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ABSTRACT

Programming heterogeneous parallel systems, such as the SoCs (System-on-Chip) on mo-

bile and edge devices is extremely difficult; the diverse parallel hardware they contain exposes

vastly different hardware instruction sets, parallelism models and memory systems. More-

over, a wide range of diverse hardware and software approximation techniques are available

for applications targeting heterogeneous SoCs, further exacerbating the programmability

challenges. In this thesis, we alleviate the programmability challenges of such systems using

flexible compiler intermediate representation solutions, in order to benefit from the perfor-

mance and superior energy efficiency of heterogeneous systems.

First, we develop Heterogeneous Parallel Virtual Machine (HPVM), a parallel program

representation for heterogeneous systems, designed to enable functional and performance

portability across popular parallel hardware. HPVM is based on a hierarchical dataflow graph

with side effects. HPVM successfully supports three important capabilities for programming

heterogeneous systems: a compiler intermediate representation (IR), a virtual instruction set

(ISA), and a basis for runtime scheduling. We use the HPVM representation to implement an

HPVM prototype, defining the HPVM IR as an extension of the Low Level Virtual Machine

(LLVM) IR. Our results show comparable performance with optimized OpenCL kernels

for the target hardware from a single HPVM representation using translators from HPVM

virtual ISA to native code, IR optimizations operating directly on the HPVM representation,

and the capability for supporting flexible runtime scheduling schemes from a single HPVM

representation.

We extend HPVM to ApproxHPVM, introducing hardware-independent approximation

metrics in the IR to enable maintaining accuracy information at the IR level and mapping

of application-level end-to-end quality metrics to system level “knobs”. The approximation

metrics quantify the acceptable accuracy loss for individual computations. Application pro-

grammers only need to specify high-level, and end-to-end, quality metrics, instead of detailed

parameters for individual approximation methods. The ApproxHPVM system then auto-

matically tunes the accuracy requirements of individual computations and maps them to

approximate hardware when possible. ApproxHPVM results show significant performance

and energy improvements for popular deep learning benchmarks.

Finally, we extend to ApproxHPVM to ApproxTuner, a compiler and runtime system for

approximation. ApproxTuner extends ApproxHPVM with a wide range of hardware and

software approximation techniques. It uses a three step approximation tuning strategy, a

ii



combination of development-time, install-time, and dynamic tuning. Our strategy ensures

software portability, even though approximations have highly hardware-dependent perfor-

mance, and enables efficient dynamic approximation tuning despite the expensive offline

steps. ApproxTuner results show significant performance and energy improvements across

7 Deep Neural Networks and 3 image processing benchmarks, and ensures that high-level

end-to-end quality specifications are satisfied during adaptive approximation tuning.
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CHAPTER 1: INTRODUCTION

1.1 HETEROGENEOUS SYSTEMS

The combination of Moore’s law and Denard’s scaling enabled computer architects to

develop new generations of single core processors that were faster compared to their prede-

cessors due to containing a larger number of smaller transistors. Smaller transistors have

higher operating frequency while power density remained constant. With the end of Denard’s

scaling, as the size of the transistors decreased the power density increased, thus making it

impossible to design single core processors with the same power density. Moore’s Law con-

tinued to apply, but computer architects turned to multi-core architectures in order to utilize

the available number of transistors [1]. However, this approach is eventually limited by power

constraints [2], which eventually lead to the slowdown of Moore’s Law.

The slow down of Moore’s law and the end of Denard’s scaling has given rise to custom

hardware components that deviate from the single core processors contained in traditional

homogeneous systems. Heterogeneous computing systems, i.e. systems containing such com-

ponents, are becoming increasingly popular in systems ranging from portable mobile devices

to high-end supercomputers. Heterogeneous systems are attractive because the specialized

computing elements they contain, e.g. GPUs, vector hardware, FPGAs, domain-specific ac-

celerators, and ASICs can greatly improve energy efficiency, performance, or both compared

to homogeneous systems. A study of a video encoder [3] demonstrates the significant poten-

tial for energy efficiency improvements achievable when targeting specialized architectures.

Additionally, domain specific accelerators enable additional performance or energy benefits

by exploiting domain specific knowledge [4].

The term “heterogeneous system” is very broad, and its exact meaning should be inter-

preted based on the context and the time of usage. For example, it may refer to a system

including components that differ in micro-architecture, instruction set architecture (ISA),

and execution model, such as a combination of a CPU, a GPU and/or special purpose ac-

celerators, or simply refer to a system with cores with different architectural capabilities but

same ISA and execution model, such as ARM’s big.LITTLE [5]. At the time of writing of

this document, the term “heterogeneous system” commonly refers to systems with general

purpose CPUs and GPUs, that may or may not be integrated on the same circuit. The

system may include special purpose accelerators, that may be programmable. CPUs can

execute the operating system and all tasks, including computationally-heavy tasks, but low

end CPUs are better suited for traditional, serial workloads. GPUs or vector-enabled multi-
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core CPUs handle the computationally heavy application code, mostly exploiting the present

data parallelism. An example heterogeneous system is the Qualcomm Snapdragon 865 mo-

bile System-on-Chip (SoC) [6]. It includes a Kryo 585 CPU [7], an Adreno 650 GPU [7], and

accelerators, including a programmable Hexagon DSP [8] and special purpose accelerators

for audio/video encoding and decoding.

Heterogeneous systems are widely used in a variety of systems, ranging from high-end

supercomputers [9, 10, 11], to data centers [12], to mid-level GPU-based systems, to mobile

devices and Internet of Things (IoT) devices at the edge of the network. These classes of

systems utilize their compute capabilities for different kinds of applications, for example

simulations of complex models in several domains (physics, biology, etc) in supercomputers,

information retrieval in data centers, image processing in mid-level GPU-based systems,

and a variety of applications such as face and speech recognition, computer vision, signal

processing [13, 14, 15] depending on the mobile or IoT device. Computing at the edge is

becoming increasingly important given the need for real-time data processing at the edge [16].

Edge computing complements cloud computing by doing some computations near the edge

of the network, as a means to reduce the volume of transferred data and provide low latency

computation. It is estimated that due to devices connected to the Internet that make up

IoT, including the sensors and cameras, the amount of data generated will continue to grow,

reaching 79.4 zettabytes of data in 2025 [17], increasing the need for computation near

data. Therefore, heterogeneous systems on edge devices are an extremely important class of

heterogeneous systems, and we expect this trend to continue.

On some of these classes of systems, the application domains they are utilized for are

inherently error tolerant, i.e. small errors only introduce acceptable loss in the final out-

put. This observation has led to the development of approximate computing techniques,

novel hardware architectures and software optimizations that trade-off accuracy for gains in

performance and energy [18].

1.1.1 Scope of Heterogeneous Systems for this Thesis

For the scope of this thesis, we will consider heterogeneous systems with multicore CPUs

with vector extensions, GPUs, and programmable accelerators. As a use case, we will tar-

get PROMISE [19], a programmable mixed-signal Machine Learning (ML) accelerator that

achieves performance and energy benefits by performing a wide range of vector dot-product

operations in the analog domain.
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1.2 PROGRAMMABILITY CHALLENGES OF HETEROGENEOUS SYSTEMS

The wide utilization of heterogeneous systems has given rise to numerous programma-

bility challenges. At a fundamental level, we believe these challenges arise from four root

causes. Section 1.2.1 discusses the identified root causes, and section 1.2.2 the resulting

programmability challenges.

1.2.1 Root Causes

Diverse hardware parallelism models Different hardware targets expose different, and

sometimes multiple, parallelism models. Studying various commonly used hardware targets,

we categorize them into the broad hardware classes listed in Table 1.1, based on the paral-

lelism model they expose. Table 1.1 includes a brief description of the exposed parallelism

model.

In a heterogeneous system consisting of a combination of the above components, mul-

tiple parallelism models may combine in synchronous or asynchronous execution, further

increasing the complexity.

Diverse memory systems Differences in parallelism models naturally lead to differences

in the underlying memory system. The identified hardware components above have memory

systems ranging between cache-coherent memory hierarchies of various depths (two to three

levels are common cases), scalar and/or vector register files, scratchpad memory utilized as

private or local memory, SRAM blocks (block RAM), and other custom memory designs

specialized to custom accelerators. Knowledge of the underlying memory system influences

algorithm design and application developing.

The complexity increases further as hardware evolves and offers more parameterizable

options to affect the performance, e.g., newer NVIDIA GPU architectures (as of NVIDIA

Fermi [20]) provide 64KB scratchpad memory that is configurable (in certain partitions)

between L1 cache and local memory, and NVIDIA Volta [21] further increases the allotted

scratchpad to 128KB, configurable up to 96 KB of local memory.

Diverse hardware instruction sets Different hardware targets have diverse hardware

instruction sets, which translates to different execution semantics and performance charac-

teristics. The diversity in these features makes it especially difficult to achieve object-code

portability.
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Hardware Class Parallelism Model Description
Multicore CPUs General Multithreading Multiple threads can execute concur-

rently in the context of the same pro-
cess, sharing system resources.

GPUs Data Parallelism Single Instruction Multiple Data
(SIMD), in which multiple processors
execute the same instructions on
different pieces of data, with aspects
of Single Program Multiple Data
(SPMD), since instructions are not
necessarily executed at the same
time, and the threads executing them
have limited communication and
synchronization options.

Vector Hardware (Short) Vector Parallelism Vector Hardware provides vector lanes
of certain width, that can perform the
same operation on multiple data points
simultaneously.

FGPAs Spatial Parallelism A combination of Single Instruc-
tion Multiple Thread (SIMT), pipeline
and/or dataflow parallelism. Pipeline
parallelism is expressed by loop un-
rolling and buffering. SIMT parallelism
is expressed by replication. Dataflow
parallelism is expressed using systolic
arrays.

Custom Accelerators Various parallelism forms Custom to specific accelerators.

Table 1.1: Hardware Classes

Diverse hardware approximation techniques There are multiple approximation tech-

niques at the hardware level, that trade off accuracy at the application level for performance

or energy benefits. Depending on the nature of each approximation technique, the “approx-

imation knobs”, i.e. there exist (one or more) system-level tuning parameters that affect

the application end-to-end behavior and need to be tuned to achieve the programmer in-

tended application specification. The problem is further emphasized when approximation

techniques are combined, and different approximation knobs must be tuned to achieve a

certain application specification.
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1.2.2 Programmability Challenges

Due to the diversities discussed above, programming heterogeneous systems is extremely

challenging at multiple levels: parallel language designers, algorithm designers, application

developers, compiler developers and hardware engineers must all reason about performance,

scalability, and portability across many different combinations of diverse parallel hardware.

We discuss the challenges that occur across all these different levels below.

Parallel Language Design It is difficult to design source-level languages to effectively

program heterogeneous systems. For example, languages such as CUDA and OpenCL expose

data parallelism through a kernel function that is replicated across the data that are to be

processed. OpenCL also offers support for dataflow parallelism, targeting FPGAs, albeit

through a union and not though a common set of interfaces. Other parallelism models are

not specifically supported. Similarly, Streamit [22] supports streaming parallelism. Lime [23]

supports dataflow parallelism. We observe that existing source languages only support one

or two parallelism models. This creates a steep learning curve for the full utilization of

each unique hardware combination in a heterogeneous system, and a prohibitively expensive

barrier to overcome for the wide adaption of heterogeneous systems.

Algorithm Design Given the fact that the target hardware affects the exposed parallelism

model and underlying memory model, it would be difficult to design a single algorithm,

and thus develop a single version of an application, that would perform well across a wide

range of diverse parallelism models with their associated underlying memory models. This

issue is partially addressed by designing an algorithm that achieves good but not optimal

performance or an algorithm that makes the common case fast, or by having multiple versions

of an algorithm and selecting the optimal version when the target hardware and the required

tuning parameters is known (install time, load time, or run time) [24]. We believe that a

combination of the two would be needed to capture a wide range of heterogeneous parallel

hardware, as it would be exceedingly difficult to provide optimal implementations for every

algorithm for every available hardware target.

Application Development A programmer targeting a heterogeneous system is required

to program each hardware component separately, in an appropriate language. This step

requires a deep understanding of which application component needs to be mapped to which

system hardware component, since the cost of reevaluating a wrong decision is significant.
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Source Code Portability Due to the differences in targeted hardware components, any

application code implementing a certain operation is subject to the algorithm design chal-

lenge. Additionally, the task of compiling source code for an application component down to

the hardware component that the respective algorithm is expected to be executed on is com-

plicated due to the vast differences across heterogeneous systems, identified as root causes.

Source code portability becomes exceedingly difficult due to the combination of these two

factors.

Object Code Portability Heterogeneous systems include different combinations of hard-

ware

• across different vendors of a hardware type, e.g., NVIDIA and ARM GPU.

• across a vendor’s family of devices, e.g., different generations or models of NVIDIA

GPUs.

Object code portability is an optional, yet important goal for applications that are designed

to be able to be executed on a wide range of target platforms that include varying com-

binations of diverse hardware components. On the contrary, object code portability would

not be required for an application that is developed targeting a predetermined system with

an ahead-of-time known hardware configuration, e.g. a chemistry simulation developed and

optimized for the hardware of the supercomputer scheduled to execute it.

Object code portability is important across devices of the same, and different vendors’

devices as well. Vendors must be able to ship a single object code for a broad range of target

devices; this way, the same application package can be used to support all devices within

that range. This is challenging due to the differences of the underlying hardware targets.

The entire stack, including performance analysis and tuning tools, debugging tools, profiling

tools, must support the entire (or at least, a large percentage of the) range of the available

hardware, both within a single system is concerned, as well as the range of existing system

configurations. This stack must be developed and maintained by vendors for each new

hardware target and across generations, which can quickly become prohibitively expensive.

Modern apps for mobile phones have used partial solutions (JVM and LLVM virtual ISAs

for host CPUs on Apple and Android mobile devices respectively), and workarounds (e.g.,

custom native libraries for accelerators in the mobile SoCs for Android) to achieve object

code portability on mobile devices. However, utilizing the specified hardware components

through API calls - that are opaque - makes the offloaded operations not amenable to

compiler optimizations along with the rest of the program. The APIs are not retargetable to
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other accelerators, thus do not offer benefits should the target accelerator not be available

on the target platform. Finally, the native library calls must be expressed explicitly by the

programmer, a difficult task considering the number of different accelerators.

Performance Tuning Performance tuning becomes increasingly difficult as the number of

tunable parameters increases. As the different hardware components expose different mem-

ory hierarchies and parallelism models, the resulting performance models are more complex

and less well understood. Additionally, as the number of different hardware components

increases, performance tuning becomes prohibitively expensive.

Approximation Tuning On top of the hardware approximation techniques, multiple soft-

ware approximation techniques also become available to the programmer as tools to trade

off accuracy at the application level for performance or energy benefits. Similar to hardware

techniques, software approximations also need to expose approximation knobs, software-

or application-level, that affect the application end-to-end behavior. For a combination of

hardware and software techniques, the pool of approximation knobs that the programmer

is responsible for understanding and tuning may also be at different levels, application-

level, software-level, and system-level. and deep understanding of all software and hardware

approximation techniques, as well as the effect of their interactions is required. This is ex-

tremely difficult, and also depending on the approximation technique or combination thereof

may not be possible.

The programmability challenges described above also emerge, as expected, on heteroge-

neous systems used for demanding computation tasks on edge computing, with the effect

of further limiting the computational power on these already resource constrained systems.

For example, deep learning inference tasks executing on edge devices are generally unable

to fully utilize the available hardware. Instead application programmers tend to fall back to

targeting the lowest common denominator, the heterogeneous system’s core processor. For

example, inference tasks on the Facebook app utilize general, algorithmic optimizations that

can target all processing environments for performance benefits, opting to use of accelera-

tors only when there is little diversity or there is control over the system environment using

virtual reality platforms [25]. Given the diversity of heterogeneous SoCs in mobile devices,

this problem is extremely difficult to overcome: there is no standard mobile SoC to optimize

for, and target hardware is extremely fragmented [25].
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1.3 SUMMARY OF RELATED WORK

This section briefly discusses the compiler infrastructure that aims to address the pro-

grammability challenges of heterogeneous systems. We also discuss systems developed in

the domain of approximate computing, since it is extremely relevant in applications domains

whose computation is allocated to heterogeneous systems. A detailed literature review is

provided in chapter 2.

