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A B S T R A C T

The increasing prevalence of distributed and autonomous systems is transforming

decision making in industries as diverse as agriculture, environmental monitoring,

and healthcare. Despite significant efforts, challenges remain in robustly planning

under uncertainty. In this thesis, we present a number of information-theoretic

decision rules for improving the analysis and control of complex adaptive systems.

We begin with the problem of quantifying the data storage (memory) and trans-

fer (communication) within information processing systems. We develop an infor-

mation-theoretic framework to study nonlinear interactions within cooperative

and adversarial scenarios, solely from observations of each agent’s dynamics. This

framework is applied to simulations of robotic soccer games, where the measures

reveal insights into team performance, including correlations of the information

dynamics to the scoreline. We then study the communication between processes

with latent nonlinear dynamics that are observed only through a filter. By using

methods from differential topology, we show that the information-theoretic mea-

sures commonly used to infer communication in observed systems can also be

used in certain partially observed systems.

For robotic environmental monitoring, the quality of data depends on the place-

ment of sensors. These locations can be improved by either better estimating the

quality of future viewpoints or by a team of robots operating concurrently. By ro-

bustly handling the uncertainty of sensor model measurements, we are able to

present the first end-to-end robotic system for autonomously tracking small dy-

namic animals, with a performance comparable to human trackers. We then solve

the issue of coordinating multi-robot systems through distributed optimisation

techniques. These allow us to develop non-myopic robot trajectories for these tasks

and, importantly, show that these algorithms provide guarantees for convergence

rates to the optimal payoff sequence.
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1I N T R O D U C T I O N

The ability to make decisions under uncertainty is fundamental to many areas of

science and engineering. In general, a model is formulated to explain observed

phenomena and then experiments are planned with the aim to validate this model.

This procedure can be summed up as reducing the uncertainty over a belief. Infor-

mation theory addresses this challenge by quantifying the amount of predictabil-

ity in information processing systems in order to study the storage and transfer

of data. In this thesis we subscribe to this paradigm by using information mea-

sures in a variety of contexts inspired by artificial and biological systems. We focus

on two decision problems: model selection for distributed systems, and planning

algorithms for single- and multi-robot information gathering tasks.

1.1 reasoning in complex environments

Complex systems are broadly defined as systems that comprise interacting nonlin-

ear components [32]. Their wide scope renders the problem of reasoning within

these environments a topic of general interest studied in various areas of artifi-

cial intelligence. As a consequence, there is significant effort in improving decision

making practices whose purpose is to understand and ultimately predict the out-

come of complex spatiotemporal phenomena.

1.1.1 Statistical model selection

The problem of modelling distributed information processing systems is that of

inferring data-driven statistical models, often in the case where each subsystem

can be viewed as a nonlinear dynamical system. This encompasses many prac-

tical problems of known artificial, biological and chemical systems studied in

ecology [227], neuroscience [203, 245], robotics [26, 86, 260], and various other

fields [32]. By selecting models that allow for a parsimonious representation of

the underlying phenomena, we are able to perform efficient inference and better

understand the physical processes being studied.

Although many complex adaptive systems differ physically, they handle infor-

mation similarly. Distributed computation is, in general, discussed in terms of mem-
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ory, communication, and processing. These primatives are concerned with the storage,

transfer, and modification of information within and between processes [147]. Infor-

mation theory provides a model-free approach to identify and account for these

component operations when selecting an appropriate model. Although these mod-

els are only an approximation to reality, by matching these information primitives

we can perform effective inference in complex environments.

1.1.2 Active perception

When the goal is to model the environment, these models can be improved by

deploying autonomous systems that actively explore the environment and obtain

more relevant information than passively recorded data. For this reason, informa-

tion gathering is a fundamentally important family of problems in robotics that

plays a primary role in a wide variety of tasks, ranging from scene understanding

to manipulation.

Although the idea of exploiting robot motion to improve the quality of infor-

mation gathering has been studied for nearly three decades [16], most real robot

systems today (both single- and multi-robot) still gather information passively. The

motivation for an active approach is that sensor data quality (and hence perception

quality) relies critically on an appropriate choice of viewpoints. This is particularly

the case in complex perception tasks such as object classification, which is known

to be highly viewpoint-dependent [175].

One way to efficiently achieve an improved set of viewpoints is via high fidelity

sensor modelling. This allows for the robot to better predict the quality of future

observations. A major challenge arises in modelling measurement uncertainty in

order to ensure the observations are not too overconfident (leading to an inaccurate

belief) or too underconfident (leading to an imprecise belief).

Another way to improve viewpoint selection is through teams of robots, where

concurrency allows for scaling up the number of observations in time and space.

In multi-agent systems, the main hurdle is to coordinate the behaviour of robots

as they actively gather information, ideally in a decentralised manner.

1.1.3 Multi-agent dynamics

While explicit communication is typically studied within the formulation of robotic

information gathering tasks, the detection and quantification of implicit indirect

interactions in distributed systems remains a challenge. This is primarily due to
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inaccessibility of the logic and neural processing of the team as well as noise in the

environment.

The challenges of distributed control are a result of the shared collective ob-

jectives of a multi-agent system, in which multiple autonomous agents must co-

operate in making distributed decisions towards optimising the overall team ob-

jective. In addition, not all communications occur explicitly within well-defined

channels. Instead, complex multi-agent behaviours involve tacit interactions which

can be characterised by implicit communications, including spatially long-range

interactions with indirect effects. These implicit interactions need to be properly

accounted for within specific feedback control loops.

Furthermore, these dynamics are often constrained by either changing and par-

tially unknown environmental factors or competing objectives of adversaries en-

gaged in directly opposing activities. Multi-robot information gathering is a canon-

ical example of a scenario where latent and (often dynamic) environmental states

influence team dynamics. The complexity of these dynamics is compounded by

adversarial interactions in, e.g., various team sports scenarios, where some of the

interactions cannot be simply reduced to algorithmic details of the agents, being

affected by a multiplicity of concurrent activities.

Many multi-agent tasks, real and virtual, include rich interactions occurring dy-

namically and shaping the course of the contest both locally and globally. While

the interactions within a team are usually constrained by cooperatively shared

plans and tactical schemes, the interactions across the teams are created by op-

posing objectives of competing players. Generally, the interactions vary in strength

spatiotemporally, manifesting some tacit correlations that often are delayed in time

and are long-ranged over the environment.

Thus, distributed control of a multi-agent system – for tasks as wide-ranging as

information gathering to team sports – demands new techniques for identifying

possibilities and features of feedback control loops. For instance, changing team

tactics during a contest requires the team to quickly and coherently detect emer-

gent patterns and regularities, quantify their strength and extent, and evaluate the

potential impact on the overall performance.

1.2 information-theoretic decision making

The concept of information-theoretic decision making is ubiquitous in the study of

distributed and autonomous systems. Entropy is a fundamental utility function for

cooperatively or independently optimising a data stream and, moreover, selecting

statistical models based on the incoming data.
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(c) Partially observable.

Figure 1.1: DBNs for model selection problems. The systems comprise hidden Xn and ob-

served Yn variables. When studying communication of distributed processes,

the objective is to infer the coupling (edges) between subsystems, i.e., recover-

ing the highlighted edges or ascertaining their significance in the transfer of

information.

1.2.1 Information in statistical modelling

One of the most fundamental approaches to inference is the hypothetico-deductive

method [90, 159]. Under this framework, hypotheses are iteratively selected or re-

jected to explain phenomena that are closer to the observed truth. For statistical

models, this closeness is often quantified by the information gained (via the like-

lihood ratio tests) or information lost (via the Kullback-Leibler (KL) divergence)

when considering competing models. Thus, information theory can be used to

reason in statistical inference tasks in general. However, we are more interested

in the specific case of modelling communication and memory within distributed

systems.

Modelling either fully or partially observable systems as probabilistic graphical

models (PGMs) presents a challenge in synthesising these models and capturing

their global properties [32]. Figure 1.1 illustrates canonical stochastic processes

that are represented in this way. The information transfer is illustrated by the in-

terprocess coupling between subsystems (highlighted edges), which causes a flow

of information through the network. The information storage is illustrated by in-

traprocess coupling, which characterises the dependency of subsystem dynamics

on their past.

In many situations, it suffices to model the processes we are studying as Marko-

vian where the state Y is fully observed for each time step. Figure 1.1 illustrate this
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case for first-order 1.1a and second-order 1.1b Markov chains through dynamic

Bayesian networks (DBNs), where the top process is driving the lower process. If

some basic properties of nonlinear systems are satisfied, information theory allows

us to accurately investigate the storage and transfer of data without the need for

a model. For information-theoretic measures to be suitable, the dynamics should

be in steady-state (i.e., the processes are stationary), so that the conditional proba-

bility distributions (CPDs) are homogeneous; furthermore, they should be ergodic,

so that parameter estimates converge to the true values [19, 206, 207]. We draw

on this approach in Chapter 4 and use information-theoretic measures to study

the information dynamics of multi-agent systems. This allows us to quantify indi-

rect interactions without knowledge of the actual algorithms underscoring these

systems.

In other cases, the dynamics are hidden and observed only through a filter. These

systems can be characterised by a transition map (that describes their evolution

over time X) and a read-out function (through which we observe this latent state

to obtain measurements Y). The distributed form of this system is where a set

of of these subsystems is unidirectionally coupled to one another, as is shown

in Fig. 1.1c; in this thesis, models of this type are labelled a partially observable

synchronous graph dynamical system (POSGDS). In general, we can only obtain

estimates of this coupling through approximation procedures such as expectation-

maximisation [66, 128]. However, we show in Chapter 5 that if the dynamics and

measurement maps are generic functions (as per [68, 221, 222, 232]), attractor re-

construction can be used to optimally recover the underlying network. Moreover,

the resulting measures that are used to reveal this network are the same ones that

are commonly used for studying information dynamics in the fully observed case

(i.e., Figs. 1.1a and 1.1b).

1.2.2 Informative path planning

In robotic information gathering tasks, the objective is to find a sequence of view-

points such that uncertainty (entropy) over the environment belief is minimised.

This sequence can be improved by active informative path planning algorithms. In

these algorithms, at each decision step, the robot uses current knowledge to choose

future actions that maximise the information gained about the environment.

Active information gathering can be formulated, in general, as a partially ob-

servable Markov decision process (POMDP) where the reward at each time step is

given by the mutual information between the prior and posterior beliefs. Partial

observability here refers to whether or not the reward can be computed at a given
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Xn−1 Xn Xn+1

Un−1 Un Un+1

Zn−1 Zn Zn+1

Y n−1 Y n Y n+1

Figure 1.2: DBNs for information gathering problems. The robotic systems comprise a (hid-

den or observed) state Xn, control Un, and measurements Zn of some hidden

quantity of interest Yn. The objective is to infer the hidden state Yn+1 or the

entire sequence of hidden states Y−n+1.

time (based on observability of the underlying state). Thus, the problem can often

be simplified to a Markov decision process (MDP) if the robot state is known at any

given instant. Figure 1.2 illustrates this case, where the robot state X, measurement

Z, and actions U are all observed and the main concern is to infer the most recent

value of the hidden variable of interest Y (the highlighted node).

There are many known techniques for solving the general class of MDPs, but

policies are usually computed in advance and executed online (e.g., passive cover-

age algorithms [235]) or learned iteratively (e.g., reinforcement learning [230]). In

order to actively collect data, however, we require efficient algorithms or problem-

specific solutions. Near-optimal greedy approximation algorithms exist for the

special case where the objective function is monotone submodular [211]. Active

information gathering tasks admit this property as long as the energy cost of the

path is not taken into account. For instance, in Chapter 6, we study the problem

of autonomously tracking wildlife with an aerial vehicle. In this scenario, a small

number of observations are able to triangulate the animal and thus we can ignore

the cost of travel between observation locations. The major challenge there is to

robustly handle measurement uncertainty (i.e., sensor modelling).

Multi-robot active information gathering tasks can be formulated as a decen-

tralised variant of POMDPs known as Dec-POMDP [7]. As in the centralised approach,

no efficient distributed planning algorithms exist unless the objective function is

monotone submodular [211]. Although this assumption is valid for problems such

as continuously monitoring particular environments [87], it is not always the case,

particularly in field robotics applications. Approaches such as Monte Carlo tree

search (MCTS) are promising for online planning as they provide long time-horizon

solutions and admit general purpose objective functions. However, the time com-

plexity of tree search problems scales exponentially with the number of robots and
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so we require efficient means for optimising in the joint (team) space. To address

this issue, we present a novel algorithm in Chapter 7 that combines MCTS with prob-

ability collectives [255–257], a game-theoretic approach to distributed optimisation.

1.3 contributions of the thesis

The fundamental contribution of this thesis is a framework to study the memory

and communication of information in fully and partially observable dynamical

systems, coupled with methods to optimise the information gathering of this data

with single-robot and multi-robot systems. We detail the individual contributions

below.

We give a taxonomy of time series analysis and reasoning by collating surround-

ing literature and technical background. This includes a general formulation of

decision rules for model selection and robotic path planning problems.

We provide a framework for quantifying long-range interactions and implicit

communication in multi-agent dynamics. This includes contextualising multivari-

ate transfer entropy and active information storage in terms of network model

selection in order to present a model-free approach to quantifying responsiveness

and rigidity of agents in team scenarios. This facilitates the use of information-

source and information-sink diagrams for identifying driving and driven agents in

team scenarios. Furthermore, by using coherence state-space plots, we show that

information dynamics correlate to collaborative goals of teams. The framework is

experimentally demonstrated on simulated games of robotic soccer.

We mathematically define and investigate the structure learning problem for a

general, distributed dynamical system (the POSGDS model). This includes an analyt-

ical derivation of expected log-likelihood and KL divergence of a POSGDS for model

selection. We further provide a decomposition of KL divergence and log-likelihood

that illustrates their relationship to common information dynamics measures. We

present scoring functions and algorithms for learning the structure of POSGDSs as

well as their computational complexity. Finally, we give experimental validation of

these scoring functions for coupled Lorenz and Rössler attractors.

We present and evaluate an end-to-end robotic system for autonomously per-

forming wildlife telemetry tracking. This system includes a novel lightweight two-

point phased array antenna that yields unambiguous bearing measurements on-

board an aerial vehicle as well as custom electronics to sample and hold the ana-

log output of the receiver. We provide rigorous mathematical derivation of the

range-azimuth sensor model as well as the data fusion and informative path plan-

ning algorithms from first principles. The system is validated to yield accurate (to
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within 30 m) estimates of stationary targets and shown to sufficiently track a com-

mon bird species (noisy miners). Through extensive field trials, we show that the

system is capable of tracking the critically endangered swift parrots and, moreover,

that it performs comparably to human trackers.

Finally, we present a decentralised variant of MCTS (termed Dec-MCTS) for infor-

mation gathering with a team of robots. The original paper was a collaboration

with another PhD candidate, Graeme Best, who initially proposed the general al-

gorithm. The stated contributions to this work in this thesis include a discounted

tree search algorithm for MCTS. This approach is based on the well-known algo-

rithm upper confidence bounds applied to trees (UCT) (the discounted variant be-

ing termed D-UCT) and designed for scenarios where the reward distributions are

changing. We prove that, when D-UCT is used as the tree search policy in MCTS,

the regret at the root node grows logarithmically even while the reward distribu-

tions are changing. We further propose that the distributed optimisation process

of probability collectives converges when combined with an asymptotic, anytime

algorithm such as MCTS.

1.4 structure of the thesis

This thesis is organised in a hierarchical structure. In each contribution chapter, we

investigate decision rules with information-theoretic utility functions. Although

each chapter could be considered under the general framework of decision the-

ory, we divide the thesis into two distinct parts (with two chapters each): one on

model selection and one on planning algorithms. Within each part, we consider au-

tonomous systems from either the physics perspective (i.e., time-invariant systems)

or the computer science perspective (i.e., autonomous agents and multi-agent sys-

tems). Moreover, we are explicitly motivated by distributed systems in each chapter

excluding Chapter 6. Finally, each chapter will start with a short abstract, reiterat-

ing how the chapter contents fit into the thesis narrative. Thus, it is recommended

that each abstract is read in succession (before the body text) to get an idea of the

flow of the thesis.

To provide background on the contributions of the later chapters, Chapters 2

and 3 cover related work and technical details on topics from complex systems

science and robotics. Chapter 2 gives a thorough literature review of the subtopics

covered in each chapter. Specifically, we discuss literature surrounding multi-agent

dynamics, network inference, information gathering, and wildlife telemetry track-

ing. Chapter 3 then introduces necessary mathematical foundations of time series

analysis and reasoning in distributed and autonomous systems. In particular, we
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focus on models for stochastic processes as well as decision rules for model selec-

tion and robotic path planning problems.

In Chapters 4 and 5, we demonstrate the use of information theory in model

selection problems for distributed systems. In Chapter 4 we consider the problem

of studying implicit communication in multi-agent systems. In this context, we are

unable to control the robots, but rather observe their behaviour and make tacit

inferences about their interactions. We take a traditional statistical perspective, as-

suming the observed movement of each robot can be modelled as a finite-order

Markov chain (as in Figs. 1.1a and 1.1b). In Chapter 5 we show that informa-

tion measures can further be used for model selection in distributed nonlinear

systems. We consider distributed dynamical systems whereby a latent state is ob-

served through a filter (Fig. 1.1c). The objective is then to learn the structure of the

system, i.e., the coupling between latent states.

In Chapters 6 and 7, we study robotic information gathering problems, where

the autonomous agents take actions that minimise their uncertainty about the envi-

ronment. The challenge here is to use this formulation to solve specific automation

tasks. In Chapter 6, we present an aerial robot system for tracking small dynamic

animals. We assume the travel cost is negligible in this application and thus can

employ a typical greedy planner and focus on sensor modelling. Chapter 7 extends

this analysis to present a decentralised planning algorithm for active perception,

Dec-MCTS, where we are tasked with maximising information gain but also taking

into account travel cost.

Finally, Chapter 8 concludes the thesis by highlighting the problems and chal-

lenges addressed therein. We discuss future work that would further coalesce the

more traditional study of information measures in complex systems analysis with

the problems faced in robotic active perception tasks.



2R E L AT E D W O R K

2.1 overview

Here we present literature that is relevant to the contributions of this thesis. We be-

gin by introducing information dynamics as a topic of information theory that

focusses on stochastic processes. The various approaches to studying coupling

between complex systems is discussed, from functional connectivity to full mul-

tivariate analysis. This includes various subtopics such as Bayesian network (BN)

structure learning, attractor reconstruction, and dynamic causal modelling (DCM).

We then discuss how the above concepts have previously been applied to multi-

agent systems and swarms. Following this, the problem of robotic information

gathering is introduced. This primarily involves path planning algorithms for the

single-robot and multi-robot case. We then focus on the more specific information

gathering task of automated wildlife telemetry tracking. We motivate the use of

a robotic system to solve this problem by presenting the current state-of-the-art

tracking approaches and conclude the chapter by introducing existing platforms

and algorithms intended for this purpose.

2.2 information dynamics

Information theory is widely regarded as a systematic approach to designing and

studying complex self-organised systems (see the overview in [182]). The field

was originally introduced to assess the compression limits of data in terms of the

most basic computational primitives: storage, transmission, and modification of

information [206]. Traditionally, these concepts are applied to random variables

by computing probability distributions over the outcomes (see [157] for an intro-

ductory course). However, recently, the same logic has been applied to stochastic

processes, where uncertainty can be quantified by considering the (finite or infi-

nite) history of a system. We refer to the framework that explicitly conditions on

the past of a process as information dynamics (after [145, 147, 149, 153]). Due to their

conditional nature, these measures are not only used averaged across the entire re-

alisation of a process, but additionally have meaning when computed pointwise in
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time [151, 153]. The two measures that we use in this thesis are the time-averaged

transfer entropy and active information storage.

Transfer entropy was originally introduced by Schreiber [202] to quantify the

information transfer between nonlinear (finite-order Markov) systems. Schreiber

took a predictive definition of information flow, where he proposed to compute the

(predictive) transfer of data from a source to a target process. An intuitive approach

to capture the temporal flow (i.e., the dynamics) is to compute the information in

the past of a source variable that predicts the future of a target variable; however,

this measure is undirected and thus incomplete [202]. Instead, transfer entropy cap-

tures the dynamics and the direction of information by computing the information

contained in the source about the next state of the target that was not already in the

target’s past. Since its introduction, transfer entropy has found success in numer-

ous fields, e.g., computational neuroscience [146, 245], multi-agent systems [56],

financial markets [201], supply-chain networks [196], and biology [62].

Active information storage was introduced by Lizier et al. [153] to quantify the

intrinsic computation within a system, i.e., the process’ memory. Prior to this work,

existing measures captured related but different storage capacities of a process.

Specifically, statistical complexity [64] quantifies the total storage relevant to the

future of a process. Excess entropy [63] captures the total storage actually used in

the future of a process. Although both the above measures quantify the memory

of a system in time, active information storage measure differs in that it captures

the amount of storage currently in use by a process, rather than that used in the

semi-infinite future. In this sense, it presents a Markovian view of information

storage. Similar to transfer entropy, this measure has been used in computational

neuroscience [74, 249] and biology [160, 247], as well as in the optimisation [67,

183] of artificial systems.

2.2.1 Coherent structure in distributed communications

In general, one of the defining features of complex computation is a coherent infor-

mation structure. This is understood as some pattern or configuration appearing in

a state-space formed by information-theoretic quantities, such as transfer entropy

and excess entropy [152]. These information dynamics state-space diagrams are

known to provide insights which are not immediately visible when the measures

are considered in isolation. One example is a structure for a class of systems (such

as logistic maps) that can be examined by plotting time-averaged excess entropy

versus entropy rate while changing a system parameter [75]. Another example is

a characterisation of complexity of distributed computation within the spatiotem-
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poral dynamics of cellular automata via state-space diagrams formed by transfer

entropy and active information storage of the cellular automata rules [152]. In

this example, each point in the state-space quantifies both the communication and

memory operations of a cellular automaton.

2.3 connectivity analysis for distributed systems

In many cases of practical interest, a complex system can be abstracted into ar-

bitrary subsystems, some of which are statistically independent of one another.

That is, the multivariate state of the system can be modelled by individual sub-

systems whose dynamics are given by set of either discrete-time maps or first-

order ordinary differential equations (ODEs), called a flow. In the discrete-time

formulation, a map can be obtained numerically by integrating differential equa-

tions or recording experimental data (observations) at discrete-time intervals [114].

These types of systems have been studied under several names, including com-

plex dynamical networks [32], distributed dynamical systems [114, 203], master-

slave configurations (or systems with a skew product structure) [124], and coupled

maps [113]. There is significant interest in analysing characteristics such as stability

and synchrony of coupled dynamical systems, however we will restrict our atten-

tion here to the process of learning statistical independences between subsystems.

The seminal work of Granger [95] sparked extensive interest in inferring the

coupling between these types of distributed systems. Inspired by the earlier efforts

of Wiener [253] on the predictability of multivariate stochastic processes, Granger

defined causality in terms of the predictability of one system linearly coupled to

another. This definition is now commonly referred to as Wiener-Granger causal-

ity [35] in order to differentiate the concepts of predictive causality from mecha-

nistic causality (causal effect). Although a mechanistic function describing causal

effect is ideal, inferring such a model is well-known to be intractable without inter-

vening with the data (i.e., physically removing a link between subsystems) [176].

It is possible, however, to obtain an equivalence class of networks with the same

Markov structure [50]. In spite of this knowledge, measures such as transfer en-

tropy have received criticism over spuriously identifying causality [109, 140, 214].

As such, it is important to emphasise that information transfer is not akin to causal

effect [144].

Depending on the specific application, measures of predictive causality can be

used to analyse either directed functional connectivity (used in Chapter 4) or mul-

tivariate connectivity (used in Chapter 5).
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2.3.1 Directed functional connectivity

The concept of functional connectivity refers to recovering statistical dependencies [84].

That is, functional connectivity is concerned with the relationship between pairs

of variables (multiple bivariate analyses), rather than considering the entire mul-

tivariate system. Although functional connectivity often involves undirected con-

nectivity measures, such as Pearson correlation, here we discuss measures that are

inherently directed.

Granger causality is popular for identifying coupling however it assumes a lin-

ear statistical model and is considered insufficient for inferring coupling between

dynamical systems due to inseparability [227]. It was recently shown that Granger

causality is a specific case of transfer entropy, where the variables are assumed

to be are linearly-coupled Gaussian systems (e.g., Kalman models) [18], rather

than generic CPDs. The notion of using transfer entropy to infer functional con-

nectivity has been used extensively in analysis of datasets obtained from neural

recordings [72, 73, 146, 158, 223, 226, 244, 245, 250–252]. However, most of these

results build on the work of Schreiber [202] by assuming the system is composed

of observable finite-order Markov chains.

A more general case is where each subsystem comprises latent dynamics that

are only observed through a filter. A number of measures have been proposed

to infer coupling between distributed dynamical systems based on reconstruction

theorems. Sugihara et al. [227] proposed convergent cross-mapping that involves

collecting a history of observed data from one subsystem and uses this to predict

the outcome of another subsystem. This history is the delay reconstruction map

described by Takens’ Delay Embedding Theorem [232]. Similarly, Schumacher et

al. [203] used the Bundle Delay Embedding Theorem [221, 222] to infer causality

and perform inference via Gaussian processes. Although the algorithms presented

in these papers can infer driving subsystems in a spatially distributed dynamical

system, the results obtained differ from our analysis in Chapter 5 as inference is not

considered for an entire network structure, nor is a formal derivation presented.

2.3.2 Multivariate connectivity

A more involved approach to studying the connectivity of a complex system is to

consider building a network for the full multivariate system. The task of multivari-

ate connectivity analysis can be formalised by the BN structure learning problem.

This task comprises two subproblems: evaluating the fitness of a graph (a scoring

function), and identifying the optimal graph given this fitness criterion (a search
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procedure) [50]. Although BNs are typically assumed static, i.e., the problem in-

volves reasoning over random variables rather than stochastic processes, these

networks have been generalised to represent arbitrary processes known as DBNs.

Unfortunately, even with an accurate scoring function, the problem of structure

learning is NP-complete [51].

The problem of evaluating the fitness of a graph represents similar challenges to

that of developing measures for directed functional connectivity. However, unlike

in function connectivity analysis, these measures must now be conditioned on the

parents of existing variables in a graph to eliminate redundant links. A number

of theoretically optimal techniques exist for the evaluation problem for BNs with

complete data [33, 100, 135], which have been extended to DBNs [81]. However,

this problem is particularly challenging in the case of partially observable systems,

which include both latent and observed variables. With incomplete data such as

this, the common approach in BN structure learning is to resort to approximations

that find local optima, e.g., expectation-maximisation (EM) [81, 91].

In neuroscience, the objective of DCM is to infer the parameters of explicit dy-

namic models that cause (generate) data. In DCM, the set of potential models is

specified a priori, (typically in the form of ODEs) and then scored via marginal likeli-

hood or evidence. The parameters of these models include effective connectivity such

that their posterior estimates can be used to infer coupling among distributed dy-

namical systems [242]. As a consequence these approaches can be used to recover

networks that reveal the effective structure1 of observed systems [174, 218]. In con-

trast, information-theoretic approaches do not require an explicitly specified model

because the scoring function can be computed directly from the data. However, in

Chapter 5, we do employ an implicit model, i.e., that our data are generated by

generic functions, where the subsystems are coupled to create a directed acyclic

graph (DAG).

More recently, researchers have used the additive noise model [107, 178] to in-

fer unidirectional cause and effect relationships with observed random variables

and find a unique DAG (as opposed to an equivalence class). These studies have

been extended by exploring weakly additive noise models for learning the struc-

ture of systems of observed variables with nonlinear coupling [96]. However, the

inference requires the models are differentiable (by e.g., using a Gaussian process

model [107]), and are thus less general.

1 That is, the structure according to the pre-defined set of ODEs.



2.4 multi-agent systems and swarms 15

2.4 multi-agent systems and swarms

In Chapter 4, we study the behaviour of multi-agent systems using information

dynamics. Specifically, we use transfer entropy to build networks of the implicit

interactions between players (i.e., directed functional connectivity analysis), as well

as study the coherent information structure of these players and how it relates

to system performance. This approach is connected to two concepts previously

explored in the literature: studying the information processing of swarms; and

building explicit interaction networks from team dynamics.

2.4.1 Information processing in swarms

Quantitative analysis of information-processing attributes (in particular, swarm-

ing behaviour) is a rapidly expanding cross-disciplinary field, ranging from biol-

ogy [61] and statistical mechanics [29] to swarm engineering [142, 179].

Wang et al. [247] recently used information dynamics to study the information

processing within swarms. Their intention was to quantify information cascades

within a simulated swarm by considering dynamic synchrony in collective motion

of swarm individuals which do not exchange explicit messages [247]. The authors

verify the hypothesis that the collective memory within a swarm can be captured

by active information storage: higher values of storage are associated with higher

levels of dynamic coordination. Furthermore, they show that cascading informa-

tion waves that correspond to long range communications are captured by condi-

tional transfer entropy. In other words, information transfer was shown to charac-

terise the communication aspect of collective computation distributed within the

swarm. A follow-up study compared such collective communications within two

different swarms, one of which had a constraint imposed on the speed of its indi-

viduals [160]. The authors reported that the constrained swarm generated weaker

information cascades and had more difficulties in self-organising into a coherent

state. We build on such advances in Chapter 4 to detect and analyse implicit in-

teractions within and between teams which are undertaking a specific collective

task.

In other work, information transfer in a swarm of fish was quantified as the

normalised angular deviation of group direction, showing that transfer of informa-

tion and decision-making can occur in an animal group without explicit signals

or individual recognition [61]. The maximum entropy model was used to estab-

lish that local pairwise interactions between birds are sufficient to correctly predict

the propagation of order throughout entire flocks of starlings [29]. An intuitive



2.4 multi-agent systems and swarms 16

measure of information flow was used to identify behavioural strategy within sim-

ulated swarms, demonstrating swarm plasticity in response to changing environ-

ments [179].

2.4.2 Networks for team dynamics

Team sports are increasing being analysed using complex systems theory to bet-

ter understand and evaluate performance [1, 246], as well as identify networks

between players. For example, Fewell et al. [77] analysed basketball games as

networks, where players are represented as nodes and passing density as edge

weights: the resulting network captures ball movement, at different stages of the

game. Their work studies network properties (degree centrality, clustering, en-

tropy and flow centrality) across teams and positions, and attempts to determine

whether differences in team offensive strategy can be assessed by their network

properties. Strategic networks considered by the authors include only explicit in-

teractions (such as passes) within a team, and not implicit or spatially long-ranged

interactions, across teams.

Similar analysis was applied in the context of soccer, using passing data made

available by FIFA during the 2010 World Cup [177]. The study constructed a static

weighted directed graph for each team (the passing network), with vertices cor-

responding to players and edges to passes, in order to provide a direct visual

inspection of a team’s strategy. The passing network was visualised by placing the

nodes in positions roughly corresponding to the players’ formation on the pitch,

and enabling and inspection of play patterns, hot-spots and potential weaknesses.

Using different centrality measures, the relative importance of each player in the

game was also inferred. This work, as well as the previous study of Duch et al. [70]

which constructed and analysed networks with one node for shots on target and

one for wide shots, are limited to static passing networks, and again do not reveal

spatially long-ranged interactions across teams.

The multi-player dynamics of a soccer game was recently shown to exhibit self-

similarities in the time evolution of player and ball positioning [120] (i.e., the dy-

namics are similar at a number of temporal scales). Specifically, the persistence

time below which self-similarity holds has been estimated to be a few tens of sec-

onds, implying that the volatility of soccer dynamics is an intrinsic feature of these

games. Taking such volatility into account, the investigation by Vilar et al. [246]

proposed a novel method of analysis that captures how teams occupy sub-areas

of the field as the ball changes location. This study was important in focusing on

the local dynamics of team collective behavior rather than individual player capa-



2.5 information gathering 17

bilities. When applied to soccer (soccer) matches, the method suggested that play-

ers’ numerical dominance in some local sub-areas is a key to “defensive stability”

and “offensive opportunity”. While the method rigorously used an information-

theoretic approach (e.g. the uncertainty of the team numerical advantage across

sub-areas was determined using Shannon entropy), it was not aimed at and did

not produce interaction networks, either explicit or implicit.

2.4.3 Robotic soccer as a case study

In Chapter 4, we use RoboCup 2D Simulation League matches to exemplify our

approach to detecting and quantifying dynamic interactions in a game. During

the last two decades, the RoboCup initiative has essentially superseded chess [42]

and, more recently, Go [209], as a benchmark for artificial intelligence. RoboCup

(the “Robot Soccer World Cup”) was first proposed in 1997 as a standard prob-

lem for the evaluation of theories, algorithms and architectures for artificial in-

telligence, robotics, computer vision, and several other related areas [122], with

the overarching RoboCup goal of developing a team of humanoid robots capable

of defeating the FIFA World Cup champion team (the “Millennium Challenge”).

From the outset of the RoboCup effort it was recognised that RoboCup is different

from the previous benchmarks (chess and Go), in several crucial elements: envi-

ronment (static vs dynamic), state change (turn-taking vs real-time), information

accessibility (complete vs incomplete), sensor readings (symbolic vs non-symbolic),

and control (central vs distributed) [10]. Since 1997, this ambitious goal has been

pursued along two general complementary paths [121]: physical robot league and

software agent (simulation) league [168].

RoboCup 2D Soccer Simulation League specifically targets the research ques-

tion of how the optimal collective dynamics can result from autonomous decision-

making under constraints, set by tactical plans and teamwork (collaboration) as

well as opponents (competition) [40, 127, 163, 187–189, 194, 225, 234, 248]. In an-

swering this question it becomes important to measure the mechanisms for, and

to discover the patterns of, dynamic spatiotemporal interactions between different

players.

2.5 information gathering

The literature presented above is concerned with understanding and modelling

systems where observations are obtained passively (or implicitly). Preferably, how-

ever, we would obtain only useful information about some phenomena in order to
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improve these models. When gathering this information with a robotic system, the

task is to compute a path or trajectory that gathers the most pertinent information;

this problem is known as informative path planning [235].

2.5.1 Single-robot information gathering

The problem of single-robot information gathering has been studied extensively

over the last decade [97]. Informative path planning typically involves optimising

actions of a robot over a limited time-horizon (myopic algorithms) or the entire

sequence of future observations (nonmyopic algorithms). Thus, the general for-

mulation of information gathering can be viewed as a POMDP, where sequential

decision processes in which actions are chosen to maximise an objective function;

this is known to be NP-hard [132].

Under certain assumptions, efficient nonmyopic solutions can be designed by ex-

ploiting problem-specific characteristics. For instance, analysis of submodular set

functions [166] has shown that myopic planning can achieve near-optimal perfor-

mance for entropy reduction problems [133]. That is, this property can be exploited

to obtain an approximately optimal sequence of actions for a single-robot system

by greedily selecting the most informative viewpoints at each decision step. Un-

fortunately, however, this is not suitable in all scenarios, e.g., when the objective

function also takes into account the path cost. As a result such approaches are

unsuitable when resources such as time or energy is constrained (e.g., search and

rescue missions). Occasionally, the full nonmyopic solution can be computed op-

timally [25, 28] or approximated with little loss in performance [47], even when

including such a path cost. However, in general these approaches are not applica-

ble.

