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Abstract. Natural phenomena and mechanisms have always intrigued humans, inspiring the de-
sign of effective solutions for real-world problems. Indeed, fascinating processes occur in nature,
giving rise to an ever-increasing scientific interest. In everyday life, the amount of heteroge-
neous biomedical data is increasing more and more thanks to the advances in image acquisi-
tion modalities and high-throughput technologies. The automated analysis of these large-scale
datasets creates new compelling challenges for data-driven and model-based computational meth-
ods. The application of intelligent algorithms, which mimic natural phenomena, is emerging as
an effective paradigm for tackling complex problems, by considering the unique challenges and
opportunities pertaining to biomedical images. Therefore, the principal contribution of computer
science research in life sciences concerns the proper combination of diverse and heterogeneous
datasets—i.e., medical imaging modalities (considering also radiomics approaches), Electronic
Health Record engines, multi-omics studies, and real-time monitoring—to provide a compre-
hensive clinical knowledge. In this paper, the state-of-the-art of nature-inspired medical image
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analysis methods is surveyed, aiming at establishing a common platform for beneficial exchanges
among computer scientists and clinicians. In particular, this review focuses on the main nature-
inspired computational techniques applied to medical image analysis tasks, namely: physical pro-
cesses, bio-inspired mathematical models, Evolutionary Computation, Swarm Intelligence, and
neural computation. These frameworks, tightly coupled with Clinical Decision Support Systems,
can be suitably applied to every phase of the clinical workflow. We show that the proper com-
bination of quantitative imaging and healthcare informatics enables an in-depth understanding of
molecular processes that can guide towards personalised patient care.

Keywords: Nature-inspired computing, artificial intelligence, medical image analysis, biomed-
ical data integration

1. Introduction

Since the dawn of time, nature has always intrigued human lives, serving often as a source of inspira-
tion in the design of effective solutions for real-world problems. Indeed, fascinating processes occur in
nature, giving rise to an ever-increasing scientific interest [1]. In real-world applications, many prob-
lems are complex or computationally intensive for traditional exhaustive algorithmic methods [2],
such as in the case of NP-hard problems [3]. Relying on natural mechanisms, information process-
ing in nature is generally performed by means of distributed and self-organised approaches without
requiring a centralised control [4]. These adaptive strategies allow for resiliency and reliability when
transferred to computational systems.

Nowadays, the automated analysis of large-scale life science datasets creates new compelling chal-
lenges for data-driven and model-based computational methods. As a matter of fact, the amount of
heterogeneous biomedical data is increasing more and more thanks to the advances in image acquisi-
tion modalities and high-throughput technologies [5, 6]. In addition, electronic health (e-health) [7]
and mobile health (m-health) [8] can be properly integrated to support personalised screening and diag-
nosis [9]. Therefore, cutting-edge Information and Communication Technology (ICT) can enable the
shift from organisation-centric to patient-centric models, leading to collaborative multi-institutional
healthcare service delivery processes [10]. Unfortunately, this huge information ensemble could over-
whelm the analytic capabilities needed by physicians during their critical decision-making tasks [11].
The application of intelligent algorithms, which mimic natural phenomena, is emerging as an effec-
tive paradigm for tackling complex problems, by considering the unique challenges and opportunities
pertaining to biomedical images [12]. Indeed, these tasks—which could be difficult to model with
constrained-based approaches relying either on dynamic or linear programming—might be stochastic
in nature, and can be suitably tackled by global search metaheuristics, allowing for explicitly modeling
the uncertainty or the vagueness of natural phenomena [2]. Thus, the abstraction of natural phenom-
ena can enable a fruitful interchange between natural sciences and computer science, leading to the
evolution of a novel set of powerful techniques [1]. From a philosophical perspective, thanks to the
modelling of emergent behaviours, nature-inspired computing defines a holistic framework as opposed
to the reductionist approach of connectionist networks [13]. Therefore, we can argue that working at
the interface of computer science and natural sciences may help to unveil the interconnections between
these disciplines.
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Figure 1. Workflow that integrates nature-inspired computational methods into the clinical routine. Espe-
cially, an intelligent CDSS is used to properly combine and analyse several sources of information to support
the physicians in their decision-making tasks. The steps that may require the physician’s interaction are also
highlighted.

