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ABSTRACT

With the rapid growth in velocity and volume, streaming data compels decision

support systems to predict a small number of unique data points in due time that can

represent a massive amount of correlated data without much loss of precision. In this

work, we formulate this problem as the online set coverage problem and propose its

solution for recommendation systems and the patrol assignment problem.

We propose a novel online reinforcement learning algorithm inspired by the

Multi-Armed Bandit problem to solve the online recommendation system problem. We

introduce a graph-based mechanism to improve the user coverage by recommended items

and show that the mechanism can facilitate the coordination between bandits and

therefore, reduce the overall complexity. Our graph-based bandit algorithm can select a

much smaller set of items to cover a vast variety of users choices for recommendation

systems. We present our experimental results in a partially observable real-world

environment.

We also study the patrol assignment as an online set coverage problem, which presents

an additional level of difficulty. Along with covering the susceptible routes by learning the

diversity of attacks, unlike in recommendation systems, our technique needs to make

choices against actively engaging adversarial opponents. We assume that attacks over

those routes are posed by intelligent entities, capable of reacting with their best responses.

Therefore, to model such attacks, we used the Stackelberg Security Game. We augment

our graph-based bandit defenders with adaptive adjustment of reward coming from this

game to perplex the attackers and gradually succeed over them by maximizing the

confrontation. We found that our graph bandits can outperform other Multi-Arm bandit

algorithms when a simulated annealing-based scheduling is incorporated to adjust the

balance between exploration and exploitation.
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1. INTRODUCTION

Big-data, with its volume and velocity, challenges modern web-based systems to extract a

small and limited amount of critical information effectively and efficiently out of the

dynamically changing patterns. As a result, online learning becomes an active area of

research with special interest in handling Big Data. In online learning, data become

available in a sequential manner and is used for prediction. Unlike batch learning

techniques, where the best predictor is generated by learning from the entire training data

set at once, online learning is used where it is computationally infeasible to train over the

entire dataset. It is especially applicable in the situations where the learning algorithm

needs to dynamically adapt to new and diverse data patterns exposed to the system over

time.

For example, reinforcement learning based recommendation systems, often need to

predict preferences of individuals regarding the special interest group they belong to. The

vast diversity of users streaming into the system and their dynamic change of preferences

make it tough to find a small number of representative items to cover these groups. In our

first work, we developed an online learning algorithm to capture the variety of items these

diverse users are interested in, with a limited number of recommended items. In an online

environment, with little or no prior knowledge about the distribution of items among the

user population, the problem is hard.
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In our subsequent work, we leverage this online learning algorithm for the situation,

where there is a small team of defenders with the intention to protect a large number of

routes from the dynamic attack of the offenders. The idea is to maximize the coverage of

available routes based on their sensitivity and vulnerability to attacks. The objective is to

increase the team payoff of patrolling defenders and decrease that of the offenders over

time. We do this by ensuring the protection of the potentially vulnerable routes by

learning the attack patterns. As the number of defenders is limited, their patrolling

assignment on the routes needs to be scheduled intelligently. Furthermore, defenders

require withstanding various patterns of attacks posed by actively engaging adversarial

attackers. In the process of doing that, both attackers and defenders learn from the

response they get to their respective actions from the other. Therefore, defending the

routes from such opportunistic attackers is an interesting problem which requires

continual optimization. We model this as a game between attackers and defenders where

the defenders use online reinforcement learning mechanism to predict the next attack

pattern. The correlation between different attack patterns observed by the defenders helps

their appropriate assignment to routes dynamically.

1.1 Problem Definition

We formulate the problem at hand as a variation of the hitting set problem, where the

number of sets and elements within the sets can change dynamically. For the application

to Recommendation System, these sets are users’ choices exposed to the system. For the

Dynamic Patrol Allocation Problem, these are various attacker patterns as attacks happen.
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Hitting set is defined as a collection of sets. By definition, a hitting set contains at least

one element from every subset in a collection. The Hitting Set Problem (HSP) is to find a

set which has non-empty intersection with each of the sets in that collection [49].

Formally, given a finite set of m elements U = {e1, e2, . . . em}, a collection of n finite

non-empty subsets, C = {S1, S2, ..., Sn}, s.t. Si ⊆ U for i = 1, 2, . . . n and a positive

integer k, we say that (U,C) has a hitting Set S ′ of size at most k, iff

∃S ′ ⊆ U s.t. |S ′ | ≤ k AND ∀Si ∈ C, ∃e ∈ Si s.t. e ∈ S ′ .

When the number of distinct elements is large, an exhaustive search for even a fixed

number of elements to form a hitting set is known to be computationally expensive. It

becomes more challenging when the sets are streaming online as the system does not have

any knowledge about the distribution of elements in these sets.

For our problem, the collection contains all the available items to recommend or the

routes to choose from, and every subset of the collection defines a user’s preferences or

attackers’ targets at a particular time. As their choices are diverse, the incoming sets to the

learning system are dynamically changing. The set of items to recommend or routes to

protect are defined as a hitting set of fixed size k, which can cover maximum user/attack

instances. Also, we need to maximize the coverage of different types of attacks or variety

of users over time. We define this problem as Online k-hitting Set Problem.

The data stream in our problem is partially observable as we can only examine the

feedback from a new incoming set based on the recommendations made from the earlier

observations. A negative feedback only notifies the system that the predicted element is

not selected by the user (or attacker), but gives no information about what would be a
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better serving choice instead. Therefore, we define our Online k-hitting Set Problem

under partial observation by the following definition:

Definition 1 Given a finite set of m elements U = {e1, e2, ...em} and a collection of n

finite non empty subsets, C = {S1, S2, ...} s.t. Si ⊆ U for i = 1, 2, . . . , let the set of

elements exposed to the system at time t is Sti (i.e. Sti ⊆ Si).

For a positive integer k << m, The Online k-hitting Set Problem is, to find a set

At ⊆ U at a time step t before the incoming set for that time is exposed, such that,

|At| = k and Sti ∩ At 6= ∅.

If Sti ∩ At 6= ∅ for a time step t, we set δt = 1, otherwise δt = 0 (here δt = 1 denotes

that the set At contains at least an element from the set Sti arriving at time t).

After T number of time steps, the performance of our algorithm is measured by

ΣT
t=0δt
T

.

The nature of our problem presents the following unique challenges:

1. No prior knowledge about the distribution of the items makes it an online learning

problem under the constraint of a limited number of items to suggest in a dynamic

environment where preferences can change over time unintentionally (for

Recommendation System) or intentionally (Patrol Allocation).

2. Partial observability of the problem can only allow our algorithm to examine the

feedback from an incoming set based on the recommendation or assignment already

made. A negative feedback gives no information about what was preferred by the

user/attacker instead.
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3. The problem requires us to predict a substantially small set of items, solving it is

NP-hard even if all the preferences were given offline because the problem is

equivalent to the maximum coverage problem which requires the system to try

exponentially many combinations of available items.

1.2 Related Problems

A well-studied variant of the hitting set problem is the Minimum Hitting Set (MHS)

problem [49] where the target is to find a hitting set with minimum cardinality. The size of

the hitting set is given by the number of elements in the hitting set H , i.e., |H|. The

difference between MHS and HSP is that MHS has the constraint that if H is an MHS,

then no proper subset of H can be a hitting set.

More formally, given a finite set of m elements U = {e1, e2, . . . em} and a collection

of n finite non empty subsets, C = {S1, S2, ..., Sn} s.t. Si ⊆ U for i = 1, 2, . . . n, the

Minimum Hitting Set (MHS) of the collection C is a set H ⊆ S s.t:

∀Si ∈ C, Si ∩H 6= ∅ (every subset in C must contain at least one element of H) AND

¬∃H ′ ⊂ H : Si ∩H
′ 6= ∅ for each i ∈ 1, 2, . . . n (no proper subset of H is a hitting set)

The difference between the above formulations and our problem is that we want

|S ′ | = k for the above definition where Si ∈ C for i = 1, 2, . . . might be partially

observable i.e. not all e ∈ Si are exposed to our algorithm. Also, we do not know the

number of unique sets in C, i.e., n is unknown as sets stream into our system one at a

time. We intend to construct an online approximation for a hitting set for the partially

observed sets in the collection as observed over a certain amount of time.
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The closest problem related to our problem is Implicit Hitting Set Problem (IHS) [16].

In IHS, the following information are given: a finite set of m elements

U = {e1, e2, . . . em}, a collection of n finite non empty subsets C = {S1, S2, ..., } s.t.

Si ⊆ U for i = 1, 2, . . . (where C is too large to specify explicitly), a Hitting set H and a

polynomial time oracle O that determines whether H is a hitting set or returns a set from

C which has not been hit by H . For IHS problem, algorithm needs to find a small hitting

set H ′ by making at most polynomial(|U |) queries to the oracle O.

IHS is different from general hitting set problem but is a generalization of online

algorithms for the hitting-set problem–one set (to hit) at a time arrives online from the

collection C. Moreover, on obtaining that set, the algorithm needs to decide which new

element to include in the hitting set and keep that element.

However, in IHS, hitting set construction is based on an update procedure that can

only add element similar to open set problem [35], whereas our algorithm needs to use

replacement instead, as the size of our set is limited. i.e k is fixed. Also in IHS, only those

sets of C which have not been hit, are revealed online. On the other hand, for our problem,

we get feedback from a random sample user (for the case of recommendation system) or

the best response from an adversary (for patrol allocation).

We infer the following properties of our solution from MHS:

• If k = size of MHS, then MHS is the exact solution to our problem

Let our solution be a different set than MHS. If we want to ensure that every subset

in the collection contains at least one element from our solution with the constraint
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that the size of our set cannot exceed the minimum cardinality k, then our solution

becomes exactly same as MHS.

• If k < size of MHS, solution to our problem will not be a hitting set

If we want to construct a set of size k which is smaller than the size of MHS, there

will be one or more sets in the collection which must have an empty intersection

with the set we construct. This violates the property of hitting set, so the set we

construct will not be a hitting set.

• If k > size of MHS, then MHS ⊆ our solution

If our solution results in a hitting set of size k which is larger than the size of MHS,

then there will be a proper subset of our solution which will be an MHS.

1.3 Overview of this thesis

This dissertation is organized in the following manner:

in Chapter 2, we introduce the baseline stochastic bandit UCB algorithm to solve the

coverage problem and discuss how it facilitates the online learning.

In Chapter 3, we describe our contributions to the application area of recommendation

systems. First, we introduce a reward bias to select covering items for a large number of

sets by a limited number of bandits, We then explain our novel graph-based bandit

algorithm and its performance on recommendation systems regarding covering diverse

choices of different users.
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We also introduce a mechanism to execute several different bandit instances in a

parallel and synchronized manner to construct the recommendation set. We show the

selection of global parameter for the bandits affects the error bound for such parallel

execution.

In Chapter 5, we discuss our work which focuses on leveraging our proposed

graph-based bandit algorithm for deploying police patrols to sensitive routes in a

neighborhood to withstand the potential attacks. In this Dynamic Patrol Allocation

Problem, we formulate a game between offender and defender where a limited number of

available defenders as a team of patrolling agents run UCB1 bandit instances to determine

which routes to protect from a large number of available routes.

Unlike Recommendation System, in Patrol Allocation problem, feedbacks are coming

from adversarial opponents which we model by using Stackelberg Security Game. This

imposes additional challenges to our graph-based bandits, and we found that introducing

adaptive transition among graph based bandit defenders can facilitate them learning

different attack patterns within a limited amount of trials, which is important for such a

time-sensitive application where severe loss can incur otherwise.

In Chapter 6, we summarize our contributions and discuss some future directions of

our work.
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2. BACKGROUND

It is crucial for our problem to find a representative element which is common to a large

number of sets in a collection of sets. That will suffice an element to be a candidate for

Online k-Hitting Set. As we can pick at the most k number of elements at a particular

time, our problem depends on sequential decision making over time with an intention to

cover maximum possible incoming sets. Most literature used Multi-Armed Bandits [29] to

solve such problem.

2.1 Stochastic Multi Armed Bandit

The baseline algorithm we used for solving the Online k-hitting Set problem is

Stochastic Multi-Armed Bandit Algorithms [29]. In Multi-Armed Bandit (MAB) problem,

a gambler faces a slot machine with multiple levers (arm). The gambler decides how many

times to play each arm in what the order with an objective that the decision will maximize

the sum of rewards earned through a sequence of arms played. Playing each arm provides

a random reward from a distribution specific to that arm, which is unknown to the gambler.