1.3.1 Virtual ISAs

An approach to address the programmability challenges of heterogeneous systems is to

abstract the diversities that we identified as their root causes under a virtual layer. This

layer effectively presents a hardware abstraction that is a uniform representation of the un-

derlying hardware and is targeted by the layers higher on the software stack. Applications

can be developed, compiled, and shipped targeting the instruction set of the virtual hard-

ware, or virtual instruction set (Virtual ISA). Dedicated translators, or compiler backends,

are responsible for translating from the Virtual ISA to the native ISA for execution on a

supported device within the target family at install time or runtime, thus achieving porta-

bility of “virtual object code” across the corresponding family of devices. Some widely used

heterogeneous systems define virtual instruction sets spanning one or more families of de-

vices, e.g., PTX for NVIDIA GPUs, HSAIL for CPUs and GPUs from several vendors and

SPIR-V for devices running OpenCL.

Depending on the challenges that a virtual ISA is designed to solve, it abstracts away the

relevant differences in the underlying hardware. For example, these virtual ISAs abstract

away the differences in underlying ISAs, but not in parallelism models. Except for SPIR-V,

which is essentially a lower-level representation of OpenCL for the compute kernels of the

OpenCL device programs, these virtual ISAs are primarily focused on GPUs and do not

specifically address other hardware classes, like vector hardware or FPGAs. That is due to

the parallelism model they expose, which is primarily a “grid of kernel functions”. Moreover,

none of these virtual ISAs address the challenges of compiler optimizations through the use

of a compiler IR or serve as the basis of runtime scheduling.

1.3.2 Parallel Compiler IRs

Previous parallel compiler IR we know of (for example, [26, 27, 28, 29, 30]) do not aim

to, or have different limitations in, targeting heterogeneous parallel systems, as described in
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more detail in section 2.

1.3.3 Approximate Computing Frameworks

Many approximation techniques have been proposed, to improve performance or energy

efficiency. Our work draws from the pool of approximation techniques, and focuses on

managing them in a single framework for adaptive approximation tuning.

Existing systems for accuracy-aware optimizations do not provide a fully automated frame-

work that is able to target multiple heterogeneous devices with diverse approximation choices

without requiring programmer-guided low-level annotations. The ACCEPT [31] framework

optimizes program computations given a source-level end-to-end quality metric, and can

target diverse compute units. However, it does not introduce approximation information at

the IR or virtual ISA level, which limits the approach to the specific source-level annotations

used. It also does not attempt to provide software portability. EnerJ [32] presents a type

system that separates approximate and precise data. Rely [33] and Chisel [34] introduced

the idea of quantifiable reliability and accuracy at the program level. However, introducing

approximation metrics as part of a new programming language is not conducive with our

goal of program portability at the object code level, since applications need to be ported at

the source-level.

Additionally, all these systems require programmer annotations at individual function

level or lower to drive the approximation selection.

There also exist approximation driven adaptive systems [35, 36, 37, 38, 39, 40], that utilize

one or a limited number of approximation techniques, to dynamically tune the approximation

level utilized by an application in response to power or load variations. These systems, which

we will describe in more detail in section 2, do not take into account object code portability,

and they do not target heterogeneous hardware with diverse approximation opportunities.

1.4 APPROACH

To address the programmability challenges of heterogeneous systems, we identify a strat-

egy that involves a three-part approach.

As a first step, we target heterogeneous systems that include hardware components that ex-

pose different parallelism models, memory systems and hardware ISAs. Section 1.4.1 summa-

rizes our approach to enhance the object code and performance portability of such systems.

This work was done jointly, and equally, with Prakalp Srivastava (prakalps@google.com),

and appears in both our theses.
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As a second step, we focus on heterogeneous systems that additionally include accelerators

that expose approximation options. Section 1.4.2 describes the approach to exploit the

performance and energy efficiency superiority of heterogeneous systems by extending our

prior work for accuracy-aware optimizations. This work is lead by Hashim Sharif, and will

be included in the theses of Hashim Sharif (hsharif3@illinois.edu) and Prakalp Srivastava

(prakalps@google.com).

As a final step, we extend to heterogeneous systems at the edge. Section 1.4.3 describes

our approach to address the challenges of performing computationally demanding tasks on

the constrained edge devices, often under changing conditions. This work is done jointly,

and equally, with Hashim Sharif (hsharif3@illinois.edu) and will be included in both our

theses.

1.4.1 Heterogeneous Parallel Systems

We believe that the object code and performance portability challenges of heterogeneous

systems can be best addressed by developing a single parallel program representation flexible

enough to support at least three different purposes :

1. A compiler intermediate representation, for compiler optimizations and code generation

for diverse heterogeneous hardware. Such a compiler IR must be able to implement a

wide range of different parallel languages, including general-purpose ones like OpenMP,

CUDA and OpenCL, and domain-specific ones like Halide and TensorFlow.

2. A virtual ISA, to allow virtual object code to be shipped and then translated down

to native code for different heterogeneous system configurations. This requirement is

essential to enable application teams to develop and ship application code for multiple

devices within a family.

3. A representation for runtime scheduling , to enable flexible mapping and load-balancing

policies, in order to accommodate static variations among different compute kernels

and dynamic variations due to external effects like energy fluctuations or job arrivals

and departures.

We believe that a representation that can support all these three capabilities could (in

future) also alleviate other programmability challenges of heterogeneous systems, specifically

simplify parallel algorithm development and influence parallel language design, although we

do not explore those in this work.
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In this work, we propose such a parallel program representation, Heterogeneous Parallel

Virtual Machine (HPVM), and evaluate it for three classes of parallel hardware: GPUs,

SIMD vector instructions, and multicore CPUs. Our evaluation shows that HPVM can serve

all three purposes listed above: a compiler IR, a virtual ISA, and a scheduling representation,

as described below.

The parallel program representation we propose is a hierarchical dataflow graph with shared

memory. The graph nodes can represent either coarse-grain or fine-grain computational

tasks. In this work, we focus on moderately coarse-grain tasks (such as an entire inner-loop

iteration). The dataflow graph edges capture explicit data transfers between nodes, while

ordinary load and store instructions express implicit communication via shared memory. The

graph is hierarchical because a node may contain another dataflow graph. The leaf nodes

contain scalar computations. A graph node represents a static computation, and any such

node can be “instantiated” in a rectangular grid of dynamic node instances, representing

parallel instances of the computation. In this case, the incident edges of the node are

instantiated as well, in order to capture the connections between the dynamic instances of

the source and sink nodes.

The hierarchical dataflow graphs naturally capture all the important kinds of coarse-

and fine-grain data and task parallelism in heterogeneous systems. In particular, the graph

structure captures coarse-grain task parallelism (including pipelined parallelism in streaming

computations); the graph hierarchy captures multiple levels and granularities of nested par-

allelism; and the node instantiation mechanism captures either coarse- or fine-grain SPMD-

style data parallelism.

We describe a prototype system (also called HPVM) that supports all three capabilities

listed earlier. The system defines a compiler IR as an extension of the LLVM IR [41] by

adding HPVM abstractions as a higher-level layer describing the parallel structure of a

program.

As an example of the use of HPVM as a compiler IR, we have implemented an illustrative

compiler optimization, graph node fusion,which operates directly on the HPVM dataflow

graphs.

Node fusion achieves “kernel fusion”, and the graph structure makes it explicit when it is

safe to fuse two or more nodes. Similarly, we find that the graph hierarchy is also an effective

and portable method to capture tiling of computations, which can be mapped either to a

cache hierarchy or to explicit local memories such as the scratchpads in a GPU.

To show the use of HPVM as a virtual ISA, we implemented translators for NVIDIA

GPUs (using PTX), Intel’s AVX vector instructions, and multicore X86-64 host processors

using Posix threads. The system can translate each HPVM graph node to one or more of
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these distinct target architectures (e.g., a 6-node pipeline can generate 36 = 729 distinct

code configurations from a single HPVM version). Experimental comparisons against hand-

coded OpenCL programs compiled with native (commercial) OpenCL compilers show that

the code generated by HPVM is within 22% of hand-tuned OpenCL on a GPU (in fact,

nearly identical in all but one case), and within 7% of the hand-tuned OpenCL in all but

one case on AVX.

Finally, to show the use of HPVM as a basis for runtime scheduling, we developed a graph-

based scheduling framework that can apply a wide range of static and dynamic scheduling

policies that take full advantage of the ability to generate different versions of code for each

node. Although developing effective scheduling policies is outside the scope of this work, our

experiments show that HPVM enables flexible scheduling policies that can take advantage

of a wide range of static and dynamic information, and these policies are easy to implement

directly on the HPVM representation.

1.4.2 A Compiler for Approximate Heterogeneous Parallel Hardware

This phase of our work extends to heterogeneous parallel systems with approximate hard-

ware, in order to utilize approximate computing techniques (section 1.3) to achieve perfor-

mance or energy benefits.

A given computational algorithm or kernel may benefit from multiple different approxima-

tion techniques, and moreover, a realistic application will contain several (or many) distinct

kernels. Determining how best to map such an application to a modern heterogeneous sys-

tem while achieving the best overall tradeoff between end-to-end application-level accuracy

and performance or energy is an open research problem. Moreover, section 1.2 described

the Approximation Tuning programming challenge. In the context of heterogeneous approx-

imate hardware, this expresses itself as the fact that application developers and end users

cannot be expected to specify error tolerances in terms of the system-level approximation

knobs required by the various hardware approximation techniques, or even know about many

of them. To target heterogeneous systems with approximate hardware we need automated

mapping strategies that can translate application-level specifications (e.g., tolerable classifi-

cation error in a machine learning application) to system-level knobs (e.g., neural network

parameter precision or circuit-level voltage swings).

Optionally, for modern applications targeting a wide range of diverse systems, software

portability is a requirement, not just at the source-code level but also the ability to ship

software that can execute efficiently (as described in section 1.2.2). Modern applications for

both desktop and mobile (e.g., smartphone or tablet) systems are almost always shipped by

12



application teams to end-users in a form that can execute on multiple system configurations

(e.g., with different vector ISAs or GPUs) and even multiple hardware generations (e.g.,

across X86 processors). GPUs, for example, provide virtual instructions sets, e.g., PTX

or HSAIL, to enable software to be shipped as ”virtual object code” that is translated to

particular hardware instances only on the end-user’s system. This is a major challenge for

approximate computing approaches because hardware-specific accuracy-performance-energy

choices can make orders-of-magnitude difference in the performance and energy benefits

achieved in exchange for relaxing accuracy. An important goal for real-world use of such

approaches is to enable software to be shipped as portable virtual object code, while deferring

the hardware-specific aspects of accuracy-performance-energy optimizations to be performed

after shipping [42] (e.g., on the end-user’s device or on servers in an “application store”).

In order to defer hardware-specific optimizations to install-time (or later), an appropriate

virtual object code representation must include the necessary or relevant information to

inform the decision. For accuracy-aware optimizations to benefit from a virtual object code

representation, approximation information must be included at the virtual object code.

To that end, we extend HPVM to ApproxHPVM, a compiler IR and framework for

accuracy-aware optimizations. ApproxHPVM automatically identifies approximable opera-

tions, by allocating a user provided, high level and end to end accuracy metric, to operation-

specific error budgets, and maps the identified approximable operations to fast, approximate

hardware to achieve performance and energy benefits.

The ApproxHPVM IR extends the HPVM IR in two key ways, by including:

• domain-specific knowledge by incorporating high-level tensor operations as part of the

IR.

• hardware-independent approximation metrics that quantify the acceptable accuracy

loss for individual operations.

As ApproxHPVM does not incorporate any hardware-specific knowledge as part of the

IR, it maintains the HPVM rationale of serving as a fully self-contained, hardware-agnostic

virtual ISA that can be shipped and mapped to a variety of hardware platforms. This

is enabled by partitioning the accuracy-energy-performance optimizations into a hardware-

agnostic stage and a hardware-specific stage, where software can be shipped between the two

stages. The approximation metrics are computed as part of the hardware-agnostic stage,

and shipped as part of the virtual ISA, enabling object code portability for approximate

application code.

The HPVM compiler has been extended with backends for two hardware targets for Ap-

proxHPVM, PROMISE [19] , and NVIDIA GPUs through an optimized cuDNN/cuBLAS
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runtime library, and with support for the ApproxHPVM high level tensor operations in

the HPVM C/C++ frontend. ApproxHPVM programs can also be written in Keras [43],

a popular neural-network library that can run on top of TensorFlow and Theano among

other frameworks. Keras provides a simple, programmable interface for providing high-level

descriptions of neural networks. We provide a Keras frontend that automatically generates

the virtual ISA for ApproxHPVM programs.

Experimental results show significant gains, up to 9x performance speedups and up to

11.3x energy reduction, while staying within user-specified application-level quality metrics

with high probability, for nine deep learning benchmarks and five convolution-based image

processing benchmarks.

1.4.3 A Compiler and Runtime System for Adaptive Approximations

The final phase of our work specifically targets heterogeneous systems at the edge.

We identify the following characteristics of these systems, whose combination is important

for effectively targeting heterogeneous systems at the edge.

• Highly diverse and resource constrained: Section 1.2 discusses the programmability

challenges of heterogeneous systems, and how they effectively limit the computational

power of the already resource constrained edge devices.

• Amenable to approximation: The application domains often processed on such systems

are inherently error tolerant, i.e. they can tolerate small amounts of error with accept-

able resulting quality. This is extremely valuable when targeting edge systems, since

the specific applications in these domains are highly compute-intensive, and may be

far beyond the capabilities of even near- and medium-future edge compute hardware.

Edge compute hardware, even with custom accelerators, is often too limited in compu-

tational power, memory capacity, or energy capacity to support these computations.

• Varying conditions: When targeting edge devices, the varying conditions under which

an application might be executing create additional complexities. Load variations,

potentially caused by the need to execute different number of applications or an appli-

cation under different quality requirements, and power constraints caused by battery,

may alter the requirements for energy efficient execution of an application. These vari-

ations can occur unpredictably in the uncontrolled environment of edge computing.

Thus, to effectively target heterogeneous systems at the edge, we require a framework that

abstracts away the diversity of the underlying hardware, enables energy efficient computation
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through approximation optimizations, and provides an adaptive control mechanism to tune

the approximation level in order to alter the achieved performance or energy benefits.

To that end, we propose ApproxTuner (an extension of ApproxHPVM), a portable opti-

mizing compiler and runtime system that targets heterogeneous systems at the edge.

In order to address the programmability challenges, ApproxTuner is built on top of Ap-

proxHPVM, and thus utilizes a portable virtual ISA and compiler.

We identify tensor operations representative of the image processing domain and extend

the ApproxHPVM IR and compiler infrastructure for the image processing domain. The

framework enables the existing general purpose approximation techniques to be seamlessly

used for the image processing tensor intrinsics, and we additionally implement an approxi-

mation technique applicable to the image processing intrinsics.

ApproxTuner provides several software and hardware approximations for tensor opera-

tions used in two different domains: convolutional neural networks and image processing.

Moreover, the framework is extensible to add new approximation techniques.

Although a wide range of approximation techniques is important for targeting heteroge-

neous systems at the edge, supporting several different approximations is in conflict with

portability. This is because (a) autotuning is very expensive because the combined search

space is large, but (b) ahead-of-time hardware-agnostic autotuning for the approximations is

not conducive to performance portability since approximation choices are highly hardware-

dependent.

Additionally, we find that software approximations present difficulties for approximation

tuning. We identify that the accuracy impact of software approximations in ApproxTuner

cannot be easily captured with simple attributes (e.g., L1 or L2 norms of output tensors,

which are the error metrics in the IR). In particular, we observe that L1 and L2 norms work

well when approximation behavior can be captured by independent random variation, such

as external noise (e.g. PROMISE, low-voltage circuits, random bit flips). However, software

approximations often display input sensitivity, thus their effect does not display random

variation. We observe that the L1-L2 approximation metrics do not capture their effect on

the computation (section 7.1). Thus combining software and hardware approximations in

ApproxTuner cannot be achieved using the approximation parameters at the IR level, as

approached by the ApproxHPVM work.

The ApproxTuner system addresses these challenges by decomposing the approximation

tuning in three carefully designed steps: development-time, install-time, and dynamic adap-

tive approximation tuning. Development-time tuning uses an autotuner to tune the available

hardware-independent approximations, and construct approximate Pareto-optimal curves for

their parameter values. Install-time tuning measures the actual performance and energy of
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the points in the approximate Pareto curve and updates the curve to reflect these measured

values. For hardware-specific approximations (which are inherently non-portable), it also

uses an autotuner to select and tune among the full set of software and hardware approxi-

mations. The install-time stage produces an accurate Pareto-optimal curve for the particular

hardware, in order to enable efficient dynamic tuning. Finally, at run time, approximation

choices are periodically updated in response to changing resource variations, e.g., system

load, battery capacity, or task deadlines, using the Pareto-optimal curve to select approxi-

mation choices and parameter settings for each tensor operation.

The three step tuning strategy enables performance portability of application packages,

while supporting both software and hardware approximation techniques. Performance porta-

bility is a critical requirement for modern applications, since applications are expected to run

efficiently on a wide range of systems. The shipped application package includes hardware-

independent approximation methods, therefore they are applicable to any hardware target,

and may be further refined at install time with install time tuning.

