2,832 research outputs found

    Online Ramsey Games in Random Graphs

    Get PDF
    Consider the following one-player game. Starting with the empty graph on n vertices, in every step a new edge is drawn uniformly at random and inserted into the current graph. This edge has to be coloured immediately with one of r available colours. The player's goal is to avoid creating a monochromatic copy of some fixed graph F for as long as possible. We prove a lower bound of nÎČ(F,r) on the typical duration of this game, where ÎČ(F,r) is a function that is strictly increasing in r and satisfies limr→∞ ÎČ(F,r) = 2 − 1/m2(F), where n2−1/m2(F) is the threshold of the corresponding offline colouring proble

    Bounds on Ramsey Games via Alterations

    Full text link
    This note contains a refined alteration approach for constructing H-free graphs: we show that removing all edges in H-copies of the binomial random graph does not significantly change the independence number (for suitable edge-probabilities); previous alteration approaches of Erdos and Krivelevich remove only a subset of these edges. We present two applications to online graph Ramsey games of recent interest, deriving new bounds for Ramsey, Paper, Scissors games and online Ramsey numbers.Comment: 9 page

    Upper Bounds for Online Ramsey Games in Random Graphs

    Get PDF
    Consider the following one-player game. Starting with the empty graph on n vertices, in every step a new edge is drawn uniformly at random and inserted into the current graph. This edge has to be coloured immediately with one of r available colours. The player's goal is to avoid creating a monochromatic copy of some fixed graph F for as long as possible. We prove an upper bound on the typical duration of this game if F is from a large class of graphs including cliques and cycles of arbitrary size. Together with lower bounds published elsewhere, explicit threshold functions follo

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n−1/m1∗(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1∗(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1∗(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1−o(1)1-o(1) for any p(n)=o(n−1/m1∗(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Ramsey games with giants

    Get PDF
    The classical result in the theory of random graphs, proved by Erdos and Renyi in 1960, concerns the threshold for the appearance of the giant component in the random graph process. We consider a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives in the sequence of rounds must be colored with one of R colors. The goal can be either to create a giant component in every color class, or alternatively, to avoid it in every color. One can analyze the offline or online setting for this problem. In this paper, we consider all these variants and provide nontrivial upper and lower bounds; in certain cases (like online avoidance) the obtained bounds are asymptotically tight.Comment: 29 pages; minor revision

    On the path-avoidance vertex-coloring game

    Full text link
    For any graph FF and any integer r≄2r\geq 2, the \emph{online vertex-Ramsey density of FF and rr}, denoted m∗(F,r)m^*(F,r), is a parameter defined via a deterministic two-player Ramsey-type game (Painter vs.\ Builder). This parameter was introduced in a recent paper \cite{mrs11}, where it was shown that the online vertex-Ramsey density determines the threshold of a similar probabilistic one-player game (Painter vs.\ the binomial random graph Gn,pG_{n,p}). For a large class of graphs FF, including cliques, cycles, complete bipartite graphs, hypercubes, wheels, and stars of arbitrary size, a simple greedy strategy is optimal for Painter and closed formulas for m∗(F,r)m^*(F,r) are known. In this work we show that for the case where F=PℓF=P_\ell is a (long) path, the picture is very different. It is not hard to see that m∗(Pℓ,r)=1−1/k∗(Pℓ,r)m^*(P_\ell,r)= 1-1/k^*(P_\ell,r) for an appropriately defined integer k∗(Pℓ,r)k^*(P_\ell,r), and that the greedy strategy gives a lower bound of k∗(Pℓ,r)≄ℓrk^*(P_\ell,r)\geq \ell^r. We construct and analyze Painter strategies that improve on this greedy lower bound by a factor polynomial in ℓ\ell, and we show that no superpolynomial improvement is possible

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(log⁥k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Erdos-Szekeres-type theorems for monotone paths and convex bodies

    Get PDF
    For any sequence of positive integers j_1 < j_2 < ... < j_n, the k-tuples (j_i,j_{i + 1},...,j_{i + k-1}), i=1, 2,..., n - k+1, are said to form a monotone path of length n. Given any integers n\ge k\ge 2 and q\ge 2, what is the smallest integer N with the property that no matter how we color all k-element subsets of [N]=\{1,2,..., N\} with q colors, we can always find a monochromatic monotone path of length n? Denoting this minimum by N_k(q,n), it follows from the seminal 1935 paper of Erd\H os and Szekeres that N_2(q,n)=(n-1)^q+1 and N_3(2,n) = {2n -4\choose n-2} + 1. Determining the other values of these functions appears to be a difficult task. Here we show that 2^{(n/q)^{q-1}} \leq N_3(q,n) \leq 2^{n^{q-1}\log n}, for q \geq 2 and n \geq q+2. Using a stepping-up approach that goes back to Erdos and Hajnal, we prove analogous bounds on N_k(q,n) for larger values of k, which are towers of height k-1 in n^{q-1}. As a geometric application, we prove the following extension of the Happy Ending Theorem. Every family of at least M(n)=2^{n^2 \log n} plane convex bodies in general position, any pair of which share at most two boundary points, has n members in convex position, that is, it has n members such that each of them contributes a point to the boundary of the convex hull of their union.Comment: 32 page
    • 

    corecore