For developing general nonmyopic solutions online, MCTS is a promising ap-

proach because it efficiently searches over long planning horizons and is any-

time (i.e., reasonable solutions can be generated before a computational budget

is reached) [38]. In this approach, a tree is incrementally expanded from the cur-

rent state, and while it does consider long planning horizons, actions in the near

future are visited more often by the search. MCTS has the advantage of being any-

time, which is useful in time-critical applications. Moreover, the algorithm has also

been extended to partially observable environments [210]. The algorithm has been

proposed in many different forms [38] but by far the most common is the UCT algo-

rithm [125, 126]. The UCT algorithm performs an asymmetric expansion of a search

tree using a best-first policy that generalises the UCB1 policy for multi-armed ban-

dit (MAB) problems [11]. This expansion policy provides theoretical guarantees for



2.5 information gathering 19

a polynomial bound on regret and therefore is said to balance between exploration

(of unknown but potentially optimal paths) and exploitation (of currently promis-

ing paths). Several variants to UCT have been proposed, such as for exploiting

smoothness of the reward function [60].

In the above approaches, a discrete set of future actions were assumed to be

known a prior. For large or continuous configuration spaces, sampling-based meth-

ods are beginning to be explored [104] for information gathering. These methods

typically involve taking samples from the configuration space and testing them for

optimality with respect to a local planner.

In Chapter 6, we specifically study the problem of wildlife tracking with a

unmanned aerial vehicle (UAV). In this scenario, we are able to exploit submod-

ularity since localisation requires a small number of good quality observations,

and thus path cost is ignored. This result is not considered a major contribution,

since many challenges have been addressed specifically for UAVs path planning

problems [103, 123, 167, 200, 212, 236]. The problem of information gathering with

a UAV has further been studied using formal methods [262, 263] and multi-UAV

constrained search [86].

2.5.2 Decentralised information gathering

The problem of informative path planning in a decentralised manner is compounded

because the search space grows exponentially with the number of robots. Similar

to single-robot information gathering, the general problem is a Dec-POMDP, and

is also NP-hard. Thus, decentralised coordination in these problems is typically

solved by maximising the objective function myopically [86, 260]. Unfortunately,

the quality of solutions produced by these methods can be arbitrarily poor in the

general case. The concept of exploiting submodularity of the objective function

has led to considerable interest in their application to information gathering with

multiple robots [87, 211]. As with the single-robot scenario, however, while these

methods provide theoretical guarantees, they require a submodular objective func-

tion, which is not applicable in all cases.

As mentioned in Sec. 2.5.1, MCTS is promising for online planning, however it

has not been extended for decentralised multi-agent planning, and that is our focus

in Chapter 7. A key component of our proposed Dec-MCTS algorithm is a novel,

discounted UCT variant, D-UCT, that accounts for a changing reward distribution by

using a new expansion policy that generalises a MAB policy designed for switching

bandit problems [88], i.e., problems where the reward distribution is changing.
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MCTS is parallelisable [48], and various techniques have been proposed that split

the search tree across multiple processors and combine their results. In the multi-

robot case, the joint search tree interleaves actions of individual robots and it re-

mains a challenge to effectively partition this tree. A related case is multi-player

games, where a separate tree may be maintained for each player [12]; however, a

single simulation traverses all of the trees and therefore this approach would be

difficult to decentralise. We propose a similar approach, except that each robot per-

forms independent simulations while sampling from a locally stored probability

distribution that represents the other robots’ action sequences.

As mentioned above, MCTS algorithms have been extended for problems with

partial-observability, such as the POMCP [210] and DESPOT [215] algorithms, and

Dec-MCTS could be extended in a similar way. In Chapter 7, however, we focus our

attention on reasoning over the unknown plans of the other robots, while assuming

other aspects of the problem are fully observable. The decentralised information

gathering problems we consider are not Dec-POMDP but our algorithm is general

enough to be extended to problems with partial observability.

Coordination between robots is achieved in Dec-MCTS by combining MCTS with

a framework that optimises a product distribution over the joint action space in a

decentralised manner. Our approach is analogous to the classic mean-field approx-

imation and related variational approaches [193, 261]. Variational methods seek to

approximate the underlying global likelihood with a collection of structurally sim-

pler distributions that can be evaluated efficiently and independently. These meth-

ods characterise convergence based on the choice of product distribution, and work

best when it is possible to strike a balance between the convergence properties of

the product distribution and the KL divergence between the product and joint dis-

tributions. As discussed in the body of work on probability collectives [255–257],

such variational methods can also be viewed under a game theoretic interpretation,

where the goal is to optimise each agent’s choice of actions based on examples of

the global reward/utility function. The latter method has been used for solving the

multiple travelling salesman problem in a decentralised manner [134]; we propose

a similar approach, but we leverage the power of the MCTS to select an effective

and compact sample space of action sequences.

2.6 wildlife telemetry tracking

An important application of information gathering is environmental monitoring, which

typically involves robots acting in the field and thus handling a high level of un-
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certainty. In Chapter 6, we present an autonomous system for the purpose of un-

derstanding the movement patterns of critically endangered birds.

The problem of tracking small radio-tagged animals using an autonomous and

lightweight aerial robot has recently gained interest in a variety of academic com-

munities. Conservation management of certain critically endangered species relies

on the process of detecting and tracking the position of individual animals in the

wild [108, 116, 165]. Aerial robot systems can access rugged areas that are difficult

for humans to traverse, and thus are viewed as a potentially revolutionary tool for

data collection in wildlife ecology [45, 94]. However, this potential remains largely

unrealised. Robot systems have yet to achieve a level of tracking accuracy and

speed that is sufficient to legitimise their role as a replacement for human trackers.

Despite recent advances in automated wildlife telemetry tracking, very little is

known about the movement of small, dynamic migratory species, of which many

have reached critically endangered status. For large to medium animals, the minia-

turisation of GPS tags with remote data readout has facilitated a dramatic increase

in understanding the movements of a diversity of species [173, 267]. Methods such

as satellite telemetry have far reaching applications from investigating migration

routes and wintering areas of large migratory birds [21, 118, 171] to studying the

dynamics of aquatic predators [31, 181]. Unfortunately, these approaches are still

only suitable for about 70% of bird species and 65% of mammal species [116]. In

the case of smaller species that return to the same breeding areas seasonally, minia-

ture non-transmitting data loggers can be used [116]; however, retrieving this data

requires relocating the animals in situ. Due to this challenge, VHF tracking has

become one of the most useful techniques in ecology and management [36]. This

involves instrumenting animals with small radio transmitters and subsequently

tracking the target species. Although scientists have been using VHF tracking since

the early 1960s [155], data yielded by this approach is sparse due to the manual

labour involved [116]. Thus, researchers are more frequently exploiting the abun-

dance of low-cost UAVs for this type of conservation management and wildlife

monitoring [45, 94].

2.6.1 Robotic tracking

In recent years, there has been increased interest in end-to-end wildlife telemetry

tracking with robotic systems [45], where the robot moves autonomously to track

a live target animal. The usefulness of these systems, however, is yet to be proven

in direct performance comparison to the traditional manual approach. Most no-

tably, ongoing research is aimed at tracking radio-tagged carp in Minnesotan lakes
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using autonomous surface vehicles (ASVs) on the water and mobile ground vehi-

cles (MGVs) when the lake is frozen [20, 106, 169, 237, 238, 243]. While this project

has yielded seminal work in the field, the use of ground and surface vehicles is

untenable for wildlife situated in rugged habitats.

Small aerial robots such as multirotor platforms are suitable for wildlife tracking

because they are easy to deploy and can fly over terrain that is difficult to access on

foot, potentially reducing localisation time from hours in the manual case to tens

of minutes. Further, small aerial robots can operate from sufficient distance to not

disturb wildlife. However, it is difficult to design and model a high-performance

antenna system that is light enough to be carried by such systems. Popular loop

aerials [106, 237] are known to be inefficient, especially for low frequency signals.

Standard horizontally-mounted directional antennas [129, 180] are affected by UAV

rotors which cause unpredictable irradiance. As a consequence we designed and

built a novel lightweight antenna for use on-board a UAV. This hardware yields

unambiguous bearing-only observations and is shown to be sufficiently sensitive

for our field experiments.

The majority of research in radio tracking with an aerial vehicle focuses on iso-

lated subsystems. Although these systems are typically motivated by the idea of

tracking small animals (e.g., bird [69, 129, 136, 180] and fish species [111, 112]),

only simulations or prototypes are presented with limited field testing. Alterna-

tively, when tracking a relatively stationary target, the observations can be consid-

ered more robust and thus attention in this field has shifted to optimising planning

for single [20, 106, 169] or multi-robot systems [243]. The main assumption the au-

thors make is that the sequential observations are homoscedastic, meaning that the

uncertainty over each measurement is constant or bounded. However, with a spo-

radic and unpredictable live target, this assumption is violated due to the resulting

wide spectrum of observation quality from noisy to precise. As we show later, this

induces heteroscedastic observations, where the uncertainty varies with every obser-

vation. Failing to distinguish between low and high quality observations can lead

to overconfident measurements that cause spurious location estimates, or to highly

uncertain location estimates that are of little value.

A mathematically valid observation model is also critical in planning the motion

of the robot to improve the location estimate. In robotics this general problem is

known as active perception [16, 17] and introduces a coupling between data collec-

tion and planning. The idea of passively locating transmitting radio sources has

been investigated in operations research motivated by search and rescue missions

where stationary distress beacons must be recovered rapidly. Hence, the task is

a coverage problem solved via offline strategies with an emphasis on minimising

path cost over the entire area or teleoperated by humans [143]. Alternatively, when
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the wildlife habitat is known and bounded, sensor networks can be placed in or-

der to precisely track the animals location [41, 117]. In our case, we require fast,

precise estimates without intervention and thus employ active strategies where the

observation quality relies crucially on an appropriate sequence of viewpoints [175].

Our objective is reduce uncertainty (entropy) of the target location; thus, the task

of actively tracking targets falls under informative path planning (see Sec. 2.5).

The problem of designing an online estimator for radio localisation and tracking is

well studied [137–139], with emphasis on ground-based systems and an assumed

sensor model. Moreover, extensive research in online estimation is coupled with

optimal sensor placement and planning in [80] and [103].

2.7 summary

This chapter presented methods for studying the communication and storage of

multivariate processes (from data). Following this, we introduced numerous meth-

ods designed to optimise the quality of a data stream via robotic systems. In doing

so, we have presented a comprehensive survey on the multidisciplinary subject

of information-theoretic reasoning by various covering topics from robotics, dis-

tributed optimisation, and complex systems science. In the next chapter we will

elaborate on some of these approaches by providing technical details on time se-

ries analysis and decision rules for selecting models and informative paths.



3B A C K G R O U N D O N T I M E S S E R I E S M O D E L L I N G A N D

D E C I S I O N T H E O RY

3.1 overview

This chapter provides the technical background and nomenclature used through-

out this thesis. We first describe the two main perspectives on time series analysis:

applied statistics and physics (with a particular emphasis on attractor reconstruc-

tion theorems). We then introduce information theory for stochastic processes as a

means for quantifying uncertainty, given the realisation of the process (data). Fol-

lowing this, using the framework of decision theory, we formally introduce the two

main concepts studied in this thesis: model selection and planning under uncer-

tainty. Finally, we present DBNs and discuss learning their network structure from

data.

3.2 nomenclature

We draw on both complex systems and robotics literature in this thesis and thus

occasionally use conflicting nomenclature. In general, we consider multivariate

time series generated by a discrete-time stochastic process, the convention is that

(·) denotes a sequence, {·} a set, and 〈·〉 a vector. We follow typical statistics

notation in that upper case letters denote stochastic variables and lower case letters

are the associated realisations of these variables.

Given a distributed system, the process Z is typically abstracted into M com-

ponents (often termed subsystems)1, i.e., Z = {Z1, . . . , ZM}. Each subsystem pro-

cess Zi comprises a sequence of random variables (Zi
1, . . . , Zi

N) with realisation

(zi
1, . . . , zi

N) for countable time indices n ∈ N. We use bold to denote any variable

that is non-scalar (or unspecified) and will often marginalise out indices if it is clear

based on context, e.g., zn = {z1
n, . . . , zM

n } is the collection of M realisations at in-

dex n. In general, functions will not be bold regardless of their output dimension,

this includes parameters or parameter sets (typically being functions of random

variables themselves).

1 These components are typically multivariate and of arbitrary dimension abstracted from context

(e.g., robots in a multi-robot system or regions in an fMRI scan).
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In Chapters 4 and 5, we use the standard DBN notation [164]. That is, X i
n is a

latent (hidden) variable, Y i
n is an observed variable, and Zi

n is an arbitrary variable;

here, Zn = {Xn, Yn} is the set of all hidden and observed variables at temporal

index n.

In Chapters 6 and 7, we use the standard robotics notation that Xn is the robot

state and Yn is the quantity of interest. This is historically due to the fact that

certain robotics applications do not assume complete knowledge of the state or

consider the robot position to be intrinsic to the environment that they are observ-

ing [235]. In our work, however, it is notationally clearer to distinguish the robot

state from the environment state (e.g., the animal or object of interest).

Finally, we typically use p(Z) to denote a probability distribution over an arbi-

trary random variable Z, i.e., p(z) = p(Z = z). If necessary, we will use pθ(Z)

to specify that the distribution depends on some set of parameters θ. These pa-

rameters are often learned, e.g., via maximum likelihood or density estimation

techniques [130, 131].

3.3 time series analysis

The traditional school of thought on time series analysis views the data as sample

paths of a stochastic process and is a branch of applied statistics. In this framework,

the mechanisms for generating the process are typically assumed arbitrary and

the focus is on modelling the distributions over the dynamics. In physical systems,

however, we sometimes have models of mechanistic functions that describe some

phenomena over time such that the time series can be considered a distorted real-

isation of this behaviour. When viewed under the physics paradigm, a dynamical

system is often used to define the rule for the evolution of the state [205].

In the statistics perspective, measurements are associated with a random vari-

able Zn that defines a distribution over the outcomes at time n. A stochastic pro-

cess is a sequence of these variables (Zn) where n is in the index set (typically a

subset of the real line). A single outcome of this sequence of variables is called

the realisation or sample path (zn). To describe models of how these processes are

generated, we follow the state space representation.

The state xn is a point in some state-space M (or phase space, in dynamical sys-

tems literature). In discrete time, the evolution of this state is described by a map

f :M×M×N→M, so that the sequence of states (xn) is given by

xn+1 = fn(xn, ωn), n ∈N, (3.1)
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where, as implied, the map fn can depend on time n and a sequence of independent

variables (ωn). In continuous time, the map is replaced by a flow ϕ : M×M×
R→M that describes the rate of change of the state

ẋt = φt(xt, ωt), t ∈ R, (3.2)

where the flow can change over time. In this thesis we focus mainly on the discrete-

time definition (3.1), which can be given by simulation, obtained from (3.2) by

integrating the flow, or by sampling a physical system at discrete time intervals. In

this framework, the future of xn is fully determined by the current state and rule. In

statistical nomenclature, this is referred to as a Markov process and is characterised

by the following independence:

p (Xn+1 = xn+1 | xn, ωn, . . . , x0, ω0) = p (Xn = f (xn, ωn) | xn, ωn) . (3.3)

That is, in physics literature, the Markov property is a direct result of the definition

of state. We will assume that fn is time-invariant (autonomous), i.e., the probability

distributions in (3.3) are homogeneous.

In many situations of practical interest, we only have access to a filtered repre-

sentation of the state, i.e., we observe yn in some measurement space N , which is, in

general, a noisy, nonlinear function of the state

yn = ψ(xn, εn). (3.4)

Here, ψ : M×N is called the measurement function2 that distorts the observation

by some noise process (εn).

The typical objective of time series analysis is thus, given the sequence of ob-

servations (yn), determine the phase space M, dynamics f , observation function

ψ, and noise processes [205, 232]. In theory this is achievable, however, no gen-

eral framework has yet been developed. As a result, the study of time series relies

on making assumptions about these quantities, predicting the outcomes based on

these hypothesises, and validating these predictions for plausibility.

The traditional statistics approach to time series analysis was to assume sta-

tionary processes, whereas physics and economics allowed for a degree of non-

stationarity. Around the 1970s, these two efforts were combined with methods

such as ARIMA, which accounted for the autoregressive (AR), integrated (I), and

moving average (MA) components of a time series [34].

Around this time, Lorenz developed a mathematical model for weather forecast-

ing [156]. When simulating this simple nonlinear system, he recognised that small

changes in initial conditions can dramatically affect the later state of the system.

2 We sometimes refer to the measurement function as the read-out function or filter.
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As a result, a new branch of mathematics emerged known as chaos theory (often

referred to these days as nonlinear time series analysis [114]). This indicated that

methods such as ARIMA are not applicable to these systems. However, in certain

cases, we can exploit our a priori knowledge of the system ( f , ψ) to perform time

series analysis.

3.3.1 The nonlinear approach

Shortly afterward, Takens [232] produced seminal results in reconstructing the

phase space of a dynamical system, given only the observed sequence. In doing so,

he founded embedding theory: the study of inferring the (hidden) state xn ∈ M of a

dynamical system from a sequence of scalar observations yn ∈ R. This section will

cover reconstruction theorems that define the conditions under which we can use

delay embeddings for recovering the original dynamics f from this observed time

series.

In order to introduce this theory, we require some additional notation for embed-

ding a time series with a time delay. For process Y = (Y1, . . . , YN) with realisation

y = (y1, . . . , yN), we define a delay vector Ψκ
τ,n :M→ Rκ that maps the realisation

of the the process at a given time to a vector:

Ψκ
τ,n(y) := (yn, yn−τ, yn−2τ, . . . , yn−(κ−1)τ),

for some time delay τ ∈ N and embedding dimension κ ∈ N (the embedding parame-

ters). To simplify notation, we will assume the time delay τ = 1; however, the case

of arbitrary τ can be treated equivalently. Henceforth, we drop the time delay sub-

script and let Ψκ
n(y) = Ψκ

1,n(y). For a collection of M processes Y = {Y1, . . . , YM}
with realisation y = {y1, . . . , yM}, let

Ψ{κi}
n (y) := (Ψκ1

n (y1), . . . , ΨκM
n (yM)),

where the set {κi} = {κ1, . . . , κM}. Occasionally, it will be more convenient to use

a specific scalar value, e.g., Ψk
n(y) to denote a constant embedding of k for all

processes, i.e., κ1 = k, κ2 = k, . . . , κM = k.

In differential topology, an embedding refers to a smooth map Φ : M → N
between manifolds M and N if it maps M diffeomorphically onto its image. In

Takens’ seminal work on turbulent flow [232], he proposed a map Φ f ,ψ :M→ Rκ,

that is composed of delayed observations, can be used to reconstruct the dynamics

for typical ( f , ψ). That is, fix some κ (the embedding dimension) and τ (the time

delay), the delay embedding map, given by

Φ f ,ψ(xn) = y(κ)
n = (yn, yn+τ, yn+2τ, . . . , yn+(κ−1)τ), (3.5)
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is an embedding. Here, we have introduced the shorthand notation y(κ)
n which will

be used commonly throughout this thesis. More formally, denote Φ f ,ψ, Dr(M,M)

as the space of Cr-diffeomorphisms on M and Cr(M, R) as the space of Cr-

functions onM, then the theorem can be expressed as follows.

Theorem 3.1 (Delay Embedding Theorem for Diffeomorphisms [232]). LetM be a

compact manifold of dimension d ≥ 1. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open

and dense set ( f , ψ) ∈ Dr(M,M)×Cr(M, R) for which the map Φ f ,ψ is an embedding

ofM into Rκ.

The implication of Theorem 3.1 is that, for typical ( f , ψ), the image Φ f ,ψ(M)

of M under the delay embedding map Φ f ,ψ is completely equivalent to M itself,

apart from the smooth invertible change of coordinates given by the mapping Φ f ,ψ.

An important consequence of this result is that we can define a map F = Φ f ,ψ ◦ f ◦
Φ−1

f ,ψ on Φ f ,ψ, such that y(κ)n+1 = F(y(κ)n ) [220]. That is, the bound for the open and

dense set referred to in Theorem 3.1 is given by a number of technical assumptions.

Denote (D f )x as the derivative of function f at a point x in the domain of f . The

set of periodic points A of f with period less than τ has finitely many points. In

addition, the eigenvalues of (D f )x at each x in a compact neighbourhood A are

distinct and not equal to 1.

Theorem 3.1 was established for diffeomorphisms Dr; by definition the dynam-

ics are thus invertible in time. So the time delay τ in (3.5) can be either positive

(delay lags) or negative (delay leads). Takens later proved a similar result for en-

domorphisms, i.e., non-invertible maps that restricts the time delay to a negative

integer. Denote by E(M,M) the set of the space of Cr-endomorphisms onM, then

the reconstruction theorem for endomorphisms can be expressed as the following.

Theorem 3.2 (Delay Embedding Theorem for Endomorphisms [233]). Let M be a

compact d dimensional manifold. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open and

dense set ( f , ψ) ∈ Dr(M,M)×Cr(M, R) for which there is a map πκ : Xκ →M with

πκΦ f ,ψ = f κ−1. Moreover, the map πκ has bounded expansion or is Lipschitz continuous.

As a result of Theorem 3.2, a sequence of κ successive measurements from a sys-

tem determines the system state at the end of the sequence of measurements [233].

That is, there exists an endomorphism F = Φ f ,ψ ◦ f ◦ Φ−1
f ,ψ to predict the next ob-

servation if one takes a negative time delay (lead) τ in (3.5).

In Chapter 5, we consider two important generalisations of the Delay Embedding

Theorem for Diffeomorphisms 3.1. Both of these theorems follow similar proofs to

the original and have thus been derived for diffeomorphisms, not endomorphisms.

However, encouraging empirical results in [203] support the conjecture that they
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can both be generalised to the case of endomorphisms by taking a negative time

delay, as is done in Theorem 3.2 above. This would allow for not only distributed

flows that are used in Chapter 5, but endomorphic maps, e.g., the well-studied

coupled map lattice structure [154].

The first generalisation is by Stark et al. [220] and deals with a skew-product

system. That is, f is now forced by some second, independent system g : N → N .

The dynamical system onM×N is thus given by the set of equations

xn+1 = f (xn, ωn) (3.6)

ωn+1 = g(ωn). (3.7)

In this case, the delay map is written as

Φ f ,g,ψ(x, ω) = (yn, yn+τ, yn+2τ, . . . , yn+(κ−1)τ), (3.8)

and the theorem can be expressed as follows.

Theorem 3.3 (Bundle Delay Embedding Theorem [220]). Let M and N be compact

manifolds of dimension d ≥ 1 and e respectively. Suppose that κ ≥ 2(d + e) + 1 and the

periodic orbits of period≤ d of g ∈ Dr(N ) are isolated and have distinct eigenvalues. Then,

for r ≥ 1, there exists an open and dense set of ( f , ψ) ⊂ Dr(M×N ,M)× Cr(M, R)

for which the map Φ f ,g,ψ is an embedding ofM×N into Rκ.

Finally, all theorems up until now have assumed a single read-out function for

the system in question. Recently, Deyle et al. [68] showed that multivariate map-

pings also form an embedding, with minor changes to the technical assumptions

underlying Takens’ original theorem. That is, given M ≤ 2d + 1 different observa-

tion functions, the delay map can be written as

Φ f ,{ψi}(x) = (Φ f ,ψ1(x), Φ f ,ψ2(x), . . . , Φ f ,ψM(x)), (3.9)

where each delay map Φ f ,ψi is as per (3.5) for individual embedding dimension

κi ≤ κ. The theorem can then be stated as follows.

Theorem 3.4 (Delay Embedding Theorem for Multivariate Observation Functions [68]).

Let M be a compact manifold of dimension d ≥ 1. Consider a diffeomorphism f ∈
Dr(M,M) and a set of at most 2d + 1 observation functions {ψi} where each ψi ∈
Cr(M, R) and r ≥ 2. If ∑i κi ≥ 2d + 1, then, for generic ( f , {ψi}), the map Φ f ,{ψi} is an

embedding.

3.4 information theory

Information theory was originally introduced by Claude Shannon for the purposes

of basic signal processing and investigating the limits of data compression [206,
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207]. We will first introduce the fundamental information-theoretic measures, and

then discuss quantities used for studying information dynamics of distributed

computation that are used in Chapters 4 and 5 of this thesis.

3.4.1 Entropy and KL divergence

Consider an observed random variable X. The entropy quantifies the amount of

uncertainty over the outcome x of that random variable:

H(X) = −∑
x

p(x) log p(x)

= E [− log p(X)] . (3.10)

The uncertainty of these outcomes may be reduced depending on the outcome

of another (observed) random variable Y . All logarithms in this thesis are taken

by convention in base 2, giving the units of entropy (3.10) and quantities in bits.

To quantify this notion, the conditional entropy H(X | Y) then represents the un-

certainty of X after taking into account the outcomes of another random variable

Y :

H(X | Y) = −∑
x,y

p(x, y) log p(x | y)

= E [− log p(X | Y)] . (3.11)

Moreover, in order to capture the mutual dependence (nonlinear correlation) be-

tween these two variables, we define the mutual information as

I(X; Y) = E
[
− log

p(X | Y)
p(X)

]
= H(X)− H(X | Y). (3.12)

Another fundamental concept in information theory that we will use is the KL

divergence. Given two probability distributions p and pθ defined over the same

sample space, the KL divergence from pθ to p is

DKL [p ‖ pθ ] = −∑
x

p(x) log
pθ(x)
p(x)

(3.13)

= E
[
− log

pθ(X)

p(X)

]
(3.14)

Typically, information-theoretic quantities can be defined in terms of the KL diver-

gence. For example, Shannon entropy (3.10) can be expressed as the KL divergence

of p from the uniform distribution plus a constant. As a result, KL divergence is

often referred to as relative entropy or information gain, depending on context.
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The above measures can be defined over either sequences of random variables

z, or simply the variables themselves zn. In the next section we are specifically

concerned with measures applied to a sequence of variables.

3.4.2 Information dynamics of distributed systems

The following measures are, in general, used to investigate the information dy-

namics of distributed computation [147] where the processes are assumed to be

stationary. For notational convenience, each subsystem process Y i below is consid-

ered univariate with realisation Yi
n ∈ R, however the measures described gener-

alise to variables of arbitrary dimension (see, e.g., [46, 73, 146, 150]).

One of the most intuitive information measures for stochastic processes is excess

entropy [63], which indicates the amount of predictability of the future of a process

from its past (thus, it is sometimes referred to as predictive information). Consider

the process Y i, the excess entropy of this process is quantified by the mutual infor-

mation between the (semi-infinite) past y−n = (y1, . . . , yn) and the (semi-infinite)

future y+
n = (yn+1, . . . , yN) of a system:

EY = E
[

log
p(Y+

n , Y−n )
p(Y+

n )p(Y−n )

]
= I(Y+

n ; Y−n ) (3.15)

= H(Y+
n )− H(Y+

n | Y−n ). (3.16)

Alternatively, if the system is assumed κ-order Markov, we can consider a finite

history length:

EY(κ) = E

[
log

p(Yn, Y (κ)
n )

p(Yn)p(Y (κ)
n )

]
= I(Yn+1; Y (κ)

n ) (3.17)

= H(Yn+1)− H(Yn+1 | Y (κ)
n ). (3.18)

Here, as in the previous section, the shorthand notation Y (κ)
n = (Yn, Yn−1, . . . , Yn−κ+1),

i.e., the sequence of κ previous values taken by random vector/variable Yn. All re-

maining information measures can be computed in this way and, in this thesis, we

will remove the dependence on κ unless it is necessary.

For univariate processes, the active information storage AY quantifies the informa-

tion storage component that is directly in use in the computation of the next value

of a sequence [153]. More precisely, active information storage is the average mu-
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tual information between the (semi-infinite) past state of the process and its next

value:

AY i = E

[
log

p(Yi
n+1 | Y i,−

n )

p(Yi
n+1)

]
(3.19)

= I(Yi
n+1; Y i,−

n ) (3.20)

= H(Yi
n+1)− H(Yi

n+1 | Y i,−
n ). (3.21)

As was the case in quantifying excess entropy, we can assume a finite Markov-order

AY i(κ). Active information storage is thus a specific case of excess entropy (3.15),

whereby the process is modelled as κ-order Markov. The implications of applying

one measure over the other is discussed in Sec. 2.2.

Transfer entropy is designed to detect asymmetry in the interaction of subsystems

by distinguishing between “driving” and “responding” elements [202]. Specifi-

cally, transfer entropy captures information transmission from a source (or mul-

tiple source) Y j process(es) to a destination (or multiple destination) Y i process(es)

as the average information provided by the source variable(s) Y−n about the next

destination variable Yi
n+1 in the context of the past state of the destination Y j,−

n [151,

202]. Transfer entropy is computed as:

TY j→Y i = E

[
log

p(Yi
n+1 | Y i,−

n , Y j,−
n )

p(Yi
n+1 | Y i,−

n )

]
(3.22)

= I(Yi
n+1; Y j,−

n | Y i,−
n ) (3.23)

= H(Yi
n+1 | Y i,−

n )− H(Yi
n+1 | Y i,−

n , Y j,−
n ). (3.24)

Again, in practice one can consider finite-κ history TY j→Y i(κ).

It is important to realise that information transfer between two variables does

not require an explicit communication channel, it rather indicates a high degree of

directional synchrony or nonlinear correlation between the source and the destina-

tion. It characterises a degree of predictive information transfer, i.e., “if the state of

the source is known, how much does that help to predict the state of the destina-

tion?” [151].

Sometimes it is useful to condition the local information transfer on another

contributing process Yk. This results in the conditional transfer entropy [145, 151]:

TY j→Y i |Yk = E

[
log

p(Yi
n+1 | Y i,−

n , Y j,−
n , Yk,−

n )

p(Yi
n+1 | Y i,−

n , Yk,−)

]
(3.25)

= I(Yi
n+1; Y j,−

n | Y i,−
n , Yk,−

n ) (3.26)

= H(Yi
n+1 | Y i,−

n , Yk,−
n )− H(Yi

n+1 | Y i,−
n , Y j,−

n , Yk,−
n ). (3.27)

where TY j→Y i |Yk(κ) denotes the κ-order Markov assumption.
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Finally, stochastic interaction measures the complexity of dynamical systems by

quantifying the excess of information processed, in time, by the system beyond

the information processed by each of the subsystems [13–15, 71]. The stochastic

interaction of the collection of processes Y is computed as:

SY = E

[
log

∏i p(Yi
n+1 | Y i,−

n )

p(Yn+1 | Y−n )

]
(3.28)

= −H(Yn+1 | Y i,−
n ) +

M

∑
i=1

H(Yi
n+1 | Y i,−

n ), (3.29)

Or SY(κ) under the κ-order Markov assumption. Although, the original definition

assumes a first-order Markov process [13, 15], we first introduce it above for the

(semi-infinite) past.

The measures introduced in this section can be temporally localised in order to

trace the information dynamics over time, e.g. for identifying peaks during specific

moments (see [149]). However, in this thesis, we only use the average quantities.

3.5 decision rules for model selection and planning

The problems of model selection and planning both fall under the general formu-

lation of decision theory. The following description of decision rules is not derived

from any one place but a combined view of statistical inference [128, 157] and

planning under uncertainty [235].

Given an observable random variable (or stochastic process) Z ∈ Z , determined

by a parameter θ ∈ Θ, and a set U of possible actions, a decision rule is a function

π : Z → U . For model selection, the set of actions are the parameter space, i.e., U =

Θ. For developing a policy in robotic path planning, the actions are generally the

next configuration U ⊆ Rd in some d-dimensional configuration space. Decision

rules π involve minimising some loss function L generally of the form:

π(Z) = arg min
u∈U

max
θ∈Θ
L(θ; u), (3.30)

π(Z) = arg min
u∈U

EΘ[L(θ; U)], (3.31)

or,

π(Z) = arg min
u∈U

L(θ; u) (3.32)

subject to θ ⊂ Θ.

Here, (3.30) is the minimax loss function, (3.31) is the expected loss function;

and (3.32) is the loss function within a subset of the parameter space. In this thesis

we use the expected loss (3.31) in Chapters 4-6 and the bounded loss (3.32) in

Chapter 7.
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3.5.1 Model selection

In model selection we are interested in selecting a statistical model from a candi-

date set of models, given data. The general problem is that of selecting a parameter

(or set of parameters) θ∗ that minimises a loss function L(θ; z), given data z:

θ∗ = arg min
θ

L(θ; z).

Most model selection approaches are based on either information theory or

Bayesian statistics.3 In the context of information theory, an established technique

is to evaluate the encoding length of the data, given the model [3, 43, 195]. The

simplest model should aim to minimise code length [135]. In this formulation, the

problem is to minimise the KL divergence of the data from the model. In contrast,

the Bayesian approach is to place a prior on the graph and compute the posterior

probability, instead of looking at the information gain over a null hypothesis.

As a starting point, consider the simplest loss function: the likelihood of the

model, given data pθ(z) = p(z | θ). Since it is often easier to work in log-space,

we instead use the log-likelihood L(θ; z) = log pθ(z) and negate it to make a loss

function L(θ; z) = −L(θ; z). Given the data z are generated by random variables Z,

the log-likelihood is a random quantity and we are thus interested in the expected

value. This equates the negative log-likelihood loss function with entropy:

L(θ; z) = EZ[−`(θ; Z)]

= H(Z).

Alternatively, the KL divergence loss function is defined as:

L(θ; z) = DKL [p(Z) ‖ pθ(Z)]

= H(Z)− EZ [log pθ(Z)] .

The minimum information loss is the uncompressed dataset, and thus minimising

these functions will always lead to overfitting. Hence, it is common to regularise or

penalise the loss function according to the number of parameters d(θ) and features

of the dataset c(z), e.g.,

θ∗ = arg min
θ

{L(θ; z)− c(z)d(θ)} .

3 Technically, the dichotomy is actually between hypothetico-deductive and Bayesian approaches in

statistical inference. The former refers to the process of formulating and testing a hypothesis and, as

mentioned in Chapter 1, this process is formalised by information theory. However, it is recently be-

ing suggested that Bayesian statistics is often considered an advanced form of hypothetico-deductive

reasoning [90] and so this abstraction is simply for convenience here.
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The regulariser depends on the particular loss function. In Chapter 5, we use the

Akaike information criterion (AIC) [4], the Bayesian information criterion (BIC) [204],

χ2-distributions and surrogate-distributions to penalise the loss functions.

Given this is a data-driven approach, we do not actually have access to the true

parameter θ governing the distribution pθ and instead use an (unbiased) maximum

likelihood estimate θ̂n computed at time n. Moreover, we compute the average

of the expected log-likelihoods Ê[`(θ̂n; Z)], rather than the expected values them-

selves. Under certain assumptions, these estimates asymptotically converge to the

true values. This is commonly discussed in statistics literature and we provide a

sketch below for how the estimates converge to the true values. The following dis-

cussion is adapted from Barnett [19], who specifically focused on transfer entropy.

In general, we assume uniqueness of the true parameter set θ and thus the maxi-

mum likelihood estimate θ̂n
a.s.−→ θ as n→ ∞. Moreover, processes studied in Chap-

ters 4 and 5 are assumed ergodic with maps f that are (at least) endomorphisms.

Due to these assumptions, the Birkhoff-Khinchin ergodic theorem [30] then ap-

plies so that the average of the expected log-likelihood Ê[`(θ; Z)] a.s.−→ E[`(θ; Z)].

Combining these results, we have that computing the expected log-likelihoods

via averaging and taking the maximum likelihood estimates of the parameters

Ê[`(θ̂n; Z)] a.s.−→ E[`(θ; Z)].

3.5.2 Planning under uncertainty

In robotic path planning, the general problem is to select a sequence of measure-

ment locations x that maximises the cumulative reward R(x; z) based on the cor-

responding set of measurements z [235]:

X∗ = arg max
X

EZ [R(X; Z)] .

In a vast number of scenarios, robots are tasked with understanding or modelling

their environment. In general, some quantity of interest Y is typically inferred from

the measurements Z at given locations X. We want to find the sequence of actions

x that tells us the most about the environment in question. That is, our reward is a

function of the final entropy over our posterior:

R(X; Z) = −H(Y).