The install-time retuning phase can be prohibitively expensive on resource-constrained

edge devices. To render the retuning feasible, we propose federated autotuning. The federated

autotuning process requires an interaction between a centralized server (e.g., an app store)

and client devices, where each client performs a small fraction of the autotuning task and

shares the partial results with the centralized server. The server caches the results gathered

from the client devices and appropriately updates the Pareto curve of configurations for the

target device. In this manner, each edge device only incurs a small fraction of the cost of

install-time autotuning. Carefully designed search space pruning is also utilized to speed up

install time tuning.

We evaluate ApproxTuner using benchmarks from the domains of machine learning and

image processing. For 7 Deep Neural Network (DNN) benchmarks, we find that Approx-

Tuner achieves geometric mean speedup of 1.9x and geometric mean energy reduction of

2x with only hardware-independent approximations. We also show that install-time tuning,

which enables mapping to a machine learning accelerator, PROMISE, can improve these

results to geometric mean speedup of 5.6x and geometric mean energy reduction of 5.9x.

Similarly, for three image processing benchmarks, we achieve a geometric mean speedup of

2.14x and a geometric mean energy reduction of 2.4x. Finally, we show the adaptability of

ApproxTuner through dynamic approximation tuning, which for our DNN and image pro-

cessing benchmarks can deliver required speedups by varying performance and accuracy at

runtime.
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1.5 CONTRIBUTIONS

We summarize the contributions of this thesis, as a result of the approach described in 1.4.

Heterogeneous Parallel Systems I1 consider the object code and performance porta-

bility challenges of heterogeneous parallel systems.

• I develop a parallel program representation (HPVM) for heterogeneous parallel systems

based on a hierarchical dataflow graph with side effects, which captures essentially all

the important kinds of task- and data-parallelism on heterogeneous systems.

• I implement an HPVM prototype system on top of a widely used compiler infras-

tructure, LLVM, which historically has lacked any explicit support for heterogeneous

parallel systems in the LLVM IR.

• I show that HPVM can be used to create an effective parallel virtual ISA for het-

erogeneous systems by (a) using HPVM as a persistent representation of programs,

and (b) by implementing translators from HPVM to three different classes of parallel

hardware: GPUs, vector SIMD, and multicore CPUs.

• I show that HPVM can be used as an effective parallel compiler IR, that can support

important optimizations like node fusion and tiling.

• I show that HPVM dataflow graphs can be used to support flexible static and dynamic

scheduling policies, that take full advantage of the ability to translate individual HPVM

graph nodes to multiple hardware.

Heterogeneous Parallel Systems with Approximate Hardware I2 extend to het-

erogeneous parallel systems with approximate hardware.

• I extend the HPVM compiler infrastructure with high-level tensor operations plus

hardware-agnostic approximation metrics that quantify the accuracy of unreliable and

approximate computations. I have shown that ApproxHPVM IR can serve as a fully

1This work was done jointly, and equally, with Prakalp Srivastava (prakalps@google.com), and appears
in both our theses. We contributed equally to the design of the HPVM parallel program representation
abstractions, implementation of HPVM prototype system on top of LLVM, and code generation. I lead the
aspects of HPVM as a compiler IR and runtime representation.

2This work is lead by Hashim Sharif, and will be included in the thesis of Hashim Sharif
(hsharif3@illinois.edu) and Prakalp Srivastava (prakalps@google.com). I contributed to the ApproxHPVM
IR design, and lead its implementation as part of the HPVM compiler infrastructure.
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self-contained virtual ISA, and so software can be shipped to achieve virtual object-

code portability for approximable computations and allow deferred accuracy aware

optimizations.

• I implement translators from ApproxHPVM to two hardware targets, PROMISE and

an optimized cuDNN/cuBLAS runtime library for NVIDIA GPUs, extend the existing

C/C++ HPVM frontend with support for the ApproxHPVM intrinsics, and contribute

to the Keras frontend.

Heterogeneous Parallel Systems at the Edge Targeting heterogeneous systems at the

edge, I3 make the following contributions:

• Several software and hardware approximations in a single framework: ApproxTuner

is extended (from ApproxHPVM) with a range of software approximation techniques,

now including both software and hardware approximations. A range of approximation

techniques enables better optimization of a single application, as more combinations

of the approximation techniques are available to provide accuracy and performance-

energy benefits.

• Three-phase approximation tuning: I propose a novel three-phase approach to ap-

proximation tuning that provides performance portability, retargetability to different

compute units (with varying hardware-specific approximation knobs), and dynamic ap-

proximation tuning, by splitting approximation tuning into: a) selection of hardware-

independent approximations at development-time, b) selecting hardware-specific ap-

proximation options at install-time, and c) a fast approximation selection at runtime.

• Evaluation: ApproxTuner evaluation shows significant performance and energy ben-

efits through hardware-independent approximations, that are significantly improved

with the use of hardware-specific approximation techniques after install-time retuning.

We also show that dynamic approximation tuning can deliver required speedups by

varying performance and accuracy at runtime.

3This work is done jointly, and equally, with Hashim Sharif, and will also appear in his thesis. We
contribute equally to the approximation techniques utilized in the ApproxTuner system and the three-
step approximation tuning design. I lead the compiler implementation and runtime approximation tuning.
Hashim lead the autotuning in general, specifically the install time tuning with the federated autotuning and
other techniques to make expensive install-time autotuning practical. We both contribute to development
time tuning.
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1.6 THESIS ORGANIZATION

The rest of this document is organized in the following chapters: Chapter 2 gives context to

this thesis by presenting an overview of the state of the art in the relevant domains. Chapter 3

presents the HPVM Intermediate Representation design, that aims to address the object code

and performance portability challenges of heterogeneous systems. Chapter 4 presents the

HPVM prototype implementation based on the HPVM IR design. The prototype system is

a proof of concept, to show that the design in fact addresses the portability challenges of

heterogeneous systems, and includes the implementations of HPVM as a virtual ISA, use

of HPVM as a compiler IR, and as a basis for runtime scheduling. Chapter 5 includes the

evaluation of the HPVM system in respect to the above. Chapter 6 presents ApproxHPVM,

an extension to HPVM for approximation information at the IR level. Chapter 7 presents

ApproxTuner, that addresses the programmability challenges of heterogeneous systems at

the edge. Finally, Chapter 8 presents a summary of the contributions of this thesis and

future directions of this work.
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CHAPTER 2: RELATED WORK

This chapter provides a literature review of the state of the art in programming languages,

compiler infrastructures, and runtime systems that aim to address the programmability

challenges of heterogeneous systems, and techniques and systems developed in the emerging

domain of approximate computing.

2.1 PROGRAMMING TECHNOLOGIES FOR HETEROGENEOUS SYSTEMS

There is a long history of work on dataflow execution models, programming languages, and

compiler systems for homogeneous parallel systems [44, 45, 46, 47, 30, 48, 49, 50]. HPVM

aims to adapt the dataflow model to modern heterogeneous parallel hardware. We focus

below on programming technologies for heterogeneous systems.

Virtual ISAs: NVIDIA’s PTX virtual ISA provides portability across NVIDIA GPUs of

different sizes and generations. HSAIL [51] and SPIR-V [52] both provide a portable object

code distribution format for a wider class of heterogeneous systems, including GPUs, vectors

and CPUs. All these systems implement a model that can be described as a “grid of kernel

functions”, which captures individual parallel loop nests well, but more complex parallel

structures are only expressed via explicit, low-level data movement and kernel coordination.

This makes the underlying model unsuitable for use as a retargetable compiler IR, or for

flexible runtime scheduling. Finally, it is difficult, at best, to express some important kinds

of parallelism, such as pipelined parallelism (important for streaming applications or other

accelerators), because all buffering, synchronization, etc., must be implemented explicitly by

the program. Specifically, while the parallel pipeline stages can be expressed using different

command queues, synchronizing every data transfer between every pair of pipeline stages

requires buffer management, specified by the programmer, and use of explicit “events”.

An event encodes an ordering between two operations, and is consumed upon occurrence.

Therefore, a different event would be needed to be enqueued to capture all dependencies

required to represent a pipeline per data transfer per stage.

In contrast, pipelined parallelism can be expressed easily and succinctly in HPVM (in

addition to coarse- or fine-grain data-parallelism). Pipeline parallelism is captured naturally

as part of the HPVM representation, and the implementation details such as buffering and

synchronization are left to be handled by the system.

Compiler IRs with Explicit Parallel Representations: We focus on parallel com-

pilers for heterogeneous systems. The closest relevant compiler work is OSCAR [26, 53, 27],
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which uses a hierarchical task dependence graph as a parallel program representation for

their compiler IR. They do not use this representation as a virtual ISA, which means they

cannot provide object code portability. Their graph edges represent data and control de-

pendencies, not dataflow (despite the name), which is well suited to shared memory systems

but not as informative for non-shared memory. In particular, for explicit data transfers, the

compiler must infer automatically what data must be moved (e.g., host memory to accel-

erator memory). They use hierarchical graphs only for the (homogeneous) host processors,

not for accelerators, because they do not aim to perform parallel compiler transformations

for code running within an accelerator nor runtime scheduling choices for such code. KIM-

BLE [54, 28] adds a hierarchical parallel program representation to GCC, while SPIRE [29]

defines a methodology for sequential to parallel IR extension. Neither KIMBLE nor SPIRE

make any claim to, or give evidence of, performance portability or parallel object code

portability.

Delite Domain Specific Languages (DSLs) use the Delite compiler framework (described

below) to define an IR for the new DSL, The IR is a sea of nodes representation; each node

explicitly specifies its data and control dependencies, but otherwise is free to float. Nodes are

simultaneously viewed in multiple ways: a generic layer representing a definition, a parallel

layer called Delite ops, and a domain specific layer that contains the actual operation, e.g.

VectorPlus. The IR is optimized by viewing nodes at any layer, allowing for generic and

domain specific operations to be applied at the same IR. The generated IR is domain specific

and not general purpose like HPVM. However, the feature of simultaneous view of Delite

IR in multiple ways would be useful as we extend the HPVM IR with domain specific

information for the second phase of our work, in order to seamlessly allow both domain

independent and domain specific optimizations.

HeteroIR [55] is an intermediate language that used to map high level programming models

(e.g. OpenACC, with OpenARC [56]) to diverse heterogeneous devices. HeteroIR encapsu-

lates the common accelerator operations in high level function calls, and during application

execution the calls are dispatched to the appropriate target architecture API by the runtime

system. However, the HeteroIR constructs only capture the host part of the program, the

accelerator kernels are not part of the HeteroIR representation. In contrast, HPVM cap-

tures the computation and data transfers as part of the dataflow graph, enabling analysis

and potentially mapping to hardware components at different granularity.

AOMP [57] is AMD’s compiler that supports OpenMP and offloading to multiple GPU

targets. It utilizes an LLVM-based IR, that represents OpenMP specific information instead

of abstracting the parallel structure of the program using a uniform parallelism model.

Compiler Frameworks for Heterogeneous Systems: Habanero-Java [58] and Habane-
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ro-C [59], provide an abstraction of heterogeneous systems called Hierarchical Place Trees

(HPT), which can be used to express and support flexible mapping of parallel programs. The

HPT model supports co-allocation of data and computation at multiple levels of a memory

hierarchy. It aims to address the diversity in memory systems of heterogeneous systems,

but does not address the diversity in underlying instruction sets, therefore not addressing

portability of object code through a representation usable as a portable virtual ISA.

In Tangram [60], a program is written in interchangeable, composable building blocks,

called codelets. Codelets represent different, semantically equivalent, algorithmic or imple-

mentation choices for an application code snippet. Tangram defines a set of transformations

that allow for composition of new codelets. The compiler will optimize for the target archi-

tecture by selecting or composing good codelets, and tuning the tunable parameters for the

target architecture. Exploring algorithmic choices is orthogonal to, and can be combined

with, our approach, since HPVM is a lower level representation.

Delite [61] is a compiler framework for developing compiled, embedded DSLs inside the

programming language Scala. Delite DSLs construct an IR on which both generic and

domain specific optimizations are performed and from which compilation is performed to

target hardware. The Delite Execution Graph (DEG) encodes the dependencies between

the computations in the program, and kernels are generated implementing the ops, or IR

nodes, for different targets. Delite provides common parallel patterns and optimizations

that can be reused across DSL implementations. To provide flexibility to run these ops on

different hardware devices, Delite relies on the DSL developers to provide Scala, CUDA,

OpenCL implementations of these computations as necessary for efficiency. HPVM on the

other hand relies on the hardware vendors to provide platform specific implementation of

computations in HPVM IR. The broader Delite approach can be combined with HPVM

approach to ease burden on the DSL developers.

Multi-Level Intermediate Representation (MLIR) [62] is a compiler infrastructure aiming

to unify the effort towards compilation for heterogeneous hardware and domain specific

languages. The MLIR infrastructure defines an Intermediate Representation based on Static

Single Assignment (SSA) form with nested instead of flat regions. It allows the definition

of customizable Ops, organized within separate namespaces called dialects, representing the

set of operations that are legal and supported for a domain. Compiler transformation can

be defined within a dialect, or for all dialects when reasonable, e.g., inlining. MLIR Ops

can represent different levels of abstraction. Thus, MLIR captures language abstractions at

different levels, and operates on the principle of progressive lowering, sequencing compiler

transformations to happen at higher abstraction levels before progressively moving to a lower

abstraction level, effectively losing the information contained in the higher abstraction level.
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HPVM can be implemented as a dialect of MLIR, defining Ops for the HPVM abstractions,

and use translators to convert to available Dialects, e.g. GPU, SPIR-V, or other supported

dialects with hardware support, thus utilizing the MLIR infrastructure for optimization and

code generation for these targets. Approximation information may be introduced as well, as

currently MLIR includes no approximation abstractions. Implementation of HPVM as an

MLIR dialect would eliminate the need to directly use the dialects supported by the HPVM

translators in order to target a range of parallel hardware. MLIR dialects could use HPVM,

instead of going through separate individual dialects for each target hardware.

However, it is explicitly a non goal of the MLIR infrastructure to provide the runtime

support required for the implemented Dialects, and thus runtime scheduling and approxi-

mation tuning in HPVM and ApproxTuner systems would still be explicitly managed by our

runtime. Thus, MLIR infrastructure can be used to implement HPVM as a dialect, which

can benefit the code generation and optimization options of HPVM, but does not replace

the HPVM’s capabilities as a Virtual ISA and a runtime representation.

Runtime Libraries for Heterogeneous Systems: Parallel Virtual Machine (PVM) [63]

enables a network of diverse machines to be used cooperatively for parallel computation. De-

spite the similarity in the names, the systems have different goals. What is virtualized in

PVM are the application programming interfaces for task management and communication

across diverse operating systems, to achieve portability and performance across homogeneous

parallel systems. HPVM virtualizes the parallel execution behavior and the parallel hard-

ware ISAs, to enable portability and performance across heterogeneous parallel hardware,

including GPUs, vector hardware, and potentially FPGAs.

Several other runtime systems [64, 65, 66, 67] support scheduling and executing parallel

programs on heterogeneous parallel systems. However, they do not address the challenge of

object code portability.

Programming Languages: Source-level languages such as CUDA, OpenCL, OpenACC,

and OpenMP all support a similar programming model that maps well to GPUs and vector

parallelism. None of them, however, address object code portability and none can serve as

a parallel compiler IR. They also make it difficult to express important kinds of parallelism,

like pipelined parallelism. OpenCL also offers support for dataflow parallelism, targeting

FPGAs, albeit through a union and not though a common set of interfaces.

PENCIL [68] is a programming language defined as a restricted subset of C99, intended

as an implementation language for libraries and a compilation target for DSLs. Its compiler

uses the polyhedral model to optimize code and is combined with an auto-tuning framework.

It shares the goals of source code portability and performance portability with HPVM.

However, it is designed as a readable language with high-level optimization directives rather
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than as a compiler IR, per se, and it also does not address object code portability.

StreamIt [22] and CnC [69] are programming languages with a somewhat more general

representation for streaming pipelines. For example, StreamIt filters are the basic unit of

computation, and they can be composed using the following structures: Pipeline, SplitJoin,

and FeedbackLoop. FeedbackLoop allows cycles to be introduced in the pipeline representa-

tion, while the HPVM dataflow graph is acyclic. They, however, focus on stream parallelism,

whereas HPVM supports both streaming and non-streaming parallelism. This is crucial when

defining a compiler IR or a virtual ISA for parallel systems (of any kind), because most par-

allel languages (e.g., OpenMP, OpenCL, CUDA, Chapel, etc.) are used for non-streaming

parallel programs.

