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ABSTRACT
Transactional Memory (TM) promises to simplify parallel
programming by replacing locks with atomic transactions.
This is the first paper to assess the value proposition of
TM based on a comparative case study with real program-
mers. Twelve students, working in teams of two, wrote a
parallel desktop search engine in C/C++ during a fifteen
week lab. Three randomly chosen study groups (TM teams)
competed for the best performance using Intel’s Software
Transactional Memory compiler and Pthreads, while three
control groups (locks teams) competed using just Pthreads.

The study provides empirical evidence that both supports
the TM value proposition and at the same time points to
problems with TM. The winning TM team’s program per-
formed better than that of the winning locks team, and the
TM winners were the first to have a prototype parallel search
engine, four weeks earlier than the locks winners. Compared
to the locks teams, the TM teams spent less than half the
time debugging segmentation faults. On the other hand,
TM teams had more problems tuning performance because
TM performance was hard to predict.

The study also provides insights into general difficulties
programmers have with parallel programming. Some in-
sights are technical; for example, some students wrongly
assumed that it is safe to read shared variables outside crit-
ical sections, resulting in data races in the winning teams’
programs. Other insights are non-technical, including psy-
chological ones; for example, the TM teams were less afraid
of using parallel constructs, yet two of the teams procrasti-
nated parallelization.

Based on our insights, we elaborate on future research
directions. We suggest refinements to TM constructs and
tools. We also sketch how to automate similar case studies
and propose a methodology for automating the evaluation
of new language features for parallelism.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.0 [Software Engineer-
ing]: General
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1. INTRODUCTION
Multicore is a challenge for software engineering, and we

need mainstream languages that support productive and ro-
bust parallel programming in the large. In response to the
problems of parallel programming with locks, transactional
memory (TM) has been proposed as an alternative synchro-
nization mechanism. Several new parallel programming lan-
guages such X10 [12], Fortress [4], Chapel [13], and Clojure
[1], all provide transactions in-lieu of locks as the primary
concurrency control mechanism. Other research systems
have extended existing languages such as C++ [30], Java
[3], Haskell [19], and ML [31] with support for transactional
memory.

Despite the recent advances in TM research, there is lit-
tle experience using TM to develop more realistic parallel
programs from scratch. Recent discussions of TM versus
locks focused on small, mostly numerical programs or micro-
benchmarks to evaluate the worst case performance, but
none of them took into account more complex applications
and software engineering aspects such as the productivity of
programmers over a longer period of time; the time needed
for design, implementation, testing and debugging; the ease
of code understanding; or problems with the usage of paral-
lel language constructs. Other work studying the conversion
of locks programs to TM missed to shed light on the issues
encountered when parallelizing with TM from scratch [47].

There is no way around systematic empirical studies to
validate the TM approach and to give an objective answer
to whether TM applies to complex real-world programs (in-
cluding non-numerical ones) and whether TM performs well
enough for such applications. We need to extend the eval-
uation to a portfolio of advantages and disadvantages that
includes software engineering aspects.

In this paper, we present a comparative case study that
aims to validate TM’s main value proposition to make par-
allel programming easier. We aim not to study parallel pro-
gramming experts, but instead learn in great detail from
individual graduate-level student programmers tasked with
developing a parallel desktop search engine under realistic
time pressures. The study randomly assigned twelve grad-
uate students to six teams. Three of the teams had to use
locks, while the other three teams had to use TM language
constructs provided by the Intel C++ Software Transac-
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tional Memory (STM) compiler [30] – one of the most ad-
vanced STM compilers built on top of Intel’s C++ compiler.
The study was organized as a competition so that the locks
team and TM team that produced the fastest program on
a dual quad-processor machine and implemented the most
requested features won.

This paper makes the following contributions: (1) it is the
first study of its kind to compare locks to TM programming
by observing how several teams wrote a realistic application
from scratch over an extended period of time; (2) it system-
atically collects a combination of quantitative and qualita-
tive data to compare performance, hours spent on various
development phases, code metrics, ease of code understand-
ing, as well as subjective or psychological issues during im-
plementation; (3) it shows that TM is indeed a valuable
approach for parallel programming; (4) it builds up a chain
of evidence to falsify the opinions that TM does not help
building real-world parallel applications; (5) it shows that
most of the shortcomings of TM are due to the immaturity
of the TM tool chain, notably tools for debugging and per-
formance tuning. At the same time the paper shows that
TM does not solve all concurrency control problems, and
thus is not a silver bullet.

Using this study as an example, we also elaborate on a
longer term vision of empirically validated language design
that brings programmers and language designers into a loop
of empirical studies. Such feedback is essential for mak-
ing the right tradeoffs in the design of parallel constructs,
which can then be defined to avoid common mistakes and
reduce the cognitive mismatch between intuition and imple-
mentation. Moreover, such an approach reduces the risks of
providing the wrong hardware support or maintaining large
code bases written in inappropriate languages.

The paper is organized as follows. Section 2 presents an
overview of the programming models used in this study. Sec-
tion 3 describes the case study design. Section 4 shows the
experience of each student prior to the study. Section 5 pro-
vides an overview of the key case study results. The sections
that follow, provide more details: Section 6 discusses per-
formance results; Section 7 summarizes weekly interviews
showing how teams made progress; Section 8 complements
interview data with insights from a post-project question-
naire; Sections 9 and 10 discuss code metrics and insights
from code inspections of the submitted parallel search en-
gines; and Section 11 illustrates the effort in person hours
spent by each team on pre-defined categories of tasks. The
validity of the results is discussed in Section 12. Section 13
presents related work. Based on the insights of these study,
we outline future research directions in Section 14 and pro-
vide a conclusion in Section 15.

2. THE PARALLEL PROGRAMMING
MODELS IN THIS STUDY

Most programmers today use shared-memory parallel pro-
gramming techniques to programm multicore computers. Main-
stream programming languages provide constructs to create
concurrent threads of control, to synchronize concurrent ac-
cess to shared data, and to co-ordinate thread execution.
While earlier languages such as C or C++ use standard-
ized APIs (e.g., Pthreads, the Posix Threads library [10,
23]) to provide parallel programming constructs, more recent
languages like Java and C# have native language support.

Large-scale scientific, industrial, and open-source projects
mostly use C, C++, and Pthreads. We therefore pick the
Pthreads approach as representative for programming with
locks and provide a brief overview next.

2.1 Pthreads - synchronizing with locks
Pthreads is a standardized, platform independent API for

parallel programming in C and C++ [10, 23]. The pro-
gramming approach with Pthreads is very low level: pro-
grammers must manually create and manage threads, insert
locks (mutexes) for mutual exclusion, define condition vari-
ables to coordinate concurrent producer-consumer process-
ing, and manage thread-local storage.

The motivation for this style of programming is perfor-
mance, giving developers more control and reducing over-
head. This flexibility comes at a price, with well-known
pitfalls. Simplistic coarse-grain locking can result in poor
scalability due to lock contention, which can be eliminated
in several ways: Fine-grain locking associates separate locks
with individual shared data items accessed inside critical
sections so that threads that access disjoint data items can
execute in parallel. Reader-writer locks allow more than
one thread to read shared data in parallel inside critical
sections. Unfortunately, all these optimization techniques
expose a programmer to concurrency bugs, namely dead-
locks, data races, and atomicity violations (also known as
high-level data races). Moreover, incorrect use of lock-based
condition synchronization can lead to lost wake-up bugs.

In addition to risking new bugs, locks also don’t support
programming in the large very well, in which distributed
development teams build large programs out of separately-
authored software components. After optimizing the locking
inside a software component, a programmer is not guaran-
teed that the performance of the optimized component will
scale once it is composed with other components in a par-
allel program. Locks also make providing exception safety
guarantees at component boundaries more difficult; a pro-
grammer must carefully release the right locks in the right
order inside exception handlers, and avoid exposing broken
invariants to other threads and introducing data races by
releasing locks before recovering from the exceptions.

2.2 Transactional Memory
Software Transactional Memory employs atomic transac-

tions instead of locks. A programmer defines a transaction
by enclosing a set of programming language statements in
an atomic block. Such a block represents a critical section
and must contain only statements with reversible effects.
A run-time system allows threads to execute atomic blocks
concurrently while making it appear that only one thread at
a time executes within an atomic block. If a concurrently
executing transaction conflicts with another transaction, the
run-time aborts it (i.e., undoes its effects) and retries it later
on; otherwise, it commits it and makes its effects visible to
all other threads. The run-time system basically enforces the
atomicity, consistency, and isolation properties known from
database transactions [17] that now apply to programming
language statements.

TM promises to alleviate many of the challenges of parallel
programming with locks. It relieves the programmer from
low-level locking details, such as dealing with multiple locks
and complex locking protocols. It also eliminates deadlocks
due to incorrect ordering of locks. TM can make it easier

2



for programmers to recover from exceptions and errors by
providing failure atomicity. The typical approach is that
TM systems implement a rollback mechanism exposed to
the programmer via an explicit abort construct or an via
implicit rollback on uncaught exceptions.

TM also has pitfalls. It is still possible to have data races
and atomicity violations. Large transactions can hurt scala-
bility and performance. Programmers may have to optimize
their transaction-based code by shrinking the size of atomic
blocks, moving code out of atomic blocks, or breaking atomic
blocks into smaller ones. These optimizations can in turn
introduce data races in which a variable is accessed concur-
rently both inside and outside a transaction. They can also
introduce atomicity violations, exposing a broken invariant
to other threads.

Recent research on adding TM support to programming
languages has also uncovered numerous tradeoffs in language
design and in the kind of TM-related features that can be
provided to the programmer. More empirical studies and
experiments with real-world parallel programs are needed
to help assess the right tradeoffs to make, and when it is
appropriate to use TM.

Despite these potential pitfalls of TM, its proponents ar-
gue that the combination of automatic fine-grain concur-
rency control, automatic failure atomicity, and reduced po-
tential for deadlocks, all allow TM to support modular pro-
gramming in the large better than locks can. Supporters
also argue that although TM is not a parallel programming
silver bullet, it is a step in the direction of providing a much
more robust and productive concurrency control mechanism
compared to today’s locks.

2.3 The Intel STM compiler
In this paper, we use Intel’s STM compiler as a repre-

sentative implementation of the TM approach, because it is
one of the most advanced STM compilers so far. The In-
tel compiler is an industrial-strength C and C++ compiler
that has been extended with a prototype implementation of
transactional language constructs for C++ [30]. Part of the
extensions are annotations to functions and classes to mark
functions that will be called inside transactions.

The __tm_atomic keyword defines an atomic block of state-
ments. Atomic blocks can be nested, which means that the
effects of inner transactions are only visible when the outer
transaction commits. The __tm_abort statement rolls back
a transaction and reverses the effects to the state that ex-
isted on the entry to the innermost transaction enclosing
the abort statement. The __tm_callable annotation marks
functions that can be called inside transactions and instructs
the compiler to generate a transactional clone with the nec-
essary instrumentation on shared memory accesses. The in-
strumentation calls into the STM run-time, which tracks
conflicts between transactions. On detecting a conflict, the
run-time rolls back the effects of a transaction and retries it.
The __tm_pure annotation marks functions that the com-
piler does not need to instrument; it’s the programmer’s re-
sponsibility to make sure that such functions can be called
inside transactions without instrumentation.

The TM teams were allowed to use only Pthreads in com-
bination with the TM extensions so that they could cre-
ate and manage threads. It is technically possible to use
locks, semaphores, and condition variables in combination
with transactions, and students were allowed to do so.

3. CASE STUDY DESIGN
This study aims to compare parallel programming with

Transactional Memory to parallel programming with locks
for a non-trivial parallel program with realistic features, cre-
ated over an extended period of time by different program-
ming teams. As subjects, the study uses twelve full-time
graduate students in a software engineering lab. The stu-
dents all had Bachelor-equivalent degrees in computer sci-
ence and were pursuing Master’s degrees in computer sci-
ence. The study compares the code, performance, errors,
and programming effort of a desktop search engine pro-
gram. In addition, we study how students use the features
of the programming models, how they make progress, and
which technical or non-technical problems they encounter.
By comparing the results, we provide new insights, help as-
sess the real advantages and disadvantages of Transactional
Memory, and derive empirically grounded directions for fu-
ture research.

We followed the recommendations made in [44, 45] in the
manner in which we planned the case study collected data,
introduced randomization on how subjects are assigned to
teams or programming methods, and triangulated data from
multiple sources of evidence. This is the first case study on
TM to do so in a systematic way.

Two instructors conducted this study as part of a multi-
core software engineering lab at the University of Karlsruhe,
Germany. The lab consisted of a teaching part and a project
part. The prerequisites of the lab already filtered out stu-
dents with inappropriate skills. Twelve students who met
the prerequisites and registered for the class were admitted
to the study. The students agreed to the usage of their re-
sults for research purposes. We assigned a unique number to
each student, which we use in the presentation of the data
(e.g., experience profiles and questionnaire answers).

3.1 Choice of application
The subjects were given the task of writing a parallel desk-

top search engine from scratch in C or C++. We chose this
application for several reasons: First, the application is use-
ful in everyday life so we can easily describe its functionality
and measure its performance on commodity multicore com-
puters. Second, it can take advantage of parallelism in sev-
eral ways; for example, indexing and querying can execute
concurrently to improve responsiveness, and at the same,
they can each take advantage of multiple cores to improve
their performance. Third, it exemplifies a non-trivial appli-
cation; dealing with parallel programming on a larger scale
and over a longer period of time makes it more likely to re-
veal existing software engineering problems with parallelism.
Finally, in contrast to existing Transactional Memory eval-
uations (described in Section 13), it does not concentrate
entirely on numerical computation.

We conducted a feasibility study prior to the lab to ensure
that this application can be parallelized and implemented,
given the environment, tools, and amount of time.

3.2 The competition
To simulate a real-world industry scenario, we structured

the project as a competition between the teams to build an
error-free search engine with the best indexing and query
performance. We allowed the teams to use any data struc-
tures that they wanted. To be even more realistic, we al-
lowed them to reuse any library or open-source code from
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the Web. As an award, we promised the winning teams an
official certificate of achievement. Section 6 presents the file
benchmark, the multicore machine measurement setup, and
the performance of the submitted search engines. As later
sections show, the competition led to different approaches,
data structures, and source codes as the teams had no in-
centive to collaborate with each other.

