12 research outputs found

    Advanced Computational Methods for Oncological Image Analysis.

    Get PDF
    The Special Issue "Advanced Computational Methods for Oncological Image Analysis", published for the Journal of Imaging, covered original research papers about state-of-the-art and novel algorithms and methodologies, as well as applications of computational methods for oncological image analysis, ranging from radiogenomics to deep learning [...]

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Advanced computational methods for oncological image analysis

    Get PDF
    : The Special Issue "Advanced Computational Methods for Oncological Image Analysis", published for the Journal of Imaging, covered original research papers about state-of-the-art and novel algorithms and methodologies, as well as applications of computational methods for oncological image analysis, ranging from radiogenomics to deep learning [...]

    Advanced Machine Learning Methods for Oncological Image Analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally-invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head-neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra-dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis.Cancer Ă€r en global hĂ€lsoutmaning som uppskattas ansvara för cirka 10 miljoner dödsfall i hela vĂ€rlden, bara under Ă„ret 2020. Framsteg inom medicinsk bildtagning och hĂ„rdvaruutveckling de senaste tre decennierna har banat vĂ€gen för moderna medicinska bildgivande system vars upplösningsförmĂ„ga tillĂ„ter att fĂ„nga information om tumörers anatomi, fysiologi, funktion samt metabolism. Medicinsk bildanalys har dĂ€rför fĂ„tt en mer betydelserik roll i klinikers dagliga rutiner inom onkologin, för bland annat screening, diagnostik, uppföljning av behandling samt icke-invasiv utvĂ€rdering av sjukdomsprognoser. SjukvĂ„rdens behov av medicinska bilder har lett till att det nu pĂ„ sjukhusen finns en enorm mĂ€ngd medicinska bilder pĂ„ alla moderna sjukhus. Med hĂ€nsyn till den viktiga roll medicinsk bilddata spelar i dagens sjukvĂ„rd, samt den mĂ€ngd manuellt arbete som behöver göras för att analysera den mĂ€ngd data som genereras varje dag, sĂ„ har utvecklingen av digitala verktyg för att för att automatiskt eller semi-automatiskt analysera  bilddatan alltid haft stort intresse. DĂ€rför har en rad maskininlĂ€rningsverktyg utvecklats för analys av onkologisk data, för att gripa sig an lĂ€kares repetitiva vardagssysslor. Den hĂ€r avhandlingen syftar att bidra till fĂ€ltet “onkologisk bildanalys” genom att föreslĂ„ nya sĂ€tt att kvantifiera tumörers egenskaper frĂ„n medicinsk bilddata. Specifikt, Ă€r denna avhandling baserad pĂ„ sex artiklar dĂ€r de första tvĂ„ har fokus att presentera nya metoder för segmentering av tumörer, och de resterande fyra Ă€mnar att utveckla kvantitativa biomarkörer för cancerdiagnostik och prognos. Huvudsyftet för “Studie I” har varit att utveckla en djupinlĂ€rnings-pipeline vars syfte Ă€r att fĂ„nga lungpatalogiers anatomier (inklusive lungtumörer) samt integrera detta med djupa neurala nĂ€tverk för segmentering för att nyttja det första nĂ€tverkets utfall för att förbĂ€ttra segmenteringskvalitĂ©n. Den föreslagna pipelinen testades pĂ„ flertalet dataset och numeriska analyser visar en överlĂ€gsna resultat för den föreslagna “prior-medvetna” djupinlĂ€rningsmetoden. “Studie II” Ă€mnar att ta sig an ett viktig problem som övervakade segmenteringsmetoder stĂ€lls inför: ett beroende av enorma annoterade dataset. I denna studie föreslĂ„s en icke-övervakad segmenteringsmetod som baseras pĂ„ konceptet “ifyllnad” (“inpainting”) för att segmentera tumörer i omrĂ„dena: lungor samt huvud och hals i bilder frĂ„n olika modaliteter. Den föreslagna metoden lyckas bĂ€ttre Ă€n en familj vĂ€letablerade icke-oövervakade segmenteringsmodeller. “Studie III” och “Studie IV” försöker automatiskt diskriminera benigna lungtumörer frĂ„n maligna tumörer genom att analysera bilder frĂ„n LDCT (lĂ„gdos-CT). I “Studie III“ föreslĂ„s ett djupt neuralt nĂ€tverk för klassificering vars grafstruktur tillĂ„ter lokal analys av tumörens inbördes heterogeniteter samt en helhetsbild frĂ„n global kontextuell information. “Studie IV” försöker utvĂ€rdera noggrant utvalda metoder som grundar sig pĂ„ att extrahera anatomiska sĂ€rdrag frĂ„n medicinska bilder. I studien jĂ€mförs konventionella “radiomics”-metoder med sĂ€rdrag frĂ„n neurala nĂ€tverk samt en kombination av bĂ„da pĂ„ samma dataset. Resultat frĂ„n studien visar att en kombination av sĂ€rdrag frĂ„n djupa neurala nĂ€tverk samt “radiomics” kan ge bĂ€ttre resultat i klassificeringsproblemet. “Studie V” har fokus pĂ„ tidig bedömning av lungtumörers respons pĂ„ behandling genom att utveckla ett set nya fysiologisk observerbara sĂ€rdrag. Den presenterade metoden har anvĂ€nts för att kvantifiera förĂ€ndringar i tumörers karaktĂ€r i PET-CT-undersökningar för att predicera patienters prognos tvĂ„ Ă„r efter senaste behandling. Metoden jĂ€mförts mot konventionella “radiomics” och utvĂ€rderingen visar att den föreslagna metoden ger förbĂ€ttrade resultat. Till skilnad frĂ„n “Studie V”, som fokuserar pĂ„ att lösa ett binĂ€rt klassificeringsproblem, sĂ„ försöker “Studie VI” predicera överlevnadsgraden hos patienter med lung- samt huvud och hals-cancer genom att undersöka neurala nĂ€tverk med sfĂ€riska faltningsoperationer. Metoden jĂ€mförs mot, bland annat, “radiomics” och visar liknande resultat för analys pĂ„ samma dataset, men bĂ€ttre resultat för analys pĂ„ olika dataset. Sammanfattningsvis sĂ„ utnyttjar de sex studierna olika medicinska bildgivande system samt en mĂ€ngd olika bildbehandling- och maskininlĂ€rningstekniker för att utveckla verktyg för att kvantifierar tumörers egenskaper, som kan underlĂ€tta faststĂ€llande av diagnos och prognos.QC 2022-08-29</p