In current clinical routine, quantitative imaging methods convey scientifically and clinically rele-
vant information in prediction, prognosis or treatment response assessment [14], by also considering
radiomics approaches [15]. In this regard, advanced computational techniques play a key role in ra-
diology [16]. However, conventional Machine Learning and Computational Intelligence techniques
must be tailored to address the specific challenges pertaining to biomedical images [17]. Relevant
models, features, and characteristics can be indeed automatically learnt from images by taking advan-
tage of these computational frameworks realised for medical imaging problems involving advanced
data integration.

1.1. Integrating nature-inspired methods into the clinical workflow

The principal contribution of research in computer science to biomedical data integration concerns the
proper fusion of diverse and heterogeneous datasets [18, 19]—i.e., medical imaging modalities (pos-
sibly validating radiomics-based biomarkers against histopathology [20]), Electronic Health Record
(EHR) engines [21], high-throughput technologies (i.e., multi-omics studies [22]), and real-time mon-
itoring (exploiting m-health applications)—to provide a comprehensive clinical knowledge for preci-
sion medicine [9]. Fig. 1 outlines the steps involved in the clinical decision making-process. Nature-
inspired computational techniques can be suitably applied to every phase of this pipeline tightly cou-
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Figure 2. Taxonomy of the investigated nature-inspired computational techniques for medical image analysis.
Each branch, denoted by a different leaf, corresponds to a class of algorithms that is described in a different
section of this manuscript.

pled with Clinical Decision Support Systems (CDSSs) as well as physician’s interaction. As a matter
of fact, this biomedical data-oriented paradigm needs for novel inference tools, able to deal with com-
plex/rare diseases and comorbidities [23].

In this context, medical image analysis involves interdisciplinary research activities carried out by
computer scientists, physicians, and medical physicists. The multimodal imaging data as well as the
corresponding patient information are retrieved from the Picture Archiving and Communication Sys-
tem (PACS) interconnected with the Radiology Information System (RIS). Especially, image fusion
aligns and combines multiple images from single or multiple imaging modalities, aiming at improv-
ing the image quality as well as reducing randomness and redundancy, towards feasible solutions for
improved diagnosis and prognosis [24].

1.2. Taxonomy of the investigated nature-inspired computational techniques

This review outlines the state-of-the-art of nature-inspired medical image analysis methods, aiming at
establishing a common platform for beneficial exchanges among computer scientists and clinicians.
To achieve a proper level of generality, we focus on the main nature-inspired computational techniques
applied to medical image analysis tasks. The organisation of the investigated approaches follows the
graphical representation in Fig. 2. This conceptual scheme shows that the appropriate combination of
different computational techniques can shed light on new discoveries in healthcare and biology. There-
fore, the synergies emerging from the combination of diverse computer science areas are valuable to
develop comprehensive approaches in clinical routine. These computer-assisted medical image anal-
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Figure 3. Bar diagram of the number of publications sub-divided by each different class of the nature-inspired
techniques schematised in Fig. 2 and grouped by 5-year intervals (ranging from 1990 to 2019). The number of
papers for 2019 refers to the date of writing (March 2019).

ysis methods could be beneficial for the definition of imaging biomarkers as well as for quantitative
medicine and biology.

The structure of this manuscript reflects the different branches depicted in Fig. 2, by providing
some interesting medical imaging applications. Section 2 describes the methods based on physical
processes occurring in nature. Section 3 presents bio-inspired mathematical models, with particular
interest to unconventional and Natural Computing. Computational Intelligence techniques, consisting
in Evolutionary Computation and Swarm Intelligence, are devised in Sections 4 and 5, respectively.
The most recent neural computation models are explained in Section 6. Finally, discussions and
concluding remarks are provided in Section 7.

Aiming at providing the reader with a clear idea about the development of the nature-inspired
techniques in the field of medical image analysis, a bar diagram representing the use of the different
techniques throughout the years is shown in Fig. 3. The number of contributions (considering 5-year
intervals from 1990 to 2019) was obtained by relying on Scopus R©—a well-known database of peer-
reviewed literature—for articles matching separate queries composed of the logical disjunction (i.e.,
OR of all the components for each branch in Fig. 2) AND “medical imaging” OR “medical image
analysis” OR “biomedical images”. The general trend reveals a considerable growth in the adoption
of nature-inspired computational techniques over the years. In particular, Evolutionary Computation
has been remarkably employed in medical image analysis since the early 2000s also reaching the
popularity of neural approaches in 2010-2014, despite the traditional applications of Artificial Neural
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Networks (ANNs) in Pattern Recognition. However, in the last 5 years, the most noticeable aspect is
the striking increase of works based on neural computation, almost entirely due to the success of Deep
Learning. As a matter of fact, this breakthrough is tightly linked to the evidence that the number of
articles presenting neural-based methods doubles approximately every year since 2015.

2. Physical processes

The concepts underlying physical phenomena can lead to valuable ideas in algorithm design. We
explain some basic theoretical models in the following sub-sections.

2.1. Watershed transform

The watershed transform, initially proposed in the field of mathematical morphology [25], intuitively
denotes an image as a topographic relief, where the height of each point is directly related to its grey
level. Considering rain gradually falling on the terrain, the watersheds are the lines that separate
the resulting catchment basins by relying on a flooding-based procedure [26]. The watershed lines
generally correspond to the most significant edges among the markers [27] and are useful to separate
overlapping objects, such as adjacent cells in tissues. Even when no strong edges between the markers
exist, the watershed method is able to detect a contour in the area. This contour is detected on the
pixels with higher contrast [25]. Unfortunately, it is also well-known that the watershed transform
may be affected by over-segmentation issues, so requiring further processing. The authors of [28]
introduced probability-based prior information into the watershed segmentation for knee cartilage and
grey matter/white matter segmentation in MR images.

2.2. Random Walker

The Random Walker (RW) algorithm [29] encodes an image as a graph with nodes and arcs corre-
sponding to the voxels and changes in image intensity (denoted by means of a Gaussian function),
respectively. Therefore, the image is converted into a lattice where some pixels’ classes are known
while other ones are unassigned. Random walks enable a model for Brownian motion and diffusion,
e.g., the stochastic movement of molecules in liquids and gases. In medical imaging, especially when
dealing with Positron Emission Tomography (PET), the RW method can localise weak edges as part
of consistent boundaries. To obtain the Biological Target Volume (BTV) delineation on metabolic
PET images, the RW incorporates the PET information, by replacing the pixel intensities with the
Standardised Uptake Value (SUV) and computing the arc weights accordingly [30]. In the original
method [29], the known nodes are marked by user input, whilst an automatic seed-selection procedure
makes the method more reliable [31]. The study presented in [32] investigated the impact of BTV
segmentation, using [11C]-Methionine PET imaging, and the subsequent co-registration with Mag-
netic Resonance Imaging (MRI), utilised to delineate the Gross Tumour Volume (GTV) [33, 34], in
stereotactic neuro-radiosurgery treatment planning. The main goal was to present a novel PET/MRI
automatic segmentation method, combining complementary multimodal information, and encourag-
ing its use in clinical practice.
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2.3. Simulated Annealing and Tabu Search

Neighbourhood-based meta-heuristics, such as Simulated Annealing (SA) [35] and Tabu Search (TS)
[36], evaluate only one candidate solution at a time across the search space [4]. The SA method
was initially designed for combinatorial optimisation problems and emulates the annealing process of
solid materials, whose temperature is initially increased to high values and then slowly cooled by a
controlled procedure to dilate the crystals and reduce their defects. An efficient version of SA coupled
with an adaptive Monte Carlo sampling algorithm was proposed in [37] for the deformable registra-
tion of 4D Computed Tomography (CT) lung images. TS is based on adaptive memory-based strate-
gies to guide the search towards promising areas as well as discourage the search from previously-
visited solutions to improve the diversity. Wachowiack et al. [38] applied the continuous TS to the
co-registration of 2D Ultrasound scans to 3D volumes.

3. Bio-inspired mathematical models

Natural Computing devises mathematical and unconventional computation models inspired by nature,
as well as investigates phenomena taking place in nature in terms of information processing [39].

3.1. Cellular Automata

Cellular Automata (CA) are one of the earliest models of bio-inspired computing [40]. Discrete CA
are composed of self-replicating artificial systems in a mesh of finite-state machines (cells), intercon-
nected locally to each other, which produce a complex global emergent behaviour [13]. Each cell
changes its own state synchronously depending on both: (i) its current state, and (ii) the states of the
neighbour cells at the previous discrete time step. All cells use the same local update rule, so defining
a homogeneous system [41]. Hamamci et al. presented Tumor-Cut [42] that employs a CA model im-
plementing the gradient magnitude as the local transition rule, resulting equivalent to the shortest path
algorithm, as shown in [43]. Analogously, GTVCUT is a CA-based brain tumour MRI segmentation
method designed for neuro-radiosurgery treatment planning [44, 45]. This semi-automatic segmenta-
tion approach adaptively initialises the foreground and background seeds in a smart fashion, relying
only on a draggable rectangle including the target area [46].