Each team had a single-socket four-core Intel machine and
shared access to a dual-socket eight-core machine, which was
used for benchmarking (Section 6.1). The teams coordinated
access for performance tests on the eight-core machine, thus
eliminating workload interference.

3.3 Desktop search engine requirements
Every team developed a desktop search engine based on

the following requirements:
Indexing: The search engine works on text files only.

It starts crawling in a pre-defined directory and recursively
in all subdirectories. The index does not have to persist
on disk. Different strategies for index creation may be em-
ployed (e.g., division into several sub-indices). All non-
alphanumeric characters (i.e., not a-z, 0-9, ä, ö, ü, or ß)
are treated as word separators. Case and hyphens between
words are ignored. A progress indicator for indexing must
show bytes and files processed so far, words found so far, and
the number of words in the index. The number of indexing
threads must be configurable via a command line parameter.

Search: The search must allow different types of queries:
(1) queries for coherent text passages (e.g., “ “this is a test”);
(2) queries with wildcard at the beginning or the end of a
word (e.g.,“hou*” or “*pa”); (3) queries containing several
words, representing AND concatenation (e.g., “tree house
garden”); (4) queries with word exclusion (e.g., “-fruit”). It
must be allowed to execute one query while indexing is still
in progress, but it is not required that more than one query
at a time works in parallel. It was up to the students to de-
cide whether to parallelize each query; the number of query
threads was not required to be configurable from the com-
mand line, but the students had to provide a reasonable
default for the benchmarking. We assume that the files to

be indexed do not change while the desktop search engine
executes. In addition, no files are deleted and no new files
are added. Features that are not required are an “OR” op-
erator in queries, stemming or word similarity search, and
regular expressions for search queries.

Input/Output: Files for which the query is true must
be output in a sorted order according to a primary and sec-
ondary criterion: (1) the sum of occurrences of all query
words; the sum is needed if several criteria exist, such as
in AND queries; and (2) alphabetically by file name. The
default output of a query consists of the first 50 paths and
files sorted as mentioned before, the total number of files
matching a query, and the query time. The program (or
the programs for indexing and search, if implemented sep-
arately) should be callable from the command line. For in-
dexing, a parameter must be defined to set the number of
indexing threads. This may, but need not be implemented
in a similar way for search.

3.4 Schedule
Figure 1 shows the lab schedule. The lab lasted one fif-

teen week semester during which the whole class met once a
week. In the first class session, we randomly created teams
of two students to allow students to socialize and get to
know each other prior to the project work. We also told the
students that they would later program a parallel desktop
search engine in C or C++ (without disclosing detailed re-
quirements), and we gave them two survey articles [46, 26]
about the basics of and state-of-the-art in text indexing and
retrieval.

To make sure every student starts with same baseline
knowledge prior to the project, the first three classes taught
the theory of parallel programming and the basics of parallel
programming in C/C++ using Pthreads and Transactional
Memory. All students learned to use Intel’s Software Trans-
actional Memory C Compiler v. 2.0. The classes also cov-
ered the tools for debugging, profiling, and version control.
At the end of each class, the students received pointers to
documentation containing additional information.

During the first three weeks of the lab, each student had to

Case study schedule

Oct 20, 2008 • Start of lab 2 Nov 17, 2008     Meeting and work in class, team interviews

• Random creation of teams of two students 3 Nov 24, 2008     Meeting and work in class, team interviews

• Distribution of surveys on text search engine technology 4 Dec 01, 2008     Meeting and work in class, team interviews

• Teaching session 1 (parallel programming, Pthreads) 5 Dec 08, 2008     Meeting and work in class, team interviews

• Distribution of assignment sheet 1 (Pthreads) 6 Dec 15, 2008     Meeting and work in class, team interviews

Oct 27, 2008 • Discussion of assignment sheet 1 7 Dec 22, 2008     Meeting and work in class, team interviews

• Teaching session 2 (tools, concepts, demos: programming 8 Jan 12, 2009    Meeting and work in class, team interviews

   and debugging with Eclipse CDT, profiling with 9 Jan 19, 2009     Initial deadline for project submission

sweivretni maet ,ssalc ni krow dna gniteeM     ,dnirgehcac ,dnirgllac ,dnirglav ,forpk/forpg   

   version control with Subversion) 10 Jan 26, 2009    Deadline for project submission; team interviews

• Distribution of assignment sheet 2 (debugging Feb 02, 2009 • End of project

  and profiling) • Team presentations

Nov 03, 2008 • Discussion of assignment sheet 2

• Teaching session 3 (concepts of Transactional Memory, Feb 09, 2009 • Disclosure of winning teams

snoissucsid laniF •)relipmoC MTS letnI   

• Distribution of assignment sheet 3 (Transactional Memory) • End of lab

Nov 10, 2008 • Discussion of assignment sheet 3

• Start of project

 • Introduction of project, discussion of requirements

 • Random assignment of teams to use locks or TM

Teaching part (same for all students, individual assignments) Practical part (teamwork in a locks team or TM team)

Figure 1: Laboratory and project schedule.
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solve individually practical exercises in each area. This was
an opportunity to teach the necessary C/C++ programming
language skills as well. All students passed all assignments,
showing that they all reached a comparable level of expe-
rience prior to the project. Class discussions intended to
bring all students to the same level.

In the fourth week, we introduced the detailed require-
ments for the search engine (Section 3.3), and we randomly
assigned three teams to use only Pthreads and assigned the
other three teams to use Pthreads and TM. The TM teams
needed Pthreads because Intel’s STM compiler did not have
native language constructs for thread creation. The TM
teams could thus use a superset of language constructs, in-
cluding locks, semaphores, and condition variables.

The project lasted ten weeks not counting a two week va-
cation (Christmas and New Year’s Eve). Students worked
at home and during weekly meetings in class. We extended
the initial submission deadline by one week due to requests
from all teams. In the last two weeks, all teams presented
their approach, and the class discussed the final results. The
instructors carried out the performance measurements deter-
mining the winning teams.

3.5 Sources of evidence
Throughout this study, we followed the recommendations

of [44, 45, 34] and used several sources of qualitative and
quantitative evidence:

• Project-related diaries that all teams had to write. The
teams used the diaries to take notes, track progress, ex-
plain ideas and successful or unsuccessful approaches,
document technical or non-technical problems, and cap-
ture events that had an impact on the work.

• A final report about each team’s search engine. Each
team had to write a final report that put together the
information from their diaries, as well as explaining
their architecture, implementation, and performance
results.

• Slides of the team presentations after completion of
the project.

• A time report sheet capturing effort on a daily basis.
All teams logged their hours on this sheet, split ac-
cording to predefined task categories.

• Notes from the weekly interviews. The instructors
kept detailed notes from semi-structured interviews
[34] conducted during weekly class meetings.

• A post-project questionnaire, filled out individually by
each student.

• The source code produced by each team.

• The subversion repository that all teams were required
to use. We used the code revisions, check-in dates, and
log messages to study the code development over time.

• Personal observations of instructors.

4. TEAM EXPERIENCE PRIOR TO STUDY
Figure 2 shows the experience profile of all teams prior

to the study. Each axis shows the years of experience with
programming languages, libraries, parallel programming ap-
proaches, tools, and operating systems. The “Semester” axis
shows the number of semesters the student has been enrolled
in the University since high school. We also collected pro-
ficiency data, but this data did not appear to provide any
more insight than the experience data, so we omit it.

It is valuable for a case study to observe and compare the
performance of teams that have a wide variety of experi-
ences. The profiles show that some teams have less overall
experience than others; for example, team 2 has less expe-
rience than team 3 or team 6. Most teams have Java expe-
rience but little C++ experience most likely because of the
University curriculum.

Additional data not shown in Figure 2 shows that almost
all of the students completed a software engineering course
prior to this study, except for student 4 (team 2), and stu-
dents 7 and 8 (both in team 4). All teams except team 6 had
one member with course experience on parallelism. Half of
the students took a course on parallelism; in particular, the
following students: 1 and 2 (both in team 1), 4 (team 2), 6
(team 3), 7 (team 4), and 9 (team 5).

Students in two of the locks teams (team 1 and 5) and two
of the TM teams (team 3 and 6) had industry experience. In
team 1, student 1 had one year of experience with the Win-
dows DirectSound library and with programming graphical
environments using Motif and Qt under Linux. Both mem-
bers in team 5 had industry experience: student 9 worked six
months in Web development, and her team-mate (student
10) worked for an undisclosed amount of time as a program-
mer for several companies. Among the TM teams, team 3
had student 5 with five years of support experience for Mi-
crosoft server technologies. He also developed an Xbox game
on .NET and worked as a freelance consultant for C#. Also
in team 3, student 6 worked part-time for seven years as a
system administrator and programmer. Finally, both mem-
bers in team 6 worked for companies: Student 11 worked for
five months as a Java programmer and for ten months as a
Web programmer. His team-mate (student 12) worked for
four years as a software developer.

Looking at each student’s experience, one would predict
that team 3 would win the competition among the TM
teams. Yet this team did not win and actually ended up un-
derestimating the complexities of implementing the queries.
They are also the ones that procrastinated parallelization
until the very end.

5. KEY CASE STUDY RESULTS
The study shows in the given setting that TM was in-

deed applicable to a more complex, non-numerical program.
TM program performance was good compared to the locks
teams, but still an important issue. TM was combined in one
case with semaphores for producer-consumer coordination,
and in another case with a lock to protect a critical section
that performed many I/O operations. This is an important
insight because TM and locks were used as complementary
approaches, not as alternatives excluding each other. The
results showed that TM needs better mechanisms for coor-
dination and better handle I/O, and that a combination of
TM with locks is promising.
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Figure 2: Team experience prior to study. Each chart represents a team, and each line represents years of
experience for a student.

The first team to have an acceptably working parallel
search engine was the winning TM team at the beginning of
the fifth project week; the locks winners had similar func-
tionality in the ninth week. By the end of the project nei-
ther winning team had completed all queries. Locks team
1 was the only team to have implemented all queries, but
they had the worst indexing performance. Compared to the
locks winners, the TM winners had three fewer queries, but
were faster on indexing and nine of their queries.

Locks teams spent more time on debugging due to seg-
mentation faults than TM teams. TM teams, however, spent
more time on performance-related issues than locks teams.

The parallel programs of TM teams were easier to under-
stand, according to code inspections done jointly with Intel
compiler experts. Although all teams implemented similar
program functionality, all TM teams used fewer parallel con-
structs than the locks teams. Locks teams tended to have
more complex parallel programs by employing many locks,
sometimes thousands of locks due to the indexing data struc-
ture. Most teams, and in particular the winning teams, had
races that were detected after the project by code inspection.

We detected differences in how teams perceived their pro-
gress by comparing subjective data from the questionnaire
and interviews with objective data from the code and time
report sheets. The winning TM team thought that they
were not advancing fast enough because they had to use
transactions, but at the same time they had the first working
parallel program and least effort of all teams. By contrast,
locks teams subjectively believed to make good progress but

actually needed more effort.
The study also shows that TM is not a silver bullet for

parallel programming. The most inexperienced team using
TM did not produce a working program; parallel program-
ming remains difficult.

6. PERFORMANCE MEASUREMENTS
As shown in Figures 3 and 4, our indexing and query

performance measurements of the submitted search engines
contrast the literature that overgeneralizes that Software
Transactional Memory performs poorly [11]. The team with
the best indexing performance was a TM team. For nine
out of eighteen queries, the best results were achieved by a
TM team.

Team 6 (TM) had the best indexing performance of all
teams, completing our benchmark in 178 seconds. Com-
pared to the fastest locks team on indexing (team 4) that
finished in 532 seconds, TM was three times faster. For 9
out of 18 types of queries, TM teams had the best execu-
tion times; they were 13%–95% lower than the fastest locks
team. The locks teams outperformed the TM teams on the
other queries by orders of magnitude.

Except for the most inexperienced team 2 (TM), all teams
had executable parallel programs at the final deadline. No
search engine was perfect, however, as all implementations
had either missing or incorrectly working queries (which
were not counted in the competition). The number of work-
ing queries was the only significant difference in feature com-
pleteness, and we use it as a metric for comparison. The
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Figure 3: Indexing performance depending on the number of indexing threads.

Query type

1 one frequent word

2 one rare word

3 one random word

4 frequent text passage (2 words)

5 rare text passage (2 words)

6 frequent text passage (3 words)

7 rare text passage (3 words)

8 wildcard frequent (word*)

9 wildcard rare (word*)

10 wildcard frequent (*word)

11 wildcard rare (*word)

12 AND frequent (2 words)

13 AND rare (2 words)

14 AND frequent (3 words)

15 AND rare (3 words)

16 exclusion (1 frequent word)

17 exclusion (1 rare word)

18 AND four characters with wildcards
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Figure 4: Query performance for different types of queries, excluding queries that were not implemented or
that produced incorrect results.

locks teams had more feature complete parallel programs:
out of 18 queries, they implemented 18 (team 1), 17 (team
5), 10 (team 4), while TM teams implemented 14 (team 6),
4 (team 3), and 0 (team 2).

6.1 Measurement methodology
Performance measurements were done on a Dell eight core

machine with a dual-socket Intel Quadcore E5320 QC pro-
cessor, clocked at 1.86 GHz, with 8 GB of RAM, and run-
ning Ubuntu Linux 2.6. All source codes were compiled
with Intel’s C compiler, using STM extensions for Transac-
tional Memory teams. All source codes were inspected to
ensure that they measure execution time in the same way;
“printf” statements within time measurement blocks were
commented out. In the following graphs, each point rep-
resents the average of five measurements. Only results of
correctly working features are shown. To ensure compara-
bility, all measurements were carried out by instructors.

Figure 5 shows the input file set used to benchmark per-
formance in the competition. The benchmark consists of
directories containing a diverse selection of ASCII text files.
It includes the Calgary Text Compression Corpus (which is
used to evaluate compression programs [42]), one big text

file, four larger files, and many small files.
The program of team 2 had memory consumption prob-

lems and did not work with the specified file benchmark.
The team was too inexperienced to fix the relevant before
the deadline. Consequently, they were excluded from the
competition.

subfolder)

enwiki_simple

72 subfolders)

(60.5 MB)

de_wiki_part

18 subfolders)

large
(4 files; 170.8 MB)

50,887 files

742.2 MB

Figure 5: Benchmark used to evaluate the desktop
search engines.
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6.2 Indexing performance
Figure 3 shows the execution times for indexing; the mea-

surements for the last three numbers of indexing threads
on the x axis have a logarithmic scale in order to show
the general behavior of execution times for larger numbers
of threads. All teams provided a configurable command
line parameter to specify the number of indexing threads,
and only this parameter was varied when measuring per-
formance. Some teams also had other command line pa-
rameters, for which they provided fixed values they thought
were best. No queries were executed during performance
measurements for indexing, and the machine was used ex-
clusively.