Legion [70, 71] is a programming model and runtime system for writing high-performance

applications for distributed heterogeneous architectures. It provides abstractions for de-

scribing the structure of program data in a machine independent way. Tasks can be defined

hierarchically, i.e. a Legion program is a tree of tasks with a top level task and tasks can

spawn subtasks. Tasks specify logical regions they will operate on, and define the privi-

leges and coherence for each region. The Legion runtime maps logical regions to (one or

more instances of) physical memory. Legion defines a memory model that provides control

over data placement and partitioning on top of complex memory hierarchies in a machine

independent way, which HPVM lacks. However, Legion focuses on data placement due to

complex memory hierarchies of distributed heterogeneous memory systems where cost of

communication dominates the cost of computation. It does not address the challenges of

diversity in parallelism models or instruction sets, as code for leaf tasks (subtasks that do

not spawn other tasks) is provided by the programmer for each target that the leaf task is

expected to execute on.

Similarly, Sequoia [72, 73] provides rich memory abstractions to enable explicit control over

movement and placement of data at all levels of a heterogeneous memory hierarchy. Specif-

ically, machines are abstracted as trees of distinct memory modules defining their memory

hierarchy. Sequoia programs abstractly describe hierarchies of tasks, with tasks specifying

information about communication and working set of data. Computation is restricted to

tasks that will eventually be mapped to the leaf level of the machine tree.

HPVM lacks these features, but does express tiling effectively and portably using the

hierarchical graphs. In future, we aim to add richer memory abstractions to HPVM. We

believe that HPVM could borrow ideas from Legion and Sequoia for that purpose, as briefly

mentioned in section 8.2.
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2.2 APPROXIMATE COMPUTING

Approximation-Aware Languages. EnerJ [32] presents a type system that separates

approximate and precise data. The developer needs to annotate each variable in the source

code as precise or approximate before the type system can ensure that the approximate data

is never assigned to the precise variable. More recently, Decaf [74] performs type inference

to reduce the developer annotation effort.

Rely [33] and Chisel [34] introduced the idea of quantifiable reliability and accuracy at the

program level. They define function-level specifications that express the maximum probabil-

ity with which the function can produce an inaccurate result. These specifications separate

the optimization within the function from the uses of the function: the code that calls

the function can rely on the specification, while the body of the function can be modified

separately and Rely and Chisel can statically verify that those implementations satisfy the

specification.

All these systems require programmer annotations at the source level. ApproxHPVM

introduces the concept of quantifiable reliability at the IR level. Incorporating approximation

metrics at the IR level provides a more portable alternative, since the metrics are preserved

even after compiling the program and the approximation becomes a first-class citizen in a

compiler workflow, which is able to interact with various front-end languages and hardware-

specific features. ApproxTuner decouples software from hardware approximation tuning

as part of its three step approximation tuning strategy, enabling hardware independent,

development time software approximation options to be shipped as part of the virtual ISA

and hardware-specific tuning to occur at install time, as well as dynamic approximation

tuning.

Compiler-based Systems for Machine Learning. TVM [75] proposes a compiler

framework that supports the compilation and optimization of machine learning workloads

on multiple hardware targets. Similarly, Glow [76] and XLA [77] are also ML-based com-

piler frameworks that leverage DNN-specific operations in the IR design, thereby facilitating

domain-specific optimizations. As ApproxHPVM also leverages domain-specific information

with the inclusion of high-level tensor intrinsics, it also facilitates such domain-specific op-

timizations. None of these systems include approximation metrics in the IR design and

hence do not provide the portability and flexibility offered by ApproxHPVM. While these

existing systems provide support for precision-tuning to half-precision floating point (FP16)

and 8-bit integer (INT8), ApproxHPVM provides more extensive support for approximation

since it also allows for mapping computations to accelerators that provide performance-

energy-accuracy trade-offs. Moreover, ApproxHPVM enables approximation mechanisms
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that are not limited to the machine learning domain. Additional approximation techniques

are introduced in ApproxTuner.

Autotuning Systems. The PetaBricks programming language automatically autotunes

the choice of an algorithm among multiple user-provided choices with varying accuracy

and performance characteristics [24, 42, 78, 79]. Its auto-tuner uses heuristic algorithms to

search among alternative program implementations. Autotuning algorithmic choice could be

incorporated in ApproxHPVM and ApproxTuner as another approximation mechanism. For

example, different algorithms for specific IR-level operations could be mapped to different

accuracy levels in the backend. OpenTuner [78] provides a general autotuning framework

for programs written in conventional programming languages, extending the search space

exploration strategies used in PetaBricks.

The SiblingRivalry [80] system uses the PetaBricks programming language to define a

model for online autotuning that allows programs to continuously adapt to the changing

environment. ApproxTuner supports a wide range of approximations, provides development-

time, install-time and runtime (adaptive) autotuning, and ensures application portability.

Loop perforation [81, 82] uses autotuning to automatically detect which loops to approx-

imate. The autotuning search consists of two phases: 1) sensitivity testing, which checks

whether the perforated loop will cause the program to fail in an unacceptable way: crash

the program, slow it down, cause memory leaks, or produce illegal outputs, and 2) accu-

racy tuning, which finds the loops with maximum speedup for every end-to-end accuracy

loss bound. ACCEPT [31] uses a similar autotuning strategy, while also using source-level

approximation annotations (developer annotations and type system from EnerJ). The anno-

tations are used to restrict the search space, in order to determine approximation methods

to apply between loop perforation, synchronization elision, and neural acceleration. Thus,

ACCEPT needs programmer input to drive the approximation choices.

These systems do not decouple hardware-independent from hardware-dependent tuning

and only consider the end-to-end quality metric. ApproxHPVM includes hardware agnostic

accuracy metrics at the IR level, which capture the allowable difference between the exact

and the approximate computation, which enables ApproxHPVM to achieve portable object

code for approximate hardware. ApproxTuner employs a three step approximation tuning

strategy, enabling hardware independent, development time software approximation options

to be shipped as part of the virtual ISA, hardware-specific tuning to occur at install time,

and dynamic approximation tuning at runtime.

Approximate Hardware Accelerators and Hardware Approximation Techniques.

Recently there have been many proposals for machine learning accelerators. [83, 84, 85, 86].

These accelerators exploit the commonly-used computational and communication patterns
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in ML applications. The DianNao project proposed small footprint accelerators that pro-

vided high-throughput machine learning computations. Recently, Google developed Tensor

Processing Unit (TPU) [4], a special-purpose ASIC for accelerating neural network infer-

ence, offering high throughput for matrix operations compared to GPUs. Esmaeilzadeh

et al [87, 88] proposed the Neural Processing Unit (NPU) that uses analog computation

circuitry to accelerate neural network computations. Their work showed that general pur-

pose applications can be algorithmically transformed into a neural representation, thereby

facilitating execution on an NPU. Overall, these accelerators provide the same high-level

characteristics as PROMISE: they accept some set of topologies and approximate opera-

tions, and efficiently compute the output. We demonstrate the support for most common

matrix operations and metrics in the ApproxHPVM framework. Although we have chosen

PROMISE as an approximate accelerator that exposes hardware approximation options, our

framework is more broadly applicable to the wide range of emerging approximate accelerator

platforms that provide hardware approximation techniques.

Precision tuning is also utilized, as it can greatly impact the achieved performance de-

pending on the target hardware, e.g., fixed point quantization of pretrained deep neural

networks using analytical methods [89] or layer-grained analytical models for bit-widths of

weights and activations [90], tuning of floating-point operations [91, 92].

Software Approximations. Many studies have introduced novel software techniques

for approximation that reduce execution time and/or energy. The transformations include

task skipping [93, 94, 95], loop perforation [81, 82, 96, 40], approximate function substitu-

tion [38, 42, 97, 98], dynamic knobs [35] (dynamically changing function version), reduction

sampling [97, 98], input data sampling [99], tuning floating-point operations [91, 92], selective

discarding of atomics [37] and approximate parallelization [100, 101, 98, 102].

These techniques have been shown effective across a variety of application domains resilient

to small errors. Additionally, domain specific techniques ([103]) have been proposed.

ApproxTuner, as a general framework for adaptive approximations, is highly extensible to

incorporate both these software and hardware-specific approximation techniques.

Approximation Driven Adaptive Systems. PowerDial [35] dynamically adapts the

behavior of applications in response to power or load fluctuations. It requires the application

to expose the parameters that control the approximation level and uses them as knobs

to control the dynamic behavior. PowerDial is limited to applications structured as an

initialization phase followed by a main control loop. JouleGuard [36] is a runtime control

system that provides guarantees of energy consumption, by dynamically configuring the

system and application, while maximizing accuracy. SAGE [37] monitors output quality

deviations at run-time, invoking more precise versions of the computation when quality is
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deemed too low. Green [38] provides statistical Quality of Service (QoS) guarantees, utilizing

loop and function approximation to generate approximate versions of expensive loops and

functions, and monitors the observed QoS to ensure that the QoS requirement is met.

SpeedPress [39] uses loop perforation in the context of dynamic adaptation, to generate

code that can dynamically change between different variants as the execution continues.

Sculptor [40] uses one approximation technique, selective dynamic loop perforation, to auto-

matically transform loops to skip selected instructions in selected iterations. These systems

utilize one or a limited number of approximations, they do not separate out development-

time and install-time tuning opportunities, and they do not target heterogeneous hardware

with diverse approximation opportunities.

MCDNN [104] is an optimizing runtime system that uses a catalog of trained models

with varying speedup and accuracy trade-offs, and switches the models at runtime based on

performance/accuracy constraints. ApproxNet [105] introduces the spatial pyramid pooling

layer (SPP) that allows for skipping certain convolution layers in the same DNN model.

MCDNN is impractical for edge systems since it requires having an ensemble of large DNN

models in memory while ApproxNets need model changes and hence an expensive retraining

step.
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CHAPTER 3: THE HPVM REPRESENTATION

Aiming to alleviate the key programmability challenges of heterogeneous systems, we

propose a parallel program representation designed to provide performance portability for

wide range or popular parallel hardware, including multicore CPUs, GPUs, vector hardware

and potentially FPGAs.

The representation, which we call Heterogeneous Parallel Virtual Machine (HPVM) [106],

is based on a hierarchical dataflow graph with side-effects. This parallelism model was

selected as the basis of HPVM after carefully evaluating how it enables efficient mapping

down to hardware features commonly present within hardware within that range.

This chapter describes the Heterogeneous Parallel Virtual Machine parallel program repre-

sentation. The next chapter describes a specific realization of Heterogeneous Parallel Virtual

Machine on top of the LLVM compiler IR.

Figures 3.1 and 3.2 show the HPVM version of a Laplacian estimate computation of a

greyscale image, used as part of image processing filters. The Laplacian is a measure of the

magnitude of changes in the image’s brightness, and thus is used as part of image processing

filters. The estimate is computed by applying a dilation filter and an erosion filter in the

input image and then computing a linear combination of the initial, the dilated and the

eroded image. This will be used as a running example.

3.1 HPVM PROGRAM

An HPVM program is a combination of host code plus a set of one or more distinct dataflow

graphs. Each dataflow graph (DFG) is a hierarchical graph with side effects. The DFG must

be acyclic. Nodes represent units of execution, and edges between nodes describe the explicit

data transfer requirements. A node can begin execution once a data item becomes available

on every one of its input edges. Repeated transfer of data items between nodes (if more inputs

are provided) yields a pipelined execution of different nodes in the graph. The execution

of a DFG is initiated and terminated by host code that launches the graph. For example,

this mechanism can be used for streaming computations on data streams, e.g., processing

successive frames in a video stream. Nodes may access globally shared memory through load

and store instructions (side-effects), since hardware shared memory is increasingly common

across heterogeneous systems. Because of these side effects, HPVM is not a “pure dataflow”

model.
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Figure 3.1: HPVM dataflow graph for a non-linear Laplacian computation

3.2 DATAFLOW NODE

A dataflow node represents unit of computation in the DFG. A node can begin execution

once a data item becomes available on every one of its input edges. Figure 3.1 shows the

components of the Laplacian as separate dataflow nodes – Dilation Filter (DF), Erosion

Filter (EF) and Linear Combination (LC) – connected by edges. Additionally, figure 3.2

shows the code for node LC and partial code for node LaplacianEstimate, which is standard

LLVM IR except for the new intrinsic functions named llvm.hpvm.*. These are used to

implement the HPVM abstraction in our prototype system, and are explained in subsequent

sections 4.1. Load/store instructions access shared memory, using pointers that must be

received explicitly from preceding nodes.

3.2.1 Dynamic Instances of Nodes

A DFG in HPVM can describe varying (data-dependent) degrees of parallelism at each

node. In particular, a single static dataflow node represents multiple dynamic instances of

the node, each executing the same code with different index values used to uniquely identify

each dynamic instance w.r.t. the others. The dynamic instances of a node may be executed

concurrently, and any required synchronization must imposed using HPVM synchronization

operations. The dynamic instances form an n-dimensional grid, with integer indexes in each

dimension, accessible via HPVM operations described below.

For example, the LC node in the example is replicated to have dimX × dimY instances,
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%struct.1 = type {float*}

define %struct.1 @lincomb(float* %Is, float* %Id, float* %Ie, float* %L) {

%N = call i8* @llvm.hpvm.getNode()

%idx = call i64 @llvm.hpvm.getNodeInstanceID.x(i8* %N)

%idy = call i64 @llvm.hpvm.getNodeInstanceID.y(i8* %N)

; Index and base address calculation using %idx, %idy ...

; similar for Is, Id, Ie, L ...

%pixel_Is = load float* %Is_base

%mul = mul float 2.0, %pixel_Is

%add = add float %pixel_Id, %pixel_Ie

%res = sub float %add, %mul

store float %res, float* L_base

%out = insertvalue %struct.1 undef, float* %L, 0

ret %struct.1 %out

}

%struct.2 = type {float*}

define %struct.2 @laplacianEstimate(float* Is, float* B, float* Id,

float* Ie, float* L, i32 %m, i32 %n) {

%dilationNode = call i8* @llvm.hpvm.createNode2D(%dilationNode, %m, %n)

%erosionNode = call i8* @llvm.hpvm.createNode2D(%erosionNode, %m, %n)

%lincombNode = call i8* @llvm.hpvm.createNode2D(%lincomb, %m, %n)

; Binding the parent input to inputs of the leaf nodes

; ... input binds for dilation and erosion nodes

call void @llvm.hpvm.bind.input(i8* %lincombNode, 0, 0, 1) ; Is

call void @llvm.hpvm.bind.input(i8* %lincombNode, 4, 3, 1) ; L

; Creating dataflow edges between different nodes within same parent node

call void @llvm.hpvm.createEdge(i8* %dilationNode, i8* %lincombNode, 1, 0, 1, 1) ; Id

call void @llvm.hpvm.createEdge(i8* %erosionNode, i8* %lincombNode, 1, 0, 2, 1) ; Ie

; Binding node outputs to parent node output

call void @llvm.hpvm.bind.output(i8* %lincombNode, 0, 0, 1)

}

Figure 3.2: HPVM IR for parts of the non-linear Laplacian computation in figure 3.1

where dimX and dimY are computed at runtime.

3.2.2 Dataflow Node Hierarchy

Each dataflow node in a DFG can either be a leaf node or an internal node. An internal

node contains a complete DFG, called a child graph, and the child graph itself can have

internal nodes and/or leaf nodes.

In Figure 3.1, the node Laplacian Estimate is an internal node, and its child graph

comprises the leaf nodes DF, EF, and LC.

Leaf nodes contain code expressing actual computations. Leaf nodes may contain HPVM

query operations to query the structure of the underlying DFG, and any non host side HPVM
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operation for synchronization and memory allocation.

Internal nodes only describe the structure of the child graph, and cannot include actual

computation. The internal nodes are traversed by the translators to construct a static graph

and generate code for the leaf nodes and edges (section 4.2).

One restriction of this model is that the dataflow graph cannot be modified at runtime,

e.g., by data-dependent code, dynamically spawning new nodes; this enables fully-static

optimization and code generation at the cost of some expressivity.

Benefits of Graph Hierarchy: The grouping and hierarchy of parallelism has several

advantages. It helps express several different kinds of parallelism in a compact and intuitive

manner: coarse-grain task (i.e., pipelined) parallelism via top-level nodes connected using

dataflow edges; independent coarse- or fine-grained data parallelism via dynamic instances

of a single static node; and fine-grained data parallelism via vector instructions within single

instances of leaf nodes. It provides a flexible and powerful mechanism to express tiling of

computations for memory hierarchy in a portable manner (section 4.4.3). It enables efficient

scheduling of the execution of the dataflow graph by grouping together appropriate sets of

dataflow nodes. For example, a runtime scheduler could choose to map a single top-level

(internal) node to a GPU or to one core of a multicore CPU, instead of having to manage

potentially large numbers of finer-grain nodes. Finally, it supports a high-degree of mod-

ularity by allowing separate compilation of parallel components, represented as individual

dataflow graphs that can be composed into larger programs.

