170 research outputs found

    To freeze or not to: Quantum correlations under local decoherence

    Full text link
    We provide necessary and sufficient conditions for freezing of quantum correlations as measured by quantum discord and quantum work deficit in the case of bipartite as well as multipartite states subjected to local noisy channels. We recognize that inhomogeneity of the magnetizations of the shared quantum states plays an important role in the freezing phenomena. We show that the frozen value of the quantum correlation and the time interval for freezing follow a complementarity relation. For states which do not exhibit "exact" freezing, but can be frozen "effectively", by having a very slow decay rate with suitable tuning of the state parameters, we introduce an index -- the freezing index -- to quantify the goodness of freezing. We find that the freezing index can be used to detect quantum phase transitions and discuss the corresponding scaling behavior.Comment: 14 pages, 9 figures, close to published version, title changed by Phys. Rev. A. to 'Freezing of quantum correlations under local decoherence

    Mutual Composite Fermion and composite Boson approaches to balanced and imbalanced bilayer quantum Hall system: an electronic analogy of the Helium 4 system

    Full text link
    We use both Mutual Composite Fermion (MCF) and Composite Boson (CB) approach to study balanced and im-balanced Bi-Layer Quantum Hall systems (BLQH) and make critical comparisons between the two approaches. We find the CB approach is superior to the MCF approach in studying ground states with different kinds of broken symmetries. In the phase representation of the CB theory, we first study the Excitonic superfluid state (ESF). The theory puts spin and charge degree freedoms in the same footing, explicitly bring out the spin-charge connection and classify all the possible excitations in a systematic way. Then in the dual density representation of the CB theory, we study possible intermediate phases as the distance increases. We propose there are two critical distances dc1<dc2 d_{c1} < d_{c2} and three phases as the distance increases. When 0<d<dc1 0 < d < d_{c1} , the system is in the ESF state which breaks the internal U(1) U(1) symmetry, when dc1<d<dc2 d_{c1} < d < d_{c2} , the system is in an Pseudo-spin density wave (PSDW) state which breaks the translational symmetry, there is a first order transition at dc1 d_{c1} driven by the collapsing of magneto-roton minimum at a finite wavevector in the pseudo-spin channel. When dc2<d< d_{c2} < d < \infty , the system becomes two weakly coupled ν=1/2 \nu =1/2 Composite Fermion Fermi Liquid (FL) state. There is also a first order transition at d=dc2 d= d_{c2} . We construct a quantum Ginzburg Landau action to describe the transition from ESF to PSDW which break the two completely different symmetries. By using the QGL action, we explicitly show that the PSDW takes a square lattice and analyze in detail the properties of the PSDW at zero and finite temperature.Comment: 29 PRB pages, 18 figures, 2 tables, REVTEX

    Nonperturbative Quantum Gravity

    Get PDF
    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. "Causal Dynamical Triangulations" (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the "quantum geometries" which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Ho\v{r}ava-Lifshitz gravitational models.Comment: Review, 146 pages, many figure

    The classical-quantum boundary for correlations: discord and related measures

    Full text link
    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are amongst the more actively-studied topics of quantum information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here we review different notions of classical and quantum correlations quantified by quantum discord and other related measures. In the first half, we review the mathematical properties of the measures of quantum correlations, relate them to each other, and discuss the classical-quantum division that is common among them. In the second half, we show that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. We show that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.Comment: Close to the published versio
    corecore