Team 1 (locks) has the worst indexing performance. The
best execution time of 1055s is reached at 3 threads. In-
dexing performance does not scale well with more threads.
As the variance in execution time skews the graphs of the
other teams, we present a more detailed chart on the right
of Figure 3.

Team 6 (TM) achieves the best performance. Although
their performance appears to be flat on the left of Figure 3, a
typical bath tub form is revealed on the right. Already with
single thread execution, their program is the fastest at 326s.
Their execution time continues to improve with additional
threads until 7 threads (178s), which is the point at which
the total number of indexer threads plus the one crawler
thread equals the total number of cores. This is the kind
of scalable behavior that is generally desirable in parallel
programming. At seven threads, they are faster by a factor
of 1.8 over a single thread. We remark that reducing the
execution time of a fast program can be more difficult than
reducing the execution time of a very slow program (such
as that of team 1) due to the impact of additional parallel
overhead that has to pay off.

The performance graph of team 3 (TM) has a similar
shape as that of team 6. However, it is shifted towards a
less favorable execution time. The program did not seem to
work with 64 indexer threads. This team achieves the best
execution time of 629s with 6 threads.

Team 5’s (locks) program did not work with less than 4
threads. The best execution time of 605s is reached with 4
threads, but using more threads harms performance. The
performance of team 5’s program therefore does not scale
with an increasing number of threads.

Team 4’s (locks) program has the best indexing perfor-
mance of all locks teams, achieving the best time of 532s
with 6 threads. This team is the only locks team whose in-
dexing performance scales with the number of threads. As
we see in later code inspections, this team used over 1600
locks.

We make an important observation for indexing perfor-
mance: the best locks team (4) is just 97s faster than the
worst TM team (3), and the difference between the best
locks team and best TM team (6) is 354s.

6.3 Query performance
Figure 4 compares the execution times of 18 different

queries, each testing a particular type of query. Query threads
are not configurable from the command line because of the
underlying strategies, which differ widely; for example, some
teams did not parallelize queries while others derived the
number of threads from the number of words in a query.
We only show results for queries that were implemented and

produced correct results. Out of 18 queries this is true for
the following number of queries: team 1 (18), team 5 (17),
team 6 (14), team 4 (10), team 3(4), team 2 (0).

Team 1 (locks) is the only team to have all queries work-
ing, but often with bad performance. As will be explained
later, they spawn too many threads and have bottlenecks
due to locks. Team 4 (locks) has the worst performance of
all teams for wildcard queries. Team 5 (locks) has the worst
query result of all teams for rare text passage search with
three words, but at the same time the best performance of
all teams for searching one rare word.

Team 6 (TM) has 14 queries working, often with better
performance than some of the locks teams. Team 3 (TM)
has just 4. They reported in an interview that they under-
estimated the complexity to implement queries and ran out
of time; however, in three cases they are faster than team 6
and faster than most locks teams.

6.4 Team rankings
The competition aimed to motivate the teams. At the

start of the competition, the teams knew their ranking cri-
teria and had the input data set. The ranking criteria used
a scoring model that assigned an equal weight to indexing
and querying performance. We did this to make sure that
the teams optimized the performance of both indexing and
querying, rather than optimizing one feature at the expense
of the other. The ranking also excludes results from incor-
rectly implemented queries. Team 2 is excluded because the
program did not run on the benchmark. We use the inverse
of execution times to obtain a score in which higher numbers
are better.

Ranks for indexing: We multiply the inverse of the
minimum execution time of every team (according to the
graph in Figure 3) by 0.5. The team with the highest score
is ranked first.

Indexing Locks TM
Rank 1 2 3 1 2 3
Team 4 5 1 6 3 –

Ranks for queries: For all implemented queries that
produced correct results, we multiply the inverse of their
execution times by 0.5/18 and sum up. The team with the
highest score is ranked first.

Queries Locks TM
Rank 1 2 3 1 2 3
Team 5 4 1 3 6 –

Final ranks: Because of differing orders of magnitude,
we multiply the scores of indexing and query to obtain the
final score. This approach intentionally favors a team that
might have fewer but faster queries than other teams.

Final ranks Locks TM
Rank 1 2 3 1 2 3
Team 5 4 1 6 3 –

Who won the competition?.
According to the final ranking, team 5 (locks) and team

6 (TM) won the competition.
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7. INTERVIEW RESULTS
During the weekly class meetings, the instructors inter-

viewed each team for fifteen minutes. Tables 1 and 2 sum-
marize the interviews starting on December 1, the fourth
week of the project. We omit irrelevant information from
earlier weeks in which no significant progress was made and
mainly focus on parallelism issues.

These interviews allow us to track the progress of each
team and give us insights into what the students perceived
as the most important issues. The interviews were semi-
structured [34], asking open-ended questions about current
status, problems, and plans, without requiring any particu-
lar format in the response. The students were free to present
any issues they felt were relevant. The instructors were care-
ful not to influence design decisions or plans; for example,
we avoided giving feedback or judging their comments, in-
stead encouraging students to experiment and find out by
themselves. In the last two class meetings, after the project
ended, the class as a whole openly discussed and analyzed
the different approaches.

Team 6, the TM winners, were the first team to demon-
strate parallel indexing and querying on the benchmark data.
In contrast, team 5 (the winning locks team) demonstrated
similar functionality four weeks later. The locks teams be-
gan parallelization earlier than the TM teams; two of the
TM teams delayed parallelization and instead focused on
sequential programming.

During the interviews the teams also described what they
read. Team 4 (locks) read library-related documentations as
they intended to reuse code. Team 5 (locks) researched the
literature to find an appropriate index data structure and
studied Burst Tries [20]. All TM teams read the Transac-
tional Memory related documentation of Intel’s STM com-
piler [24]. Team 6 read survey papers [46, 26] and studied
chapters from an information retrieval book [8]. Team 3 read
library-related documentations for a B-tree library, but they
eventually decided to build their own.

7.1 Interviews with locks teams
In the fourth week, team 4 was the first among all the

teams to elaborate their thoughts on parallelization. By
contrast, the parallelization strategies of team 1 were more
vague, but they started smaller experiments in the fifth week
to find out how to place locks in the indexing data structure.
Team 5 did not have a parallel indexer until the sixth week;
they spent a lot of time discussing the choice of data struc-
tures.

In the eighth week, one week before the original deadline,
all locks teams had parallel implementations, but none of
them could show a full demonstration. Team 1 did not have
a file crawler, team 4 was debugging unexpected behaviors
in their program, and team 5 had not tried out their pro-
gram on the benchmark data. All teams had problems with
performance, missing features, or bugs, which they tried to
address as much as possible, but ran out of time before the
original deadline of week nine.

In the ninth week, the original deadline of the project, all
teams had running search engines, but two of them appeared
experimental: team 1’s program was unstable, and team 4’s
had segmentation faults. Team 5 focused on performance
testing, but in the following week they found a bug.

By the end of the project in the tenth week (January 26),
team 1 had run out of time and skipped performance tests,

team 4 was not finished with performance tests, and team 5
had discovered a concurrency bug that they were trying to
fix before submission.

7.2 Interviews with Transactional Memory
teams

By the fourth week, team 6 was only team to have thought
about parallelization. In the beginning of the fifth week,
team 6 was the first among all six teams in the study to
show an advanced demo of a parallel search engine. Having
attacked parallelization early, they had also overcome their
initial difficulties on how and where to apply TM constructs.
In contrast, in the fifth week, team 2 and team 3 had no clear
ideas on how to parallelize.

In the eighth week, one week before the original deadline,
team 2 had just a serial program, team 3 had an incomplete
parallel indexer and no queries working, while team 6 had a
full-fledged working demo.

In the ninth week, the original deadline of the project,
team 2 was still incomplete, team 3 had a running, but buggy
parallel program with bad performance, and team 6 fixed
many bugs in their search engine.

By the end of the project in the tenth week (January 26),
team 2’s program failed on the final benchmark, team 3
had parallel indexing and queries working with reasonable
performance, and team 6 had an even more improved search
engine.

Team 2 and team 3 procrastinated parallelization due to
various reasons. The main reason for team 2 was their lack
of experience. Both students were hesitant and insecure,
especially during implementation. Team 3 procrastinated
parallelization because they wanted to have a more or less
perfect sequential program as a basis on which to introduce
transactions. Despite being the most experienced team in
the study, they thought that query implementation would
be trivial and underestimated its complexity.

All TM teams reported that it was difficult to find out
where and how to apply atomic blocks and TM function
annotations in a larger code base. In addition, TM perfor-
mance was hard to predict. We need tools to simplify these
tasks.

8. QUESTIONNAIRE RESULTS
Each student individually answered a questionnaire after

the end of the project. The questionnaire captures in a
structured way student ratings on different aspects of work-
ing strategy, design, implementation, testing and debugging,
and the usage of parallel constructs. Figures 19 and 20 in
Appendix C show the questions and answers.

We interpret the response of each student individually
rather than a roll-up of the responses, as there is not enough
data to make conclusions from aggregates. This allows us to
put each student response in the context of other data from
that same student. We highlight only the data that clearly
indicates a pattern.

8.1 Work strategy
Looking at Figure 19 (a), all students understood the as-

signment and rated it easy to understand with average com-
plexity (i.e., neither easy nor complex). All students found
it difficult to create a working plan at the beginning of the
project, except for TM team 3 and one student in locks
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Day

(proj.

week)

Locks teams interview results

Dec
1
(4)

• Team 1: The team discussed the index design and the placement of locks, but did not have any code running yet.

• Team 4: The team finished a sequential indexer and assessed its performance. They were the first team to elaborate thoughts on

how threads might traverse the index in parallel.

• Team 5: The team did not have a running program yet. The team discussed indexing strategies and data structures choices, but

had no code running.

Dec
8
(5)

• Team 1: The team assessed two prototypes for parallel indexing in various experiments. First, they used one global mutex, which

yielded bad performance. Then, they decided to go for several independently locked sub-indexes.

• Team 4: The team implemented a rudimentary parallel indexer.

• Team 5: The team had implemented a sequential prototype with an index structure, and they were testing the performance. They

had a customized, small benchmark that was unrelated to the competition benchmark.

Dec
15
(6)

• Team 1: The team had a prototype of parallel indexing and parallel queries working, but the prototype had performance problems.

The file crawler – a key component for indexing – was not implemented, but just simulated because the responsible team-mate did

not finish. The team was evaluating the index structure based on the prototype.

• Team 4: Parallel indexing worked. Queries could be executed while indexing was in progress.

• Team 5: Parallel indexing worked. Queries were implemented in a rudimentary way.

Dec
22
(7)

• Team 1: Parallel indexing and parallel queries still worked with the simulated file crawler. They were working on query result

ranking but were not finished yet.

• Team 4: Both students mentioned that they were used to Java programming in the past. They were missing comparable approaches

in C, such as code structuring with packages or having classes in independent files. They had a lot of code in their header files, not

in the corresponding .c files. Despite knowing how to do it right, they didn’t make any attempts to change their code.

• Team 5: The team showed how they used the Linux system monitor for performance testing and debugging. There was not much

other progress to see.

Jan
12
(8)

• Team 1: The team had finished all components except the file crawler, but they hadn’t tested it yet on the real benchmark, because

the team member responsible for the file crawler hadn’t finished.

• Team 4: Although parallel indexing and search seemed to had worked in the past, the team suddenly found out that they had

problems compiling their code on other machines.

• Team 5: Parallel indexing and parallel search worked, but the team did performance tests only on a subset of the competition

benchmark.

Jan
19
(9)

• Team 1: The team finished implementing the file crawler, and parallel indexing and parallel queries worked. Their version was

sometimes unstable, and needed more testing and debugging.

• Team 4: Parallel indexing parallel queries worked. The team fixed segmentation faults and did performance tests.

• Team 5: Parallel indexing and queries worked. The team continued with performance testing.

Jan
26
(10)

• Team 1: The team still had not tested performance on the given benchmark.

• Team 4: The team was about to test performance on the given benchmark.

• Team 5: The team was about to fix a bug with the file statistics update of their indexer.

Table 1: Summary of locks teams interviews.

team 1, who said it was easy. In every team, one student
replied to have done most of the work, while his team mate
said the opposite; these responses matched the instructor’s
perception.

In all teams, one student perceived the planning horizon
differently than the team mate: In all of the locks teams the
student that did most of the work felt that decisions were
made spontaneously, without planning ahead. This is also
true for TM team 3. All of the students in the other TM
teams planned one to seven days ahead. All teams perceived
the same time pressure except during the testing phase, in
which the TM teams felt more pressure than the locks teams.

8.2 Design
Looking at Figure 19 (b), all teams thought that in the

design process it was not difficult to identify the places for
parallelization. Students who did most of the work in the
winning locks and winning TM team thought it was unim-
portant to know during the design phase whether they would
use locks or TM in the implementation, whereas their team
mates thought it was very important. Interestingly, both

members of team 2, the most inexperienced team in the
study, felt that this information was very important.

8.3 Implementation
Looking at Figure 19 (c), all teams felt it was important

to get to the first executable parallel program quickly. Team
6, the TM winners, were the only team in which both stu-
dents agreed that it was very important to get quickly to
the first executable parallel program. This matches the way
in which they actually implemented features. Similarly for
team 4, the locks team that started earliest on paralleliza-
tion. Team 2 also agreed it was important to get to the
first executable parallel program quickly, yet they procras-
tinated parallelization. Interestingly, team 5 (the winning
locks team) ranked the importance of early parallelization
lower than the other teams, consistent with the interview
results showing that early parallelization was not their pri-
ority.

The team mates who did less of the work in the winning
teams (locks and TM) were the only ones to report using par-
allel constructs from the first lines of code; all other students
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Day

(proj.

week)

TM teams interview results

Dec
1
(4)

• Team 2: The team discussed design alternatives.

• Team 3: The team was about to implement their index data structure and planned to have an executable version in the next 1–2

weeks.

• Team 6: A rudimentary indexer worked, but they did no performance tests. They had problems understanding TM constructs and

how to apply them in their code. The design of their search engine was not yet clear, but it seemed they had worked heavily on their

piece of paper.