3.2. Membrane Computing

Membrane Computing is an unconventional model of computation that assumes the functioning of the
cells as an information processing system. In particular, this model formalises the flow of metabolites
among cells of a living tissue or among the organelles in an eucaryotic cell. More specifically, the
computational devices in Membrane Computing are called P systems [47]. This model can be effi-
ciently implemented on parallel architectures [48], and have been applied to image segmentation [49].
P systems were efficiently applied also to edge detection and multi-level thresholding in [50] and [51],
respectively.
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4. Evolutionary Computation

Evolutionary Computation, taking inspiration from Darwin’s theory of biological evolution [52], in-
cludes population-based optimisation techniques that solve complex real-world problems that cannot
be tackled by means of exact algorithmic approaches. In clinical scenarios, multi-objective evolution-
ary algorithms were applied to high-dose-rate brachytherapy planning for prostate cancer treatment
[53], wherein clinical protocols involving multiple different treatment criteria as well as time con-
straints must be satisfied [54].

4.1. Genetic Algorithms

Genetic Algorithms (GAs) rely on natural selection: the initial population of randomly generated indi-
viduals undergoes, during each generation, a selection process and is modified by applying crossover
and mutation operators [55]. A novel evolutionary method based on GAs for medical image en-
hancement and segmentation, named MedGA, was recently presented in [56], by using the efficient
histogram-based encoding of individuals defined in [57]. MedGA aims at better revealing the two
underlying sub-distributions occurring in a medical image sub-region characterised by a roughly bi-
modal histogram, in order to improve thresholding-based segmentation results [58]. An extensive
review of the applications of GAs to medical image segmentation is presented in [59]. Indeed, GAs
can be conveniently applied to diverse segmentation frameworks. Cagnoni et al. [60] proposed an
interactive contour-based delineation model for anatomical structures in tomographic medical images,
where a GA drives the elastic-contour evolution. With reference to multi-atlas based segmentation,
GAs were employed to select the near-optimal atlas sub-set combination to segment the current target
image [61]. GAs are also effective for the selection of relevant and informative radiomics features
[62], aiming at improving the discriminative power for subsequent classification tasks. In [63], GAs
are exploited for the feature selection phase to improve breast cancer diagnosis on digitised fine-needle
aspiration cytology images by comparing multiple classifiers.

4.2. Genetic Programming

Genetic Programming (GP) [64] was shown to be a powerful framework to select and combine ex-
isting algorithms in the most suitable way, also in Computer Vision [65]. Unlike GAs, GP evolves
a population of functions or, more generally, computer programs to solve a problem. In the medical
domain, GP with geometrics semantic operators [66] was employed to predict the relative position
of a slice within a CT image stack when DICOM metadata are unreliable [67]. With regard to GP-
based image enhancement, optimal pseudo-colouring of multiple gray-scale images for visualisation
purposes was addressed in [68], by relying on user interaction in the tournament selection.

4.3. Differential Evolution

Differential Evolution (DE) exploits crossover and mutation operators during the evolutionary process
[69]. Unlike GAs, DE randomly mutates an individual and then employs a ternary crossover operator
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by recombining three individuals selected randomly from the population. Moreover, in DE the com-
petition mechanism involves only the offspring along with their parents, not the whole population. In
[70], a DE-based reversible watermarking scheme for improving the security of storage and exchange
of medical images was proposed. Here, signature and textual information is inserted into the original
images, exploiting DE in the optimal quantisation step for the control of watermarking strength.

5. Swarm Intelligence

Swarm Intelligence studies the collective behaviour of decentralised, self-organised natural or artificial
systems [71]. These metaheuristics consist typically of a population of simple agents interacting
locally each other and with their environment. The agents follow very simple rules and, although
there is no centralised control structure, local interactions among such agents—often affected by a
certain degree of stochasticity—lead to a complex intelligent emergent global behaviour, with effects
that would not have been expected by each individual.

