143 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Heterogeneous parallel virtual machine: A portable program representation and compiler for performance and energy optimizations on heterogeneous parallel systems

    Get PDF
    Programming heterogeneous parallel systems, such as the SoCs (System-on-Chip) on mobile and edge devices is extremely difficult; the diverse parallel hardware they contain exposes vastly different hardware instruction sets, parallelism models and memory systems. Moreover, a wide range of diverse hardware and software approximation techniques are available for applications targeting heterogeneous SoCs, further exacerbating the programmability challenges. In this thesis, we alleviate the programmability challenges of such systems using flexible compiler intermediate representation solutions, in order to benefit from the performance and superior energy efficiency of heterogeneous systems. First, we develop Heterogeneous Parallel Virtual Machine (HPVM), a parallel program representation for heterogeneous systems, designed to enable functional and performance portability across popular parallel hardware. HPVM is based on a hierarchical dataflow graph with side effects. HPVM successfully supports three important capabilities for programming heterogeneous systems: a compiler intermediate representation (IR), a virtual instruction set (ISA), and a basis for runtime scheduling. We use the HPVM representation to implement an HPVM prototype, defining the HPVM IR as an extension of the Low Level Virtual Machine (LLVM) IR. Our results show comparable performance with optimized OpenCL kernels for the target hardware from a single HPVM representation using translators from HPVM virtual ISA to native code, IR optimizations operating directly on the HPVM representation, and the capability for supporting flexible runtime scheduling schemes from a single HPVM representation. We extend HPVM to ApproxHPVM, introducing hardware-independent approximation metrics in the IR to enable maintaining accuracy information at the IR level and mapping of application-level end-to-end quality metrics to system level "knobs". The approximation metrics quantify the acceptable accuracy loss for individual computations. Application programmers only need to specify high-level, and end-to-end, quality metrics, instead of detailed parameters for individual approximation methods. The ApproxHPVM system then automatically tunes the accuracy requirements of individual computations and maps them to approximate hardware when possible. ApproxHPVM results show significant performance and energy improvements for popular deep learning benchmarks. Finally, we extend to ApproxHPVM to ApproxTuner, a compiler and runtime system for approximation. ApproxTuner extends ApproxHPVM with a wide range of hardware and software approximation techniques. It uses a three step approximation tuning strategy, a combination of development-time, install-time, and dynamic tuning. Our strategy ensures software portability, even though approximations have highly hardware-dependent performance, and enables efficient dynamic approximation tuning despite the expensive offline steps. ApproxTuner results show significant performance and energy improvements across 7 Deep Neural Networks and 3 image processing benchmarks, and ensures that high-level end-to-end quality specifications are satisfied during adaptive approximation tuning
    • …
    corecore