Dec
8
(5)

• Team 2: The team was about to test a first sequential indexer. So far, they had not thought about how to make it work in parallel

or how to use TM.

• Team 3: The team had two sequential modules of their program but no thoughts so far on how to parallelize with TM. The

main work was on index reading and writing operations. The team planned to have a first parallel version at the end of December

(eventually, they missed this deadline).

• Team 6: Parallel indexing worked in an acceptable way and the team was already doing performance tests on the final benchmark.

This was the first team of all to achieve this level in the fifth week of the project. Problems with segmentation faults appeared. As

no appropriate thread-safe libraries were available, they decided to implement a lot of low-level functions by themselves.

Dec
15
(6)

• Team 2: The team’s entire code was sequential and incomplete. They had no new thoughts on parallelism or TM. Many of

their ideas were not well-developed. They planned to parallelize their program the following week. They were worried about the

performance of their sequential program and hoped that parallelism would make it faster. The memory consumption of their program

began to grow.

• Team 3: The team’s entire code was still sequential. Neither of them had thought of parallelism or transactions yet.

• Team 6: The team’s parallel indexing worked. A rudimentary query could execute while indexing was in progress.

Dec
22
(7)

• Team 2: The team had made some unsuccessful parallelization attempts. The team had problems interpreting compiler errors,

due to their lack of experience. They tested their program with just one of the files from the benchmark. They had memory leaks

they couldn’t find.

• Team 3: The team evaluated the TM annotations for functions on the their index. Part of the sequential code for insertions had

to be restructured. They developed a strategy to minimize transaction overhead. Search was not implemented yet; they assumed it

was trivial, though in the end almost no query worked (see Figure 4). The STM compiler crashed due to a known bug when statistics

were turned on.

• Team 6: The team finished implementing their thread-safe library functions. Both students mentioned that they occasionally

forgot to enclose code by atomic blocks, but that they fixed these errors.

Jan
12
(8)

• Team 2: Indexing worked just in serial mode. The team had procrastinated much of the parallelization work. The few parallelization

attempts were superficial. They got compiler warnings that several functions did not have the tm callable attribute. The memory

leak was still there. Only one word could be used in a query.

• Team 3: The team had not yet finished parallel indexing. No performance tests had yet been done. Queries did not work yet.

• Team 6: The team showed a full-fledged working demo of parallel indexing and search. They used compiler statistics (such as

#TMaborts, #TMretries, etc.) for performance optimization. The students show that they used advanced tuning concepts by deriving

performance-relevant parameters from the number of indexing threads.

Jan
19
(9)

• Team 2: The team reported that parallel indexing and queries were almost finished. Queries allowed just the inclusion or exclusion

of one word, however. A segmentation fault was fixed.

• Team 3: The team’s indexing and queries worked in parallel, but were not error-free. The program performance was still bad. Too

much of the code was enclosed by atomic blocks. They started a lot of non-trivial refactoring to shrink the size of atomic blocks.

• Team 6: The team fixed a segmentation fault and many bugs.

Jan
26
(10)

• Team 2: The team’s indexing did not work for the competition benchmark, due to the memory leak they did not fix. Turning on

compiler optimizations caused segmentation faults, which was a bug in the compiler.

• Team 3: The team’s parallel indexing and queries worked. Turning on compiler optimizations caused segmentation faults. The

frustrated team said that TM did not really relieve them from their problems, but just shifted them to transactions. They had

problems understanding the performance overhead of tm atomic blocks; they were more expensive than expected.

• Team 6: The team’s search engine was complete. They used TM frequently, but the team said it was difficult and tedious to find

the places where to employ the tm callable function annotation.

Table 2: Summary of interviews with TM teams.

report employing parallel constructs no later than after im-
plementing a few features. The predominant implementa-
tion strategy was to first implement a few features and then
add parallel constructs.

Except for the inexperienced team 2, who had to rethink
their design once, the TM teams did not have to rethink their
design during implementation. By contrast, the winning
locks team (team 5), had to rethink their design between

one and three times.
The students who did most of the work in TM teams

3 and 6 perceived that in comparison to the performance
of the first executable parallel program (which performed
as expected) the performance of the final parallel program
was below expectations. This reflects the problems of un-
derstanding the performance of atomic blocks and tuning
TM programs, which they reported in their interviews, and
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points to the need for better performance analysis tools for
TM.

According to the students, tools were hardly used. All
students used the Eclipse [15] environment. In addition, TM
teams’s students 4 and 5 used the memcheck program from
the valgrind tool suite [40]; student 6 used graphviz [16], and
student 12 just made an unspecific remark to having used
profilers. The locks team’s students 9 and 10 used the Linux
system monitor for performance tuning.

8.3.1 Psychological issues
Figure 19 (d) shows the questions aimed to uncover psy-

chological problems of parallel programming. In particular,
the questions address cognitive issues related to program
understanding of parallel programs, fear of applying paral-
lel constructs, procrastination of parallelization work, and
backtracking to earlier stages of the project.

TM teams found it more difficult than locks teams to keep
track what their parallel program was doing. This may be
due to the lack of TM debugging tools and shows that pro-
grammers indeed need additional aid for TM program un-
derstanding and debugging.

Team 6, the TM winners, never felt afraid of destroying
a working version of their parallel program using parallel
constructs. Except for student 5 in TM team 3 who reported
not doing most of the work in his team, all students in the
TM teams were not afraid of destroying their program by
using additional parallel constructs. By contrast, the locks
teams had a wider range of replies, implying that they were
more afraid than the TM teams. The two students (2 and 5)
that were most afraid of destroying their programs by using
additional parallel constructs were the ones who did not do
most of the work.

Team 5, the winning locks team, said they never tried
to postpone parallelization work, though they were not the
first locks team to have a parallel program; by contrast,
the winning TM team tried to postpone parallelization work
more often than all locks teams, yet were the first to have a
working parallel prototype.

TM team 2, one of the most inexperienced teams, was
the only team whose members both report that they had
to backtrack 2–3 times to earlier stages of their project and
start over.

8.4 Testing and debugging
Figure 20 (a) presents the questionnaire results on testing

and debugging. From this figure, we highlight only the data
that clearly indicates a pattern.

The TM teams report more frequently than the locks
teams running into errors that they could not diagnose; this
matches earlier interview observations. TM teams report ex-
periencing fewer deadlocks than the locks teams. The TM
teams in general report difficulty understanding the ordering
of parallel events in their program. Both members of TM
team 3, one of the most experienced teams in the study, said
it was very difficult to understand such ordering during de-
bugging, yet they do not report running into any significant
ordering errors. This is more evidence that we need tools for
TM program understanding and debugging. Compared to
the locks teams, the TM teams felt that they had many seg-
mentation faults and unexplainable crashes. Later objective
data in Section 11 shows that the TM teams spent less ef-
fort than the locks teams on fixing segmentation faults. The

interviews show that at least one of the TM teams (team 3)
ran into a known STM compiler bug that caused segmenta-
tion faults; it’s hard to say whether all segmentation faults
are due to the compiler bug or due to other bugs in their
programs.

8.5 Parallel constructs
Figure 20 (c) shows that only TM team 3 used the tm pure

function annotation. Later code inspections show that one
usage of tm pure was for a declaration of printf so that they
could debug the program. Yet more evidence that we need
better debugging tools for TM.

Student 4, who did the most of the work in team 2, is
the only student that reports using tm abort. This matches
later code metrics; however, later code inspections show that
this team used tm abort not to recover from error as it was
intended to be used but rather in a misguided attempt to
optimize performance.

9. CODE METRICS
On average, all teams produced about the same amount of

code with comparable productivity. The metrics show that
in this study, the locks-based programs were more complex
parallel programs, because the locks programmers tended
to use many locks; our code inspections in Section 10 rein-
force this observation. Although locks and TM teams pro-
grammed parallel search engines with similar functionality,
TM teams used fewer critical sections that often had fewer
lines of code than the critical sections of locks teams.

Only TM team 3 used the tm pure construct, and only
TM team 2 used the tm abort construct, but as later code
inspections show, they did not use it as it was intended to
be used for failure atomicity – most of the time they used it
incorrectly to implement a racy double-checking pattern [6].

9.1 Code size and productivity
Figure 6 shows the total lines of code (LOC) produced by

all teams, excluding comments, blank lines, or code from for-
eign libraries. All teams produced about the same amount
of code; on average, locks teams produced 2160 LOC, and
TM teams produced 2228 LOC.

In contrast to the standard deviation of 137 LOC for
locks teams, TM teams have a higher standard deviation
of 780 LOC which can be explained by the fact that team
2 had incomplete code (1551 LOC less than the winning
TM team 6) that did not work on the final benchmark. On
the other hand, team 6 had more code than any other team,
because they decided to implement themselves many thread-
safe helper functions due to lacking library support for TM
programs.

We put programming effort in relation to lines of code
to calculate the parallel programming productivity of each
team. Such data is rare for parallel programs, especially
for those written from scratch. In this study, the average
productivity of locks teams and TM teams is about the same,
which is 0.1 hours (i.e., 6 minutes) to produce one line of
code. The TM winners are below average in person hours
per line of code; therefore, they are more productive than
average. The TM winners were more productive than the
locks winners; TM team 6 needed 0.05 hours/LOC (i.e., 3
minutes/LOC), while locks team 5 needed 0.1 hours/LOC
(i.e., 6 minutes/LOC). Another interesting observation is
that locks team 1 had a productivity of 0.07 hours/LOC
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Team 1 Team 4 Team 5 Team 2 Team 3 Team 6

Total Lines of Code 

(LOC, excluding comments, blank lines) 2014 2285 2182 1501 2131 3052

213271021162751*daerhtp COL
8% 11% 5% 1% 1% 0%

9312263000*_mt COL
2% 1% 5%

1515435021162751stcurtsnoc lellarap htiw COL    
    (pthread* + tm_*) 8% 11% 5% 4% 2% 5%

141162802802433151sruoh nosrep ni troffe latoT

Productivity in person hours/LOC 0,07 0,15 0,10 0,14 0,12 0,05

Selected details on Pthreads constructs

318*etaerc_daerhtp COL 8 6 3 3

8101*dnoc_daerhtp COL 6 0 0 0

LOC sem_* 0 0 0 0 0 10

8241*t_xetum_daerhtp COL 9 0 1 0

010425434*kcol_xetum_daerhtp COL

020439434*kcolnu_xetum_daerhtp COL

5.4582.91.31.7noitces lacitirc rep COL egarevA

   - min;max;stddev of LOC/critical section 1; 78; 12.7 1; 14; 3.7 1; 45; 11.9 85; 85; - 3; 6; 2.1

   - #crit. sections containing function calls 1928152

   - total #function calls from critical sections 839116586

   - #crit. sections with nested locks (levels) 1 (1) 0 1(1)

Selected details on Transactional Memory constructs

427121)skcolb cimota# =( cimota_mt COL

4,65,39,5noitces cimota rep COL egareva -   

   - min;max;stddev of LOC/atomic sect. 1; 14; 4.4 1; 21; 5.3 1; 32; 8.2

   - #atomic sections containing function calls 6 3 16

   - total #function calls from atomic sections 11 5 41

)1( 1)1( 20)level( snoitces cimota detsen# -   

LOC tm_callable 18 2 115

LOC tm_pure 0 3 0

LOC tm_abort 6 0 0

smaet MTsmaet skcoL

avg: 0,105  stddev: 0,037 avg: 0,102  stddev: 0,049

avg: 2160  stddev: 137 avg: 2228  stddev: 780

avg: 179  stddev: 73 avg: 83  stddev: 59

Figure 6: Code metrics for the parallel desktop search engines of all teams.

(i.e., 4 minutes/LOC) that was closest to the TM winners,
yet team 1 had the worst performance of all teams and team
6 the best.

9.2 Use of parallel constructs
Locks and TM teams clearly differ in how many lines of

code contain parallel constructs. Between 5% and 11% of
the locks team code had parallel constructs (179 LOC on
average). By contrast, between 2% and 5% of TM team
code had parallel constructs (83 LOC on average). The locks
winners’ code had the least usage parallel constructs from
all locks teams (120 LOC; 5%), and the TM winner’s code
the highest of all TM teams (151 LOC; 5%).

All locks teams used condition variables, but none of the
TM teams did. Two of the TM teams used Pthread con-
structs in addition to the constructs for thread creation or
destruction: As will be discussed in Section 10, team 3 used
one lock to protect a large critical section containing I/O,
and team 6 used two semaphores for producer-consumer syn-
chronization.

Synchronization constructs were rarely lexically nested,
with at most one level of lexical nesting. Later code in-

spections revealed that this nesting was not really necessary
for the TM teams. Two of the locks teams (teams 1 and
5) had one lexically nested critical section. TM team 3 had
two location with nested atomic blocks, and TM team 6 had
one.

The special-purpose TM constructs offered by Intel’s com-
piler were used very differently. Team 3 used the tm callable
annotation in 2 lines of code, but team 6 used it in 115 lines.
Team 3 were the only team that used the tm pure annota-
tion. Only TM team 2 used the tm abort construct, but
later code inspections show that they used it mostly in a
misguided attempt to optimize performance.

9.3 Critical sections
The critical sections differ for locks teams and TM teams.

We statically approximated a lower bound of the length of
critical sections by manually counting the LOC enclosed by
lock/unlock operations, semaphore wait/post operations, or
atomic blocks, and excluding comments and blank lines. In-
formation from code inspections will explain that some locks
teams had arrays with thousands of locks, but these lock
definitions showed up as just one line of code; we counted a
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function call within a critical section as one LOC and omit-
ted dynamic analyses.

The average size of a lock-protected critical section varies
for locks teams between 3.1 and 9.2 LOC, and between 3.5
and 6.4 LOC for the atomic blocks of TM teams. Critical
sections of locks teams contain between 56 and 119 func-
tion calls, compared to a range of 5 to 41 function calls
for TM teams. As an exception, TM team 3 has one lock-
protected critical section of 85 LOC, and TM team 6 has
several semaphore-protected sections ranging between 3 and
6 LOC.

Figure 7 shows manually collected details on how many
critical sections each team had and the cumulative lines of
code. We see, for example, that team 4 has 25 critical sec-
tions with a size less than or equal to 1 LOC, 36 critical
sections with a size less than or equal to 4 LOC, and so on.

Accumulated lengths of critical sections
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Figure 7: Code distribution in critical sections.

Most critical sections are short. TM teams have fewer crit-
ical sections than locks teams. The locks teams have many
critical sections with just one line of code, which could have
been easily expressed as atomic blocks. Locks teams 1 and 4
have more critical sections than teams 3, 5, and 6, although
all teams implement similar functionality. Interestingly, the
cumulative critical section size distributions of team 5 (the
locks winners) and team 6 (the TM winners) are quite sim-
ilar.

10. CODE INSPECTIONS
Code inspection allows us to analyze the use of constructs,

the kinds of parallel programming mistakes, and code and
bug patterns. The first two authors and the STM compiler
developers at Intel inspected each team’s code in detail, but
in in anonymized form. For each team, we summarize im-
portant aspects of the architecture, major data structures,
synchronization, ease of code understanding, and problems.

10.1 Code inspections for locks teams
In general, all locks teams parallelized the indexing using

a crawler thread to generate work for a set of worker threads
that created the index in parallel. The granularity of work
differed between the teams: In team 4’s program the crawler
thread generated work at the granularity of files, while in
team 1’s and 5’s programs the crawler thread parsed each
file and generated work at the granularity of words. All
teams could query at the same time as indexing, but team 5
did not parallelize the query itself. All teams had a shared

index data structure that was updated in parallel by the
indexing worker threads and concurrently read by a query
thread.

The code inspections show that realistic programs may re-
quire many fine-grain locks in order to have scalable perfor-
mance. All teams attempted fine-grain locking of the index
data structure to allow concurrent access to disjoint parts
of the index structure; to protect the index structure, team
4 used 1600 locks, team 5 used 80 locks, and team 1 used
54 locks. Team 4’s program, which had the largest number
of locks, was the only locks program to scale on indexing.
Locks are mostly used in a block-structured manner; how-
ever, team 4 and 5 have cases where unlocking is performed
in both then or else statements due to a function return
from the middle of a critical section.

Some locks teams used the high number of locks to com-
pensate their insecurity when writing complex parallel pro-
grams. Team 4, for example, emulated the Java synchro-
nized constructs. They introduced a lock for every object,
knowing that they would sacrifice performance, yet they still
had races. Most teams made the common mistake of believ-
ing that unprotected reading of shared state is safe, thus
they had races. Only team 1 had critical sections protecting
a single shared variable read.

10.1.1 Code of team 1
Architecture and data structures: A single crawler

thread traverses the directories and parses each file to gen-
erate tuples into a single shared work queue. Each tuple
consists of a word to be indexed, its file, and its file posi-
tion. A pool of worker threads take tuples from the queue
one-at-a-time and concurrently update a shared index data
structure.

The index data structure consists of an array of sub-
indices for every character. Each sub-index consists of a
map storing all words starting with the particular character
of that sub-index. Each word contains a map of documents
and the list of document positions in which that word ap-
pears. To speed up queries with wildcards at the beginning,
a second array of sub-indices holds a map storing all words
ending with a particular character.

Team 1 designed the queries to work in parallel and to
work concurrently with the indexing threads. Each query
spawns a new thread, which in turn spawns a child thread for
each word in the query – this seems legitimate, but thread
creation overhead might be a problem. Each child thread
traverses the index independently. The initial query thread
waits by joining on its children and combines the results. For
multi-word queries, this approach forks a thread per word.

Synchronization: Team 1 used locks to protect three
areas of their program: (1) a lock to protect the work queue
plus two condition variables for producer-consumer synchro-
nization on the this queue. (2) several locks protecting code
that displays information; and (3) two arrays of locks and
two additional locks protecting accesses to the two sub-index
arrays. Each lock in these two arrays of locks protects a dif-
ferent character in one of the two sub-index arrays, so there
are 54 (27 x 2) locks protecting the index structure. The
number of dynamic lock instances is therefore greater than
in Figure 6. Inserting into the index requires acquiring 2
locks on the sub-indexes. A look-up in the index requires
acquiring a lock on the index or a lock on the reverse index
if the query contains a wildcard.
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To avoid deadlocks, the team specified an order for ac-
quiring locks in these lock arrays, documented as comments
in a header file:

/************************
* !!! MUTEX ORDER !!!
* To prevent any deadlock, mutexes
* have to be locked in the following order:
* - mMtxFileIndex
* - mMtxKeywordIndexInverted[0]
* - mMtxKeywordIndexInverted[1]
* - ...
* - mMtxKeywordIndex[0]
* - mMtxKeywordIndex[1]
* - ...
* - mMtxDifferentKeywords
********************* */

This protocol is not complete, however, because it misses
some locks that are acquired in a nested fashion; in addi-
tion, the code violates the protocol in at least one place.
The team also used a copy-and-paste approach for many
critical sections. Some pieces of code, including comments,
are reused in many places.

Despite the use of per-character locks for the index, team
1 had the worst indexing performance (Figure 3). Their
indexing performance gets worse as the number of worker
threads increases beyond 3 threads. Team 1 described ex-
perimental results in their final report that point to the
single work queue as a potential performance bottleneck.
The report also mentions that they had performance prob-
lems with their initial indexing structure, which did not have
sub-indexes. The team found out that the execution time
of queries depended on the frequency of the terms, so locks
protecting the per-letter indices might not have been appro-
priate for more frequent letters. Nevertheless, the team did
not re-design the indexing data structure to take advantage
of these insights.

Ease of code understanding: Team 1’s code is vi-
sually pleasing, with verbose comments, although there is a
mismatch between the comments in the code and documen-
tation that they submitted. Nevertheless, team 1’s code is
difficult to understand. It is difficult to reason that the code
has no data races. Their code has many locks, and docu-
mentation lacks details on which variables are shared, or on
how locks are associated with variables.

Indexing is mixed with querying; some undocumented pa-
rameters with unfortunate names (e.g., “bool yes”) are used
to steer the process, and in addition have different meanings
in different places. Their submission also contained some
dead code.

Problems with usage of language constructs: This
team used many locks and threads, which increased the com-
plexity of their parallel code. They knew that their queue
design would be a performance bottleneck, but the code
seemed to be difficult to modify later on.

10.1.2 Code of team 4
Architecture and data structures: A crawler thread

traverses directories and inserts file names into one or more
work queues. Each queue is implemented to have a set of
worker threads that take file names from the queue, parse the
files, and concurrently update a shared index data structure.
When a queue is empty, its threads move to work on another
non-empty queue. In addition to the number of indexing

threads, the team introduced various other command-line
parameters to simplify performance experiments. They fi-
nally fixed the number of threads per queue to one thread
per queue; other parameters and their values that were used
for performance measurements (see Fig. 3) are explained
next.

To balance the load, each queue tracks the sum of file
sizes indexed so far. The crawler thread first checks if a
file is above a certain predefined file size threshold; if so,
it assigns the file to the queue with the lowest sum so far.
Otherwise, the crawler thread assigns the file in a round-
robin fashion to queues. Team 4’s rationale was that for
small files, they did not want to incur additional overhead
for a more complex choice of queues. They finally fixed the
value threshold for small files to 500KB.

Another file size threshold specifies where the crawler thread
inserts a file name in a queue. Below this threshold, indexing
threads dequeue files from the front and the crawler thread
adds a new file name at the end of a queue. Above this
threshold, the crawler thread appends at the front. The
team explained that they wanted to achieve an early index-
ing of big files with this strategy, and fixed this threshold to
1000KB after experimenting with different values.

In the inverted index data structure, stored words are ac-
cessed using the first two characters. They don’t speed up
wildcard searches using a reverse index. The team assumes
40 possible characters and creates 40 × 40 = 1600 disjoint
map structures, each of which maps a word to the document
and position within the document. With this many maps,
they hope to insert and access the index in parallel without
causing much conflict. It is difficult to spot the high number
of locks in the code of the indexing data structure:

//vocabulary.h:
class Vocabulary {
private:
std::map<std::string, InvertedList> invertedLists;

pthread_mutex_t access_mutex;
...
//bigvocabulary.cc
...
characters = "abcdefghijklmnopqrstuvwxyzäöüSS0123456789"
// creates the index-structure
for(int i = 0; i < (int) characters.length(); i++) {
std::map<std::string, Vocabulary> tmp_map;
for(int j = 0; j < (int) characters.length(); j++) {
Vocabulary tmp_voc;
tmp_voc.initialize();
...

Later on, this nested loop creates 1600 vocabulary objects,
each of which contains a lock and the map.

Like the prior team, team 4 designed queries to work in
parallel and to work concurrently with the indexing threads.
A main query thread takes user input and forks off new
threads that query the index in parallel. These threads are
created per word for every part of the query and store partial
results in temporary buffers. When all query threads are fin-
ished, combiner threads are started in parallel to aggregate
the buffers and produce the final result.

Synchronization: Each sub-index has a lock, so team
4 has over 1600 locks. Similar to team 1, the number of dy-
namic lock instances is greater than in Figure 6. An indexer
thread has to acquire at least a lock on one of the queues to
read a file name, and two locks on a sub-index.
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For each class that might be shared, they define a member
field called access mutex. They want to emulate per-object
monitors [22], such as those found in Java. As seen in Figure
2, this team indeed has a Java background and no C++
background. This programming pattern reflects Team 4’s
Java background.

In Figure 6 they have more unlock operations compared
to locks because in a few cases, they don’t use locking in
a block-structured manner, but perform unlock in then and
else branches.

Team 4 used condition variables for producer-consumer
synchronization of their queues.

Team 4’s code has clear data races. The getter acces-
sor functions on most classes don’t use locks while updater
functions do, so this team assumes that writing to a shared
data structure must be protected by a lock, but reading does
not. The following example illustrates multiple races due to
unprotected read accesses to the jobs and empty member
fields:

//jobs.h
class Jobs {
public:
int size();
void add(StringFile file,...);
private:
std::deque<StringFile> jobs;
bool empty;
pthread_mutex_t access_mutex;

...
//jobs.cc
...
void Jobs::add(StringFile file,...) {

pthread_mutex_lock(&access_mutex);
... jobs.push_back(file);
... empty = false;

pthread_cond_broadcast(&wait_condition);
pthread_mutex_unlock(&access_mutex)

};
...
int Jobs::size() {return jobs.size();} //unprotected read
bool isEmpty() {return empty;} //unprotected read
}

In another case, they return a pointer to an object con-
tained within the inverted index whose updates are guarded
by a lock, but the accesses performed through the returned
pointer are not guarded by that same lock. This causes a
race between the indexer and the query processor.

Ease of code understanding: Their complex par-
allelization scheme was not easy to understand from the
code. Many parameters are not expressive or lack appro-
priate comments. A lot of information had to be inferred
from the more general documentation. They create many
threads, often dedicated to different types of work, inter-
acting with different queues. It is hard to say if everything
works as they intended.

Problems with usage of language constructs: Some
source code comments suggest that they tried to compare a
C++ object – and not a pointer to an object – to NULL.
Moreover, they put a lot of code in their header files, despite
being taught not to do so. In about 500 lines of code, they
use the “std::” prefix instead of using name spaces.

10.1.3 Code of team 5
Architecture and data structures: Team 5 has a

pool of indexing threads each of which has a queue con-
taining words and document positions to index. A crawler

thread traverses directories, parses the files, and inserts the
words and document positions in a round robin fashion into
the queue of each indexing thread. Indexing threads con-
sume the words in their queue and update the index data
structure. Team 5 uses condition variables for producer-
consumer synchronization of the work queues.

Compared to teams 1 and 4, both of whom used maps for
their index data structures, this team read more research
papers to find a suitable indexing structure. They finally
used a BurstTrie based on [20], which is a more complex tree-
based data structure than the map-based data structures of
teams 1 and 4. Part of their time spent on reading was
reading [20]. In addition, like team 1, they have a reverse
index (also a BurstTrie) to speed up queries with wildcards
at the beginning.

Team 5 also designed queries to work in parallel and to
work in concurrently with the indexing threads. They spawn
a sub-query thread for each word in the query.

Synchronization: They have an array of 40 locks at
the root of the index data structure, and 40 at the root of
the reverse index. The locks are acquired depending on the
first letter of the word to be indexed. An insertion into the
index requires acquiring two locks. This leads to the same
scalability problems as for team 1, which is lots of contention
for words with a frequent first letter. They also have racy
code:

//called by each indexer thread
void BurstTrie::Insert(...)
...
if(rootNode == NULL){
rootNode = new BurstNode(); //unprotected
rootNodeReverse = new BurstNode(); //unprotected
...

}

Ease of code understanding: Many of their source
code comments help; header files have detailed comments
for method parameters. There are also many useless com-
ments (e.g., many one-line methods having the comment
“algorithm: trivial”).

Locking is difficult to understand because the lock and
unlock operations are not used block-wise in several parts of
the program.

Problems with usage of language constructs: Team
5 did not use locks in a block-structured way, which made
their use of locks difficult to understand and verify by in-
spection. The locking protocol is also not well-documented.

10.2 Code inspections for Transactional Mem-
ory teams

Like some of the locks teams, TM teams 2 and 6 imple-
mented a crawler thread that produced a list of files to in-
dex into a shared work queue from which a pool of indexer
threads grabbed work. Except for team 2, none of the TM
teams parallelized queries. Unlike all of the teams, TM team
3 uses a persistent index on disk and runs queries as a sep-
arate program that reads the on-disk index.

The code inspections show that realistic TM programs
need to perform producer-consumer synchronization. Team
6 used a semaphore; team 3 avoided producer-consumer syn-
chronization because each indexing thread performed part of
the crawling. Team 2 did not consider producer-consumer
synchronization because an indexer thread exits once it de-
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tects an empty work queue. The C++ TM model must
therefore either be extended to handle these operations, or
TM must be allowed to be combined with other lock-based
primitives.

In addition, realistic TM programs need to do I/O and op-
timize access to immutable data inside transactions. Team 3
used a global lock in a critical section that performed many
I/O operations. They also used tm pure to optimize com-
parisons of immutable strings inside of a transaction. It was
hard for the code reviewers to validate the correct usage
of tm pure. A compiler-enforceable approach would clearly
have been better.

Like the locks teams, TM teams incorrectly believed that
unprotected reading of shared state is safe. Most teams sys-
tematically tried to optimize transactions by first checking a
condition outside a transactions and then checking it inside,
similar to the flawed double-checked locking pattern [6].