For example, for an online learning system, at each time t, from n available

items/routes (arms), k items needs to be picked by the algorithm. So k instances of

multi-armed bandits are instantiated, each having n arms to select from. Once an item (or

route) has been selected by the jth bandit, that item will be unavailable for the rest of the
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bandits, i.e., j + 1...kth bandits. Thus a set of k non-identical elements is constructed. The

next user’s/attacker’s choice is compared with this recommended set and accordingly

reward is fed back to the associated bandits.

2.2 Upper Confidence Bound (UCB)

The most popular stochastic bandit algorithm, UCB1 [5] has been used as one of our

baselines where each slot of k-element set runs UCB1 to pick an item i from n available

options which maximizes xi +
√

2 log(f)
fi

where xi denotes the current average reward of

the item i and fi denotes the number of times item i has been picked so far in total t

rounds. Here f denotes the total count of all items picked so far as f = Σt
i=1(fi). It is not

difficult to observe that confidence bound grows with the total number of options we have

chosen but shrinks with the number of times we have tried a particular option. This

ensures each action is tried infinitely often but still balances exploration and exploitation.

After each pulling of arm reward and the corresponding arm, the count gets updated

for the next round. Hence UCB1 has specific:

• update policy adjusting the the average reward xi after the current trial

• selection policy based on the average reward xi added with the term
√

2 log(f)
fi

.

This is called Upper Confidence Bound (UCB1) [5] because this value can be

interpreted as the upper bound of a confidence interval so that the true average reward of

each item i is below this upper confidence bound with high probability. If we have tried an

item less often, our estimated reward is less accurate, so the confidence interval is larger.

It shrinks as we recommend that item more often.
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However, unlike UCB1, in UCB2, choice of picking an option from all available arms

are given once in an epoch instead of every time step. Accordingly, reward value for those

selected options gets delayed to be adjusted till an epoch is finished. In other words, once

the arms get selected by the bandits, those bandits need to keep choosing to those arms for

the entire epoch (which may consist of one or more time steps and denoted as epoch

length). Epoch length for each arm i is denoted as Ri and is controlled by:

• The epoch count, which keeps the record of how many epochs (with variable epoch

length) that arm has been played. Longer epoch length or higher epoch count means

the bandit was pulling to choosing that arm repeatedly (exploiting).

• an external parameter α which governs the exploration of the available arms and

controls the length of epoch for the chosen arm.

The basic UCB2 algorithm [5] is illustrated below:

Parameter: 0 < α < 1

Initialization: Set the epoch counter vector rj = 0 for all j = 1, 2, ...n where n is the

number of available arms

Loop:

• Define τ(r) = d(1 + α)re where r ∈ {r1, r2, r3...rn}

• argmaxi xi + af,ri where xi is the average reward obtained so far by choosing

option i and af,ri =

√
(1 + α)ln(ef/τ(ri))

2τ(ri)
where f = Σt

i=1(fi) as fi denotes the

number of times option i has been played so far in total t rounds.
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• Play option i exactly Ri = τ(ri + 1)− τ(ri) times (here Ri is the epoch length for

the arm i)

• Set ri ← ri + 1

The algorithm keeps a record of the number of times each arm is repeatedly chosen.

This counter (epoch count ri for arm i) is incremented by 1 for all consecutive pulls of the

same arm i for the entire epoch length (by the end of the loop). However, once an arm i is

chosen, UCB2 allows it to get pulled over and over again for a certain period (epoch

length Ri) to learn the confidence bound of that arm. Similar to UCB1, the more an arm is

chosen, the tighter this bound gets for that arm. Once the assigned period (epoch length

Ri) is over, the reward for the arm i gets updated and this adjustment lead the bandit to

decide which arm to select next.

The algorithm is designed in a way that only one bandit instance has the full control on

choosing an arm i, setting epoch length (Ri) for that arm and update the epoch count for it

(ri). Multiple instances of UCB2 bandits having the same set of arms is bound to have a

conflict on selecting an arm exclusively and deciding on a common epoch length of arms

chosen from all the instances. Also in the original UCB2 algorithm, α remains fixed

between (0,1). As a consequence, epoch length (Ri) for an arm i grows exponentially over

time [step 3 in the loop], which makes it difficult to its use for practical purposes. In our

work, we facilitate the parallel execution of UCB2 bandits by maintaining a synchronized

epoch. We also show the PAC [38] bound for the critical parameters which directly

impacts the epoch. In our work, we facilitate the parallel execution of UCB2 bandits with
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synchronized epoch. We also show how the PAC bound is affected by choice of the

critical parameters for the algorithm.

2.3 Related Works

We study two specific application area involving online learning for coverage (1)

Recommendation Systems (2) Patrol Assignment for Security. In this section, we discuss

the related works done using UCB algorithm in both these areas.

2.3.1 Application in Recommendation Systems

In the existing work, two major approaches have been found to build a

recommendation system by using UCB1 bandits. We discuss their advantages and

disadvantages in this section. The first approach, Ranked Bandit Algorithm (RBA) [40]

used each item in the recommendation set to satisfy a different type of user and hence

came up with a consensual set based on diverse users. It used strong similarity measures

(dependency) between items and takes into account only the first item selected by a user

from the recommendation set to represent the group of users that share at least one

common item of interest. It specifically holds ith bandit responsible for ith item in the

recommendation set. But performance of ith bandit is actually dependent on picking the

appropriate item (in proper order) by on all other bandits preceding i. As a consequence of

this cascading effect, the learning for ith item cannot really start before Ω(ni−1) time steps

[28]. According to their setting, the probability of user x ∈ X selecting the ith item from

the recommendation set is denoted as pi which is conditional on the fact that the user did
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not select any of the items in that set presented in any earlier positions. Formally,

pi = Pr(xi = 1|xi−1 = 0) for all i ∈ k where the binary value {0, 1} of xi denotes the

probability of selecting the item i by the user x

On its attempt to maximize the marginal gain of ith bandit, where each bandit is a

random binary variable, RBA forms a Markov chain where the later bandits have to wait

for an earlier one to converge. To speed up the process, Independent Bandit Algorithm

(IBA) [28] assumed independence between items and used Probability Ranking Principle

(PRP) [44] as a greedy method to select items to recommend. PRP give equal credit to all

the item a user selects within the recommendation set, and each bandit responsible for

selecting an item of that user’s choice gets a reward of 1. The overall payoff for the

recommendation set is 1 even more than one item are selected by that user. However, this

solution is sub-optimal in minimizing abandonment because diverse users are likely to be

a part of the minority, which might not be covered by the top-k items PRP selects. So it

often fails to capture diversity.

We study a recommendation system problem, in which the system must be able to

cover as many users’ preferences as possible while these preferences change over time.

This problem can be formulated as a variation of the maximum coverage problem,

specifically, we defined a novel problem of Online k-Hitting Set, where the number of sets

and elements within the sets can change dynamically. When the number of distinctive

elements is large, an exhaustive search for even a fixed number of elements is known to be

computationally expensive. The problem is known to be NP-hard, and many known

algorithms tend to have exponential growth in complexity. We propose a novel

graph-based UCB1 algorithm that effectively minimizes the number of elements to
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consider, thereby reducing the search space greatly. The algorithm utilizes a new

rewarding scheme to choose items that satisfy more users by balancing coverage and

diversity as it constructs a relational graph between items to choose. Experiments show

that the new algorithm performs better than existing techniques such as Ranked

Bandit[40] and Independent Bandits [28] regarding satisfying diverse types of users while

minimizing computational complexity.

2.3.2 Application in Dynamic Patrol Allocation

In our study for online route assignment to patrolling robots for crime-prone areas of a

neighborhood. We considered that we could only deploy a fixed number of autonomous

robots; therefore, it is necessary to maximize the impact of their routing assignments. We

develop an online model to approximate the optimal solution under some attack

probability distributions. Our algorithm can direct a group of patrolling robots to a few

routes out of many available at a certain time against the best possible adversarial

response. Our simulation results show that using UCB1 bandits to determine the strategy

for these Patrolling Robots (PR), we can achieve considerable coverage of sensitive routes

by playing Stackelberg Game against different types of attacks.

Most works including [7] considered the similar problem as a finite-horizon MDP [10]

where the learning process ends after T steps and the objective is to maximize the

accumulated total reward. They applied a variant of Monte Carlo Tree Search (MCTS)

[27], where UCB1 is used as a tree policy leveraging UCB Tree (UCT) algorithm [26].

They extensively used repeated SSG where an attacker is drawn from a distribution. Their
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work is based on [31] in which a defender’s mixed strategy is discretized to ensure finite

state and action space to formalize a Bayesian Stackelberg Game; otherwise, the

branching factor for the tree will be too large to come up with a practical solution.

[52] also investigated repeated security games with unknown game pay off and

attacker behavior. In their work, they used “Follow the Perturbed Leader with Uniform

Exploration” (FPL-UE) technique assuming no prior knowledge about the attack

dynamics. They compared their work with Quantal Response [53] model which requires

some prior knowledge about the attackers. They showed that their method works well

against typical attacker profiles.

Practical implications of such game using online reinforcement learning methods have

been depicted in the work of [39], [54], and [48]. In [55], they used an iterative learning

and planning mechanism that keeps updating the adversary model periodically. They used

EM [20] algorithm with dynamic planning against adaptive criminals. In that work,

instead of using SSG, they used Dynamic Bayesian Network [17] for modeling the

problem.

[36] introduced Rolling Down Randomization (RDR), a technique to generate

randomized policies where a similar problem has been modeled using POMDP [25].

Above a given expected reward threshold, their defenders need to generate a randomized

policy. To make it hard for the opponent to anticipate the defender’s action, their method

increased the policy entropy. Their work leveraged both linear and nonlinear optimization

methods for a single defender.
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3. ONLINE RECOMMENDATION SYSTEM

Recommendation systems in Big-data era need to address not only the massive amount of

users to satisfy but also the rapidly changing patterns of preferences. With such a rapid

and continuous shift of users’ preferences, recommendation system needs to learn quickly

from the patterns of choices in previous users to suggest items to the new user. As diverse

tastes of the incoming users induce a fast turn over time for items, online recommendation

systems get little prior knowledge about the distribution of the preference on items among

the user population. Moreover, most recommendation systems need to pick a limited

number of items to suggest to a user, still, require that at least one of these suggested items

can satisfy her taste. This online learning algorithm tries to produce a substantially small

but a diverse recommendation set from a large number of items, at the same time

satisfying different user types.

Most existing literature including [28] consider a recommendation system where n

items {i1, i2, i3, ...in} are given. When a user arrives, the system needs to show her a set of

k items where k << n. If she finds any one of them relevant, the system gets a payoff of

1. If none of them is relevant to her interest, then it gets a payoff of 0. [28] defined a user

relevance vector as follows:

Definition 2 Each user j can be represented by a {0, 1}n vector Xj where Xj
i = 1

indicates that user j found item i relevant where i ∈ {i1, i2, i3, ...in}. For example,
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Xj = {0, 1, 0, 1, 0, 0, 0, 0, 0, 1} means user j finds 2nd, 4th and 10th items relevant out of

n = 10 items that are given to the recommendation system to recommend from.

Distribution of these vectors Xj is unknown to the system, but these vectors are

assumed to express the “types” of users. We assume that there is a large degree of

correlation between these vectors. It indicates that when the system successfully

recommends a set of items to a user, that recommendation set may cover other users of the

same type.

At time t, after a recommendation set for a random user is already generated, that

specific user vector is disclosed in the system and system gets its payoff. Then the system

updates the recommendation set for the next possible user so that it maximizes its payoff

and thus minimizes the abandonment rate. This is the necessary condition for the online

learning.

As the recommendation system presents a set of k items St without observing X t, we

used the definition of set relevance function F used by [28] for the fairness of comparison

between that work with ours:

Definition 3 F (X t, St) is a submodular set function [46] stands for the payoff of showing

St to user with vector X t. Characterization of user click event is done by the following

conditions: if X t
i = 1 for some i ∈ St then F (X t, St) = 1 else F (X t, St) = 0

According to [28], the value of displaying a set St, is the expected value E[F (St, X)]

where the expectation is taken over the realization of the relevance vector X from the

distribution D. Once realized, for a fixed set S, it is denoted as E[F (S)] (the fraction of
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users satisfied by at least one item in S). Like [28], our target is to minimize abandonment,

so we need to maximize click-through rate [24], which is:

maximize E[F (S)]

subject to |S| = k

This is essentially same as the performance measurement metrics for the Online k-hitting

Set Problem that we formulated at the Introduction chapter.

3.1 Reward Bias

We present our first proposed method in Algorithm 1. We initialize k number of

bandits UCB11(n), ...UCB1k(n) to construct a set of k items where bandit i gets priority

on selecting an item over bandit i+ 1. Similar to [28], once an item gets selected by a

preceding bandit, it becomes unavailable to any later bandits (ref line 6 and 7 of the

algorithm). After the recommendation set St is created this way, it is compared with a

random user vector X t picked in time t (in line 9-11). The novelty of our approach is in

the rewarding scheme for the bandits (shown in line 12,13). If the recommendation set

contains more than one items preferred by the user, the first bandit responsible for picking

the preferred item get a much higher reward as Fit for that item than any other bandits

who picked other items of that user’s preference. We set that higher reward C to be equal

to the accumulated reward of all bandits who picked a preferred item for that user in that

recommendation set. In this way, we uplift the average reward for the bandit who picked

the first item the user preferred. This creates a bias towards the first item a user prefer and
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helps recommending users of same user type with one preferred item which is highly

likely to satisfy all of them. For example, if there is a total of 100 users in the system, each

Algorithm 1 Proposed Method
1: Input: n items
2: Output: k items
3: Initialize UCB11(n), ...UCB1k(n)
4: for all t ∈ T do
5: St0 ← ∅
6: for all i = 1 to k do
7: select(UCB1i, N \ Sti−1)
8: end for
9: Pick a random user vector from the dataset

10: Display St to user for and receive feedback vector X t

11: C =total number of items clicked by the user from St

12: Feedback:

13: Fit =


C, if X t

i = 1 for the i ∈ St which is the first click
1, if X t

i = 1 for any i ∈ St which is not the first click
0, otherwise.

14: update(UCB1i, Fit)
15: end for

of them is represented by a user vector of size 10 (expressing their items of choice out of

10 available items). Lets assume we can only recommend 2 items out of 10. Say, some of

these users prefer item1, item3, item5, item7 and item9 together (user type-1) whereas

some prefer item2, item4, item6, item8 and item10 together (user type-2) and remaining

prefer item4 and item6 together(user type-3). UCB1 ensures that an item is recommended

enough number of times to be reasonably confident about their chance of getting

rewarded. Now if we reward a bandit with 5 (accumulated from items 1,3,5,7 and 9) for

selecting item1, the probability of selecting item1 will be higher for our recommendation

set which can eventually cover any user of user type-1. Next item in our recommendation

set would be item2 for adopting the same rewarding strategy with a hope to cover the user
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type-2. But unfortunately item2 cannot cover user type-3 who prefer item4 and item6, not

item2. If we could pick item4 instead of item2 we could cover both user types which is the

optimal recommendation. But as recommending item2 fails to satisfy the users only

preferring item4 and item6 together, according to UCB1 policy, average reward for a

bandit picking item2 will be decreased if more of the incoming users are of user type-3.

Eventually average reward of a bandit selecting item4 will beat that of selecting item2.

Although the basic idea behind this design follows PRP like IBA, but unlike IBA, unequal

rewarding for bandits on selecting an item makes the highly rewarded bandit choose a

representative item covering all other items that are correlated to it. Ultimate goal of this

mechanism is to reduces the chance of selecting more than one item in our

recommendation set preferred by the same user type.

3.1.1 Initial Results

In this section we show the performance boost occurred over the existing methods by

adopting our proposed technique. We used real data sets our experiments. Publicly

available dataset of MovieLens Dataset [21] has been used for this purpose. MovieLens

Dataset consist of more than 900 users rating almost 1700 movies which we picked based

on most rated (rating ranges as discrete numbers between 1 to 5) and for that θ value has

been conservatively set to 2 to discretize the choices as binary values.

According to the results shown in figure 3.1 and 3.2 our method clearly outperforms

RBA in terms of efficiency and accuracy for both the data sets. It is competitive with IBA

for Jester dataset [Ref. 3.1] when we tried recommending 5 out of available 10 high rated
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Fig. 3.1.: Performance comparison of recommending 3 jokes out of 10 from Jester dataset,
Y-axis showing x1000 times iteration, new and old denoting the performance of with and

without Graph based approach

jokes. But our method achieves much better result than IBA when we shrink the

recommendation set size to 3 [Ref. 3.1]. Naturally the overall performance got scaled

down as we decrease k. The Y-axis of both the plots (drawn in same scale) projects the %

of users satisfied by the recommendation set at the time stamp denoted by X-axis. Each

point in both the graph shows an average of 5 runs and went upto 100,000 time steps.

For the other experiment shown in 3.3 we ran with Movielens data set, we decided to keep

the recommendation set size (k) fixed as 10, but we had to deal with a much higher volume

of available choices S (almost 1700 movies to pick from) for a user. This makes our

method run to solve for more than a thousand armed bandit problem - which, to the best of

our knowledge has never been tried before. It also shows similar trend of outperforming

RBA and IBA on an average, as we simulated till 550,000 time steps. The point in the

graph shows the results reached at 10K, 50K, 100K, 200K, 500K, 510K and 550K steps.
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Fig. 3.2.: Performance comparison of recommending 5 jokes out of 10 from Jester dataset,
Y-axis showing x1000 times iteration, new and old denoting the performance of with and

without Graph based approach

Fig. 3.3.: Performance comparison of RBA, IBA and Reward bias of recommending 10
movies out of 1700 from MovieLens dataset of around 1000 users.
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3.2 Graph Based UCB1

We develop a graph based UCB1 bandit model to handle the challenges of online

learning by incorporating diversity without any non trivial sacrifice of coverage and

applied our model in the area of recommendation systems to compare our technique with

existing ones.

Reinforcement learning based recommendation systems often need to predict

preferences of individuals in terms of the special interest group they belong to. The vast

diversity of users’ preference makes it difficult to find a small number of representative

items to denote these groups. Our intention is to capture the common interests of these

diverse users with limited number of recommended items so that our recommendation set

can cover maximum users. We already realize that in an online learning environment,

most Recommendation Systems require to learn quickly from choices of the previous

users to suggest items to a new user with little or no prior knowledge about the

distribution of items among the user population. Hence learning the users’ choice online

and building a small set to accommodate their diverse choices is a hard problem.

We define this need for “fast coverage of diverse user choices with a limited number of

items to suggest” as an Online k-hitting Set Problem and propose a graph-based multi

armed bandit algorithm to learn the implicit correlations among the choice of items by

different types of users. Our method effectively reduces the number of items to be

considered for satisfying the variety of users as they have some common items of

preference. As a consequence, our approach reduces computational complexity of the

problem and produce a fast solution with a considerably diverse coverage.
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Fig. 3.4.: Limitation of Non Graph Based method where Ti labels the 2 item
recommendation set at ith time step coming from 2 bandits b1 and b2 and ui denotes the

user vector it is recommended to



26

3.2.1 Motivation for Graph Representation

In our naive approach [42], we introduced reward bias to the first item to shrink the

search space for possible candidate items to generate a recommendation set. According to

that scheme, if the recommendation set contains more than one items preferred by the

user, the first bandit responsible for picking the preferred item get a relatively much higher

reward than any other bandits who picked other items of that user’s preference. This

creates a bias towards the first item a user prefers and helps recommending users of same

user type with one preferred item.

This naive approach with reward bias introduce unequal rewarding scheme in attempt

to find a candidate element with a potential membership to a large number of sets, but it

still can exclude many user types with smaller populations (refer them as ‘minority

user-types’ who are more diverse in their choice of items) Unlike [28], unequal rewarding

for bandits on selecting an item makes the highly rewarded bandit choose a representative

item covering all other items that are correlated to it. Focus of this approach is to reduces

the chance of selecting more than one item preferred by the same user type, thereby

wasting the precious limit of total number of items to be recommended, k. From that

approach, we want to make it more effective in accommodating a diverse user-types by

representing those minority users who have at least one of their preferred item overlapped

with the majority users; but due to the PRP [44] principle, bandits have less chance to

select an overlapping item from a minority user-type which could cover other highly

observed users. This problem is illustrated in figure 3.4
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Let there be a total of 100 users in the system, each of them is represented by a user

vector of size 10 (expressing their items of choice out of 10 available items). Let’s also

assume that we can only recommend 2 items out of 10. I.e., k = 2 and n = 10. Say, there

are 3 types of users:

• user-type1: prefer item1, item3, item5, item7 and item9 together

• user-type2: prefer item2, item4, item6, item8 and item10 together

• user-type3: prefer item4, item6, item8 and item10 together

UCB1 ensures that an item is recommended enough number of times to be reasonably

confident about their chance of getting rewarded. Now according to our scheme:

• For selecting item1, bandit1 will be rewarded with at most a payoff of 2

(accumulated from items 1,3 or 1,5 or 1,7 or 1,9) provided that 2nd bandit picked

either items 3 or 5 or 7 or 9 and get a reward of 1.

• According to the same mechanism, bandit2 will be rewarded more than others for

picking item2.

• This may result in a recommendation set with item1 and item2. This cause

dominance of user-types 1 and 2, depriving user-type 3, if the majority of the

population are of user-types 1 and 2.

• On the other hand, a closer look into these 3 user-types can reveal that, if we could

reward the 2nd bandit for picking item4 instead of item2, it could cover both the

user-type2 and user-type3.
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According to UCB1 policy, the average reward for a bandit picking item2 will be

decreased if more of the incoming users are of user type-3 and eventually average reward

of a bandit selecting item4 will beat that of selecting item2. But that will not happen until

user-type3 data outnumbers user-type2, which may take a longer time to learn. Recall this

is an online learning problem. The limitation of choosing only the first item to be the

representative for a user-type reduces the effectiveness of the algorithm, in particular in

online situation. We need to be able to change the representative items dynamically as

needed.

To solve this problem, discount on the reward of bandits was essential where the item

selected by it is not sufficient to address the satisfaction of other user-types. This discount

factor is not trivial to compute because this is based on the user relevance vector disclosed

to the system since the system started learning. Therefore, we introduce the Relevance

relationship between items, which remembers history of relationships among items in a

computationally efficient way in terms of a graph structure:

Definition 4 Relevance between items in the recommendation set is denoted by Rel(i, j).

Rel(i, j) = 1 if items i and item j are found in the same user vector. Otherwise

Rel(i, j) = 0

This Relevance is denoted as edges between items in our graph based method and it

impacts our rewarding scheme for bandits responsible for picking the corresponding items

in the following way:

Definition 5 Reward for a bandit to select an item i where i gets the first click from a user:
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Rwd(i) = 1 + 1
1+|N |Σj∈{N\i}Rel(i, j) where N is the set of all items in the

recommendation set

This term has been used as node weights in our proposed graph based algorithm

where each node represents an item. This scheme is used to reduce the importance of an

item if it appears together with other items from the same user-type historically and hence

implicitly facilitate the selection of an item preferred by minority user-types. The reward

function of a bandit who picks an item selected by the a user is a logarithmic function of

the weight of the node representing that item in the graph.

3.2.2 Construction of Relevance Item Graph

Algorithm 2 Initial Graph

1: Create graph G0(V,E) consists of isolated nodes where vn ∈ V for each item n ∈ N
and initialize E = {}

2: for all n = 1 to N do
3: Let wn ∈ W = 0 for vn ∈ V where W is the weight vector for nodes
4: end for
5: Call BRecommend kItems(G0, B) where B is the set of k number of bandits

To keep track of relations among the items seen and recommended so far in the online

environment, we need to build and update a relevance item graph each time the system

sees a user and a recommendation is made. We construct the relevance item graph in the

following way:

• At the beginning, there are n number of isolated nodes representing the total

number of items to choose from.
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Fig. 3.5.: Emergence of item 4 with increasing weight as a potential replacement of item 2
in the graph based method to accommodate user type 3 as in the illustrative example

mentioned in Figure 2

• Each node has a weight associated with it which denotes the relevance of the item in

the graph. Initially all node has identical weight of 0

• Each time a random user is shown a set of k items by the recommendation system.

This is a simulation of an online environment.

• If the user selects (i.e., likes) more than one of these recommended items then we

draw a directed edge from the node, which stands for the first choice of items to the

other items (nodes) chosen by the same user. For example, if a user selects item1,

item3, and item5. There will be directed edges from item1 to item3 and from item1

to item5.

Fig. 3.5 shows how this weighting scheme alleviate the issue related to our past approach

and better handles the overlapping items chosen by different user types.