3.3 DATAFLOW EDGE

A dataflow edge from the output out of a source dataflow node Src to the input in of a

sink dataflow node Dst describes the explicit data transfer requirements. Src and Dst nodes

must belong to the same child graph, i.e. must be children of the same internal node.

An edge from source to sink has the semantics of copying the specified data from the

source to the sink after the source node has completed execution. Depending on where the

source and sink nodes are mapped, the dataflow edge may be translated down to an explicit

copy between compute units, or communication through shared memory, or simply a local

pointer-passing operation.

The pairs (Src, out) and (Dst, in), representing source and sink respectively, must be

unique w.r.t. every other edge in the same child graph, i.e. two dataflow edges in the same

child graph cannot have the same source or destination.
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Hardware feature Typical HPVM representation
GPUs
GPU Threads DFG leaf nodes

GPU Thread Blocks Parent nodes of DFG leaf nodes representing GPU threads /
skipped

Grid of Thread Blocks (SMs) Parent node of DFG internal nodes representing GPU Thread
Blocks / parent node of DFG leaf nodes representing GPU Threads

GPU registers, private memory Virtual registers in LLVM code for leaf nodes

GPU Scratchpad Memory Memory allocated in DFG internal nodes representing thread
blocks

GPU Global and Constant Memory Other memory accessed via loads and stores in DFG leaf nodes

Short-vector SIMD instructions

Vector instructions with independent
operations

Groups of dynamic instances of leaf nodes

Vector registers Virtual registers in LLVM code for leaf nodes

Homogeneous host multiprocessor

CPU threads in a shared-memory mul-
tiprocessor

One or more top level nodes in one or more DFGs

Shared memory Memory accessed via loads and stores in DFG leaf nodes. HPVM
operations for synchronization.

Heterogeneous multiprocessor system
Major hardware compute units, e.g.,
CPU cores, GPUs

Top-level nodes in the DFG and edges between them

Table 3.1: How HPVM represents major parallel hardware features

3.3.1 Dynamic Instances of Edges

As with dataflow nodes, a static edge also represents multiple dynamic instances of that

edge between the dynamic instances of the source and the sink nodes. An edge can be

instantiated at runtime using one of two simple replication mechanisms:

• “all-to-all”, where all dynamic instances of the source node are connected with all

dynamic instances of the sink node, thus expressing a synchronization barrier between

the two groups of nodes, or

• “one-to-one”, where each dynamic instance of the source dataflow node is connected

with a single corresponding instance of the sink node. One-to-one replication requires

that the grid structure (number of dimensions and the extents in each dimension) of

the source and sink nodes be identical.

Figure 3.1 shows the dataflow edges describing the data movement of smoothed input

image Is, dilated image Id, eroded image Ie, structuring element B and output Laplacian

Estimate between dataflow nodes.
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Some edges (e.g., input B to node Laplacian Estimate) are “fixed”, i.e. non-streaming,

edges: their semantics is as if they repeatedly transfer the same data for each node execution.

In practice, they are treated as a constant across node executions, which avoids unnecessary

data transfers (after the first execution on a device) when executing a streaming DFG.

3.4 INPUT AND OUTPUT BIND

An internal node is responsible for mapping its inputs, provided by incoming dataflow

edges, to the inputs to one or more nodes of the child graph. An internal node binds its

input ip to input ic of its child node Dst using an input bind. The pair (Dst, ic) must be

unique, i.e. no two input binds in the same graph can have the same destination, as that

would create a conflict. Semantically, these represent name bindings of input values and not

data movement.

Conversely, an internal node binds output oc of its child node Src to its output op using

an output bind. The pair (Src, oc) and destination op must be unique, i.e. no two output

binds in the same graph can have the same source destination, as that would create a conflict.

A bind is always all-to-all.

In figure 3.1, we show the binds as undirected edges.

3.5 INTEGRATION WITH HOST CODE

In an HPVM program, the host code is responsible for setting up, initiating the execution

and blocking for completion of a DFG. The host can interact with the DFG to sustain a

streaming computation by sending all data required for, and receiving all data produced by,

one execution of the DFG. The list of actions that can be performed by the host is described

below:

• Initialization and Cleanup: All HPVM operations must be enclosed by the HPVM

initialization and cleanup. These operations perform initialization and cleanup of run-

time constructs that provide the runtime support for HPVM.

• Track Memory: Memory objects that are passed to dataflow graphs need to be

managed by the HPVM runtime. The dataflow graph semantics of the virtual ISA

assumes a globally addressable memory model. However, many accelerators present in

an SoC do not support this model, e.g. discrete GPUs cannot address CPU memory

directly. In such a scenario, all data has to be explicitly transferred to the target
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memory space before one initiates computation on the respective compute unit. The

HPVM runtime includes a “memory tracker” for tracking the location of HPVM-

managed memory objects between these address spaces. Track memory inserts the

specified memory object in the memory tracker and starts tracking it.

• Untrack Memory: Stop tracking specified memory object and remove it from mem-

ory tracker.

• Request Memory: If the specified memory object is not present in host memory,

copy it to host memory.

• Launch: The host code initiates execution of specified DFG, either streaming or non

streaming. This is a non-blocking operation.

– Non streaming DFG: The host provides all data items required for execution of

the DFG at the time of the launch.

– Streaming DFG: No data is provided by the launch operation. Streaming execu-

tion is sustained by push and pop operations, described below.

• Push: Push a set of data items required for one graph execution to the specified

DFG. The DFG must have been launched using a streaming launch operation. This is

a blocking operation.

• Pop: Read data produced from one execution of the specified DFG. The DFG must

have been launched using a streaming launch operation. This is a blocking operation.

• Wait: The host code blocks for completion of specified DFG.

– For a non-streaming DFG, the data produced by the DFG are ready to be read

by the host.

– For a streaming DFG, no more data may be provided for processing by the DFG.

3.6 HPVM REPRESENTATION OF MAJOR PARALLEL HARDWARE FEATURES

An important consideration in the design of HPVM is to enable efficient mapping of code

to key features of various target hardware. We focus on three kinds of parallel hardware

in this work: GPUs, vectors, and multithreaded CPUs. Table 3.1 describes how the key

features of these three hardware families are captured using HPVM constructs. Mapping
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from HPVM constructs to the hardware features is the role of the translators described in

section 4.2.

The table is a fairly comprehensive list of the major hardware features used by parallel

computations, showing that HPVM is effective at capturing different kinds of hardware. We

briefly describe the HPVM representation of each hardware feature.

• GPU threads: GPU threads are launched in (usually) massive numbers to execute a

kernel function. In HPVM, the computation of the kernel function is represented by

a leaf dataflow node. The dynamic instantiation mechanism and graph hierarchy are

utilized to issue the appropriate number of GPU threads.

• GPU Thread Blocks: GPU threads within a thread block are typically allowed to

perform thread block-wide synchronization and cooperate through scratchpad memory,

while such operations are not permitted for all threads within a GPU kernel.

If a kernel function utilizes such features, we opt to explicitly represent the thread

blocks in the HPVM representation of the program using an internal node, and utilize

the graph hierarchy to represent the intended grouping of threads. The dynamic

instances of the thread block node are the number of threads, or the dimensions of the

thread block, in the launched GPU kernel.

• Grid of Thread Blocks (SMs): The grid of thread blocks simply specifies how many

thread blocks should be launched for a particular kernel configuration. We represent

this in HPVM with a dataflow node that is the parent of the thread block node, and

whose dynamic instances specify the number of thread blocks.

If a kernel function does not utilize such features that make use of the isolation and

cooperation between threads belonging in different thread blocks, then we opt for

a simpler graph hierarchy that does not explicitly represent the thread blocks with

separate dataflow nodes. Instead, the grid of thread blocks node is the parent of the

thread node, and its dynamic instances specify the total number of threads.

• GPU registers, private memory: The thread node contains LLVM code for the kernel

function. Virtual registers in the kernel function represent memory accessible only to

each thread.

• GPU Scratchpad memory: As described, a kernel may utilize scratchpad memory for

communication and cooperation within threads of a thread block. To represent the

fact that it is only visible to the threads of a particular thread block, we allocate
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memory within the dataflow node that represents the thread block, and a dataflow

edge transfers it to the leaf node representing the threads. Therefore, the allocated

memory from a dynamic instance of the thread block internal node for a single dynamic

instance (representing one thread block) is only visible to the group of threads that

are created as its own dynamic instances, and thus is private to them, achieving the

desired effect.

• GPU Global and Constant memory: Global and constant memory is visible to all

threads of a GPU kernel. It is provided to the grid, thread block and thread nodes

through binds and/or edges, and is accessed though load and store instructions in the

kernel function that is part of the thread (leaf) node.

• Vector instructions with independent operations: (Short) Vector instructions perform

the same operation on all the data across the vector lanes. In HPVM, we represent

a short vector instruction with no dependencies across vector lanes by grouping the

LLVM instructions across as many dynamic instances of a leaf node as the vector

length into a single vector instruction.

• Vector registers: Hardware vector registers are represented by the register operands

and results of the vector instructions in the LLVM code of the leaf nodes.

• CPU threads in a shared memory multiprocessor: CPU threads in a shared memory

multiprocessor can execute concurrently and exploit task parallelism in applications.

In HPVM, we represent them using different top level nodes, that may belong in one or

more DFGs. The hardware threads are utilized to execute the functionality of the one

or more nodes that are mapped to them, exploiting task and/or pipeline parallelism

available in the HPVM representation.

• Shared memory: In shared memory systems explicit memory transfers are not required.

Dataflow edges provide DFGs with pointers to shared memory. Memory accessible

through these pointers is accessed through load and store instructions in DFG leaf

nodes. Synchronization is handled through appropriate HPVM operations.

A heterogeneous multiprocessor system may contain major compute units of the listed

types, e.g. multicore CPUs and GPUs, in different combinations. HPVM represents all

such units and their corresponding features as top level nodes in a DFG as described. A

compute unit can be used to execute one or more nodes, in one or more DFGs. Dataflow

edges between these nodes represent explicit data transfer requirements between the compute
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units. Depending on the mapping between nodes and compute units, the dataflow edges may

denote different data transfer mechanisms (refer to section 3.3).
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CHAPTER 4: THE HPVM SYSTEM

HPVM supports three important capabilities that enhance the programmability of het-

erogeneous systems: a compiler intermediate representation (IR), a virtual instruction set

(ISA), and a basis for runtime scheduling. As a compiler IR, HPVM enables effective code

generation and optimization for heterogeneous systems. As a virtual ISA, it can be used to

ship executable programs, in order to achieve both functional portability and performance

portability across such systems. At runtime, HPVM enables flexible scheduling policies,

both through the graph structure and the ability to map individual nodes in a program to

any of the target devices on a system. As proof of concept, we have implemented a prototype

HPVM system, which we describe in this chapter.

4.1 HPVM VIRTUAL ISA AND COMPILER IR

Based on the HPVM abstraction as defined in chapter 3, we have developed a specific

realization of HPVM on top of LLVM, also called HPVM. Our prototype system includes a

compiler IR, a virtual ISA, an optimizing compiler, and a runtime scheduler, all based on

the HPVM representation as described in chapter 3.

The compiler IR is an extension of the LLVM IR, defined via LLVM intrinsic functions, and

supports both code generation (section 4.2) and optimization (section 4.4) for heterogeneous

parallel systems. The virtual ISA is essentially just an external, fully executable, assembly

language representation of the compiler IR.

We define new instructions for all the HPVM abstractions as specified in chapter 3, de-

scribing and querying the structure of the dataflow graph, for memory management and

synchronization, as well as for host operations initiating, terminating and interacting with

the execution of a graph. We express the new instructions as function calls to newly defined

LLVM “intrinsic functions”, a standard LLVM mechanism to extend the instruction set and

communicate information to a particular back end. A call to an intrinsic function appears

to existing LLVM passes as a function call to an unknown external function. This ensures

that existing passes do not need to be modified to correctly compile code containing calls to

new intrinsics.

The intrinsic functions used to define the HPVM compiler IR and virtual ISA are shown

in section 4.1.1. The code for each dataflow node is given as a separate LLVM func-

tion called the “node function,” specified as function pointer F for applicable intrinsics

llvm.hpvm.createNode[1D,2D,3D], llvm.hpvm.launch. The node function may call ad-
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ditional, “auxiliary” functions. However, the auxiliary functions are not allowed to include

any HPVM intrinsics, as they are not considered to be part of the HPVM node hierarchy.

The incoming dataflow edges and their data types are denoted by the parameters to the

node function. The outgoing dataflow edges are represented by the return type of the node

function, which must be an LLVM struct type with zero or more fields (one per outgoing

edge).

Pointer arguments of node functions are required to be annotated with attributes in,

and/or out, depending on their expected use (read only, write only, read write), as explained

further in section 4.2.

Each top-level dataflow graph (DFG) in an HPVM program is defined by its own root

node function which creates the underlying DFG structure. The DFG is the (internal) root

node’s child graph. Unlike regular internal nodes, the root node only has one dynamic

instance because it instantiates the top-level DFG. The DFG is launched by the host code

using the root node function, as described in section 4.1.1.

In order to manipulate or query information about graph nodes and edges, we represent

• nodes with opaque handles (pointers of LLVM type i8*).

• inputs of a node as integer indices into the list of function arguments of the node

function. Figure 3.2 shows that node LC has four input arguments, Is, Id, Ie and L

in this order. We use the integers 0, 1, 2 and 3 respectively to transfer data to them

through dataflow edges or bind the parent node’s data.

• outputs of a node as integer indices into the return struct type of the node function.

Node LC has one output, L, that has index 0 in the return struct type. We will use

this index when an edge or a bind must use the output of LC.

A few additional insights and observations for the intrinsic functions are provided here.

Firstly, using LLVM functions for node code makes HPVM an “outlined” representation,

and the function calls interfere with existing intraprocedural optimizations at node bound-

aries.However, offloading computation to accelerators raises different tradeoffs for optimiza-

tions across parallelism constructs, e.g. data transfer vs redundant computation, and care

should be taken before applying intraprocedural optimizations designed for sequential pro-

grams. Secondly, note that although the object returned from llvm.hpvm.malloc can be

shared by all nodes, it must somehow be communicated explicitly for use by other nodes.

Finally, llvm.hpvm.barrier only synchronizes the dynamic instances of the node that exe-

cutes it, and not all other concurrent nodes. In particular, there is no global barrier operation
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in HPVM, but the same effect can be achieved by merging dataflow edges from all concurrent

nodes.

4.1.1 HPVM Intrinsics

This section defines the intrinsic functions used to implement the HPVM internal repre-

sentation. The notation iN represents the N -bit integer type in LLVM.

Intrinsics for Describing Graphs The intrinsics for describing graphs can only be “ex-

ecuted” by internal nodes; all these intrinsics are interpreted by the compiler at code gener-

ation time and erased, effectively fixing the graph structure. (Only the number of dynamic

instances of a node can be varied at runtime.) Additionally, internal nodes are only allowed

to have intrinsics for describing graphs as part of their node function, with the exception

of a return statement of the appropriate type, in order to return the result of the outgoing

dataflow edges.

Conversely, all other intrinsics are executable at run-time, and can only be used by leaf

nodes or by host code.

i8* llvm.hpvm.createNode(i8* F) Create a static dataflow node with one dynamic in-

stance executing node function F. Return a handle to the created node.

i8* llvm.hpvm.createNode1D(i8* F, i64 n1) Create a static dataflow node replicated

in one dimension, namely x, with n1 dynamic instances executing node function F. Return

a handle to the created node.

i8* llvm.hpvm.createNode2D(i8* F, i64 n1, i64 n2) Create a static dataflow node

replicated in one dimension, namely x and y, with n1 and n2 dynamic instances in each

dimension respectively, executing node function F. Return a handle to the created node.

Figure 3.2 shows the usage of this intrinsic to create the nodes DF, EF and LC as part of

the node function of their parent node.

i8* llvm.hpvm.createNode3D(i8* F, i64 n1, i64 n2, i64 n3) Create a static data-

flow node replicated in one dimension, namely x, y and z, with n1, n2 and n3 dynamic

instances in each dimension respectively, executing node function F. Return a handle to the

created node.
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i8* llvm.hpvm.createEdge(i8* Src, i8* Dst, i1 ReplType, i32 sp, i32 dp, i1

isStream) Create edge from output sp of node Src to input dp of node Dst. Argument

dp of Dst’s node function and field sp of the return struct in Src’s node function must have

matching types. ReplType chooses between a one-to-one (0) or all-to-all (1) edge. isStream

chooses a streaming (1) or non streaming (0) edge. Return a handle to the created edge.

Figure 3.2 shows the usage of this intrinsic to create two streaming dataflow edges between

nodes DF-LC, transferring Id, and EF-LC, transferring Ie. To illustrate the meaning of indices

sp and dp, note that both edges are transferring the single output of their respective nodes.

We refer to the output of a node using the index into the return struct, which in this case is

0, thus in both edges, sp = 0. For the destination position, Id is at index 1 in the argument

list of the node function of LC, and Ie at index 2. Therefore, dp = 1 for the first edge and

dp = 2 for the second.

void llvm.hpvm.bind.input(i8* N, i32 ip, i32 ic, i1 isStream) Bind input ip of

current node to input ic of child node N. Argument ic of N’s node function and argument ip

of the current node function must have matching types. isStream chooses a streaming (1)

or non streaming (0) bind.

Figure 3.2 shows the intrinsics for the input binds for node LC. To illustrate the meaning

of indices ip and ic, Is is at position 0 in the argument list of the node functions for both

Laplacian Estimate and LC, thus in the bind for Is ip = 0 and ic = 0. However, L is at

position 4 in the argument list of the node function of Laplacian Estimate, and position

3 in that of LC, thus in the bind for L, ip = 4 and ic = 3.

void llvm.hpvm.bind.output(i8* N, i32 oc, i32 op, i1 isStream) Bind output oc

of child node N to output op of current node. Field oc of the return struct in N’s node function

and field op of the return struct in the current node function must have matching types.

isStream chooses a streaming (1) or non streaming (0) bind.

Figure 3.2 shows the output bind used to bind the output of LC to the output of the

Laplacian Estimate. The index of the output in both return structs is 0, hence oc and op

are assigned to 0.

Intrinsics for Querying Graphs The following intrinsics are used to query the structure

of the dataflow graph. They can only be used by leaf nodes.

i8* llvm.hpvm.getNode() Return a handle to the current leaf node.
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i8* llvm.hpvm.getParentNode(i8* N) Return a handle to the parent in the hierarchy

of node N.

i32 llvm.hpvm.getNumDims(i8* N) Get the number of dimensions of node N.

i64 llvm.hpvm.getNodeInstanceID.[xyz](i8* N) Get index of current dynamic node

instance of node N in dimension x, y or z respectively. The dimension must be one of the

dimensions in which the node is replicated.

i64 llvm.hpvm.getNumNodeInstances.[xyz](i8* N) Get number of dynamic instances

of node N in dimension x, y or z respectively. The dimension must be one of the dimensions

in which the node is replicated.

Intrinsics for Memory Allocation and Synchronization The following intrinsics are

used for memory allocation and synchronization. They can only be used by leaf nodes.

i8* llvm.hpvm.malloc(i64 nBytes) Allocate a block of memory of size nBytes and re-

turn pointer to it.

i32 llvm.hpvm.atomic.add(i8* m, i32 v) Atomically compute the bitwise ADD of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.sub(i8* m, i32 v) Atomically compute the bitwise SUB of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.min(i8* m, i32 v) Atomically compute the bitwise MIN of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.max(i8* m, i32 v) Atomically compute the bitwise MAX of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].
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i32 llvm.hpvm.atomic.xchg(i8* m, i32 v) Atomically compute the bitwise XCHG of

v and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.and(i8* m, i32 v) Atomically compute the bitwise AND of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.or(i8* m, i32 v) Atomically compute the bitwise OR of v and

the value stored at memory location [m] w.r.t. the dynamic instances of the current leaf

node and stores the result back into [m]. Return the value previously stored at [m].

i32 llvm.hpvm.atomic.xor(i8* m, i32 v) Atomically compute the bitwise XOR of v

and the value stored at memory location [m] w.r.t. the dynamic instances of the current

leaf node and stores the result back into [m]. Return the value previously stored at [m].

void llvm.hpvm.barrier() Local synchronization barrier across dynamic instances of

current leaf node, i.e., only synchronizes the dynamic instances of the node that executes it,

and not all other concurrent nodes.

Intrinsics for Graph Interaction The following intrinsics are for graph initialization/ter-

mination and interaction with the host code, and can be used only by the host code.

void llvm.hpvm.init() Initialization of HPVM runtime.

void llvm.hpvm.cleanup() Cleanup of HPVM runtime created objects.

void llvm.hpvm.trackMemory(i8* ptr, i64 sz) Insert memory starting at ptr of size

sz in the memory tracker. ptr becomes the key for identifying this memory object. As soon

as a memory object is inserted in the memory tracker it starts being tracked, and can be

passed as a data item to a dataflow graph.

void llvm.hpvm.untrackMemory(i8* ptr) Stop tracking memory object with key ptr,

and remove it from memory tracker.

void llvm.hpvm.requestMemory(i8* ptr, i64 sz) If memory object with key ptr is

not located in host memory, copy it to host memory.
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i8* llvm.hpvm.launch(i8* RootGraph, i8* Args, i1 isStream) Launch the execu-

tion of a top-level dataflow graph with root node function RootGraph. The execution of the

launched graph is asynchronous. Args is a pointer to a packed struct, containing one field per

argument of the RootGraph function, consecutively. For non-streaming graphs with a non

empty result type, Args must contain an additional field of the type RootGraph.returnTy,

where the result of the graph will be returned. isStream chooses between a non streaming

(0) or streaming (1) graph execution. Return a handle to the invoked dataflow graph.

void llvm.hpvm.wait(i8* GraphID) Wait for completion of execution of dataflow graph

with handle GraphID.

void llvm.hpvm.push(i8* GraphID, i8* args) Push set of input data args (same as

type described in launch) to streaming graph with handle GraphID.

i8* llvm.hpvm.pop(i8* GraphID) Pop and return data from streaming graph with han-

dle GraphID. The return type is a struct containing a field for every output of the graph.

4.2 COMPILATION STRATEGY

We describe the key aspects of the compilation strategy.

4.2.1 Background

We begin with some background on how code generation works for a virtual instruction

set, shown for HPVM in Figure 4.1. At the developer site, front-ends for one or more

source languages lower source code into the HPVM IR. One or more optimizations may

be optionally applied on this IR, to improve program performance, while retaining the IR

structure and semantics. The possibly optimized code is written out in an object code or

assembly language format, using the IR as a virtual ISA, and shipped to the user site (or

associated server). A key property of HPVM (like LLVM [107]) is that the compiler IR and

the virtual ISA are essentially identical. Once the target hardware becomes known (e.g.,

at the user site or server), the compiler back-end is invoked. The back-end traverses the

Virtual ISA and uses one or more target-ISA-specific code generators to lower the program

to executable native code.

Hardware vendors provide high-quality backends for individual target ISAs, which we can

often leverage for our system, instead of building a complete native back-end from scratch
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Figure 4.1: Overview of compilation flow for HPVM.

for each target. We do this for the PTX ISA on NVIDIA GPUs, AVX vector ISA for Intel

processors, and X86-64 ISA for individual threads on Intel host processors.

In this work, we focus on using HPVM for efficient code generation (this section) and

optimizations (section 4.4). We leave front-ends for source languages for future work. Note

that we do rely on a good dataflow graph (representing parallelism, not too fine-grained

nodes, good memory organization) for good code generation. This need can be met with a

combination of parallelism information from suitable parallel programming languages (such

as OpenMP or OpenCL), combined with the graph optimizations at the HPVM level, de-

scribed in section 4.4. We do not rely on precise static data dependence analysis or precise

knowledge of data transfers or memory accesses, which is important because it means that

we can support irregular or data-dependent parallelism and access patterns effectively.

4.2.2 HPVM Compilation Flow

The HPVM compilation flow follows the structure shown in Figure 4.1.

The compiler invokes separate back-ends, one for each target ISA. Each back end performs
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a depth-first traversal of the dataflow graph, maintaining the invariant that code generation

is complete for all children in the graph hierarchy of a node, N , before performing code

generation for N . Each back-end performs native code generation for selected nodes, and

associates each translated node with a host function that implements the node’s functionality

on the target device.

We have implemented back-ends for three target ISAs: PTX (GPU), AVX (Vector), and

X86-64 (CPU). Each backend emits a device-specific native code file that includes a device

specific function per translated node. We use simple annotations on the node functions to

specify the target compute unit manually, where the annotation may specify one or more of

GPU, Vector, CPU. The following subsections briefly describe each backend.

4.2.3 Code Generation for PTX

The PTX [108] backend builds on the existing NVPTX back-end in LLVM. This back

end translates an extended version of the LLVM IR called NVVM (containing PTX-specific

intrinsic functions) [109] into PTX assembly.

A node annotated for GPU will contain a child graph that forms a one-level or two-level

DFG, depending on whether or not the computation is tiled, as shown in Table 3.1 and

explained in section 4.4.3, creating a combined two-level or three-level graph hierarchy. Our

translator for PTX takes as input the internal node IN containing this DFG. It generates an

NVVM kernel function for each leaf node, which will execute the dynamic instances of the

leaf node. If IN is a three-level node, and the second (thread block) level node contains an

allocation node (defined as a leaf node that allocates memory using the llvm.hpvm.malloc

intrinsic), the allocated memory is assigned to scratchpad memory, as explained in sec-

tion 4.4.3. All other memory is allocated by the translator to GPU global memory or GPU

constant memory. We use a simple heuristic to determine when to assign a memory ob-

ject to constant memory, described in section 4.4.2. The LLVM address space mechanism

is used to easily perform this assignment, because the NVPTX backend interprets point-

ers with address space 1, 3, and 4 as pointers to global, scratchpad, and constant memory

respectively.

The HPVM llvm.hpvm.getNode() and llvm.hpvm.getParentNode(i8*) intrinsics are

used to find the node, in the node hierarchy of the DFG, that will be queried for informa-

tion. Subsequently, the HPVM query intrinsics are translated to NVVM intrinsics. Specifi-

cally, we replace the HPVM intrinsics with OpenCL device calls that capture the meaning

of the HPVM query intrinsics depending on the graph structure. An example of such map-

ping is that the llvm.hpvm.getNodeInstanceID.[xyz](N) is mapped to the OpenCL call
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get global id(0/1/2) in a two level DFG with leaf node N, since in this case a unique iden-

tifier for each dynamic instance of N can be returned by the OpenCL call get global id in

the respective dimension for the generated GPU kernel function. However, it is is mapped

to the OpenCL call get local id(0/1/2) in a three level DFG with leaf node N, since in

this case a unique identifier for the inner level of the hierarchy is requested, which would

correspond to a thread identifier within a thread block of a GPU kernel. In general, we use

the OpenCL calls get global id, get local id, and get group id to appropriately trans-

late the HPVM query intrinsics, and the OpenCL atomics and synchronization instructions

to implement the HPVM synchronization intrinsics.

Finally, we link with libclc [110], an open source implementation of the library require-

ments of the OpenCL C programming language on top of multiple targets including NVPTX.

This step replaces the OpenCL device calls with NVVM intrinsics, and eventually generates

an NVVM kernel function for the DFG. The generated NVVM kernel is translated to PTX

by the NVPTX back-end.

Our translator also generates code to load and run the PTX assembly of the leaf node

on the GPU, and for all data transfers for the node’s and outputs. Calls are inserted to

the HPVM runtime, that is implemented on top of the NVIDIA OpenCL runtime, for that

purpose. Data transfer operations are only performed when needed as determined by the

memory tracker (sections 4.2.6 and 4.3). This code is encapsulated in a function that becomes

the host function associated with the input dataflow node IN on the GPU. I.e., it is a CPU

function exposed to the higher level of hierarchy in the dataflow graph that can be called to

implement the functionality of IN on the GPU device.

4.2.4 Code Generation for AVX

Dynamic instances of leaf nodes are assumed to independent and may be executed con-

currently, with synchronization imposed only by HPVM intrinsics, making it possible to

vectorize across node instances. We leverage Intel’s translator from SPIR [111] (predecessor

of SPIR-V. SPIR supported only OpenCL device programs, instead of compute kernels for

multiple Khronos APIs) to AVX, which is part of Intel’s OpenCL runtime system, for two

reasons: it recognizes and utilizes the independence of SPIR work items to produce vector

parallelism, and it is well tuned to produce efficient code for the AVX instruction set. In-

stead of writing our own AVX code-generator directly from HPVM with these sophisticated

capabilities, we chose to write a translator that converts HPVM code to SPIR. The dynamic

instances of leaf nodes become SPIR work items and HPVM synchronization operations are

translated to SPIR. The SPIR representation is largely LLVM with OpenCL device calls and
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address spaces to represent memory spaces similarly to the NVPTX backend, therefore the

translation process is similar to the one described for the PTX backend, up to generating

the OpenCL device calls.

The generated SPIR code is then vectorized for AVX by Intel’s translator. Our translator

also creates the necessary host function to initiate the execution of the SPIR kernel in a

process similar to the PTX backend, generating HPVM runtime calls that invoke the Intel

OpenCL runtime for execution of a SPIR kernel on a CPU device instead.

4.2.5 Host Code Generation

The x86 backend is invoked last, and is responsible for the following:

• Native code generation for all nodes annotated as CPU nodes: We build upon the

LLVM X86 backend for regular LLVM IR, adding support for HPVM intrinsics. The

HPVM intrinsics llvm.hpvm.getNode() and llvm.hpvm.getParentNode(i8*) are

used to find the node, in the node hierarchy of the DFG, that will be queried for

information. Subsequently, the HPVM query intrinsics are translated to LLVM in-

structions.

Specifically, we extend the node function with 0, 2, 4 or 6 arguments depending on

whether the node has 0, 1, 2 or 3 dimensions respectively, that represent a dynamic

instance’s unique identifier and a dimension’s limit. The transformed function is the

generated native function.

We replace the HPVM intrinsics llvm.hpvm.getNodeInstanceID.[xyz](N) and llvm.

hpvm.getNumNodeInstances.[xyz](N) with the corresponding argument, when its ar-

gument N is the leaf node. If N is an internal node, then these intrinsics are implemented

using support from the HPVM runtime, that maintains a stack of indices and limits

of nodes in the hierarchy higher than the leaf node containing the intrinsic. 1

For the internal nodes, we translate createNode operations to loops that enumerate

the dynamic instances of the created node by calling the node function extended with

the identifier and dimension arguments. We also insert calls to the HPVM runtime,

that pushes the internal node’s dynamic instance identifier and dimension limit in

1The HPVM memory and synchronization intrinsics are currently not supported in the x86 backend. The
llvm.hpvm.atomic.* can be supported though LLVM atomic instructions, and llvm.hpvm.malloc can be
implemented using malloc and be transparently cached. the llvm.hpvm.barrier poses a bigger challenge,
as it imposes a synchronization point across all dynamic instances of a node, thereby making code generation
by enumerating the dynamic instances using loops incorrect. Instead, two different loops must be generated,
one for the code up to llvm.hpvm.barrier and one for the code after it, effectively performing loop fission.
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the runtime maintained stack before the loop executing each node function, and pops

them after it is completed. We translate dataflow edges to appropriate data transfers

(section 4.2.6).

For top level internal nodes in streaming dataflow graphs, we additionally generate

a filter function, that repeatedly calls the generated native function in a loop, while

providing the inputs from and the outputs to the streaming edges. We generate circular

buffers for each of the streaming inputs and outputs, and a new thread to execute

the filter function of the node. llvm.hpvm.push and llvm.hpvm.pop intrinsics are

translated to HPVM runtime calls (section 4.3).

• For nodes with multiple native versions, i.e. annotated with more than one target,

generating a wrapper function that invokes the HPVM runtime scheduler (section 4.3)

to choose which target function to execute, on every invocation of the node if the graph

is streaming. The wrapper function has the same signature as the generated native

versions. We generate code that simply calls the getVersion method, that encapsu-

lates the choice of target device (section 4.3), and conditionally calls the generated

native versions based on the result of this call. The wrapper function becomes the

generated native function for nodes with multiple native versions.

• Host-side coordination code, enforcing the order of execution dictated by the dataflow

graph. This is enforced by traversing the dataflow nodes of the child graph of each

internal node in topological sort. Code generation is performed in this order, therefore

satisfying the dependencies imposed by dataflow edges and respecting the dictated

order of execution.

• Code to initiate and terminate execution of each dataflow graph. We launch each

dataflow graph using a separate thread to execute the graph’s generated root function,

thus ensuring asynchronous execution of the graph and host code, and wait for the

graph’s execution to complete by joining with the launched thread.

4.2.6 Data Movement

Code generation for dataflow edges is performed as part of translating the internal dataflow

node containing the edge. When the source and sink node execute on the same compute

unit, or if they execute on two different compute units that share memory, passing a pointer

between the nodes is enough. Such pointer passing is safe even with copy semantics: a
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dataflow edge implies that the source node must have completed execution before the sink

node can begin, so the data will not be overwritten once the sink begins execution.

Some accelerators including many GPUs and FPGAs, only have private address spaces

and data needs to be explicitly transferred to or from the accelerator memory. In such

cases, we generate explicit data copy instructions using the accelerator API, e.g., OpenCL

for GPUs.

It is important to avoid unnecessary data copies between devices for good performance. To

that end, we allow explicit attributes in and/or out on node arguments, and only generate

the specified data movement. Achieving the same effect without annotations would require

an interprocedural May-Mod analysis [112] for pointer arguments, which we aim to avoid as

a requirement for such a key optimization.

4.3 HPVM RUNTIME AND SCHEDULING FRAMEWORK

Some features of our translators require runtime support.

First, the HPVM design allows a leaf node to query node instance and dimension queries

to any ancestor. When such a query can be addressed by hardware registers, the query

intrinsic is replaced by the corresponding accelerator API call (as shown in the PTX back-

end). However, when it is not supported, the runtime maintains a stack to keep track of

the instance ID, and dimension limit of the dynamic instance of the ancestors and responds

when a query arrives. This stack is used by the x86 backend, that utilises the stack for

querying instance IDs and dimension limits of internal nodes.

Second, global memory must be shared across nodes mapped to devices with separate ad-

dress spaces. To support this, the translators insert calls to the HPVM runtime, that utilize

the appropriate accelerator runtime API (in our case, the OpenCL runtime) to perform the

copies. Such copies are sometimes redundant, e.g., if the data has already been copied to the

device by a previous node execution. The HPVM runtime includes a conceptually simple

“memory tracker” to record the locations of the latest copy of data arrays, and thus avoid un-

necessary copies. The memory tracker implements the track, untrack, and request memory

host operations (section 3.5) for specified memory objects. Additionally, the memory tracker

is implicitly invoked as part of the implementation of a dataflow edge. A request memory

operation is performed from the location of the sink dataflow node, for every dataflow edge

incoming to that node in order to ensure that the input data will be present at the beginning

of the execution of aforementioned node. If the requested data is already present, passing a

pointer is sufficient. Otherwise the appropriate accelerator runtime API calls are invoked to

perform the copies.
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Third, streaming edges are implemented using buffering and different threads are used to

perform the computation of each pipeline stage. The required buffers, threads, and data

copying are managed by the HPVM runtime. Specifically, the HPVM runtime implements

a circular buffer data structure, and blocking push and pop operations on it. The threads

needed for all nodes of a streaming graph that are executing the node filter functions are

created when the dataflow graph is launched and destroyed when the data stream ends.

All data transfers between two nodes are automatically managed. Specifically, a streaming

edge is implemented as a circular buffer, and data transfers between nodes are handled by

popping from and pushing to the buffers corresponding to the edges between them. The

runtime calls implementing the llvm.hpvm.push and llvm.hpvm.pop intrinsics push and

pop data to and from circular buffers corresponding to the inputs and outputs of the root

node of the launched dataflow graph. We use an additional buffer, isLastInput, that contains

a streaming boolean, to denote the end of the data stream when false.

Finally, the runtime is invoked when a runtime decision is required about where to sched-

ule the execution of a dataflow node with multiple translations. We use a run-time policy

to choose a target device, based on the dataflow node identifier, the data item number for

streaming computations, and any performance information available to the runtime. (Data

item numbers are counted on the host: 0 or higher in a streaming graph, −1 in a non-

streaming graph.) We encapsulate the decision into a base policy class with a method

getVersion(const char *node name, int64 t data item no) that returns a target de-

vice; specific policies can be implemented by subclasses of this class. This method is invoked

on a selected policy object, and the result is used to invoke the version for the selected target.

This basic framework allows a wide range of scheduling policies. We have implemented a

few simple static and dynamic policies:

1. Static Node Assignment : Always schedule a dataflow node on a fixed, manually spec-

ified target, so the target depends only on the node identifier, i.e., the first argument

of getVersion.

2. Static Data Item Assignment : Schedule all nodes of a graph for a particular input data

item on a single target, so the target depends only on the data item number, i.e., the

second argument of getVersion.

3. Dynamic: A dynamic policy that uses the node identifier as in policy #1 above, plus

instantaneous availability of each device: when a specified device is unavailable, it uses

the CPU instead.

Experimenting with more sophisticated scheduling policies within the framework is out
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of scope for this work. Within the scope of this work, we simply aim to show that we offer

the flexibility to support flexible runtime scheduling decisions. For example, the second and

third policies above could use a wide range of algorithms to select the target device per data

item among all available devices. The key to the flexibility is that HPVM allows individual

dataflow graph nodes to be compiled to any of the targets.

4.4 COMPILER OPTIMIZATION

An important capability of a compiler IR is to support effective compiler optimizations.

The hierarchical dataflow graph abstraction enables optimizations of explicitly parallel pro-

grams at a higher (more informative) level of abstraction than a traditional IR (such as LLVM

and many others), that lacks explicitly parallel abstractions; i.e., the basic HPVM intrinsics,

llvm.hpvm.createNode*, llvm.hpvm.createEdge, llvm.hpvm.getNodeInstanceID.*, etc.,

are directly useful for many graph analyses and transformations. In this section, we describe

a few optimizations enabled by the HPVM representation.

4.4.1 Node Fusion

One optimization we have implemented as a graph transformation is Node Fusion. It can

lead to more effective redundancy elimination and improved temporal locality across func-

tions, reduced kernel launch overhead on GPUs, and sometimes reduced barrier synchro-

nization overhead. Fusing nodes, however, can hurt performance on some devices because of

resource constraints or functional limitations. For example, each streaming multiprocessor

(SM) in a GPU has limited scratchpad memory and registers, and fusing two nodes into one

could force the use of fewer thread blocks, reducing parallelism and increasing pressure on

resources.

We use a simple policy to decide when to fuse two nodes; for our experiments, we provide

the node identifiers of nodes to be fused as inputs to the node fusion pass. More sophisticated

node fusion policies can be developed, perhaps guided by profile information or autotuning.

Two nodes N1 and N2 are valid node fusion candidates if: (1) they both are (a) leafs, or

(b) internal nodes containing an optional allocation node (refer to section 4.2.3) and a single

other leaf node (which we call the compute node); (2) they have the same parent, target,

dimensions and size in each dimension, and, if they are internal nodes, so do their compute

nodes and their optional allocation nodes; and (3) they are either concurrent (no path of

edges connects them), or they are connected directly by one-to-one edges and there is no

data transfer between N1’s compute and N2’s allocation node, if any.
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The result is a fused node with the same internal graph structure, and with all incoming

(similarly, outgoing) edges of N1 and N2, except that edges connecting N1 and N2 are

replaced by variable assignments.

Note that fusing nodes may reduce parallelism, or may worsen performance due to greater

peak resource usage. Nodes that have been fused may need to be split again due to changes

in program behavior or resource availability, but fusing nodes loses information about the

two original dataflow nodes. More generally, node splitting is best performed as a first-class

graph transformation, that determines what splitting choices are legal and profitable instead

of keeping track of which nodes have been previously merged as split candidates. We leave

this transformation to future work.

4.4.2 Mapping Data to GPU Constant Memory

GPU global memory is highly optimized (in NVIDIA GPUs) for coalescing of consecutive

accesses by threads in a thread block: irregular accesses can have orders-of-magnitude lower

performance. In contrast, constant memory is optimized for read-only data that is invariant

across threads and is much more efficient for thread-independent data.

The HPVM translator for GPUs automatically identifies data that should be mapped

to constant memory. The analysis is trivial for scalars, but also simple for array accesses

because of the HPVM intrinsics: for array index calculations, we identify whether they

depend on (1) the getNodeInstanceId.* intrinsics, which is the sole mechanism to express

thread-dependent accesses, or (2) memory accesses. Those without such dependencies are

uniform and are mapped to constant memory, and the rest to GPU global memory. The

HPVM translator identified such candidates in 3 (spmv, tpacf, cutcp) out of 7 benchmarks,

resulting in 34% performance improvement in tpacf and no effect on performance of the

other two benchmarks.

4.4.3 Memory Tiling

The programmer, an optimization pass or a language front-end can “tile” the computation

by introducing an additional level in the dataflow graph hierarchy. The (1D, 2D or 3D)

instances of a leaf node would become a single (1D, 2D or 3D) tile of the computation. The

(1D, 2D or 3D) instances of the parent node of the leaf node would become the (1D, 2D or

3D) blocks of tiles.

Memory can be allocated for each tile using the llvm.hpvm.malloc intrinsic in a single

allocation node (refer to section 4.2.3), which passes the resulting pointer to all instances of
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the leaf node representing the tile. This memory would be assigned to scratchpad memory

on a GPU orget transparently cached on the CPU.

In this manner, a single mechanism, an extra level in the hierarchical dataflow graph, rep-

resents both tiling for scratchpad memory on the GPU and tiling for cache on the CPU, while

still allowing device-specific code generators or autotuners to optimize tile sizes separately.

On a GPU, the leaf node becomes a thread block and we create as many thread blocks as

the dimensions of the parent node. On a CPU or AVX target, the code results in a loop nest

with as many blocks as the dimensions of the parent node, of tiles as large as the dimensions

of the leaf node.

We have used this mechanism to create tiled versions of four of the seven Parboil bench-

marks evaluated in section 5. The tile sizes are determined by the programmer in our

experiments. For the three benchmarks (sgemm, tpacf, bfs) for which non-tiled versions

were available, the tiled versions achieved a mean speedup of 19x on GPU and 10x on AVX,

with sgemm getting as high as 31x speedup on AVX.
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CHAPTER 5: HPVM EVALUATION

We evaluate the HPVM representation by examining several questions:

1. Is HPVM performance-portable: can we use the same virtual object code to get “good”

speedups on different compute units, and how close is the performance achieved by

HPVM compared with hand-written OpenCL programs?

2. Does HPVM enable flexible scheduling of the execution of target programs?

3. Does HPVM enable effective optimizations of target programs?

5.1 EXPERIMENTAL SETUP AND BENCHMARKS

We define a set of C/C++ functions corresponding to the HPVM intrinsics and use them

to write parallel HPVM applications. We implemented a simple HPVM C/C++ frontend

to generate the virtual ISA from this representation.

We translated the same HPVM code to two different target units: the AVX instruction

set in an Intel Xeon E5 core i7 and a discrete NVIDIA GeForce GTX 680 GPU card with

2GB of memory. The Intel Xeon also served as the host processor, running at 3.6 GHz, with

8 cores and 16 GB RAM.

For the performance portability and hand-coded comparisons, we used 7 OpenCL applica-

tions from the Parboil benchmark suite [113]: Sparse Matrix Vector Multiplication (spmv),

Single-precision Matrix Multiplication (sgemm), Stencil Partial Differential Equation solver

(stencil), Lattice-Boltzmann (lbm), Breadth-first search (bfs), Two Point Angular Correla-

tion Function (tpacf), and Distance-cutoff Coulombic Potential (cutcp).

In the GPU experiments, our baseline for comparison is the best available OpenCL im-

plementation. For spmv, sgemm, stencil, lbm, bfs and cutcp, that is the Parboil version

labeled opencl nvidia, which has been hand-tuned for the Tesla NVIDIA GPUs [114]. For

tpacf, the best is the generic Parboil version labeled opencl base. We further optimized

the codes by removing unnecessary data copies (bfs) and global fences (tpacf, cutcp). All

the applications are compiled using NVIDIA’s proprietary OpenCL compiler.

In the vector experiments, with the exception of stencil and bfs, our baseline is the same

OpenCL implementations we chose as GPU baselines, but compiled using the Intel OpenCL

compiler, because these achieved the best vector performance as well. For stencil, we used

opencl base instead, as it outperformed opencl nvidia. For bfs, we also used opencl base,

as opencl nvidia failed the correctness test. The HPVM versions were generated to match
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(a) GPU Experiments - Normalized Execution Time.

(b) Vector Experiments - Normalized Execution Time.

Figure 5.1: For each benchmark, left bar is HPVM and right bar is OpenCL baseline. The
absolute time of the baseline is annotated as a reference next to the baseline bar.

the algorithms used in the OpenCL versions, and that was used for both vector and GPU

experiments.

We use the largest available input for each benchmark, and each data point we report is

an average of ten runs.

5.2 PORTABILITY AND COMPARISON WITH HAND TUNING

Figures 5.1a and 5.1b show the execution time of these applications on GPU and vector

hardware respectively, normalized to the baselines mentioned above. Each bar shows seg-

ments for the time spent in the compute kernel (Kernel), copying data (Copy) and remaining

time on the host. The total execution time for the baseline is shown above the bar.

Compared to the GPU baseline, HPVM achieves near hand-tuned OpenCL performance

for all benchmark except bfs, where HPVM takes 22% longer. The overhead is because our
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Figure 5.2: Frame rates of different configurations of Edge Detection six stage pipeline
through single HPVM object code.

translator is not mature enough to generate global barriers on GPU, and thus HPVM version

is based on a less optimized algorithm that issues more kernels than the opencl nvidia

version, incurring significant overhead.

In the vector case, HPVM achieves performance close to the hand-tuned baseline in all

benchmarks except lbm. In this case, the vector code generated from the Intel OpenCL

compiler after our SPIR backend is significantly worse that the one generated directly from

OpenCL. We have not identified the cause of this yet.

Note that although HPVM is a low-level representation, it requires less information to

achieve performance on par with OpenCL, e.g., details of data movement need not be spec-

ified, nor distinct command queues for independent kernels. The omitted details can be

decided by the compiler, scheduler, and runtime instead of the programmer.

5.3 EVALUATION OF FLEXIBLE SCHEDULING

We used a six-stage image processing pipeline, Edge Detection in grey scale images, to

evaluate the flexibility that HPVM provides in scheduling the execution of programs con-

sisting of many dataflow nodes. The application accepts a stream of grey scale images, I,

and a fixed mask B and computes a stream of binary images, E, that represent the edges of

I. We feed 1280x1280 pixel frames from a video as the input and measure the frame rate at

the output. This pipeline is natural to express in HPVM. The streaming edges and pipeline

stages simply map to key features of HPVM, and the representation is similar to the code

presented in Figure 3.1. In contrast, expressing pipelined streaming parallelism in OpenCL,

PTX, SPIR-V or HSAIL, although possible, is extremely awkward, as explained briefly in
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Figure 5.3: Edge Detection Frame rate with different scheduling policies. The green and red
band in the graph indicates when the GPU is available or not respectively.

section 2.1.

Expressing this example in HPVM allows for flexibly mapping each stage to one of three

targets (GPU, vector or a CPU thread), for a total of 36 = 729 configurations, all generated

from a single HPVM code. Figure 5.2 shows the frame rate of 7 such configurations. The

figure shows that HPVM can capture pipelined, streaming computations effectively with

good speedups. More importantly, however, the experiment shows that HPVM is flexible

enough to allow a wide range of static mapping configurations with very different perfor-

mance characteristics from a single code.

To show the flexibility for dynamic scheduling, we emulate a situation where the GPU

becomes temporarily unavailable, by using a thread to toggle a boolean variable indicating

availability. This can arise, e.g., for energy conservation in mobile devices, or if a rendering

task arrives with higher priority. When the GPU becomes unavailable, kernels that have

already been issued will run to completion but no new jobs can be submitted to it. We

choose to have the GPU available for intervals of 2 seconds out of every 8 seconds, because

the GPU in our system is far faster than the CPU.

In this environment, we execute the Edge Detection pipeline using the three different

scheduling policies described in section 4.3.

Figure 5.3 shows the instantaneous frame rate for each policy. Green and red sections

show when the GPU is available or not respectively. We truncate the Y-axis because the

interesting behavior is at lower frame rates; the suppressed peak rates are about 64 frame/s.

Static node assignment policy makes no progress during the intervals when the GPU is

not available. The other two policies are able to adapt and make progress even when the

GPU is unavailable, though neither is perfect. Static data item assignment policy may or
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may not continue executing when the GPU is unavailable, depending on when the data

items that will be issued to the GPU are processed. Also, it may have low frame rate when

the GPU is available, if data items that should be processed by the CPU execute while the

GPU is available. Dynamic policy will not start using the GPU to execute a dataflow node

for a data item until the node is done for the previous data item. That is why the frame

rate does not immediately increase to the maximum when the GPU becomes available. The

experiment shows HPVM enables flexible scheduling policies that can take advantage of

static and dynamic information, and these policies are easy to implement directly on the

HPVM graph representation.

We also used the Edge Detection code to evaluate the overhead of the scheduling mech-

anism. We compared the static node assignment policy using the runtime mechanism with

the same node assignment using only compiler hints. The overheads were negligible.

Overall, these experiments show that HPVM enables flexible scheduling policies directly

using the dataflow graphs.