10.2.1 Code of team 2
Architecture and data structures: A crawler thread

traverses directories and builds up a list of files to be in-
dexed, sorted by file size. There is a single shared work queue
between the crawler thread and the indexer threads. Sev-
eral indexing threads go through the documents and build
up the index. The crawler threads runs concurrently with
the indexing threads.

They use a two-level index based on linked lists. On the
first level there is an entry for each character a word can start
with. For each of these entries, there is a list of characters
a word can end with on the second level. Attached to each
entry on the second level is a list of all words (with document
positions) that start and end with a certain character.

Queries containing several words use one thread per word.
They didn’t finish other types of searches. Wildcard searches
are partly implemented and are intended to generate several
threads that search the matching sub-indexes in parallel.

They did not try out their program on the benchmark
given in the lab (742 MB, Figure 5), but rather on two small
sets of files (21MB with 8000 files, 120MB with 214 files).
Their submitted version consumed too much memory and
crashed. It was too late when they discovered this problem.
They were finally excluded from the competition.

Synchronization: Team 2’s code has clear data races
that could make the program crash. In the following code,
they traverse a linked list starting from the sorted start node
without the proper synchronization:

//called by crawler thread
void FileIndex::add_File(string filename, int size) {
sortedFileNode* newNode = new sortedFileNode(...);
sortedFileNode* tempNode;
if (sortedstartNode == NULL) {...}
else {
tempNode = sortedstartNode;
while(tempNode->get_next() != NULL &&

tempNode->get_next()->get_size() > size)
{tempNode = tempNode->get_next();}

__tm_atomic {
newNode->set_next(tempNode->get_next());
tempNode->set_next(newNode);

}
}

In their documentation, they mention that they tried to
design the program in a way that reduced transactional con-
flicts. They also mentioned that TM was easy to use and

that it and helped avoid many sources of errors. Yet their
program crashed during benchmarking and clearly contained
data races.

The tm atomic construct mostly protects short code pas-
sages. The tm abort construct was used six times. In five
times, they used it incorrectly to implement a racy double-
checking pattern:

while (added == 1) {
//check outside atomic
if (dokulist->get_counter() < DOKU_NUM) {
__tm_atomic {

//check inside atomic
if (dokulist->get_counter() >= DOKU_NUM) {
__tm_abort; }

else {
dokulist->add_to_DokuNode(newDoku, newPosi);
added = 0;

}}}}

Ease of code understanding: Functions in header
files had comments (e.g., for explaining the meaning of con-
stants). Team 2 were rather näıve and inexperienced pro-
grammers. Despite being taught not to do so, large portions
of code were contained in header files.

Problems with usage of language constructs: They
did not use TM function attributes in header files, but only
in definitions in the .c files.

10.2.2 Code of team 3
Architecture and data structures: Unlike all other

teams, this team does not have a crawler thread. Instead,
each indexer thread updates a shared directory stack that
keeps track of the current directory to crawl. This is also the
only team to store the index on disk, although not required.

This team used a modified B-tree according to the ap-
proach described in [26]. They looked at B-Tree implemen-
tation of scalingweb.com, but considered it too general and
having too many functions. Because they were unsure how
long an adaptation would take, they developed their own
data structure in C. They used C except for querying, where
they used C++.

Queries are not parallelized; however, they do run concur-
rently with the indexer, as was required. A second program
performs the querying and uses the on-disk index. Queries
are single-threaded and run in a separate program from the
indexer threads; therefore, they did not use any synchro-
nization in the queries.

Synchronization: They create a background thread to
print statistics periodically. They have short atomic blocks
that mainly update the B-tree and the statistics concur-
rently.

Surprisingly, they use the tm callable annotation only twice
(for functions accessing the B-Tree) one of which was even
unnecessary.

They use the tm pure construct for a string comparison
function (c and header file); this function is used in one
place to compare a given word with a word in the B-tree.
Since both words are immutable, this use of tm pure is cor-
rect. Another usage of tm pure was for annotating a custom
fprintf function that was used throughout the program to
store debugging messages in a file.

They used a global Pthreads mutex lock in an I/O func-
tion that returns the next text file to parse. The lock is not
used in a block-structured manner; unlocks are performed in
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two different locations. The critical section beginning with
the lock operation and ending with one of the unlock oper-
ations has 85 LOC and is the longest in their program. By
contrast, their longest atomic block has 21 LOC.

Team 3 also assumed that reading shared variables with-
out protection is safe. This could be a reason for their pro-
gram to crash:

//bufferload.c
...
while (word = getWord(p)) {

node = findBufferWord(&b, word);
__tm_atomic {
node = findBufferWord(node, word);

...

They incorrectly tried to avoid transaction overhead in a
double-checked locking style:

//bufferload.c
...
if (dl->length < DLCHUNK) { //check outside
__tm_atomic {
if (dl->length < DLCHUNK) { //check inside
dl->entry[dl->length].docid = docid;
dl->entry[dl->length].freq = 1;
dl->length++;
return 0;
}
}

Ease of code understanding: Their code has almost
no comments. They have a “compact” style of C program-
ming, due to one of the team members being an experienced
C programmer. Their atomic blocks are easy to understand.
Part of their functionality implementing their indexing was
difficult to understand, even by the experienced code review-
ers.

Problems with usage of language constructs: This
team misunderstood the purpose of nested transactions. They
used statically nested atomic blocks in two places where they
put updates of statistics into their own nested transactions.
The inner atomic just updates statistics and has no abort
statement, which means that they did not use nested trans-
actions for failure atomicity.

10.2.3 Code of team 6
Architecture and data structures: A crawler thread

goes breadth-first through the directories and produces a
list of files to be indexed into a single work queue. A pool
of indexer threads each opens the files, invokes a lexer to
produce term-frequency pairs, and updates the shared index.

For the index data structure, they use a vocabulary trie
as in [8], which is a tree-like data structure with nodes rep-
resenting shared prefixes of index terms. The shared pre-
fix structure is also advantageous for wildcard searches. To
speed up wildcard queries, they add into the trie the reverse
of an indexed word, and put a pointer from the last charac-
ter node of the reversed word to the last character node of
the indexed word.

Queries are not parallelized, and querying uses just one
thread.

Synchronization: Two semaphores, fillcount and emp-
tycount are used in the thread pool for producer-consumer
synchronization.

Tm atomic mostly protects short code passages. They
used several smaller transactions back-to-back instead of few
big transactions, to optimize performance.

Their indexer code has a race, as it uses a variant of
double-checked locking [6]. They are checking outside a
transaction if their stack of files is empty, and perform a
pop operation inside that transaction. To work correctly,
both operations should be inside the same transaction:

while(true){
//consumer
sem_wait(&fillcount);
if (new_files->is_empty()) {
break;

}
__tm_atomic {

filename = new_files->pop();
}

sem_post(&emptycount);
...

They used TM attributes in header files on the declara-
tions of functions. They were the only team to use TM at-
tributes on template functions. They also have assert state-
ments inside transactions as well as printf constructs for
debugging.

Ease of code understanding: Despite very few com-
ments, their code is quite readable. They have just one
nested atomic section, but it’s unclear why they employed
it.

Problems with usage of language constructs: There
are ifdef DEBUG blocks with cout operations inside trans-
actions to print debugging messages. The compiler statistics
and support for debugging were not sufficient.

If a Standard Template Library (STM) for TM was avail-
able, they would not have to write their own atomic dictio-
nary or vector data structure. Thus, they could have been
even more productive.

11. PROGRAMMING EFFORT
This section analyzes the time spent by each team on dif-

ferent tasks during the project. We compare team effort
on different tasks, and we illustrate the hours spent on a
certain task category over time. We discuss the most sig-
nificant patterns based on individual team comparisons and
draw conclusions given the context of the other data we have.
In general, the effort data backs up previous interview and
questionnaire results. Figure 9 and Figures 11 – 18 of the
Appendix present the complete effort data.

Throughout the project, each team had to fill out a form
tracking how many hours they spent per day on a certain
task category. Figure 8 shows the categories of tasks that
were tracked, and Figure 9 presents the data in terms of
person-hours spent by each team per category. Categories
1, 2, and 5 factor out effort that might otherwise be counted
as implementation (category 4). This increases the validity
of the numbers reported for implementation, as they are not
mixed with other tasks. The “Other tasks” category consists
of tasks that do not fit into the defined categories and are
not considered to be interesting enough to be split up for
the study; for example, team 6 wrote a script to analyze the
size of the SVN repository, and this effort was logged in this
category.

Overall, the TM teams spent less total effort than the
locks teams. In particular, TM teams spent 28 hours less on
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1. Read documentation

2. Search for suitable libraries

3. Conceptual development and design

4. Implementation
4.1 Implementation of mostly sequential code

4.2 Implementation of mostly parallel code

4.3 Refactoring

4.4 Other implementation tasks

5. Experiments

5.1 Trying out parallelization constructs
5.2 Trying out library calls
5.3 Performance experiments
5.4 Other experiments

6. Testing
6.1 Functional tests

6.2 Performance tests

6.3 Tests for ensuring correct parallel operation

6.4 Integration tests

6.5 Other tests

7. Debugging

7.1 segmentation faults
7.2 unexpected or ”strange” program behavior
7.3 incorrect input/output
7.4 integration problems between libraries and other search engine code
7.5 integration problems of code produced by different team members
7.6 problems with Pthreads constructs
7.7 problems with TM constructs
7.8 other causes

8. Other tasks

(e.g., program or library documentation, papers, help files, Web pages)

(i.e., the thought process is mostly sequential, implementation activities do not
take parallelism into account)

(e.g., using Pthreads or TM constructs; the thought process is centered on
parallelism, interactions among threads or transactions, etc.)

(i.e., transformation or reorganization of a program without changing its
behavior)

(this category captures the hours spent on experiments that are independent of the
search engine, in order to gain additional knowledge or understand general
performance issues. For example, this may include the implementation of small
test programs.)

(e.g., does the indexing work correctly? Are query results correct?)

(assessing the performance of the desktop search engine itself and tuning its
performance parameters. Different from 5.; the object tested here is the search
engine, not another program.)

(e.g., detecting incorrect synchronization behavior, race conditions, atomicity
violations)

(e.g., for employed libraries, code of other team members)

because of

Figure 8: Effort categories for which each team logged their hours.

reading documentation, 80 hours less on implementation,
and 14 hours less on debugging than the locks teams. Com-
paring effort values at both ends of the range, results look
favorable for TM. Out of all teams, the winner TM team 6
spent the least total effort on the project, spending 10 hours
less than locks team 1, who spent the least effort of locks
teams and had the worst performance of all teams. TM
team 3, who spent the most effort out of the TM teams,
spent 73 hours less effort than locks team 4, who spent the
most effort out of the locks team. The winning TM team 6
needed 67 hours less and had better performance than the
winning locks team 5.

11.1 Parallelization
TM allowed the experienced TM teams more time to think

sequentially, which is backed up by (1) the hours spent on
sequential code versus parallel code, and (2) the time lag be-
tween the first day of work on sequential code and the first
day of work on parallel code. Compared to the locks teams,
TM teams 3 and 6 (who had working search engines) spent
a higher percentage of their implementation time on writing
sequential code. In particular, the winning TM team spent
42 hours (76%) of implementation time on writing sequential
code, whereas the locks winners spent 35 hours (49%). Be-
ing inexperienced, TM team 2 was the only team to spend 8
more hours (11% of implementation time) on implementing
parallel code than on implementing sequential code. Accord-
ing to Figure 14, the TM teams spent in total about half as
much time as the locks teams on writing parallel code.

The locks teams had a shorter time lag between the first
day of work on sequential code and the first day of work on
parallel code: team 1, 1 day; team 4, 13 days; and team 5,
19 days. By contrast, TM teams have larger time lags: team
6, 19 days; team 3, 23 days; and team 2, 29 days.

The effort data generally backs up several of our obser-
vations related to parallelization from the interviews. First,
the larger time lags for TM teams 2 and 3 back up our ob-
servations that these teams procrastinated parallelization.

Second, Figures 14–4.1 and 14–4.2 back up our observation
that TM team 6, who were also the first to have a working
parallel version, started parallelization after locks teams 1
and 4. Figure 14–4.2 reveals that all teams did not paral-
lelize from the first line of code. The locks teams 1 and 4
were the first to start parallelizing, whereas the TM teams
2 and 3 were the last to start parallelization.

11.2 Performance tuning
The collected data on refactoring, performance experi-

ments on additional programs, and performance tests on the
search engine shows that TM teams had more problems with
performance tuning than the locks teams, supporting earlier
observations that the performance of TM is difficult to un-
derstand and predict. The data also suggests, however, that
getting good performance using locks requires more refac-
toring effort than TM.

Late into the project, the TM teams had to experiment
with performance and restructure their programs to deal
with performance problems. Figure 14-4.3 shows that the
refactoring effort increased for all TM teams by the end of
the project. Team 3 mentioned during the interviews that
they had to split up large transactions into smaller ones,
pointing to a late restructuring problem for TM programs.
This team had a sharp increase of 14 hours spent on perfor-
mance testing of their search engine in the last weeks of the
project, as shown in Figure 16-6.2. In order to understand
TM performance, all TM teams had sharp increases of ef-
fort by the end of the project to do performance experiments
with smaller programs, as shown in Figure 15-5.3.

All these results suggest that further research is needed
into developing performance analysis tools and refactoring
techniques for TM-based programs. In addition, research
on programming patterns or anti-patterns for TM can help
reduce performance problems.

The effort data suggests that getting good performance
using locks requires more refactoring effort than TM. The
two locks teams (5 and 4) that had good performance spent

19



   Comparison of total effort (person hours)

d) Effort Categories

1 2 3 4 5 6 7 8 total

6 3 9 80 10 14 29 0 151

24 1 17 72 7 52 16 19 208

29 12 14 196 12 21 48 2 334

18 4 12 55 6 18 19 9 141

7 6 33 74 18 38 22 10 208

6 6 21 139 12 39 38 0 261

90 32 106 616 65 182 172 40 1303

7% 2% 8% 47% 5% 14% 13% 3% 100%

59 16 40 348 29 87 93 21 693

9% 2% 6% 50% 4% 13% 13% 3% 100%

31 16 66 268 36 95 79 19 610
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Figure 9: Total effort of all teams in person hours.

the most absolute time of all teams on refactoring (27 and
22 hours, respectively). Although the winning locks team
5 spent the least amount of time (5 hours) of all teams on
parallel code, they also spent the largest amount of time on
refactoring, supporting questionnaire data in which they re-
port the highest number of times they had to fundamentally
rethink their design. Out of the locks teams, team 1 was the
only team to also have a sharp increase in performance test-
ing effort by the end of the project, but this was due to the
late delivery of the file crawler by one of the team members.