Algorithm 2 shows the initialization of the graph and Algorithm and 5 shows how the

graph is evolving dynamically.
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3.2.3 Discounted Reward Based on Item Correlation

As we construct the graph dynamically as each user data is encountered in an online

fashion, weights of the nodes get adjusted in the following manner: if the user chooses

one or more items from the recommendation set: the node representing the first choice of

the user gets an increment of weight by 1 + 1
C

where C is the number of total items in the

recommendation set picked by that user according to Definition 4. This technique assigns

Algorithm 3 BRecommend kItems

1: Input: The graph at the end of (t− 1)th round: Gt−1,
the set of k bandits each having N arms: B = UCB11(N), ...UCB1k(N)

2: Output: Recommendation set of k items for user arrived at time t: Rt
k

3: Rt
0 ← {}

4: for all i = 1 to k do
5: select(UCB1i(N), N \Rt

i−1)
6: end for
7: call Update Graph(Gt−1, Rt, B)

Algorithm 4 Adjust Reward
1: Input: B set of all UCB1 bandits,
k items recommended,
Rt the recommendation set,
X t the user vector

2: Output: Reward updated for all Bandits
3: for all j = 1 to k do
4: Feedback the jth Bandits with the following reward:

5: Fjt =

{
log(wj), if X t

j = 1 for the j ∈ Rt

0, otherwise.
6: update(UCB1j, Fjt)
7: end for

less weight to each node as more items are selected by the user at a time. Idea behind this

is, if more items in our recommendation system is chosen together with an item a user first

picks, then that item is not a good representation of the specific user-type as opposed to an
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item which is uniquely selected by the user. Other items selected by the same user

instance (but are not her first pick), will have an increment by 1 in their respective weights.

This weighting scheme also ensures that, if only one item from the recommendation

set is selected by that user, it gets the maximum weight of 1 + 1
1

= 2 as that single item is

potentially single-handily covering that user-type. If the user selects none of the items

recommended, then each node in the recommendation set will have an increment of 0 in

its weight. Fig. 3.5 shows how this weighting scheme alleviate the issue related to our past

approach and better handles the overlapping items chosen by different user types.

Algorithm 4 is developed on this idea.

Algorithm 5 Update Graph

1: Input: Graph at the end of (t− 1)th round: Gt−1,
Recommendation set: Rt

Set of all bandits: B
2: Output: Updated graph after t round: Gt(V,E)
3: Pick a random user vector ut
4: Generate feedback vector X t from the indices of ut which contains 1
5: Create a set of directed edge Et such that for each e(i, j) ∈ Et:
vi represents the item clicked which has the lowest index in Rt and vj represents
any other items clicked in Rt (according to the feedback vector X t

6: E = E ∪ Et

7: C =total number of items in Rt which matches with those of X t

8: if (t%τ == 0) then C = C × f(t) where f(t) is the discount factor on C at time
step t

9: Update W by following:
10: for all n ∈ N do

11: wn =


wn + [1 + 1

C
], if vn is the only item clicked

or has one or more outgoing edge(s) in Et

wn + 1, if vn has an incoming edge in Et

wn, otherwise.
12: end for
13: call Adjust Reward(B, k,Rt, X t)



33

3.2.4 Annotation of Arms States

In previous section we mainly showed how we modify the reward update policy for

graph based bandits. This section we discuss how we further modify the update policy by

annotating the arms and incorporate new selection policy of UCB1 bandit leveraging that

annotation to find the solution to our k-hitting set problem which can result in a better

coverage when used in a Recommendation System. We introduce annotation of arms in

the update policy and compliment this upgrade with a novel selection policy for graph

based UCB1 bandits.

As described in our Online k-Hitting Set Problem, each element in U is considered as

an arm in our bandit algorithm and hence a node in our graph. We further anootate these

Arms (nodes) to be in either of the following two states:

Definition 6 An arm is active for a time step if it is currently selected by our bandit

algorithm. Such an arm (node) have most outgoing edges in our graph.

At the beginning, all arms are active because each of them are equally likely to be selected.

Definition 7 An arm is dormant if it is selected by the bandit but found to be a member of

a number of sets for which an active arm is already selected by another bandit at the same

time. They are the low rewarding neighbor of an active node in the graph.

These arms are dormant in a sense that they equally qualify to represent the sets they are

member of.

Arms selected by bandits with no match in the incoming set receive a reward of 0 but

stays active. Because those arms clearly indicates its failure to cover that a specific
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incoming set at certain iteration, but our algorithm does not rule out its potential for

covering other incoming sets from the collection.

3.2.5 State Transitions of Arms

Algorithm 6 shows a complete Graph Based UCB1 update policy for bandits with this

annotation of Arms.

With the arms annotated, we define transition of an arm from one state to the other

occurs in the following situations:

• An arm gradually becomes dormant from active with its repeated failure to be the

first element match with the incoming set

• An arm gradually becomes active from dormant if it frequently matches with the

first element from the incoming sets

Transition of an arm from the dormant state to an active state potentially results in

covering more incoming sets. A dormant arm can become active with a the update policy

as well as the our adaptive selection policy.

We adopted an Adaptive Simulated Annealing [6] technique for the transition of an

arm from one state to the other because of the following reason where the change of state

of an arm is denoted by α,

• A positive value for α indicates an improvised solution where a previously dormant

arm is likely to achieve more reward than the current active arm. This value is also

positive for an arm which is selected by the bandits for our hitting set but does not

find a match in the incoming set.
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Algorithm 6 Annotation of Arms for Updated Selection Policy
1: Inputs:

Graph at the end of (t− 1)th round: Gt−1,
Our constructed set: Rt

Set of all k bandits: B
A fixed integer: k

2: Output: Updated graph after t round: Gt(V,E)
3: Pick a random set X t from C
4: Create a set of directed edge Et such that for each e(i, j) ∈ Et:
vi represents the element which is the first element matched with an element in Rt and
vj represents any matched elements clicked in Rt

5: E = E ∪ Et

6: C =total number of items in Rt which matches with those of X t

7: Update wn ∈ W by following:
8: for all n ∈ N do

9: wn =



wn + [1 + 1
C

],

(if vnis the only item clicked
or has one or more outgoing edge(s) in Et)
And mark n as Active

wn + 1,

(if vn has an incoming edge in Et)
And mark n as Dormant

wn

otherwise.mark the arm as Active
10: end for
11: for all j = 1 to k do
12: Feedback the jth Bandits with the following reward:

13: Fjt =


log(wj),

if X t
j = 1 for the j ∈ Rt

0,

otherwise.
14: update(UCB1j, Fjt)
15: end for
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• A negative value for α shows a downward in solution quality where previously

active arm becomes dormant in the current iteration.

• A value of 0 for α denotes the similar quality for solution, for which a state

transition does not promise any improvement.

We use the direction of the change in α to modify our arm selection policy of UCB1. We

assign an annealing parameter r initialized with 0 for each arm of every bandit. We update

the counter in the following manner:

• If a dormant arm from the previous iteration becomes active in current iteration,

then r is set to 0.

• If (1) an active arm from the previous iteration becomes dormant in current

iteration, or (2) an dormant arm selected by the bandit fails to get reward in current

iteration and goes back to active state then r is incremented by one.

• If an arm stays in the same state then the value of r will be unchanged.

Our modified arms selection policy is shown in Algorithm 7. The relationship between α

and the counter r is the following:

rn =



0, if α > 0

rn−1 + 1, if α < 0

rn−1, if α = 0

(3.1)

where rn denotes the r value of a specific arm of a bandit at current iteration n.
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Algorithm 7 Selection Policy for Bandits

1: Input: UCB1i(N) the ith UCB1 bandit with N arms,
N \Rt

i−1 the number of available arms
2: Output: The arm with highest UCB value for the ith UCB1 bandit
3: if none of the available arms have been tried at least once, randomly select an arm
4: otherwise select the arm with the highest UCB value by the following policy:
5: for all i = 1 to N do
6: if n is an active arm, UCB value for the arms is

xi +
√

2 log(f)
fi

7: if n is a dormant arm, UCB value for the arms is
xi + (1− exp−1/θ)

√
2 log(f)
fn

where θ = 1 + log(1 + rn)
and rn is the value of the counter r for arm i at iteration n

8: end for
9: Return the arm with highest UCB value
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While selecting an arm for each iteration, every bandit needs to update the value of r.

If an arm is found to be in dormant state, UCB value for that arm is smoothed by the

parameter θ in following manner:

θ = 1 + log(1 + rn) (3.2)

Therefore, UCB value for every dormant arm i for a bandit is:

xi + (1− exp−1/θ)

√
2 log(f)

fi
(3.3)

By setting r = 0 for an arm which becomes active from a dormant state, we keep the

scaling factor in our algorithm same as UCB1 algorithm. This gives our algorithm enough

opportunity to balance between exploration and exploitation. On the other hand, by

increasing the value of r for an previously active arm which transformed as dormant in

current iteration, we scale down the UCB value of the arms selected by the subsequent

bandits by (1− exp−1/θ). But these arms can be reset to active in case it was not found in

certain incoming sets. This way, we give the dormant arm ample scope to be active.

As a dormant arm with a reward update of 0 gets back to active state, our algorithm

needs to distinguish this transition from the transition where a dormant arm becomes

active by getting selected by the bandits for its high UCB value. In former, we increment

the counter r associated with that arm, in the later, we reset the counter to 0 which helps

us leverage the value of r to adjust the exploration-exploitation trade-off appropriately.
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(a) For dense user relevance vector (b) For sparse user relevance vector

Fig. 3.6.: Comparison result with different high and low θ values for Movielens data

3.3 Empirical Evaluation

In this section first we show the performance improvement by our proposed graph

based reward update policy over the existing non graph based methods. Then we show

how incorporating our proposed selection policy facilitates the coverage and diversity of

recommendation set. We used publicly available Movielens1000 [21] data set for our

experiments. Movielens data set consists of 943 users rating on 1682 movies. The real

valued ratings has been converted to binary (relevant or not) by using a threshold θ as

rating ranges between 1 to 5. We show our result for θ = 2 and θ = 4 respectively in

figure 3.6 (a) and (b) . Our recommendation set selects k = 10 movies each time for a

random user out of available n = 1682 movies. This makes our method run to solve for

more than a thousand armed bandit problem - which, to the best of our knowledge has

never been tried before.
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Fig. 3.7.: Average Coverage of each Item in Recommendation Set after every 10K rounds
for dense Movielense dataset with low threshold using RBA, IBA, Graph Bandit

compared with with offline greedy approach

3.3.1 Impact of Sparsity in User Vector

From the experiments with Movielens dataset, it can be observed that, on an average,

our graph based bandit outperforms all other methods. For a high value of θ, performance

of graph based bandit is much higher than our previous non graph based approach. In fact,

non graph based approach is the worst one in terms of performance as our cutoff value θ

rises. This is because our binary value for users’ choice is based on a high cutoff value for

θ and accordingly more diverse users’ choices are identified which is better handled by the

graph based approach. Figure 3.6 shows this effect.

3.3.2 Coverage of Different Sets

After incorporating the proposed selection policy for graph bandits, we further

compare our method with other online methods as well as greedy offilne method in terms
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Fig. 3.8.: Normalized ILD of the Recommendation Set after every 10K rounds for dense
Movielense dataset with low threshold using RBA, IBA, Graph Bandit compared with

with coverage based greedy approach

of its user coverage. In this set of experiments, we show the result of Movielens dataset

with θ = 2 but other threshold value for θ also gives similar results. We evaluate the

average performance of each item in the recommendation set after 10K, 20K, 30K, 40K

and 50K iteration averaged over almost 1K static user vectors. This gives the online

algorithms ample observation of total population to be benchmarked with offline greedy

coverage shown as the upper bound in figure 3.8 normalized by the total population.

3.3.3 Diversity of Recommended Set

We compared the effectiveness of recommendation set after each 10K iteration upto

50K to observe its performance on capturing diversity. We used the popular Intra-List

Distance (ILD) [14] metric where we pairwise distance between items in our

recommendation set is defined by dist(i, j) = number of user vectors (sets) containing
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item i but not j. The result is shown in figure 3.7. As observed by this experiment, diverse

user types are covered more by our method than others. Our method performs better than

offline coverage based greedy method which maximizes the number of users covered but

not essentially captures diversity.

3.3.4 Reduction of Arm Space

We found that the similar coverage of different types of users found within a shorter

amount of iteration if we incorporate our selection strategy with the updated rewarding

mechanism for the graph based bandit.

As for the complexity of the algorithm, [40] shows that lower bound of the

performance of RBA can be measured by: (1− 1/e)OPT −O(k(R(T )) where OPT

denotes the optimal performance scaled from the offline greedy approach [22], k is the

number of bandits, R(T ) is the regret for that specific type of Bandits. Later for IBA [28],

it is proved that for UCB1, this bound is (1− 1/e)OPT −O(kNlog(T )) where N is the

number of arms. For our case as the number of effective arms are subset of nodes in the

graph of N nodes, the regret can be reduced more than O(kNlog(T )), hence the lower

bound of performance gets higher.

