10 research outputs found

    A general lower bound for collaborative tree exploration

    Full text link
    We consider collaborative graph exploration with a set of kk agents. All agents start at a common vertex of an initially unknown graph and need to collectively visit all other vertices. We assume agents are deterministic, vertices are distinguishable, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (k≀nk \leq \sqrt n) and large (kβ‰₯nk \geq n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ξ©(log⁑k/log⁑log⁑k)\Omega(\log k / \log\log k) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range k≀nlog⁑cnk \leq n \log^c n for any c∈Nc \in \mathbb{N}. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1)k = Dn^{1+o(1)} agents has a competitive ratio of Ο‰(1)\omega(1), while Dereniowski et al. gave an algorithm with k=Dn1+Ξ΅k = Dn^{1+\varepsilon} agents and competitive ratio O(1)O(1), for any Ξ΅>0\varepsilon > 0 and with DD denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=nk = n agents, there exist trees of arbitrarily large height DD that require Ξ©(D2)\Omega(D^2) rounds, and we provide a simple algorithm that matches this bound for all trees

    Building a Nest by an Automaton

    Get PDF
    A robot modeled as a deterministic finite automaton has to build a structure from material available to it. The robot navigates in the infinite oriented grid Z x Z. Some cells of the grid are full (contain a brick) and others are empty. The subgraph of the grid induced by full cells, called the field, is initially connected. The (Manhattan) distance between the farthest cells of the field is called its span. The robot starts at a full cell. It can carry at most one brick at a time. At each step it can pick a brick from a full cell, move to an adjacent cell and drop a brick at an empty cell. The aim of the robot is to construct the most compact possible structure composed of all bricks, i.e., a nest. That is, the robot has to move all bricks in such a way that the span of the resulting field be the smallest. Our main result is the design of a deterministic finite automaton that accomplishes this task and subsequently stops, for every initially connected field, in time O(sz), where s is the span of the initial field and z is the number of bricks. We show that this complexity is optimal

    Shape Recognition by a Finite Automaton Robot

    Get PDF
    Motivated by the problem of shape recognition by nanoscale computing agents, we investigate the problem of detecting the geometric shape of a structure composed of hexagonal tiles by a finite-state automaton robot. In particular, in this paper we consider the question of recognizing whether the tiles are assembled into a parallelogram whose longer side has length l = f(h), for a given function f(*), where h is the length of the shorter side. To determine the computational power of the finite-state automaton robot, we identify functions that can or cannot be decided when the robot is given a certain number of pebbles. We show that the robot can decide whether l = ah+b for constant integers a and b without any pebbles, but cannot detect whether l = f(h) for any function f(x) = omega(x). For a robot with a single pebble, we present an algorithm to decide whether l = p(h) for a given polynomial p(*) of constant degree. We contrast this result by showing that, for any constant k, any function f(x) = omega(x^(6k + 2)) cannot be decided by a robot with k states and a single pebble. We further present exponential functions that can be decided using two pebbles. Finally, we present a family of functions f_n(*) such that the robot needs more than n pebbles to decide whether l = f_n(h)

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    ПовСдСниС ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² Π² Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Π°Ρ…

