce [33], for which we use the corresponding method shown in Listing

5.5, to achieve the same effect.

5.1.5 Support for Thread Pinning

We update the driver for Synchrobench to accommodate the option of specifying a

strategy for pinning worker threads. The new run-time flag ps can be used to specify this

strategy. The value accepted is any combination of the characters C, S, and H. The character

C represents core, S represents socket, while H represents hyperthread. These characters

represent the 3 different dimensions that can be varied when pinning threads. The sequence

of the characters specifies which aspect of these to vary most rapidly when pinning threads.

For example, CSH means to vary the core first, then the socket, and finally hyperthreads of

the same core.

74

@Atomic // API method
public boolean addInt(int x) ...
// Methods used by the maintenance thread
@Atomic(metainf = "maint")
private Node getChild(Node n, boolean left) ...

Listing 5.6: Deuce STM implementation of TFTreeSet

// API method
public boolean addInt(int x) ...
// Methods used by the maintenance thread
private xatomic
Node getChild(Node n, boolean left) ...

Listing 5.7: Transactional implementation of TFTreeSet

5.1.6 Modified Transaction Friendly Data Structure

Synchrobench [21] contains transaction-friendly data structures that are “speculation-

friendly” [12]. We took the transaction-friendly TreeSet binary search tree implementa-

tion and modified it to run with transactions. We refer to this as TFTreeSet. It uses a sepa-

rate maintenance thread to keep the data structure properly balanced. Inserts are done at the

leaf level, while deleting an element simply marks the node as deleted. The maintenance

thread rebalances the data structure and removes deleted nodes. In the implementation for

Deuce the maintenance thread performs its tasks inside small atomic methods as shown in

Listing 5.6. The API methods are also marked as atomic methods.

Adapting these data structures for our transactional Java dialect is trivial. We mark

those methods used by the maintenance thread as closed atomic using the xatomic method

modifier as shown in Listing 5.7. This is reasonable because the maintenance methods

are short, making only a quick modification. We do not include anything special on the

API methods, but leave it to our open/closed wrapper classes to enforce atomicity. Hence,

depending on the wrapper that is instantiated, the API methods may run closed or open.

75

We also performed some hand optimizations to the benchmark code that are impor-

tant in the transactional setting. These optimizations could be performed by a bytecode

rewriting optimizer, a task we leave to future work. Specifically, we found places where a

field is often unconditionally updated with the value it already contains. Such writes are

cheap in the non-transactional case, but introduce needless conflicts in transactions. We

made them conditional. We also specially mark openForRead and openForWrite calls

that are redundant and openForRead calls that are always followed by an openForWrite

on the same object. This substantially reduces the transactional instrumentation in the

micro-benchmarks.

5.1.7 Modified Throughput Reporting for Accuracy

Previously, the Synchrobench driver thread worked as follows. It created all the worker

threads, then recorded the system time, and finally started the worker threads individually.

The main thread then slept for the duration of the benchmark. Upon being woken up, the

main thread attempted to join all the worker threads and to record the system time again.

The difference between the recorded system times is taken as the elapsed time for the

benchmark iteration. Meanwhile each thread kept a record of the number of operations it

executed. When reporting the results, Synchrobench divided the total number of operations

completed by all the threads and divided by the elapsed time to calculate the throughput in

units of operations per second. This mechanism works relatively well when running with a

small number of threads, but when running on a multi-socket machine some flaws appeared.

We noticed that the elapsed time when running with 48 threads was in the range of 5.5

seconds when the specified duration was 5 seconds. This had to do with the difference

in the times at which each thread started (they are started one by one), and even more in

the times when they stopped (after each operation, they look to see if their “stop” flag has

been set; operation times vary as do the times when the “stop” flags are actually set). Thus

some threads are actually idle for significant periods of time leading to an underestimate

of throughput. Our remedy is to record the start and stop time of the individual worker

76

 0

 50

 100

 150

 200

1 2 4 8 12 16 20 24 28 32 36 40 44 48 1 2 4 8 12 16 20 24 28 32 36 40 44 48 1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1 Group size 2 Group size 4

co
m

m
itt

ed
 o

ps
 a

nd
 a

bo
rte

d
tx

ns
 (1

06)

threads

open htm commits
closed htm commits

open stm commits
closed stm commits

htm aborts

Figure 5.1.: Committed operations versus aborts

threads. We divide the total number of operations completed by the total of the running

times of the worker threads, and then multiply by the number of threads. This throughput

value more accurately represents average throughput for large numbers of workers.

5.2 Experiments

Our experiments explore a range of structured transactions, namely flat, closed, open,

and boosted, in STM-only mode and in self-tuning hybrid HTM/STM mode. We further

compare against Deuce STM, running its efficient elastic mode transactions and configured

as described in Section 5.1, as a reference point. We conducted all experiments using the

extended version of Synchrobench described in Section 5.1 with the parameters shown in

Table 5.1.

We perform three sets of runs across these parameters so as to space the sets of five

iterations over time. Thus, we sample 15 measurements for each configuration.

77

Table 5.1: Synchrobench parameters for experiments

i = 16K|64K The initial number of elements added to the data struc-
ture before measurement begins.

r = 32K|128K The range of possible keys used in the data structure;
keys are drawn uniformly at random.

u = 0|5|50 The percent of operations that are updates, each ran-
domly chosen either to add or remove an element.

n = 5 The number of iterations of the benchmark.
t = 1|2|4|8...44|48 The number of spawned worker threads.
W = 5 The warm up time in seconds that the benchmark runs

before starting measurement.
d = 5000 The duration of a single iteration of the benchmark in

milliseconds.
g = 1|2|4|8|16|32 The number of operations to perform in each transac-

tion.
ps = CSH The pinning strategy to use. We first pin threads to dif-

ferent cores on one socket, then on the next socket, be-
fore finally assigning threads to different hyperthreads
of the same core. Exploratory experiments showed this
strategy to be clearly the best.

