60 research outputs found

    ONLINE LEARNING WITH BANDITS FOR COVERAGE

    Get PDF
    With the rapid growth in velocity and volume, streaming data compels decision support systems to predict a small number of unique data points in due time that can represent a massive amount of correlated data without much loss of precision. In this work, we formulate this problem as the {\it online set coverage problem} and propose its solution for recommendation systems and the patrol assignment problem. We propose a novel online reinforcement learning algorithm inspired by the Multi-Armed Bandit problem to solve the online recommendation system problem. We introduce a graph-based mechanism to improve the user coverage by recommended items and show that the mechanism can facilitate the coordination between bandits and therefore, reduce the overall complexity. Our graph-based bandit algorithm can select a much smaller set of items to cover a vast variety of users’ choices for recommendation systems. We present our experimental results in a partially observable real-world environment. We also study the patrol assignment as an online set coverage problem, which presents an additional level of difficulty. Along with covering the susceptible routes by learning the diversity of attacks, unlike in recommendation systems, our technique needs to make choices against actively engaging adversarial opponents. We assume that attacks over those routes are posed by intelligent entities, capable of reacting with their best responses. Therefore, to model such attacks, we used the Stackelberg Security Game. We augment our graph-based bandit defenders with adaptive adjustment of reward coming from this game to perplex the attackers and gradually succeed over them by maximizing the confrontation. We found that our graph bandits can outperform other Multi-Arm bandit algorithms when a simulated annealing-based scheduling is incorporated to adjust the balance between exploration and exploitation

    Multi-Robot Path Planning for Persistent Monitoring in Stochastic and Adversarial Environments

    Get PDF
    In this thesis, we study multi-robot path planning problems for persistent monitoring tasks. The goal of such persistent monitoring tasks is to deploy a team of cooperating mobile robots in an environment to continually observe locations of interest in the environment. Robots patrol the environment in order to detect events arriving at the locations of the environment. The events stay at those locations for a certain amount of time before leaving and can only be detected if one of the robots visits the location of an event while the event is there. In order to detect all possible events arriving at a vertex, the maximum time spent by the robots between visits to that vertex should be less than the duration of the events arriving at that vertex. We consider the problem of finding the minimum number of robots to satisfy these revisit time constraints, also called latency constraints. The decision version of this problem is PSPACE-complete. We provide an O(log p) approximation algorithm for this problem where p is the ratio of the maximum and minimum latency constraints. We also present heuristic algorithms to solve the problem and show through simulations that a proposed orienteering-based heuristic algorithm gives better solutions than the approximation algorithm. We additionally provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. In case the event stay durations are not fixed but are drawn from a known distribution, we consider the problem of maximizing the expected number of detected events. We motivate randomized patrolling paths for such scenarios and use Markov chains to represent those random patrolling paths. We characterize the expected number of detected events as a function of the Markov chains used for patrolling and show that the objective function is submodular for randomly arriving events. We propose an approximation algorithm for the case where the event durations for all the vertices is a constant. We also propose a centralized and an online distributed algorithm to find the random patrolling policies for the robots. We also consider the case where the events are adversarial and can choose where and when to appear in order to maximize their chances of remaining undetected. The last problem we study in this thesis considers events triggered by a learning adversary. The adversary has a limited time to observe the patrolling policy before it decides when and where events should appear. We study the single robot version of this problem and model this problem as a multi-stage two player game. The adversary observes the patroller’s actions for a finite amount of time to learn the patroller’s strategy and then either chooses a location for the event to appear or reneges based on its confidence in the learned strategy. We characterize the expected payoffs for the players and propose a search algorithm to find a patrolling policy in such scenarios. We illustrate the trade off between hard to learn and hard to attack strategies through simulations

    A Broad View on Robot Self-Defense: Rapid Scoping Review and Cultural Comparison

    Get PDF
    With power comes responsibility: as robots become more advanced and prevalent, the role they will play in human society becomes increasingly important. Given that violence is an important problem, the question emerges if robots could defend people, even if doing so might cause harm to someone. The current study explores the broad context of how people perceive the acceptability of such robot self-defense (RSD) in terms of (1) theory, via a rapid scoping review, and (2) public opinion in two countries. As a result, we summarize and discuss: increasing usage of robots capable of wielding force by law enforcement and military, negativity toward robots, ethics and legal questions (including differences to the well-known trolley problem), control in the presence of potential failures, and practical capabilities that such robots might require. Furthermore, a survey was conducted, indicating that participants accepted the idea of RSD, with some cultural differences. We believe that, while substantial obstacles will need to be overcome to realize RSD, society stands to gain from exploring its possibilities over the longer term, toward supporting human well-being in difficult times

    Securing multi-robot systems with inter-robot observations and accusations

    Get PDF
    In various industries, such as manufacturing, logistics, agriculture, defense, search and rescue, and transportation, Multi-robot systems (MRSs) are increasingly gaining popularity. These systems involve multiple robots working together towards a shared objective, either autonomously or under human supervision. However, as MRSs operate in uncertain or even adversarial environments, and the sensors and actuators of each robot may be error-prone, they are susceptible to faults and security threats unique to MRSs. Classical techniques from distributed systems cannot detect or mitigate these threats. In this dissertation, novel techniques are proposed to enhance the security and fault-tolerance of MRSs through inter-robot observations and accusations. A fundamental security property is proposed for MRSs, which ensures that forbidden deviations from a desired multi-robot motion plan by the system supervisor are detected. Relying solely on self-reported motion information from the robots for monitoring deviations can leave the system vulnerable to attacks from a single compromised robot. The concept of co-observations is introduced, which are additional data reported to the supervisor to supplement the self-reported motion information. Co-observation-based detection is formalized as a method of identifying deviations from the expected motion plan based on discrepancies in the sequence of co-observations reported. An optimal deviation-detecting motion planning problem is formulated that achieves all the original application objectives while ensuring that all forbidden plan-deviation attacks trigger co-observation-based detection by the supervisor. A secure motion planner based on constraint solving is proposed as a proof-of-concept to implement the deviation-detecting security property. The security and resilience of MRSs against plan deviation attacks are further improved by limiting the information available to attackers. An efficient algorithm is proposed that verifies the inability of an attacker to stealthily perform forbidden plan deviation attacks with a given motion plan and announcement scheme. Such announcement schemes are referred to as horizon-limiting. An optimal horizon-limiting planning problem is formulated that maximizes planning lookahead while maintaining the announcement scheme as horizon-limiting. Co-observations and horizon-limiting announcements are shown to be efficient and scalable in protecting MRSs, including systems with hundreds of robots, as evidenced by a case study in a warehouse setting. Lastly, the Decentralized Blocklist Protocol (DBP), a method for designing Byzantine-resilient decentralized MRSs, is introduced. DBP is based on inter-robot accusations and allows cooperative robots to identify misbehavior through co-observations and share this information through the network. The method is adaptive to the number of faulty robots and is widely applicable to various decentralized MRS applications. It also permits fast information propagation, requires fewer cooperative observers of application-specific variables, and reduces the worst-case connectivity requirement, making it more scalable than existing methods. Empirical results demonstrate the scalability and effectiveness of DBP in cooperative target tracking, time synchronization, and localization case studies with hundreds of robots. The techniques proposed in this dissertation enhance the security and fault-tolerance of MRSs operating in uncertain and adversarial environments, aiding in the development of secure MRSs for emerging applications

    Effective Cooperation and Scalability in Multi-Robot Teams for Automatic Patrolling of Infrastructures

