
Volume-preserving deformation using generalized barycentric

coordinates

M.Àngels Cerveró Àlvar Vinacua Pere Brunet
macervero@lsi.upc.edu alvar@lsi.upc.edu pere@lsi.upc.edu

Departament de Llenguatges i Sistemes Informàtics LSI

Universitat Politècnica de Catalunya

Campus Nord

08034 Barcelona

Abstract

The cage-based deformation of a 3D object
through generalized barycentric coordinates is
a simple, e�cient, e�ective and hence widely
used shape manipulation scheme. Editing ver-
tices of the polyhedral cage induces a smooth
space deformation of its interior; the ver-
tices thus become control handles of the �-
nal deformation. However, in some applica-
tion �elds, as medicine, constrained volume-
preserving deformations are required.
In this paper, we present a solution that

takes advantage of the potential of the defor-
mations based on generalized barycentric coor-
dinates while adding the constraint of keeping
a volume constant. An implementation of the
proposed scheme is presented and discussed.
A measure of local stress of the deformed vol-
ume is also proposed.

1 Introduction

The deformation of geometric models has been
extensively studied for a number of di�erent
applications. Seminal works in the area in-
clude [16] and [7]. Another approach to defor-
mation, extensively used in the �eld of charac-
ter animation, operates through an association
with an abstract skeleton.
Here we focus on methods based on a space

deformation, and more speci�cally, on those
that specify that deformation by enclosing
the area of interest inside a (sometimes con-

vex) polyhedron, transferring the deforma-
tions that the user prescribes for that poly-
hedron to a region of space, usually inside the
polyhedron, in a smooth way. This transfer-
ence takes place by means of a coordinate sys-
tem de�ned in the spirit of barycentric coor-
dinates for simplexes, albeit overdetermined,
since the polyhedron is usually not a simplex.
These cage-based deformation schemes have
been proved useful in the deformation and an-
imation of mesh models, where the number
of free controls is drastically reduced, while
retaining an intuitive interface and su�cient
�exibility.

Motivated by problems where arbitrary de-
formations are not acceptable, because cer-
tain physical constraints need to be enforced,
we discuss here the problem of constraining
these cage-based methods in order to preserve
the volume enclosed by a mesh modeling the
boundary of a solid and deformed through the
cage and an appropriate barycentric coordinate
system. Our implementation of this technique
is based on theMean-Value Coordinates intro-
duced in [9], but the results are applicable to
other barycentric coordinate schemes that use
only the positions of the cage's vertices.

In the following section, we discuss more in
detail the previous work, and the main proper-
ties of barycentric coordinates studied therein.
We also present some prior work focused on
preserving the volume of deformed objects.
We then proceed in Section 3 to discuss the



volume-preservation constraint and how it lim-
its the deformations of the cage itself, one ver-
tex at a time. Then Section 4 discusses our
approach to measure the local stress produced,
and �nally, before presenting our conclusions,
Section 5 gives details on our implementation
and the results obtained with several test mod-
els.

2 Previous work

Barycentric Coordinates, as proposed by
Möbius in 1827, are a very elegant and sim-
ple way to de�ne the position of points p in
simplex domains (triangles in 2D, tetrahedra
in 3D, etc.).
In recent years, a number of authors have

proposed extensions of this scheme in the case
of more general polygons in (2D) and poly-
hedra (in 3D). Coordinates of this kind are
called Generalized Barycentric Coordinates.
In [15, 9, 10, 12], the position of any point p
can be computed as a convex combination of
the vertices vc of the polygon (or polyhedron)
with the coordinates of p as weights:

p =
X
i∈IV c

v
c
iαi(p), (1)

where IV c are the indices of the vertices of the
cage.
Green Coordinates [14] complement the

Equation 1 by also including a linear combi-
nation of the normals of the polyhedron faces.
This results on a double set of coordinates:

p =
X
i∈IV c

v
c
iαi(p) +

X
j∈IF c

~ncjβj(p), (2)

where IFc are the indices of the faces of the
cage.
Generalized Barycentric Coordinates satisfy

the two well-known properties of the standard
Barycentric Coordinates:

• Constant precision (reproduction of
unity): X

i∈IV c

αi(p) = 1 ∀p

• Linear precision (reproduction of the
identity):

p =
X
i∈IV c

v
c
iαi(p) ∀p

In 2002, Meyer et al. developed theGeneral-
ized barycentric coordinates [15], a 2D system
that can be used over any convex polygon (not
only triangles). A year later, Floater presented
the Mean-Value Coordinates [9], a 2D system
that improves Meyer's because it can be used
not only over convex polygons but also in the
kernel of concave ones. These coordinates were
generalized to 3D polyhedral domains in 2005
by Floater et al. [10].
In 2007, Meyer et al. introduced the Har-

monic coordinates [12], based on the solutions
to the Laplace's equation (harmonic func-
tions). They work on both convex and concave
polygons and polyhedra. This scheme has the
disadvantage, however, of not having a closed
form solution. The boundary conditions and
the solutions must be de�ned for every partic-
ular case.
Based on the Green's function, Lipman et

al. developed the Green coordinates [14] in
2008. These coordinates can be used over con-
vex and concave polygons and polyhedra and,
moreover, being based on harmonic functions,
produce a conformal mapping in 2D and a
quasi-conformal one in 3D.
All of these schemes are usable for cage-

based object deformation. In this case, the
object to be deformed is located into a poly-
hedron (or polygon) which in this context is
called cage. The vertices of the cage will be
used as control points of the deformation (to-
gether with the face normals in the case of
Green Coordinates). When the vertices of the
cage are interactively edited, the object is de-
formed according to the generalized barycen-
tric coordinates of its mesh vertices. The over-
all deformation works in two steps [6, 14] (see
Figure 1):

1. Preprocess step (Initial conditions): the
generalized barycentric coordinates with
respect to the initial cage vertices are
computed (and stored) for each mesh ver-
tex of the object.



2. Deformation step: every time that the
cage is modi�ed, the mesh inside it is re-
calculated using the new cage and the co-
ordinates computed in Step 1.

Figure 1: Cage-based deformation pipeline

The use of a particular generalized barycen-
tric coordinates system is only a�ecting the
initial conditions in Step 1. Coordinates are
never recomputed during the real-time inter-
action in Step 2, because of the complexity
involved in this recomputation. It is in Step
2 that properties such as the preservation of
the volume of the initial object might be pre-
served during the interaction, and as a conse-
quence, the constraints are independent of the
generalized barycentric coordinates scheme be-
ing used.
Tables 1 and 2 present a comparison among

the discussed generalized barycentric coordi-
nate schemes. It can be observed that most
systems support 3D domains. Guaranteeing
a conformal mapping is not simple, but we
have observed that this is not a fundamental
requirement for the applications that will be
presented in the next Sections.
On the other hand, there are some research

articles that present deformation systems (not
cage-based) that preserve the volume of the
object being modi�ed.
In 1997, Aubert et al. [3] described a

volume-preserving free-form deformation tech-
nique based on the DOGME [4] model. The
DOGME model deforms an object placing
some constraint points on the desired locations
and guaranteeing some constraints through an
optimization parameter. The volume is pre-
served with an iterative algorithm that seeks
the deformation that keeps volume constant
and minimizes the norm of the DOGME opti-
mization parameter.

Later, in 1999, Hirota et al. [11] developed
another volume-preserving free-form deforma-
tion method. In this case, the goal is achieved
through a constrained spring energy minimiza-
tion (each control point of the deformation is
connected to its neighbours in the control lat-
tice through a spring). Every time the user
moves one of the control points, the algorithm
�nds a new con�guration for the lattice in such
a way that the spring energy of the system is
the minimum that keeps constant volume.

In 2006, von Funck et al. [17] developed a
vector �eld based deformation. This method
divides the deformation space into three sub-
spaces: the inner region, where the deforma-
tion is guided by a constant or linear vector
�eld, the outer region, where no deformation
occurs, and the intermediate region, where the
deformation is performed with a divergence-
free and C1 continuous vector �eld. Each time
the user induces a modi�cation, the system
performs a path line integration and updates
the vector �eld to �nd the new position of the
3D model.