The reduction of average active arms count is depicted in figure 3.9. Figure 3.10

shows the average coverage over 50K iterations. It is found that, with our novel selection

policy, the coverage of same fraction of overall user is achievable within 10K iteration,

whereas without this modification the graph based bandit algorithm takes around 20K to
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Fig. 3.9.: Reduction of Active Arm count when state transition mechanism is applied is
used with the Graph based bandit
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Fig. 3.10.: Faster convergence of solution is achieved when state transition mechanism is
applied with the graph based bandit

attain the same outcome. As active arms are identified faster, our algorithm produce more

efficient and stable set.
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3.4 Parallel & Synchronized UCB2

Our earlier work [42] shows that IBA can be improved to capture diversity with a

simple but effective rewarding technique that inherently takes account of correlation gap

[4] between the distribution of items so that items picked by same type of users can be

grouped together and one representative item from them can be selected by the

recommendation system to cover all users of that type. To ensure coverage, we introduced

graph based mechanism. However, all these methods discussed in the previous sections

used UCB1 bandits for building the recommendation systems as no substantial

modification of UCB1 is necessary to run multiple bandit instances in parallel. Attracted

by the better theoretical regret bound, we, for the first time, attempt to run multiple parallel

instances of UCB2 and face the technical challenges mentioned in the following Section.

For a recommendation system, at each time t, from n available items (arms), k items

needs to be picked by the algorithm. Like IBA, [28] we instantiated k instances of

multi-armed bandits, each having n arms to select from. But unlike IBA, once an item has

been selected to place at any of these k slots by the kth bandit, choosing that option by

other bandits can get penalized so that remaining spaces can be filled in by rest of the

available options. Thus a set of k non-identical elements is constructed. A random user’s

choice is compared with this recommended set and accordingly reward is fed back to the

associated bandits.

Apart from ensuring unique selections by each bandit, in this section we also introduce

the synchronization technique for epoch for arms selected by multiple instances of UCB2,
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so that parallel execution of a number of bandits is possible. We also update α parameter

for UCB2 as a function of time for online simulation with real datasets.

3.4.1 Technical Challenges

Some of the major technical challenges of running multiple instances of UCB2 bandit

on real datasets are understanding the influence of the parameter α which is responsible

for the tradeoff between exploration and exploitation of the arms and impact epoch. We

also target to construct a recommendation set which fulfills the need of variety of users

within its limited size. We came up with an algorithm for multiple instances of UCB2

which is robust enough to follow the basic assumptions of the basic UCB2 algorithm but at

the same time relaxed enough to face the adversaries caused by the skewness of real data.

In this section we discuss the implementation challenges we faced to realize this idea.

Influence of α

In UCB2, α has the following effects:

• For a fixed epoch count (ri in UCB2) for any arm i, smaller α results in small epoch

length (Ri) and vise versa. Because Ri is the difference of exponential function (τ )

of α for two consecutive epoch counts ri and ri + 1 for arm i.

• Impact of increasing α makes a greater difference in epoch length for an arm i with

higher epoch count ri than that with a smaller one. Higher epoch count for an arm i

already manifests that that arm has passed the exploration phase and have enough

reward potential to be exploited.
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Fig. 3.11.: Upper (dotted) line showing max epoch count among all arms where the lower
(solid) line expressing that of the corresponding min one for 1000 random sampled users

of MovieLens

• For a fixed α, at any time step, for an arm i, bigger ri results in larger epoch length

(Ri) for the same first reason mentioned above.

As in the initial phase, our intention is to try out every possible arm with fairness

(exploration), we decided to keep α small [based on first effect]. To select the rewarding

arm more, every time we select an arm i, if it has already been chosen for a higher epoch

count ri, we choose it for a larger Ri for UCB2 (geared towards exploitation mode). We

achieved this by updating α with an increasing function of time [according to 2nd and

3rd].

Adjustment of Epoch

As each individual bandit instance has its own epoch counter ri for each arm i and ri

impacts the epoch length for i, selecting a common value for epoch count to synchronize
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Fig. 3.12.: Upper (dotted) line showing max epoch count among all arms where the lower
(solid) line expressing that of the corresponding min one for 1000 random sampled users

of Jester
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over all the arms that are selected by different bandits is necessary to generate a fixed

recommendation set to show different users over a specific period of time (common epoch

length Ri). We set the epoch count (ri) for any arm i chosen by different bandits to the

minimum of all the epoch counts of the all the arms selected by the bandits. Our

motivation behind this simple strategy is that although in theory minimum epoch count

and maximum epoch count can differ by any amount, in practice, there is a positive

correlation between them. This phenomena is shown in figure 3.11 and 3.12 for two real

datasets. It shows that if different bandit instances selects arms without the

synchronization of the epoch, the maximum epoch length produced by an arm chosen by a

bandit is proportional to that of the minimum one. We choose the min of them to set for

all arms selected by different bandits because we wanted to be conservative on exploiting

the selected arms too much and have room for exploration as users choices can shift to

less exploited arms anytime.

Penalty for Repetition

Our online learning algorithm strives to produce a substantially small but a diverse

recommendation set from a large number of items, satisfying different user types. To

maximize the coverage of different users, it is essential to accommodate unique items in

the recommendation set. Repetition of an item in the recommended set adds no value to

the set for the users. Moreover, it wastes space in the limited size recommendation set,

which could be efficiently assigned to a new item which has more potential to cover a

different type of user. When several instances of UCB2 bandits run in parallel, it is
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difficult to ensure mutual exclusiveness of the arms they pick. We take care of this issue

by discouraging a bandit to select an item already in the recommended set under

construction. We did it by penalizing the bandit for such a repetitive pick so each bandit

instance is forced to select a unique item.

3.4.2 Solution Sketch

In this section we illustrate our approaches to overcome the challenges of parallel

execution of a number of UCB2 bandit instances.

Updating of α

The built-in annealing mechanism in basic UCB2 bandits ensures that exploration will

be less once the confidence bound becomes tighter. However, there is no mechanism to

choose the value of α across the bandits and this can lead to increase in epoch length

exponentially for an arm selected by any bandit. So initially we set α = α0 to be small

and slowly increase it with the number of t rounds. We used several techniques to

gradually increase α which is opposite to starting with a higher temperature in a

Simulated Annealing and cooling it down with time. It ensures that, at the beginning more

preference are given to exploring the available options and diversifying the

recommendation set with an intention to find suitable items to recommend and then

eventually settling on exploiting the best performing items found so far according to users

feedback. Two different approaches adopted to tune the initial parameter α0 over time:
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• Fixed-Increase Alpha (FinAlpha): In this method α0 gets increased in a fixed rate η.

Hence

αt = α0 + ηt

For our experiment we set η = (1− α)/t so that α stays within the bound (0,1) as

required by UCB2.

• Logarithmic-Increase Alpha (LinAlpha): According to this technique α0

experiences a logarithmic increase over time. Hence

αt = α0[log(t+ 1)]

Synchronization of Epoch

To the best of our knowledge, to develop a recommendation set of unique items,

UCB2 instances has never been tried. One of the challenges to deal with multiple

instances of UCB2 is synchronization of epoch length across different bandits so that they

expire at the same time to initiate a new set of recommendation from the users’ feedbacks.

We resolve this by simply setting minimum epoch count among all selected arms to their

minimum. The logic behind doing so is very straight forward. As we observed that both

min and max epoch count among all the chosen arms are positively correlated (in Figure

3.11 and 3.12) setting min epoch for all selected arms is a safe choice. Because, for an

arm whose epoch count is higher than the minimum of all epoch counts, it can experience

the amount of reward gained within the minimum epoch when it is realized at the end of

that epoch length. And according to UCB2, if that arm is rewarding enough, it will be kept
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on the recommendation for successive epochs as well without any loss. On the other hand,

if it turns out to be non rewarding one, this policy assures that this ‘bad’ arm is fairly tried

(atleast as much as the one with minimum epoch length).

Ensuring Unique Selections

In [42] Mahmuda et al. showed that if a recommendation system (with a fixed small

number of items to recommend) could select only one from a group of related items, it

would be able to satisfy all users of that user type. To accommodate maximum variety of

users in the limited size recommendation set, we avoid repeating an item in the set. As k

bandits instances of UCB2 is working together to construct the recommendation set, we

made sure that an item picked by a bandit is not selected by another one. This has been

done by penalizing the bandit responsible for picking the repetitive item by updating it

with a 0 reward; which, in effect, increment the frequency for that arm so the average

reward for that arm goes down.

3.4.3 Analysis of PAC Bound

In this section we justified our decision of choosing a small α value initially. We know

from [1] that if reward of picking an item (choosing an arm j) is a binary valued random

variable Yj with an unknown distribution, then expected value of Yj can be denoted by

E[Yj] which is also unknown. For any t ∈ T , reward of pulling an arm j denoted by Yj,t is

independent as both j and t varies and as j (arm) changes, the distribution changes.
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Fig. 3.13.: Upper solid line showing ε changes over rounds for UCB2. Lower (dotted) line
is showing corresponding change in δ
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According to them, let j be a fixed arm to be pulled for all T rounds. Then the average

payoff of T rounds will be:

Gj(T ) =
1

T
ΣT
t=1Yj,t

A classical approach to estimate the difference between this average and the long term

expected reward is determine the Probably Approximately Correct (PAC) bound by using

Chernoff-Hoeffding inequality [38] which is:

P (|Gj(T )− E[Yj]| > ε) < δ where δ = 2e−2Tε2

It shows that probability of the sampled average and true expectation deviates by more

than ε is bounded by confidence bound δ. For UCB1, [1] showed that, assuming that

exploration term causes the deviation in UCB1, and setting

ε =

√
2 log(f)

fj

in the right side of the inequality, the bound for δ becomes T−4 if a fixed arm is j always

pulled.

As we know that the α ∈ (0, 1) for UCB2, we want to observe the effect of setting the

exploration term of UCB2 to ε under the same condition with an α value as close as 0.
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If we set α = 0 in the UCB2 algorithm where τ(ri) = d(1 + α)ri e for arm i we get,

ε2 =
ln(e) + ln(f)− ln(1)

2

=
1 + ln(f)

2

=
1 + ln(T )

2

Here, ri = f = T as we pulled only arm i for all T rounds. Now if we set ε to this value in

PAC analysis we observe,

δ = 2e
−2T

1 + ln(T )

2

= 2e−T [1+ln(T )]

A smaller ε corresponds to smaller error tolerance level in approximating the expected

value by the average. The target is to keep δ (the probability of keeping an error higher

than ε) small. But if ε is too small, then δ will be large. Relationship between ε and δ for

this analysis is depicted in Figure 3.13. We decided to keep the initial α value

considerably small which results in a relatively small ε value to begin with. Even if α

grows upto maximum 1, the increase it causes to ε over time produces a rapid decrease in

delta which serves our purpose with keeping a respectable error bound.

3.4.4 Proposed Algorithm

Apart from tuning α over time and setting minimum epoch count for all bandit

instances, according to our method, if a bandit picks an arm which is already picked by
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another, it should get a reward of 0 and an increment of pull count of that arm effecting a

decrease of average reward for that arm picked by the corresponding bandit. That bandit is

given a chance to play again, till it finds a new element to add to the recommendation set.

The target is to maximizes the pay off of the recommendation system while constructing

the recommendation set for the next epoch. We record the epoch counts of all the selected

arms and set the minimal one for all bandits. We keep showing this fixed set of

recommendation to a number of the randomly selected users till the epoch lengths expires.

Then all these users’ relevance vectors are disclose it to the system to compare with our

recommendation. If any of the items recommended matches with that of the user vector,

the corresponding UCB2 bandit gets a reward of 1 for picking that item.

In this Section, we present our parallel and synchronized UCB2 algorithm for the

recommendation system to pick k out of n items for users which is based on k-instances

of UCB2 bandits. Initially we create k instances of UCB2 bandits with a fixed α value.