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraIn the digital era that we live in, advances in technology have proliferated throughout our society, quickening the completion of tasks that were painful in the old days, improving solutions to the everyday problems that we face, and generally assisting human beings both in their professional and personal life. Robotics is a clear example of a broad technological field that evolves every day. In fact, scientists predict that in the upcoming few decades, robots will naturally interact and coexist alongside human beings. While it is true that robots already have a strong presence in industrial environments, e.g., robotic arms for manufacturing, the average person still looks upon robots with suspicion, since they are not acquainted by such type of technology. In this thesis, the author deploys teams of mobile robots in indoor scenarios to cooperatively perform patrolling missions, which represents an effort to bring robots closer to humans and assist them in monotonous or repetitive tasks, such as supervising and monitoring indoor infrastructures or simply cooperatively cleaning floors. In this context, the team of robots should be able to sense the environment, localize and navigate autonomously between way points while avoiding obstacles, incorporate any number of robots, communicate actions in a distributed way and being robust not only to agent failures but also communication failures, so as to effectively coordinate to achieve optimal collective performance. The referred capabilities are an evidence that such systems can only prove their reliability in real-world environments if robots are endowed with intelligence and autonomy. Thus, the author follows a line of research where patrolling units have the necessary tools for intelligent decision-making, according to the information of the mission, the environment and teammates' actions, using distributed coordination architectures. An incremental approach is followed. Firstly, the problem is presented and the literature is deeply studied in order to identify potential weaknesses and research opportunities, backing up the objectives and contributions proposed in this thesis. Then, problem fundamentals are described and benchmarking of multi-robot patrolling algorithms in realistic conditions is conducted. In these earlier stages, the role of different parameters of the problem, like environment connectivity, team size and strategy philosophy, will become evident through extensive empirical results and statistical analysis. In addition, scalability is deeply analyzed and tied with inter-robot interference and coordination, imposed by each patrolling strategy. After gaining sensibility to the problem, preliminary models for multi-robot patrol with special focus on real-world application are presented, using a Bayesian inspired formalism. Based on these, distributed strategies that lead to superior team performance are described. Interference between autonomous agents is explicitly dealt with, and the approaches are shown to scale to large teams of robots. Additionally, the robustness to agent and communication failures is demonstrated, as well as the flexibility of the model proposed. In fact, by later generalizing the model with learning agents and maintaining memory of past events, it is then shown that these capabilities can be inherited, while at the same time increasing team performance even further and fostering adaptability. This is verified in simulation experiments and real-world results in a large indoor scenario. Furthermore, since the issue of team scalability is highly in focus in this thesis, a method for estimating the optimal team size in a patrolling mission, according to the environment topology is proposed. Upper bounds for team performance prior to the mission start are provided, supporting the choice of the number of robots to be used so that temporal constraints can be satisfied. All methods developed in this thesis are tested and corroborated by experimental results, showing the usefulness of employing cooperative teams of robots in real-world environments and the potential for similar systems to emerge in our society.FCT - SFRH/BD/64426/200

    Information-theoretic Reasoning in Distributed and Autonomous Systems

    Get PDF
    The increasing prevalence of distributed and autonomous systems is transforming decision making in industries as diverse as agriculture, environmental monitoring, and healthcare. Despite significant efforts, challenges remain in robustly planning under uncertainty. In this thesis, we present a number of information-theoretic decision rules for improving the analysis and control of complex adaptive systems. We begin with the problem of quantifying the data storage (memory) and transfer (communication) within information processing systems. We develop an information-theoretic framework to study nonlinear interactions within cooperative and adversarial scenarios, solely from observations of each agent's dynamics. This framework is applied to simulations of robotic soccer games, where the measures reveal insights into team performance, including correlations of the information dynamics to the scoreline. We then study the communication between processes with latent nonlinear dynamics that are observed only through a filter. By using methods from differential topology, we show that the information-theoretic measures commonly used to infer communication in observed systems can also be used in certain partially observed systems. For robotic environmental monitoring, the quality of data depends on the placement of sensors. These locations can be improved by either better estimating the quality of future viewpoints or by a team of robots operating concurrently. By robustly handling the uncertainty of sensor model measurements, we are able to present the first end-to-end robotic system for autonomously tracking small dynamic animals, with a performance comparable to human trackers. We then solve the issue of coordinating multi-robot systems through distributed optimisation techniques. These allow us to develop non-myopic robot trajectories for these tasks and, importantly, show that these algorithms provide guarantees for convergence rates to the optimal payoff sequence

    Strategic analysis of complex security scenarios.

    Full text link

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS
    • …
    corecore