Some authors (like [5] and [13]) discuss the
local preservation of volume, which is not to be
confused with the object of this work. Their
aim is to preserve details on a surface as it
evolves. For example, in [5], Botsch et al.
presented a method to deform a 3D object
keeping its local volume constant, based on
multiresolution surfaces and displacement vol-
umes. The technique consists in simplifying
the initial detailed surface Sd into a smoother
surface S and storing the details as volume
displacements (the volume of the prism that
every triangle on Sd projects over S). When
S is deformed, obtaining as a result S′, the
details are added back with an iterative al-
gorithm that reconstructs S′d. This algorithm
�nds the deformed points p′i of S

′
d by minimiz-

ing the local error in the volumes of the prisms
to which p′i belongs.

3 Volume preservation

As previously mentioned, our goal is to induce
cage-based deformations with volume preser-
vation on a 3D triangular mesh. From the



Coordinates
Dimension Kind of polygon/polyhedron

R2 R3 Simplex
General

Concave Convex

Barycentric X X X

Generalized barycentric X X

Harmonic X X X X

Mean-Value X X X

Mean-Value in 3D X X X

Green X X X X

Table 1: Comparison between the coordinate systems studied.

Coordinates
Basic formula (Quasi) Conformal mapping

pos (1) pos & ~n(2) Yes No

Barycentric X X

Generalized
barycentric

X X

Harmonic X X

Mean-Value X X

Mean-Value
in 3D

X X

Green X X

Table 2: Comparison between the coordinate systems studied.

analysis in Tables 1 and 2 we decided to use 3D
Mean-Value Coordinates because of their com-
putational simplicity and acceptable general-
ity. Mean-Value Coordinates use the scheme
in Equation 1 to compute the coordinates of
the mesh vertices p in terms of the cage ver-
tices vc. The α(p) values for a general interior
point p of the cage are computed as follows [9]:

αi(p) =
wi(p)P

k∈IV c
wk(p)

(3)

wi(p) = 1
ri

P
v

c
i∈T

γjk+γij~nij ·~njk+γki~nki·~njk

2~ei·~njk
,

where T are the triangular faces of the cage.
As shown in Figure 2, the coordinates depend
on the angles and normals of the lateral faces
of the pyramids between the internal point p
and each of the triangular faces of the cage.
Once we have introduced the basic compo-

Figure 2: Mean-Value Coordinates 3D

nents of our solution, in the next subsections
we will present some tools to analyse the be-
haviour of the volume of the interior objects
during the deformation process.

3.1 Mesh volume and the Gauss Theorem

We need a computational tool to compute the
volume of a closed 3D model from the in-
formation of its boundary surface (triangular



mesh) S. Such a tool is the Gauss Theorem
or Divergence Theorem [2], which states the
following:

Z Z Z
V

∇ · FdV =

Z Z
S

F · ~ndS, (4)

where F, in the right part of the equation, is
computed on all points on the surface S, and ~n
are the outward normals at these points. By
taking advantage of the discrete mesh struc-
ture of S, the surface integral in Equation 4
can be computed in di�erent ways. We use
Gauss numerical integration [1] because of
its known stability properties and absence of
truncation errors:

Z Z
S

F · ~ndS =
1

3

mX
j=1

~nj ·

 
nX
i=1

ξiωi

!
,

where m is the number of triangles, or faces,
(tj) in the mesh, n is the order of the method,
ωi are the Gauss weights, ~nj is the outward
normal of tj with ‖~nj‖ = 2 · Area(tj) and ξi
are the points over tj de�ned by:

ξi = (p0
jh

0
i + p1

jh
1
i + p2

jh
2
i ),

where hi = (h0
i , h

1
i , h

2
i ) are the standard

Gauss barycentric coordinates of the integra-
tion points in the face tj [8] and {pkj }k=0..2

are the vertices of tj .
Furthermore, we know that the vertices of

the mesh are de�ned with theMean-Value Co-
ordinates by Equation 1. If we put this infor-
mation all together we obtain:

V =
1

3

mX
j=1

~nj ·
nX
i=1

ξiωi

=
1

3

mX
j=1

~nj ·
nX
i=1

(p0
jh

0
i + p1

jh
1
i + p2

jh
2
i )ωi

=
1

3

mX
j=1

~nj ·
nX
i=1

240@ X
k∈IV c

v
c
kα

0
k

1Ah0
i+

+

0@ X
k∈IV c

v
c
kα

1
k

1Ah1
i +

0@ X
k∈IV c

v
c
kα

2
k

1Ah2
i

35ωi
(5)

3.2 The Volume gradient

Equation 5 enables us to compute the gradi-
ent (∇) of the volume V when we perform an
in�nitesimal displacement of a single cage ver-
tex vcq. Using standard derivation techniques
we obtain:

∂V
∂vc

qx
= 1

3

 
mX
j=1

∂~nj

∂vc
qx
·
nX
i=1

ξiωi+

mX
j=1

~nj ·
nX
i=1

∂ξi
∂vc

qx
ωi

!

∂V
∂vc

qy
= 1

3

 
mX
j=1

∂~nj

∂vc
qy
·
nX
i=1

ξiωi+

mX
j=1

~nj ·
nX
i=1

∂ξi
∂vc

qy
ωi

!

∂V
∂vc

qz
= 1

3

 
mX
j=1

∂~nj

∂vc
qz
·
nX
i=1

ξiωi+

mX
j=1

~nj ·
nX
i=1

∂ξi
∂vc

qz
ωi

!

∇V =

„
∂

∂vcqx

,
∂

∂vcqy

,
∂

∂vcqz

«
V (6)

Of course, any in�nitesimal displacement ~δ
of vcq such that ~δ · ∇V = 0 will preserve the
volume enclosed by our mesh. We now turn
to consider larger displacements.

3.3 Gradient's behaviour during the de-

formation

Let us note ∇V (vcq) the gradient of the vol-
ume with respect to vcq, Equation 6. It can
be shown, after some algebraic manipulations,
that ∇V (vcq) = ∇V (vcq + ~δ) for any ~δ orthog-
onal to the gradient.

We can therefore conclude that for any cage
vertex vcq, both the volume enclosed by the de-
formed mesh and the volume gradient ∇(vcq)
remain constant. In other words, for every
cage vertex vcq we have an associated plane
containing the vertex and having a normal vec-
tor coinciding with the volume's gradient (see
Figure 3), such that when we move this ver-
tex vcq within this plane, the volume of the 3D
mesh inside the cage remains constant.

The practical implementation of this algo-
rithm is straightforward: when the user se-
lects a cage vertex to be moved, we compute
the volume's gradient and the corresponding
control plane. The interface ensures volume



Figure 3: Cage with plane associated to a vertex

preservation by simply constraining the dis-
placement of the selected vertex to its corre-
sponding plane.

4 Local deformation stress

Given a point r inside the volume of the object
to be modi�ed, we want to study the distortion
that the deformation causes around it. Let us
de�ne an arbitrarily small sphere centered on r
and compute a unit vector ~g in the direction of
rs−r for each point rs on its surface. Our goal
is to study the modi�cations induced to this
vector ~g during the deformation (see Figure 4).

Figure 4: Deformation in the space around an r

point

By computing directional derivatives in
Equation 1 (using Equation 3 to calculate the
coordinates), we can derive the linear expres-
sion that shows the modi�cation of ~g

~g′ = M · ~g,

where matrix M is:

M =
X
i∈IV c

»
∂αi
∂x

,
∂αi
∂y

,
∂αi
∂z

–
· vc

′
i

Let us now perform a Singular-Value De-
composition on M (M = U−1SV). We ob-
tain:

• U and V: two orthogonal matrices that
produce the same rotations on any ~g and,
therefore, introduce no local deformation.

• S: an anisotropic scaling S =
diag(s1, s2, s3) which introduces a
rotational stress.

We de�ne the stretch (or rotational stress)
in the point r as the maximum rotation pro-
duced by S, once the isotropic transformations
U and V have been removed:

σ = max
g

»
arccos

„
~g · S~g
‖S~g‖

«–
After doing some simulations with numer-

ous triplets of values (s1, s2, s3) with s1 ≥ s2 ≥
s3, we have observed that the rotational stress
produced by the singular values depends on
the maximum and minimum values between
them, that is, s1 and s3 (see Figure 5).
Figure 6 shows the maximum angle pro-

duced in the anisotropic scaling depending on
s1 and s3.
Moreover, we have approximated the angle

function depending on s1 and s3 with a poly-
nomial of degree 6 with an average absolute
error of 0.44◦.
We plan to use this measure in order to per-

form deformations moving more than one ver-
tex of the cage simultaneously. This means
that the user will be able to move a set of
vertices of the cage without any restriction
while the algorithm will compute how to move
some of the free remaining vertices in order to
preserve the volume and trying to minimize
the rotational stress produced in the witness
points r inside the volume of the object.



Figure 5: Maximum angle values with regard to

(s1, s2, s3)

Figure 6: Approximation of the angle function

with a polynomial of degree 6

5 Implementation and Results

In this section, we present the results obtained
in applying our technique, which we have im-
plemented partially in the GPU. The gradient
of the volume with respect to a cage vertex is
calculated in the CPU, because this operation
has to be performed only once, when a control
vertex is picked to be moved. For each new
position of the cage's vertex, the deformation
is computed in the GPU and the new point is
refreshed with the result at an interactive rate.

5.1 Calculation process in GPU

According to the steps indicated in Section 2,
we proceed as follows:

1. Preprocess step (Initial conditions): the
computed Mean-Value Coordinates of the
vertices of the mesh are stored in a tex-
ture array of �oats of 32 bits in the CPU.
To be more precise, if the cage has N
vertices, we have N Mean-Value Coordi-
nates for each vertex of the mesh. To
store them, we need M RGB or RGBA
textures, depending on if N can be di-
vided by 3 or by 4 respectively. Once we
know how many textures will be used, we
have to store theMean-Value Coordinates
of the i-th vertex of the mesh in the i-
th pixel of these textures. For example,
imagine we have a cage with N = 20 ver-
tices; this means that we need a texture
array of M = 5 RGBA textures. Then,
we store the Mean-Value Coordinate 1 to
the Mean-Value Coordinate 4 of the i-th
vertex of the mesh in the i-th pixel of the
�rst texture, the Mean-Value Coordinate
5 to the Mean-Value Coordinate 8 of the
same vertex in the i-th pixel of the second
texture, and so on.

2. Deformation step: every time the cage is
modi�ed we compute the deformation in
the GPU in a two-pass algorithm. First,
a shader reads the textures created in the
Preprocess step and, using Equation 1,
calculates the new mesh. The new posi-
tions of the vertices are stored in another
texture (see Figure 7) and the informa-
tion is passed to the second step through
a Pixel Bu�er Object. More precisely, in
order to get the new position of the i-th
vertex, we multiply the �rst control ver-
tex with the R component of the �rst tex-
ture, the second control vertex with the
G component of the same texture, and
so on. Then, we compute the sum of all
this products and the result is stored in
the i-th pixel of a new RGB texture of
�oats of 32 bits. This new texture is used
to initialize the Pixel Bu�er Object which
will be used as a Vertex Bu�er Object to



render the geometry in the second render-
pass.

Figure 7: GPU shader

With this GPU-based implementation, we
can deform medium-sized models in real time,
as shown in Table 3. This table shows the time
costs of our algorithm (the computation of the
gradient in the CPU and the deformation in
the GPU). It also presents the comparison be-
tween doing the deformation in the GPU or
doing it in the CPU. We can observe that if
we use the GPU implementation we can ac-
celerate the deformation process between 50
or 60 times for the big models (Cylinder and
Bust).
These tests have been made in an Intel

Core2 Duo E8400 with an Nvidia GTX280.

6 Conclusions

We have introduced a technique to preserve
the volume of 3D models in a cage-based de-
formation method. When the user selects a
vertex of the cage to move, we compute a con-
trol surface such that constraining the vertex
in to this surface is equivalent to constraining
the volume to be constant (see Figure 8).
Moreover, we have demonstrated that, if we

use a generalized barycentric coordinate sys-

tem of the family of Equation 1, the control
surface is found to be a constant plane through
a vertex of the cage. Using this, we give a
closed formula to calculate the gradient (the
normal of this plane) in an easy and e�cient
way.
A measure of the local rotational stress has

also been proposed. We are currently work-
ing in the development of e�cient algorithms
for volume-preserving cage-based deformation
with a constraint of minimal stress in a num-
ber of prede�ned witness points.
We have also presented an implementation

using the capabilities of GPUs in order to in-
crease the performance of the computation of
the deformation to achieve real time response
for models of fairly large scale (see Table 3).

Acknowledgments

This project has been funded by Comissionat
per a Universitats i Recerca del Departament
d'Innovació, Universitats i Empresa de la
Generalitat de Catalunya i Fons Social Eu-
ropeu and by the project TIN2007-67982-C02-
01 of the Spanish Government.
We wish to also thank the reviewers for their

helpful comments which have helped us im-
prove this �nal revision.

References

[1] M. Abramowitz and I. Stegun. Handbook
of mathematical functions: with formu-
las, graphs and mathematical tables. New
York. John Wiley and Sons, 1964.

[2] T. Apostol. Calculus, Volume II: Multi-
Variable Calculus and Linear Algebra
with Applications. Wiley, 2nd Edition
June 1984.

[3] F. Aubert and D. Bechmann. Volume-
preserving space deformation. Comput.
Graph., 21(5):625�639, 1997.

[4] P. Borrel and D. Bechmann. Deforma-
tion of n-dimensional objects. In SMA
'91: Proceedings of the �rst ACM sympo-
sium on Solid modeling foundations and



Model Vertices Triangles Gradient time (ms)
Deformation time (ms)
GPU CPU

Teapot 530 1024 1.98 0.18 7.43

Semi-sphere 2524 1054 2.03 0.37 3.38

Monkey 2868 968 1.86 0.19 3.78

Bunny 35947 69451 124.97 0.81 32.69

Cylinder 303504 266240 369.79 4.48 272.58

Bust 893866 1782976 2303.58 15.69 830.95

Table 3: Comparison between calculation times of the Gradient (CPU), the Deformation in GPU
and the Deformation in CPU.

Figure 8: Deformation sequence

CAD/CAM applications, pages 351�369,
New York, NY, USA, 1991. ACM.

[5] M. Botsch and L. Kobbelt. Multiresolu-
tion surface representation based on dis-
placement volumes. Computer Graphics
Forum 22(3), Proc. Eurographics 2003,
2003.

[6] D. Cohen-Or. Space deformations, sur-
face deformations and the opportunities
in-between. J. Comput. Sci. Technol.,
24(1):2�5, 2009.

[7] S. Coquillart. Extended free-form defor-
mation: a sculpturing tool for 3d geomet-
ric modeling. In SIGGRAPH '90: Pro-
ceedings of the 17th annual conference on
Computer graphics and interactive tech-
niques, pages 187�196, New York, NY,
USA, 1990. ACM.

[8] G. R. Cowper. Gaussian quadrature for-
mulas for triangles. International Jour-
nal for Numerical Methods in Engineer-
ing, 7(3):405�408, 1973.

[9] M. S. Floater. Mean value coordi-
nates. Computer Aided Geometric De-
sign, 20(1):19�27, March 2003.

[10] M. S. Floater, G. Kós, and M. Reimers.
Mean value coordinates in 3d. Comput.
Aided Geom. Des., 22(7):623�631, 2005.

[11] G. Hirota, R. Maheshwari, and M. C. Lin.
Fast volume-preserving free form defor-
mation using multi-level optimization. In
SMA '99: Proceedings of the �fth ACM
symposium on Solid modeling and appli-
cations, pages 234�245, New York, NY,
USA, 1999. ACM.



[12] P. Joshi, M. Meyer, T. DeRose, B. Green,
and T. Sanocki. Harmonic coordinates
for character articulation. ACM Trans.
Graph., 26(3):71, 2007.

[13] Y. Lipman, D. Cohen-Or, R. Gal, and
D. Levin. Volume and shape preservation
via moving frame manipulation. ACM
Trans. Graph., 26(1):5, 2007.

[14] Y. Lipman, D. Levin, and D. Cohen-Or.
Green coordinates. ACM Trans. Graph.,
27(3):1�10, 2008.

[15] M. Meyer, A. Barr, H. Lee, and M. Des-
brun. Generalized barycentric coordi-

nates on irregular polygons. J. Graph.
Tools, 7(1):13�22, 2002.

[16] T. W. Sederberg and S. R. Parry.
Free-form deformation of solid geomet-
ric models. SIGGRAPH Comput. Graph.,
20(4):151�160, 1986.

[17] W. von Funck, H. Theisel, and H.-P. Sei-
del. Vector �eld based shape deforma-
tions. ACM Trans. Graph., 25(3):1118�
1125, 2006.