5.1. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO), which is inspired by the collective movement of bird flocks and
fish schools, is well-suited for solving non-linear optimisation problems [72]. Formally, a swarm of in-
dividuals (i.e., particles) moves inside a bounded D-dimensional search space cooperating to identify
the optimal solution, by collecting and sharing information about the best position found according
to a user-defined fitness function. The movement of particles in the search space is modelled by the
social and cognitive components in the velocity update rules. Since PSO was originally introduced
for continuous search spaces, it can be applied to the optimisation of similarity metrics (e.g., cross
correlation, mutual information) in biomedical image registration [73]. Wachowiak et al. [74] devised
a modified version of PSO including crossover operations as well as the initial orientation of the vol-
umes exploiting the knowledge by the physician to considerably improve the search process. Finally,
in [75], a hybrid approach is proposed, which integrates the spatial image information into the com-
putation of the similarity metrics by means of a linear combination of image pixel intensity and image
Gradient Vector Flow intensity.

5.2. Artificial Bee Colony

The Artificial Bee Colony (ABC) algorithm is based on the foraging behaviour of honey bees [76],
which cooperate in identifying the best food resources corresponding to the solutions with the best
fitness values. Specifically, the swarm is composed of three specialised groups of honey bees, namely:
scouts, onlookers, and employees. The scouts are randomly distributed across the search space, while
employees and onlookers accomplish a local search nearby the promising positions found by the
scouts. In [77], ABC was effectively exploited for global multi-level thresholding method based on
the Tsallis entropy as segmentation criterion.
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5.3. Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a metaheuristic that resembles the foraging behaviour of some
ant species [78]. The artificial ants are stochastic procedures that incrementally construct candidate
solutions for the problem instance under consideration by exploiting the pheromone information that
is adapted according to the ants’ search experience and possible available heuristic information [79].
Pereira et al. [80] proposed an ACO-based method for optic disc detection in colour fundus images.
An adaptive ACO-based segmentation algorithm was designed in [81] for breast cancer diagnosis on
MRI, explicitly considering also object brightness and circularity. These features are useful for an
accurate selection of the detected lesions.

6. Neural computation

Neural computation is based on theoretical and computational neurosciences, aiming at modelling the
information processing that occurs in networks of biological neurons [82]. Several types of ANNs are
explained in what follows.

6.1. Self-Organising Maps

Self-Organising Maps (SOMs) rely on neuro-biological studies indicating that different sensory inputs
(e.g., motor, visual, auditory) are mapped onto corresponding areas of the cerebral cortex in a certain
order [83]. Essentially, SOMs aim at building artificial topographic maps that learn by means of self-
organisation, allowing for short synaptic connections for neurons dealing with closely-related portions
of information. This technique is well-suited for dimensionality reduction, so enabling effective data
visualisation and cluster analysis. Ortiz et al. [62] applied a SOM-based classification method for
brain tissue segmentation on MR images.

6.2. Deep Neural Networks

In the latest years, Deep Neural Networks (DNNs) have been widely exploited to learn a hierarchy of
increasingly complex features from the processed data, enabling multiple levels of abstraction [84].
Specifically, DNNs exploit the property that many natural signals are compositional hierarchies (i.e.,
higher-level features are obtained by composing lower-level ones). Hereby, we describe two classes
of DNNs that are successfully applied to medical imaging.