Given a benchmark data structure, Synchrobench initializes the data structure to its ini-

tial size, drawing randomly from the indicated range of values. Once the data structure is

initialized, Synchrobench performs operations at random, using the update percentage to

decide if the operation should be “add/remove” or “get/contains”. The collected statistics

are cleared once the warm up period ends, and the benchmark runs for the specified dura-

tion after that. Then Synchrobench reports statistics for the benchmark run, including the

throughput (operations/s).

When enabling HTM, we followed a more complex warm-up procedure. First, we ran

for five seconds calling the HTM routing methods of transactions. Then we paused five

seconds to allow the HotSpot compiler to compile (and possibly optimize) methods. We

repeated this procedure to force proper linking of the resulting compiled methods. We then

forced garbage collection (so that collections will not interfere with our timings) and started

Synchrobench’s warm-up run. We believe that in the future this warming up approach can

78

be generalized for arbitrary transactional applications. Alternatively, deeper modifications

could be made to the compilers to make them HTM aware.

The OpenIntSet and ClosedIntSet classes are initialized with the transactional-

ized version of TFTreeSet. For boosting, BoostedMap is initialized with the thread-

safe NonBlockingTorontoBSTMap [20]. For benchmarks involving Deuce STM we run

TFTreeSet under Deuce STM.

All benchmarks were run on a 48-way, x86-64 Intel Xeon E5-2690 v3 machine with

2 sockets of 12 hyperthreaded cores, with the clock frequency fixed to 2.4 GHz, and with

TSX enabled. The machine was running CentOS Linux release 7.2.1511 and our modified

version of OpenJDK.

5.3 Results

We now present results for executing the workload under different transaction imple-

mentations. Our first set of results are for data structures initialized with 64K elements

and a key range of 128K. All numbers reported in throughput graphs are normalized per-

thread throughput. This implies that perfect scaling will appear as a horizontal line in the

graphs. Our normalization is relative to the standard unsynchronized "java.util.TreeMap"

(run with one thread, no synchronization). At each point we plot the median along with

bars showing the 10th and 90th percentiles across the 15 total iterations we accumulated.

A common theme in the results is that open nesting and boosting do not perform well when

the transaction size is small. This is because these transaction forms carry a certain amount

of overhead—prominent at transaction size 1, for example. Much of this overhead is in

acquiring abstract locks. Also, for each nested operation, the inner transaction (which is

open) needs to create an abort handler and log it. These costs become smaller in a relative

sense as transaction size increases, giving these forms better performance and scaling at

larger transaction sizes.

79

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48
th

ro
ug

hp
ut

 (n
or

m
al

iz
ed

)

threads

1
2
4
8

16
32

(a) 0% updates (read-only)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(b) 5% updates

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(c) 50% updates

Figure 5.2.: Deuce (elastic), varying g

80

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48
th

ro
ug

hp
ut

 (n
or

m
al

iz
ed

)

threads

1
2
4
8

16
32

(a) 0% updates (read-only)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(b) 5% updates

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(c) 50% updates

Figure 5.3.: Closed, varying g

81

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48
th

ro
ug

hp
ut

 (n
or

m
al

iz
ed

)

threads

1
2
4
8

16
32

(a) 0% updates (read-only)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(b) 5% updates

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(c) 50% updates

Figure 5.4.: Open, varying g

82

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48
th

ro
ug

hp
ut

 (n
or

m
al

iz
ed

)

threads

1
2
4
8

16
32

(a) 0% updates (read-only)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(b) 5% updates

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(c) 50% updates

Figure 5.5.: Boosted, varying g

83

5.3.1 HTM versus STM

We first compare HTM and STM. Figure 5.1 shows three different transaction (group)

sizes, 1, 2, and 4, from left to right. Within each group we have bars for each thread count

(1, 2, ..., 48). The bars show the mean number of committed operations or hardware aborts

per 5s benchmark iteration, breaking committed operations down by whether they ran in

HTM or STM, with STM stacked on top of HTM. The left bar in each pair is for open

nesting, the right bar for closed. Software aborts are so few as to be invisible in this graph.

Finally, HTM abort counts are stacked on top (sometimes so few they are not visible). We

connect HTM and total commits by lines, to help see the trends better. The bluer colors

represent HTM, the yellower ones STM, and red represents aborts. These results are for

update fraction 5%.

We find that open nesting performs relatively poorly due to the extra overhead of ab-

stract locking and logging of undo operations, except at group size 4 where it outperforms

closed nesting at all thread counts. This trend continues with higher group sizes (not

shown). For thread counts beyond 24, threads start to share the same core (hyperthreading),

which results in poorer performance, especially for HTM since a core’s hyperthreads share

L1 and L2 caches, which are used as the transactional buffer by TSX. This is exhibited by

the drop in HTM commits and increase in HTM aborts. We also see that closed HTM falls

away quickly as we increase the group size. Closed HTM largely fails beyond group size

of 4. This is more because of transaction footprint exceeding the buffer than because of

increasing conflicts. However, open HTM is strong in group size 4 and beyond. This is

because the top-level transactions here are in software and each HTM transaction handles

just one operation. This keeps the HTM footprint small while amortizing the open nesting

overheads. Even with open nesting we see a relative increase in STM versus HTM beyond

24 threads, as a result of hyperthreading. The overall shape of the graphs for other update

percentages are similar to these, and hence we do not show them.

A theme here that we will see in other results as well is that there are portions of the

parameter space where HTM works well and offers substantial speed up over STM (even

84

with our hand optimization of STM). Likewise, there are portions of the space where open

nesting works better than closed nesting, despite its higher overheads.