We also declare a vector of length k which stores the epoch count of bandits on a specific

time step. For each time step t ∈ T we have an empty set S. Then (in line number 11) we

use individual bandits for picking its best possible arm according to the UCB2 objective

function and add it to the set to construct a k items recommendation. If a bandit picks an

arm which is already picked by another, it should get a reward of 0 and try again till it gets

a new item to add to the set (line number 12-15). We also record the epoch counts of all

the selected arms and set the minimum for all bandits (as seen in line number 16, 19 and

21). We keep showing the user the same set of recommendation till the epoch length

expires. During this time we pick random user relevance vectors in each time instance and

disclose it to the system to compare with our recommendation. If any of the items
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Algorithm 8 Proposed Algorithm
1: Input: n items
2: Output: k items
3: Initialize UCB21(n), ...UCB2k(n) with α = α0

4: Initialize epoch(1), ...epoch(k) with 0
5: for all t ∈ T do
6: St ← ∅
7: for all i = 1 to k do
8: setAlpha(UCB2i, α)
9: end for

10: for all i = 1 to k do
11: sti ← selectArm(UCB2i)
12: while |St| < k do
13: if sti ∈ St then
14: update(UCB2i, 0)
15: else
16: St ← St ∪ sti
17: epoch(i)← getEpochCount(UCB2i)
18: end if
19: end while
20: end for
21: emin ← min(epoch)
22: for i = 1 to k do
23: setEpochCount(emin, UCB2i)
24: end for
25: Lmin ← getEpochLength(emin)
26: for all i = 1 to Lmin do
27: Pick a random user vector from the dataset
28: Display St to user for and receive feedback vector X t

29: Feedback:

30: Fit =

{
1, if X t

i = 1 for some i ∈ St

0, otherwise.
31: update(UCB2i, Fit)
32: end for
33: t← t+ Lmin
34: increaseAlpha(α, t)
35: end for
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recommended matches with that of the user vector, the corresponding UCB2 bandit gets a

reward of 1 for that item. We increase the value of α at the end of each such round to

propagate the effect of its update to the next epoch.

3.4.5 Empirical Evaluation

In this Section we show the impact of using our method for online recommendation to

users. Publicly available dataset of Jester Project [19] and MovieLens dataset [32] has

been used for this purpose.

The impact of both the increasing function on α against a fixed value for UCB2 is

shown in the chart of figure 3.14 and 3.15 where we compared the performance of our

synchronized and parallel UCB2 with that of UCB1. Two different fixed values of α we

tried throughout the runs were 0.5 and 0.1 respectively. For Fixed rate increasing

(FinAlpha) α we initialized α with these values for multiple instances of UCB2 and

increase it with a fixed rate η = (1− α)/T . To simulate for logarithmic increase of α, it is

initialized with 0.1 and gradually increased as a logarithmic function of time. For the sake

of fairness of comparison, we imposed the same penalty structure for the UCB1 bandits

for picking an item repeatedly which is already selected by another bandit.

This simulation has been done on the same jester dataset which [28] used for

measuring the performance of IBA and RBA using UCB1 where the size of the

recommendation set is 5. Their reported accuracy was at best 65% for IBA up to the same

rounds we ran, where our strategy can gain upto 82.5%. For movieLens dataset, on an

average, we could reach more than 92% coverage of users while we run upto 3000 rounds.
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Fig. 3.14.: Effect of various tuning function on an initial small α for UCB2 against UCB1
on jester dataset
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3.16 and 3.17. In addition to this comparative study, we also ran UCB1 based RBA and

improved IBA (IBA-impr) proposed by Mahmuda et al. [42] which has a higher

performance over the original IBA on the same datasets due to an improved reward

structure for user coverage. We compared the performance our proposed synchronized

UCB2 applying fixed rate increase (FinUCB2) and logarithmic increase (LinUCB2) in α

over time where initial value of α is set to 0.1. We run the simulation for this experiment

upto 100K rounds and took average of 5 runs for each simulation. For Jester dataset we

allowed the recommendation set size was 3 and for movielens it is 10. The results of these

experiments are shown in the figure
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Fig. 3.15.: Effect of various tuning function on an initial small α for UCB2 against UCB1
on movielens dataset
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Fig. 3.16.: UCB1 based RBA and improved IBA compared against UCB2 with Fixed rate
and Logarithmic increase of α, both initialized with 0.1 for movielens dataset after 100K

iterations

Fig. 3.17.: UCB1 based RBA and improved IBA compared against UCB2 with Fixed rate
and Logarithmic increase of α, both initialized with 0.1 for jester dataset after 100K

iterations
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4. DYNAMIC PATROL ASSIGNMENT

The motivation for developing a model for Dynamic Patrol Assignment Problem (DPAP)

comes from the increasing need for protecting major public facilities in response to global

threats. Robots can be equipped with necessary defensive tools for this purpose, but they

are expensive to build. Therefore we need to consider the constraint that only a limited

number of such robots can be deployed for patrolling a comparatively large number of

routes. The purpose of this deployment is to defend the routes from potential attacks.

However, unlike most other routing problem, which follows prescribed patterns, patrol

activities should ideally exhibit randomness against adversarial observers who might plan

an attack. We realize that DPAP needs to be considered as an online learning problem as

opposed to an offline planning problem. However, as it mentioned above, it is constrained

by the limited number of cooperative robots aim to achieve effective patrolling over a

large number of routes. Hence, to attain high group performance, these learning robots

need to coordinate. We develop a centralized online scheduling algorithm for this purpose.

Our algorithm can serve as a high-level strategic decision maker to assign the patrolling

robots to the routes to withstand attacks posed by different attackers.
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4.1 Game Theoretic Formulation

At each round of patrolling, a Patrolling Robot (PR) is assigned to a route out of a

predefined number of routes. For the sake of simplicity, we assume each such routes take

equal amount of time for the assigned robot to patrol. Observing the history of the

assignments of PRs, the attacking team selects an attack strategy as its best response. Each

attack strategy is capable of posing attacks to a certain number of routes at the same time.

We can consider that selecting an attack strategy is a plan of action attacking team

executes with the different attacker instances over some routes at the same time. If an

attacker attacks a route which is being patrolled by a PR, the attack is defended. Our

objective is to develop a centralized online algorithm to assign PRs to different routes

where the best response of the attacking team changes over time.

The reward of a PR comes from defending a route against potential damage posed by

an attacker when they encounter each other. However, failure to withstand an attack

penalize the team of PRs. Under this circumstance, a reward of defending a route is

stochastic as the vulnerability of a route can rise and fall over time by the opportunistic

attackers. This situation can be modeled as a zero-sum repeated game between a PR and

an attacker. Figure 1 shows the dynamics of such a game between two opponent where

each can choose one route out of two available routes: r1 and r2. Later, we describe how

we extend this as a Stackelberg Game between two competing groups over multiple routes.

The game matrix at the center of Figure 4.1 denotes a PR to be the row player and an

attacker as a column player. ri is the route id. Above the horizontal line, we show the

game states where PR as a defender who is constantly selecting r1 and below the line we



65

Fig. 4.1.: Zero-sum repeated game between a PR and an attacker, the row player is a
defender whereas the column player is an offender. Strategy space consist of two routes
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show it choosing r2. The state nodes are labeled with the utility value gained by the PR

whereas each edge between the nodes is labeled by the corresponding attacker’s choice.

Two rounds have been depicted in the figure to portray that, highest expected utility

(marked as EU) for a PR after around can be achieved using this game matrix where both

the PR and attacker are making same choices of routes. The average utility of the PR after

this two rounds are denoted inside the diamond. With the dark arrow edge, it is

highlighted that higher reward is received when the defender is patrolling the route an

attacker selects (i.e., a PR and an attacker instance confront each other).

However, observing the earlier deployments of the PRs, attackers can change its route

in an adversarial manner. Therefore, a PR cannot keep choosing same routes in too many

consecutive rounds. The patrolling schedule must balance exploitation (minimizing

violations of offenders) with exploration (maximizing the omnipresence of PRs) to make

the next assignments of PRs hard to be predicted by the best response attacker. We can

model this trade-off by solving a bi-objective optimization problem using bandits

algorithm [29]. Like [31], we also consider this problem based on the dynamic interaction

through a game between the PRs and attackers. However, instead of modeling it as a

planning problem and solved it using Monte Carlo Tree Search [27] which can result in

high branching factor, we formulate it as an online reinforcement learning problem.

4.2 Comparison with TSP and the VRP

Two problems of the same nature as DPAP are the Traveling Salesman Problem (TSP)

[43] and the Vehicle Routing Problem (VRP) [9]. The classical TSP seeks the shortest
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distance to visit all the vertices in a graph. The coverage of vertices needs to be

maximized while minimizing the cost of traveling. On the other hand, in the VRP,

vehicles must successfully purchase items from some sites and deliver them to other sites

to complete their tasks and earn the corresponding rewards. Unlike DPAP, none of these

problems involves any adversary, and there is no risk involved in these tasks.

A closely related problem addressed by [23] is Path Planning Problem involving

known risk. Later [51] extended that problem with a scenario where the risk is fixed but

unknown and needs to be learned. For our problem, the attackers’ selection of routes

changes dynamically, and hence the risks evolve in an adversarial way. Therefore, the

risks need to be approximated by the PAs, using online learning.

4.3 Patrolling Robots as UCB1 Bandits

We consider each PR in DPAP running a multi-armed bandit algorithm and all the

available routes to be its arms. We assume the number of routes is fixed for this problem.

Therefore, selecting a route by a PR is same as choosing an arm to pull from the available

arms in a Multi-Armed Bandit problem. In our context, the gambler is the PR trying to

learn the reward distributions of the routes online with an intention to select the most

promising one which has higher expected utility for its team than the attackers.

The most popular stochastic bandit algorithm, UCB1 [5] has been used for that

purpose where each PR runs a UCB1 bandit instance to select a route i from n available

routes to maximizes the UCB value: xi +
√

2 log(f)
fi

where xi denotes the current average
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reward of the route i and fi denotes the number of times route i has been picked so far in

total t rounds. Here f denotes the total count of all routes selected so far as f = Σt
i=1(fi).

The UCB values corresponding to each route can be normalized to the probability for

that route to be selected by a PR. This probability changes over time according to strategy

selected by the PR and the attackers. selectPRStrategy select a route for a PR by a

bandit out of all available choices. In each round, the best response attack strategy is

chosen by the attacking team to attack routes which are least defended by the PRs. As the

adversarial attackers’ selection of routes changes in a stochastic manner, PR bandits try to

learn the best assignment of routes for the next round by adjusting their probabilities

based on the updated UCB value of the routes (arms of the corresponding bandits).

Reward feedback to the corresponding bandit is received by the update function in the We

extended our graph-based bandit algorithm according to this. Algorithm 9 shows this

extension.

Algorithm 9 Patrolling Algorithm
1: Input: n routes
2: Output: k routes
3: Initialize k PRs with UCB11(n), ...UCB1k(n)
4: for all t ∈ T do
5: St0 ← ∅
6: for all i = 1 to k do
7: selectPRStrategy(UCB1i, N \ Sti−1)
8: end for
9: select the best response attack strategy

10: Match St to the attack vector and receive feedback vector X t

11: Feedback:

12: Fit =

{
1, if X t

i = 1 for any i ∈ St which matches with an attacker’s choice
−1, otherwise.

13: update(UCB1i, Fit)
14: end for
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4.4 Stackelberg Security Game (SSG) for Route Selection

The problem of optimal online assignment for PRs is hard as the corresponding

bandits are required to coordinate their decision-making with the ultimate goal of

achieving maximum team performance [33]. This is aimed at foiling attacks to increase

the reward, which involves frequent visits to every route based on the crime intensity and

frequency. To this extent, this online learning problem requires optimization of team

reward which can be formulated as a Stackelberg Security Game.

For a generic Stackelberg game, there are two players, a leader, and a follower. This

non-cooperative game is originally defined as a duopoly in a homogeneous product

market to between two competitor firms for the decision over the optimal quantity to

produce that product [50]. Leader firm moves first (gets first movers advantage of making

a decision earlier than its competitor) then the follower follows sequentially. Leader must

know the ex-ante (before the event) that the follower observes its action. Also, the leader

has the power of commitment (i.e to move observably first and once the move is made, it

cannot be undone).

However, the players in a Stackelberg game need not represent two individuals. They

could also be two rival teams. Members of each team cooperate within themselves to

execute a joint strategy to undermine the other. For our scenario, these two teams are PRs

and the attackers. According to our definition, we consider the defending team as the

leader in the game who belong to the law enforcement group and running multiple bandit

instances of PR for online learning. We assume attackers are the follower who is the
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members of a terrorist organization responding with its best actions observing the moves

taken by the PRs so far.

In Stackelberg Security Game (SSG) [33], the attacker has a perfect model of how

defender (i.e PR) moves. [12] developed an offline model using Integer Linear

Programming using backward induction where leader considers what the best response of

the follower would be before committing. The leader then picks its move to maximizes its

payoff anticipating the predicted response from the follower. For the online problem, we

consider defending team of PRs to be the leader who is continuously learning whereas

attacking team changes its strategy in an adversarial manner.

In SSG, each player has a set of pure strategies: for our problem the strategy space is

the set of all routes. A mixed strategy of the defender is a probability distribution over

pure strategies and is represented by a probability vector. As mentioned earlier, we

compute the strategy of a PR by normalizing the UCB values of the corresponding routes

for the associated bandit. Therefore, each normalized value indicates the probability of a

route to be selected by that specific PR.

We formalize a zero sum repeated SSG between attacker and defenders similar to [7].

Our SSG model has the following components:

• Time Horizon T: the number of rounds.

• Set S of total n number of routes: S = {S1, S2, S3, ...Sn}

• A set D of k: Defenders (i.e PR): D = {d1, d2, d3, ...dk} where k << n. Each of

them running a UCB bandit to compute its strategy against the attacking team and

selects non identical routes to patrol.
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• A set A of m independent attack strategies: A = {a1, a2, a3, ...am}. Each of these

attack strategies can have multiple attacker posing attacks at the same time to

different routes. In each round, an attack strategy is selected by the attacking team

to pose attacks on the routes that specific attack strategy covers.

• A set of Strategy:

– Attacking team knows the history of deployments of PRs and selects an attack

strategy capable of attacking multiple routes (one by each attacker instance) at

the same time. So each attack strategy is defined by a zero-one vector of n× 1

where an entry with value 1 marks the route an attack strategy will attack.

– Every PR bandit runs a defender bandit d to play a strategy based on the

probability derived from the UCB values. It is an n× 1 probability vector Pd

proportional to the UCB1 values such that with pid ∈ Pd denotes the

probabilities of a route i among n available routes to be selected for patrolling

by the PR d.

• Utilities: Payoff for both the PRs and attackers are defined in the following manner

when an attack is posed:

– For a PR d, let ucd(i) and uc̄d(i) be its payoff when the route i is attacked and

covered and not covered by d respectively. Therefore under the probability pid,

the expected utility of the PR when route i is attacked is given by

Ud(i, p
i
d) = ucd(i)p

i
d + uc̄d(i)(1− pid) (4.1)
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– For an Attacker a, let uca(i) and uc̄a(i) be its payoff by attacking the route i

which is covered and not covered by the a PR respectively. Therefore under

the probability pid, the expected utility of the Attacker when route i is attacked

is given by

Ua(i, p
i
d) = uca(i)p

i
d + uc̄a(i)(1− pid) (4.2)

4.5 Learning from the Best Response Opponent

In Figure 4.2, we show the dynamics of game we defined in figure 4.1. The associated

graph illustrates the optimal choices of the players against each other in this zero-sum

game where bottom right sub figure shows the equilibrium point for a game if PR would

respond back with best strategy instead of using any learning algorithm. As there is 50-50

chances for each player in such a game setting, we want to equip the PRs with bandit

based learning.

The challenge in this game theoretic formulation is to maximize the expected payoff

of the PRs as a team of bandits. As mentioned before, we want to leverage UCB1

algorithm for this purpose where the utility of every arm of each PR is proportional to its

associated UCB value. At time t = 0, k uniform random, non identical routes are chosen

by k PRs by Algorithm 1. If Pd(t) is this probability vector at time t for all the routes by a

PR d, then in pure strategy game, the next PR d′ will ignore the highest UCB valued route

of d to let d select that and adjust its own probability vector Pd′ for the remaining routes.

In this way, the team of k PRs choices of routes are set against the best attack strategy. For

mixed strategy game, we further impose a probability distribution over all the routes
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Fig. 4.2.: Mixed Strategy Equilibrium for single shot Defender-Attacker Zero-sum Game
for one attacker, one defender playing over two routes r1 and r2



74

available to a PR. The vector P (t) is the probability computed from normalizing the UCB

values of all candidate routes to be selected by the group of PRs according to the above

process for a certain round t. Then a single attack strategy a is selected which can attack

the route given all such vectors P ′(t) till the round t. We define a to be the best response

from the attackers as ba(t):

ba(t) = argmaxi∈nUa(i, P
′(t)) (4.3)

Upon receiving the feedback from the choices made by the attackers at round t the PRs

subsequently adjusts their strategies by updating the UCB values as bandits to maximize

their expected payoff as they confront the attackers and gets rewarded according to the

game we defined. We intend to maximize expected payoff of the PR d which is:

E
[

ΣT
t=1Ud(ba(t), P

′(t))
]

(4.4)

The overall payoff of both the teams are measured by summing up their individual utilities

as the members of the corresponding team. When normalized, for a bandit d ∈ D, its

UCB values corresponds to the probability pid ∈ Pd. Without the loss of generality, Pd

preserves the relative ranking of all the routes to be chosen by bandit d. As the team of

PRs play more rounds against different attack strategies, it learns to minimize its regret [7]

and maximize the expected team utility.
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4.6 Balancing Exploration and Exploitation

In the Chapter 2 we mentioned how we used Upper Confidence Bound (UCB) bandit

instance for PR and sketched the centralized patrolling algorithm for PRs based on the

corresponding bandit instances in Algorithm 9. A UCB value can be interpreted as the

upper bound of a confidence interval, therefore, the true average reward of each route i is

below this upper confidence bound with high probability. If a PR have tried a route less

often, the estimated reward is less accurate so the confidence interval is large opposed to a

route which has been routed more.

UCB1 gives a reasonable balance for each PR between exploiting a rewarding route vs

exploring a less patrolled one. Suppose, in case of exploration, for a PR there is only one

route to select from two: i, j and from both of these routes, the PR achieved same average

reward (xi and xj are the same in the calculation of UCB value) after a number of rounds

are played. Now, if a route i has been tried more often than j, then fi > fj with same f as

a numerator. Then
√

2 log(f)
fi

<
√

2 log(f)
fj

. Therefore according to UCB (Upper Confidence

Bound) the confidence bound shrinks for i more than j. Again, this bound grows if the f

gets higher for the exploration.

As for the exploitation, the UCB value is updated with adjustment of average reward

xi for the route i as that route gets selected. Normalized UCB value, which is used as

coverage probability for SSG in our approach reflects this exploitation-exploration

trade-off for a PR bandit. However, as we are using Graph Based UCB1 instances, routes

are represented as nodes. Routes found to be attacked and get defended by PRs at a round

of patrolling are connected with edges according to our graph based approach. However,
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unlike recommendation systems, in SSG game the feedback is coming from opponents

who want to foil the strategy taken by the bandits. Therefore we enhanced our algorithm

to handle the presence of adversary. We relaxed the node-weight sharing mechanism

between neighboring nodes and gave each node equal reward like IBA. This is because we

assume that the attackers observe all the deployments history of defender PR bandits

before selecting an attack strategy. Node-weight imposes essential bias towards some

routes over the others which facilitates the selection of a representative node earlier.

However, in the presence of adversaries, this method suffers from the weakness of

compromising the next defense strategy from the part of the PRs, exposing the most

promising route to be selected next by a PR to a best response opponent. To avoid the

danger of getting the next action from the PR predicted by the opponents, bandits needs to

randomize its strategy and fool the attackers and entice them to attack a seemingly less

defended route to capture them.

4.6.1 Active and Dormant Routes

In Chapter 3, we introduced adaptive annotation of graph bandit nodes as active and

dormant. There we mainly showed how we modify the selection policy for graph based

bandits and reduce the search space by finding active arms faster. In this section, we

discuss how we use it to annotating the routes to be active and dormant and incorporate

new selection policy of graph bandits proposed in Chapter 3 to find the solution to DPAP

which can result in a better coverage under adversarial setting.



77

As described in DPAP, each route is considered as an arm in our bandit algorithm and

hence a node in our graph. On a certain round, a route can be in one of the following two

states:

Definition 8 A route is active for a time step if it is currently selected by our bandit

algorithm. Such an arm as route (node) have most outgoing edges in our graph.

At the beginning, all routes are active because each of them are equally likely to be

selected.

Definition 9 A route is dormant if it is selected by the bandit but found one of k routes

which for which an active route is identified by another bandit at the same time.

These arms are dormant in a sense that they equally qualify to represent a specific attack

pattern.

Routes selected by bandits with no match in the attack pattern receive a reward of 0

but stays active. Because even though those arms clearly indicates its failure to cover that

specific attack at certain iteration, our algorithm does not rule out its potential for covering

potential incoming attacks from the attackers.

4.6.2 Transitions of Routes

Algorithm 6 in Chapter 3 shows a complete Graph Based UCB1 update policy for

bandits with this annotation of Arms. With that arms annotation, we define transition of a

route as arm from one state to the other occurs in the following situations:

• A route gradually becomes dormant from active with its repeated failure to be the

first route to match with the attack pattern
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• A route gradually becomes active from dormant if it frequently matches with the

first route from the incoming attack patterns

Transition of an arm from the dormant state to an active state potentially results in

covering more attack patterns through randomization as dormant arm can become active

with our adaptive selection policy discussed in Chapter 3. The relationship between α and

the counter r is the same as described in Chapter 3. While selecting an arm for each

iteration, every bandit needs to update the value of r. If an arm is found to be in dormant

state, UCB value for that arm is smoothed by the parameter θ in following manner:

θ = 1 + log(1 + rn) (4.5)

Therefore, UCB value for every dormant arm i for a bandit is:

xi + (1− exp−1/θ)

√
2 log(f)

fi
(4.6)

This gives our algorithm enough opportunity to balance between exploration and

exploitation in a adaptive manner instead of using a parameter set to a fixed value to scale

it. Instead of trying with different parameters, by increasing the value of r for a previously

active arm which transformed as dormant in current iteration, we scale down the UCB

value of the arms selected by the subsequent bandits by (1− exp−1/θ). So that for such a

route, less exploration will take place and it gets biased towards exploring that route to

give it a fair chance of getting selected without being exposed to the attacker. This gives

an implicit preference of a defender to certain routes to withstand attackers but with the
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action history of that corresponding bandit, it is hard for the attacker to follow this

inherent preference as this arm can get reset to active in an adaptive manner in case it was

not found in certain incoming attack pattern.

4.6.3 Randomized Algorithm

The randomized algorithm we propose as a solution to DPAP is based on the updated

selection policy we presented in the previous section on graph nodes. As we reconsider

the environment with SSG unlike our solution for the recommendation system, each node

has its independent reward for each episode without sharing with the correlated arms and

average reward is adjusted accordingly keeping the edge relationship among them

consistent along with the state annotation. And according to our proposed adaptive

simulated annealing policy, for node selection, our graph based algorithm controls the

transition of the arms’ states and helps PRs select the ones which are active and

rewarding. This internally helps the PR bandits to keep track of the rewarding routes

while making the selection apparently randomized to the attackers.

We compare this mechanism with several other randomized bandit approaches;

namely, uniform-random, ε-greedy and α-exploitation.

• With uniform random approach, we select a random route for a PR to patrol

• In ε-greedy approach, with a very small fixed epsilon probability our algorithm

assigns a random route to a PR, otherwise it selects the best UCB valued route
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• According to α-exploitation method, weight the average reward of a route with a

small fixed value of α for exploitation; whereas, the exploration is adjusted against

this correction with a scaling factor of (1− α)

4.6.4 Simulation Results

In this section, we simulate the algorithm we proposed in Algorithm 9. We conducted

several sets of experiments on the synthetic data to show the result of the game we defined.

In all our experiments, we considered certain amount of overlap between the strategies of

different attackers so that the problem is suitable to model using graph. In reality, most

attackers attacking different routes may show this partial overlap in their strategies.

We allowed a 25% overlap between different attack-strategies. Our generated dataset

has 7 different attack strategies, each consisting of 25 different attack routes targeted

simultaneously by attackers on total 100 routes. A successful attack or defense gives a

unit reward according to the game matrix shown in the figure ?? and negative reward

otherwise. To view it as a zero sum game we keep 25 defenders playing as a bandits

against the attackers.