6.2.1. Convolutional Neural Networks

Although in traditional multi-layer networks each neuron is densely or fully connected to every neuron
of the subsequent layer, considering only local sub-structural information could be useful in Pattern
Recognition. Relying on the initial idea of the neocognitron [85], neighbouring pixels in the image
were shown to be strongly correlated. Thus, they can represent meaningful features such as edges.
On the contrary, distant pixels tend to be weakly correlated or even uncorrelated. These architec-
tures, called Convolutional Neural Networks (CNNs), are deep feed-forward ANNs that are suitable
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to work on data structured with a grid-like topology, such as images, videos, and time-series. The
convolutional and pooling layers in CNNs are directly inspired by the classic notions of simple cells
and complex cells in visual neuroscience [86]. Considering the most recent computational methods
in medical image segmentation, significant advances have been proposed in CNN-based architectures
[87]. For instance, to overcome the limitations related to accurate image annotations, DeepCut [88]
relies on weak bounding-box labelling [46, 45]. Among the architectures devised for biomedical im-
age segmentation [89, 90], U-Net [91] showed to be a noticeably successful solution, thanks to the
combination of a contracting path, for coarse-grained context detection, and a symmetric expanding
path, for fine-grained localisation. This fully CNN is capable of stable training with reduced samples.
The authors of V-Net [92] extended U-Net for volumetric medical image segmentation, by introducing
also a different loss function based on the Dice Similarity Coefficient. Schlemper et al. [93] presented
an Attention Gate (AG) model for medical imaging, which aims at focusing on target structures or
organs. AGs were introduced into the standard U-Net, so defining Attention U-Net, which achieved
high performance in multi-class image segmentation without relying on multi-stage cascaded CNNs.
Recently, Mixed-Scale Dense (MS-D) Net [94] densely connected the features at different scales ob-
tained by means of dilated convolutions. By so doing, features at different scales can be contextually
extracted using fewer parameters than fully CNNs.

6.2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) introduce a framework for unsupervised to estimate gener-
ative models via an adversarial process by simultaneously training two models [95]. Originally pro-
posed by Goodfellow et al. in 2014 [95], GANs have shown remarkable results in image generation
[96] relying on a two-player minimax game: a generator network aims at generating realistic images
to “fool” a discriminator network that aims at distinguishing between the real and synthetic images.
However, the resulting objective function could lead to difficult training, accompanying artifacts and
mode collapse [97], especially with high resolution images. Even though CNNs have recently revolu-
tionised medical image analysis [12], their training requires large-scale annotated training data that are
laborious to obtain in the medical domain [98]; thus, intensive Data Augmentation (DA) techniques,
such as geometric/intensity transformations of original images, are needed. However, those recon-
structed images intrinsically resemble the original ones, leading to limited performance improvement
in terms of generalisation abilities. Therefore, the generation of realistic medical images completely
different from the original samples is worth to investigate. Realistic retinal fundus and lung CT image
generation tasks were tackled using adversarial learning [99, 100]; a recent study reported perfor-
mance improvement with synthetic training data in CNN-based liver lesion classification [101]. In
[102], brain tumour MR images were generated using conventional GANs and even an expert physi-
cian failed to accurately distinguish between the real/synthetic images. The goal was to increase the
clinical reliability, by means of DA in computer-assisted diagnosis as well as physician training and
teaching [103]. However, this objective is extremely challenging, since MR images are characterised
by strong visual consistency in brain anatomy, and intra-sequence variability.
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6.3. Neuroevolution

Neuroevolution—i.e., the evolutionary-based automatic design of ANNs [104]—resembles the evolu-
tion of biological brain, which may contain trillions of synaptic connections. Specifically, HyperNEAT
[105] is a generative encoding that evolves large-scale ANNs relying on the NeuroEvolution of Aug-
mented Topologies (NEAT) algorithm [106], which search for the geometric regularities of the task
domain. Calimeri et al. [107] applied HyperNEAT to the automated segmentation of blood vessels in
digital retinal fundus images. This method obtained promising results, revealing the ability to reduce
the size of ANNs for medical image segmentation tasks.

7. Conclusions and future directions

Quantitative studies in biomedicine represent the immediate future in clinical practice [14, 108]. The
proper combination of different imaging modalities and healthcare informatics provides an in-depth
understanding of molecular processes that can guide towards personalised medicine [109].

The achievements related to quantitative imaging lead to valuable applications in radiomics [15,
110, 111, 112] and radiogenomics [113, 114] research, thus conveying clinically useful information.
Especially, radiogenomics [114] can provide important information about tumour heterogeneity as
well as treatment response [115], by also integrating genomic information [116]. In this regard, per-
sonalised medicine may definitely benefit from advanced nature-inspired computational approaches,
such as in the case of haplotype assembly based on GAs [117].

The integration of Soft Computing, including rough sets [118] and fuzzy logic [119], may prop-
erly deal with the vagueness and coarseness in medical image analysis tasks (e.g., image segmentation
[120, 121]). In the case of global optimisation methods for biomedical image registration, a set of
fuzzy rules may be exploited to dynamically adapt the settings for each particle of the PSO, so result-
ing in proactive optimising agents [122], achieving encouraging performance on benchmark functions
[123] as well as in the parameter estimation of biochemical systems [124]. Concerning other uncon-
ventional computation models, Quantum Computing—which studies the information processing tasks
executed on quantum mechanical systems [125]—might be applied to basic and advanced medical
image processing operations, by devising effective techniques of internal representation of the images
involved in a quantum process [126].

