4,080 research outputs found

    Imaging Gold Nanoparticles in Living Cells Environments using Heterodyne Digital Holographic Microscopy

    Full text link
    This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environment. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample's scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cells environments

    Multicolour correlative imaging using phosphor probes

    Get PDF
    Correlative light and electron microscopy exploits the advantages of optical methods, such as multicolour probes and their use in hydrated live biological samples, to locate functional units, which are then correlated with structural details that can be revealed by the superior resolution of electron microscopes. One difficulty is locating the area imaged by the electron beam in the much larger optical field of view. Multifunctional probes that can be imaged in both modalities and thus register the two images are required. Phosphor materials give cathodoluminescence (CL) optical emissions under electron excitation. Lanthanum phosphate containing thulium or terbium or europium emits narrow bands in the blue, green and red regions of the CL spectrum; they may be synthesised with very uniform-sized crystals in the 10- to 50-nm range. Such crystals can be imaged by CL in the electron microscope, at resolutions limited by the particle size, and with colour discrimination to identify different probes. These materials also give emissions in the optical microscope, by multiphoton excitation. They have been deposited on the surface of glioblastoma cells and imaged by CL. Gadolinium oxysulphide doped with terbium emits green photons by either ultraviolet or electron excitation. Sixty-nanometre crystals of this phosphor have been imaged in the atmospheric scanning electron microscope (JEOL ClairScope). This probe and microscope combination allow correlative imaging in hydrated samples. Phosphor probes should prove to be very useful in correlative light and electron microscopy, as fiducial markers to assist in image registration, and in high/super resolution imaging studies

    Two-Dimensional Flow Nanometry of Biological Nanoparticles for Accurate Determination of Their Size and Emission Intensity

    Get PDF
    Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and molecular composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging, which is a severe limitation. Surface-sensitive microscopy allows one to precisely determine fluorescence or scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. We here show that attaching BNPs (specifically, vesicles and functionalized gold NPs) to a supported lipid bilayer, subjecting them to a hydrodynamic flow, and tracking their motion via surface-sensitive imaging enable to determine their diffusion coefficients and flow-induced drift velocities and to accurately quantify both BNP size and emission intensity. For vesicles, the high accuracy is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity.Comment: 28 pages, 5 figure

    Studies of Single-Molecule Dynamics in Microorganisms

    Get PDF
    Fluorescence microscopy is one of the most extensively used techniques in the life sciences. Considering the non-invasive sample preparation, enabling live-cell compliant imaging, and the specific fluorescence labeling, allowing for a specific visualization of virtually any cellular compound, it is possible to localize even a single molecule in living cells. This makes modern fluorescence microscopy a powerful toolbox. In the recent decades, the development of new, "super-resolution" fluorescence microscopy techniques, which surpass the diffraction limit, revolutionized the field. Single-Molecule Localization Microscopy (SMLM) is a class of super-resolution microscopy methods and it enables resolution of down to tens of nanometers. SMLM methods like Photoactivated Localization Microscopy (PALM), (direct) Stochastic Optical Reconstruction Microscopy ((d)STORM), Ground-State Depletion followed by Individual Molecule Return (GSDIM) and Point Accumulation for Imaging in Nanoscale Topography (PAINT) have allowed to investigate both, the intracellular spatial organization of proteins and to observe their real-time dynamics at the single-molecule level in live cells. The focus of this thesis was the development of novel tools and strategies for live-cell SingleParticle Tracking PALM (sptPALM) imaging and implementing them for biological research. In the first part of this thesis, I describe the development of new Photoconvertible Fluorescent Proteins (pcFPs) which are optimized for sptPALM lowering the phototoxic damage caused by the imaging procedure. Furthermore, we show that we can utilize them together with Photoactivatable Fluorescent Proteins (paFPs) to enable multi-target labeling and read-out in a single color channel, which significantly simplifies the sample preparation and imaging routines as well as data analysis of multi-color PALM imaging of live cells. In parallel to developing new fluorescent proteins, I developed a high throughput data analysis pipeline. I have implemented this pipeline in my second project, described in the second part of this thesis, where I have investigated the protein organization and dynamics of the CRISPR-Cas antiviral defense mechanism of bacteria in vivo at a high spatiotemporal level with the sptPALM approach. I was successful to show the differences in the target search dynamics of the CRISPR effector complexes as well as of single Cas proteins for different target complementarities. I have also first data describing longer-lasting bound-times between effector complex and their potential targets in vivo, for which only in vitro data has been available till today. In summary, this thesis is a significant contribution for both, the advances of current sptPALM imaging methods, as well as for the understanding of the native behavior of CRISPR-Cas systems in vivo

    Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron

    Get PDF
    Abstract: Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO) ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS) results in rapid high uptake of SPIO nanoparticles (SPIONs) by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM) following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction

    Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers

    Get PDF
    The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non-invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi-illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7 observed from days 0 to 6 of a 12-day culture noted, prior to the onset of aggregation. The developed image acquisition system and post-processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;9999: 1–11. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc
    corecore