This cost function is used in Chapter 6, where the travel cost can be ignored and

we can use a greedy algorithm to select future viewpoints. In typical planning

scenarios, the robot has full access to the history of its actions and observations,
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and plans over a limited time horizon. In this scenario, at every decision step, the

task is to optimise the reward

R(X−n+1; Z−n+1) = − (H(Yn)− H(Yn+1 | Yn)) .

= −I(Yn+1; Yn). (3.33)

In other words, the objective of the robot is to choose an action that minimises

the active information storage (3.19); this ensures new information reduces future

uncertainty.

In general active perception tasks, however, it is critical to include an additional

cost for the path X in the reward function, e.g.,

X∗ = arg max
X

{H(Y)− c(X)} .

In Chapter 7, we explore this problem with a team of robots, where the path cost

c(X) must be below a certain bound.

3.6 dynamic bayesian networks

Throughout this thesis, we use the framework of DBNs to model the nonlinear

processes in question. These models were introduced by Murphy [164] as more

expressive than the established approaches of hidden Markov models or Kalman

filters (linear dynamical systems). Moreover, they admit a suite of general purpose

algorithms for inference, e.g., prediction, filtering, and fixed-lag smoothing.

The DBN is a general graphical representation of a temporal model, representing

a probability distribution over infinite trajectories of random variables (Z1, Z2, . . .)

compactly. As mentioned above, we denote Zn = {Xn, Yn} as the set of hidden

and observed variables, respectively, where n ∈ {1, 2, . . .} is the temporal index. A

BN B = (G, θ) represents a joint distribution pB(z) graphically and consists of: a

DAG G and a set of CPD parameters θ corresponding to that DAG. Given a graph G,

the Pi parents of variable Zi
n+1 are given by the parent set PaG(Zi

n+1) = {Z
ij
n}j =

{Zi1
n , . . . , ZiPi

n }.
The DBN model B = (B1, B→) extends BNs to account for temporal processes and

comprise two parts: the prior BN B1 = (G1, θ1), which defines the joint distribution

pB1(z1); and the two-time-slice BN (2TBN) B→ = (G→, θ→), which defines a first-

order Markov process pB→(zn+1 | zn) [81]. This formulation allows for a variable

to be conditioned on its respective parent set PaG→(Zi
n+1) that can come from the

preceding time slice or the current time slice, as long as G→ forms a DAG. The 2TBN

probability distribution factorises according to G→ with a local CPD estimated from

an observed dataset. That is, given a set of stochastic processes (Z1, . . . , ZN), the
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realisation of which constitutes a dataset z = (z1, . . . , zN), we obtain the 2TBN

distribution as

pB→(zn+1 | zn) = ∏
i

pB→(z
i
n+1 | paG→(Zi

n+1)), (3.34)

where paG→(Zi
n+1) denotes the (index-ordered) set of realisations {zj

o : Z j
o ∈

PaG→(Zi
n+1)}.

In this thesis, we are not concerned with learning the prior network (or, equiva-

lently, assume it is uniform) and hence drop the temporal subscript, i.e., B = B→.

If this was desired, one can learn the prior network B1 independent of the 2TBN

network B [81]. Moreover, we drop the dependence of the parent set on the graph

structure if it is clear from context, i.e., Pa = PaG.

3.6.1 Learning graph structure from data

In this section we give background on the theory for learning DBNs from data.

Specifically, we focus on data-driven methods for learning the edges between

nodes in the graph, known as structure learning. Learning the parameters for a

given structure are outside the scope of this work and often assumed to be learned

through maximum likelihood as a subroutine of the model selection process. For

more detail on the subject of parameter learning and PGMs in general, see Koller

and Friedman [128].

We will focus on techniques for learning graphical models using the score and

search paradigm [128]; there are other less common approaches that we will not

cover here [66], e.g., constraint-based methods. Given a dataset z = (z1, . . . , zN),

the objective is to find a DAG G∗ such that

G∗ = arg max
G∈G

g(B : Z), (3.35)

where g(B : Z) is a scoring function measuring the degree of fitness of a candidate

DAG G to the data set Z, and G is the set of all DAGs. Note that we could turn (3.35)

into minimising a loss function by negation, i.e., L(θ̂G; Z) = −g(B : Z), however

we opt for a scoring function as this is common in BN structure learning literature.

As mentioned in Sec. 2.3.2, finding the optimal graph G∗ in (3.35) requires so-

lutions to the two subproblems that comprise structure learning: the evaluation

problem and the identification problem [50]. The main problem we focus on in

Chapter 5 is the evaluation problem, i.e., determining a score that quantifies the

quality of a graph, given data.

An intuitive scoring function involves computing the likelihood of the graph

given data L(θ̂G; z) = pB̂(zn+1 | zn). Let θ̂G be the set of parameters that maximise
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pB̂(Z = z) = p(z | θ̂G) for a given graph G, i.e., `(θ̂G; z) = log L(θ̂G; Z = z). Using

the log-likelihood gives the most naive scoring function, the maximum likelihood

score:

gl(G : Z) = EZ
[
`(θ̂G; Z)

]
. (3.36)

3.6.1.1 Information-theoretic approach

The KL divergence can be used to quantify the information loss of a factorised distri-

bution pB̂ from the complete distribution pKM . The factorised distribution is given

by including conditional independences exhibited in B̂, whereas the complete dis-

tribution exhibits no conditional independences, i.e., complete graph KM. Mathe-

matically, this is expressed as:

DKL [pK̂ ‖ pB̂] = DKL
[
pK̂(Zn+1 | Z−n ) ‖ pB̂(Zn+1 | Z−n )

]
= ∑

z−n

pK̂(z
−
n ) ∑

zn+1

pK̂(zn+1 | z−n ) log
pK̂(zn+1 | z−n )
pB̂(zn+1 | z−n )

= EZ

[
log

pK̂(Zn+1 | Z−n )
pB̂(Zn+1 | Zn)

]
. (3.37)

Here, we have dropped the subscript M from KM, since the context is clear, i.e.,

pK = pKM . It is common in model selection to decompose the KL divergence as

DKL [pK̂ ‖ pB̂] = E
[
log pK̂(Zn+1 | Z−n )

]
− E

[
`(θ̂G; Z)

]
. (3.38)

In this form, pK̂ is often identical for all models considered and, in practice, it

suffices to ignore this term and thus avoid the problem of computing distributions

of latent variables. The resulting simpler expression can be viewed as equivalent

to the log-likelihood maximisation in (3.36). However, pK̂ is not equivalent when

considering different families of models (as we elaborate on later in Chapter 5).

Again, the KL divergence alone will not yield a parsimonious model, and so we

must penalise it. This results in a scoring function in the following form:

gkl(B : Z) = DKL [pK̂ ‖ pB̂]− c(N)d(G). (3.39)

One way of approximating and regularising this divergence was derived by

Akaike [4], who presented what is now known as the AIC:

lim
N→∞

DKL [pK̂ ‖ pB̂] ' E[`(θ̂G; Z)]− d(G), (3.40)

where d(G) is the model dimension (i.e., number of parameters needed for the

graph G [81]).
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3.6.1.2 Bayesian approach

The Bayesian approach to structure learning is to compute the posterior probabil-

ity of the network structure G, given data z. Using Bayes’ rule, we can express this

distribution as p(G | z) ∝ p(z | G)p(G), where p(G) encodes any prior assump-

tions made about the network G. Thus, the problem becomes that of computing

the likelihood of the data, given the model, p(z | G). This likelihood can be written

in terms of distributions over network parameters [81]:

p(z | G) =
∫

θ
L(θ̂G; z) p(z | θ̂G) p(θ | G) dθ. (3.41)

A common approach to compute (3.41) in closed form is by using Dirichlet

priors. This leads to the BD (Bayesian-Dirichlet) score and variants [81, 100]. How-

ever, to obtain this analytic solution, we require discrete variables and counts of

the tuples (zi
n, pa(zi

n)), which can involve latent states. Schwarz [204] derived an

asymptotic approximation of the posterior distribution, known as the BIC, which

states that

lim
N→∞

p(z | G)
a.s.−→ E[`(θ̂G; Z)]− log N

2
d(G) +O(1), (3.42)

where O(1) is a constant bounded by the number of potential models. The approx-

imation of the posterior (3.42) requires that data come from an exponential family

of likelihood functions with conjugate priors over the model G, and the parameters

given the model θ̂G [204].

3.6.1.3 A general information criterion

We can compute AIC or BIC in terms of the expected log-likelihood E[`(θ̂G; Z)] and

the model dimension d(G), and thus the problem can be generalised to that of

deriving an information criterion for scoring the graph of the form [43, 66]

gic(B : Z) = E
[
`(θ̂G; Z)

]
− c(N)d(G). (3.43)

When c(N) = 1, we have the AIC score [4]; c(N) = log(N)/2 yields the BIC

score [204]4, and c(N) = 0 gives the maximum likelihood score.

3.6.1.4 The log-likelihood ratio

The (expected) log-likelihood ratio is the difference between a model B̂ and the

null model B̂0, i.e.,

E
[
`(B̂; Y)− `(B̂0; Y)

]
= E

[
log

pB̂(Y)
pB̂0

(Y)

]
.

4 This definition is equivalent to the minimum description length (MDL) scoring function presented

in [231], whereas Eq. (3.43) is the general form of the MDL according to [43].
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For a nested model from the exponential family, the likelihood ratio is asymptoti-

cally χ2-distributed. A nested model refers to cases where the more complex model

B̂ can be transformed into the simpler model B̂0 by imposing a set of constraints

on the parameters. As a result, in structure learning, the null model B̂0 is generally

considered to be the independent network, i.e., where pa(Xi
n) = ∅ for any i and n.

Note that the expected log-likelihood ratio is equivalent to the KL divergence.

However, typically the KL divergence will be taken from the complete model KM,

whereas the log-likelihood ratio quantifies the improvement over the empty model

B̂0 due to the ratio test mentioned above. Thus, although they admit equivalent

formulas, we will distinguish them for this reason.

3.7 summary

This chapter presented the nomenclature and technical detail required for the re-

mainder of the thesis. In particular, we formally introduced stochastic processes,

time series modelling, and informative path planning. We provided a decision-

theoretic problem statement that succinctly captures the objective underlying the

following chapters of this thesis. This general formulation further coalesces the

concepts of time series modelling and robotic information gathering. In the next

chapter, we examine multi-agent dynamics post hoc, where the aim is to investigate

the memory and communication of the system by observation alone, i.e., without

knowing the internal logic of the agents.
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In this chapter we model multi-agent dynamics as coupled finite-order

Markov chains. Given that we do not explicitly model the underlying

dynamics, the approaches used here take the more traditional statistical

perspective on time series analysis. The methods are therefore generally

applicable to any fully observed system that is assumed to follow this

model.

4.1 overview

This chapter introduces techniques for quantifying long-range interactions and

communication in multi-agent dynamics. We first consider the information dynam-

ics measures we use in this chapter under the model selection paradigm. Then,

using these measures, we investigate the transfer and storage of information in

multi-agent dynamics.

The first problem we address is to identify interaction networks that link to-

gether autonomous agents. This is achieved without reconstructing the agents’

logic and neural processing and using only the observational data, such as posi-

tional (e.g. planar) coordinates and their changes. The problem is difficult as some

of the dependencies between agents are not discernible simply by correlating their

corresponding locations over time — one needs to take into account the possibly

directed nature of such correlations, where dynamics of one of the agents affects

the positioning of another.

The second problem we address is classifying coherent dynamic situations within

the multi-agent games, in the context of distributed communications. For example,

during a game, each player (dependent on their tactical role) is engaged in dy-

namics which are affected both by (i) the player’s history of actions (persistence or

rigidity), and (ii) spatially long-ranged effects of other players’ actions (sensitivity

or responsiveness). Therefore, we may want to form an abstract state-space with

variables quantifying these features, and consider a structure of this space, aiming

to classify the games and game situations by identifying coherent regions within

the space.



4.2 problem statement 42

As a canonical example of team-based dynamics, we use game instances pro-

duced within the RoboCup simulation environment. That is, we aim to identify

implicit interaction networks and adopt the methods of coherent information struc-

ture in classifying repeatable collective dynamics in game situations.

4.2 problem statement

In this chapter, for each game g, we have a dataset y as the realisation of a multi-

variate process Y . Each component yi of this process describes the dynamics of a

player i in the two-dimensional RoboCup simulation, however could be abstracted

from any multivariate sequence. Recall from Sec. 3.4.2 that we assume these pro-

cesses are autonomous (such that the CPDs are homogeneous) and ergodic (such

that estimators approach the true parameter values).

A game g contains N time steps and is played between two teams P = {P1, P2, . . . , PM}
and Q = {Q1, Q2, . . . , QM} with M agents each. The dynamics of the game is cap-

tured by the realisation of two sets of stochastic processes YP = {Y P1 , . . . , Y PM}
and YQ = {YQ1 , . . . , YQM}, i.e., the movements of players in teams P and Q, re-

spectively. The measurements of each temporal process Y i is therefore a sequence

of positional data (yi
1, . . . , yi

N); in this chapter we consider observations yi
n as the

change in the 2D positional vector of the agent.1 In the remainder of the chapter,

we often use the terms process, agent and player interchangeably depending on

context.

In this case, the player movements can be represented as a DBN B = (G, θG)

given by graph G and a set of parameters θG that define the conditional probability

distribution pB̂. As such, each player is a node in the network. We aim to study

this network in terms of the storage and transfer of information and relate these

concepts to the collective objective of goal scoring.

4.3 information dynamics for model selection

First, we more rigorously ground (multivariate) transfer entropy and active infor-

mation storage (introduced in Sec. 3.4.2) in the context of DBN model selection

(introduced in Sec. 3.6.1). The following results are extensions of the derivation of

transfer entropy as a log-likelihood ratio considered in [19].

1 This ensures the process is stationary by removing low-frequency components.
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4.3.1 Collective transfer entropy as a log-likelihood ratio

The transfer of information between subsystems is obtained through coupling in

a directed network. First, assuming the data are generated by an adapted process

with independent noise, we get the following decomposition:

pB̂(y) = ∏
n

pB̂(yn+1 | y−n ), (4.1)

If we further model the data as a collection of coupled processes, then

pB̂(yn+1 | y−n ) = ∏
i

pB̂(yn+1 | yi,−
n , pa(Y i

n+1)), (4.2)

As mentioned in Chapter 3, we are actually interested in the expected log-likelihood

since the data y are realisation of a process Y :

E[`(B̂; Y)] = E

[
log ∏

n
pB̂(Yn+1 | Y (n)

n )

]
= ∑

n
E
[
log pB̂(Yn+1 | Y−n )

]
= ∑

i
∑
n

E
[
log pB̂(Yn+1 | Y i,−

n , Pa(Y i
n+1))

]
. (4.3)

Then the log-likelihood ratio can be decomposed as:

E[`(B̂; Y)− `(B̂0; Y)] = E

[
log

pB̂(Y)
pB̂0

(Y)

]

= ∑
i

∑
n

E

[
log

pB̂(Yn+1 | Y i,−
n , Pa(Y i

n))

pB̂(Yn+1 | Y i,−
n )

]
, (4.4)

where, as in Sec. 3.6.1, B̂0 is the null hypothesis of no transfer. Note that we can

remove the sum over all n expected values, since the average expectation Ê will

converge to the true expectation E (see discussion in Chapter 3). Finally, due to

stationarity, we can say that the parent set for each node at each time Pa(Y i
n) is

constant and (4.4) becomes a sum over transfer entropies:

E[`(B̂; Y)− `(B̂0 ; Y)] = ∑
i

TPa(Y i)→Y i . (4.5)

When the graph contains cycles (e.g., Pa(Yi) = Y j and Pa(Y j) = Yi), estimating

the marginals (4.2) will be biased (since information in agent the past of agent i

already contains information in the past of agent j and vice versa). As such, in

the case of a soccer match, with constant feedback between players, we consider

transfer entropy to reveal first-order approximations to the effective network. This

is discussed further in Sec. 4.5.3.



4.4 tactical information dynamics 44

4.3.2 Active information storage as a log-likelihood ratio

We can consider the process of storing information as the degree to which individ-

ual processes are simply a sequence of independent random variables (i.e., uncorre-

lated in time). We thus get the same decomposition as (4.1) for an adapted process.

Now, we are testing to what degree this process diverges from an independent

sequence of variables, i.e., pB̂0
(Yn+1 | Y−n ) = pB̂0

(Yn+1). Hence, the log-likelihood

ratio decomposes as:

E[`(B̂; Y)− `(B̂0; Y)] = ∑
n

E
[

log
pB̂(Yn+1 | Y−n )

pB̂(Yn+1)

]
. (4.6)

By the same logic as above, under the assumptions of ergodicity and stationarity,

Eq. (4.6) becomes a sum over the active information storage of each subsystem:

E[`(B̂; Y)− `(B̂0; Y)] = AY . (4.7)

Both of the above results trivially extend to finite-order Markov chains as discussed

in Sec. 3.4.2.

4.4 tactical information dynamics

In order to estimate the strength of directed coupling between two agents we com-

pute the average transfer entropy between them during any given game. In this

section we will describe the information-theoretic measures above in the context

of robotic soccer as classifying the responsiveness and rigidity of a team.

We will be using the notion of a tactical formation which describes how the

players in a team are generally positioned on the field in terms of their roles

(the number of: defenders-midfielders-attackers), e.g., “4-3-3” formation with four

defenders, three midfielders, and three attackers. Of course, during a game, any

player may be drawn to a position fairly remote from its area of responsibility

defined by the role (for instance, a defender may join a particular attack), but in

general the players tend to stay within their distinct areas, specified by some prior

configurations or distinguishable by spatial pattern matching, see Fig. 4.1. Hence,

any dynamic coherence observed in the motion of players which are spatially sep-

arated on the field due to their tactical roles (e.g., a midfielder of one team and

an opponent’s defender) can be interpreted as spatially long-range implicit inter-

actions.
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Figure 4.1: Motion trace diagram. A trace curve represents the motion of the left midfielder

(player 7) of the left team, during an entire game (solid yellow for regular “play-

on” time points, and dotted black for not “play-on” times, e.g. free kicks). The

role of player 7 is distinguishable as the left midfielder.

4.4.1 Transfer entropy as player responsiveness

For each game g, the transfer entropy is calculated between each source agent

Y i and destination agent Y j, in the context of some other dynamics B, denoted

Tg
Y i→Y j|B. In the remainder of this chapter, the relative position of the ball is always

conditioned upon in order to compute the transfer entropy in the context of the

game, since this context is greatly affected by the ball trajectories in soccer matches.

We also define the average transfer entropy over a range of source-destination pairs,

targeting subsets Yα(Q) ⊆ YQ and Y β(P) ⊆ YP :2

Tg
Yα(Q)→Y β(P)|B =

1

|Yα(Q)||Y β(P)| ∑
Y i∈Yα(Q)

∑
Y j∈Y β(P)

Tg
Y i→Y j|B . (4.8)

The average transfer entropy, defined for specific subsets of team processes, is

useful in considering distributed communications across agents with specific roles

(e.g. attackers and defenders in soccer).

2 We note a subtle distinction here: Tg
Yα(Q)→Y β(P) |B is not equal to the multivariate transfer entropy [150]

from the set Yα(Q) to Y β(P) (conditioned on B) as a whole in general, because of dependencies within

and across the sets. That is, Tg
Yα(Q)→Y β(P) |B could be viewed as an approximation to multivariate

transfer entropy (ignoring these dependencies) in order to avoid dimensionality issues.
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Building upon the information dynamics measures, it is possible to investigate

role-based behavior with complex interactions. In applying information dynamics

to the RoboCup 2D Simulation League we use the following definition:

Definition 4.1. Responsiveness of player i to player j during the game g is defined as

the information transfer Tg
Y j→Y i |B from the source j (e.g. dynamics of player Y j) to the

destination i (e.g., dynamics of another player Y i), in the context of some other dynamics

B (e.g., the movement of the ball).

That is, the “destination” player Y i responds, for example, by repositioning, to

the movement of the “source” player Y j. This may apply to many situations on the

field. For instance, when one team’s forwards are trying to better avoid their oppo-

nent’s defenders, we consider the information transfer Tg
Yd(Q)→Y a(P)|B from defender-

agent processes Y i ∈ Yd(Q) to forward-agent processes Y j ∈ Y a(P), where roles of

the agents are determined by their placements in a given tactical formation. Hence-

forth, we omit the game index g and the condition variable B when there is no

ambiguity. Vice versa, the dynamics of the opponent’s defenders, who are trying

to better mark our team’s forwards, are represented in the information transfer

TY a(P)→Yd(Q) from forward-agent processes Y j ∈ Y a(P) to defender-agent processes

Y i ∈ Yd(Q). These two examples specifically consider a coupling between the attack

line Y a(P) of our team and the defense line Yd(Q) of opponent’s team.

4.4.2 Active information storage as player rigidity

Our analysis also involves computation of the active information storage within

the teams. We can define the average active information storage over a range of

agents in a game g, targeting subsets Y β(P) ⊆ YP :3

Ag
Y β(P) =

1

|Y β(P)| ∑
Y j∈Y β(P)

Ag
Y j . (4.9)

We characterise a team’s rigidity AYP as the average of information storage values

for all players of the team, according to the following definition.

Definition 4.2. The rigidity of player i is defined as the information storage AY i within

the process Y i.

The average information storage, or rigidity, within a team AYP is high whenever

one can predict the motion of some players based on the movements of their past.

3 As per footnote 2, Ag
Y β(P) is not equal to the collective active information storage as defined for the

multivariate set Y β(P) in general, due to dependencies between the variables. Again, Ag
Y β(P) could be

seen as an approximation to such a collective quantity (ignoring these dependencies) which avoids

dimensionality issues.



4.5 interaction diagrams 47

Table 4.1: Tactical information dynamics measures.

Primitive Metric Equation Description

Transmission

δT(P ,Q) TYQ→YP − TYP→YQ Rel. responsiveness (team→ team)∗

δTa⇀d(P ,Q) TY a(Q)→Yd(P) − TY a(P)→Yd(Q) Rel. responsiveness (defenders→ attackers)

δTm⇀m(P ,Q) TYm(Q)→Ym(P) − TYm(P)→Ym(Q) Rel. responsiveness (midfielders→ midfielders)

δTd⇀a(P ,Q) TYd(Q)→Y a(P) − TYd(P)→Y a(Q) Rel. responsiveness (attackers→ defenders)

Storage

δA(P ,Q) AYP − AYQ Rel. team rigidity

δAd(P ,Q) AYd(P) − AYd(Q) Rel. defender rigidity

δAm(P ,Q) AYm(P) − AYm(Q) Rel. midfielder rigidity

δAa(P ,Q) AY a(P) − AY a(Q) Rel. attacker rigidity

All measures are computed for one team relative (rel.) to the other by deduction.

In these cases, the players are not as independent of their previous movements as

a complex or swarm behavior may warrant, making the dynamics less versatile.

How much does a team’s rigidity and responsiveness contribute to a game’s

scoreline? To answer this question, one can analyse the correlation between a num-

ber of measures and the scoreline δSg = Sg
P − Sg

Q, where Sg
P is the number of goals

scored by team P .

The utilised measures are relative, e.g., the relative team responsiveness

δTg = Tg
YQ→YP |B − Tg

YP→YQ|B

is calculated by comparing the transfer from team YQ to team YP against the trans-

fer in the other direction. Table 4.1 summarises different relative measures, speci-

fied for different tactical roles in a typical soccer formation. We would like to point

out that we introduce here new relative measures, expanding on the ones analysed

in [55]. Specifically, the previous study [55] compared attacking vs defending lines,

that is, analysed TY a(Q)→Yd(P) − TYd(P)→Y a(Q) , while in this work we compare attack-

ing vs attacking lines on the one hand TYd(Q)→Y a(P) − TYd(P)→Y a(Q) and defending vs

defending lines TY a(Q)→Yd(P) −TY a(P)→Yd(Q) on the other hand. This change is address-

ing a different question of evaluating relative performance of a specific tactical line

(role). Note also that we use averaged pairwise calculations in (4.8) and (4.9), as

opposed to a multivariate approach (as in [146, 150]). These two approaches are

only equivalent if the individual player processes are independent.

4.5 interaction diagrams

We describe here another information dynamics tool, interaction diagrams, which

provide a simplified view of the strongest pairwise interactions into (Sec. 4.5.1) or

out of (Sec. 4.5.2) each agent. Note that the following diagrams are computed for
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both teams P and Q, however, we only describe the algorithms from the perspec-

tive of team P .

4.5.1 Information-sink diagrams

Once the game’s average transfer entropy Tg
Y i→Y j|B is determined for each pair of

agents {Y i, Y j}i∈P ,j∈Q, we identify the source opposing agent ı̂ ∈ Q (described by

the process Y ı̂ ∈ YQ) that transfers maximal information to the given agent j ∈ P
(i.e., process Y j), i.e.,

ı̂(j, g) = arg max
i∈Q

{
Tg

Y i→Y j|B

}
. (4.10)

Over a number of games G, we select the source agent ı̂(j) that transfers maximal

information to Y j most frequently, as the mode of the set {ı̂(j, 1), . . . , ı̂(j, G)}. Then,

we consider the average information transfer between the processes Y ı̂ and Y j

across all games:

TY ı̂(j)→Y j|B =
1
G

G

∑
g=1

Tg
Y ı̂(j,g)→Y j|B . (4.11)

Intuitively, the movement of the source agent ı̂(j) affected the agent j more than

movement of any other agent in team Q. That is, the agent j was responsive most

to movement of the source agent ı̂(j). Crucially, when we use the notion of respon-

siveness to another (source) agent, we do not load it with such semantics as being

dominated by, or driven by that other agent. Higher responsiveness may in fact re-

flect either useful reaction to the opponent’s movements (e.g., good marking of the

source), or a helpless behaviour (e.g., constant chase after the source). Vice versa,

generating a high responsiveness from another agent may result in either a useful

dynamic (e.g., positional or even tactical dominance over the responding agent),

or a wasteful motion (e.g., being successfully marked by the responding agent). In

short, responsiveness captured in the maximal transfer TY ı̂→Y j|B detects a directed

coupling from the source process Y ı̂ to the responding process Y j and at face value

alone should not be interpreted in general as a simple index for comparative per-

formance. It is, however, a useful identifier of the opponents’ source player that

was affecting a given agent j most.

Given a series of games, we identify the pairs “source-responder” by finding

the source agent for each of the agents on both teams (always choosing the source

among the opponents). The pairs (ı̂(j), j) identified for each agent j in team P
treated as a destination are combined in an “information-sink diagram” ĜP ,Q =

(P ,Q, ÊP , ÊQ), where the edge set ÊP = {ı̂(j) → j : j ∈ P}. The information-sink



4.5 interaction diagrams 49

interaction diagram ĜP ,Q visualises a directed graph with 2M nodes represent-

ing players, with the edges representing all source-responder pairs, where a single

edge is incoming to every agent from the corresponding source. One may extend

the diagrams by specifying the weight of each edge with the corresponding trans-

fer entropy.

4.5.2 Information-source diagrams

Similarly, having obtained the average transfer entropy during a game, for all pairs,

we identify the responder agent ̌ ∈ Q described by the process Y ̌ ∈ YQ that “re-

ceived” maximal information from process Y i for the given agent i ∈ P . Formally,

for any game g:

̌(i, g) = arg max
j∈Q

{
Tg

Y i→Y j|B

}
. (4.12)

Over a number of games G, we select the responder agent ̌(i) to whom maxi-

mal information was transferred by Y i most frequently, as the mode of the series

{ ̌(i, 1), . . . , ̌(i, G)}. Finally, we consider the average information transfer between

the two processes Y i and Y ̌(i) across all games:

TY i→Y ̌(i)|B =
1
G

G

∑
g=1

Tg
Y i→Y ̌(i)|B . (4.13)

The pairs (i, ̌(i)) identified for each agent i in team P treated as a source are

combined in an “information-source diagram” ǦP ,Q = (P ,Q, ĚP , ĚQ) where the

edge set ĚP = {i→ ̌(i) : i ∈ P}.
The intuition in this case is the same as in the previous subsection — the differ-

ence is that now we identify the highest responder agent, having selected a source.

In general, the agent i in team Q may be the most informative source for the agent

j in team P , but the agent j may be not the best responder to the agent i among all

possible responders in team P , and vice versa.

While an information-sink diagram reflects more where the information tends

to be transferred to, an information-source diagram tends to depict where the

information is transferred from.

4.5.3 Information-sink and -source diagrams as efficient simplifications

Neither of the diagrams presents a complete story, highlighting only a small part

of the overall information dynamics. That is, they are a representation of directed

functional connectivity as discussed in Sec. 2.3.1. In Sec. 2.3.2 we discussed more
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comprehensive network diagrams derived from some form of multivariate connec-

tivity analysis, which seek to infer a circuit model which can replicate and indeed

explain the time-series of the nodes in the network [82, 219]. Furthermore, we

note that information-sink and -source diagrams ignore interactions within teams,

and of course both these and full multivariate analysis represents observational

correlations rather than strict causation (by specifically using a Wiener-Granger

interpretation of causality, see Sec. 2.3 for detail).

Nevertheless, we believe that the interaction diagrams presented here are valu-

able, as a simplified view of the full effective network representation of the set

of agents influencing and influenced by each other agent: they are particularly

simple and easy to interpret, and crucially are computationally efficient. Specifi-

cally, for an information-sink diagram every agent has an incoming edge, and for

an information-source diagram every agent has an outgoing edge, representing

the strongest respective in or outgoing interactions for that agent. Also, these di-

agrams provide a significantly more efficient analysis than full effective network

inference, computing only O(M2) transfer entropies rather than additionally ex-

amining higher-order interactions, and avoiding additional computations for sta-

tistical significance measurements. Such efficiency is a particularly important con-

sideration if such a method is to be used online during Robocup games in the

future.

4.6 state-space coherence diagrams

The study of Lizier et al. [152] diagrammatically demonstrated that more coher-

ent structures in state-space plots can be observed in systems (cellular automata)

with higher degrees of complexity. Motivated by these methods, we investigate

coherent information structures observed as patterns in a state-space formed by

tactical information dynamics measures, aiming to reveal structure in the relation-

ship between the team’s rigidity and responsiveness. Positional dynamics of each

agent depends in general on their tactical role in the game and are quantified by

their responsiveness (measured by information transfer) and rigidity (measured by

information storage). These two measures will specifically be used in forming the

two-dimensional state-space, where relative responsiveness is plotted as a function

of relative rigidity (see 4.1 for definitions).

Identifying a coherent structure in the relationship between responsiveness and

rigidity allows us to classify coherent dynamic situations, in the context of dis-

tributed communications. For example, dynamics of agents performing in a spe-

cific role, such as attackers, may be characterised by both lower rigidity and lower
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responsiveness to opponent’s defenders than dynamics of other agents. Coher-

ence diagrams are intended to visualise such dynamic clustering in the state-space

formed by the corresponding information-theoretic measures. Furthermore, once

these dynamic clusters are highlighted as sub-regions of the space, it is possible

to “zoom in” by considering correlations of the points within these regions with

the scorelines of the corresponding games, and identifying which regions (clusters)

map to more successful games.

In particular, we introduce two different state-space plots (coherence diagrams)

intended to capture different spatio-temporal interactions across teams: 1) tactical

information dynamics in relation to tactical roles (defender, midfielder, attacker);

and 2) information dynamics partitions correlated with the scorelines. The state-

space diagrams for each team are produced by computing the following state-

space points: (δAd, δTa⇀d), (δAm, δTm⇀m) and (δAa, δTd⇀a). Then, the first co-

herence diagram is given by plotting these points on the respective axes with a

distinct colour for each tactical role, i.e. defenders, midfielders and attackers (cf.

Fig. 4.6.). Another coherence diagram is given for each tactical role by selecting the

points corresponding to the roles, and colour-mapping them with the correspond-

ing scoreline δS (Figs. 4.7 and 4.7).

4.7 results

To compute the measures described in previous sections, and produce interaction

diagrams and state-space coherence diagrams, we carried out multiple iterative

experiments using simulated RoboCup data. The agents in these simulations are

distributed, where each client is fed partial information from a server and makes

decisions autonomously.

The experiments below match up team Gliders [186] against teams Cyrus [119]

and HELIOS [5], denoted by G, C and H, respectively. Gliders were the win-

ner (champion) of RoboCup-2016 and the runner-up (vice-champion) team for

RoboCup-2014, while HELIOS and Cyrus were fourth and fifth ranked teams in

2014.

All information-theoretic measures were computed using the Java information

dynamics toolkit (JIDT) [148], with finite history lengths κ = 1. For the information-

sink and base diagrams, kernel estimation was used with a kernel width of 0.4

standard deviations of the data. For the state-space coherence diagrams, Kraskov-

Stögbauer-Grassberger estimation [93, 131] was used with four nearest neighbours.
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(a) Information-sink diagram for Gliders (blue) and Cyrus (green).
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(b) Information-sink diagram for Gliders (blue) and HELIOS (yellow).

Figure 4.2: Information-sink diagrams. Arrows represent highest information transfer be-

tween players. Grayscale colormap is used to indicate the strength of transfer,

varying smoothly from white (weakest) to black (strongest). Example of the

most pronounced interactions: all Cyrus players strongly respond to the motion

of the right centre-back of Gliders (player 03), indicating the strong asymmetry

of Cyrus tactics in preferring to play on their left wing.
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(a) Information-source diagram for Gliders (blue) and Cyrus (green).
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(b) Information-source diagram for Gliders (blue) and HELIOS (yel-

low).

Figure 4.3: Information-source diagrams. Arrows represent highest information transfer

between players. Grayscale is used to indicate the strength of transfer, varying

smoothly from white (weakest) to black (strongest). Example of the most pro-

nounced interactions: all HELIOS players strongly drive the left centre-back of

Gliders (player 02), indicating the strong asymmetry of HELIOS dynamics in

preferring to play on their right wing.
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4.7.1 Interaction diagrams

Figure 4.2 presents the information-sink interaction diagram ĜC,G and the information-

source interaction diagram ǦC,G , built over 400 games between Cyrus and Gliders.

Analogously, Fig. 4.3 shows the information-sink interaction diagram ĜH,G and

the information-source interaction diagram ǦH,G , built over 400 hundred games

between HELIOS and Gliders. The nodes in each diagram are shown in positions

roughly corresponding to the players’ formation on the field, e.g., Gliders follow

the 4-3-3 formation with four defenders playing line defence, three midfielders

and three attackers, whereas Cyrus and HELIOS utilise one of the defenders (the

player with the number 02) as a defensive midfielder, thus loosely following 3-4-3

formation with four midfielders.

Several interesting observations can be made. To some extent, the interaction dia-

grams exhibit lateral symmetry, which is expected given the symmetric formations

of the teams. However and perhaps more importantly, there are some clearly asym-

metric connections. For example, the most pronounced interactions are observed

with all Cyrus players strongly responding to the motion of the right centre-back

of Gliders (player 03), which reveals the strong asymmetry of Cyrus dynamics in

preferring to play on the their left wing. This is a feature which has been success-

fully exploited by Gliders in allocating suitable defensive resources on this wing,

resulting in a statistically significant performance gain (an increase in the aver-

age goal difference from 1.55 ± 0.03 to 1.80 ± 0.02, over more than 6000 games,

i.e., an improvement of 16%). Similarly, all HELIOS players strongly “drive” the

left centre-back of Gliders (player 02), also highlighting the strong asymmetry of

HELIOS dynamics in preferring to play on their right wing. Again, this can be

tactically exploited.