It is observed that average reward of defenders outperforms that of the attackers over

the rounds. After 1000 rounds almost all 25 defenders sent out to defend 25 routes could

patrol 25 best response routes selected by the attackers from 7 different overlapping

strategies. The average reward of the players are plotted in a graph shown in figure 4.1

which shows the increasing trend in the accumulated reward of defenders beating the

attackers.
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Fig. 4.3.: Comparison of different learning method of 25 defenders for 100 routes against
25 attackers

Fig. 4.4.: Reward statistics of 25 defenders is shown against best response attackers
attacking 25 routes at the same time
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Fig. 4.5.: Total reward of 25 defenders is shown against best response attackers attacking
25 routes at the same time

In the later experiment, figure 4.3 shows the normalized reward each PR is getting

being a member of the defending team. The histogram plotted that value for averaged over

every 1000 iteration up to 5000 rounds. We show how different strategy taken by the

defending team changes the reward dynamics. We run our experiment with IBA based

SSG, Reward Bias based SSG, Node weight based graph bandits with and without state

transition. We observed that Graph based PR bandit instances playing SSG as a defender

with state transition against attackers are receiving the highest amount of reward. Graph

with no state transition is worst performing one as it exposes the rewarding pattern to the

attackers through node weight adjustment. This gives ample scope to the best response

attackers to change their attack-strategy successfully against the defenders.
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Fig. 4.6.: Total number of successful attacks by 25 attackers over 100 routes against 25
defenders
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In figure 4.6, we visualize the point of view of the best response attackers for the same

experiment setting. Total reward earned from 25 routes attacked in each episode of SSG

game has been plotted up to 1000 episodes where they are playing against the same 4

types of defenders’ strategies mentioned in the previous experiment. As it can be observed

from this figure that playing against the graph based bandits which has state transition

over rewarding routes is hardest to succeed against from the part of the attacking team. It

is found that after 100 episodes the team reward of attackers falls sharply down and stays

almost zero till our simulation ended till 1000 rounds. Here team reward of attackers can

range from 25 to 0; as there are 25 attacking routes in a round and each attacker can

contribute a unit reward to the team with a successful attack.

We further compare the performance of our state transition based graph bandit as the

members of the defending team against other randomized strategies. Figure 4.7 shows the

outcome of the game played under same enviroment using bandits who randomize their

decision of selecting routes using graph based bandits but used uniform-random, ε-greedy

and α-exploitation instead of our proposed state transition mechanism.

In the subsequent experiments shown in 4.8, the number of defending bandits are

increased and reduced to double and half respectively to observe its impact on team

rewards obtained by the attackers keeping the number of routes to be defended same.

When only 12 defender PRs are deployed to protect 25 routes to be attacked over 100

routes, the best defenders could do by using our approach is to protect 12 routes assigned

to them and hence reduce the total team reward of the attackers from 25 to 13 (saving 12

units by capturing attackers on these 12 routes). When the defenders are more than the
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Fig. 4.7.: Total number of successful attacks by 25 attackers compared under different
randomized defender deployment scenario
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Fig. 4.8.: Total number of successful attacks by 25 attackers when various number of
transitional defenders are deployed against them
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Fig. 4.9.: Total number of successful attacks by 25 attackers when various number of
routes are considered
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attack instances, it is obvious that attackers team reward diminishes very fast and

converges to zero as seen in this figure.

we also change the configuration of the problem environment, where the parameter for

the number of routes is changed to 200 from 100 and attack instances and PR bandits as

defenders are doubled as well. It is found that the problem gets harder even with scaling

up all the parameters with same ratio as we can see in figure 4.9 that convergence took

almost 2000 rounds of play instead of 1000.

In this chapter we introduced an online learning algorithm for patrolling robots against

adversarial attackers. Our centralized algorithm schedules the route to patrol for each

robot in every round by treating the PRs as graph based UCB1 bandits with state

transition. We show the effectiveness of our Graph based state transition oriented

algorithm to deal with different types of attackers attacking several routes at the same

round.
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5. SUMMARY AND FUTURE DIRECTIONS

Online Learning problem has also been studied as a Multi-Armed Bandit (MAB) Problem

in [47] as Restless Bandit, which is also based on Markov chain like RBA. Mortal Bandit

problem [15] is a close variant of MAB where each arm is assigned a lifetime, the

expiration of it calls in for a new arm to take over. Thus the total number of arms stays the

same all the time. However, the solution is based on some predefined parameters, which

need to be set by empirical evaluation. Volatile bandit [11] extends the mortal bandit with

an update to exploration and exploitation trade-off. In this Chapter, we summarize our

contribution to coverage problem and discuss possible extensions to our work based on

some of the above-mentioned works.

In the following sections, we discuss some of our contributions in this dissertation:

5.1 Capturing Diversity in Online Learning

We study a recommendation system problem, in which the system must be able to

cover as many users’ preferences as possible while these preferences change over time.

This problem can be formulated as a variation of the maximum coverage problem,

specifically, we defined a novel problem of Online k-Hitting Set, where the number of sets

and elements within the sets can change dynamically. When the number of distinctive

elements is large, an exhaustive search for even a fixed number of elements is known to be
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computationally expensive. The problem is known to be NP-hard, and many known

algorithms tend to have exponential growth in complexity.

5.1.1 Introducing Graph Based Bandits

Unlike personalized recommendation systems [45] which often use collaborative

filtering [18, 19], content-based filtering [37] or a hybrid of these two [13], we develop a

recommendation system that satisfies a diverse number of user types. Some existing

works argued that dependency among items can be ruled out by ignoring the correlation

gap [4, 28] . However, we show that the correlation between items is an important

criterion to identify diversity regarding user types. We proposed an effective graph based

bandit rewarding mechanism, which aimed to incorporate this diversity and our empirical

evaluation show that it outperformed existing techniques for real data sets regarding

covering a large number of user types introducing no additional complexity.

Our novel graph-based UCB1 algorithm can effectively minimize the number of

elements to consider, thereby reducing the search space greatly. The algorithm utilizes a

new rewarding scheme to choose items that satisfy more users by balancing coverage and

diversity as it constructs a relational graph between items to choose. Experiments show

that the new algorithm performs better than existing techniques such as Ranked

Bandit[40] and Independent Bandits [28] regarding satisfying diverse types of users while

minimizing computational complexity.

The contributions of this work minimizing the user abandonment and maximizing the

coverage of diversity are following:
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• formally defining the novel problem of Online k-Hitting Set and give an anytime

approximation algorithm for solving it for the application of recommendation

system.

• developing a graph based “update policy” and “selection policy” for UCB1 bandits

for recommendation systems where the system learns the dependency structure

among items though a novel rewarding scheme and select the most promising items.

• verifying the efficacy of our method for recommending a small number of items

from real data sets where there are hundreds of users, each having thousands of

choices to pick from.

5.1.2 Parallel and Synchronized Execution of Bandits

We adopted and modified UCB2 [5], a bandit algorithm which shows the same set of

recommendation to different users for a certain amount of iterations before it takes

account of the users’ feedbacks. Even though UCB2 is computationally expensive for

online learning, but we applied multiple parallel instances of it and gained competitive

result compared to IBA and RBA. However, it is difficult to apply multiple instances of

UCB2 for a practical purpose like constructing an online recommending a set of items, as

each UCB2 instance assigned to select an item for the recommendation set has its local

parameters, and there is no existing coordinating method to adjust them effectively across

different bandit instances for parallel execution.

Although UCB2 is theoretically proved to have a better regret bound than UCB1,

unlike UCB1, for the reasons mentioned above, it has not been used for parallel execution.
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We designed an efficient algorithm which runs multiple instances of UCB2 in parallel.

Our algorithm suitably handles parameter synchronization, reward update and exploration

decisions across multiple instances of UCB2 and ensures that they are capable of covering

different types of users. In our work [41] we introduce the synchronization technique for

epoch for arms selected by multiple instances of UCB2, so that parallel execution of

UCB2 bandits is possible. We also update the synchronization parameter as a function of

time to handle real datasets.

We present an effective method to use the multi-armed bandit algorithm UCB2 as an

online approximation learning algorithm for recommendation systems. The work of

online content optimization found in [2] and decision on exploration and exploitation

trade-off [3] are some other different approaches suggested in the work of others.

However, both these approaches are somewhat dependent on associated offline models.

As our target to cover a variety of users with our recommendation set rather than

developing a personalized recommendation system, our problem is similar to maximum

coverage problem as mentioned in [42]. [30] also proposed an epoch-greedy algorithm

using contextual bandits based on sound theoretical guarantee but that requires observable

side information. The main contribution of our work is manipulating the parameters of

UCB2 and allow it for parallel and synchronized execution to build an online

recommendation system. Our findings show tuning this parameters has a critical role in

determining the nature of recommendation to users as the search gets directed by the users

relevance feedback over time. The proposed mechanism has been tested on some real

datasets, and we believe that the results are promising enough to extend this work to
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capture more dynamics of user preferences. Our contribution in leveraging UCB2 with in

this regard is following:

• We systematically dissect UCB2 algorithm and study its parameters to understand

their impacts. As α (fixed external parameter in UCB2) is responsible for the

trade-off between exploration and exploitation in UCB2, we applied scheduling

mechanism similar to simulated annealing [34] to update α. We experimented

different datasets with some scheduling functions to show the impact of

perturbation of α is on the performance of our method.

• We devised a technique to set a suitable length of the observation period (termed as

“epoch”) before updating the UCB2 bandits and update this epoch synchronously

across all bandits. It is crucial for the parallel execution of UCB2 as for any learning

algorithm, this “exploitation period” has to be updated according to the learning rate

(i.e., α for UCB2).

• We developed a coordination algorithm with a novel rewarding scheme which

facilitates user coverage by prioritizing one bandit over the others and force them to

avoid selecting the same element more than once for a single recommendation set to

ensure more coverage of users.

5.2 Online Learning with Adversarial Game

With an aim to facilitate our proposed mechanism to be used to solve a critical

decision-making problem online, we further study route assignment to patrolling robots

for crime-prone areas of a neighborhood where we can only deploy a fixed number of



94

autonomous robots; with this resource constraint, it is necessary to maximize the impact

of their routing assignments. We develop an online model to approximate the optimal

solution under some attack probability distributions. Our algorithm can direct a small

number of patrolling robots to a few routes out of many available routes at a certain time

under a given adversarial environment. Our simulation results show that using UCB1

bandits to determine the strategy for these Patrolling Robots (PR), we can achieve

considerable coverage of routes by playing Stackelberg Game against different types of

attacks. In this area our contributions are following:

• we formulate a zero-sum repeated Stackelberg Security Game between PRs and the

attacking team with a utility function that facilitates the online learning of PRs from

the attack dynamics

• we develop a centralized algorithm to compute the online route selection strategy

for PRs based on Multi-Armed Bandit algorithm where exploration and exploitation

are balanced

• we simulate the performance of our algorithm under different synthetic attack

environments to show its efficacy

On average, our proposed mechanism outperforms existing recommendation techniques

regarding covering sensitive routes while keeping the computational complexity low.

5.3 Future Directions

In the following sections, we discuss some potential extensions of our work.
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5.3.1 Distributed Graph Bandits

With a large number of arms, any bandit algorithm would take a long time to find the

best arm to play. This is also true for our graph-based bandits where the UCB1 value

needs to be computed for every node in the graph to select the best rewarding ones.

Moreover, higher the number of arms, longer it takes to update this value for every arm for

the next round. Therefore we want to distribute the arms across bandits so that each bandit

needs to compute the UCB1 values for a nonoverlapping subset of arms specifically

assigned to it. With k graph based bandit to select k unique nodes from a total of N nodes,

we create k graphs where each bandit operates on a graph of N/k nodes. These k graph

are mutually disconnected, and each bandit operates on a specific graph. In future, we

want to extend this solution to a distributed recommendation system to facilitate a scalable

and decentralized decision making for Big Data.

5.3.2 Dynamic Addition of Arms

Another issue of bandit algorithms is that the number of arms is fixed for a bandit.

However, in the real-world problem such as building a diverse recommendation set from

user data, more items can be added to the existing set of items as new users can stream in

with preference to new items (i.e., newly released movie). This requires a dynamic

addition of nodes to the graphs for our bandits. As each bandit node represents an item,

newly appeared nodes need to be assigned to new bandit nodes. This assignment should

be done in such a way that these new nodes get a fair amount of exploration-exploitation

trade off on their bootstrap.
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5.3.3 Learning against Complex Heterogeneous Attacks

Currently, our algorithm only handles one strategy of attack as the best response at

each round, but in most practical situations, different types of attack strategies can be

mixed, and attackers can attack a variety of routes to incur damages according to their

capacities. In such cases, a route can face damages posed by the varying intensity of the

attackers. Therefore, the team of PRs needs to learn the complex nature of heterogeneous

attacks within each round of play.

5.3.4 Attackers Learning against Defenders

An attacker can only maximize its utility by performing a successful attack (avoiding a

PR). We are interested to see how the learning mechanism of bandits gets affected by the

attacking team if attackers also employ learning against the PRs. For future work, we

intend to extend the SSG using MAB settings for both the teams where each of them can

select its routes by online implicit opponent modeling. [8].
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