    Get PDF
    The paper is devoted to the study of problems on the behavior of finite automata in mazes. For any n, a maze is constructed that can be bypassed with 2n stones but you can’t get around with n stones. The range of tasks is extensive and touches upon key aspects of theoretical Computer Science. Of course, the solution of such problems does not mean the automatic solution of complex problems of complexity theory, however, the consideration of these issues can have a positive impact on the understanding of the essence of theoretical Computer Science. It is hoped that the behavior of automata in mazes is a good model for non-trivial information theoretic problems, and the development of methods and approaches to the study of robot behavior will give more serious results in the future. Problems related to automaton analysis of geometric media have a rather rich history of study. The first work that gave rise to this kind of problems, it is necessary to recognize the work of Shannon [24]. It deals with a model of a mouse in the form of an automaton, which must find a specific target in the maze. Another early work, one way or another affecting our problems, is the work of Fisher [9] on computing systems with external memory in the form of a discrete plane. A serious impetus to the study of the behavior of automata in mazes was the work of Depp [7, 8], in which the following model is proposed: there is a certain configuration of cells from mathbbZ^2 (chess maze), in which finite automata, surveying some neighborhood of the cell in which they are, can move to an adjacent cell in one of four directions. The main question posed in such a model is whether there is an automaton that bypasses all such mazes. In [20], Muller constructed a flat trap for a given automaton (a maze that does not completely bypass) in the form of a 3-graph. Budach [5] constructed a chess trap for any given finite automaton. Note that Budach’s solution was quite complex (the first versions contained 175 pages). More visual solutions to this question are presented here [29, 31, 33, 34]. Antelman [2] estimated the complexity of such a trap by the number of cells, and in [1] Antelman, Budach, and Rollick made a finite trap for any finite automaton system. In the formulation with a chess maze and one automaton, there are a number of results related to the problems of traversability of labyrinths with different numbers of holes, with bundles of labyrinths by the number of States of the automaton, and other issues. An overview of such problems can be found for example here [35]. The impossibility of traversing all flat chess labyrinths with one automaton raised the question of studying the possible amplifications of the automaton model, which will solve the problem of traversal. The main way of strengthening can be the consideration of a collective of automata, instead of one automaton, interacting with each other. A special and widely used case is the consideration of a system of one full-fledged automaton and a certain number of automata of stones, which have no internal state and can move only together with the main automaton. Interaction between machines is a key feature of this gain, it is allowed to have a collective (or one machine with stones) external memory, thereby significantly diversifies its behavior. If you get rid of the interaction of automata, the resultingΒ  independent system will be little better than a single machine. Next, we discuss the known results associated with the collective automata.Π Π°Π±ΠΎΡ‚Π° посвящСна исслСдованию Π·Π°Π΄Π°Ρ‡ ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² Π² Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Π°Ρ…. Для любого n строится Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠΉΡ‚ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ 2n ΠΊΠ°ΠΌΠ½Π΅ΠΉ Π½ΠΎ нСльзя ΠΎΠ±ΠΎΠΉΡ‚ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ n ΠΊΠ°ΠΌΠ½Π΅ΠΉ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ Π·Π°Π΄Π°Ρ‡ ΠΎΠ±Ρ…ΠΎΠ΄Π° ΠΎΠ±ΡˆΠΈΡ€Π΅Π½ ΠΈ Π·Π°Ρ‚Ρ€Π°Π³ΠΈΠ²Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ аспСкты тСорСтичСской Computer Science. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ автоматичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ слоТных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ слоТности, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ рассмотрСниС Π΄Π°Π½Π½Ρ‹Ρ… вопросов ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ Π½Π° ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ сути тСорСтичСской Computer Science. Π•ΡΡ‚ΡŒ Π½Π°Π΄Π΅ΠΆΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² Π² Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Π°Ρ… являСтся Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ модСлью для Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΠΊΠΎ-ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, ΠΈ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ исслСдованию повСдСния Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ² даст Π±ΠΎΠ»Π΅Π΅ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ с Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ. Π—Π°Π΄Π°Ρ‡ΠΈ связанныС c Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π½Ρ‹ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ гСомСтричСских срСд ΠΈΠΌΠ΅ΡŽΡ‚ довольно Π±ΠΎΠ³Π°Ρ‚ΡƒΡŽ ΠΈΡΡ‚ΠΎΡ€ΠΈΡŽ изучСния. ΠŸΠ΅Ρ€Π²ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ, давшСй Π½Π°Ρ‡Π°Π»ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Π·Π°Π΄Π°Ρ‡Π°ΠΌ, стоит ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρƒ Π¨Π΅Π½Π½ΠΎΠ½Π° [24]. Π’ Π½Π΅ΠΉ рассматриваСтся модСль ΠΌΡ‹ΡˆΠΈ Π² Π²ΠΈΠ΄Π΅ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°, которая Π΄ΠΎΠ»ΠΆΠ½Π° Π½Π°ΠΉΡ‚ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Ρ†Π΅Π»ΡŒ Π² Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Π΅. Другая ранняя Ρ€Π°Π±ΠΎΡ‚Π°, Ρ‚Π°ΠΊ ΠΈΠ»ΠΈ ΠΈΠ½Π°Ρ‡Π΅ Π·Π°Ρ‚Ρ€Π°Π³ΠΈΠ²Π°ΡŽΡ‰Π°Ρ Π½Π°ΡˆΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ, это Ρ€Π°Π±ΠΎΡ‚Π° Π€ΠΈΡˆΠ΅Ρ€Π° [9] ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах с внСшнСй ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ Π² Π²ΠΈΠ΄Π΅ дискрСтной плоскости. Π‘Π΅Ρ€ΡŒΡ‘Π·Π½Ρ‹ΠΌ Ρ‚ΠΎΠ»Ρ‡ΠΊΠΎΠΌ ΠΊ исслСдованиС повСдСния Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² Π² Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Π°Ρ… послуТила Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π”Π΅ΠΏΠΏΠ° [7, 8], Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ модСль: имССтся нСкоторая конфигурация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· Z^2 (ΡˆΠ°Ρ…ΠΌΠ°Ρ‚Π½Ρ‹ΠΉ Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ‹, обозрСвая Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠΊΡ€Π΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΈ находятся, ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ Π² сосСднюю ΠΊΠ»Π΅Ρ‚ΠΊΡƒ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ. Основной вопрос, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ставится Π² ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, сущСствуСт Π»ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ обходящий всС ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚Ρ‹. Π’ [20] ΠœΡŽΠ»Π»Π΅Ρ€ построил для Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π° ΠΏΠ»ΠΎΡΠΊΡƒΡŽ Π»ΠΎΠ²ΡƒΡˆΠΊΡƒ (Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ обходится Π½Π΅ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ) Π² Π²ΠΈΠ΄Π΅ 3-Π³Ρ€Π°Ρ„Π°. Π‘ΡƒΠ΄Π°Ρ… [5] построил ΡˆΠ°Ρ…ΠΌΠ°Ρ‚Π½ΡƒΡŽ Π»ΠΎΠ²ΡƒΡˆΠΊΡƒ для любого Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π‘ΡƒΠ΄Π°Ρ…Π° Π±Ρ‹Π»ΠΎ довольно слоТным (ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ содСрТали 175 страниц). Π‘ΠΎΠ»Π΅Π΅ наглядныС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ вопроса прСдставлСны здСсь [29, 31, 33, 34]. ΠΠ½Ρ‚Π΅Π»ΡŒΠΌΠ°Π½ [2] ΠΎΡ†Π΅Π½ΠΈΠ» ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ ΠΏΠΎ числу ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π° Π² [1] ΠΠ½Ρ‚Π΅Π»ΡŒΠΌΠ°Π½, Π‘ΡƒΠ΄Π°Ρ… ΠΈ Π ΠΎΠ»Π»ΠΈΠΊ сдСлали ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Π»ΠΎΠ²ΡƒΡˆΠΊΡƒ для любой ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ систСмы Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ². Π’ постановкС с ΡˆΠ°Ρ…ΠΌΠ°Ρ‚Π½Ρ‹ΠΌ Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚ΠΎΠΌ ΠΈ ΠΎΠ΄Π½ΠΈΠΌ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠΌ Π΅ΡΡ‚ΡŒ Π΅Ρ‰Ρ‘ ряд Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², связанных с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ обходимости Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ числом Π΄Ρ‹Ρ€, с расслоСниями Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚ΠΎΠ² ΠΏΠΎ количСству состояний Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ вопросами. ΠžΠ±Π·ΠΎΡ€ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ здСсь [35]. ΠΠ΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ…ΠΎΠ΄Π° всСх плоских ΡˆΠ°Ρ…ΠΌΠ°Ρ‚Π½Ρ‹Ρ… Π»Π°Π±ΠΈΡ€ΠΈΠ½Ρ‚ΠΎΠ² ΠΎΠ΄Π½ΠΈΠΌ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠΌ Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΠ»Π° вопрос ΠΎΠ± ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… усилСний ΠΌΠΎΠ΄Π΅Π»ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°, которая Ρ€Π΅ΡˆΠΈΡ‚ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΎΠ±Ρ…ΠΎΠ΄Π°. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ способом усилСния ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ рассмотрСниС ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π° Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ²,вмСсто ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Частным ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌ случаСм являСтся рассмотрСниС систСмы ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π° ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ количСства Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² ΠΊΠ°ΠΌΠ½Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ состояниС ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ совмСстно с Π³Π»Π°Π²Π½Ρ‹ΠΌ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠΌ. ВзаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°ΠΌΠΈ являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ усилСния, ΠΎΠ½ΠΎ позволяСтся ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Ρƒ (ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎΠΌΡƒ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρƒ с камнями) внСшнюю ΠΏΠ°ΠΌΡΡ‚ΡŒ, Ρ‚Π΅ΠΌ самым сущСствСнно Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ Π΅Π³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Если ΠΎΡ‚ взаимодСйствия Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ, Ρ‚ΠΎ получСнная нСзависимая систСма Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΈΠΌ Π»ΡƒΡ‡ΡˆΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°. Π”Π°Π»Π΅Π΅ обсудим извСстныС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ связанныС с ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ²