In Fig. 4.2a it is evident that the defenders are the most responsive of both teams,

showing that the games between Gliders and Cyrus unfold outside of the midfield,

see Fig. 4.4. On the other hand, Fig. 4.2b reveals a more disordered responsiveness

between the teams, indicating that a lot of interactions occur in midfield during

the games between Gliders and HELIOS. We also point out that the highest in-

formation transfer value computed over the games between Gliders and HELIOS

(∼ 0.4 bits in Fig. 4.2b and Fig. 4.3b) is less than the lowest value computed over

the games between Gliders versus Cyrus (∼ 0.42 bits in Fig. 4.2a and Fig. 4.3a).

This means that the Gliders and HELIOS players are more independent in their

respective motions on average.
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Figure 4.4: A white curve traces the ball motion during an entire game between Gliders

(left) versus Cyrus (right). Note the asymmetry in Cyrus attack, as well as a

significant ball trace outside of the midfield.

Specifically, Gliders attackers mostly respond to Cyrus defenders, and Gliders

midfielders and defenders respond most to the Cyrus central defender (player 03)

which is typically moving across wider areas, often playing a “sweeper” role.4

This coupling is similar to patterns observed in Gliders and HELIOS dynamics;

however, the interactions are generally weaker and are spread amongst more play-

ers than just one central defender, because both HELIOS central defenders take an

active part in defending the area.

In summary, the findings demonstrate applicability of the information dynamics

measures to analysis of dynamics of multi-agent teams, revealing the player pairs

with most intense interactions and the extent of the resultant dependencies.

4.7.2 Correlation with performance

In this subsection, we correlate measures of relative responsiveness (either tactical

role-by-role or team overall), as well as rigidity, with the game scorelines, and

identify the tactical roles which impacted on the games more. That is, we compute

the correlation between a series of game scorelines and a series of information

4 The sweeper (or libero) is a more versatile centre-back who “sweeps up” the ball if an opponent

manages to breach the defensive line. This position is more fluid than that of other defenders who

man-mark their designated opponents.
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Table 4.2: Correlation of information dynamics measures with scoreline.

Team (Q) δT(G,Q) δTa⇀d(G,Q) δTm⇀m(G,Q) δTd⇀a(G,Q)
Cyrus (C) -0.601 0.607 0.338 -0.427

HELIOS (H) -0.466 0.455 0.616 0.211

(a) Transfer based measures.

Team (Q) δA(G,Q) δAd(G,Q) δAm(G,Q) δAa(G,Q)
Cyrus (C) -0.613 0.223 -0.558 -0.616

HELIOS (H) -0.683 0.380 -0.703 -0.642

(b) Storage based measures.

dynamics values for a game. For clarity, we discuss mainly the interpretation of

the correlations in the context of the Gliders performance.

Table 4.2 presents the correlation coefficients between scorelines and various

information-based measures which were summarised in Tab. 4.1. Generally, the

observed correlations are consistent for all measures across both opponent teams,

with the exception of δTd⇀a(G,Q), which differ in sign. All of the correlations

displayed in Tab. 4.2 are statistically significant at p = 0.01 with a one-tailed test

Bonferroni corrected for 16 comparisons. We begin our analysis with the measures

based on information transfer.

Overall, the higher responsiveness of a team to all opponent players is detrimen-

tal to their winning chances, that is, the more responsive Gliders are on average

to opponents, indicated by the higher δT(G,Q), the less positive the scoreline δS.

However, when looking at tactical lines role-by-role, e.g. comparing the relative re-

sponsiveness of defenders to attackers between two teams, we observe in general

the opposite effect: higher responsiveness is an indication of winning. In particu-

lar, if the Gliders defenders are more responsive to their immediate opposing line

of Cyrus (or HELIOS) attackers than Cyrus (or HELIOS) defenders are to Gliders

attackers, i.e., TY a(Q)→Yd(G) > TY a(G)→Yd(Q) , then team Gliders has a higher chance of

winning. Similarly, the Gliders tend to win if its midfielders are more responsive

than their midfield opposition (either Cyrus or HELIOS), i.e. positive δTm⇀m(G,Q)
can be used as a precursor for a winning prediction. This means that high relative

responsiveness across tactical lines is indicative of a behaviour positively contribut-

ing to the performance (e.g., defenders are successfully marking the opponent at-

tackers, or midfielders are successfully finding open zones amongst opponent mid-

fielders in anticipation of teammate passes using Voronoi diagrams [186]), while
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Figure 4.5: Motion trace diagram. A yellow-black trace curve represents the motion of the

centreforward (player 11) of the left team (HELIOS), during an entire game

(solid yellow for regular “play-on” time points, and dotted black for not “play-

on” times, e.g. free kicks). A white curve traces the ball motion during the game.

Note that the majority of both traces lies in midfield.

the overall high relative responsiveness across all players δT(G,Q) may suggest an

adverse outcome, due to an excessive unstructured dependence on the opposition.

The relative responsiveness δTd⇀a(G, C) is negatively correlated with the score-

line, and deserves a separate explanation. The lower responsiveness TYd(C)→Y a(G) <

TYd(G)→Y a(C) means that Gliders attackers are less predictable in their response to

the opponent defenders than Cyrus attackers, and this opens up more scoring op-

portunities. In other words, unpredictability of attackers’ motion is positive and

characteristic of an opportunity-seeking behaviour. This is in contrast to the re-

sponsive tracking behaviour of defenders which are typically engaged in trying to

actively mark the opponents attackers.

The relative responsiveness for attackers δTd⇀a(G,H) is still positively correlated

with the scoreline, and should be interpreted in the context of the interaction di-

agrams which indicated that in the games between Gliders and HELIOS, most of

the action occurred in midfield anyway, and so the attackers are mostly engaged

in midfielder-like behaviours, as can be seen in Fig. 4.5. Hence it may be expected

that the high relative responsiveness of attackers in this contest is still positively

related to performance.

The rigidity of a team as a whole is also detrimental to their goal scoring capa-

bilities, as shown by δA negatively correlated to the scorelines in both considered
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contests. This is an expected result for the team players which are moving highly

predictably with respect to their positional histories. An analysis for each role re-

veals that rigidity of either midfielders (δAm) or attackers (δAa) is also negatively

correlated with performance. However, rigidity of defenders movements (δAd) is

a positive feature, consistent across both match-ups. This can be explained by a

specific tactical behaviour, employed by the team Gliders: “line defense” which is

highly dependent on an ability to create offside traps by a simultaneous motion

of all four defenders. This defensive tactic produces more synchronous actions

and results in a successful but predictable behaviour of each player (on average),

captured in turn by their rigidity. As long as this rigidity is not exploited by the

opponents, the performance is likely to remain positively correlated.

The notion that the scoreline is correlated with a team’s information dynamics

is an important consequence of this research. Considering Reichenbach’s theorem,

we can deduce that either: the scoreline causes information dynamics; the infor-

mation dynamics causes the scoreline; or, there is a common cause for the two

measures of performance. It is unlikely for the former two cases and thus we con-

jecture that the information dynamics and scoreline are proxy to an underlying

cause. Further, our results support the hypothesis of intrinsic motivation in psy-

chology and reinforcement learning [49], whereby it is shown that an embodied

agent that is both intrinsically and extrinsically motivated is more adept at prob-

lem solving. In the case of team dynamics, information dynamics is an intrinsic

reward and scoring goals is an extrinsic reward. This relates to the work of Zahedi

et al. [266], who used a linear combination of predictive information to speed up

the learning process of an embodied agent.

4.7.3 State-space coherence diagrams

Figure 4.6 shows tactical information dynamics, i.e., state-space coherence dia-

grams for all tactical roles, while Figs. 4.7 and 4.7 shows partitioned information

dynamics: state-space coherence diagrams for specific tactical roles, colour-coded

with the scorelines.

Both state-space coherence diagrams in Fig. 4.6 clearly show separation among

three tactical roles: defenders, midfielders and attackers. Each tactical role is clus-

tered well in each of the contests. Defenders (shown in red) tend to have low

relative rigidity and low relative responsiveness. That is, defenders of the compet-

ing teams in each contest (Gliders vs Cyrus and Gliders vs HELIOS) do not differ

much in their rigidity and responsiveness, except that the Gliders’ defenders are

more responsive than Cyrus’ defenders. Midfielders (shown in green) consistently
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Figure 4.6: Tactical information dynamics: state-space coherence diagrams of relative re-

sponsiveness δT(G,Q) as a function of relative rigidity δA(G,Q), with two

opponents of team Gliders (G): team Cyrus (C) and team HELIOS (H). In the

diagrams, red points are used for relative responsiveness versus relative rigidity

with respect to Gliders’ defenders, with green points for Gliders’ midfielders

and blue for attackers.

occupy a well-defined narrow region showing that an increase in relative rigidity

is correlated with a decrease in relative responsiveness, in both contests. Gliders’

midfielders appear to be slightly more responsive and less rigid than HELIOS’

midfielders. Finally, attackers (shown in blue) are clustered differently in two con-

tests. In games between Gliders’ and Cyrus’ low relative rigidity is correlated with

a wider spread of relative responsiveness which tends to be negative. In other

words, when Gliders’ attackers are less rigid than Cyrus attackers, they are also

less responsive: this is indicative of their more explorative behavior around and

within their opponent’s penalty area. In contrast, this feature is not observed in

the diagram for Gliders vs HELIOS; moreover, there is a correlation between rela-

tive rigidity and responsiveness similar to the one in the midfielders’ cluster. This

reinforces an earlier observation that in the games between Gliders and HELIOS,

the attackers often play in the midfield. Importantly, these state-space coherence

diagrams allow us to examine average role-based multi-agent dynamics across

games. They can be considered as a means to cluster dynamic processes in an

abstract state-space and identify salient features of competing tactical formations.

Now we turn our attention to information dynamics partitioned for each tactical

role and their correlation with the scorelines. The partitioned diagrams in Figs. 4.7

and 4.7 reveal how the differences in rigidity and responsiveness are consistently

related to the performance, across both contests. For example, there is a clear corre-

lation between better performance and higher responsiveness and higher rigidity

of defenders, as shown in Fig. 4.7a and 4.7b. As mentioned earlier, a positive contri-

bution of the higher rigidity is not counter-intuitive as it results from synchronous,

and hence more predictable on average, movement of each defender following the
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(b) Attackers to Defenders:

δAd(G,H) vs δTa⇀d(G,H) vs SG
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(c) Midfielders to Midfielders:

δAm(G, C) vs δTm⇀m(G, C) vs SG
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(d) Midfielders to Midfielders:

δAm(G,H) vs δTm⇀m(G,H) vs SG
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(e) Defenders to Attackers:

δAa(G, C) vs δTd⇀a(G, C) vs. SG
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(f) Defenders to Attackers:

δAa(G,H) vs δTd⇀a(G,H) vs SG

Figure 4.7: Left column: Partitioned information dynamics: state-space coherence dia-

grams for specific tactical roles, with the colour-mapping showing the scoreline

difference (positive means the Gliders won). Relative responsiveness δT(G, C)
is a function of relative rigidity δA(G, C) for Gliders (G) versus Cyrus (C). Right

column: Partitioned information dynamics: state-space coherence diagrams for

specific tactical roles, with colour-mapping of the correlation with scorelines.

Relative responsiveness δT(G,H) is a function of relative rigidity δA(G,H) for

Gliders (G) versus HELIOS (H).
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“line defense” tactic, enabling efficient offside traps for the opposition. On the other

hand, for the midfielders, there is a clear correlation between better scorelines and

lower rigidity as well as higher responsiveness, as shown in Fig. 4.7c and 4.7d.

That is, when Gliders’ midfielders are less rigid or more responsive than their op-

ponent’s midfielders, the Gliders team tends to win. Finally, it is evident that when

Gliders’ attackers are less rigid and less responsive than Cyrus’ attackers, Fig. 4.7e,

the team benefits, while in the games vs HELIOS the correlation with performance

is mostly observed for lower rigidity, Fig. 4.7f. The difference between two contests

is again due to the fact that Gliders’ attackers are typically restrained to playing

in midfield in the games vs HELIOS. These partitioned diagrams provide another

useful tool in clustering the multi-agent dynamics and classifying the games in

terms of tactical behaviour.

4.8 summary

In this chapter we used information theory to examine multi-agent dynamics

where the system is assumed to be fully observable. In particular, we used infor-

mation dynamics in studying the implicit interactions in simulated robotic soccer

teams. This was achieved by using interaction diagrams, which represent the im-

plicit communication between agents, as well as coherence plots, which showed

correlation between the information dynamics and the scoreline. At the start of

this chapter, we introduced these information-theoretic measures in the context of

DBN model selection.

The autonomous agents in this chapter reason over their actions in order to score

goals. However, our focus here was to provide general-purpose analysis techniques

that study this process by simply observing trajectories. Thus, reasoning in the

context of this work involves formulating a logical model about the memory and

communication within a multivariate process, rather than studying and optimising

the underlying (causal) mechanisms for achieving an objective (this is left for later

chapters). The following chapter further explores this idea by performing DBN

model selection where the system is partially observable.



5I N F O R M AT I O N - T H E O R E T I C M O D E L S E L E C T I O N I N

D I S T R I B U T E D N O N L I N E A R S Y S T E M S

In the previous chapter we investigated observed multivariate stochastic

processes where each component was assumed to be finite-order Marko-

vian. Here, we study the problem of learning the graphical structure of a

distributed system where each subsystem comprises a latent process ob-

served through a filter. Given that certain assumptions are made about

the dynamics of the univariate processes, the theory presented here is

less related to classical statistics and more to nonlinear systems (physics)

literature.

5.1 overview

In this chapter we exploit the properties of discrete-time multivariate dynamical

systems in inferring coupling between latent variables in a DAG. Our main focus

is to analytically derive a measure (score) for evaluating the fitness of a candidate

DAG, given data. We assume that the data are generated by a certain family of

multivariate dynamical systems and are thus able to overcome the issue of latent

variables faced by established structure learning algorithms. That is, under certain

assumptions of the dynamical system, we are able to employ time delay embed-

ding theorems (see Sec. 3.3.1) to compute our scores.

As mentioned in Sec. 3.6.1, structure learning for DBNs is commonly expressed

via either information theory or Bayesian statistics. Exact methods are known for

fully observable systems; however, these are not applicable in the more expressive

case when the state variables are latent. Drawing on the information-theoretic per-

spective, our main result in this chapter is a tractable form of the KL divergence

function for certain distributed nonlinear dynamical systems. We establish this re-

sult by first representing a family of discrete-time multivariate dynamical systems

as DBNs (termed a POSGDS). In this form, both the complete and factorised distribu-

tions cannot be directly computed due to the hidden system state. Thus, we employ

state space reconstruction methods from differential topology to reformulate the

KL divergence in terms of computable distributions.
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Figure 5.1: Trajectory of a pair of coupled Lorenz systems. Top row: original state of the

subsystems. Bottom row: time-series measurements of the subsystems. In each

figure, the black lines represent an uncoupled simulation (λ = 0), and teal lines

illustrate a simulation where the first (leftmost) subsystem was coupled to the

second (λ = 10).

Computing the KL divergence involves evaluating the expected log-likelihood

of the graph. We begin this chapter by showing that the log-likelihood and log-

likelihood ratio can be expressed in terms of collective transfer entropy (3.25). By

virtue of this, we are also able to directly compute the BIC [204] and the AIC [4] scor-

ing functions, which could be used to achieve globally optimal approximations to

quantify the quality of a candidate graph under certain assumptions. Following

from this, we show that the KL divergence can be decomposed as the difference

between stochastic interaction (3.28) and collective transfer entropy. Using this ex-

pression, we show that the maximum transfer entropy graph is the most likely to

have generated the data, and build on this result to present a scoring function for

evaluating candidate graphs based on a dataset. This is then experimentally vali-

dated using the toy examples of a Lorenz-Rössler system and a network of coupled

Lorenz attractors (Fig. 5.1) of up to four nodes.

5.2 problem statement

We model multivariate dynamical systems as POSGDSs. With this model, we can

express the time evolution of the dynamical system as a stationary DBN, and per-

form inference and learning on the subsequent graph. We formally state the net-
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work of dynamical systems as a special case of the sequential graph dynamical

system (GDS) [162]1 with an observation function for each vertex.

Definition 5.1 (Partially observable synchronous graph dynamical system POSGDS).

A POSGDS is a tuple (G, xn, yn, { f i}, {ψi}) that consists of:

• a finite, directed graph G = (V , E) with edge-set E = {Ei} and M vertices compris-

ing the vertex set V = {Vi};

• a multivariate state xn = {xi
n}, composed of states for each vertex Vi confined to a

di-dimensional manifold xi
n ∈ Mi;

• an M-variate observation yn = {yi
n}, composed of scalar observations for each vertex

yi
n ∈ R;

• a set of local maps { f i} of the form f i : M → Mi, which update synchronously

and induce a global map f :M→M; and

• a set of local observation functions {ψ1, ψ2, . . . , ψM} of the form ψi :Mi → R.

Without loss of generality, we can use local functions to describe the time evolu-

tion of the subsystems:

xi
n+1 = f i(xi

n, pa(X i
n)) + υ f i (5.1)

yi
n+1 = ψi(xi

n+1) + υψi . (5.2)

Here, υ f i is strictly i.i.d. additive noise and υψi is noise that is either i.i.d. or de-

pendent on the state, i.e., υψi(xi
n+1). The subsystem dynamics (5.1) are therefore a

function of the subsystem state xi
n and the subsystem parents’ state pa(X i

n) at the

previous time index such that f i :Mi ×jMij →Mi. Each subsystem observation

is given by (5.2). We assume the functions { f i} and {ψi} are invariant w.r.t. time

and thus the graph G is stationary.

The time evolution of a POSGDS can be modelled as a DBN. First, each subsys-

tem vertex Vi has an associated state variable X i
n and observation variable Yi

n; the

parents of subsystem Vi are denoted Pa(Vi). Since the graph G→ is stationary and

synchronous, parents of X i
n+1 come strictly from the preceding time slice, and addi-

tionally PaG→(Y
i
n+1) = X i

n+1. Thus, we can build the edge set E = {E1, E2, . . . , EM}
in the POSGDS by means of the DBN. That is, each edge subset Ei is built by the DBN

edges

Ei = {V j → Vi : X j
n ∈ PaG→(X i

n+1) ∧V j ∈ V \Vi},
1 In the original manuscripts [52, 57], these were termed a synchronous update GDS, however have

added partially observable to clarify that each subsystem has a latent state and to use terminology

more in line with decision-theoretic nomenclature, such as POMDPs.
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Figure 5.2: Representation of (5.2a) the POSGDS with two vertices (V1 and V2), and (5.2b)

the rolled-out DBN of the equivalent structure. Subsystems V1 and V2 are cou-

pled by virtue of the edge X1
n → X2

n+1.

so long as G forms a DAG.

As an example, consider the POSGDS in Fig. 5.2. The subsystem V3 is coupled

to both subsystem V1 and V2 through the edge set E = {V1 → V3, V2 → V3},
shown in Fig. 5.2a. The time-evolution of this network is shown in Fig. 5.2b, where

the top two rows (processes X1 and Y1) are associated with subsystem V1, and

similarly for V2 and V3. Recall that the BN B = (G, θ) comprises a graph G and

parameter set θ. The distributions for the state (5.1) and observation (5.2) of M

arbitrary subsystems can therefore be factorised according to (3.34):

pB(zn+1 | zn) =
M

∏
i=1

pB(xi
n+1 | xi

n, pa(X i
n)) pB(yi

n+1 | xi
n+1). (5.3)

The problem is then to derive a scoring function g(B; Z) to learn the DBN based

on the constrained conditional distributions (5.3). Since B is stationary, learning

B is equivalent to learning the POSGDS. However, deriving this measure is not

straightforward because the dataset z includes hidden variables xi
n. Thus, we rely

on reconstruction theorems.

In the rest of the chapter we use simplified notation, given this constrained graph

structure. Firstly, since our focus is on learning coupling between distributed sys-

tems, the superscripts refer to individual subsystems, not variables. Thus, although

the 2TBN B is constrained such that PaG(Yi
n) = X i

n, the notation Yij
n denotes the

measurement variable of the jth parent of subsystem i, e.g., in Fig. 5.2 an arbitrary

ordering of the parents gives Y3,1
n = Y1

n and Y3,2
n = Y2

n .
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5.3 reconstruction theorems for log-likelihood

As mentioned in Chapter 3, computing the KL divergence involves computing the

expected log-likelihood. From (5.3) the expected log-likelihood decomposes as

EZ[`(θ̂G; Z)] = −N
M

∑
i=1

∑
xi

n+1

∑
pa(Xi

n)

pB̂(xi
n+1, xi

n, pa(Xi
n)) log pB̂(xi

n+1 | xi
n, pa(Xi

n))

+ ∑
xi

n+1

∑
yi

n+1

pB̂(y
i
n+1, xi

n+1) log pB̂(y
i
n+1 | xi

n+1)

 .

(5.4)

The log-likelihood function (5.4) involves distributions over latent variables, and

thus we resort to state-space (attractor) reconstruction. First, Lemma 5.1 shows that

a future observation from a given subsystem can be predicted from a sequence of

past observations. Building on this result, we present a computable formulation of

the 2TBN distribution (5.3) via Lemma 5.2. We then derive a tractable form of the

log-likelihood function, presented in Lemma 5.1. It is then shown in Theorem 5.3

that these lemmas allow us to compute the general information criterion (3.43)

discussed in Sec. 3.6.1.3.

In the following proofs and theorems, we will drop the dependence of a delay

embedding map on the functions ( f , ψ) (e.g., Φ(xi
n) = Φ f i ,ψi(xi

n)) if it is clear based

on context. However, it is important to note that, in general, we allow different

dynamics f and observation functions ψ (and thus delay embedding parameters).

Lemma 5.1. Consider a POSGDS (G, xn, yn, { f i}, {ψi}), where the graph G is a DAG.

Each subsystem state follows the dynamics xi
n+1 = f i(xi

n, pa(Xi
n)) and emits an observa-

tion yi
n+1 = ψi(xi

n+1); the subsystem observation can be estimated, for some map Ti, by

yi
n+1 = Ti

(
Φ(xi

n), Φ(pa(X i
n))
)

. (5.5)

Proof. Consider a forced system xn+1 = f (xn, wn) with forcing dynamics wn+1 =

h(wn) and observation yn = ψ(xn+1). The bundle delay embedding theorem [221,

222] states that the delay map Φ(xn, wn) = y(κ)n is an embedding for generic f ,

ψ, and h. Stark [221] proved this result in the case of forcing dynamics h that are

independent of the state x.2 Moreover, the noise can be considered an additional

forcing system so long as υ f is i.i.d and υψ is either i.i.d or dependent on the

state [222].

2 Stark [221] conjectures that the theorem should generalise to functions h that are not independent of

x. To the best of our knowledge, this result remains to be proven.
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Given a DAG G, any ancestor of the subsystem Vi is not dependent on Vi. As

such, the sequence

Φ
(

xi
n, pa(X i

n)
)
= Φ(xi

n) (5.6)

and is an embedding, since the realisation pa(xi
n) is independent of xi

n. Let {X ijk
n }k

be the index ordered set of parents of node X ij
n (which itself is the jth parent

of the node X i
n). Under the constraint that G is a DAG, where the state xi

n+1 =

f i(xi
n, {xij

n}j) + υ f i , it follows from the bundle delay embedding theorem [221, 222]

that there exists a map Fi that is well defined and a diffeomorphism between

observation sequences. From (5.6) we can write this map

Φ(xi
n+1) = Φ

(
f i
(

xi
n, {xij

n}j

)
,
{

f ij
(

xij
n , {xijk

n }k

)}
j

)
= Φ

(
f i
(

Φ−1 ◦Φ(xn), Φ−1
(

Φ(pa(X i
n))
)))

.

= Fi(Φ(xn), Φ(pa(X i
n))), (5.7)

where the last κi + ∑j κij components of Fi are trivial. Denote the first component

as Ti : Rκi ×j Rκij → R, then we arrive at (5.5).

Lemma 5.2. Given an observed dataset z = (z1, z2, . . . , zN) where yn ∈ RM are gener-

ated by a directed and acyclic POSGDS (G, xn, yn, { f i}, {ψi}), the 2TBN distribution can

be written as

M

∏
i=1

pB̂(xi
n+1 | xi

n, pa(Xi
n)) · pB̂(y

i
n+1 | xi

n+1) =
∏M

i=1 pB̂(y
i
n+1 | Φ(xi

n), Φ(pa(X i
n)))

pB̂(xn | Φ(xn))
.

(5.8)

Proof. Let each subsystem (local) map Φi = Φ f i ,ψi :M→ Rκi
. The generalised time

delay embedding theorem [68] states that, under certain technical assumptions,

and given M inhomogeneous observation functions {ψ1, ψ2, . . . , ψM}, the map

Φ(xn) = (Φ1(xn), Φ2(xn), . . . , ΦM(xn)) (5.9)

is an embedding, where, at time index n, the local map is described by

Φi(xn) = yi,(κi)
n = (ψi (xn) , ψi(xn−τi), ψi(xn−2τi), . . . , ψi(xn−(κi−1)τi)) (5.10)

and ∑i κi = 2d+ 1 [68].3 Therefore, the global map (5.9) is given by Φ(xn) = (yi,(κi)
n )

and there must exist an inverse map xn = Φ−1 ◦ Φ(xn). Given Lemma 5.1, the

3 The original proof [68] uses positive lags, however the authors note that the use of negative lags also

applies (and should be used in the case of endomorphisms, see Sec. 3.3.1).
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existence of Φ−1, and since {Φi(xi
n), Φi(pa(X i

n))} ⊆ Φ(xn) for all i, we arrive at

the following equation:

M

∏
i=1

pB̂

(
Yi

n+1 = Ti
(

Φi(xi
n), Φi(pa(X i

n))
)
| Φi(xi

n), Φi(pa(X i
n))
)

= pB̂

(
Xn = Φ−1 ◦Φ(xn) | Φ(xn)

)
(5.11)

×
M

∏
i=1

pB̂

(
X i

n+1 = f i(xi
n, pa(Xi

n)) | xi
n, pa(Xi

n)
)

×
M

∏
i=1

pB̂

(
Yi

n+1 = ψi(xi
n+1) | xi

n+1

)
.

Rearranging (5.11) gives the equality in (5.8).

Lemma 5.2 shows that the distributions can be reformulated by conditioning on

delay vectors. The RHS of (5.8) can be used to perform inference in the 2TBN (5.3).

The numerator is a product of local CPDs of scalar variables, and can thus be com-

puted by either counting (for discrete variables) or density estimation (for con-

tinuous variables). The denominator is used to compute the probability that the

hidden state occured, given an observed delay vector; fortunately, Casdagli [44]

established methods to compute this CPD for a variety of practical scenarios. There-

fore, Lemma 5.2 provides a method to perform exact inference.

5.3.1 Information-theoretic interpretation

Using the delay vector representation of Lemma 5.2, we arrive at the following

theorem.

Theorem 5.1. Consider a POSGDS (G, xn, yn, { f i}, {ψi}), where the graph G is a DAG.

Each subsystem state follows the dynamics xi
n+1 = f i(xi

n, pa(Xi
n)) and generates an ob-

servation yi
n+1 = ψi(xi

n+1); a complete dataset is given by the sequence of observations

y = (y1, . . . , yN). The expected log-likelihood of the data given a network structure can be

computed in terms of conditional entropy:

EZ[`(θ̂G; Z)] = N H(Xn | {Y i,(κi)
n })− N

M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n , {Y ij,(κij)
n }j) (5.12)

Proof. Substituting (5.8) into (5.4) gives the expected log-likelihood E[`(θ̂G; D)] as

N
M

∑
i=1

∑
yi

n+1

∑
yi,(κi)

n

∑
(yij,(κij)

n )j

pB̂(y
i
n+1, yi,(κi)

n , (yij,(κij)
n )j) log pB̂(y

i
n+1 | yi,(κi)

n , (yij,(κij)
n )j)

− N ∑
xn

∑
(yi,(κi)

n )

pK̂(xn, (yi,(κi)
n )) log pK̂(xn | (yi,(κi)

n )). (5.13)
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In (5.13) we have removed arguments of the joint distributions that will be nulli-

fied when multiplied with the CPD. Expressing (5.13) in terms of conditional en-

tropy (3.11), we arrive at (5.12).

We now look at the log-likelihood in the context of information transfer. First,

rearranging the terms of collective transfer entropy (4.4) we can rewrite the log-

likelihood function (5.12), leading to the following result.

Corollary 5.1.1. The log-likelihood function for the POSGDS (5.12) decomposes as follows:

E[`(θ̂G; Z)] = N H(Xn | (Y i,(κi)
n ))−N

M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n )+ N
M

∑
i=1

T{Y ij}j→Y i . (5.14)

The first two terms in (5.14) do not depend on the proposed graph structure,

and thus maximising log-likelihood is equivalent to maximising collective transfer

entropy. This becomes clear when we consider the log-likelihood ratio. This ratio

quantifies the gain in likelihood by modelling the data Z by a candidate network

B instead of the empty network B̂0, i.e.,

`(θ̂G; Z)− `(θ̂G0 ; Z) ∝ log
pB̂(Z)
pB̂0

(Z)
. (5.15)

Recall from Sec. 3.6.1 that the null DAG G0 for log-likelihood testing is one with no

parents for all vertices ∀i, Pa(Vi) = ∅. Substituting this definition into (5.12) (or,

alternatively (5.14)) gives the following result.

Corollary 5.1.2. The ratio of the log-likelihood (5.12) of a candidate DAG G to the empty

network G0 can be expressed as

EZ[`(θ̂G; Z)− `(θ̂G0 ; Z)] = N
M

∑
i=1

T{Y ij}j→Y i . (5.16)

5.4 reconstruction theorems for kl divergence

We now continue this analysis by considering the KL divergence of the candidate

graph G from the complete graph KM. That is, pK̂ is the joint distribution yielded by

assuming no factorisation (the complete graph KM). The distribution is expressed

as:

pK̂(zn+1 | z−n ) = pK̂ (xn+1 | xn) pK̂
(
yn+1 | xn+1

)
. (5.17)

Substituting the factorisations of the candidate graph (5.3) and the complete graph (5.17)

into (3.37), we get

DKL [pK̂ ‖ pB̂] = EZ

[
log

pK̂ (Xn+1 | Xn) pK̂ (Yn+1 | Xn+1)

∏M
i=1 pB̂(X i

n+1 | X i
n, Pa(Xi

n)) pB̂(Y
i
n+1 | X i

n+1)

]
. (5.18)
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However, as in the log-likelihood case, the numerator in Eq. (5.18) still comprises

maximum likelihood distributions with unobserved (latent) states xn. In order to

compute the distributions in (5.18), we leverage the results from Sec. 5.3 to re-

formulate the factorised distribution (denominator), and then employ the Delay

Embedding Theorem for Multivariate Observation Functions [68] for the joint dis-

tribution (numerator).

We present a method for computing the joint distribution (numerator) in Lemma 5.4.

As an intermediate step, Lemma 5.3 restates part of the delay embedding theorem

in [68] in terms of subsystems of a POSGDS and establishes existence of a map E for

predicting future observations from a history of observations.

Lemma 5.3. Consider a diffeomorphism f : M → M on a d-dimensional manifold

M, where the multivariate state xn consists of M subsystem states (x1
n, . . . , xM

n ). Each

subsystem state xi
n is confined to a submanifold Mi ⊆ M of dimension di ≤ d, where

∑i di = d. The multivariate observation is given, for some map E, by yn+1 = E(Φ(xn)).

Proof. The proof restates part of the proof of Theorem 2 of Deyle and Sugihara [68]

in terms of subsystems.

Recall from (5.9) and (5.10), we have the global map

Φ(xn) = (y1,(κ1)
n , . . . , ym,(κM)

n ).

Now, since Φ is an embedding, it follows that the map F = Φ ◦ f ◦ Φ−1 is well

defined and a diffeomorphism between two observation sequences F : R2d+1 →
R2d+1, i.e.,

Φ (xn+1) = Φ ( f (xn))

= Φ
(

f
(

Φ−1 ◦Φ(xn)
))

= F(Φ(xn)).

The last 2d + 1 components of F are trivial, i.e., the set Φ(xn) is observed; denote

the first M components by E : Φ f ,ψ → RM, then we have yn+1 = E(Φ(xn)).

We now use the result of Lemma 5.3 to obtain a computable form of the KL

divergence.

Lemma 5.4. Consider a discrete-time multivariate dynamical system with generic ( f , ψ)

modelled as a directed and acyclic POSGDS (G, xn, yn, { f i}, {ψi}) with M subsystems. The

KL divergence of a candidate graph G from the complete graph KM can be computed from

tractable probability distributions:

DKL [pK̂ ‖ pB̂] = EY

[
log

pK̂(Yn+1 | Φ(Xn))

∏M
i=1 pB̂(Y

i
n+1 | Φi(X i

n), Φ(Pa(X i
n)))

]
. (5.19)
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Proof. From Lemma 5.2, we can substitute (5.8) into (5.18), and express the KL

divergence DKL [pK̂ ‖ pB̂] as

DKL [pK̂ ‖ pB̂] = EZ

[
log

pK̂ (Xn+1 | Xn) pK̂ (Yn+1 | Xn+1) pK̂(Xn | Φ(Xn))

∏M
i=1 pB̂(Y

i
n+1 | Φ(X i

n), Φ(Pa(X i
n)))

]
.

(5.20)

Recall fom Lemma 5.3 that global equations for the entire system state xn and

observation yn are

xn+1 = f (xn) + υ f = f
(

Φ−1 ◦Φ(xn)
)
+ υ f , (5.21)

yn+1 = ψ(xn+1) + υψ = E(Φ(xn)) + υψ. (5.22)

Given the assumption of i.i.d noise on the function f , from (5.21), we express the

probability of the dynamics xn+1, given by the embedding, as

pK̂ (xn+1 | Φ(xn)) = pK̂

(
Xn+1 = f

(
Φ−1 ◦Φ(xn)

)
| Φ(xn)

)
= pK̂

(
Xn = Φ−1 ◦Φ(xn) | Φ(xn)

)
× pK̂ (Xn+1 = f (xn) | xn) . (5.23)

By assumption, the observation noise is i.i.d or dependent only on the state xn+1,

and thus the probability of observing yn+1, from (5.22) is

pK̂
(
yn+1 | Φ(xn)

)
= pK̂ (Yn+1 = E(Φ(xn)) | Φ(xn))

= pK̂

(
Xn+1 = f

(
Φ−1 ◦Φ(xn)

)
| Φ(xn)

)
× pK̂ (Yn+1 = ψ(xn+1) | xn+1) . (5.24)

By (5.23) and (5.24), we have that

pK̂(xn+1 | xn) pK̂(yn+1 | xn+1) =
pK̂(yn+1 | Φ(xn))

pK̂(xn | Φ(xn))
(5.25)

Finally, substituting (5.25) into (5.20) yields the statement of the theorem.

Given that all variables in (5.19) are observed, it is now straightforward to com-

pute KL divergence; however, as we will see, it is more convenient to express (5.19)

as a function of known information-theoretic measures.

5.4.1 Information-theoretic interpretation

The main theorem of this chapter, presented below, states KL divergence in terms

of transfer entropy and stochastic interaction.



5.4 reconstruction theorems for kl divergence 72

Theorem 5.2. Consider a discrete-time multivariate dynamical system with generic ( f , ψ)

represented as a directed and acyclic POSGDS (G, xn, yn, { f i}, {ψi}) with M subsystems.

The KL divergence DKL [pK̂ ‖ pB̂] of a candidate graph G from the dataset z can be expressed

as the difference between stochastic interaction (3.28) and collective transfer entropy (3.22),

i.e.,

DKL [pK̂ ‖ pB̂] = SY −
M

∑
i=1

T{Y ij}j→Y i . (5.26)

Proof. We can reformulate the KL divergence in (5.19) as

DKL [pK̂ ‖ pB̂] = EY

[
log
(

pK̂(Yn+1 | Φ(Xn))
)]

− EY

[
log

(
M

∏
i=1

pB̂(Y
i
n+1 | Φ(X i

n), Φ(Pa(X i
n))))

)]

= −H(Yn+1 | {Y (κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n , {Y ij,(κij)
n }j)

= −H(Yn+1 | {Y (κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n )

+
M

∑
i=1

(
H(Yi

n+1 | Y i,(κi)
n , {Y ij,(κij)

n }j)− H(Yi
n+1 | Y i,(κi)

n )
)

.