11.3 Debugging
According to Figure 17, the total time for debugging was

higher for locks teams than for TM teams (93 hours vs. 79
hours, respectively). Debugging due to segmentation faults
was the major debugging cause for all teams. In total, locks
teams spent 55 hours (59%) of debugging time on segmen-
tation faults, whereas TM teams spent 23 hours (29%) of
debugging time. The time for debugging unexpected pro-
gram behavior, was comparable for locks and TM teams;
locks teams spent 20 hours (22%) of debugging time, and
TM teams spent 16 hours (20%) of debugging time.

The effort spent on debugging segmentation faults seems
to be influenced by the number of lines of code containing

parallel constructs. Locks team 5 and TM team 3 spent
the least effort (4 hours) on debugging segmentation faults.
According to Figure 6, team 5 had the lowest number of
lines of code with parallel constructs among the locks teams
(120 LOC; 5% of the code); similarly, team 3 had the lowest
number of lines of code with parallel constructs among the
TM teams (45 LOC; 2% of the code). By contrast, locks
team 4 spent most effort on debugging segmentation faults
(35 hours) and had the most lines of code (261 LOC; 11% of
code) with parallel constructs. In addition, team 4 had the
most extensive usage of condition variables, and team 5 the
least among the locks teams. If future empirical studies con-
firm these observations, then TM programs requiring fewer
parallel constructs than comparable locks programs will have
an advantage in the debugging phase, as there would be a
reduced probability for mistakes.

TM team 3 was the only team to report a significant
amount of time (16 hours; 24% of debugging time) spent
on debugging due to problems with TM constructs. This
can be traced back to their interviews and their final report,
in which they mention running into a bug in the STM com-
piler (crashes when statistics are turned on). This teams also
complained that turning compiler optimizations on caused
the compiler to crash.
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12. CASE STUDY VALIDITY
In general, a case study aims to provide detailed insight

of a case being studied in a real environment, has a broad
scope, and is particularly useful in areas where empirical re-
sults are scarce [34]. Our case study helps explore and find
out what the important issues are when programmers use
TM or locks in the realistic environment of a larger project.
We collect data to explain why or how something was ob-
served.

In this study, we aimed to understand how well TM ap-
plies to parallel programming compared to locks. To model
a realistic software development environment, we did not
mandate specific data structures, algorithms, or tools. This
lead to a diverse set of solutions, which is good because it
shows a wide range of possibilities of what works and what
does not. Our observations, however, apply only to this case
study [39]; future experiments should confirm the general
validity of our observations using controlled environments.

12.1 How validity is constructed for this study
Why can the reader trust the results of this study? We

employed several techniques to create internal validity. We
used multiple sources of evidence and different types of data
that on the one hand could be triangulated to isolate the
factors of interest and reduce bias, and on the other hand
broadened the view of the study. In addition, we employed
randomization in two places: once when creating the student
teams, and once when assigning the programming model to
the teams.

We collected all data in a planned and consistent way
from reliable sources. The code was indeed produced by the
students in the respective teams; this was obvious from the
interviews, coding style, or problem reports. The reported
programming effort was checked for plausibility by looking
at the interview data, logs of the subversion repository, and
the code. The first two authors and experienced Intel devel-
opers participated in code inspections to assess the quality
of the search engine code. The student answers in the post-
project questionnaire were not biased by their teammates,
as each student answered the questions individually. The
answers are honest, as they correspond with the student’s
experience profiles and the team mate’s responses (e.g., who
did most of the work in the team).

12.2 Threats to validity
Of course, a case study like this has limitations. It is easy

to disprove general statements even with a small number of
subjects, but difficult to prove general statements.

The study uses just one type of application. It is possible
that results differ for other applications.

Despite a pre-selection prior to the lab, student experi-
ence varied. The teaching phase of the lab aimed to bring
all students to a similar parallel programming level prior to
the project. We provide detailed experience profiles of all
students prior to the project in Figure 2; when appropriate,
this data was used to explain certain observations through-
out the study.

The nature of the case study is to have a realistic, but
not entirely controlled environment. Thus, other unknown
factors could have influenced the results. We tried to com-
pensate by triangulating data from several sources.

The employed STM compiler was a prototype and had
some bugs, sometimes producing crashes when compiling
with optimizations. However, this was the most advanced
C++ STM compiler available at the time of the study. Other
studies reported similar problems [47]. Due to the differ-
ent types of collected data (e.g., interviews, questionnaire,
personal observations), we were able to isolate situations in
which the experienced problems were due to compiler bugs.

TM team 2 may distort the aggregate values for code met-
rics and effort because they had an incomplete program and
were inexperienced. We therefore made conclusions based on
comparisons of individual teams and used aggregated data
only as additional information for the reader where appropri-
ate. Due to their inexperience, team 2 produced fewer lines
of code yet spent more effort on certain tasks than all other
teams – for example, they spent significantly more time on
design and experimentation than the other teams. For ef-
fort comparison, locks teams and TM teams could be paired
as follows: teams 6 and 5 (because they were the winners),
teams 3 and 4 (who both spent most effort), and team 2 and
1 (who did not have a good program – either not working or
working with bad performance). Even if we had eliminated
the pair of teams 1 and 2 from the effort comparison, the ag-
gregated implementation effort would still significantly differ
by 55 hours between TM teams and locks teams; debugging
would still differ by 7 hours. The effort spent on design
would only differ by 2 hours, becoming insignificant. This
is because team 2 tried to compensate their inexperience by
spending more time on conceptual work; team 2 spent most
time of all teams on design (33 hours), which is 21 hours
more than team 6 (the TM winners) and 12 hours more
than TM team 3.

13. RELATED WORK
Empirical studies for parallel programming with TM are

scarce. This is supported by a comprehensive overview of
the TM literature [2].

Various Transactional Memory implementations have been
proposed based on hardware [21, 28], software [37, 3, 7, 24,
30], or a hybrid of the two [14, 25]. These studies have ei-
ther used small programs that exercise lists, hash tables, and
other data structures, or have transformed lock-based bench-
marks into TM programs [32, 47] – for example, the Stan-
ford ParalleL Applications for SHared memory (SPLASH-2)
[43], the PARSEC benchmark suite [9], or SPEC OMP [38].
In addition, TM-specific benchmark suites have been devel-
oped, such as the Stanford Transactional Applications for
Multi-Processing (STAMP) [27]. All of these benchmarks
consist mostly of numerical applications.

Various case studies have assessed the performance of non-
trivial applications using TM. Example applications include
Lee’s algorithm for circuit routing [5], the Linux sendmail
application [35], among others [36, 18, 41]. These studies did
not pay attention to software engineering aspects of Transac-
tional Memory. Rossbach et al. [33] looked at errors in the
programs of undergraduate students from different classes
over 2 semesters. The students wrote a synthetic applica-
tion in Java using TM APIs and locks. The results of [33]
support our observations that TM leads to safer parallel pro-
grams and that implementing fine-grained locking is difficult
and error-prone.
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14. FUTURE RESEARCH DIRECTIONS
Grounded on the empirical results of this case study, we

discuss future research directions and make suggestions how
to address some of identified problems.

14.1 Improvements for Transactional Memory
Our results provide empirical feedback for TM language

designers. This study also shows that we need better tools
for program understanding, performance monitoring, and
debugging of TM-based programs.

Libraries.
Team 6, the TM winners, devoted a lot of effort to imple-

ment low-level functionality that they would have expected
from a library; this also becomes apparent in their code size,
which is the largest of all teams. We need better thread-
safe library support for C++ based TM programs to pro-
vide functionality similar to the C++ Standard Template
Library. Such TM libraries must already include TM com-
piler annotations and be tested with TM.

TM performance tuning.
The performance of TM was not well-understood, which

means that it was difficult for the TM teams to predict how
their TM programs would perform. We need better tech-
niques to analyze TM performance and improve the per-
formance of atomic code blocks. We also need performance
models for TM to predict the performance of TM-based pro-
grams.

Refactoring transaction code.
Team 3 had to refactor part of their transaction code late

into the project because of bad performance. We therefore
need tools to help programmers break atomic blocks into
finer-grained atomic blocks or avoid data conflicts between
atomic blocks of different threads. We also need code anal-
ysis tools that provide developers with supportive informa-
tion when refactoring atomic blocks in order to gain better
performance. Such analysis tools could be combined with
performance prediction models for TM.

Design patterns for TM.
Races were common for most teams. Even the winning

TM team had races. Patterns and anti-patterns for TM-
based programs could help avoid races. For example, an
anti-pattern would provide an example were the assumption
that a concurrent read operation does not have to be pro-
tected by a transaction is not safe. In addition, patterns and
anti-patterns could help avoid TM performance problems.

TM debugging.
The results of the questionnaires, interviews, and effort

data clearly indicate that we need better debugging tools for
TM. The winning team had races that were detected only
by code inspection; no tool support was available for TM.
Adding logging constructs to capture debugging messages
in transactions was a missing feature that would have been
useful for the students. A capture and replay approach [29]
for transactions could be a useful extension for debugging
TM-based code.

Improvements for TM language design.
Based on the code inspection results, we believe that type

systems that avoid low-level races would be useful. Such
type systems would ensure that a transactional piece of code
is accessed only within transactions.

Our results show that only one team used the tm pure
construct, and used it in only one place to optimize string
copy for immutable strings. It was hard for the code inspec-
tors to verify the correctness of this usage, because it was not
clear initially that the string arguments were immutable. We
don’t think that this feature should be exposed to average
programmers. Learning from this particular case, we rec-
ommend a declarative construct for expressing immutability
that the compiler can automatically verify and optimize.

No team had exception-safe code, even the TM teams
who could have used the tm abort construct. Under time
pressure, programmers avoided explicit implementation of
exception safety. We recommend therefore providing auto-
matic exception-safety for atomic blocks.

Two TM teams successfully combined the usage of TM
with semaphore or lock constructs from the Pthreads li-
brary for producer-consumer coordination or I/O, respec-
tively. This worked very well and naturally; the code was
simple, and it seemed appropriate. Although TM program-
ming models have proposed the retry construct [19] for such
type of coordination, it is not well-integrated into the C/C++
language models because it interacts poorly with irrevocable
actions. Thus, this study shows that for producer-consumer
type of coordination we need to either allow transactions to
interoperate with semaphores, or we need to introduce some
other mechanisms into the language.

Controlled Experiments.
An important insight of this study is that TM and locks

can be used in a complementary way; they need not be con-
sidered as alternatives. To better quantify these benefits, we
need experiments with programmers in environments that
are more strictly controlled than in this case study.

We observed that the TM teams spent less overall time
on implementation and debugging than the locks teams. In
our realistic environment, this result could be influenced by
factors other than the choice of locks or TM. A controlled
experiment with more programmers must verify if we can
draw a statistically significant conclusion that programming
with TM leads to less implementation and debugging effort
in comparison to locks.

14.2 Empirical language engineering
The success of a language depends not only on the effi-

ciency of the compiler implementation, but also on its adop-
tion by a programmer community. Without early feedback
on language design, there is a high risk that a new language
will not be adopted, despite existing efficient compiler im-
plementations. We argue that programming language design
– for sequential or parallel languages – must be put into a
quality assurance feedback loop with empirical studies to
detect diverging programmer expectations and language de-
signer assumptions. This systematic process provides early
feedback on how to improve a language (e.g., by detecting
cognitive mismatches between programmer’s intuitions and
language construct semantics). The case study in this paper
represents one cycle in such a quality assurance loop.
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By collecting and comparing objective data and subjec-
tive programmer feedback, we can better understand the
programmer’s thought process and better explain why mis-
takes are made. In our study, we collected empirical data
manually, which was very tedious. For future evaluations,
however, most of the data collection can be automated. Such
studies could be thus conducted more frequently and with a
larger number of programmers.

Objective data can be collected automatically by mod-
ifying software development environments such as Eclipse
[15]. For example, such collected data would include code
or pieces of code using certain language constructs, code
metrics, versioning information from repositories, compiler
errors and warnings, or the steps a programmer performed
in a debugger. To capture the hours spent on particular pro-
gramming tasks, versioning repositories could be extended
to present the programmers with a form to complete after
each check-in.

The collection of subjective data can be automated by
integrating user feedback mechanisms into software devel-
opment environments. For example, users could annotate
language constructs, pieces of code, compiler errors, or parts
of the call graph. Small questionnaires could pop up as a
context menu on demand or when a certain language con-
struct is used for the first time, asking to rate how useful
it was in that particular context (the collected data would
include part of the code to reconstruct the context).

The collected objective and subjective data can be stored
in a central repository for further analysis. Future research
could address how to analyze this repository (e.g., with data
mining techniques) in order to automatically detect patterns
that lead to insights for better language design.

Although this approach would speed up the language de-
sign process, we are aware that it could raise privacy, copy-
right, or security issues; we believe, however, that these is-
sues are negligible in many contexts. For example, most
of the collected data can be anonymized before it is trans-
mitted to a central repository. Pieces of code or aggregated
metrics might suffice language designers to get an impression
of the usage of a language construct. Finally, the collection
of data can be restricted to a group of programmers (e.g.,
beta testers) who agreed to the terms and conditions of data
collection.

15. CONCLUSION
The evidence in this case study of a realistic programming

scenario supports Transactional Memory’s promises. This
is the first study to provide insights from variety of data,
including application performance, code quality, code met-
rics, effort, and subjective programmer impressions. The
winning TM team spent less overall effort compared to the
winning locks team and had better performance. All locks
teams tried to scale by using many fine-grained locks, yet it
was difficult for them to achieve scalable performance. Only
one locks team using over 1600 locks had a scalable parallel
program.

The study shows that TM and locks were successfully
employed in a complementary way; they need not be con-
sidered as alternatives excluding each other. The evidence
also shows that to realize fully the benefits of TM in C++
we need language refinements supporting condition synchro-
nization, and we need debugging and performance tuning

tool support. For most TM teams, it was difficult to under-
stand the behavior of their TM program.