From the technological perspective, High-Performance Computing (HPC) can be an enabling fac-
tor for feasible computational solutions in clinical and laboratory practice [127]. GPUs are used today
in a wide range of applications in computational biology [128] and medical image analysis [129, 130].
As a matter of fact, GPUs are pervasive, energy-efficient and can dramatically accelerate parallel com-
puting. In the field of biomedical imaging, GPUs are in some cases crucial for enabling practical use
of computationally demanding algorithms. For instance, GPUs enabled the training of DNNs in rea-
sonable time [12, 131]. Finally, the community of computer scientists and engineers in biomedicine
cannot ignore the interpretability of the results yielded by advanced computational models [132]. As
a matter of fact, the outcomes and predictions provided by CDSSs should take into account the physi-
cians’ awareness during their complex clinical decision-making tasks [133]. Considering the unique
challenges encountered in clinical scenarios, also the issues related to the interaction design of medical
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imaging software must be properly addressed. Indeed, computer applications for diagnostic medical
imaging generally provide a wide range of tools to support physicians in their daily diagnosis activities.
Unfortunately, some functionalities are specialised for specific diseases or imaging modalities, while
others are useless for the images under investigation [134]. In clinical environments, a Graphical User
Interface (GUI) must represent a sequence of steps for image investigation following a well-defined
workflow.
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GenHap: a novel computational method based on genetic algorithms for haplotype assembly. BMC
Bioinform., 2019. 20(Suppl 4):172. doi:10.1186/s12859-019-2691-y.

[118] Hassanien AE, Abraham A, Peters JF, Schaefer G, Henry C. Rough sets and near sets in medical imaging:
a review. IEEE Trans. Inf. Technol. Biomed., 2009. 13(6):955–968. doi:10.1109/TITB.2009.2017017.

[119] Zadeh LA. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst., 1996. 4(2):103–111. doi:
10.1109/91.493904.

[120] Militello C, Vitabile S, Rundo L, Russo G, Midiri M, Gilardi MC. A fully automatic 2D segmentation
method for uterine fibroid in MRgFUS treatment evaluation. Comput. Biol. Med., 2015. 62:277–292.
doi:10.1016/j.compbiomed.2015.04.030.

[121] Rundo L, Militello C, Tangherloni A, Russo G, Vitabile S, Gilardi MC, Mauri G. NeXt for neuro-
radiosurgery: a fully automatic approach for necrosis extraction in brain tumor MRI using an un-
supervised machine learning technique. Int. J. Imaging Syst. Technol., 2018. 28(1):21–37. doi:
10.1002/ima.22253.

[122] Nobile MS, Cazzaniga P, Besozzi D, Colombo R, Mauri G, Pasi G. Fuzzy Self-Tuning PSO: a settings-
free algorithm for global optimization. Swarm Evol. Comput., 2018. 39:70–85. doi:10.1016/j.swevo.
2017.09.001.



L. Rundo et al. / A Survey on Nature-Inspired Medical Image Analysis 21

[123] Tangherloni A, Rundo L, Nobile MS. Proactive particles in swarm optimization: a settings-free algorithm
for real-parameter single objective optimization problems. In: Proc. IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2017 pp. 1940–1947. doi:10.1109/CEC.2017.7969538.

[124] Nobile MS, Tangherloni A, Rundo L, Spolaor S, Besozzi D, Mauri G, Cazzaniga P. Computational
intelligence for parameter estimation of biochemical systems. In: Proc. Congress on Evolutionary Com-
putation (CEC). IEEE, 2018 pp. 1–8. doi:10.1109/CEC.2018.8477873.

[125] Mastriani M. Quantum image processing? Quantum Inf. Process., 2017. 16(1):27. doi:10.1007/
s11128-016-1457-y.

[126] Yan F, Iliyasu AM, Jiang Z. Quantum computation-based image representation, processing operations
and their applications. Entropy, 2014. 16(10):5290–5338. doi:10.3390/e16105290.

[127] Tangherloni A, Rundo L, Spolaor S, Nobile M, Merelli I, Besozzi D, Mauri G, Cazzaniga P, Liò P. High
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