5.3.2 Closed, Open, and Boosted

Figures 5.2 to 5.5 show normalized throughput for update fractions 0%, 5%, and 50%,

respectively. Each figure includes four graphs, showing performance for Deuce [33] (run-

ning its efficient elastic mode transactions), closed nesting, open nesting, and boosting. We

include Deuce since it demonstrates that our system lies in the same general performance

range as this mature system. We see that closed nesting does better than Deuce at small

thread counts and the same or not quite as well at large thread counts. We also see that for

smaller thread counts and group sizes 1 and 2, closed nesting achieves particularly good

performance. This is because those cases run in HTM much of the time. We compared

open and closed nesting above and these graphs are consistent with that analysis. Boosting

is interesting to compare with open nesting since a boosted data structure is hand crafted

to offer good throughput for individual operations, and our wrappers implement the same

abstract locking and undo logging for both boosting and open nesting. Being hand-crafted,

we expected boosting to do better, but not surprisingly open nesting tends to win up to 12

threads where HTM remains effective.

5.3.3 Smaller Data Structure Size

Figure 5.6 shows the impact due to increased chance of conflicts when using a smaller

data structure, with 16K entries instead of 64K, key range of 32K, and update fraction 5%.

For the same update fraction this smaller tree size results in more conflicts (both physical

and abstract) than for larger trees, and the graphs clearly show how performance drops off

with increasing group size since more transactions will conflict.

85

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(a) Deuce (elastic)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(b) Closed

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(c) Open

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 12 16 20 24 28 32 36 40 44 48

th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

threads

1
2
4
8

16
32

(d) Boosted

Figure 5.6.: 5% updates, varying g for tree size of 16K

86

6 FUTURE WORK

XJ relies on somewhat heavyweight mechanisms to support transactional memory mecha-

nisms on a mostly unmodified OpenJDK platform. The bulk of the effort to make Java code

run transactionally in XJ is achieved via byte-code and class rewriting at class load time.

The only extension to OpenJDK is to allow injection of Intel’s TSX hardware transactional

memory (HTM) instructions into execution of interpreted and compiled code via HotSpot

intrinsics. Two particular shortcomings of that approach are the addition of a transactional

metadata word as an extra instance variable in all objects, and some jumping through hoops

to convince the HotSpot optimizing compilers to compile HTM-enabled transactions. We

discuss both of these issues with respect to OpenJDK and consider alternative implemen-

tations that represent a tighter integration with the OpenJDK implementation for improved

performance.

6.1 Locking Protocol

XJ performs conflict detection at the level of objects, and tracks writes at the level of

fields using an undo log. In the prototype STM implementation, each object carries an

extra transactional metadata field, which holds the lock for writes, and otherwise contains

a version number for the object, which is incremented upon commit. However, in XJ HTM

and STM can safely co-exist and execute concurrently. Thus the two mechanisms need to

play well with each other. In general, we adopt pessimistic concurrency control for writes,

and optimistic concurrency control for reads. When running under STM, writes acquire

a write lock on the object, which is noted in the metadata field—only one transaction can

write to the object at a time. Readers proceed optimistically under STM, simply logging the

value of the metadata field (a version number), and the log is then processed at commit time

to validate the transaction (if the logged version number does not match the current value

87

(heavyweight locked object)

(lightweight locked object)

thin lock

(biased object, locked or unlocked)

lock / unlock

rebiasinitial lock

(unlocked and unbiased but biasable object) (unlocked non-biasable object)

If biased locking is enabled for the class If biased locking is disabled for the class

0 epoch age 1 01

thread ID epoch age 1 01

hash code age

pointer to lock record

recursive lock

if currently locked

if currently unlocked

revoke bias

allocate object

un
lo

ck

0 01

00

pointer to heavyweight monitor 10

inflate lock

Figure 6.1.: HotSpot standard synchronization (reproduction under GPLv2 license of a figure
appearing in Kotzmann and Wimmer [34]).

and the owner of a locked object is not the current transaction then the transaction aborts).

When running under HTM, writers commit by incrementing the version number, thus in-

validating conflicting STM readers and conflicting with both HTM readers and writers.

Reads under HTM perform a check to make sure that the object is not locked by another

transaction, explicitly aborting if necessary. In sum, the lock/version word “glues” together

the STM and HTM schemes into a coherent (and safe!) hybrid TM. We now present details

on how this locking protocol can be integrated into OpenJDK, to be more efficient, rather

than having to rely on an extra field added to each object.

6.1.1 Integrating Per-Object Transactional Metadata

The XJ prototype uses byte-code rewriting at load time to make every transactional

application class inherit from a new TransactionalObject class, which has the transac-

tional metadata word as its only instance field. Adding a field to each transactional object

is costly in space and also in time to initialize and access the field. Ideally we would like

this word to be a part of the object header. In OpenJDK every object is preceded by a

class pointer (the “klass” word, which is native-sized or 32 bits depending on the use of

compressed object pointers) and a header word. These are optionally followed by a 32-bit

88

length word (if the object is an array), a 32-bit gap (if required by alignment rules), and then

the object itself, comprising zero or more instance fields, array elements, or metadata fields.

One option would have been to add another word to the header to store the transactional

metadata. This would have worked well and is simple, but we want to do even better in

terms of space and performance. Instead, we took a closer look at the format of the header

word. Figure 6.1 shows the layout of the header word and how its contents evolve during

the standard locking/unlocking process of Java object synchronization expressed using the

synchronized keyword.

The most significant bits of the header word typically store multiple pieces of informa-

tion as shown in Figure 6.1. These bits represent a hash code when the object is hashed, a

thread id when the object is biased locked, a pointer to a lightweight lock, or a pointer to

a heavyweight lock. The three lowest-order bits of the header word indicate which pieces

of information the header holds. When an object is created and initialized it resides in the

unlocked state (the most significant bits store no information). From this state an object

can either transition to a hashed state or a biased locked state. If an object is hashed and a

lock is requested (or vice versa), the object then transitions to a lightweight lock (the hash

code and the thread id are moved into a lock record allocated on the stack). Lightweight

locked objects that become subject to contention when another thread tries to lock them are

“inflated”: the object moves into a state where it refers to a heavyweight lock.

Transactional memory can be seen as an alternative method to achieve the same effect

as synchronized: atomic updates to objects. It is reasonable to assume that any particular

object is unlikely to be locked using both mechanisms, at least not at the same time. Thus an

object that is participating in a transaction will not typically undergo all the states shown

in Figure 6.1. We took this into account and tried to devise a mechanism to store the

transactional meta-data in the existing header word. To do this we need a bit to indicate that

the object is locked in transactional mode. We observed that we could accomplish this by

enforcing 8-byte alignment on the “pointer to lock record” and the “pointer to heavyweight

monitor”. This gives us an extra bit to indicate that the object is being manipulated in

89

(transactionally write locked object)

(transactionally read object)

(lightweight locked object)

txn write

(heavyweight hashed/locked object)

thin lock

(biased object, locked or unlocked)

lock / unlock

rebiasinitial lock

(unlocked and unbiased but biasable object) (unlocked non-biasable object)

If biased locking is enabled for the class If biased locking is disabled for the class

0 epoch age 1 01

thread ID epoch age 1 01

hash code age 0 01

pointer to lock record 00

recursive lock

if currently locked

if currently unlocked

revoke bias

allocate object

pointer to heavyweight monitor 10

inflate lock un
lo

ck
 (n

on
-tx

na
l)

Txn ID epoch age 1 000

version epoch age 1 001

txn commit

0

0

txn read / write

lock / hash

txn w
ritetxn read

txn read/w
rite

unlock (unhashed)

unlock (unhashed)

lock / hash

Figure 6.2.: Proposed extension to the object header mark word

transactional mode. Figure 6.2 shows how the contents of the mark word evolve under this

scheme.

The proposed scheme allows us to store the transactional meta-data in the existing ob-

ject header word, as long as the object remains unhashed and is not synchronized. Our

approach allows efficient access to the transactional meta-data for the object when it is

stored in the header word. This is the most common case, and our proposed scheme is

optimized for it. One bit of the transaction meta-data is used to indicate if the value stored

is a transaction id (to indicate that the object is write locked) or its transactional version

number. If a hash code is requested for a transactional object, or it becomes synchronized,

then the transactional meta-data will be moved to a heavyweight monitor (“fat lock”). The

monitor will be augmented with a field to be used as the lock/version for transactions. It

need not incur all the overhead of a standard object monitor except when used (in the rare

case) for both transactional access and synchronized manipulations. If an unhashed ob-

ject is unlocked then the transactional meta-data will be moved back into the header word

making it more efficient.

90

6.1.2 Handling Statics

Integrating the transactional metadata into the object header word solves the transac-

tional locking issue for instance fields of an object, but it does not address static fields of

a class. We need to handle statics separately. In the XJ prototype this was done by mov-

ing the static fields into a separate static singleton object, which allowed us to use the same

locking scheme used for instance fields on the static fields. For our modified OpenJDK VM

we propose to have a distinct static field (a synthetic field) to hold the transaction metadata

for the static fields of the object. The proposed scheme can be extended to have a distinct

lock word for disjoint subsets of the statics, if that added complexity offers enough perfor-

mance advantage. This might increase concurrency and could be easily implemented via

an annotation, similar to the existing @Contended annotation, on a group of static fields.

6.1.3 Handling Arrays

Using a single lock to protect a whole array does not scale in general since it will

become a concurrency bottleneck. The XJ prototype injects wrapper classes at class load

time for arrays, but we would prefer an integrated solution that allocates arrays as arraylets.

These have been used to good advantage in real-time Java implementations [2; 47; 53; 54].

The size of these segments could be specified by the user. The integrated solution would

allocate a transactional metadata word for each arraylet, solving the concurrency bottleneck

issue for large arrays.

6.2 Interpreter and Compiler Concerns

As is well known, HotSpot has a byte-code interpreter as well as two levels of optimiz-

ing just-in-time (JIT) compilers (C1 and C2) that produce native code. Given the amount of

work that the interpreter does, the data structures it touches and updates, etc., HTM will not

work when interpreting byte-codes. This is because Intel’s TSX hardware piggybacks on

91

caching protocols and thus has a limited buffer size causing interpreted HTM transactions

to fail due to buffer overflow. However, STM transactions can execute in the interpreter.

HotSpot already uses reasonable heuristics to decide when it might be profitable to generate

and execute native code. For transactional code, it might be useful to adjust those heuristics

a bit since, once code is JIT compiled, HTM may be useful and HTM appears to run 5-10

times faster than STM for successful HTM transactions. But our main point is that HTM

becomes interesting only for compiled code.

One of the main issues we encountered early on with using HTM was that many trans-

actions failed with result code 0 (i.e., no specific reason given). Using the Intel Software

Development Emulator, we found these aborts to be caused by execution of instructions that

are incompatible with TSX—FXRSTOR and FXSAVE (perhaps among others)—and which

are compiled into HotSpot’s run-time stubs that control dynamic optimization and linking,

and to resolve static and virtual method calls. By design, the HotSpot compilers patch these

call sites at run time [43]. Thus our hardware transactions always failed, and those failures

prevented triggering of the patching mechanism. Our workaround was to devise a mecha-

nism to “warm” the system up in STM mode before attempting any hardware transactions.

However, so that the compiler’s optimizations will be triggered appropriately, and so that

linking/patching will occur, these STM transactions had to follow the same code path (ex-

cept for not using the TSX instructions) as HTM transactions did. We used a global flag to

indicate whether we were in the software-only warm up phase, “weaving” together STM

and HTM in the same code sequence, with if-then-else structure for each operation that

HTM and STM handle differently.

This “weaving” strategy allowed us to executed HTM versions of methods in software

to “snap links,” etc., as we say. For example, a transaction might call some method m of

the application where m is not yet JIT compiled. The HotSpot JIT compilers will insert a

call to a stub routine that triggers compilation of the target method m if it is called, or, if

by that time m has been compiled, will patch the stub to call the compiled code for m. Both

behaviors of a stub cause an HTM transaction to fail, and unwind, thus not actually trigger-

ing the compilation or link-snapping behavior. We thus needed a way to execute the same

92

stub under STM. Once the stub’s behavior had been appropriately triggered, HTM would

no longer fail going through that code path. The stubs of which we speak are examples

of guards. We say a guard succeeds if it follows a path where no special condition needs

fixing up; this will be a fast path. We say a guard fails when it follows a path for a fix up;

this will be a slow path.

Weaving together HTM and STM versions leads to code that is probably slower than

it can be, because of all the extra if-then-else blocks. Granted, good branch prediction

reduces their cost some, but they still need to be executed and they may stress the branch

predictor. It would be better to generate HTM code without these branches. We propose

two ways to do this: (i) returning some information from a failing HTM transaction, and

(ii) maintaining correlated HTM and STM versions of the code.

6.2.1 Using HTM Failure Codes

As previously mentioned, failing guards will cause HTM transactions to fail. This has

the side-effect that the run-time system then does not know a guard failed and thus cannot

fix it up. However, it turns out that an explicit abort of an Intel HTM transaction with the

XABORT instruction can pass 8 bits of information back in the EAX register.1 So, if a piece

of code running under HTM has no more than 256 guards, the compiler could use the 8-bit

code in the "XABORT" instruction to indicate which guard failed. This may allow a future

execution of the transaction to succeed. (We say “may” because a future execution is not

guaranteed to follow the same path through the code.)

But what if the HTM code region has more than 256 guards? This could happen in the

presence of calls, etc. Here is a scheme to exploit multiple transaction attempts to extract

more bits from the failing transactions and narrow down the set of failing guards to the one

on which the system should act. First, we assume that there is a per-thread location (it could

even be a register) that will indicate which retry of an HTM transaction with a failing guard

1As an aside to designers of future hardware, we observe that it appears useful to be able to return more bits,
and possibly even to have a memory region not subject to HTM semantics in which one could store “side”
results of a failing transaction.

93

we are on, and some previously returned information. The attempt number will initially be

0, will be 1 on the first retry, etc. The essence of the scheme is this. We assign each guard

a unique number. We develop k hash functions (k is likely 4, given the particulars of our

scheme), h0 through hk−1. On attempt j of a failing guard in a hardware transaction, we

return h j(i) where i is the unique id of the failing guard. These hash function return a seven

bit value. The eighth bit we use to indicate whether we are continuing or starting over.

On attempts after the first, we check a failing guard’s previous hash values against those

noted as being returned by previous attempts. If they match, we indicate that and return the

hash value for the current attempt. If they don’t match, we indicate that and return h0(i).

If we get through four attempts with matches, we will have 28 bits to identify a particular

guard. In many cases we might need even fewer, but the scheme generalizes to extract any

number of bits, at the cost of additional retries and the increasing risk that we may go down

a different code path (depending on the nature of the transaction and of the guard). Notice

that the hash codes can simply be groups of seven bits from the guard’s unique number,

which probably makes for simple code.

This scheme assumes that all we need to know is which guard failed. When updating a

polymorphic inline cache (for example), we may desire to know which class was presented

that was not in the cache. The same approach can be taken to extract more bits. An

alternative would be to have code that would figure out which object’s class was being

dispatched on, etc. This could get complicated, so returning the information directly (if

incrementally) may be simpler. It is certainly more general.

6.2.2 Maintaining Correlated Code Versions

An alternative to using the HTM failure codes is to maintain STM and HTM versions

that have the same guards. This is like taking XJ’s code and pulling out a version with all

the “then” clauses of the HTM-STM if-then-else blocks, and another version with all the

“else” clauses. Whenever an action is taken on a guard in one version of the code, we force

the same action to occur on the other version. Thus, if the HTM code fails in a guard—a

94

fact that can be indicated with just one distinguished result code value—we can run the

STM version and if a guard fails, it will be fixed in both versions and we can try HTM

the next time. If the HTM version can usefully indicate which guard failed (i.e., there are

not too many guards, and the particular one does not require additional information), then

the result code can be used to fix the guard in both versions and HTM retried. However,

handling a failing guard is probably quite costly compared with the work that can succeed

in an HTM transaction, and even compared with an STM version of that same work, so

always running the STM version to trigger guard fixing is a reasonable strategy.

6.2.3 Further Optimizations

In XJ we supported hand annotation of various actions in a transaction, to enable us to

elide locking or logging work. This is particularly applicable to STM code, since HTM

inherently avoids some of the work, but it is also relevant to HTM code. We envisioned

a byte-code optimizer that would perform the needed data flow analyses and then rewrite

the byte-code (or insert the annotations). This could be done as an additional optimization

pass in HotSpot, particular to transaction code.

95

7 SUMMARY

The XJ language provides full blown support for closed, open nested and boosted

transactions. The hybrid transactional memory system supported by the XJ framework

allows hardware transactions and software transactions to proceed concurrently. Open

nesting increases the envelope of concurrency and transaction sizes that can be

accommodated in hardware.

In this dissertation we have presented XJ, a dialect of Java supporting a range of trans-

actional programming abstractions, including open/closed nested transactions, and trans-

actional boosting. We also show how HTM can be used with nested transactions to boost

performance. Additionally we’ve shown how STM and HTM can coexist with each other

in the face of nesting, and show how the transition from HTM to STM and vice versa can

be done automatically.

7.1 Conclusions

Our results demonstrate the utility of nesting as a means to achieving reliably scalable

concurrent manipulation of data structures using open/closed nesting, without the need for

hand-tuned and hand-coded non-blocking implementations. So long as the underlying data

structure is friendly to transactions it can easily be nested.

Moreover, we demonstrate that HTM mechanisms can be exploited effectively to ac-

celerate nested transaction schemes, while allowing software-only schemes to run safely

alongside the HTM-accelerated executions.

Our results indicate the degree to which hyperthreading degrades performance of HTM

schemes due to the need to share capacity between hyperthreads on the same core.

96

We also demonstrate the performance envelopes for each of the schemes, showing that

there is a space in the workload spectrum where each is superior. As such, programmers

must choose carefully which technique to employ, depending on the nature of their pro-

grams.

For programmers willing to wrap bespoke linearizable data structures, boosting works

well at high thread counts where HTM degrades, because it does not pay the performance

penalty of STM.

We have also shown how to integrate HTM features into OpenJDK such that the com-

pilers can inline the HTM operations as intrinsics. In future work we plan to convince the

Hotspot compilers to warm up more effectively and optimize the HTM code.

Finally, We also show how the HotSpot optimizing compilers can be modified to be

aware of transactions, such that HTM can be used in production. We propose two com-

plementary modifications to the compiler that avoid having to warm the system up prior to

using HTM. We also discuss other optimizations that the compiler could perform on HTM

methods.

LIST OF REFERENCES

97

LIST OF REFERENCES

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded
transactional memory. In Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, HPCA, pages 316–327, San Francisco, Califor-
nia, USA, 2005. ISBN 0-7695-2275-0. doi: 10.1109/HPCA.2005.41.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with low over-
head and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pages 285–298, New
Orleans, Louisiana, USA, 2003. ISBN 1-58113-628-5. doi: 10.1145/604131.604155.

[3] E. Bruneton. ASM 4.0: A Java bytecode engineering library, Sept. 2011. URL
http://download.forge.objectweb.org/asm/asm4-guide.pdf. Version 2.0.

[4] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and
K. Olukotun. The Atomos transactional programming language. In Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI, pages 1–13, Ottawa, Ontario, Canada, 2006. ISBN 1-59593-320-4.
doi: 10.1145/1133981.1133983.

[5] K. Chapman, A. L. Hosking, J. E. B. Moss, and T. Richards. Closed and open nested
atomic actions for Java: Language design and prototype implementation. In Interna-
tional Conference on the Principles and Practice of Programming on the Java plat-
form: virtual machines, languages, and tools, PPPJ, pages 169–180, Cracow, Poland,
Sept. 2014. doi: 10.1145/2647508.2647525.

[6] K. Chapman, A. L. Hosking, and J. E. B. Moss. Hybrid STM/HTM for nested transac-
tions on OpenJDK. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, pages 569–585, Amsterdam, The
Netherlands, Oct. 2016. doi: 10.1145/2983990.2984029. Distinguished Paper Award.

[7] K. Chapman, A. L. Hosking, and J. E. B. Moss. Extending OpenJDK to support
hybrid STM/HTM: Preliminary design. In ACM SIGPLAN Workshop on Virtual Ma-
chines and Intermediate Languages, VMIL, Amsterdam, The Netherlands, Oct. 2016.
doi: 10.1145/2998415.2998417.

[8] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, and H. Z. M.
Tremblay. Rock: A high-performance Sparc CMT processor. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, volume 29
of MICRO, pages 6–16, March 2009. ISBN 0272-1732. doi: 10.1109/MM.2009.34.

[9] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer,
and M. Tremblay. Simultaneous speculative threading: A novel pipeline architec-
ture implemented in Sun’s Rock processor. In Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture, ISCA, pages 484–495, Austin, TX,
USA, 2009. ISBN 978-1-60558-526-0. doi: 10.1145/1555754.1555814.

http://download.forge.objectweb.org/asm/asm4-guide.pdf

98

[10] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie, and
D. Grossman. ASF: AMD64 extension for lock-free data structures and transactional
memory. In Proceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO, pages 39–50, 2010. ISBN 978-0-7695-4299-7. doi:
10.1109/MICRO.2010.40.

[11] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly methodology for search
structures. Research report, INRIA, Feb. 2012. URL https://hal.inria.fr/
hal-00668010.

[12] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP, pages 161–170, New Orleans, Louisiana, USA, 2012.
ISBN 978-1-4503-1160-1. doi: 10.1145/2145816.2145837.

[13] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining STM by abol-
ishing ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP, pages 67–78, Bangalore,
India, 2010. ISBN 978-1-60558-877-3. doi: 10.1145/1693453.1693464.

[14] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid NOrec: A case study in the effectiveness of best effort hardware
transactional memory. In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS,
pages 39–52, Newport Beach, California, USA, 2011. ISBN 978-1-4503-0266-1. doi:
10.1145/1950365.1950373.

[15] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hy-
brid transactional memory. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS, pages 336–346, San Jose, California, USA, 2006. ISBN 1-59593-451-0. doi:
10.1145/1168857.1168900.

[16] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS, pages 157–168, Washington, DC, USA, 2009. ISBN 978-1-
60558-406-5. doi: 10.1145/1508244.1508263.

[17] D. Dice, A. Kogan, and Y. Lev. Refined transactional lock elision. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP, pages 1–19, Barcelona, Spain, 2016. ISBN 978-1-4503-4092-2. doi:
10.1145/2851141.2851162.

[18] N. Diegues and P. Romano. Self-tuning Intel transactional synchronization exten-
sions. In 11th International Conference on Autonomic Computing, ICAC, pages 209–
219, Philadelphia, PA, USA, June 2014. ISBN 978-1-931971-11-9.

[19] N. Diegues, P. Romano, and L. Rodrigues. Virtues and limitations of commodity
hardware transactional memory. In Proceedings of the 23rd International Confer-
ence on Parallel Architectures and Compilation, PACT, pages 3–14, Edmonton, AB,
Canada, 2014. ISBN 978-1-4503-2809-8. doi: 10.1145/2628071.2628080.

https://hal.inria.fr/hal-00668010
https://hal.inria.fr/hal-00668010

99

[20] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search
trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC, pages 131–140, Zurich, Switzerland, 2010. ISBN
978-1-60558-888-9. doi: 10.1145/1835698.1835736.