    Advanced Machine Learning Methods for Oncological Image Analysis

    No full text
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally-invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head-neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra-dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis.Cancer Ă€r en global hĂ€lsoutmaning som uppskattas ansvara för cirka 10 miljoner dödsfall i hela vĂ€rlden, bara under Ă„ret 2020. Framsteg inom medicinsk bildtagning och hĂ„rdvaruutveckling de senaste tre decennierna har banat vĂ€gen för moderna medicinska bildgivande system vars upplösningsförmĂ„ga tillĂ„ter att fĂ„nga information om tumörers anatomi, fysiologi, funktion samt metabolism. Medicinsk bildanalys har dĂ€rför fĂ„tt en mer betydelserik roll i klinikers dagliga rutiner inom onkologin, för bland annat screening, diagnostik, uppföljning av behandling samt icke-invasiv utvĂ€rdering av sjukdomsprognoser. SjukvĂ„rdens behov av medicinska bilder har lett till att det nu pĂ„ sjukhusen finns en enorm mĂ€ngd medicinska bilder pĂ„ alla moderna sjukhus. Med hĂ€nsyn till den viktiga roll medicinsk bilddata spelar i dagens sjukvĂ„rd, samt den mĂ€ngd manuellt arbete som behöver göras för att analysera den mĂ€ngd data som genereras varje dag, sĂ„ har utvecklingen av digitala verktyg för att för att automatiskt eller semi-automatiskt analysera  bilddatan alltid haft stort intresse. DĂ€rför har en rad maskininlĂ€rningsverktyg utvecklats för analys av onkologisk data, för att gripa sig an lĂ€kares repetitiva vardagssysslor. Den hĂ€r avhandlingen syftar att bidra till fĂ€ltet “onkologisk bildanalys” genom att föreslĂ„ nya sĂ€tt att kvantifiera tumörers egenskaper frĂ„n medicinsk bilddata. Specifikt, Ă€r denna avhandling baserad pĂ„ sex artiklar dĂ€r de första tvĂ„ har fokus att presentera nya metoder för segmentering av tumörer, och de resterande fyra Ă€mnar att utveckla kvantitativa biomarkörer för cancerdiagnostik och prognos. Huvudsyftet för “Studie I” har varit att utveckla en djupinlĂ€rnings-pipeline vars syfte Ă€r att fĂ„nga lungpatalogiers anatomier (inklusive lungtumörer) samt integrera detta med djupa neurala nĂ€tverk för segmentering för att nyttja det första nĂ€tverkets utfall för att förbĂ€ttra segmenteringskvalitĂ©n. Den föreslagna pipelinen testades pĂ„ flertalet dataset och numeriska analyser visar en överlĂ€gsna resultat för den föreslagna “prior-medvetna” djupinlĂ€rningsmetoden. “Studie II” Ă€mnar att ta sig an ett viktig problem som övervakade segmenteringsmetoder stĂ€lls inför: ett beroende av enorma annoterade dataset. I denna studie föreslĂ„s en icke-övervakad segmenteringsmetod som baseras pĂ„ konceptet “ifyllnad” (“inpainting”) för att segmentera tumörer i omrĂ„dena: lungor samt huvud och hals i bilder frĂ„n olika modaliteter. Den föreslagna metoden lyckas bĂ€ttre Ă€n en familj vĂ€letablerade icke-oövervakade segmenteringsmodeller. “Studie III” och “Studie IV” försöker automatiskt diskriminera benigna lungtumörer frĂ„n maligna tumörer genom att analysera bilder frĂ„n LDCT (lĂ„gdos-CT). I “Studie III“ föreslĂ„s ett djupt neuralt nĂ€tverk för klassificering vars grafstruktur tillĂ„ter lokal analys av tumörens inbördes heterogeniteter samt en helhetsbild frĂ„n global kontextuell information. “Studie IV” försöker utvĂ€rdera noggrant utvalda metoder som grundar sig pĂ„ att extrahera anatomiska sĂ€rdrag frĂ„n medicinska bilder. I studien jĂ€mförs konventionella “radiomics”-metoder med sĂ€rdrag frĂ„n neurala nĂ€tverk samt en kombination av bĂ„da pĂ„ samma dataset. Resultat frĂ„n studien visar att en kombination av sĂ€rdrag frĂ„n djupa neurala nĂ€tverk samt “radiomics” kan ge bĂ€ttre resultat i klassificeringsproblemet. “Studie V” har fokus pĂ„ tidig bedömning av lungtumörers respons pĂ„ behandling genom att utveckla ett set nya fysiologisk observerbara sĂ€rdrag. Den presenterade metoden har anvĂ€nts för att kvantifiera förĂ€ndringar i tumörers karaktĂ€r i PET-CT-undersökningar för att predicera patienters prognos tvĂ„ Ă„r efter senaste behandling. Metoden jĂ€mförts mot konventionella “radiomics” och utvĂ€rderingen visar att den föreslagna metoden ger förbĂ€ttrade resultat. Till skilnad frĂ„n “Studie V”, som fokuserar pĂ„ att lösa ett binĂ€rt klassificeringsproblem, sĂ„ försöker “Studie VI” predicera överlevnadsgraden hos patienter med lung- samt huvud och hals-cancer genom att undersöka neurala nĂ€tverk med sfĂ€riska faltningsoperationer. Metoden jĂ€mförs mot, bland annat, “radiomics” och visar liknande resultat för analys pĂ„ samma dataset, men bĂ€ttre resultat för analys pĂ„ olika dataset. Sammanfattningsvis sĂ„ utnyttjar de sex studierna olika medicinska bildgivande system samt en mĂ€ngd olika bildbehandling- och maskininlĂ€rningstekniker för att utveckla verktyg för att kvantifierar tumörers egenskaper, som kan underlĂ€tta faststĂ€llande av diagnos och prognos.QC 2022-08-29</p
    corecore