(5.27)

Substituting in the definitions of transfer entropy (3.22) and stochastic interac-

tion (3.28) completes the proof.

We conclude this section by presenting the following corollary showing that,

when we assume a maximum or fixed embedding dimension κi and time delay τi,

it suffices to maximise the collective transfer entropy alone in order to minimise

KL divergence for a POSGDS.

Corollary 5.2.1. Fix an embedding dimension κi and time delay τi for each subsystem

Vi ∈ V . Then, the graph G that minimises the KL divergence DKL [pK̂ ‖ pB̂] is equivalent

to the graph that maximises transfer entropy, i.e.,

arg min
G∈G

DKL [pK̂ ‖ pB̂] = arg max
G∈G

M

∑
i=1

T{Y ij}j→Y i . (5.28)

Proof. The first term of (5.26) is constant, given a constant vertex set V , time delay

τ and embedding dimension κ and is thus unaffected by the parent set Pa(Vi)

of a variable. As a result, SY does not depend on the graph G being considered

and therefore we only need to consider transfer entropy when optimising KL diver-

gence (5.26).
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5.5 application to structure learning

We now employ the results above in selecting a POSGDS that best fits data generated

by a multivariate dynamical system. The most natural way to find an optimal

model based on Theorem 5.2 is minimise KL divergence. Here we assume constant

embedding parameters and use Corollary 5.2.1 to present the transfer entropy score

and discuss some attributes of this score. We then use this scoring function as a

subroutine for learning the structure of coupled Lorenz and Rössler attractors.

As mentioned above, Corollary 5.2.1 is, in practice, equivalent to the maximum

log-likelihood and log-likelihood ratio approaches. However, the statement only

holds for constant embedding parameters. In the general case, where these param-

eters are unknown, one requires Theorem 5.2 to perform structure learning. Given

this result, we can now confidently derive scoring functions from Corollary 5.2.1.

From either Corollary 5.2.1 or 5.1.2, the log-likelihood scoring function can be

defined as

gte(B : Z) =
M

∑
i=1

T{Y ij}j→Y i . (5.29)

Given parameterised probability distributions, this score is insufficient, since the

sum of transfer entropy in (5.29) is non-decreasing when including more parents in

the graph [146]. Thus, we use statistical significance tests in our scoring functions

to mitigate this issue.

5.5.1 Model complexity penalty functions

We can obtain penalisations based on the AIC and BIC loss functions if the observa-

tions are assumed to follow distributions from the exponential family of functions.

Theorem 5.3. The information criterion (3.43) for synchronous GDS can be computed as:

gic(B : Z) = −N
M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n , (Y ij,(κij)
n )j)

− c(N)
M

∑
i=1

(
|Yi

n|κ
i
(|Yi

n| − 1) ∏
Vp∈Pa(Vi)

|Yp
n |κ

p
)

. (5.30)

Proof. The distributions for the first term in (5.13) do not depend on the parents of

a subsystem and thus are independent of the graph G being considered. Therefore,

we have the following equation for maximimum log-likelihood:

max
G

E[`(θ̂G; Z)] = O(N)−min
G

N
M

∑
i=1

H(Yi
n+1 | Y i,(κi)

n , (Y ij,(κij)
n )j). (5.31)
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We can now compute the number of parameters needed to specify the model

as [81]

d(G) =
M

∑
i=1

(
|Yi

n|κ
i
(
|Yi

n| − 1
)

∏
Vp∈Pa(Vi)

|Yp
n |κ

p
)

, (5.32)

where | · | specifies the number of parameters needed to encode the distribution.

Since we are searching for the graph G∗ = maxG g(B : Z), holding N constant,

we can substitute (5.31) and (5.32) into (3.43) and ignore the constant term O(N)

in (5.31).

In practice, we do not necessarily have observations from the exponential family.

In this case, it is often convenient to use methods based on surrogate populations

as we discuss below.

5.5.2 Independence test penalty functions

Building on the maximum likelihood score (5.29), we propose to use independence

tests to define two new scores of practical value. Here, we draw on the result of

Campos [43], who derived a scoring function for BN structure learning based on

conditional mutual information and statistical significance tests. The central idea

is to use collective transfer entropy T{Y ij}j→Y i to measure the degree of interaction

between each subsystem Vi and its parent subsystems Pa(Vi), but also to penalise

this term with a value based on significance testing. As with the mit score, this

gives a principled way to re-scale the transfer entropy when including more edges

in the graph.

To develop our scores, we form a null hypothesis H0 that there is no interaction

T{Y ij}j→Y i , and then compute a test statistic to penalise the measured transfer en-

tropy. To compute the test statistic, it is necessary to consider the measurement dis-

tribution in the case where the hypothesis is true. Unfortunately, this distribution

is only analytically tractable in the case of discrete and linear-Gaussian systems,

where 2NT{Y ij}j→Y i is known to asymptotically approach the χ2-distribution [19].

Since this distribution is a function of the parents of Y i, we let it be described by

the function χ2({lij}j). Now, given this distribution, we can fix some confidence level

α and determine the value χα,{lij}j
such that p(χ2({lij}j) ≤ χα,{lij}j

). This represents

a conditional independence test: if 2NT{Y ij}j→Y i ≤ χα,{lij}j
, then we accept the hy-

pothesis of conditional independence between Y i and {Y ij}j; otherwise, we reject

it. We express this idea as the tea score:

gtea(B : Z) =
M

∑
i=1

(
2NT{Y ij}j→Y i − χα,{lij}j

)
. (5.33)
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In general we only have access to continuous nonlinear measurements of dynam-

ical systems, and so are limited by the discrete or linear-Gaussian assumption.

We can, however, use surrogate measurements T{Y ij}s
j→Y i to empirically compute

the distribution under the assumption of H0 [148]. This same technique has been

used by Lizier et al. [146] to derive a greedy structure learning algorithm for ef-

fective network analysis. Here, {Y ij}s
j are surrogate sets of variables for {Y ij}j,

which have the same statistical properties as {Y ij}j, but the correlation between

{Y ij}s
j and Y i is removed. Let the distribution of these surrogate measurements

be represented by some general function T(si) where, for the discrete and linear-

Gaussian systems, we could compute T(si) analytically as an independent set of

χ2-distributions χ2({lij}j). When no analytic distribution is known, we use a re-

sampling method (i.e., permutation or bootstrapping), creating a large number of

surrogate time-series pairs {{Y ij}s
j , Y i} by shuffling (for permutations, or redraw-

ing for bootstrapping) the samples of Y i and computing a population of T{Y ij}s
j→Y i .

As with the tea score, we fix some confidence level α and determine the value Tα,si ,

such that p(T(si) ≤ Tα,si) = α. This results in the tee scoring function as

gtee(B : Z) =
M

∑
i=1

(
T{Y ij}j→Y i − Tα,si

)
. (5.34)

We can obtain the value Tα,si by 1) drawing S samples T{Y ij}s
j→Y i from the distri-

bution T(si) (by permutation or bootstrapping), 2) fixing α ∈ {0, 1/S, 2/S, . . . , 1},
then (3) taking Tα,si such that

α =
1
S ∑

T{Y ij}j→Y i

1T{Y ij}sj→Y i≤T
α,si .

We can alternatively limit the number of surrogates S to dα/(1− α)e and take the

maximum as Tα,si [114], however taking a larger number of surrogates will improve

the validity of the distribution T(si).

Both the analytical (tea) and empirical (tee) scoring functions are illustrated in

Fig. 5.3. Note that the approach of significance testing is functionally equivalent to

considering the log-likelihood ratio, where, as stated, nested log-likelihoods (and

thus transfer entropy) follows the above χ2-distribution [19].

5.5.3 Implementation details and algorithm analysis

The two main implementation challenges that arise when performing structure

learning are: 1) computing the score for every candidate network and 2) obtaining a

sufficient number of samples to recover the network. The main contributions of this

chapter are theoretical justifications for measures already in use and, fortunately,
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Figure 5.3: Distributions of the 5.3a tea penalty function (5.33) and the 5.3b tee penalty

function (5.33). Both distributions were generated by observing the outcome

of 1000 samples from two Gaussian variables with a correlation of 0.05. The

figures illustrate: the distribution as a set of 100 sampled points (black dots);

the area considered independent (grey regions); the measured transfer entropy

(black line); and the difference between measurement and penalty term (dark

grey region). Both tests use a value of α = 0.9 (a p-value of 0.1). The distribution

in Fig. 5.3a was estimated by assuming variables were linearly-coupled Gaus-

sians, and the distribution in Fig. 5.3b was computed via a kernal box method

(computed by the JIDT, see [148] for details).

algorithmic performance has already been addressed extensively using various

heuristics. Here, we present an exact, exhaustive implementation for the purpose

of validating our theoretical contributions.

First, for computing collective transfer entropy for the score (5.34), we require

CPDs to be estimated from data. Given these CPDs, collective transfer entropy (3.22)

decomposes as a sum of P conditional transfer entropy terms, where P = |{Y ij}j|
is the size of the parent set. Since most observations of dynamical systems are ex-

pected to be continuous, we employ a non-parametric, nearest-neighbour based ap-

proach to density estimation called the Kraskov-Stögbauer-Grassberger (KSG) esti-

mator [131] (the same estimator that was used in Chapter 4). For any arbitrary de-

composition of collective transfer entropy (i.e., any ordering of the parent set), this

density estimation can be computed in time O(κ(P + 1)KNκ(p+1) log(N)), where K

is the number of nearest neighbours for each observation in a dataset of size N, and

κ is the embedding dimension [148]. We upper bound this as O(κMKNκM log(N))

since the maximum P is M− 1.

Now, the above density estimation was described for an arbitrary ordering of the

parent set. In the case of parametric (discrete or linear-Gaussian) density estima-

tion, every permutation of the parent set yields equivalent results, with potentially

different χα,{lij}j
values for each permutation [43]; however, this is not the case for

non-parametric density estimation techniques, e.g., the KSG estimator. Hence, as
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a conservative estimate of the score, we compute all P! permutations of the par-

ent set and take the minimum collective transfer entropy. In order to obtain the

surrogate distribution, we require S uncorrelated samples of the density. Since the

surrogate distributions decompose in a similar manner, the score for a candidate

network can be computed in time O(S ·M! · κMKNκM log(N)), where, again, we

have upper bounded P! as M!.

Using this approach, we can now compute the score (5.34), and thus the optimal

graph G∗ can be found using any search procedure over DAGs. Exhaustive search,

where all DAGs are enumerated, is typically intractable because the search space is

super-exponential in the number of variables (about 2O(M2)), and so heuristics are

often applied for efficiency. We restrict our attention to a relatively small network

(a maximum of M = 4 nodes) and thus we are able employ the dynamic program-

ming approach of Silander and Myllymaki [208] to search through the space of all

DAGs efficiently. This approach requires first computing the scores for all local par-

ent sets, i.e., 2M scores. Once each score is calculated, the dynamic programming

algorithm runs in time o(M · 2M−1) and the entire search procedure run in time

O(M · 2M−1 + 2M · S ·M! · κMKNκM log(N)). As a consequence, the time complex-

ity of the exhaustive algorithm is dominated by computing the 2M scores and, in

smaller networks, most of the time is spent on density estimation for surrogate

distributions.

Finally, the problem of inferring optimal embedding parameters is well studied

in the literature. In our experimental evaluation, we set the embedding dimension

to the maximum, i.e., κ = 2d + 1, where d is the dimensionality of the entire latent

state space (e.g., if M = 3 and di = 3 for each subsystem, then κ = 2 ∑i di + 1 = 19).

However, determining these parameters would give more insight into the system

and reduce the number of samples required for inference. There are numerous

criteria for optimising these parameters [191]; most notably, the work of Small et

al. [213] suggests an information-theoretic approach that could be integrated into

the scoring function (5.34) to search over the embedding parameters and DAG space

simultaneously.

5.6 experimental validation

The dynamics (5.1) and observation (5.2) maps can be obtained by either differ-

ential equations, discrete-time maps, or real-world measurements. To validate our

approach, we use the toy example of distributed flows, whereby the dynamics of

each node are given by either the Lorenz [156] or the Rössler system of ODEs [198].

The discrete-time measurements are obtained by integrating these ODEs over con-
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stant intervals. In this section, we formally introduce this model, study the effect

of changing the parameters of a coupled Lorenz-Rössler system, and finally apply

our scoring function to learn the structure of up to four coupled Lorenz attrac-

tors with arbitrary graph topology. To compute the scores, we use the JIDT [148],

which includes both the KSG estimator and methods for generating the surrogate

distributions.

5.6.1 Distributed Lorenz and Rössler attractors

The Lorenz attractor exhibits chaotic solutions for certain parameter values and

has been used to describe numerous phenomena of practical interest [65, 98, 156].

Each Lorenz system comprises three components (di = 3), which we denote x =

〈u, v, w〉; the state dynamics are given by:

ẋ = h(x) =


u̇ = ζ(v− u)

v̇ = u(ρ− w)− v

ẇ = uv− βw,

(5.35)

with free parameters {ζ, ρ, β}. Similarly, the Rössler attractor has state dynamics

given by:

ẋ = h(x) =


u̇ = −v− w

v̇ = w + av

ẇ = b + w(u− c),

(5.36)

with free parameters {a, b, c} [198].

In the distributed case, the components of each state vector xi
t are also driven

by components of another subsystem. A number of different schemes have been

proposed for coupling these variables, e.g., using the product [99, 124] and the

difference [85, 199] of components. Our model uses the latter approach of linear

differencing between one or more subsystem variables to couple the network. Let

λ denote the coupling strength, C denote a 3-dimensional vector of binary values,

and A denote an adjacency (coupling) matrix (i.e., an M×M matrix of zeros with

Aij = 1 iff Vi ∈ Pa(V j)). Then, the state equations for M spatially distributed

systems can be expressed as

ẋi
t = hi(xi

t) + ν f + λC
M

∑
j=1

Aij(xj
t − xi

t), (5.37)

where hi(·) represents the ith chaotic attractor and ν f is additive noise. In our

simulations, we use λ = 2, C = (1, 0, 0) (each subsystem is coupled via variable u),
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(d) σf = 2.5× 10−3, κ = 1
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(e) σf = 2.5× 10−3, κ = 8
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(f) σf = 2.5× 10−3, κ = 16
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(g) σf = 2.5× 10−3, λ = 0
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(h) σf = 2.5× 10−3, λ = 2
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(i) σf = 2.5× 10−3, λ = 4

Figure 5.4: Transfer entropy as a function of the parameters of a coupled Lorenz-Rössler

system. These components are: coupling strength λ and embedding dimension

κ in the top row (Figs. 5.4a-5.4c); coupling strength λ and observation noise σψ

in the middle row (Figs. 5.4d-5.4f); and observation noise σψ and embedding

dimension κ in the bottom row (Figs. 5.4g-5.4i).
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and the adjacency matrices shown in Fig. 5.5. In our experiments we use common

parameters for both attractors, i.e., ζ = 10, β = 8/3, ρ = 28 for Lorenz ODEs; and

a = 0.1, b = 0.1, c = 14 for Rössler ODEs. For the observation yi
t it is common to use

one component of the state as the read-out function [221, 222, 227]; we therefore

let yi
t = ui

t + νψ. The noise terms are normally distributed with ν f ∼ N (0, σf )

and νψ ∼ N (0, σψ). Figure 5.1 illustrates example trajectories of Lorenz-Lorenz

attractors coupled via this model.

5.6.2 Coupled Lorenz-Rössler system

In order to characterise the effect of coupling on our score, we begin our evaluation

by measuring the transfer entropy of a coupled Lorenz-Rössler attractor. In this

setup, M = 2, Pa(V1) = ∅, and Pa(V2) = V1, h1(x) was given by (5.35), and h2(x)

was given by (5.36). The transfer entropy was computed with a finite sample size

of N = 100, 000.

Figure 5.4 shows the transfer entropy as a function of numerous parameters. In

particular, the figure illustrates the effect of varying the coupling strength λ, em-

bedding dimension κ, dynamics noise σf , and observation noise σψ. As expected,

increasing λ, or reducing either noise σ, increases the transfer entropy. The em-

bedding dimension, however, increases to a set point, remains approximately con-

stant, then decreases. The κ-value above which transfer entropy remains constant

illustrates the embedding dimension at which the dynamics are reconstructed; the

decrease in transfer entropy after this point, however, is likely due to the finite

sample size used for density estimation.

There are two interesting features in Fig. 5.4 due to the dynamical systems stud-

ied. First, in the bottom row (Fig. 5.4g-5.4i), there is a bifurcation around κ = 6.

The theoretical embedding dimension for this system is κ = 2(d1 + d2) + 1 = 7,

and, in this case, for κ < 6 the embedding does not suffice to reconstruct the dy-

namics. Second, in Fig. 5.4i, the transfer entropy decreases after about λ = 2. This

appears to be the case of synchrony due to strong coupling, where the dynamics

of the forced variable become subordinate to the forcing [227], thus reducing the

information transferred between the two subsystems.

5.6.3 Network of Lorenz attractors

In this section we evaluate the score (5.29) in learning the structure of distributed

dynamical systems. We study systems of three and four nodes of coupled Lorenz

subsystems with arbitrary topologies. Unfortunately, significantly higher number
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Figure 5.5: The network topologies used for structure learning. The top row (Figs. 5.5a-

5.5d) are four arbitrary networks with three nodes (M = 3) and the bottom row

(Figs. 5.5e- 5.5h) are four arbitrary networks with four nodes (M = 4).

of nodes become computationally expensive due to an increased embedding di-

mension κ, number of data points N, and number of permutations required to cal-

culate the collective transfer entropy. To evaluate the performance of the score (5.29),

the coupling strength λ = 2 and dynamics noise σf = 0.01 are constant whereas

the observation noise σψ and the number of observations taken N are varied. We

selected the theoretical maximum embedding dimension κ = 2d + 1 and τ = 1 as

is common given discrete-time measurements [114]. It should be noted that from

the results of Sec. 5.6.2 that transfer entropy is sensitive to the numerous parame-

ters used to generate the data, and thus depending on the scenario, a significant

sample size can be required for recovering the underlying graph structure. We do

not make an effort to reduce this sample size and instead show the effect of using

a different number of samples on the accuracy of the structure learning procedure.

In order to evaluate the scoring function, we compute the recall (R, or true pos-

itive rate), fallout (F, or false positive rate), and precision (P, or positive predictive

value) of the recovered graph. Let TP denote the number of true positives (cor-

rect edges); TN denote the number of true negatives (correctly rejected edges);

FP denote the number of false positives (incorrect edges); and FN denote the

number of false negatives (incorrectly rejected edges). Then, R = TP/(TP + FN),

F = FP/(FP + TN), and P = TP/(TP + FP). Finally, the F1-score gives the har-

monic mean of precision and recall to give a measure of the tests accuracy, i.e.,

F1 = 2 · R · P/(R + P). Note that the ideal recall, precision and F1-score is 1, and

ideal fallout is 0. Furthermore, a ratio of R/F > 1 suggests the classifier is better

than random. As a summary statistic, Tab. 5.1 and 5.2 presents the F1-scores for

all networks illustrated in Fig. 5.5, and the full classification results (e.g., precision,

recall, and fallout) are given in Appendix A.1. The F1-scores are thus a measure of
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how relevant the recovered network is to the original (generating) network from

our data-driven approach.

Table 5.1: F1-scores for three-node (M = 3) networks of coupled Lorenz systems repre-

sented by Figure 5.5a-5.5d (network G1 has no edges and thus an undefined

F1-score). The p-value of the tee score is given in the top row of each table, with

∞ signifying using no significance testing, i.e., score (5.29).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G2

5K 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

25K 1 0.8 1 0.5 1 0.5 1 0.8

100K 1 0.5 1 1 1 1 1 0.8

G3

5K 1 0.67 1 1 1 1 1 0.67

25K 1 1 1 0.5 1 1 1 1

100K 1 1 1 1 1 1 1 1

G4

5K 0.8 - 0.8 0.8 0.8 0.5 0.8 -

25K 1 1 1 1 1 0.5 1 1

100K 1 1 1 1 1 1 1 1

In general, the results of Tab. 5.1 and 5.2 show that the scoring function is capa-

ble of recovering the network with high precision and recall, as well as low fallout.

In the table, the cell colours are shaded to indicate higher (white) to lower (black)

F1 scores. The best performing score is that with a p-value of 0.01, whereas no

penalisation (a p-value of ∞) has the second highest classification results. As ex-

pected, the graphs recovered from data with low observational noise (σψ = 1) are

more accurate than those inferred from noisier data (σψ = 10). The results for three-

node networks (shown in Tab. 5.1) yields mostly full recovery of the structure for a

higher number of observations N ≥ 75K; whereas, the four-node networks (shown

in Tab. 5.2) are more difficult to classify.

Interestingly, the statistical significance testing does not have a strong effect on

the results. It is unclear if this is due to the use of the non-parametric density

estimators, which, in effect, are parsimonious in nature since transfer entropy will

likely reduce when conditioning on more variables with a fixed samples size. One

challenging case is the empty networks G1 and G5; this is shown in Appendix A.1,

where the fallout is rarely 0 for any of the p-values or sample sizes (although a

large number of observations N = 100K appears to reduce spurious edges). It

would be expected that significance testing on these networks would outperform

the naive score (5.29) given that a non-zero bias is introduced for a finite number

of observations, although this is not the case in our experiments.
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Table 5.2: F1-scores for four-node (M = 4) networks of coupled Lorenz systems repre-

sented by Figure 5.5e-5.5h (network G5 has no edges and thus an undefined

F1-score).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G6

5K 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

25K 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

100K 1 0.33 1 0.57 1 0.4 1 0.33

G7

5K 1 0.25 1 0.29 0.75 0.25 0.75 0.57

25K 1 0.5 1 0.86 1 0.86 1 0.5

100K 1 0.86 1 0.86 1 0.86 1 0.86

G8

5K 1 0.25 1 0.57 1 0.75 1 0.25

25K 1 0.86 1 0.86 1 0.86 1 0.86

100K 1 0.86 1 0.86 1 0.57 1 0.86

5.7 summary

In this chapter we explored the concept of structure learning for partially observ-

able systems, which we model as a type of DBN known as a POSGDS. We provided

exact approaches for computing the likelihood of a certain structure, given data, us-

ing state space reconstruction methods. Moreover, these approaches can be highly

efficient if the data are generated by functions from the exponential family. We

concluded the chapter by performing structure learning on a network of coupled

Lorenz attractors, showing the approach works in practice.

This chapter explored (information-theoretic) reasoning in the sense of formulat-

ing a logical model of a distributed system, where the data were obtained passively.

In the remainder of the thesis, we focus on another decision-theoretic problem: ac-

tively gathering data for improved environmental modelling. This is achieved by

robotic systems recording data and optimising their data stream through informa-

tive path planning algorithms. That is, we now begin to explore reasoning in terms

of optimising the data input about a phenomena, rather than just the model of this

input.



6
I N F O R M AT I O N G AT H E R I N G F O R R O B O T I C W I L D L I F E

T R A C K I N G

In the previous two chapters, we used information theory as a tool to

study the quality of statistical models given data. In the remainder of

this thesis, we consider autonomous systems whereby the objective is

to better understand (explore) the environment. That is, in addition to

taking measurements of the environment, autonomous systems can ex-

ecute actions in order to influence future observations. In this context,

entropy is the de facto measure for quantifying belief uncertainty about

the environment and thus the robots decisions are typically made by

maximising information gain at each decision step.

6.1 overview

In this chapter, we present and validate a complete system for autonomous wildlife

telemetry tracking of small, dynamic animals. We show that this system addresses

the associated theoretical and engineering challenges to a degree that is sufficient

to match or surpass the performance of skilled human trackers. Moreover, we

present preliminary experiments that show an earlier iteration of the system is

capable of autonomous localisation of stationary radio tags and live radio-tagged

birds.

First, we provide a rigorous derivation for our data-driven sensor model. In addi-

tion to estimating the targets’ current location, this range-azimuth model is further

used to predict the quality of future viewpoints in planning an approximately opti-

mal sequence of observations. The observations are obtained by a novel two-point

phased array, designed for use on-board a lightweight multirotor platform. This

phased array antenna comprises two monopole antennas, mounted to a carrier rail

(shown carried by the platform in Fig. 6.1). The robot performs a full rotation to

produce unambiguous range-azimuth measurements with associated observation

uncertainty. Although the time duration of a single observation is roughly 45 s, we

found that reasonable localisation does not require a large number of observations.

This motivates a greedy information-based planning approach for planning the

next observation point online.
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Target location estimates are represented by a grid-based filter, recursively up-

dated following each observation. The measurement bearing (and uncertainty) is

obtained by determining the phase shift between an observed gain pattern and the

expected Fourier series radiation pattern model through a sliding-correlation tech-

nique. We show that the observation bearing error is normally distributed about a

bearing measurement with variable uncertainty (heteroscedasticity). Bayesian data

fusion is then used to incorporate the likelihood of each observation into the target

belief. Estimation in the plane is sufficient in our case because the resulting esti-

mate will generally be used to either confirm the presence of an animal in an area,

or to visually locate and catch the animal for sample collection.

We performed preliminary experiments in order to learn and subsequently val-

idate a bearing-only sensor approach. We present results from 22 flights compris-

ing 131 observations and spanning nearly three hours of accumulated flight time.

Of these, we performed eight manual flights for system identification and six au-

tonomous flights localising stationary tags in three different areas. These results

validate that the estimation process can locate stationary targets to within 30 m.

Following this, we performed three flight trials using live noisy miners (Manorina

melanocephala) where the robot localises the target while a human tracks its posi-

tion visually. This evaluation demonstrates the feasibility of localising birds in the

field with low-power radio frequency (RF) tags and a small multirotor with limited

flight time.

We then directly compare the full range-azimuth tracking system against hu-

man operators in the problem of tracking the critically endangered swift parrot

(Lathamus discolor) species in the wild. The full system includes range estimates

of the target to improve planning. Across eight field trials, the estimated bird lo-

cations are precise to within 50 m, which is sufficient for recapture or data read-

out. Moreover, the time taken to achieve these estimates is comparable to, and

often faster than, experienced human trackers. This result is significant because

it is the first time in over 50 years of wildlife telemetry tracking research that a

robotic system has been validated, in direct comparison with humans themselves,

as an autonomous or human-assistive device. This milestone paves the way for the

widespread use of robots in migration ecology and conservation management for

small, dynamic species.

6.2 problem statement

Consider a single robot taking a sequence of observations in some workspace S to

locate a target animal. By time t, the robot has obtained observations of the animal
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Figure 6.1: The aerial robot system is designed to track small animals that are instru-

mented with lightweight radio collars, e.g., swift parrots (Lathamus discolor) 6.1a,

brush-tailed rock-wallabies (Petrogale penicillata) 6.1b, and noisy miners (Mano-

rina melanocephala) 6.1c. This work demonstrates that the robot is able to track

swift parrots and yield comparable performance to an expert human opera-

tor performing traditional wildlife telemetry tracking 6.1d. The multirotor plat-

form 6.1e-6.1f includes a lightweight directional antenna system and payload

that receives the signal strength from the tag. This data is then transmitted to a

ground control station for processing and online decision making.
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at a set of times 0 ≤ t1 ≤ . . . ≤ tn ≤ t. Now, for a given observation time tn, denote

Xn = X(tn) ∈ S as the robot location, Yn = Y(tn) ∈ S as the target’s location and

Zn = Z(tn) ∈ H as the observation of the target in some measurement space H
(i.e., bearing and azimuth to the target, defined in Sec. 6.4). We will occasionally

use the variable Un = {Xn, Zn} to denote the combined state-observation pair.

Further, true (or optimal) quantities are denoted with an asterisk (e.g., y∗n is the

true location of the bird at time n) and estimates are denoted with a hat (e.g., ŷn is

the target estimate at time n).

The above variables form stochastic processes by which we can estimate the

target location at a given time. That is, the robot path is denoted x = (x1, . . . , xN)

with z = (z1, . . . , zN) denoting the associated sequence of observations. From these

sequences, at any given time tn, the robot is tasked with estimating the target

location Ŷn from the entire history of observations ŷn = Ŷ(x−n , z−n ). This requires

a sensor model that converts raw sensor data to instantaneous estimates of the

target.

Our overall objective is to know where the target animal is and with what cer-

tainty. Thus, the problem can be considered under the framework of information

gathering [235] where the goal is to reduce uncertainty about the final estimate Ŷ N .

To quantify uncertainty, we use the de facto measure of Shannon entropy. In this

context, we aim to choose a sequence u = {x, z} of state-measurement pairs such

that the final entropy of the belief H(Ŷ N) is minimised. That is, let U = (S ×H)

and fix the measurement space H, we can formally state the objective as that of

minimising the final entropy based on the sequence of locations and observations:

U∗ = arg min
U⊆U

EU
[
H
(
Ŷ(U)

)]
. (6.1)

6.3 sensor and sensor data

This section describes the antenna and the raw data collected for each observation.

First, the radio tag emits an on-off keyed pulse signal; this transmission is received

by the payload on-board the UAV and the received signal strength indicator (RSSI)

values of the signal are captured. These filtered RSSI values are linearly related to

the power received during a transmission and are the raw sensor data used for the

observation.
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Figure 6.2: Two-point phased array antenna. Two monopole antennas are separated by a

spacing L. This spacing causes a phase offset τ between the fore and aft antenna

as a function of azimuth angle of arrival θ. The two signals are summed with

a combiner circuit that has an additional (constant) phase offset ψ; this then

generates a gain pattern g(θ) ∝ 1 + cos (τ).

6.3.1 Two-point phased array

We designed a two-point phased array antenna with a front lobe and back null radi-

ation pattern to account for weight and precision requirements. Shown in Fig. 6.2,

the array consists of two quarterwave monopole antennas situated in front and

behind the vehicle centre of gravity with a spacing L(λ) < λ/4, where λ is the

transmitter wavelength. This spacing lags the aft antenna by a phase difference τ

as a function of azimuth angle of arrival Θ

τ(Θ, λ, ψ) =
2πL(λ)

λ
cos(Θ) + ψ . (6.2)

In Eq. (6.2), ψ is introduced by an RF combiner with a passive phase offset ψ

between the fore and aft antenna. In accordance with (6.2), if the angle of ar-

rival is perpendicular to the antenna array, the aft antenna phase lag τ(Θ =

π, λ, ψ) = ψ. The interference pattern from this phase difference is then simply

1 + cos(τ(θ, λ, ψ)). From (6.2), the asymmetric gain pattern as a function of angle

of arrival in dBi is

G̃(Θ, λ, ψ) dBi = 20 log10 [1 + cos (τ(Θ, λ, ψ))] + 1 . (6.3)

Equation (6.3) is the ideal case; dBi is gain relative to a standard half-wave dipole

antenna, however with a non-infinite ground plane and inaccuracy in manufactur-

ing and vibrations, the actual pattern is distorted. Further, in Sec. 6.7 we introduce

an analog circuit to directly sample the RSSI. This causes a distortion of the gain

pattern G̃(Θ, λ, ψ). Thus, for a given antenna setup, i.e., fixing λ and ψ, we com-

pute the expected gain pattern E [G | Θ] empirically, as discussed in Sec. 6.3.2. The

theoretical gain pattern (presented later in Fig. 6.4a) is sampled from Eq. (6.3) and

shows the directionality of the antenna in the fore-aft asymmetry.
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6.3.2 Observed and expected sensor data

In order to reduce noise and spurious readings due to multipath propogation,

the UAV remains stationary while yawing through a full rotation. During this

rotation, the continuous RSSI values are filtered and sampled at a constant rate

to give a scalar value gk associated with the bearing of the kth value φk. These

values are then transmitted to a base station, giving the recorded gain pattern

g = (g1, . . . , gK). As a result, the random vector Gn = g is a function of (Xn, Yn).

If it is clear based on context, we drop the subscript n for notational convenience

such that G = Gn.

Further, let b(xn, yn) denote the bearing from xn to yn. The true bearing to the

target from the robot location xn is then θ∗n = b(xn, y∗n). We assume that the error

for each recorded RSSI value is normally distributed with unknown variance σ2(θ∗n)

that remains constant throughout an observation, i.e., for arbitrary gk ∈ g

g = E[G | Θn = θ∗n] + νG, νG ∼ N (0, σ2(θ∗n)), (6.4)

where σ2(θ∗n) = V (G | Θn = θ∗n).

We obtain the expected gain pattern E[G | Θn] by linear regression. Specifically,

we fit the expected gain pattern to a Jth-order Fourier series ϕ : R→ R, i.e., given

the true bearing θ,

E [Gk | Θn = θ] = ϕ(θ + φk)

= a0 +
J

∑
j=1

aj cos(j(φk + θ)) +
J

∑
j=1

bj sin(j(φk + θ)). (6.5)

From this Fourier model, we obtain the expected gain pattern ϕ(θ) = E [G | Θn = θ],

where ϕ : R → RK is generated by sampling the Fourier series (Eq. (6.5)) with a

phase offset θ at K regular intervals, i.e., ϕ(θ) = (ϕ(θ), ϕ(θ + 2π/K), . . . , ϕ(θ +

2π)).

Given the expected and observed sensor output, ϕ and g, the main goal of

Bayesian sensor data fusion is to compute probability density functions (PDFs) of

the bearing and range to a target from the robot. Given that the likelihoods are

assumed to be Gaussian, the measurement tuple Zn = {µ(Gn), σ2(Gn)}. To learn

the mapping from Gn to Zn, we use a data-driven approach based on training

experiments, described below.

6.4 likelihood functions for observations

The most critical component of the system is the sensor model, which allows us

to convert the signal received from the radio tag to an instantaneous estimate of
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the target’s location. An inaccurate or overconfident observation can lead to poor

decision making and imprecise final location estimates.

We are interested in learning the likelihood function L(yn; xn, zn), i.e., the probabil-

ity of receiving the measurement zn at location xn, given the target is at a particular

location yn:

L(yn; xn, zn) = p (Xn = xn, Zn = zn | Yn = yn) for yn ∈ S . (6.6)

We could include uncertainty about the vehicle location xn by including it in the

measurement zn (i.e., formulating the problem as a POMDP), however, we assume

full knowledge of vehicle state in this chapter.

To construct our sensor models, we must determine what we are measuring and

the uncertainty over these measurements. As mentioned above, our measurements

Zn are, broadly speaking, functions of the random vector G.

In this work we take both range and azimuth readings of the target, where both

observations are assumed to be normally distributed. This results in each measure-

ment comprising the mean and variance zn = {µ, σ2}. Given a measurement function

h : (S × S) → H that maps the vehicle xn and target state yn to the measurement

space H, the Gaussian likelihood function is:

L(yn; xn, zn) = f (h(xn, yn); µ, σ2), (6.7)

where f is the PDF of the normal distribution.

6.4.1 Azimuth likelihood function

We model the likelihood of each azimuth measurement with a Gaussian bearing-

error model [224] where ZΘn = {µΘ(G), σ2
Θ(G)}. That is, the difference between

the true bearing to the target θ∗n and the estimated bearing θ̂n (i.e., the bearing-

error) is Gaussian distributed. Importantly, the bearing estimate θ̂n = µΘ(g) and

its variance σ2
Θ(g) are not measured directly but instead are given as functions of

observation quality (i.e., the correlation coefficient, discussed below). As a result,

when G = g, the bearing-error likelihood function LΘ is given by

LΘ(yn; xn, zΘn) = f
(
b(xn, yn); µΘ(g), σ2

Θ(g)
)

. (6.8)

Now, given our model ϕ of the gain pattern, our problem becomes that of inverse

regression to find the expected bearing and uncertainty. The Gaussian bearing-

error assumption states

θ̂n = θ∗n + νΘn , νΘn ∼ N (0, σ2
Θ(g)), (6.9)
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Figure 6.3: Obtaining range-azimuth likelihood functions from observations. The top row

illustrates two example observations taken online with a stationary target. The

radial plots illustrate real RSSI readings (green line) g and a third-order Fourier

series model ϕ(θ) of the radiation pattern (black line). The model is offset (ro-

tated) such that it is oriented towards the true bearing to the target θ∗n, and

the RSSI values are offset by the maximum correlation µΘ(g) = arg maxθ rϕ(θ),g .

These offsets are illustrated with dotted green and black radial lines. On the left

subfigure, the maximum value correlation coefficient rϕ̂,g maps to a bearing-

error σ2
Θ(g), which is illustrated in the grid plots below. On the right subfigure,

the maximum RSSI value gmax maps to an expected range µR(g) with a fixed

range-error σ̂2
R giving the associated grid plots below.
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(a) Theoretical gain
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(b) Stationary tag observa-

tions
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(c) Real bird observations

Figure 6.4: Third-order fast Fourier transform gain pattern model E[G | θ] (red) plotted

against: 6.4a the theoretical two-point phased array model G̃(θ, λ, ψ) (without

on-board filter distortion), 6.4b the observations relative to a static tag in the

canopy Gstationary, and 6.4c the observations relative to a real bird (the noisy

miner), moving during observations Gbird. In 6.4b and 6.4c, the mean (solid

black line) and standard deviation (shaded gray) normalised gain pattern are

shown.

when θ̂n = E[Θ | g] and σ2
Θ(G) = V(Θn | g). We find the expected azimuth by

minimising the sum of squares of the residuals, i.e.,

θ̂n = µΘ(g) = arg min
θ∈[0,2π)

‖g −ϕ(θ)‖2. (6.10)

To infer the variance V(Θn | g) for a given signal g, we note that the collec-

tion of {G} is heteroscedastic, i.e., the conditional variance can change with each

observation. This is shown in the scattergram in Fig. 6.3 where the bearing error is

plotted against observation quality (correlation). We assume this unexplained vari-

ance is due to hidden causes of observation noise, such as the target animal moving

during a measurement, or spurious recordings due to multipath interference. In

typical regression, heteroscedasticity is considered undesirable and is reduced by

introducing more regressors or non-linear transformations of the existing variables.

In our case, given that this knowledge is hidden, we cannot introduce more vari-

ables and instead marginalise out this quantity to infer the conditional variance

from data. Below, we show how the coefficient of determination expresses the propor-

tion of variability in our model (i.e., the heteroscedasticty is attributed to bearing

error).

In the context of regression, we can obtain the fraction of variance unexplained (FVU)

for a response variable through the coefficient of determination. In linear regres-
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sion, where we have the sample variance s2
g as an estimate of the population vari-

ance V(G), the FVU is given by the sample correlation coefficient r2:

V(G | Θn = θ̂)

V(G)
'

s2
g|θ̂
s2

g
= 1− r2

g,ϕ(θ̂). (6.11)

However, we are interested in the bearing variance V(Θn | G), which we can

approximate from the model variance V(ϕ(Θn) | G) by Taylor expansion. Recall

that our estimate θ̂n = µΘ(g1, g2, . . . , gK) is a function of the random vector G. We

can approximate the variance of this mapping via a first-order Taylor expansion [8],

V(Θ | G) '
N

∑
i=1

N

∑
j=1

Σij
∂µΘ(ϕ(Θ))

∂Gi

∂µΘ(ϕ(Θ))

∂Gj
. (6.12)

Now, because the measurement G comprises i.i.d. variables Gn, the covariance

matrix is given by Σ = V(G | Θ)IN where IN is the identify matrix. This gives the

conditional variance in Eq. (6.12) as

V(Θn | G) ' V(G | Θn)K
K

∑
n=1

(
∂µΘ(G)

∂Gk

)2

. (6.13)

Since small changes in each realisation of G will introduce small changes in µΘ,

the variance in Eq. (6.13) is approximately linear for low noise νG; however, the

approximation becomes worse as νG becomes large. By using the coefficient of

determination (Eq. (6.11)), we can express the variance of a given sensor reading g

in Eq. (6.13) as

σ2(g) = V(Θn | G = g) ' s2
g

(
1− r2

ϕ(θ̂),g

)
N

N

∑
n=1

(
∂µΘ(g)

∂gn

)2

. (6.14)

Thus, σ2(g) can be expressed as a function of s2
g

(
1− r2

ϕ(θ̂),g

)
.

In practice, we regress only on σ2(g), assuming the variable is a piecewise con-

tinuous function of the explanatory variable (1− rϕ(θ̂),g). We can also determine

azimuth θ̂ = µΘ(g) for each measurement g by the correlation coefficient rϕ(θ̂),g .

That is, following each observation, the recorded gain pattern is correlated against

the model ϕ(θ) with regular phase offsets θ and the lag that corresponds to the

maximum correlation then gives the estimated angle of arrival, i.e., Eq. (6.10) be-

comes µΘ(g) = arg maxθ∈[0,2π) rϕ(θ),g . This process of obtaining an azimuth obser-

vation is illustrated on the left of Fig. 6.3 and example likelihood functions from

one trial can be seen in Fig. 6.5.

6.4.2 Range likelihood function

Next, we estimate the distance to the target using a Gaussian range-error model

where the set ZR = {µR(G), σ̂2
R}. The range errors are assumed to be logarithmic,
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as discussed below. Furthermore, unlike the bearing observations, the scattergram

in Fig. 6.3 does not indicate the noise is heteroscedastic, i.e., the variance is constant

for each observation. This yields the likelihood function

LR(yn; xn, zRn) = f
(
log (d(xn, yn)) ; µR(g), σ̂2

R
)

. (6.15)

In general, range measurements in cluttered environments can be highly imprecise

due to multipath interference. We anticipate the vehicle to be deployed in similar

environments and estimate the variance under these conditions. Although the er-

ror in range measurements can be significant, including such observations is still

useful. Because the noise is homoscedastic, we can rely on range measurements

to provide an approximate location. The ability to focus on an approximate loca-

tion is particularly beneficial when the search area would otherwise be expansive,

such as in tracking scenarios where there is little prior knowledge of the target’s

location, and when bearing uncertainty is high.

We are interested in mapping the sensor output g to the distance between trans-

mitter and receiver. Due to atmospheric interactions, the signal amplitude will

decrease with range. Denote d(xn, yn) as the Euclidean distance between our re-

ceiver xn and the transmitter y. Then, the received power wn is a function of the

transmitted power vn and the attenuation per meter α [37]:

wn = vneαd(xn,yn). (6.16)

In Eq. (6.16) we have assumed that wn and vn take into account the link budget,

which characterises all gains and losses in the telecommunication system. Most

of these components are fixed for a given system (e.g., transmitter and receiver

losses), however, for a directional antenna, the gain relative to the average radiation

intensity (the isotropic directivity) depends on the immediate angle of arrival φk. As

a result, the RSSI values gk are a function of the received power wn and angle

of arrival φk. The isotropic directivity is approximately constant if we take the

maximum RSSI value gmax = maxk gk. Thus, we use the value gmax to estimate

distance.

Now, let the true distance to the target be r∗n = d(xn, y∗n) and its estimate

be a function of g, i.e., r̂n = µR(g). From the above discussion and Eq. (6.16),

wn = w(gmax) for some linear function w : R → R. Moreover, r∗n is a function of

log w(gmax) and the Gaussian range-error assumption may be expressed as

log r̂n = log r∗n + νR, νR ∼ N (0, σ2
R), (6.17)

where σ2
R = V(log Rn). We thus obtain the estimated range r̂n as

log r̂n = µR(g) = α−1(log w(gmax)− log vn). (6.18)
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The function µR(G) can be fitted to a first degree polynomial function of log gmax.

The variance σ2
R is estimated by the sample variance σ̂2

R = s2
R. The procedure for

obtaining a Gaussian range-error observation is illustrated on the right of Fig. 6.3

and example range likelihood functions can be seen in Fig. 6.5.

6.4.3 Combined likelihood function

The individual likelihood functions may be combined to obtain a range-azimuth

likelihood function L(yn; un), where Zn =
{

µΘ(G), σ2
Θ(G), µR(G), σ̂2

R
}

. That is, as-

suming independent errors νΘn and νRn , the likelihood functions are multiplied

pointwise [224], i.e.,

L(yn; un) = LΘ(yn; xn, zΘn) ◦ LR(yn; xn, zRn). (6.19)

We tested the null hypothesis that these errors are independent by computing

the sample correlation coefficient. Since the errors are assumed to be normal, the

hypothesis was tested via a Student’s t-distribution with 95% confidence and 150

observations. The results showed a correlation of rνΘn ,νRn
= −0.08± 0.136, giving

a confidence of less than 66% that the errors are correlated. This result further

supports the heteroscedasticity assertion, i.e., that poor quality observations are

not significantly correlated with distance.

6.5 bayesian data fusion

Given the likelihood function in Eq. (6.19), we can combine numerous observa-

tions to determine the most likely position of the target animal. To achieve this,

we use Bayesian data fusion, assuming independent observations; this process is

illustrated in Fig. 6.5.

We are ultimately interested in knowing the probability of the target’s state after

all N observations, i.e., the posterior belief [224, 235],

bel(tn, ŷn) = p
(
Ŷn = ŷn | U−n = u−n

)
. (6.20)

Further, we assume that the target can transition between observations such that

yn = yn−1 + νY with νY ∼ N (0, ΣY) for some covariance ΣY . This leads to the

transition density

q(yn | ŷn−1) = p
(
Ŷn = ŷn | Ŷn−1 = ŷn−1

)
. (6.21)

Computing the posterior belief (Eq. (6.20)) becomes simpler if the process (Y(t))t≥0

is assumed to be Markovian and each observation Zn only depends on Yn, i.e.,
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Figure 6.5: Bayesian data fusion to obtain target estimates. The distributions shown are spa-

tially discrete grids over a 750 m squared area (with grid-lines every 100 m for

illustrative purposes only). In each subfigure, time (observation number n) in-

creases up the page and higher probability mass is represented as darker, raised

regions. The UAV location xn is illustrated by a green dot, the target location yn

in purple and the maximum likelihood estimate ŷn in yellow. From left to right:

the bearing-only likelihood function LΘ; the range-only likelihood function LR;

the combined likelihood function Ln; and the posterior belief b(tn, yn).

L(ŷ; u) = ∏N
n=1 L(ŷn; un). As the likelihood function in Eq. (6.19) is defined this

way, recursive Bayesian filtering [224] can be used to update the belief. That is, the

posterior belief is computed as

bel(tn, ŷn) =
∫

q(ŷn | ŷn−1)bel(tn−1, ŷn−1)dŷn−1 (6.22)

bel(tn, ŷn) = ηL(ŷn; un)bel (tn, ŷn) , (6.23)

where η is a normalisation constant such that
∫

dŷnbel(tn, ŷn) = 1 and L(ŷn; un)

is the likelihood function (6.19). The first step (6.22) gives a motion update, and the

second step (6.23) gives the information update to obtain a new belief of the target

location [224].

Early approaches to recursive Bayesian filtering focused on Gaussian implemen-

tations due to convenient analytical solutions to computing the posterior belief in

Eq. (6.20), e.g., Kalman filters and extensions such as the unscented and extended

Kalman filters. However, these methods are approximations to the nonlinear, non-

Gaussian Bayesian filter (shown in Eqs. (6.22)-(6.23)). In contrast, grid-based filter-

ing allows for resolution-complete recursive estimation [9, 224] and can be com-

puted in reasonable time over our workspace. Thus, we represent our workspace

S as an I × J grid in R2.

The evolution model, Eq. (6.22), is functionally equivalent to Gaussian convo-

lution. Further, given our grid-based workspace S , this convolution is simply a

Gaussian blur, a spatial (low-pass) filter commonly used in image processing. To
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efficiently implement this model, we leverage results from computer vision for

convolution and use a separable Gaussian kernel of width 3|ΣY |.
Finally, we require an estimate of the location of the target ŷn given the poste-

rior bel(tn, yn). Two obvious choices for this estimate are the expected value of the

posterior E [Yn] =
∫

dyn yn bel(tn, yn), or the maximum a posteriori (MAP) estimate

arg maxyn∈S bel(tn, yn). The MAP estimate performed marginally better in prelimi-

nary trials; however, in practice the target does not remain stationary and so we

instead maximise recursively over all posteriors:

ŷn = arg max
o∈[1,n),yo∈S

bel(to, yo) . (6.24)

In this way, the location estimate likelihood is strictly increasing.

6.6 decision making by information gain

The overall objective is to minimise entropy over the target location. However, it

is more convenient to consider the equivalent problem of maximising the informa-

tion gain of each observation.

Let Ŷn− be distributed according to the target belief after the motion update step,

i.e., Eq. (6.22)). The information gained in taking the action Un = un is quantified

by the mutual information I(Yn; Yn−) between the posterior and the prior belief:

I(Yn; Yn−) = H(Yn)− H(Yn | Yn−). (6.25)

Decomposing Eq. (6.25) using the chain rule, the entropy minimisation problem

defined in Eq. (6.1) can be expressed as

U∗ = arg max
U⊆U

EU

[
H(Y1) +

N

∑
n=2

I (Yn; Yn−))

]
. (6.26)

The objective of Eq. (6.26) is equivalent to entropy minimisation and is, in gen-

eral, non-convex and analytically intractable. However, the mutual information

given in Eq. (6.25) is monotone submodular and thus the quality of the solution

provided by a greedy algorithm is at least 63% of optimal [132]. That is, given a

deterministic greedy algorithm that selects the action

Un = arg max
Un∈U

E [I(Yn; Yn−)] (6.27)

at each decision step, the resulting path û is within a constant factor of optimal of

the objective shown in Eq. (6.26), i.e.,

û ≥
(

1− 1
e

)
u∗. (6.28)
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Furthermore, this is the most efficient algorithm to obtain such a bound unless

P = NP [132].

Optimising each observation Un is constrained in that only the vehicle locations

xn ⊂ un can be selected, and consequently only the expected information gain at

each sample s can be computed, i.e., we choose future waypoints xn such that

xn = arg max
s∈S

E [I(Yn; Yn−) | Xn = s] . (6.29)

As mentioned above, we assume independent errors in the likelihood functions

shown in Eq. (6.19), giving p(Zn) = p(ZΘn)p(ZRn). However, even solving for

independent priors requires inverting all possible distributions at all sample loca-

tions s ∈ S ; this is generally intractable.

As an efficient alternative, we assume that the target location for the next obser-

vation is the maximum likelihood position after the motion update, i.e., Yn = ŷn− .

As a result, for a fixed viewpoint s, the expected range measurement E[Rn | Xn =

s, Yn = ŷn− ] = d(s, ŷn−) and expected bearing measurement E[Θn | Xn = s, Yn =

ŷn− ] = b(s, ŷn−) to the target are given. Moreover, the expected variance σ̂2
Θ is given

by marginalising out G such that σ̂2
Θ = E[σ2

Θ(G)] ' 0.2 radians. In this case, the

expected observation is a function of the viewpoint s:

ẑn(s) = {d(s, ŷn−), σ̂2
Θ, b(s, ŷn−), σ̂2

R}, (6.30)

and the optimisation over potential viewpoints s from Eq. (6.29) becomes

xn = arg max
s∈S

I (Zn = ẑn(s); Yn = ŷn−) . (6.31)

To reduce computation time, instead of sampling every location in the workspace

s ∈ S as indicated in Eq. (6.31), we simply sample a uniformly distributed sub-

set. Given the stochastic nature of observations this does not appear to affect the

quality of the planner.

6.7 experimental system

Our experimental system comprises a commercial UAV platform, a custom antenna

array and sensor payload. Algorithmic components from the previous sections

are implemented in the robotic operating system (ROS) [190] and executed on a

ground-based laptop computer. This section describes the UAV platform and sensor

payload components. An overview is shown in Fig. 6.6.

The UAV used in our system is the Falcon 8, a commercial eight-rotor platform

manufactured by Ascending Technologies with proprietary high-quality flight con-

trol and autonomous GPS waypoint-following systems. It is structured around two
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Figure 6.6: Diagram of the wildlife telemetry tracking system.
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(b) Simulation results for the AGC circuit

Figure 6.7: The AGC circuit. The diagram in 6.7a illustrates both stages of the circuit: catch

and hold (Stage 1), and integrating amplifier (Stage 2). The plots in Fig. 6.7b

show a simulated input pulse of 10ms with a period of 1.05s (Vin), the output

from Stage 1 (VS1), and output from Stage 2 (Vout).

colinear sets of four rotors with a maximum take-off weight of 2200g and pay-

load capacity of 750g. The platform is connected by wireless communication to a

ground station, which can relay telemetry data and accept control commands via

USB.

The sensor array is fed into a custom transceiver subsystem that consists of a

Radiometrix LMR1 receiver, an ARM 32-bit Cortex-M3 microprocessor mounted

to a custom miniaturised printed circuit board, an analog filtering circuit, and a

Digi XTend radio modem. These components were chosen such that the total mass

of the sensor payload does not exceed the payload capacity of the Falcon 8. The

complete system is shown earlier in Fig. 6.1.

The BioTrack Pip Ag393 radio tags regularly transmit an unmodulated on-off-

keyed signal with a pulse width of 10 ms and period of 1.05 s; the receiver RSSI

output is an equivalent waveform with an amplitude corresponding to the signal
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strength at the RF input channel (see Vin in Fig. 6.7b). To avoid using high-powered

signal processing components while at the same time receiving high-fidelity RSSI

measurements, we designed a simple analog circuit to handle signal processing.

The circuit implemented is a typical AGC circuit as seen in Fig. 6.7a. Stage 1 is a

peak-hold rectifier circuit with a low leakage rate to hold the amplitude of each

pulse (VS1 in Fig. 6.7b); and Stage 2 acts as an inverting amplifier and integrator

circuit to smooth the peak-hold signal and upsample the voltage to the analog-to-

digital converter input range of 0 - 3.3 VDC (Vout in Fig. 6.7b). The filter output

Vout is sampled at 5 Hz by an analog-to-digital converter within the microprocessor

subsystem and transmits this packet to the ground station through a radio modem.

6.8 system validation

In preliminary experiments, we validate that the bearing-only sensor model (Sec. 6.4.1)

is suitable for localising radio-tagged wildlife and stationary targets. The uncer-

tainty model for these experiments was learned in a data-driven approach similar

to that described in Sec. 6.4.1. However, the number of pieces and breakpoints

were chosen in a less rigorous manner (see [53] for details).

Here we provide results from two experiments with autonomous flight: (1) algo-

rithm validation and (2) live bird trials. The aim of the algorithm validation is to

localise a stationary tag mounted in the canopy of a tree. Live bird trials were per-

formed with radio-tagged noisy miners (Manorina melanocephala), a small territorial

bird species.

In these experiments, observations are taken at 50 m altitude from the launch

elevation and take approximately 45 s to complete. Rotation rate for an observa-

tion was hand-tuned using data from five preliminary flights. For all autonomous

flights, observation positions were computed online using the planner from Sec. 6.6.

We use three separate trial sites (Sites A, B and C) known to be within the

territory of a target bird.

6.8.1 Validation: Stationary tag

Six flights were performed to evaluate localisation performance on a stationary

tag in a 1000x1000 m grid with 1 m-resolution cell edges. Table 6.1 presents the

mean number of observations per trial, mean estimation error and mean entropy

of the a posteriori belief of each trial, mean and variance of each observation range

to tag, mean and variance of observation bearing error, and the mean and variance

of the maximum likelihood correlation of each observation. The former measures
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Table 6.1: Localisation results for a stationary tag. Each tag was placed in the canopy of a

site within a target bird’s territory.

Site Trials
Total

Observations

Mean

Error∗

(m)

Mean

Entropy∗

(bits)

Mean Distance (m) Correlation r† Observation Error νΘn (rad.)†

µ (σ) µ (σ) µ (σ)

A 2 11 16.43 10.56 73.3 (22.0) 0.951 (0.0489) 0.1173 (0.0703)

B 2 11 25.2 15.7 203 (95.4) 0.941 (0.0355) 0.0691 (0.0537)

C 2 8 29.9 15.86 230 (118.9) 0.848 (0.175) 0.215 (0.349)

6 30 23.8 14.04 168.8 (78.77) 0.913 (0.0865) 0.1338 (0.1577)

∗ Based on ground truth coordinate at the end of each trial

† Each observation is independent of parent trial

(a) n = 1 (b) n = 2 (c) n = 6

Figure 6.8: Localisation of a static radio tag in a tree canopy. Figures 6.8a, 6.8b and 6.8c

illustrate the convergence of the a posteriori belief bel(tn, ŷn) of the tag location

after the first, second and last observation for this trial, respectively. The belief

is represented as a grid with 1m resolution.

report on the final observation of each trial; the latter are calculated over all obser-

vations at each site (e.g., 11 observations at Site A). Lower values for all statistical

measures imply higher accuracy, precision and certainty of the tag’s position. The

observation range is dependent only on environmental factors.

Site A yields better results across all measures, even though many observations

are closer than the ideal system range, most likely suggesting the actual system

range is shorter than that reported in [53]. Further, the site’s landscape was rela-

tively flat with sparser vegetation than other sites and thus yields less dominant

multipath propagation. In Sites B and C the algorithm performs sufficiently and

consistently localises the stationary tag to within 30 m.

A typical trial for the stationary tag at Site A is depicted in Fig. 6.8 showing

the a posteriori belief, vehicle trajectory and tag location for observations 1, 2 and

6. Ideally, the planner would be able to circle around the centroid, however due to

safety precautions the planner considers waypoints within a 90 m radius of the UAV
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(a) n = 1 (b) n = 2 (c) n = 7

Figure 6.9: Localisation of the noisy miners tagged with a low-power radio transmitter.

Figures 6.9a, 6.9b and 6.9c illustrate the convergence of the a posteriori belief

of the bird location after the first, second and last observation for this trial,

respectively. As an indication of the actual bird position, the trajectory of the

trackers during an observation (solid light green), and past trajectory (solid

dark green) are shown.

home position (the map origin). To account for the aforementioned ideal range, the

planning set excludes waypoints within 60 m of the a priori belief centroid.

6.8.2 Validation: Noisy miners

Following the algorithm validation on stationary targets, we performed three flights

from different launch sites to localise small, live birds. Each bird was fitted with

a radio transmitter equivalent to the stationary case above with the same grid

parameters as above.

For these trials, several birds were captured and, subsequently, the radio tag

was taped to their back feathers. Each tag transmitted on a unique frequency that

was preprogrammed into both the manual and robotic receiver systems. The tags

emitted an on-off key modulated signal as described above. Moreover, they were

lightweight (approximately 2 g) and, subsequently, low-power (less than 1 mW)

transmitters due to the small size of the species.

Manual tracking was undertaken using a Titley Australis 26k very high fre-

quency (VHF) radio receiver system and a Yagi three element hand-held directional

antenna (shown earlier in Fig. 6.1). The approximate location of a bird was identi-

fied by driving in an offroad-capable vehicle to different sites until a radio signal

was audible from the receiver. Once a signal was detected, the tracker continued

to point the antenna towards the strongest (loudest) signal while walking through

the landscape. This procedure involved constant adjustment of the volume and

the gain of the receiver and continued until the bird was sighted. The GPS trajec-
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tory followed by the manual tracker was recorded. Both these experiments and

those detailed below were performed in an open, grassy, Box Ironbark woodland,

and thus relatively easy to traverse on foot. However, locating the birds was often

complicated by logistical issues such as limited road accessibility, fence lines and

different land tenures (including private property).

After achieving visual confirmation of a bird’s location, the UAV was launched

approximately from the manual tracker’s starting position. The UAV trajectory and

raw sensor data were recorded in real-time and later replayed to generate the

figures reported. Each flight was performed at a constant altitude of 75 m (such

that the canopy was cleared) and each observation took approximately 45 s to

complete. For planning viewpoints, the UAV was constrained to choose locations

within 300 m of the ground control station (GCS) (i.e., the starting position) for the

pilot to maintain visual line-of-sight.

We present an illustration of a trial at Site A in Fig. 6.9. Figure 6.9a shows the

launch position at approximately 300 m from the bird in a clearing to allow direct

line of sight to the UAV system when flying toward the bird. Power lines in the area

restrict the planning distance to 90 m from the home (launch) position, indicated

by the 90 m radius arc in Fig. 6.9c. Finally, Fig. 6.9 shows the belief converging to a

MAP estimate within 50 m of the bird – the entropy and accuracy of this trial should

improve if the UAV could plan a larger radius around the bird (see stationary tag

results in Tab. 6.1).

Results for the second and third trials are similar. These results are less exhaus-

tive and quantitative than those with stationary tags due to two reasons: 1) the

inaccuracy of the manual tracking and unpredictable movement of the bird (e.g.,

if a bird moves between the fourth and fifth observation the manual tracks will

be lagged) and 2) if the bird moves during an observation, the observation gives

the incorrect gain pattern. Further, the planning must take into account the en-

vironment (e.g., power lines) and allow an unobstructed line of sight to the UAV

system for safety precautions, causing difficulty in observing the tag from optimal

bearings.

6.9 field trials : critically endangered swift parrot

The full system was used to validate tracking in a real-world scenario tracking

radio-tagged swift parrots. In this section we report on the performance of the

system when compared against skilled human trackers. Moreover, we provide de-

tailed heatmaps of posterior locations of the bird and discuss the ecological signif-

icance of these trials.
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Figure 6.10: Evaluating the performance of the robotic system against human trackers for

eight flights at four different sites (two flights per trial). For the robot (green

and blue), The box plot shows the error in the system’s target estimate ŷn for

each observation n. For the human trackers, we plot the Euclidean distance

between the tracker location and the final estimate at the observation time tn.

The blue bar has two flights removed as we were not certain of the final loca-

tion of the bird (i.e., the target moved during the flight and visual confirmation

was lost).

6.9.1 Experimental Setup

The trials were performed on 3–7 July 2017 in Temora, New South Wales, Australia.

Prior to these trials, six birds were detected by an experienced volunteer undertak-

ing targeted surveys in the surrounding Riverina region, where swift parrots are

known to migrate on a regular basis. Follow-up surveys were conducted by the

authors in late June, confirming that the survey location was suitable for this trial

by detecting at least 30 birds. By the end of August, at least 200 swift parrots (10%

of the global population) were detected in the area.

For Bayesian data fusion, the workspace S ⊂ R2 was discretised into a square,

300× 300 grid, i.e., I = 300 and J = 300. Each cell represented a 5× 5 m area and

thus the workspace extended 750 m in all cardinal directions from the GCS. We

assumed a uniform prior on the target location and evolution model covariance

ΣY = σY I2, where σY = 20 m.

6.9.2 Evaluating the performance of the system

To validate our approach, we compared the performance of the robotic system

against human tracker performance in locating swift parrots in the wild. The re-

sults indicate that the robot is able to approximate the location of the target species
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in less time than human trackers. Moreover, the reported position estimates are ob-

tained in less than 5 observations (approximately 10 minutes) and lie within 50 m

of the true bird location.

The boxplot in Fig. 6.10 collates the tracking performance from eight flights at

four different sites. At each site, we obtained the GPS trajectory of a novice and an

expert tracker performing manual wildlife telemetry (as described above). Once a

human tracker had established the true location y for the target, the UAV began

its flight trial. A flight was performed for each type of tracker (novice, expert).

Thus, we obtained two tests of the robot system at each site with known true bird

location.

For fair comparison, both the robot and the humans began trials from the same

initial coordinates, with the target animal location unknown. This starting location

was chosen such that the radio signal was strong enough to be measured by the on-

board payload. In order to quantify performance, we compare the robotic tracker

estimate ŷk with the Euclidean distance between the human tracker and the final

ground truth y at that time tk. These locations are plotted in Fig. 6.10, where

the robot, on average, takes less time to locate the bird to within 50 m (around

Observation 2, between 143–289 s).

6.9.3 Ecological significance of trials

The quantitative data from our trials provide significant insight into the movement

and habitat of swift parrots. The Temora region was chosen because, based on

a small number of sightings, it was assumed that numerous swift parrots had

migrated to the area in the weeks leading up to the trial (see Sec. 6.9.1). The results

in this paper were obtained over a seven-day trial in the region and the posterior

estimates from all flights were aggregated to yield the heatmap shown in Fig. 6.11.

The figure shows that the flocks used two distinct areas for foraging and roosting,

including sites where the species had not previously been recorded.

Swift parrots are small, critically endangered migratory birds that are dependant

on highly variable winter nectar resources. As a result, the small population (less

than 2000 birds) spreads across vast areas of South-Eastern Australia each year

in search of suitable food. Given their small body and hence tag size, as well

as their capacity for highly variable and large movements, this species has never

before been successfully radio-tracked. Figure 6.11 provides an example of the

distribution and abundance of swift parrots across their winter range in a single

season, together with the location of our study site.
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Figure 6.11: Recorded spatial distribution of swift parrots. Main figure: swift parrot sight-

ings in South-East Australia for May 2007. Green circles denote sites where

flocks were confirmed, red circles denote failed surveys where no birds were

found. The size of the green circles indicate the size of the flock, ranging from

1 to 100 birds. Inset: heatmap illustrating aggregated posterior distributions

from our trial in July 2017. The posterior distributions of all trials were nor-

malised and aggregated to give an indication of the most likely communal

roosting grounds of the flock. When ground truth data were available for a

tag, we plot a white symbol on the map; each unique tag frequency has a

unique symbol: ‘o’, ‘×’, ‘+’, or ‘∗’.
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6.10 summary

Here we presented and experimentally validated an aerial robot system for track-

ing small radio-tagged wildlife. The system comprised a novel antenna and custom

electronics for achieving high-fidelity recording of the radio signal. The algorith-

mic contributions included rigorous derivation of a range-azimuth sensor model

as well as complete tracking algorithms from first principles. We validated the sys-

tem in several ways, via: stationary targets, a test bird species (the noisy miner),

and the critically endangered swift parrot. The field experiments showed that the

system is capable of locating and tracking small dynamic animals in comparable,

and occasionally faster, time than experienced human trackers.

Here we considered information-theoretic reasoning from the perspective of an

autonomous system, where the main challenge is to optimally gather data rather

than model the communication and storage (as was done in the previous two

chapters). Due to the nature of the problem, this chapter focused more on sensor

modelling and employed a simple greedy informative path planning algorithm.

In the following chapter, however, we explore information gathering tasks with a

team of robots, where myopic planning algorithms are not suitable.
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In the previous chapter, information gathering was used to solve the

problem of automating wildlife telemetry tracking. In that context, we

were able to assume the travel costs were negligible and, by leveraging

the submodularity of entropy, focus on the challenges of sensor mod-

elling. Here, we extend our formulation to consider the more general

problem of active perception with a team of robots where the expected

travel cost can not be ignored. Although the approach considered here

is motivated by multi-robot information gathering tasks it is generally

applicable to any utility function.

7.1 overview

In this chapter we present Dec-MCTS, a powerful new method of decentralised co-

ordination for any objective function defined over action sequences of a team of

robots. Our approach provides convergence guarantees but does not require sub-

modularity assumptions, and is essentially a novel decentralised variant of the

MCTS algorithm [38].

At a high level, our method alternates between exploring each robot’s individual

action space and optimising a probability distribution over the joint-action space.

In any particular round, we first use MCTS to find locally favourable sequences of

actions for each robot, given a probabilistic estimate of other robots’ actions. Then,

robots periodically attempt to communicate a highly compressed version of their

local search trees which, together, correspond to a product distribution approx-

imation. These communicated distributions are used to estimate the underlying

joint distribution. Our method thus inherits important properties from MCTS, such

as the ability to compute anytime solutions and to incorporate prior knowledge

about the environment. Moreover, it is suitable for online replanning to adapt to

changes in the objective function or team behaviour.

This chapter specifically focuses on the extensive theoretical analysis of the algo-

rithm, leveraging results from probability theory and game theory. Practical con-

siderations of the algorithm, as well as experimental validation on multi-robot

information gathering tasks is provided in [24]. Our primary analytical result is
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to show convergence rates for the expected payoff at the root of the search tree to-

wards the optimal payoff sequence. Thus, the proposed MCTS tree expansion policy

balances exploration and exploitation while the reward distributions are changing.

This result is proven by extending the MCTS analysis of [126] for the context of

switching bandit problems [88]. Our second result leverages the analysis of impor-

tance sampling in probability collectives [257] to show that the product distribu-

tion optimisation phase locally minimises the KL divergence to the optimal joint

probability distribution. While, given the difficulty of the problem, these results

do not directly yield guarantees for global optimality, the analysis provides strong

motivation for the use of these components in our algorithm for decentralised,

long-horizon planning with general objective function definitions.

7.2 problem statement

We consider a team of R robots {1, 2, . . . , R}, where each robot r plans its own

sequence of future actions xr = (xr
1, . . .). Each action xr

j has an associated cost

cr
j and each robot has a cost budget Br such that the sum of the costs must be

less than the budget, i.e., ∑xr
j∈xr cr

j ≤ Br. This cost budget may be an energy or

time constraint defined by the application, or it may be used to enforce a planning

horizon. The feasible set of actions and associated costs at each step j are a function

of the previous actions (xr
1, . . . , xr

j−1). Thus, there is a predefined set X r of feasible

action sequences xr for each robot r. We denote x as the set of action sequences

for all robots x := {x1, . . . , xR} and x(r) as the set of action sequences for all robots

except robot r, i.e., x(r) := x \ xr. We denote X as the set of all feasible x and X (r)

as the set of all feasible x(r).

The aim is to maximise a global objective function g(x) that is a function of the

action sequences of all robots. We assume each robot r knows the global objective

function g, but does not know the action sequences x(r) selected by the other robots.

For most of our proposed approach, we assume g is deterministic given a known

set of action sequences x; in [24] we discuss extensions for probabilistic objective

functions. Moreover, the main applications we consider in [24] are information

gathering tasks, however the problem generalises to any form of active perception.

The problem must be solved in a decentralised and online setting. We assume

that robots can communicate during planning-time to improve coordination. The

communication channel may be unpredictable and intermittent, and all communi-

cation is asynchronous. Therefore, each robot will plan based on the information it

has available locally. Bandwidth may be constrained and therefore message sizes

should remain small, even as the plans grow. Although we do not consider explic-
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Figure 7.1: Overview of the algorithm running on-board robot r. 1) The search tree is

expanded by adding new actions (green). Periodically, the set of best nodes

(orange) is selected as the domain X̂ r
n . 2) The probability distribution qr

n is

optimised (from dotted red to solid blue). 3) If possible, the domains and dis-

tributions are communicated between robots.

itly planning to maintain communication connectivity, this may be encoded in the

objective function g(x) if a reliable communication model is available.

7.3 dec-mcts

In this section, we give an overview of the Dec-MCTS algorithm as a decentralised

solution to the general multi-robot planning problem. We first provide an overview

of the algorithm followed by a detailed explanation of all components. For more de-

tail such as pseudocode and practical considerations of the algorithm, refer to [24].

Dec-MCTS runs simultaneously and asynchronously on all robots; we present the

algorithm from the perspective of robot r. The algorithm cycles between the three

phases illustrated in Fig. 7.1: 1) incrementally grow a search tree using MCTS while

taking into account information about the other robots’ plans, 2) update the prob-

ability distribution over possible action sequences, and 3) communicate probabil-

ity distributions with the other robots. These three phases continue regardless of

whether or not the communication was successful, until a computation budget is

met.

A key idea of Dec-MCTS is to represent and reason over plans in a probabilistic

manner. In particular, robot r’s current plan is represented by a probability dis-

tribution over action sequences. We define a probability mass function qr
n, such

that qr
n(xr) defines the probability that robot r will select the action sequence xr.

In general, the domain of the distribution qr
n is the set of all possible action se-

quences X r. However, to enable tractable computation and realistic communica-

tion, we restrict the domain of qr
n to a dynamically selected subset X̂ r

n ⊂ X r, i.e.,

qr
n(xr) = 0, ∀xr /∈ X̂ r

n . As the Dec-MCTS algorithm progresses, both the domain X̂ r
n
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and the probability distribution qr
n are optimised. Note the subscript n for qr

n and

X̂ r
n is used to denote the nth iteration of the main loop of our algorithm.

An illustration of the main loop is shown in Fig. 7.1 and pseudocode for the

algorithm is provided in [24]. During the MCTS phase, a search tree T r is grown

over the space X r of robot r’s action sequences using a new variant of the UCT

algorithm. This tree growth is performed while considering the probability distri-

butions over the other robots’ plans, denoted X̂ (r)
n , q(r)n . Periodically, the domain

X̂ r
n for robot r’s distribution is updated by selecting the most promising action se-

quences identified by the tree search. In the probability distribution optimisation

phase, the probabilities assigned to action sequences qr
n(xr) are optimised using

a decentralised gradient descent algorithm while considering the distributions of

the other robots. In the communication phase, robot r communicates its domain

X̂ r
n and probability distribution qr

n to the other robots. If robot r receives a new

distribution from any of the other robots, then in the next iteration X̂ r
n and qr

n

are optimised while considering this new information. During this optimisation

process, it is possible that q(r)n will change such that a previously optimal leaf of

the tree T r becomes suboptimal; we refer to the times at which this happens as

breakpoints.

When the computation budget is met, the algorithm returns the action sequence

xr that has the highest probability qr
n(xr). In online settings, the robot would then

typically execute the first action xr
1 in the action sequence, and then perform re-

planning to take into account new information received by observations. If the

changes to the objective function are minor, then replanning may be performed

more efficiently by adapting the previous search tree.

The global objective function g is optimised by each robot r using a local util-

ity function f r. We define f r as the difference in global utility between robot r

performing action sequence xr and a default “no reward” sequence xr
0, assuming

fixed action sequences x(r) for the other robots, i.e.,

f r(x) := g(xr ∪ x(r))− g(xr
0 ∪ x(r)). (7.1)

The default sequence xr
0 is chosen to be suitable for the application and would typi-

cally be an empty action sequence. In practice, optimising with respect to f r rather

than g improves the performance since f r is more sensitive to robot r’s plan and the

variance of f r is less affected by the uncertainty of the other robots’ plans [256]. We

chose this local utility function since it is generally applicable, although further per-

formance improvements could be achieved with problem-specific heuristics [192].
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Figure 7.2: The four main stages in the standard MCTS algorithm: node selection, expansion,

simulation, and backup.

7.3.1 Monte Carlo tree search with discounted-UCB

The first phase of the algorithm is the MCTS update. A single search tree T r is

maintained by robot r which only contains the actions of robot r. The tree T r is

defined such that each edge in the tree represents an action by robot r, and a path

from the root node i0 to another node id at depth d represents a valid sequence

of actions by robot r. The MCTS algorithm incrementally grows T r from the root

node using a best-first expansion policy. During the MCTS phase, coordination with

other robots occurs implicitly by considering the plans of the other robots when

performing the rollout policy and evaluation of the global objective function. This

information about the other robots’ plans comes from the second phase of the algo-

rithm, detailed later in Sec. 7.3.2. In this subsection, we detail our proposed MCTS

algorithm which features a novel bandit-based node selection policy designed for

our planning scenario.

Standard MCTS incrementally grows a tree by iterating through four phases: selec-

tion, expansion, simulation and backprogation [38]; this process is illustrated in Fig. 7.2.

During each iteration t, a new leaf node is added, where each node represents a

sequence of actions and contains statistics about the expected reward of all action

sequences that begin with this sequence.

The selection phase selects an expandable node in the tree, where an expandable

node is defined as a node that has at least one child that has not yet been visited

during the search. In order to find an expandable node, the algorithm begins at

the root node i0 of the tree and recursively selects child nodes until an expandable

node id−1 is reached. For selecting the next child at each level of the tree, we

propose an extension of the UCT policy [125], detailed in Sec. 7.3.1.1, to balance
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exploration and exploitation. In the expansion phase, a new child node id is added

to the selected expandable node id−1, which extends the parent’s action sequence

with an additional action.

In the simulation phase, the expected utility E[g(X)] of the expanded node id

is estimated by performing and evaluating a rollout policy that extends the action

sequence represented by the node until a terminal state is reached. This rollout

policy could be a random policy or a heuristic for the problem [110]. The objective

is evaluated for this sequence of actions and this result is saved.

For our problem, the objective is a function of the action sequence xr as well as

the unknown plans of the other robots x(r), and thus we require an extension of the

standard simulation procedure. To compute the rollout score, we first sample x(r)

from a probability distribution q(r)n over the plans of the other robots. A heuristic

rollout policy extended from id defines xr, which should be a function of x(r) to

simulate coordination between the robots. Additionally, we optimise xr using the

local utility f r (as defined in (7.1)) rather than g. The rollout score is computed as

the utility of this joint sample f r(xr ∪ x(r)), which is an estimate for E[ f r(X)] given

the current belief qn. We denote Ft as the rollout evaluation at sample round t.

In the backpropagation phase, the rollout evaluation Ft is added to the statistics

of all nodes along the path from the expanded node back to the root of the tree.

Typically, these statistics are unbiased estimators of the rollout evaluations; how-

ever, as we discuss in the following section, it is more suitable to use a weighted

average in the context of this algorithm.

7.3.1.1 D-UCB node selection policy

The node selection policy dictates the order in which the tree T r is expanded.

Consider an arbitrary node id at depth d in the tree which has an associated set of

child nodes Ch(id). For every sample round t where node id is visited, the problem

is to select a child Iid,t ∈ Ch(id) that balances both visiting promising subtrees and

exploring uncertain ones.

An established approach for node selection is based on maintaining an upper

confidence bound (UCB) on the value of each node. Under this paradigm, at each

sample round t, a UCB Uj,tid
,tj is computed for all children j ∈ Ch(id) of the parent

node id. Here, tid is the number of times the parent node id has been visited and

tj is the number of times child node j has been visited. The algorithm then selects

the node that maximises this quantity, i.e.,

Iid,t = arg max
j∈Ch(id)

Uj,tid
,tj . (7.2)

This continues recursively until an expandable node is reached.
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The de facto UCB Uj,tid
,tj is a combination of the empirical mean of rewards re-

ceived at node j and a confidence interval derived from the Chernoff-Hoeffding

inequality [38]. This bound was originally used in the context of the MAB prob-

lem and called UCB1 [11]; when used for tree search, it is labelled UCT [125]. UCT

was shown to yield polynomial regret when the reward distributions at the leaf

nodes are stationary [125]. However, Dec-MCTS alternates between growing the tree

for a number of rollouts τn and updating the probability distributions for other

robots. As mentioned above, this introduces breakpoints as instants where the re-

ward distribution and optimal action can change abruptly. We denote the number

of breakpoints up until time t as Υt. Due to these breakpoints, the most recent

rollouts are more relevant since they are obtained by sampling the most recent

distributions. It was shown by Garivier and Moulines [88] that UCB1 is inefficient

in the bandit setting when breakpoints are expected. In this scenario a discounted

variant (termed D-UCB) yields tighter bounds on regret. Due to the expected break-

points caused by updating the distributions, we extend the approach of [88] for

tree search, and propose a discounted variant of UCT for node selection, which we

term D-UCT, described as follows.

Given some discount factor γ ∈ (1/2, 1) and exploration constant Cp > 1/
√

8,

the D-UCT bound is defined as:

Uj,tid
,tj(γ) := F̄j,tj(γ) + ctid

,tj(γ), (7.3)

where F̄j,tj(γ) is the discounted empirical reward, and ctid
,tj(γ) is a discounted ex-

ploration bonus. A lower discount factor γ enforces only the most recent rollouts

to contribute towards the UCB, whereas at the upper limit γ → 1 D-UCT becomes

equivalent to UCT. These quantities are computed as follows. First, recall that the

indicator function 1{Iid ,t=j} returns 1 if node j was selected at round t, and 0 oth-

erwise. Then, denote the discounted number of times the child node j has been

visited as:

tj(γ) :=
t

∑
u=1

γt−u1{Iid ,u=j}, (7.4)

and the discounted number of times the parent node has been visited as:

tid(γ) := ∑
j∈Ch(id)

tj(γ). (7.5)

Recall that Ft is the rollout score received at sample t. Then, the discounted empir-

ical average is given by:

F̄j,tj(γ) :=
1

tj(γ)

t

∑
u=1

γt−uFu1{Iid ,u=j}, (7.6)
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and the discounted exploration bonus is defined as:

ctid
,tj(γ) := 2Cp

√
log tid(γ)

tj(γ)
. (7.7)

The aim of an online planner, such as Dec-MCTS, is to find the best first action,

execute this action, and then replan. Thus, we are interested in the convergence of

the root node towards selection of the optimal action. Given the expected upper

bound on the number of breakpoints occuring in the subtree rooted at node j, i.e.,

E[Υtj ], selecting the discounted factor as

γtj = 1−
√

E[Υtj ]

16tj
(7.8)

allows us to minimise the time for this convergence, as shown in Sec. 7.4. Having

γ change dynamically, such as in (7.8), makes it difficult to efficiently recompute

F̄j,tj and ctid
,tj as t grows large. Therefore, in practice, typically it is best to set γ to

a fixed constant.

7.3.2 Decentralised product distribution optimisation

The second phase of the algorithm updates a probability distribution qr over the

set of possible action sequences for robot r. These distributions are communicated

between robots and used for performing rollouts during MCTS. To optimise these

distributions in a decentralised manner for improving global utility, we adapt a

type of variational method known as probability collectives [255]. This method

can be viewed as a game between independent robots, where each robot selects

their action sequence by sampling from a distribution.

One challenge is that the set of possible action sequences is typically of exponen-

tial size. We obtain a sparse representation by selecting the sample space X̂ r
n ⊂ X r

as the most promising action sequences {xr
1, xr

2, ...} found by MCTS. We select a

fixed number of nodes with the highest E[ f r(X)] obtained so far. X̂ r
n is the ac-

tion sequences used during the initial rollouts when the selected nodes were first

expanded.

The set X̂ r
n has an associated probability distribution qr such that qr(xi) defines

the probability that robot r will select xr ∈ X̂ r
n . The distributions for different

robots are independent and therefore define a product distribution, such that the

probability of a joint action sequence selection x is

q(X = x) := ∏
r

qr(Xr = xr). (7.9)

The advantage of defining q as a product distribution is so that each robot selects

its action sequence independently, and therefore allows decentralised execution.
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Consider the general class of joint probability distributions p that are not re-

stricted to product distributions. Define the expected global objective function for

a joint distribution p as E[G] := E[g(X)], and let Γ be a desired value for E[G]. By

the principle of maximum entropy, the most likely p that satisfies E[G] = Γ is the p

that maximises entropy. This most likely p can be found by minimising the maxent

Lagrangian:

L(G) := λ (Γ− E[G])− H(G), (7.10)

where H(G) is the Shannon entropy and λ is a Lagrange multiplier. The intuition is

to iteratively increase Γ and optimise p. A descent scheme for p can be formulated

with Newton’s method.

For decentralised planning and execution, we are interested in optimising the

product distribution q rather than a more general joint distribution p. We can ap-

proximate q by finding the q with the minimum pq KL-divergence DKL [p ‖ q]. This

formulates a descent scheme with the update policy for qr where we use f r rather

than g. Intuitively, this update rule increases the probability that robot r selects xr if

this results in an improved global utility, while also ensuring the entropy of qr does

not decrease too rapidly. That is, at each iteration, the probability distributions are

updated according to:

qr
n(xr) = qr

n(xr)− αqr
n(xr)

[
Eqn [ f r]−Eqn [ f r | xr]

β
+ H(qr

n) + ln (qr
n(xr))

]
(7.11)

where β is a free parameter that controls the convergence rate of the distributions.

Parameter β should slowly decrease and α remain fixed. For efficiency purposes,

in our implementation qr is set to a uniform distribution when X̂ r
n changes.

7.4 analysis

In this section, we provide a detailed theoretical analysis of Dec-MCTS. The algo-

rithm is an anytime and decentralised approach to multi-robot coordination with

two key algorithmic components: 1) the tree search (Sec. 7.3.1) is designed to per-

form long-horizon planning for single-robot action sequences while considering

the changing plans of the other robots, and 2) the product distribution optimisa-

tion (Sec. 7.3.2) is designed to directly optimise the joint multi-robot plan while

being restricted to a small subset of possible action sequences. While it is diffi-

cult to make any strong claims of global optimality in the context of decentralised,

long-horizon planning with general objective functions, we focus our analysis on

characterising the convergence properties of these two algorithmic components,

then discuss the implications of these results.
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In Sec. 7.4.1 we begin by presenting and analysing a special type of MAB problem

that is related to tree search. Section 7.4.2 then presents our main analytical result

that the D-UCT algorithm maintains an exploration-exploitation trade-off for child

selection while the distributions qr
n are changing (and converging). In Sec. 7.4.3 we

characterise the convergence of distributing the optimisation process (Sec. 7.3.2)

given a contracted sample space of distributions X̂ r
n ⊂ X r. Finally, in Sec. 7.4.4 we

remark on the implications of these results in the context of the overall Dec-MCTS

algorithm.

7.4.1 D-UCB applied to bandits

We begin our analysis by studying D-UCB [88] for a specific type of non-stationary,

switching bandit problem. The classic MAB problem is that of a gambler decid-

ing which arm to play from a row of slot machines with stationary but unknown

reward distributions. As a result, bandits are the canonical model for studying

the trade off of acquiring knowledge (“exploration”) and maximising reward (“ex-

ploitation”), or the exploration-exploitation dilemma. In the context of MCTS, the “arm”

is analogous to a node selected to expand for a given MCTS rollout. We can there-

fore leverage the analysis of the MAB for the tree search problem (later in Sec. 7.4.2).

To achieve this, we modify the assumptions on the type of reward distributions for

each arm to those expected at internal nodes of the tree while performing the

proposed D-UCT algorithm.

Our analysis follows that of [125, 126] who analyse the use of UCB1 as the

MCTS node selection policy. We mainly reference the technical report [126] where

the proofs for their theorems are given. Specifically, in this section we analyse

D-UCB applied to a special type of bandit problem, then in Sec. 7.4.2 we exploit this

analysis in applying D-UCT to the root node of a tree.

In the remainder of this section, we will first provide an upper bound on the

number of pulls of any arm that is suboptimal in Lemma 7.1. Then, Lemma 7.2

will bound the difference between the optimal payoff and expected total payoff up

to some arbitrary time. Lemma 7.3 then gives concentration bounds of the actual

mean about this expected value. We then give the asymptotic probability of the

algorithm failing in Lemma 7.4.

7.4.1.1 Technical preliminaries

We consider D-UCB applied to a particular type of switching bandit problem. Let

It(γ) ∈ {1, . . . , K} denote the arm pulled at round t, with K the number of possible

arms. After selecting node It(γ) = i, the gambler receives a stochastic payoff Fi,t ∈
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[0, 1]. The sequence of payoffs generate the stochastic process {Fi,t}t, i = 1, . . . , K,

t ≥ 1.

The D-UCB arm selection policy uses the same bound (7.3) as in Sec. 7.3.1.1.

Specifically, given a discount factor γ ∈ (1/2, 1), the D-UCB algorithm chooses

the arm with the best discounted UCB:

It(γ) = arg max
i∈{1,...,K}

{F̄i,t(γ) + ct,ti(γ)}, (7.12)

where F̄i,t(γ) denotes the discounted average reward (7.6) and ct,ti(γ) is the bias

sequence (7.7) for arm i at round t. Similar to Sec. 7.3.1.1, ti(γ) denotes the dis-

counted number of times arm i is pulled (7.4) and t(γ) denotes the discounted

total number of pulls (7.5).

As in [125], we allow the mean value of the payoffs to drift as a function of time;

however, these values can also change dramatically at breakpoints. These break-

points are defined as epochs when a previously suboptimal arm becomes optimal.

We denote by Υt the number of breakpoints before time t. When referring to quanti-

ties that are not discounted (i.e., γ = 1), we remove the γ argument (e.g., t = t(1),

F̄i,t = F̄i,t(1), etc.). Further, the filtration F referred to in this paper is the natural

filtration.

Recall we require a number of assumptions on the reward distributions of each

arm so that our analysis for this bandit problem can later be exploited in our

analysis for D-UCT. Our first assumption relates to the payoff sequence of each arm.

Assumption 7.1. Fix 1 ≤ i ≤ K. Let {Fi,t}t be a filtration such that {Fi,t}t is {Fi,t}-
adapted and Fi,t is conditionally independent of Fi,t+1,Fi,t+2, . . . given Fi,t−1. Further,

there exists an integer Tp such that for ti ≥ Tp and t < ti, Fi,t is independent from Fi,t.

As mentioned, we allow the expected value for each arm µi,t to drift over time,

and change abruptly at a breakpoint. We assume the number of breakpoints are

upper bounded as follows.

Assumption 7.2. The monotone sequence giving the maximum number of breakpoints up

to time t {Υt}t is known and bounded, s.t., limt→∞ Υt = supt Υt < ∞ and (by definition)

Υt+1 ≥ Υt.

The number of abrupt changes to µi,t are thus bounded by supt Υt. As the fol-

lowing assumption states, we also assume that the expected payoff converges.

Assumption 7.3. The limit µi = limt→∞ µi,t exists for all i ∈ {1, . . . , K}.

The difference between the expected reward at time t and the limit is termed

the drift δi,t = µi,t − µi. For any arbitrary time t, denote the optimal arm as i∗t , and
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define the optimal expected payoff by µi∗t ,t = maxi∈{1,...,K} µi,t. Thus, we obtain the

optimal expected payoff up to time t as

µ∗t =
1
t

t

∑
u=1

µi∗u,u. (7.13)

Finally, the minimum difference between the expected reward for an optimal arm

i∗u and expected reward for arm i at all times is obtained as

∆i,t = min
u∈{1,...,t}

{
µi∗u,u − µi,u : i 6= i∗u

}
. (7.14)

Our last assumption is that we require an index T0(ε) above which the drift δi,t be-

comes proportional to ∆i,t. Let Mi(t) denote the number of pulls of arm i following

the most recent breakpoint.

Assumption 7.4. There exists an index T0(ε) such that, for any arbitrary ε > 0 and

Mi(t) ≥ T0(ε), |δi,t| ≤ ε∆i,t/2 and |δ∗t | ≤ ε∆i,t/2 for all i.

7.4.1.2 Theoretical analysis

Given these assumptions, we now begin our analysis of D-UCB for this bandit prob-

lem. First, we bound the number of times each suboptimal arm is pulled. Note

that in this context, E is the expectation under the policy D-UCB using the discount

factor γ.

Let T̃i(t) = ∑t
u=1 1{Iu(γ)=i 6=i∗u} be the number of times arm i was played when it

was not the best arm in the first t rounds.

Lemma 7.1 (Number of Suboptimal Pulls). Consider D-UCB applied to a non-stationary,

switching bandit problem where Assumptions 7.1-7.4 are satisfied and where the bias

sequence ct,ti(γ) used by D-UCB is given by (7.7). Let Cp > 1/
√

8 and γt = 1 −√
E[Υt]/16t. For any arm i ∈ {1, . . . , K} and t > 1:

E[T̃i(t)] ≤ O
(√

E[Υt]t(C2
p log t + T0(ε) + Tp)

)
. (7.15)

Proof. We follow the proof of Theorem 1 of [88], with minor modifications to ac-

count for the transitory periods T0, Tp discussed in Theorem 2 of [126]. Note that in

order to simplify notation, we substitute temporal functions (e.g., ui(γ) for ti(γ))

when the index u is used instead of t.

Fix the index i of a suboptimal arm. Let

A0(t, ε, γ) = min{ti(γ) | ct,ti(γ) ≤ (1− ε)∆i,t/2}. (7.16)

. Thus, by the definition of ct,ti(γ),

A0(t, ε, γ) =
16C2

p log t(γ)

(1− ε)2∆2
i,t

. (7.17)
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We let A(t, ε, γ) = max(A0(t, ε, γ), T0(ε), Tp). Then the number of times a subopti-

mal arm i is played is:

T̃i(t, γ) = 1+
t

∑
u=K+1

1{u:(Iu(γ)=i 6=i∗u)∧(ui(γ)<A(u,γ))}+
t

∑
u=K+1

1{u:(Iu(γ)=i 6=i∗u)∧(ui(γ)≥A(u,γ))}.

(7.18)

Further, let

D(γ) =
log
(
(1− γ)C2

p log (K(γ))
)

log(γ)
. (7.19)

From [88], we have

T̃i(t, γ) ≤ 1 + d(1− γ)teA(t, ε, γ)γ−1/(1−γ) + ΥtD(γ)

+
t

∑
u=K+1

1{u:(Iu(γ)=i 6=i∗u)∧(ui(γ)≥A(u,ε,γ))}, (7.20)

for any positive A(t, ε, γ) and D(γ). As in [88], there are three conditions under

which a suboptimal arm will be played when ti(γ) ≥ A(t, ε, γ) (following a break-

point):

{t : (It(γ) = i 6= i∗t ) ∧ (ti(γ) ≥ A(t, ε, γ))} ⊆


{t : (µ∗t − µi,t < 2ct,ti(γ)) ∧ (ti(γ) ≥ A(t, ε, γ))}

∪
{

t : F̄∗t (γ) ≤ µ∗t − ct,ti∗ (γ)
}

∪ {t : F̄i,t(γ) ≥ µi,t + ct,ti(γ)} .

We will start with the first case, following the logic of Theorem 2 in [126]. Since

ct,ti(γ) decreases in ti and ti(γ) ≥ A(t, ε, γ) ≥ A0(t, ε, γ), we have that ct,ti(γ) ≤
ct,A0(t,ε,γ)(γ) and thus for the choice of A0(t, ε, γ),

ct,ti(γ) ≤ 2
√

C2
p log t(γ)/A0(t, ε, γ) ≤ ∆i,t/2. (7.21)

Thus, the first case can not occur when t(γ) ≥ A0(t, ε, γ). Now, when t(γ) ≥ T0(ε),

we have that |δi,t| ≤ ε∆i,t/2. Since µ∗ − µi ≥ ∆i,t, t = 1, 2, . . ., we have

µ∗t − µi,t − 2ct,ti(γ) ≥ ∆i,t − |δ∗t | − δi,t − 2ct,ti(γ)

≥ ∆i,t − ε∆i,t − (1− ε)∆i,t

= 0.

Thus, the set is empty (i.e., event (µ∗t − µi,t < 2ct,ti(γ)) ∧ (ti(γ) ≥ A(t, ε, γ)) never

occurs).

We now examine the probability of the second and third cases occurring. Recall

that Mi(t) denotes the number of pulls of arm i after the most recent breakpoint.
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Then, under Assumption 7.1, when Mi(t) ≥ Tp ≤ A(t, ε, γ) we can exploit Theo-

rem 18 of [88] to complete the proof. The probability of poorly estimating the mean

payoffs is now upper bounded as [88]

p (F̄i,t(γ) ≥ µi,t + ct,ti(γ)) ≤ (1− γ)−1− K +

⌈
log 1

1−γ

log(1 + η)

⌉
(1− γ)t

1− γ1/(1−γ)
(7.22)

for all positive η. Substituting this result into (7.20) and taking expectations of both

sides [88]

E[T̃i(t, γ)] ≤ C1(1− γ)t + C2
E[Υt]

1− γ
log

1
1− γ

, (7.23)

where

C1 =
32
√

2C2
p log 1

1−γ

(1− ε)2∆2
i,tγ

1/(1−γ)
+

T0(ε)

2
√

2
+

4

(1− 1
e ) log

(
1 + 4

√
1− 1/2C2

p

) (7.24)

and

C2 =
γ− 1

log(1− γ) log γ
× log (1− γ)C2

p log K(γ). (7.25)

When γ goes to 1, C2 → 1 and

C1 →
16eC2

p log 1
1−γ

(1− ε)2∆2
i,t

+ T0(ε) + Tp +
2

(1− 1
e ) log

(
1 + 4

√
1− 1/2C2

p

) . (7.26)

Finally, we can minimise the expected number of times a suboptimal action is

taken by setting the discount factor to γt = 1−
√

E[Υt]/16t. Selecting this discount

factor gives E[T̃i(t) | γ] = O
(√

E[Υt]t(C2
p log t + T0(ε) + Tp)

)
and thus we obtain

the bound (7.15) for t > 1.

Remark 7.1. A common misconception is that the parameter Cp should be set to 1/
√

2

in order to satisfy the Chernoff-Hoeffditg bound [38, 125]. However, in the analysis by

[11] and [126], setting Cp to 1/
√

2 simply allows the tail inequality to be bounded by

t−4 and thus converge [11]. Alternatively, we can select any positive Cp to ensure that

the tail inequality is bounded by a negative exponent on t. As a result, we leave the value

Cp > 1/
√

8. 4

From now on, we assume γ is set as per Lemma 7.1, e.g., E[Ft] = E[Ft(γ) | γt =

1−
√

E[Yt]/16t].

The following lemma gives convergence of the expected undiscounted payoff

E[F̄t] received up to time t towards the optimal payoff µ∗. The proof is a simplified

version of Theorem 2 of [126] that allows for changing “best arms”. The proof uses

the expected number of suboptimal pulls (Lemma 7.1) and the definition of drift

δ∗t to bound the payoff.
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Lemma 7.2 (Expected Payoff Convergence Towards Optimal Payoff). Let

F̄t :=
K

∑
i=1

Ti(t)
t

F̄i,t. (7.27)

Under the assumptions of Lemma 7.1,

|E[F̄t]− µ∗| ≤ |δ∗t |+ O
(

K
√

E[Υt]/t
(

C2
p log t + T0 + Tp

))
, (7.28)

where T0 = T0(1/2).

Proof. The proof is a slightly generalised version of Theorem 3 of [126] to allow for

switching optimal arms.

Without loss of generality we assume that there is a unique “best arm” at any

given time t. We denote the index of this arm by i∗t . By the triangle inequality,

|µ∗ − E[F̄t]| ≤ |µ∗ − µ∗t |+ |µ∗t − E[F̄t]| = |δ∗t |+ |µ̄∗t − E[F̄t]|. We bound the last term

as follows:

t |µ∗t − E[F̄t]| =
∣∣∣∣∣ t

∑
u=1

E[F∗u ]− E

[
K

∑
i=1

Ti(t)F̄i,t

]∣∣∣∣∣
=

∣∣∣∣∣ t

∑
u=1

E[F∗u ]− E [T∗(t)F̄∗t ]

∣∣∣∣∣+ E

[
K

∑
i=1

T̃i(t)F̄i,t

]
,

since 0 ≤ F̄i,t ≤ 1, the last term is bounded by O(K
√

E[Υt]/t(C2
p log t + T0 + Tp)).

Again, since Fi,t ≤ 1, we can deduce that E [T∗(t)F̄∗t ] ≤ E [T∗(t)] ≤ ∑t
u=1 E[F∗u ] ≤ t

and upper bound the first term by

E[t− T∗(t)] =
K

∑
i=1

E
[
T̃i(t)

]
= O(K

√
E[Υt]/t(C2

p log t + T0 + Tp)).

Collecting terms yields the bound in (7.28). �

From Lemma 7.2, we have the convergence of the expected payoff E[F̄t] about the

optimal payoff; however, we are yet to obtain results about the concentration of

the actual payoff F̄t about this quantity. To bound this concentration, we leverage

the results of [126], which has a non-trivial assumption related to the number

of suboptimal pulls. Denote Zt the indicator variable that a suboptimal arm was

pulled. As with [126], from Assumption 7.1, we have that, for t ≥ Tp, the indicator

Zt is independent of Zt+1, Zt+2, . . ., given Z1, . . . , Zt−1. Thus, after Tp and T0, the

non-stationary bandit problem becomes equivalent to a stationary problem with

high probability. This allows us to establish the concentration of E[F̄t] about F̄t in

the following lemma.
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Lemma 7.3 (Payoff Convergence Towards Expected Payoff). Fix an arbitrary 0 <

ε ≤ 1 and let Γt = 9CpE[Υt]t
√

2 log (2/ε). Then, under the assumptions of Lemma 7.1,

for

t ≥ O
(

K
√

E[Υt]t(C2
p log t + T0 + Tp)

)
, (7.29)

the following bound holds:

p (t|F̄t − E[F̄t]| ≥ Γt) ≤ ε. (7.30)

Proof. We modify the proof of Theorem 5 of [126] slightly by using Lemma A.1 in

Appendix A.2 to account for the bound on E[T̃i(t)].

Using the same notation as [126], Zt is the indicator variable that a suboptimal

arm was pulled at time t. It is important to note that this result follows by letting

ti ≥ Tp, i.e., we are concerned with the process {Zt}t≥Tp . At this stage, Zt is in-

dependent of Zt+1, . . . , Zt, given Z1, . . . , Zt−1 and thus Lemma 11 of [126] holds.

Then, following Theorem 5 of [126], it will suffice to prove that there exists a t such

that at ≤ (2/9)Γt and Rt ≤ (4/9)Γt.

By Lemma 7.1,

E[
t

∑
u=1

Zu] ≤ O(K
√

E[Υt]/t(log t + T0 + Tp)), (7.31)

hence at, Rt = O(K
√

E[Υt]/t(log t + T0 + Tp)). Thus, since Γt = O(E[Υt]t) and

at, Rt = O(
√

E[Υt]t log t), the index t exists. �

Next, we are interested in the probability of the algorithm failing. The proof

relies on our assumption that the breakpoint sequence is known monotone and

bounded, resulting in D-UCB becoming equivalent to UCB1 for large t.

Lemma 7.4 (Convergence of Failure Probability). Under the assumptions of Lemma 7.1

it holds that

lim
t→∞

p(It(γ) 6= i∗t = i∗) = 0. (7.32)

Proof. Since limt→∞ Υt = supt Υt < ∞ and limt→∞ γt = 1, for large t w.l.o.g. we

have a unique “best arm” i∗ = i∗t and the algorithm becomes UCB1 applied to a

non-stationary bandit problem. Theorems 4 and 6 of [126] yields the result. �

7.4.2 D-UCB applied to trees

We now discuss the application of D-UCB as the node selection policy of MCTS,

termed D-UCT. The assumptions we made about the bandit problem in the above
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section allows us to analyse convergence of the actual to the optimal payoff se-

quence at the root node after some transitory period.

Recall that the node selection problem at each node in the tree is equivalent to the

bandit problem, however with different assumptions on the payoff received. From

the perspective of node id, after selecting node Iid,t = j, the tree search further

down the tree (e.g., Ij,t) and subsequent MCTS rollout yield a stochastic payoff

Fj,t = Ft ∈ [0, 1] which is adapted to Fj,t (Assumption 7.1). As nodes are slowly

expanded in the tree search, the expected reward at any node higher up the tree

slowly drifts until all nodes are explored in the subtree (Assumption 7.3).

The sequence of payoffs generate the stochastic process {Fj,t}t, ∀j ∈ Ch(id) and

t ≥ 1. We simplify the analysis by assuming a constant branching factor K, i.e.,

Ch(id) = {1, . . . , K}, ∀id.

Applying the above lemmas to the tree T r, we require some extra notation. Re-

call that F̄id,tid
is the empirical mean; it follows that F̄i0,ti0

is the mean at the root

node. Further, let µ∗i0 denote the optimal expected payoff at the root node and note

that ti0 = t.

Theorem 7.1. Consider algorithm D-UCT running on a tree T of depth D and branching

factor K. The payoff distributions of the leaf nodes are independently distributed and can

change at breakpoints. The sequence that gives the expected bound of breakpoints {E[Υtj ]}
follows Assumption 7.2 and γtj = 1−

√
E[Υtj ]/16tj for all nodes j. Then, when Mi0(t) ≥

Tp and Mi0(t) ≥ T0, the bias of the payoff at the root node,

|F̄i0,ti0
− µ∗i0 | = O

(
KD log(t)

√
E[Υt]/t

)
. (7.33)

Further, the probability of failure at the root node becomes zero as t grows large.

Proof. The proof is done by induction on D.

First, for D = 1, running the D-UCB algorithm as the node selection policy is

equivalent to running D-UCB on a bandit problem. Thus, the payoffs Fi0,t are i.i.d.

(Tp = 0) and, comparing Lemma 7.1 to Theorem 1 of [88], we deduce that T0 = 0.

The expected bias thus follows from Lemma 7.2, and the concentration of the actual

payoff about the expected value follows from Lemma 7.3. By Assumption 7.2, the

asymptotic probability of failure follows from Lemma 7.4.

Now, consider a tree of depth D and assume the statement holds up to a tree

of depth D− 1. First, note that, due to our assumptions, Lemmas 7.1-7.4 hold for

any internal node of the tree. Regarding Assumption 7.1, before Tp, the payoffs

Fi0,t are not independently distributed. Instead, since D-UCB node selection is also

used further down the tree (d > 0), the payoff is {Fi0,t}-adapted. However, there

is a point Tp where the payoffs become independent as the tree search problem
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becomes equivalent to an MAB problem. When Mi0(t) ≥ Tp and Mi0(t) ≥ T0, it

follows by Lemma 7.2 that the bias at the root converges at the rate of

|F̄i0,ti0
− µ∗| = |δ∗ti1

|+ O
(

K log(t)
√

E[Υt]/t
)

, (7.34)

where δ∗ti1
is the rate of convergence of the bias for the best move. By the induction

hypothesis

|δ∗ti1
| = O

(
K(D− 1) log(t)

√
E[Υt]/t

)
, i1 = 1, . . . , K. (7.35)

Substituting this result into (7.34) gives (7.33). By Assumption 7.2, the expected

number of breakpoints limt→∞ E[Υt] is bounded, and hence by Lemma 7.4 the

probability of failure becomes zero. � �

Remark 7.2. The results presented here are mainly concerned with the convergence of

the bias after some transitory period. For the standard UCT case, [126] assumed the

Tp term was 0 and suggested T0 = O(KD). However, it was recently shown that this

transitory period using the UCT algorithm on a binary tree (K = 2) of depth D can be

Ω(exp(exp(. . . exp(1) . . .))) (D − 1 nested exponentials) in a worst-case instance [60].

[89] suggest instead that the UCT (and thus D-UCT) strategy will be most successful when

the leaves of large subtrees share similar rewards, i.e., a “smoothness” assumption on the

reward distributions. Active perception scenarios typically exhibit some degree of “smooth-

ness”, such that similar sequences of actions yield similar rewards and thus there is a

correlation amongst subtree leaves. 4
Remark 7.3. Assumption 7.2 states several conditions for the breakpoint sequence {E[Υt]}t.

We can ensure these assumptions are satisfied by selecting appropriate values for the sample

period τn (i.e., the number of MCTS rollouts between each probability distribution update).

Here, we provide a concrete example definition for τn. Recall that n is the number of times

X̂n is changed and τn is the number of calls to the MCTS sample step with sample space

X̂n. Let c > 0 denote the fixed number of iterations of optimising β. For this example, we

let τn = 1/bat−2c, and therefore n = da(1− t−1)e where a > c. Therefore, the expected

upper bound on breakpoints E[Υt] = n/c and thus limt→∞ E[Υt] = a/c. This ensures

Lemma 7.4 holds and the bias at the root node (7.33) is

|F̄i0,ti0
− µ∗i0 | = O

(
KD log(t)/

√
t
)

. (7.36)

Therefore, D-UCT achieves a polynomial convergence rate, even in problems where the re-

ward distributions are changing abruptly, such as in Dec-MCTS. 4

7.4.3 Variational methods by importance sampling

We now consider the effect of contracting the sample space X̂n ⊂ X on the conver-

gence of the distributed optimisation (Sec. 7.3.2). Recall that the pq KL divergence
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is the divergence from a product distribution qn to the optimal joint distribution

pn. We then have the following proposition:

Proposition 7.1. The joint distributions asymptotically converge to a local minimum, in

terms of pq KL divergence, given an appropriate subset X̂n ⊂ X .

We justify Proposition 7.1 as follows. Consider the situation where, at each it-

eration n, we randomly choose a subset X̂ r
n ⊂ X r for each robot. This approach

is equivalent to Monte Carlo sampling of the expected utility and thus the biased

estimator is consistent (asymptotically converges to E[ f r]). For tractable computa-

tion and faster convergence, in our algorithm we modify the random selection by

choosing a sparse set of strategies X̂n with the highest expected utility (Sec. 7.3.2).

Although this does not ensure we sample the entire domain X asymptotically, in

practice qn(X̂n) is a reasonably accurate representation of qn(X ), and therefore this

gives us an approximation to importance sampling [257]. Variants of probability

collectives have been shown to converge to a distribution that locally minimises the

pq KL divergence under reasonable assumptions, such as an appropriate cooling

schedule for β [255].

7.4.4 Analysis of Dec-MCTS

The analyses above show separately that the tree search component of Dec-MCTS

balances exploration and exploitation and that, under reasonable assumptions, the

joint distributions converge to the product distribution that best optimises the joint

action sequence. These results provide strong motivation for the use of these com-

ponents in the algorithm. However, they do not immediately yield a characteri-

sation of optimality for the complete Dec-MCTS algorithm. To prove convergence

rates and global optimality, we would need to characterise the co-dependence be-

tween the evolution of the reward distributions Eqn [ f r | xr] used when sampling

the tree and the contraction of the sample space X̂n used for optimising qn. This

co-dependence is complex due to the cyclic nature of the algorithm and communi-

cation of information between robots, and thus it is unlikely that any strong claims

for global optimality can be made. However, this is generally not achievable in the

context of decentralised, long-horizon planning with general objective functions, as

addressed in this paper. Despite this, the experiments presented in [24] show that

the Dec-MCTS algorithm converges rapidly to high-quality solutions in multi-robot

active perception scenarios.



7.5 summary 127

7.5 summary

This chapter presented Dec-MCTS, a decentralised planning algorithm designed for

multi-robot active perception tasks. Dec-MCTS uses a discounted tree search algo-

rithm (to explore the potential trajectories of each robot) combined with a dis-

tributed optimisation technique (to optimise the joint trajectory of the whole team).

The tree search algorithm employs a discounted variant of the well-known UCB

policy for node selection in order to account for each robot’s objective changing

due to communication with the rest of the team. The main contributions here in-

clude a proof that the discounted tree search yields logarithmic regret even while

these reward distributions are changing. Furthermore, we present a proposition

that the distributed optimisation converges when including a nonmyopic planner,

suggesting convergence guarantees of the algorithm as a whole. The Dec-MCTS path

planning algorithm could be further enhanced by studying the communication be-

tween agents (see Chapters 4 and 5) and problem-specific subroutines (see Chap-

ter 6). In the next chapter, we elaborate on this concept and conclude the thesis by

summarising its contents and discussing more in-depth connections between each

chapter.



8
C O N C L U S I O N

8.1 summary

This thesis focused on the problem of information-theoretic reasoning in complex

adaptive systems. The measures in this framework provide general approaches

to studying key primatives of computation such as communication and mem-

ory. Thus, information theory is suitable in a wide variety of tasks that require

analysing or controlling these component operations. We applied this reasoning

in addressing two fundamental decision rules: model selection for nonlinear time

series, and planning under uncertainty in robotic information gathering tasks.

The thesis began by studying the information storage and transfer of distributed

systems, given multivariate time series data. In particular, we investigated the in-

formation processing of multi-agent systems through interaction networks and

coherence diagrams using transfer entropy and active information storage. The

time series were assumed to comprise univariate components that can be mod-

elled as coupled Markov chains. The approach was exemplified through studies

involving simulated RoboCup games, revealing correlations to the team’s objec-

tive (the scoreline). We then extended our study to include systems that admit

partially observable dynamics, i.e., where the system state is hidden and observed

only through a filter. Using attractor reconstruction, we showed that transfer en-

tropy can be used in the case of both full and partial observability to infer coupling

between components. These algorithms were experimentally verified through in-

ferring the coupling of networks of chaotic attractors.

Following this, we proposed methods for selecting (robotic) sensor locations

such that knowledge about the environment is improved. This general problem is

known as active perception in robotics, where the interplay between planning and

modelling introduces complex feedback loops. Our studies exploited several ap-

proaches to improving sensor placement such as robustly handling measurement

uncertainty, long horizon (nonmyopic) planning, and teams of robots. First, we

considered the problem of wildlife telemetry tracking with an autonomous aerial

vehicle. In this case, we were able to track the animal in a small number of observa-

tions and so the focus is on sensor modelling, rather than nonmyopic planning or

scaling up to multiple robots. For this problem, we presented a system is capable
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of localising stationary targets to high precision and tracking radio-tagged animals

in the wild. Following this, we studied the more general problem of informative

path planning for a team of robots with an arbitrary objective function whereby

the cost of the path must be within a given budget. For this case, we presented

a novel algorithm that yields convergence guarantees whilst employing efficient

distributed optimisation algorithms.

8.2 contributions

The thesis made a number of theoretical and practical contributions to the study

of autonomous agents, multi-agent systems, and (more generally) distributed com-

putation in complex systems.

8.2.1 Processing in multi-agent dynamics

In Chapter 4 we identified interaction networks that link together autonomous

agents, using only the observational data and without reconstructing the agents’

control logic and internal behaviour. The methodology is not aimed at explicit

interactions within a team, but rather at implicit interactions, across teams, that

may be spatially long-ranged. The approach for constructing interaction networks

used a novel application of information dynamics analysing pair-wise interactions

and role-based tactics, exemplified by RoboCup 2D Simulation League games.

The interaction networks were demonstrated with two network sub-types: information-

sink and information-source diagrams. In an information-sink diagram every node

(every player) has an incoming edge, while in an information-source diagram ev-

ery node has an outgoing edge. These diagrams represent simplifications to full

effective network diagrams, and while they do not reveal the full interaction struc-

ture they are significantly more efficient to compute, and highlight the strongest

of the interactions. Information-sink and -source diagrams were computed for two

experimental set-ups that matched the RoboCup-2014 vice-champion team Glid-

ers [186] against two top-five teams, Cyrus [119] and HELIOS [5]. These results

showed, for the first time, a number of asymmetries in the tactical schemes used

by the teams. These quantified asymmetries were then used in allocating suitable

defensive resources by team Gliders, resulting in a statistically significant perfor-

mance gain.

The follow-up analysis involved computation of information transfer and stor-

age in order to quantify (relative) responsiveness and rigidity respectively. These

notions can be applied to individual agents, tactical roles of agents, and the team
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overall. Both measures, relative responsiveness and rigidity, were correlated with

the game results, pointing out important couplings in particularly intense interac-

tions across teams, and highlighting the tactical roles and field areas where the

game outcomes were mostly decided.

We then examined average role-based multi-agent dynamics across games via

novel state-space coherence diagrams which clustered the dynamic processes in an

abstract state-space. In our examples, the state-space plots identified several salient

features of competing tactical formations, providing a crucial step in classifying the

games in terms of tactical behaviour. In general, these diagrams are useful when

there is a need to cluster dynamic, rather than static, processes.

8.2.2 Communication in distributed nonlinear systems

In Chapter 5, we presented a principled method to learn the structure of nonlinear

dynamical networks where the components are coupled via a DAG. We modelled

multivariate time series as a general type of distributed processing system, termed

a POSGDS, where each subsystem comprises a latent state observed only through a

read-out function. We depicted the time evolution of this system as a DBN. Using

this model, we drew on methods from Bayesian network structure learning and

differential topology literature in order to recover the underlying network struc-

ture.

Specifically, we derived scoring functions based on the KL divergence of the

candidate DAG from the complete network. By using attractor reconstruction, we

illustrated how to compute the AIC and BIC scoring functions for the DBN and that

the log-likelihood of the POSGDS can be interpreted in the context of information

dynamics. Our main result was that the KL divergence can be decomposed as the

difference between stochastic interaction and transfer entropy, two measures that

are typically used to quantify the divergence from independence and information

transfer between subsystems. As we discussed, however, under certain circum-

stances it suffices to simply use the transfer entropy to quantify the quality of the

candidate graph structure.

We then provided the means for turning transfer entropy into a scoring func-

tion by penalising it through significance testing. We showed how, using these

scores, structure learning can be performed on networks where the observations

are assumed to be generated from a parametric distribution (from the exponen-

tial family) or some arbitrary nonlinear function. To demonstrate this process, we

performed experiments on coupled Lorenz and Rössler systems. The results indi-

cated that this approach is suitable for recovering POSGDSs from data. Further, KL
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divergence is related to model encoding, which is a fundamental measure used in

complex systems analysis. Our theoretical results, therefore, have potential impli-

cations for other areas of research. For example, the notion of equivalence classes

in BN structure learning [2] should lend insight into the area of effective network

analysis [174, 218] (see Sec. 8.3.1).

8.2.3 Autonomous wildlife tracking

In Chapter 6, we presented and validated a customised aerial robot that can be

used to perform autonomous wildlife tracking. We demonstrated that only a small

number of high quality observations were required to track the animal in the plane.

Because of this, the focus of our research was on sensor modelling, rather than path

planning.

In order to yield robust measurements, we designed a small lightweight an-

tenna for use on-board the UAV. For measurements and associated uncertainty,

we obtained models of the expected RSSI for both range and bearing observations

trained from data collected in a representative outdoor environment. We then de-

veloped an experimental system that comprised software architecture and custom

electronics in order to control the robot autonomously and online.

First, a preliminary system that employed bearing-only observations online was

experimentally shown to localise stationary targets to within 30 m and the capable

of localising noisy miners. Following this, we used the full range-azimuth sensor

model for tracking the critically endangered swift parrot (Lathamus discolor) species.

In eight field trials, the robot performed comparably and often better than skilled

human trackers.

8.2.4 Decentralised informative path planning

In Chapter 7, we presented a novel algorithm for decentralised coordination, Dec-MCTS,

that is suitable for a general class of problems. The problem formulation was more

generally applicable than the wildlife tracking scenario above, where the algorithm

admits any general objective function and allows for multiple robots to be coordi-

nated concurrently. In that chapter, our emphasis was on the theoretical aspects

of the algorithm, i.e., convergence proofs, rather than experimental validation or

problem-specific sensor modelling (which is given in detail in [24]).

A key conceptual feature of this approach is its generality in representing joint

action sequences probabilistically, rather than deterministically. Dec-MCTS has the

ability to efficiently plan over long planning horizons, computes anytime solutions,



8.3 discussion and future work 132

allows incorporating prior knowledge, and provides convergence rate guarantees.

Our main contribution to this work was a proof that the nonmyopic planning

algorithm, a discounted variant of MCTS, converges in the event of changing reward

distributions. These distributions are updated through a distributed optimisation

technique that we showed converges to a local minimum even in the event of the

MCTS algorithm.

8.3 discussion and future work

The results we present in this thesis have far-reaching implications in numerous

fields that involve nonlinear interactions between information processing systems.

Most notably, we illustrate how applications such as decentralised coordination in

information gathering tasks face similar challenges to that of studying the infor-

mation dynamics in distributed computation. In doing so, we aim to have further

coalesced the fields of complex systems science and robotic planning under uncer-

tainty.

8.3.1 Information dynamics in distributed computation

The information dynamics tools introduced in this thesis are applicable towards

analysing several artificial life and biological systems, where an accurate estima-

tion of the information-processing channels can reveal a computational structure

underlying the emergence of collective behaviours.

8.3.1.1 Application to engineered systems

We believe that the model selection algorithms proposed in Chapters 4 and 5 would

be useful not only in studying multi-agent team sports and coupled ODEs, but also

in various analyses of distributed dynamics, e.g., decentralised coordination [86,

260]; swarm engineering [160, 247]; and evolutionary robotics [78, 79, 183, 184].

A related direction of future research is to investigate how each tactical role

in multi-agent scenarios could correspond to a different relation between rigidity

and responsiveness, and relate these to components of the information-theoretic

measure of autonomy [22]. Ultimately, the analysis can be extended to include

comprehensive tactical planning and decision-making.

More specifically, the interaction diagrams in Chapter 4 were described as effi-

cient approximations to full effective networks (see Sec. 4.5.3). In this thesis, the

diagrams were used qualitatively (by exploiting the asymmetry of the Cyrus tac-

tics, see Sec. 4.7.1); however, a precise network of interactions would further allow
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for inference over the future movements of the players. In theory, the RoboCup

simulations could be executed such that certain “ground truth” networks could

be obtained in order to understand the quality of these diagrams. Similarly, in

Sec. 4.7.2 the correlations to the scoreline imply that the information dynamics of

a team are predictive of the game outcome. This predictability would be of poten-

tial importance in designing objective functions for distributed optimisation (such

as the problem statement described in Chapter 7).

For swarm engineering, one often relies on understanding the behaviour of bio-

logical swarms, related to our study of multi-agent dynamics. It is worth pointing

out several related simulation-based studies which have previously used informa-

tion dynamics to identify leadership within a swarm, e.g. leaderships in pairs of

zebrafish [39], and covert leadership in a swarm of robots distinguished by transfer

entropy [229]. While a leader is defined as a swarm member that acts upon specific

information in addition to what is provided by local interactions [61, 228], a covert

leader is treated no differently than others in the swarm, so that leaders and follow-

ers interact identically [197]. By contrasting transfer entropies across individuals,

the study [229] was able to distinguish the covert leaders from the followers by

characterising the covert leaders with a lesser amount of transfer entropy than the

followers. Furthermore, perhaps counter-intuitively, the leaders do not share more

information with the swarm than the followers. In the context of Chapter 4, the

followers may be seen as larger “information sinks” than the leaders, highlight-

ing another potential use of the information sink diagrams. Similar information

dynamics measures have also been very recently used to measure pairwise corre-

lations in a biological swarm of soldier crabs [239], finding that in smaller swarms

the crabs tend to make decisions based on their own past behaviour, whereas in

larger swarms they make decisions based on behaviour of their neighbours rather

than their own.

8.3.1.2 Theoretical extensions

The approach proposed in Chapter 5 complements explicit Bayesian identification

and comparison of state space models. In DCM, and more generally in approxi-

mate Bayesian inference, models are identified in terms of their parameters via

an optimisation of an approximate posterior density over model parameters with

respect to a variational (free energy) bound on log evidence [83]. After these param-

eters have been identified, this bound can be used directly for model comparison

and selection. Interestingly, free energy is derived from the KL divergence between

the approximate and true posterior and thus automatically penalises more com-

plex models; however, in Eq. (3.37), these distributions are inverted. It appears
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this method is equivalent to the expected log-likelihood approach we presented in

the same chapter however this needs to be further investigated. In future work, it

would be interesting to explore the relationship between transfer entropy and the

variational free energy bound. Specifically, computing an evidence bound directly

from the transfer entropy may allow us to avoid the computationally expensive

significance testing described in Sec. 5.5 and instead use an approximation to evi-

dence for structure learning.

Multivariate extensions to transfer entropy are known to eliminate redundant

pairwise relationships and take into account the influence of confounding relation-

ships in a network (i.e., synergistic effects) [241, 254]. In Chapter 5 we have shown

that this intuition holds for distributed dynamical systems when confined to a

DAG topology. We conjecture that these methods are also applicable when cyclic

dependencies exist within a graph, given any generic observation can be used in

reconstructing the dynamics [68]; however, the methods presented are more likely

to reveal one source in the cycle, rather than all information sources due to redun-

dancy.

The theoretical results of Chapter 5 supplements understanding in fields where

transfer entropy is commonly employed to study physical processes. Point pro-

cesses are being increasingly viewed as models for a variety of information pro-

cessing systems, e.g., as spiking neural trains [217] and adversaries in robotic pa-

trolling models [101]. It was recently shown how transfer entropy can be computed

for continuous time point processes [217], allowing for efficient use of the analyti-

cal scoring functions (gtea, gaic, and gbic) in a number of contexts. Another intrigu-

ing line of research is the physical and thermodynamic interpretation of transfer

entropy [185], particularly its relationship to the arrow of time [216]. The notion

of endomorphisms as discussed here and time asymmetry of thermodynamics is

thus a promising connection that we will explore in the future.

8.3.1.3 Practical considerations

There are a number of extensions that should be considered for further practical

implementation of the model selection approaches used in Chapters 4 and 5. The

most important future directions involve performing more experiments and reduc-

ing the computational complexity of applying these frameworks to large networks.

Currently, we assume that we can bound the history κ we take into account

for model selection, i.e., that the dimensionality or Markov order of each subsys-

tem is known. However, this is generally infeasible in practice and more general

algorithms are desirable to infer the embedding dimension and time delay for
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unknown systems. Fortunately, there are numerous techniques to recover these

parameters [191, 213].

Any structure learning algorithm has significant computational complexity, as

we discuss in Chapter 5. To avoid these issues, in Chapter 4, we presented an effi-

cient approximation to functional network analysis and, in Chapter 5, we studied

networks with a small number of nodes. Moreover, the empirical significance test-

ing in these approaches further degrades the algorithmic performance. It would

be interesting to investigate analytical methods for significance testing when us-

ing the non-parametric density estimators (similar to the analytical regularisation

of AIC, BIC, and χ2-distribution approaches). Moreover, recent results in submod-

ular set function optimisation suggests that greedy optimisation of information-

theoretic scoring functions may yield approximately optimal structure [268]. This

would ensures that the network is within a bound of optimal whilst reducing the

computation burden significantly.

In Chapter 5, we presented the theory on computing scoring functions for expo-

nential families (i.e., the tea, AIC and BIC scores). In the future, we aim to perform

empirical studies using discrete models such as cellular automata, where some

rules exhibit complex and chaotic behaviour. Moreover, the information dynam-

ics of these models are already widely studied through measures such as transfer

entropy [147].

An important concept to consider in stochastic systems is the convergence of the

shadow (reconstructed) manifold to the true manifold [227]. We have implicitly

accounted for this phenomena by using CPDs in Chapter 5, however it is important

to investigate the property of convergence with different density estimation tech-

niques. In addition, we are interested in the effect of synchrony in these networks

and the relationship to previous results for dynamical systems coupled by span-

ning trees [258]. We conjecture that the approach used here will allow us to derive

scoring functions without the assumption of multinomial observations, and thus

afford the use of non-parametric density estimators. Parametric techniques, such

as learning the parameters of dynamical systems [92, 102], could be considered in

place of the posterior approximations.

Finally, the reconstruction theorems Chapter 5 typically make the assumption

that the map (or flow) is a diffeomorphism (invertible in time). Thus, given any

state, the past and future are uniquely determined and the time delay can be taken

positive or negative. In certain cases, however, the time-reversed system is acausal,

giving a map that is not time-invertible (an endomorphism). Ideally, we would

aim to have methods to infer coupling for both endomorphisms and diffeomor-

phisms. As discussed in Chapter 3, Takens [233] showed that if the map is an

endomorphism, taking the delay vector of temporally previous observations forms
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an embedding. The generalised theorems in [68, 221, 222], however, were estab-

lished for diffeomorphisms, rather than endomorphisms; we can only conjecture

that taking a delay of past observations (as we have done throughout the chapter)

follows for these results.

8.3.2 Generalising information gathering tasks

There are many avenues of inquiry for improving the system hardware and deci-

sion making algorithms presented in Chapter 6 and 7.

8.3.2.1 Algorithmic extensions

In Chapter 6, we consider the problem of wildlife tracking with a single robot,

where the travel cost was ignored. Using the Dec-MCTS algorithm, presented in

Chapter 7, enables long time-horizon planning with travel costs, which would al-

low for efficient search and tracking of numerous animals simultaneously. This

problem has already been partially addressed by through optimal information

gathering algorithms without considering travel cost [243]. However, these are yet

to be used in real tracking experiments.

Other extensions, however, should be considered for highly dynamic animals,

where we are interested in more fine-scale movement patterns and thus aim to

maintain real-time information on the animal’s trajectory. In robotics, this general

problem is known as persistent monitoring, where the problem is to maintain in-

formation on an entire, continuous environment, rather than monitoring a small

number of discrete features (e.g., birds) [87]. Recent approaches abstract the envi-

ronment into discrete spatial locations and model the likelihood of observing birds

by Poisson processes [264]. Extensions to this model have been made where it is as-

sumed that presence of a robot causes the animals to change their behaviour [101].

In addition to addressing the multi-robot wildlife tracking problem considered

above, it would be interesting to apply the general framework of Chapter 7 where

standard algorithms already exist for associated single-agent scenarios. Problem-

specific single-agent planning algorithms could replace the MCTS component of

Dec-MCTS, while still performing the distributed product distribution optimisation

phase, in order to provide stronger theoretical guarantees or algorithmic efficiency

for special cases. Scenarios where this could be applicable include multi-robot mis-

sion monitoring [28], persistent monitoring [6], travelling salesman problem vari-

ants [25], collision avoidance [172], and dynamic coverage problems [105]. It would

also be worth investigating other MCTS variants, e.g., BRUE [76], as an alternative

to the tree search approach.
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The problem formulation considered in Chapter 7 is general in that we are in-

terested in planning sequences of actions for each robot to optimise a joint objec-

tive function, without requiring assumptions such as submodularity (as is done in

Chapter 6). A straightforward extension to our approach would be to adapt the

algorithm to address the Dec-POMDP formulation. This could be achieved by gen-

eralising the MCTS component of our algorithm to POMCP [210] while still using

our proposed D-UCT tree expansion policy. A difficulty would be to efficiently find

good-quality solutions while also considering probabilistic transition models and

having the search tree branch for both actions and observations.

8.3.2.2 Practical considerations

In the tracking experiments, we assumed that the radio tag is initially observable.

In future work it is important to consider the case where no tag is initially ob-

servable, which introduces a search and detect component to the problem, and the

issue of when the operator should move [27, 28], in addition to localisation.

Moreover, we designed a bespoke aerial vehicle suitable in order to meet weight

and time constraints. For widespread use, it is important to develop low-cost, off-

the-shelf components for radio telemetry with aerial systems [69, 240]. So far, how-

ever, systems designed for this purpose are yet to demonstrate autonomous track-

ing and are often focused on developing radio signal detection algorithms.

8.3.3 Information dynamics for team coordination

The approaches we use to study the communication and storage of multi-agent

(and, more generally, distributed) systems can be used for optimisation of team

coordination. In particular, they provide efficient, non-parametric methods for im-

portant open problems in robotics.

A major result of Chapter 4 was that information dynamics correlate to the

scoreline; this is exemplified by the state-space coherence diagrams. These results

suggest that certain measures could allow for general purpose objective func-

tions to optimise in multi-robot tasks. This concept is beginning to be explored

through genetic algorithms [183] and reinforcement learning [161]. However, these

approaches consider embodied systems (rather than fully distributed, autonomous

systems) and do not jointly optimise information transfer and storage, as is sug-

gested by the coherence diagrams.

In Chapter 7, our approach is lacking a communication-planning algorithm that

selects when to communicate and who to communicate to while running Dec-MCTS

in scenarios with limited communication bandwidth. A key difficulty here is to
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develop a measure of information value of a communication message in the con-

text of improving planning performance. Along this line of inquiry, our measures

presented in Chapter 4 allow for quantifying the dynamics of inter-agent depen-

dencies in a team that is optimising a collective goal. This can be supplemented

with communication planning algorithms. For instance, dynamic programming

formulations similar to how [170] plans the use of navigation hardware to main-

tain localisation accuracy. Other communication-planning formulations that may

be useful here include [115, 141].

Another interesting line of inquiry is to incorporate coalition forming into Dec-

MCTS. As formulated, static coalitions of agents can be formed by generalising

the product distributions in our framework to be partial joint distributions. The

product distribution described in Sec. 7.3.2 would be defined over groups of robots

rather than individuals. Each group acts jointly, with a single distribution mod-

elling the joint actions of its members, and coordination between groups is con-

ducted as in our algorithm. Just as our current approach corresponds to mean-

field methods, this approach maps nicely to generalised mean field inference [259]

or region-based variational methods [261], and guarantees from these approaches

may be applicable. It would also be interesting to study dynamic coalition form-

ing, where the mapping between agents and robots is allowed to change, and to

develop convergence guarantees for this case. A key challenge would be to deter-

mine which robots’ plans are more tightly coupled and therefore would benefit

from planning within a coalition. In this case we would aim to employ the tech-

niques presented in Chapter 4.

8.4 concluding remarks

This thesis demonstrated the usefulness of information theory in various areas

of science and engineering. We studied topics that, at first glance, appear discon-

nected, i.e., quantifying distributed computation and robotic information gather-

ing. Through presenting these concepts under the same (decision-theoretic) frame-

work, we showed how information theory can be used as a general tool to handle

a variety of challenges. Using this approach, we addressed a number of fundamen-

tal problems that occur when analysing and improving artificial and biological sys-

tems. This thesis thus supports the long-standing notion that information-theoretic

reasoning is a broadly applicable and invaluable tool in scientific discovery.
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a.1 distributed nonlinear systems

Here, we present the extended results of Table 5.1, 5.2. That is, we give the preci-

sion, recall, fallout, and F1-scores for the eight networks of Lorenz attractors shown

in Figure 5.5. These results are given for a number of different sample sizes to il-

lustrate the sample complexity of this problem: N = 5000 (Table A.1, Table A.2),

N = 10, 000 (Table A.3, Table A.4), N = 25, 000 (Table A.5, Table A.6), N = 50, 000

(Table A.7, Table A.8), and N = 100, 000 (Table A.9, Table A.10). Each table has

results for various p-values (with a p-value of ∞ denoting the maximum likeli-

hood score (5.29)), as well as two different observation noise variances, σψ = 1 and

σψ = 10.

Table A.1: Classification results for three-node (M = 3) networks with N = 5000 samples.

We present the precision (P), recall (R), fallout (F), and F1-score for the eight

arbitrary topologies of coupled Lorenz systems represented by Figure 5.5.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G1

R - - - - - - - -

F 0.33 0.22 0.33 0.22 0.22 0.33 0.33 0.22

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

P 0.67 0.5 0.67 0.5 0.67 0.5 0.67 0.5

F1 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

G3

R 1 0.5 1 1 1 1 1 0.5

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.67 1 1 1 1 1 0.67

G4

R 1 0 1 1 1 0.5 1 0

F 0.14 0.43 0.14 0.14 0.14 0.14 0.14 0.43

P 0.67 0 0.67 0.67 0.67 0.5 0.67 0

F1 0.8 - 0.8 0.8 0.8 0.5 0.8 -



A.1 distributed nonlinear systems 140

Table A.2: Classification results for four-node (M = 4) networks with N = 5000 samples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.25 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.67 0.67 0.33 0.67 0.33 0.67 0

F 0.15 0.23 0.15 0.23 0.15 0.23 0.15 0.31

P 0.5 0.4 0.5 0.25 0.5 0.25 0.5 0

F1 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

G7

R 1 0.25 1 0.25 0.75 0.25 0.75 0.5

F 0 0.25 0 0.17 0.083 0.25 0.083 0.083

P 1 0.25 1 0.33 0.75 0.25 0.75 0.67

F1 1 0.25 1 0.29 0.75 0.25 0.75 0.57

G8

R 1 0.25 1 0.5 1 0.75 1 0.25

F 0 0.25 0 0.083 0 0.083 0 0.25

P 1 0.25 1 0.67 1 0.75 1 0.25

F1 1 0.25 1 0.57 1 0.75 1 0.25

Table A.3: Classification results for three-node (M = 3) networks with N = 10, 000 sam-

ples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 0.5 1 1 1 0 1 0.5

F 0 0.14 0 0 0 0.29 0 0.14

P 1 0.5 1 1 1 0 1 0.5

F1 1 0.5 1 1 1 - 1 0.5

G4

R 1 1 1 0.5 1 0.5 1 1

F 0.14 0.14 0 0 0.14 0.14 0.14 0.14

P 0.67 0.67 1 1 0.67 0.5 0.67 0.67

F1 0.8 0.8 1 0.67 0.8 0.5 0.8 0.8
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Table A.4: Classification results for four-node (M = 4) networks with N = 10, 000 samples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.19 0.31 0.25

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.33 0.67 0 1 1 0.67 0.33

F 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P 0.5 0.33 0.5 0 0.6 0.6 0.5 0.33

F1 0.57 0.33 0.57 - 0.75 0.75 0.57 0.33

G7

R 0.75 0.5 1 0.5 1 0.25 0.75 0.5

F 0.083 0.083 0 0.083 0 0.17 0.083 0.083

P 0.75 0.67 1 0.67 1 0.33 0.75 0.67

F1 0.75 0.57 1 0.57 1 0.29 0.75 0.57

G8

R 1 0.25 1 0.25 1 0 1 0.25

F 0 0.17 0 0.17 0 0.25 0 0.17

P 1 0.33 1 0.33 1 0 1 0.33

F1 1 0.29 1 0.29 1 - 1 0.29

Table A.5: Classification results for three-node (M = 3) networks with N = 25, 000 sam-

ples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 1 1 0.5 1 0.5 1 1

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.67 1 0.5 1 0.5 1 0.67

F1 1 0.8 1 0.5 1 0.5 1 0.8

G3

R 1 1 1 0.5 1 1 1 1

F 0 0 0 0.14 0 0 0 0

P 1 1 1 0.5 1 1 1 1

F1 1 1 1 0.5 1 1 1 1

G4

R 1 1 1 1 1 0.5 1 1

F 0 0 0 0 0 0.14 0 0

P 1 1 1 1 1 0.5 1 1

F1 1 1 1 1 1 0.5 1 1
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Table A.6: Classification results for four-node (M = 4) networks with N = 25, 000 samples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G5

R - - - - - - - -

F 0.31 0.19 0.31 0.19 0.31 0.19 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.33 1 0.33 1 0.33

F 0.15 0.15 0.15 0.15 0.15 0.23 0.15 0.15

P 0.6 0.33 0.6 0.33 0.6 0.25 0.6 0.33

F1 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

G7

R 1 0.5 1 0.75 1 0.75 1 0.5

F 0 0.17 0 0 0 0 0 0.17

P 1 0.5 1 1 1 1 1 0.5

F1 1 0.5 1 0.86 1 0.86 1 0.5

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86

Table A.7: Classification results for three-node (M = 3) networks with N = 50, 000 sam-

ples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G1

R - - - - - - - -

F 0 0.11 0 0 0 0.11 0 0.22

P - 0 - - - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 1 1 0.5 1 1 1 1

F 0 0.14 0 0.14 0 0.14 0 0

P 1 0.67 1 0.5 1 0.67 1 1

F1 1 0.8 1 0.5 1 0.8 1 1

G4

R 1 0.5 1 1 1 0.5 1 1

F 0 0.14 0 0 0 0.14 0 0

P 1 0.5 1 1 1 0.5 1 1

F1 1 0.5 1 1 1 0.5 1 1
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Table A.8: Classification results for four-node (M = 4) networks with N = 50, 000 samples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.19 0.19 0.12 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0 1 0.33 1 0.33

F 0 0.15 0 0 0 0.23 0.15 0.15

P 1 0.33 1 - 1 0.25 0.6 0.33

F1 1 0.33 1 - 1 0.29 0.75 0.33

G7

R 1 0.75 1 0.5 1 0.5 1 0.75

F 0 0 0 0.17 0 0.083 0 0

P 1 1 1 0.5 1 0.67 1 1

F1 1 0.86 1 0.5 1 0.57 1 0.86

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86

Table A.9: Classification results for three-node (M = 3) networks with N = 100, 000 sam-

ples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G1

R - - - - - - - -

F 0 0.22 0 0.11 0 0.22 0 0.11

P - 0 - 0 - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 1 1 1 1 1

F 0 0.14 0 0 0 0 0 0.14

P 1 0.5 1 1 1 1 1 0.67

F1 1 0.5 1 1 1 1 1 0.8

G3

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1

G4

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1
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Table A.10: Classification results for four-node (M = 4) networks with N = 100, 000 sam-

ples.

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.062 0.19 0.19 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.67 1 0.33 1 0.33

F 0 0.15 0 0.15 0 0.077 0 0.15

P 1 0.33 1 0.5 1 0.5 1 0.33

F1 1 0.33 1 0.57 1 0.4 1 0.33

G7

R 1 - 1 - 1 - 1 -

F 0 - 0 - 0 - 0 -

P 1 - 1 - 1 - 1 -

F1 1 - 1 - 1 - 1 -

G8

R 1 0.75 1 0.75 1 0.5 1 0.75

F 0 0 0 0 0 0.083 0 0

P 1 1 1 1 1 0.67 1 1

F1 1 0.86 1 0.86 1 0.57 1 0.86

a.2 dec-mcts lemmas

Lemma A.1. Let Zi,Fi, ai be as it Lemma 13 of [126]. Let {Fi} be an i.i.d. sequence with

mean µ, and {Yi} an Fi-adapted process. We assume that both Fi and Yi lie it the [0, 1]

interval. Consider the partial sums

St =
t

∑
u=1

(1− Zu)Fu + ZuYu.

Fix an arbitrary 0 < ε ≤ 1, let Γt = 9E[Υt]t
√

2 log(2/ε) and let

Rt = E

[
∑
u

Fu

]
− E[St].

Then for t such that at ≤ (2/9)Γt and |Rt| ≤ (4/9)Γt,

p(|St − E[St]| ≥ Γt) ≤ ε (A.1)

Proof. The proof follows Lemma 14 of [126].

We will show that p(St − E[St] ≥ Γt) ≤ ε as p(St − E[St] ≤ Γt) ≤ ε is proved

analogously. Let p = p(St ≥ E[St] + Γt). We have St = ∑t
u=1 Fu + ∑t

u=1 Zu(Yu −
Fu) ≤ ∑t

u=1 Fu + 2 ∑t
u=1 Zu. Therefore

p ≤ p

(
t

∑
u=1

Fu + 2
t

∑
u=1

Zu ≥ E

[
t

∑
u=1

Fu

]
− Rt + Γt

)
.
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Using the inequality I(A + B ≥ Γ) ≤ I(A ≥ αΓ) + I(B ≥ (1− α)Γ) that holds for

any A, B ≥ 0, 0 ≤ α ≤ 1 we get

p ≤ p

(
t

∑
u=1

Fu ≥ E

[
t

∑
u=1

Fu

]
+ (1/9)Γt

)
+ p

(
2

t

∑
u=1

Zu ≥ (8/9)Γ− Rt

)
.

Using the Hoeffding-Azuma inequality, the first term can be bounded by

p

(
t

∑
u=1

Fu ≥ E

[
t

∑
u=1

Fu

]
+ (1/9)Γtt

)
≤ exp

(
−2(Γt/9)2

t

)
= (ε/2)4t

≤ ε/2,

for n ≥ 1 and 0 < ε < 1. Since by assumption |Rt| ≤ (4/9)Γ, the second term can

be upper bounded by

p

(
2

t

∑
u=1

Zu ≥ (4/9)Γt

)
= p

(
t

∑
u=1

Zu ≥ (2/9)Γt

)
.

By Lemma 13 of [126], this term is bounded by (ε/2)n ≤ ε/2 for t ≥ 1 and 0 < ε <

1. Collecting terms yields the first inequality (A.1). �
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