    Tight bounds for undirected graph exploration with pebbles and multiple agents

    Full text link
    We study the problem of deterministically exploring an undirected and initially unknown graph with nn vertices either by a single agent equipped with a set of pebbles, or by a set of collaborating agents. The vertices of the graph are unlabeled and cannot be distinguished by the agents, but the edges incident to a vertex have locally distinct labels. The graph is explored when all vertices have been visited by at least one agent. In this setting, it is known that for a single agent without pebbles Θ(log⁑n)\Theta(\log n) bits of memory are necessary and sufficient to explore any graph with at most nn vertices. We are interested in how the memory requirement decreases as the agent may mark vertices by dropping and retrieving distinguishable pebbles, or when multiple agents jointly explore the graph. We give tight results for both questions showing that for a single agent with constant memory Θ(log⁑log⁑n)\Theta(\log \log n) pebbles are necessary and sufficient for exploration. We further prove that the same bound holds for the number of collaborating agents needed for exploration. For the upper bound, we devise an algorithm for a single agent with constant memory that explores any nn-vertex graph using O(log⁑log⁑n)\mathcal{O}(\log \log n) pebbles, even when nn is unknown. The algorithm terminates after polynomial time and returns to the starting vertex. Since an additional agent is at least as powerful as a pebble, this implies that O(log⁑log⁑n)\mathcal{O}(\log \log n) agents with constant memory can explore any nn-vertex graph. For the lower bound, we show that the number of agents needed for exploring any graph of size nn is already Ξ©(log⁑log⁑n)\Omega(\log \log n) when we allow each agent to have at most O(log⁑n1βˆ’Ξ΅)\mathcal{O}( \log n ^{1-\varepsilon}) bits of memory for any Ξ΅>0\varepsilon>0. This also implies that a single agent with sublogarithmic memory needs Θ(log⁑log⁑n)\Theta(\log \log n) pebbles to explore any nn-vertex graph

    АлгСбра ΠΈ дискрСтная ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore