104 research outputs found

    Building Blocks of Physical States in a Non-Critical 3-Brane on R*S^3

    Full text link
    The physical states in a world-volume model of a non-critical 3-brane are systematically constructed using techniques of four-dimensional conformal field theories on R*S^3 developed recently. Invariant combinations of creation modes under a special conformal transformation provide building blocks of physical states. Any state can be created by acting with such building blocks on a conformally invariant vacuum in an invariant way under the other conformal charges: the Hamiltonian and rotation generators on S^3. We explicitly construct building blocks for scalar, vector and gravitational fields, and classify them as finite types.Comment: 56 page

    Phase Structure of Four-dimensional Simplicial Quantum Gravity with a U(1) Gauge Field

    Get PDF
    The phase structure of four-dimensional simplicial quantum gravity coupled to U(1) gauge fields has been studied using Monte-Carlo simulations. The smooth phase is found in the intermediate region between the crumpled phase and the branched polymer phase. This new phase has a negative string susceptibility exponent, even if the number of vector fields (Nv) is 1. The phase transition between the crumpled phase and the smooth phase has been studied by a finite size scaling method. From the numerical results, we expect that this model (coupled to one gauge field) has a higher order phase transition than first order, which means the possibility to take the continuum limit at the critical point. Furthermore, we consider a modification of the balls-in-boxes model for a clear understanding of the relation between the numerical results and the analytical one.Comment: 18 pages, latex, 6 figures, uses psfig.st

    Geometry of 4d Simplicial Quantum Gravity with a U(1) Gauge Field

    Full text link
    The geometry of 4D simplicial quantum gravity with a U(1) gauge field is studied numerically. The phase diagram shows a continuous transition when gravity is coupled with a U(1) gauge field. At the critical point measurements of the curvature distribution of S^4 space shows an inflated geometry with homogeneous and symmetric nature. Also, by choosing a 4-simplex and fixing the scalar curvature geometry of the space is measured.Comment: 3 pages, 2 eps figure. Talked at Lattice 2000 (Gravity

    Analyzing WMAP Observation by Quantum Gravity

    Full text link
    The angular power spectra of cosmic microwave background are analyzed under the light of the evolutional scenario of the universe based on the renormalizable quantum theory of gravity in four dimensions. The equation of evolution is solved numerically fixing the power law spectrum predicted by the conformal gravity for the initial condition. The equation requires to introduce a dynamical energy scale about 10^{17}GeV, where the inflationary space-time evolution makes a transition to the big-bang of the conventional Friedmann universe. The quality of fit to the three-year data of WMAP implies the possibility to understand the observation by quantum gravity.Comment: 12 pages, 7 figure

    Grand-Canonical simulation of 4D simplicial quantum gravity

    Get PDF
    A thorough numerical examination for the field theory of 4D quantum gravity (QG) with a special emphasis on the conformal mode dependence has been studied. More clearly than before, we obtain the string susceptibility exponent of the partition function by using the Grand-Canonical Monte-Carlo method. Taking thorough care of the update method, the simulation is made for 4D Euclidean simplicial manifold coupled to NXN_X scalar fields and NAN_A U(1) gauge fields. The numerical results suggest that 4D simplicial quantum gravity (SQG) can be reached to the continuum theory of 4D QG. We discuss the significant property of 4D SQG.Comment: 3 pages, 2 figures, LaTeX, Lattice2002(Gravity

    Phase Transition of 4D Simplicial Quantum Gravity with U(1) Gauge Field

    Get PDF
    The phase transition of 4D simplicial quantum gravity coupled to U(1) gauge fields is studied using Monte-Carlo simulations. The phase transition of the dynamical triangulation model with vector field (NV=1N_{V}=1) is smooth as compared with the pure gravity(NV=0N_{V}=0). The node susceptibility (χ\chi) is studied in the finite size scaling method. At the critical point, the node distribution has a sharp peak in contrast to the double peak in the pure gravity. From the numerical results, we expect that 4D simplicial quantum gravity with U(1) vector fields has higher order phase transition than 1st order, which means the possibility to take the continuum limit at the critical point.Comment: 3 pages, latex, 3 eps figures, uses espcrc2.sty. Talk presented at LATTICE99(gravity
    corecore