This case study showed that even with TM, parallel pro-
gramming remains difficult, so the quest for new parallel pro-
gramming language features must continue. We need, how-
ever, systematic approaches to evaluate parallel program-
ming proposals and make designs converge quickly to the
programmer’s needs. This paper presented one such ap-
proach using empirical studies. For future studies, we pro-
pose to automate data collection and analysis, which were
done manually in this study. We call this new approach
empirical language engineering.
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Appendix A. Influence of compilers on performance
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Figure 10: Performance comparison between compilers for indexing. The programs of all locks teams were
compiled with Intel’s C++/STM compiler prototype v. 2.0 and gcc 4.1.3. They were executed on a Dell
eight core machine with 2x Intel Quadcore E5320 QC processors, clocked at 1.86 GHz, using 8 GB RAM,
running Ubuntu Linux 2.6.

Appendix B. Effort diagrams
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Figure 11: Time in person hours spent on reading.
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  2) Time spent on search for libraries
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Figure 12: Time in person hours spent on search for libraries.

  3) Time spent on conceptual development and design
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Figure 13: Time in person hours spent on design.
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4.1) Accumulated hours spent on implementation 

of mostly sequential code
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4.2) Accumulated hours spent on implementation 

of mostly parallel code
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4.3) Accumulated hours spent on refactoring
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Figure 14: Time in person hours spent on implementation.
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  5) Time spent on experimentation
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5.1) Accumulated hours spent on trying out 

parallelization constructs
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5.2) Accumulated hours spent on trying out 

library calls
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5.3) Accumulated hours spent on performance 

experiments
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Figure 15: Time in person hours spent on experimentation.
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  6) Time spent on testing

6.1 6.2 6.3 6.4 6.5

6 6 0 2 0 14

14 3 3 1 0 21

19 4 9 2 18 52

12 5 0 0 1 18

20 5 13 0 0 38

8 14 6 2 9 39

79 37 31 7 28 182
43% 20% 17% 4% 15% 100%

39 13 12 5 18 87

45% 15% 14% 6% 21% 100%

40 24 19 2 10 95

42% 25% 20% 2% 11% 100%

Team 1 (L)

Team 4 (L)

Team 5 (L)

sum L

sum TM

sum all

Team 6 (TM) 

Team 2 (TM)

Team 3 (TM) 
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Team 1 (L)
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Team 5 (L) 6.1 Functional tests

6.2 Performance tests

6.3 Tests for ensuring correct parallel
operation

6.4 Integration tests

6.5 Other tests
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6.1) Accumulated hours for functional tests
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6.2) Accumulated hours for performance tests (of 

search engine)
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6.3) Accumulated hours for tests ensuring correct 

parallel operation
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6.4) Accumulated hours for integration tests
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Figure 16: Time in person hours spent on testing.
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  7) Time spent on debugging

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8

Team 5 (L) 4 3 3 3 0 0 0 3 16

Team 1 (L) 16 4 2 0 0 3 0 4 29

Team 4 (L) 35 13 0 0 0 0 0 0 48

Team 6 (TM) 9 3 3 1 0 0 3 0 19

Team 2 (TM) 10 5 1 0 1 0 0 5 22

Team 3 (TM) 4 8 0 2 0 0 16 8 38

sum all 78 36 9 6 1 3 19 20 172

45% 21% 5% 3% 1% 2% 11% 12% 100%

sum L 55 20 5 3 0 3 0 7 93

59% 22% 5% 3% 0% 3% 0% 8% 100%

sum TM 23 16 4 3 1 0 19 13 79

29% 20% 5% 4% 1% 0% 24% 16% 100%

0 10 20 30 40 50

Team 6 (TM) 

Team 2 (TM)

Team 3 (TM) 

Team 5 (L)

Team 1 (L)

Team 4 (L)
7.1 Because of segmentation faults

7.2 Because of unexpected or "strange" program
behavior

7.3 Because of incorrect input/output

7.4 Because of integration problems between
libraries and program

7.5 Because of integration problems of code
produced by different team members

7.6 Because of problems with Pthread constructs

7.7 Because of problems with TM constructs

7.8 Other causes

Accumulated debugging hours
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Figure 17: Time in person hours spent on debugging.

31



7.1) Accumulated hours for debugging because of 

segmentation faults
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7.2) Accumulated hours for debugging because 

of strange or unexpected behavior
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7.3) Accumulated hours for debugging because 

of incorrect input/output
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7.4) Accumulated hours for debugging because 

of library integration problems
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7.5) Accumulated hours for debugging because 

of team code integration problems
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7.6) Accumulated hours for debugging because 

of problems with Pthread constructs

0

0,5

1

1,5

2

2,5

3

3,5

2
0
0
8
-1

0
-2

0

2
0
0
8
-1

0
-2

7

2
0
0
8
-1

1
-0

3

2
0
0
8
-1

1
-1

0

2
0
0
8
-1

1
-1

7

2
0
0
8
-1

1
-2

4

2
0
0
8
-1

2
-0

1

2
0
0
8
-1

2
-0

8

2
0
0
8
-1

2
-1

5

2
0
0
8
-1

2
-2

2

2
0
0
8
-1

2
-2

9

2
0
0
9
-0

1
-0

5

2
0
0
9
-0

1
-1

2

2
0
0
9
-0

1
-1

9

2
0
0
9
-0

1
-2

6

Team 1 (L)

Team 2 (TM)

Team 3 (TM)

Team 4 (L)

Team 5 (L)

Team 6 (TM)

7.7) Accumulated hours for debugging because 

of problems with TM constructs
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Figure 18: Effort development for subtasks of debugging.
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Appendix C. Questionnaire

S1 S2 S7 S8 S9 S10 S3 S4 S5 S6 S11 S12

(a) Working strategy

Q1

How easy or difficult was the assignment to understand? (1-very easy; 5-very 

difficult) 2 2 2 2 1 1 2 2 1 2 2 2

Q2 How complex do you rate this project? (1-very easy; 5-very complex) 3 4 3 4 3 3 3 4 3 2 3 2

Q3

How easy or difficult was it to create a concrete working plan at the beginning of 

the project?  (1-very easy; 5-very difficult) 1 4 5 3 4 4 3 4 1 2 4 3

Q4

How did you plan the work in your team?  (1-spontaneous decisions; 2-structured with 

goals set for next 1-3 days; 3: next 4-7 days; 4: next 8-14 days; 5: >14 days) 1 5 1 3 1 5 2 3 3 1 3 2

Q5

I had the impression that I did most of the work in my  team (1-not true; 2-partly true; 

3-true for many modules; 4-true for most modules; 5-true for all modules) 4 1 5 1 4 1 1 3 1 5 4 1

Q6

                                                                                during initiation phase 1 1 4 1 1 1 1 1 1 2 2

                                                                                during design phase 1 1 2 1 1 1 1 1 1 1 1 1

                                                                                during implementation phase 2 3 3 3 2 5 4 3 3 3 3 3

                                                                                during testing phase 2 3 4 3 2 4 3 4 4 3 4 3

Q7

4 4 4 2 4 3 3 2 1 4 4

Q8

     Face-to-face Meetings 2 2 3 1 1 1 4 1 2 1 1

     Email 3 1 4 4 2 3 3 2 1 2 2

     Instant Messaging 4 4 2 3 3 4 1 4 4 4 3

     Subversion (SVN) 1 3 1 2 4 2 2 3 3 3 4

(b) Design

Q1

In the design process, how easy or difficult was it to identify the places for 

parallelization?  (1-very easy; 5-very difficult) 2 2 2 3 1 1 3 3 2 2 3 2

Q2

How easy or difficult was it to modularize the parts that worked in parallel? (1-very

easy; 5-very difficult) 1 3 3 4 2 1 2 3 2 2 3 2

Q3

How important was it for you to know in the design phase that you would use 

locks or TM  later? (1-not important; 5-very important) 1 1 4 2 2 5 4 4 1 2 2 5

(c) Implementation

Q1

In the implementation process, how easy/difficult  was it to identify the places for 

parallelization? (1-very easy; 5-very difficult) 2 3 2 3 1 2 2 2 3 2 3 2

Q2

How important was it for you to get quickly to the first executable parallel 

program? (1-not important; 5-very important) 5 3 4 4 3 3 4 4 4 5 5 5

Q3

When did you first employ parallel constructs? (1-already in first lines of code; 2-after 

first reliable compilation and execution; 3-after implementing a few features; 4-after 

implementing most features; 5-after implementing all features) 3 2 3 3 3 1 2 3 2 3 3 1

Q4

During implementation, we had to fundamentally rethink our overall design (1-

never; 2-one time; 3: 2-3 times; 4: 4-6 times; 5: >6 times) 1 1 1 2 2 3 2 2 1 1 1 1

Q5

The performance of our first parallel program  was (1-way below our expectations; 2-

somewaht below our expectations; 3-as expected; 4-somewhat above our expectations;

5-way above our expectations) 3 1 3 3 4 1 2 5 3 4 3

Q6

The performance of our final parallel program was (1-way below our expectations; 2-

somewaht below our expectations; 3-as expected; 4-somewhat above our expectations;

5-way above our expectations) 3 1 3 3 3 2 1 5 1 2 3

(d) Psychological issues during implementation

Q1

How easy/difficult was it to keep track of what your parallel program is doing?

(1-very easy; 5-very difficult) 1 3 2 3 3 2 2 4 4 3 2 3

Q2 I felt uncomfortable when using parallel constructs (1-never; 5-very often) 1 3 2 3 1 1 2 2 5 2 3 1

Q3

I was afraid of "destroying" my working program by using additional parallel 

constructs (1-never; 5-very often) 1 4 2 3 3 1 1 2 4 2 1 1

Q4 Our team tried to postpone parallelization work (1-never; 5-very often) 1 3 2 2 1 1 2 3 3 1 3 2

Q5

During implementation, we had to backtrack to earlier versions and start over

(1-never; 2-one time; 3: 2-3 times; 4: 4-6 times; 5: >6 times) 1 1 3 1 1 1 3 3 1 1 1 1

Importance of tools for cordination (rank the following 4 choices using a rank exactly once: 1-most important to 4-most unimportant)

How did you perceive time pressure during the different phases of the project? (1-no time pressure, could complete all planned tasks by deadline; 2-sometimes short of 

time, but could still complete planned tasks; 3-could not complete some of planned tasks; 4-could not complete about half of planned tasks; 5-could not complete most of 

planned tasks by planned deadline)

Locks Teams Transactional Memory Teams

Team 1 Team 4 Team 5 Team 2 Team 3 Team 6

Roles in your team (1-no clear role definition; 2-all members worked equally on all tasks; 3-each one was specialist in particular area, general project coordination together; 

4-each one was specialist in particular area, but one of us responsible for the general coordination)

Figure 19: Questionnaire results on working strategy, design, implementation, and psychological issues during
implementation.
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S1 S2 S7 S8 S9 S10 S3 S4 S5 S6 S11 S12

(a) Testing and debugging

Q1

During implementation I confronted errors that I could not diagnose (1- never; 2- 

one time; 3: 3-10 times; 4: 11-20 times; 5: >20 times) 2 3 3 3 3 5 4 3 5 4 4 4

Q2

During debugging, how easy/difficult was it to understand the ordering of parallel 

events? (1- very easy; 5- very difficult) 3 5 5 3 3 3 2 4 5 5 5 3

Q3

How often did you encounter errors of the following types? (1- never; 5- very 

frequently)

                                 Race conditions because of forgotten sync constructs 1 3 1 2 1 3 2 2 2 1 1 2

                                 Race conditions due to other causes 1 3 1 1 2 2 2 2 2 2 1 1

                                 Ordering errors during parallel execution of threads 1 3 1 1 2 1 1 2 1 1 1 1

                                 Wrong initializations (e.g., variables, threads, etc.) 2 1 3 2 1 1 2 2 3 4 2 2

                                 Wrong assumptions about libraries (e.g., not threadsafe) 1 1 1 1 1 1 1 2 3 3 1 1

                                 Deadlocks 1 4 1 2 1 3 2 1 2 1 1 1

                                 Memory leaks 1 1 1 1 1 2 3 2 4 2 1 2

                                 Segmentation faults 3 3 3 3 3 4 4 4 5 3 4 5

                                 Unexplainable crashes 2 3 3 2 1 5 1 4 5 3 3 4

                                 Forgotten signal/wait 1 3 2 1 2 2 1 1 1 1 1 1

                                 Wrong assumptions about atomicity / atomicity violations 1 0 1 1 1 1 1 2 4 3 3 1

(b) Pthreads and Transactional Memory constructs

Q1

How easy/difficult was it to use parallel constructs of Pthreads library (TM 

compiler)? (1- very easy; 5- very difficult) 2 3 2 2 1 3 2 3 1 3 3 1

Q2

How easy/difficult were the constructs of Pthreads (TM) to understand? (1- very 

easy; 5- very difficult) 1 3 3 2 1 3 2 2 2 3 3 1

Q3

How easy/difficult was the submitted parallel program to understand? (1- very 

easy; 5- very difficult) 2 3 2 2 2 2 3 4 5 2 3 1

Q4

Using Pthreads (TM), I had the impression of not advancing fast enough (1-never; 5-

very often) 1 2 2 1 2 4 2 3 4 3 4 3

Q5 How often did you slip using Pthreads (TM) constructs? (1- never; 5- very often) 1 4 3 2 2 1 2 4 4 2 3 2

Q6

How detailed were you able to control parallelization using Phreads (TM)?

(1- impossible; 5- very detailed) 4 5 2 4 4 4 4 4 2 2 3 4

(c) Transactional Memory constructs

Q1 2 2 2 2 4 3

Q2 3 4 1 3 4 3

Q3 0 0 1 1 0 0

Q4 0 1 0 0 0 0

Q5 0 0 0 0 0 1

Q6 1 0 0 0 0 0

Q7 0 0 0 0 0 1

Q8 0 1 0 1 1 0

Transactional Memory Teams

Team 3 Team 6Team 1 Team 4 Team 5 Team 2

Was the STM compiler well-documented? (0- no; 1- yes)

How easy/difficult were function annotations to use? (1- very easy; 5- very difficult)

How useful were the statistics generated by the STM compiler? (1- not useful; 5- very useful)

Were you able to use the tm_pure function annotation? (0- no; 1- yes)

Did you use the __tm_abort construct? (0- no; 1- yes)

Did you have to throw C++ exceptions out of atomic blocks? (0- no; 1- yes)

Did you need to perform irreversible I/O operations inside atomic blocks? (0- no; 1- yes)

Did you need to perform condition synchronization? (0- no; 1- yes)

Locks Teams

Figure 20: Questionnaire results on testing, debugging, and parallel constructs.
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