[21] V. Gramoli. More than you ever wanted to know about synchronization: Syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP, pages 1–10, San Francisco, CA, USA, 2015. ISBN
978-1-4503-3205-7. doi: 10.1145/2688500.2688501.

[22] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coher-
ence and consistency. In Proceedings of the 31st Annual International Symposium
on Computer Architecture, ISCA, page 102, München, Germany, 2004. ISBN
0-7695-2143-6.

[23] T. L. Harris and K. Fraser. Language support for lightweight transactions. In Proceed-
ings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing,
Systems, Languages, and Applications, OOPSLA, pages 388–402, Anaheim, Califor-
nia, USA, 2003. ISBN 1-58113-712-5. doi: 10.1145/949305.949340.

[24] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-
concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP, pages 207–216,
Salt Lake City, UT, USA, 2008. ISBN 978-1-59593-795-7. doi: 10.1145/1345206.
1345237.

[25] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-
free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA, pages 289–300, San Diego, California, USA, 1993.
ISBN 0-8186-3810-9. doi: 10.1145/165123.165164.

[26] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional
memory for dynamic-sized data structures. In Proceedings of the 22nd Annual Sym-
posium on Principles of Distributed Computing, PODC, pages 92–101, Boston, Mas-
sachusetts, USA, 2003. ISBN 1-58113-708-7. doi: 10.1145/872035.872048.

[27] M. P. Herlihy and J. M. Wing. Linearizability: A correctness criterion for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
July 1990. ISSN 0164-0925. doi: 10.1145/78969.78972.

[28] B. Hindman and D. Grossman. Atomicity via source-to-source translation. In Pro-
ceedings of the 2006 Workshop on Memory System Performance and Correctness,
MSPC, pages 82–91, San Jose, California, USA, 2006. ISBN 1-59593-578-9. doi:
10.1145/1178597.1178611.

[29] Intel. Intel Transactional Synchronization Extensions (Intel TSX) programming con-
siderations. URL https://software.intel.com/en-us/node/524023.

[30] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture and imple-
mentation for IBM System Z. In Proceedings of the 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO, pages 25–36, Vancouver, B.C.,
CANADA, 2012. ISBN 978-0-7695-4924-8. doi: 10.1109/MICRO.2012.12.

https://software.intel.com/en-us/node/524023

100

[31] E. H. Jensen, G. W.Hagensen, and J. M. Broughton. A new approach to exclusive
data access in shared memory multiprocessors. Technical Report UCRL-97663, Nov
1987. URL https://e-reports-ext.llnl.gov/pdf/212157.pdf.

[32] A. Kasko, S. Kobylyanskiy, and A. Mironchenko. OpenJDK Cookbook. Packt Pub-
lishing, Jan. 2015. ISBN 1849698406.

[33] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with Java STM. In
Workshop on Programmability Issues for Heterogeneous Multicores, MULTIPROG,
Pisa, Italy, Jan. 2010.

[34] T. Kotzmann and C. Wimmer. OpenJDK Wiki: Synchronization and Object
Locking, 2008. URL https://wiki.openjdk.java.net/display/HotSpot/
Synchronization.

[35] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional
memory. In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP, pages 209–220, New York, New York,
USA, 2006. ISBN 1-59593-189-9. doi: 10.1145/1122971.1123003.

[36] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional memory. In ACM
SIGPLAN Workshop on Transactional Computing, Transact, Aug. 2007. URL http:
//hdl.handle.net/1802/4431.

[37] S. Lie. Hardware support for unbounded transactional memory. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2004.

[38] A. Matveev and N. Shavit. Reduced hardware NORec: A safe and scalable hy-
brid transactional memory. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS, pages 59–71, Istanbul, Turkey, 2015. ISBN 978-1-4503-2835-7. doi:
10.1145/2694344.2694393.

[39] P. McGachey, A. L. Hosking, and J. E. B. Moss. Class transformations for transparent
distribution of Java applications. Journal of Object Technology, 10:9:1–35, 2011.
ISSN 1660-1769. doi: 10.5381/jot.2011.10.1.a9.

[40] J. E. B. Moss. Nested Transactions: An approach to reliable distributed computing.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1981.

[41] J. E. B. Moss and A. L. Hosking. Nested transactional memory: Model and architec-
ture sketches. Science of Computer Programming, 63(2):186–201, Dec. 2006. ISSN
0167-6423. doi: 10.1016/j.scico.2006.05.010.

[42] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss,
B. Saha, and T. Shpeisman. Open nesting in software transactional memory. In
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP, pages 68–78, San Jose, California, USA, 2007. ISBN
978-1-59593-602-8. doi: 10.1145/1229428.1229442.

[43] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server compiler. In Proceed-
ings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology
Symposium — Volume 1, JVM, page 1, Monterey, California, USA, 2001.

https://e-reports-ext.llnl.gov/pdf/212157.pdf
https://wiki.openjdk.java.net/display/HotSpot/Synchronization
https://wiki.openjdk.java.net/display/HotSpot/Synchronization
http://hdl.handle.net/1802/4431
http://hdl.handle.net/1802/4431

101

[44] C. H. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, Oct. 1979. ISSN 0004-5411. doi: 10.1145/322154.322158.

[45] M. Payer and T. R. Gross. adaptSTM: An online fine-grained adaptive STM system.
Technical report, ETH Zurich, 2010.

[46] M. Payer and T. R. Gross. Performance evaluation of adaptivity in software transac-
tional memory. In IEEE International Symposium on Performance Analysis of Sys-
tems and Software, ISPASS, pages 165–174, April 2011. doi: 10.1109/ISPASS.2011.
5762733.

[47] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek. Schism:
Fragmentation-tolerant real-time garbage collection. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI,
pages 146–159, Toronto, Ontario, Canada, 2010. ISBN 978-1-4503-0019-3. doi:
10.1145/1806596.1806615.

