416 research outputs found

    Coarse-to-fine approximation of range images with bounded error adaptive triangular meshes

    Full text link
    Copyright 2007 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibitedA new technique for approximating range images with adaptive triangular meshes ensuring a user-defined approximation error is presented. This technique is based on an efficient coarse-to-fine refinement algorithm that avoids iterative optimization stages. The algorithm first maps the pixels of the given range image to 3D points defined in a curvature space. Those points are then tetrahedralized with a 3D Delaunay algorithm. Finally, an iterative process starts digging up the convex hull of the obtained tetrahedralization, progressively removing the triangles that do not fulfill the specified approximation error. This error is assessed in the original 3D space. The introduction of the aforementioned curvature space makes it possible for both convex and nonconvex object surfaces to be approximated with adaptive triangular meshes, improving thus the behavior of previous coarse-to-fine sculpturing techniques. The proposed technique is evaluated on real range images and compared to two simplification techniques that also ensure a user-defined approximation error: a fine-to-coarse approximation algorithm based on iterative optimization (Jade) and an optimization-free, fine-to-coarse algorithm (Simplification Envelopes).This work has been partially supported by the Spanish Ministry of Education and Science under projects TRA2004- 06702/AUT and DPI2004-07993-C03-03. The first author was supported by The Ramón y Cajal Program

    Three Dimensional Software Modelling

    Get PDF
    Traditionally, diagrams used in software systems modelling have been two dimensional (2D). This is probably because graphical notations, such as those used in object-oriented and structured systems modelling, draw upon the topological graph metaphor, which, at its basic form, receives little benefit from three dimensional (3D) rendering. This paper presents a series of 3D graphical notations demonstrating effective use of the third dimension in modelling. This is done by e.g., connecting several graphs together, or in using the Z co-ordinate to show special kinds of edges. Each notation combines several familiar 2D diagrams, which can be reproduced from 2D projections of the 3D model. 3D models are useful even in the absence of a powerful graphical workstation: even 2D stereoscopic projections can expose more information than a plain planar diagram

    Fast Simulation of Skin Sliding

    Get PDF
    Skin sliding is the phenomenon of the skin moving over underlying layers of fat, muscle and bone. Due to the complex interconnections between these separate layers and their differing elasticity properties, it is difficult to model and expensive to compute. We present a novel method to simulate this phenomenon at real--time by remeshing the surface based on a parameter space resampling. In order to evaluate the surface parametrization, we borrow a technique from structural engineering known as the force density method which solves for an energy minimizing form with a sparse linear system. Our method creates a realistic approximation of skin sliding in real--time, reducing texture distortions in the region of the deformation. In addition it is flexible, simple to use, and can be incorporated into any animation pipeline

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Spherical aberration correction in a scanning transmission electron microscope using a sculpted foil

    Full text link
    Nearly twenty years ago, following a sixty year struggle, scientists succeeded in correcting the bane of electron lenses, spherical aberration, using electromagnetic aberration correction. However, such correctors necessitate re-engineering of the electron column, additional space, a power supply, water cooling, and other requirements. Here, we show how modern nanofabrication techniques can be used to surpass the resolution of an uncorrected scanning transmission electron microscope more simply by sculpting a foil of material into a refractive corrector that negates spherical aberration. This corrector can be fabricated at low cost using a simple process and installed on existing electron microscopes without changing their hardware, thereby providing an immediate upgrade to spatial resolution. Using our corrector, we reveal features of Si and Cu samples that cannot be resolved in the uncorrected microscope.Comment: Roy Shiloh, Roei Remez, and Peng-Han Lu equally contributed to this wor

    Volume-preserving deformation using generalized barycentric coordinates

    Get PDF
    The cage-based deformation of a 3D object through generalized barycentric coordinates is a simple, e fficient, effective and hence widely used shape manipulation scheme. Editing vertices of the polyhedral cage induces a smooth space deformation of its interior; the vertices thus become control handles of the final deformation. However, in some application fi elds, as medicine, constrained volume preserving deformations are required. In this paper, we present a solution that takes advantage of the potential of the deformations based on generalized barycentric coordinates while adding the constraint of keeping a volume constant. An implementation of the proposed scheme is presented and discussed. A measure of local stress of the deformed volume is also proposed.Peer ReviewedPostprint (author’s final draft
    corecore