[48] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concur-
rent multithreaded execution. In Proceedings of the 34th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO, pages 294–305, Austin, Texas,
USA, 2001. ISBN 0-7695-1369-7.

[49] R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based pro-
grams. In Proceedings of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS, pages 5–17, San
Jose, California, USA, 2002. ISBN 1-58113-574-2. doi: 10.1145/605397.605399.

[50] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture, ISCA, pages
494–505, 2005. ISBN 0-7695-2270-X. doi: 10.1109/ISCA.2005.54.

[51] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid trans-
actional memory: The importance of nonspeculative operations. In Proceedings of
the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, pages 53–64, San Jose, California, USA, 2011. ISBN 978-1-4503-0743-7.
doi: 10.1145/1989493.1989501.

[52] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-
STM: A high performance software transactional memory system for a multi-core
runtime. In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP, pages 187–197, New York, New York,
USA, 2006. ISBN 1-59593-189-9. doi: 10.1145/1122971.1123001.

[53] J. B. Sartor, S. M. Blackburn, D. Frampton, M. Hirzel, and K. S. McKinley. Z-
rays: Divide arrays and conquer speed and flexibility. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI, pages 471–482, Toronto, Ontario, Canada, 2010. ISBN 978-1-4503-0019-3.
doi: 10.1145/1806596.1806649.

[54] F. Siebert. Eliminating external fragmentation in a non-moving garbage collector for
Java. In Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, CASES, pages 9–17, San Jose, California, USA,
2000. ISBN 1-58113-338-3. doi: 10.1145/354880.354883.

102

[55] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple reservations and
the Oklahoma update. IEEE Parallel and Distributed Technology, 1(4):58–71, Nov.
1993. ISSN 1063-6552. doi: 10.1109/88.260295.

[56] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of Intel
transactional synchronization extensions for high-performance computing. In Pro-
ceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC, pages 1–19, Denver, Colorado, USA, 2013. ISBN
978-1-4503-2378-9. doi: 10.1145/2503210.2503232.

[57] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. In IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS, pages 23–34, Los Alamitos, CA, USA, Apr. 2007. doi:
10.1109/ISPASS.2007.363733.

[58] L. Zhang. UVSIM reference manual. Technical report, University of Utah, Mar. 2003.
UUCS-03-011.

VITA

103

VITA

Keith Godwin Chapman was born in Colombo, Sri Lanka. After completing his pri-

mary and secondary education at Wesley College in Colombo, Sri Lanka, Keith obtained

admission to the Engineering faculty at the University of Moratuwa, Sri Lanka. Upon re-

ceiving his Bachelor of Science in Computer Science & Engineering, Keith joined WSO2

Inc, in August 2006 as a software engineer. At WSO2, he rose through the ranks rapidly,

been promoted to senior software engineer, technical lead and product manager. In August

2009, he began his graduate studies at Purdue University, West Lafayette, Indiana, USA,

under the direction of Professor Antony Hosking. Keith, earned his Master of Science in

Computer Science from Purdue University, West Lafayette, Indiana, USA in May 2012.

His research interests are in the areas of programming language design and implementa-

tion, compilers, language runtimes, virtual machines, garbage collection, concurrency and

transactional memory. During his Ph.D. studies at Purdue University, Keith interned at

IBM T. J. Watson Research Center, Yorktown Heights, New York, USA, Microsoft Re-

search, Redmond, Washington, USA and IBM Research in Austin, Texas, USA.

	Purdue University
	Purdue e-Pubs
	12-2016

	Hybrid STM/HTM for nested transactions in Java
	Keith G. Chapman
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Overview
	XJ Framework
	Principles and Approach
	Contributions

	BACKGROUND
	Flattening
	Closed Nesting
	Open Nesting
	Boosting
	Related Work
	Unbounded Transactional Memory(UTM)
	Kumar’s Hybrid TM
	Virtual Transactional Memory (VTM)
	Hybrid Transactional Memory (HyTM)
	Phased Transactional Memory (PhTM)
	Hybrid NOrec
	Deuce STM
	Adapt STM

	XJ LANGUAGE
	Atomic Actions
	Effect Logging
	Concurrency Control
	Retry Statement
	Require Statement
	Exceptions

	Open Atomic Classes
	Open Atomic Fields
	Open Atomic Methods
	Open Atomic Method Execution
	Inheritance, Overriding, and Nesting
	Open Atomic Method Suffix Clauses
	Open Atomic Method Locking Clause
	Acquiring Locks at Return or Throw
	Open Atomic Concurrency Control
	Open Atomic Actions and New
	Concerning Volatile and Synchronized

	Boosting

	XJ FRAMEWORK
	STM Implementation
	Hardware Transactional Memory
	Example: An Open Atomic Map
	XJ Compiler
	Handlers on Open Atomic Methods

	OpenJDK Modifications
	Bytecode Rewriter
	Statics
	Arrays
	Object Creation
	Java Agent
	Instrumenter Process
	Accessor Objects

	Transactional Methods in XJ
	Generated Method Variants
	STM Specific Rewrites
	HTM Specific Rewrites
	Transaction Control

	Run-Time Library

	EVALUATION
	Workload
	Open Atomic Workload
	Closed Atomic Workload
	Boosted Workload
	Support for Varying Transaction Sizes
	Support for Thread Pinning
	Modified Transaction Friendly Data Structure
	Modified Throughput Reporting for Accuracy

	Experiments
	Results
	HTM versus STM
	Closed, Open, and Boosted
	Smaller Data Structure Size

	FUTURE WORK
	Locking Protocol
	Integrating Per-Object Transactional Metadata
	Handling Statics
	Handling Arrays

	Interpreter and Compiler Concerns
	Using HTM Failure Codes
	Maintaining Correlated Code Versions
	Further Optimizations

	SUMMARY
	Conclusions

	LIST OF REFERENCES
	VITA