5.4 NODE FUSION OPTIMIZATION EVALUATION

We evaluated the benefits of Node Fusion using two widely used kernels, Laplacian Es-

timate (L) and Gradient Computation (G). Most benchmarks we examined have been

hand-tuned to apply such transformations manually, making it hard to find Node Fusion

opportunities (although they may often be more natural to write without manual node fu-

sion). The two kernels’ dataflow graphs have similar structure, shown for L in Figure 3.1.

We compiled the codes to run entirely on GPU and fed the same video frames as before.

Fusing just the two independent nodes gave a speedup of 3.7% and 12.8% on L and G

respectively. Fusing all three nodes yielded a speedup of 10.6% and 30.8% on L and G

respectively. These experiments show that Node Fusion can yield significant gains, but the

benefits depend heavily on which nodes are fused.

5.5 CONCLUSION

Experimental results show that HPVM optimizations achieve significant performance im-

provements, HPVM translators achieve performance competitive with manually developed

OpenCL code for both GPUs and vector hardware, and that runtime scheduling policies

can make use of both program and runtime information to exploit the flexible compilation

capabilities.
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Overall, we conclude that the HPVM representation is a promising basis for achieving per-

formance portability and for implementing parallelizing compilers for heterogeneous parallel

systems.
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CHAPTER 6: APPROXHPVM

ApproxHPVM is a compiler IR and system designed to enable accuracy-aware performance

and energy tuning on heterogeneous systems with multiple compute units and approximation

methods. ApproxHPVM automatically translates end-to-end application-level quality met-

rics into accuracy requirements for individual operations. ApproxHPVM uses a hardware-

agnostic accuracy-tuning phase to do this translation that provides greater portability across

heterogeneous hardware platforms, with hardware specific decisions being deferred to install

time.

ApproxHPVM incorporates three main components:

1. a compiler IR with hardware-agnostic approximation metrics. The ApproxHPVM IR

is an extension of the HPVM IR (section 3).

2. a hardware-agnostic accuracy-tuning phase to identify error-tolerant computations.

3. an accuracy-aware hardware scheduler that maps error-tolerant computations to ap-

proximate hardware components.

As ApproxHPVM does not incorporate any hardware-specific knowledge as part of the IR,

it can serve as a portable virtual ISA that can be shipped to all kinds of hardware platforms.

This chapter briefly describes the ApproxHPVM system [115]. It provides a high level

work flow of the ApproxHPVM framework and mainly focuses on this thesis’ contributions

to this work, namely the design of the ApproxHPVM IR and the extensions on top of

HPVM compiler infrastructure. The reader is referred to [115] and to the lead author,

Hashim Sharif’s, thesis for a full presentation of this work.

6.1 THE APPROXHPVM INTERMEDIATE REPRESENTATION

ApproxHPVM is inspired by and builds on HPVM [106]. We extend the HPVM IR in two

key ways:

• to support execution of basic linear algebra tensor computations.

• to specify accuracy metrics for each operation.

6.1.1 Tensor operations in ApproxHPVM

Domain-specific languages such as TensorFlow and Pytorch allow for improved program-
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Tensor Intrinsic Description
i8* llvm.hpvm.tensor.mul(i8* lhs, i8* rhs) Performs a matrix multiply operation on the in-

put tensors.
i8* llvm.hpvm.tensor.conv(i8* input, i8* fil-
ter, i32 stride, i32 padding)

Applies a convolution filter on input tensor with
configurable stride and padding.

i8* llvm.hpvm.tensor.depthwise conv(i8*
input, i8* filter, i32 stride, i32 padding)

Performs a depthwise tensor convolution with
configurable stride and padding.

i8* llvm.hpvm.tensor.add(i8* lhs, i8* rhs) Element-wise addition on input tensors.
i8* llvm.hpvm.tensor.reduce window(i8* in-
put, i32 reduction type, i32 window size)

Performs a (configurable) reduction operation
over a specified window size on the input tensor.

i8* llvm.hpvm.tensor.relu(i8* input) Element-wise relu activation function.
i8* llvm.hpvm.tensor.clipped.relu(i8* input) Element-wise clipped relu activation function.
i8* llvm.hpvm.tensor.tanh(i8* input) Element-wise tanh activation function.
i8* llvm.hpvm.tensor.batchnorm(i8* input,
float* mean, float* variance)

Batch normalization on input tensor given mean
and variance of batch.

i8* llvm.hpvm.tensor.softmax(i8* input) Tensor Softmax.

Table 6.1: Tensor intrinsics in the ApproxHPVM representation.

mer productivity and are thus gaining wide-spread adoption. Accordingly, compilers such

as XLA for TensorFlow [77] and TVM for MxNet [75] are beginning to support efficient

mapping of high-level domain-specific abstractions to heterogeneous parallel compute units

including CPUs, GPUs, FPGAs, and special-purpose accelerators, and to run-time libraries

like cuDNN or cuBLAS.

A general-purpose parallel IR such as HPVM translates high-level operations into generic

low-level LLVM instructions. However, such early lowering of domain-specific operations can

result in loss of important semantic information that may be needed by a back end to target

run-time libraries or domain-specific accelerators. Reconstructing the higher-level semantics

after lowering is generally very difficult and sometimes infeasible.

Instead, we choose to incorporate high-level but broadly applicable operations into HPVM

IR directly. In this work, we extend the HPVM IR representation with linear algebra tensor

operations that allow for naturally expressing tensor-based applications. Tensors are used

in a wide range of important domains, including mechanics, electromagnetics, theoretical

physics, quantum computing, image processing and machine learning. For instance, con-

volutional neural networks may be expressed using generic linear-algebra operations. This

design choice provides two essential benefits: a) It enables efficient mapping of tensor opera-

tions to special purpose hardware and highly optimized target-specific runtime libraries, such

as cuDNN for GPUs. b) It allows approximation analyses to leverage domain-specific infor-

mation, because the approximation properties, parameters, and analysis techniques usually

are determined by properties of the domain.

The list of tensor intrinsics introduced in ApproxHPVM are listed in Table 6.1. The tensor
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operations in ApproxHPVM are represented as calls to LLVM intrinsic functions (the same

approach used within the HPVM compiler infrastructure, as described in section 4.1). The

intrinsic calls appear to existing LLVM passes as calls to unknown external functions, so

existing passes remain correct. For applications where all data-parallelism occurs via the

tensor operations, the dataflow graph is only used to capture pipelined and task parallelism

across nodes, while data-parallelism is captured by the tensor operation(s) within individual

nodes.

Figure 6.1 shows a single neural network convolution layer represented in ApproxH-

PVM, using three tensor operations: llvm.hpvm.tensor.conv, llvm.hpvm.tensor.add,

and llvm.hpvm.tensor.relu. The DFG root function is the root of the dataflow graph, and

would be invoked by host code. The root node is an internal graph node, which creates the

leaf nodes tensorConvNode, tensorAddNode and tensorTanhNode (using llvm.hpvm.create-

Node calls) and connects the nodes through dataflow edges (using llvm.hpvm.createEdge

calls). The leaf nodes invoke the tensor intrinsics to perform tensor computations on the

input tensors. The output of the last node in the dataflow graph is connected to the output

of the root node and is returned back to the caller.

6.1.2 Approximation Metrics in the IR

The second key feature of ApproxHPVM is the use of hardware-independent approxima-

tion metrics that quantify the accuracy of unreliable and approximate computations. We

attach error metrics, defined below, as additional arguments to high-level tensor operations.

Our design allows the specifications to be added to generic low-level instructions, but we do

not use that in this work. To express the (allowable) difference between approximate and

exact tensor outputs, we use vector distance metrics:

• Relative L1 error:

Le1 =
L1(A−G)

L1(G)
(6.1)

where

L1(X) = ‖X‖1 =
∑
i

|xi| (6.2)

The numerator captures the sum of absolute differences between the approximate

tensor output A and the golden tensor output G. The denominator is the L1 norm

of the golden output tensor, so that the ratio is the relative error.
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define i8* @tensorConvNode(i8* %input, i8* %filter) {

%result = call i8* @llvm.hpvm.tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding)

return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_weights) {

%result = call i8* @llvm.hpvm.tensor.add(i8* %input, i8* %bias_weights)

return i8* %result

}

define i8* @tensorReluNode(i8* %input) {

%result = call i8* @llvm.hpvm.tensor.relu(i8* %input)

return i8* %result

}

define void @DFG_root(i8* %W, i8* %X, i8* %B) { ; Root node of the Dataflow Graph

; Creating DFG nodes

%nodeConv = call i8* @llvm.hpvm.createNode(i8* @tensorConvNode)

%nodeAdd = call i8* @llvm.hpvm.createNode(i8* @tensorAddNode)

%nodeRelu = call i8* @llvm.hpvm.createNode(i8* @tensorReluNode)

; Creating data-flow edges between different DFG nodes

call void @llvm.hpvm.createEdge(i8* %nodeConv, i8* %nodeAdd, 1, 0, 0, 0)

call void @llvm.hpvm.createEdge(i8* %nodeAdd, i8* %nodeRelu, 1, 0, 0, 0)

; Binding the parent input to inputs of the leaf nodes

call void @llvm.hpvm.bind.input(i8* %nodeConv, 0, 0, 0)

call void @llvm.hpvm.bind.input(i8* %nodConv, 1, 1, 0)

call void @llvm.hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)

; Binding final DFG node output to parent node output

call void @llvm.hpvm.bind.output(i8* %nodeRelu, 0, 0, 0)

}

Figure 6.1: Single Convolution Layer represented using ApproxHPVM tensor intrinsics. Con-
volution Layer sub-operations are represented as ApproxHPVM tensor intrinsics in HPVM
dataflow nodes. The data-flow nodes are connected through explicit dataflow edges using
HPVM intrinsics.

• Relative L2 error:

Le2 =
L2(A−G)

L2(G)
(6.3)

where

L2(X) = ‖X‖2 =

√∑
i

x2i (6.4)

This is similar to the Le1 norm, except that the numerator represents the Euclidean

distance and the denominator uses the L2 norm.

Note that the relative L1 error and relative L2 error are non-negative and lie in the range

[0, +∞).

Figure 6.2 shows how the approximation metrics are represented in the compiler IR.

The two approximation parameters for each tensor operation are attached as additional

arguments to the respective intrinsic functions. While our current system only uses the

two metrics described, our implementation and analyses can be easily extended to include

additional approximation metrics.
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define i8* @tensorConvNode(i8* %input, i8* %filter) {

%result = call i8* @llvm.hpvm.tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding, float

%relative_l1, float %relative_l2)

return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_tensor) {

%result = call i8* @llvm.hpvm.tensor.add(i8* %input, i8* %bias_tensor, float %relative_l1, float

%relative_l2)

return i8* %result

}

define i8* @tensorReluNode(i8* %input) {

%result = call i8* @llvm.hpvm.tensor.relu(i8* %input, float %relative_l1, float %relative_l2)

return i8* %result

}

Figure 6.2: Convolution Layer represented using ApproxHPVM tensor intrinsics. Tensor
intrinsics are annotated with accuracy metrics. The accuracy metrics Le1 and Le2 are passed
as parameters to the intrinsic calls.

Figure 6.3: ApproxHPVM System Workflow

6.2 SYSTEM WORKFLOW

Figure 6.3 shows the overall ApproxHPVM workflow. The primary input is a program

written using high-level abstractions of the Keras library [43], a popular open-source library

for deep neural networks on TensorFlow. Our frontend translates a Keras source program

to the ApproxHPVM IR. The second input is the programmer-specified end-to-end quality

metric, a domain-dependent parameter. For the neural network domain, we use the accept-

able loss in final classification accuracy and for image processing pipelines, we use desired

Peak Signal-to-Noise Ratio (PSNR) of the approximated output.

The overall goal is to map the computations of the program to the compute units on a
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target system, along with selected approximation parameter values on each compute unit,

so that the program outputs satisfy the specified end-to-end accuracy. We decompose this

mapping problem into a hardware-agnostic first stage and a hardware-specific second stage.

(1) The decomposition generates hardware-agnostic ApproxHPVM code with accuracy

constraints, which enables portability of the ApproxHPVM virtual object code. As the

accuracy constraints are hardware-independent, the IR operations can be mapped to a range

of different types of hardware components with varying approximation choices. (2) The

second stage is extremely fast, enabling techniques like dynamic accuracy-aware scheduling

and rapid accuracy-aware hardware design space exploration, which would be impractical if

the expensive first stage were needed.

The hardware-agnostic accuracy-tuning phase takes an end-to-end quality metric and com-

putes the error tolerance for individual ApproxHPVM operations, adding these requirements

in the IR. This phase guarantees that if these error tolerances for individual operations are

(independently) satisfied, then the end-to-end accuracy specification will also be satisfied

with some high probability, e.g., 95%.

The heart of the accuracy-tuner is an autotuning search that uses statistical error injection

to model potential run-time errors and directly executes the program on a standard GPU to

measure the end-to-end accuracy vs. the expected (“golden”) output. The reasoning behind

this choice is that maintaining the hardware agnostic aspect requires a hardware agnostic

error model, a general error injection technique instead of a specific approximation choice

and a way to evaluate which configuration has better performance. The autotuner is built

using OpenTuner [78], an extensible framework for building domain-specific autotuners. The

output of this stage is hardware-agnostic ApproxHPVM code, which is legal LLVM and can

optionally be used as a virtual instruction set to ship the code as “virtual object code” to

one or more targets [107].

For each target, a (static) accuracy-aware hardware mapping phase chooses which compute

units should execute each tensor operation, and optimizes any approximation parameters

available on each compute unit to minimize energy and/or maximize performance, while

satisfying the individual accuracy constraints on each operation.

Finally, the code generation phase 6.3 leverages the hardware-specific backends to generate

code for each compute unit.

6.3 CODE GENERATION

In its final phase, the ApproxHPVM compiler generates code for each operation corre-

sponding to the selected compute unit.
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Once we have the mapping of each operation in ApproxHPVM to the hardware unit and

the hardware knob, we need to generate an executable that runs each operation on the

respective hardware platform. We leverage the existing HPVM infrastructure for this.

We added two new backends: for PROMISE, targeting a library that performs optimized

tensor computations on the PROMISE hardware simulator, and for GPU, targeting an

optimized cuDNN and cuBLAS based library runtime. Since the support for backends is

flexible, it can be extended to other approximate computing hardware platforms.

The back-end code generators translate dataflow graph nodes (containing tensor intrinsics

such as llvm.hpvm.tensor.mul, llvm.hpvm.tensor.conv, etc) to functions that invoke the

corresponding DNN operations for GPU or PROMISE.

6.3.1 PROMISE Backend

The PROMISE ISA exposes primitive instructions, at the level of vector add, vector dot

product, etc, described in more detail in [19]. The PROMISE hardware simulator utilizes the

ISA to implement a library of neural network layers as a higher level interface for PROMISE,

which we target in this work.

Code generation for PROMISE requires an additional pattern-driven fusion operation.

That is because translators within the HPVM infrastructure in principle traverse the dataflow

graph and operate at the dataflow node level, while PROMISE operates on a granularity

that is larger than that of a single dataflow node. As described, PROMISE can perform an

entire layer operation as a single operation. In the ApproxHPVM representation, a layer

operation is represented by one or more dataflow nodes, as shown for a convolution layer in

figure 6.4.

A layer operation in a DNN usually maps to the following common patterns for fully-

connected and convolution layers (equations 6.5 and 6.6 respectively):

YFC = f(X ·W +B) (6.5)

YConv = f(X ~W +B) (6.6)

where W , X and B are the weight tensor, input tensor, and bias tensor, and f(·) is the

activation function (sigmoid, relu, tanh, etc.). The PROMISE hardware simulator exposes

the two following interfaces: FCLayer PROMISE and ConvLayer PROMISE, that implement the

functionality of these layers on PROMISE.

We implement a pattern-driven Node Fusion transformation. The Node Fusion transfor-

mation operates on ApproxHPVM graphs. We traverse the dataflow graph using a topolog-

68



define i8* @tensorConvNode(i8* %input, i8* %filter) {

%result = call i8* @llvm.hpvm.tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding)

return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_weights) {

%result = call i8* @llvm.hpvm.tensor.add(i8* %input, i8* %bias_weights)

return i8* %result

}

define i8* @tensorReluNode(i8* %input) {

%result = call i8* @llvm.hpvm.tensor.relu(i8* %input)

return i8* %result

}

define void @DFG_root(i8* %W, i8* %X, i8* %B) { ; Root node of the Dataflow Graph

; Creating DFG nodes

%nodeConv = call i8* @llvm.hpvm.createNode(i8* @tensorConvNode)

%nodeAdd = call i8* @llvm.hpvm.createNode(i8* @tensorAddNode)

%nodeRelu = call i8* @llvm.hpvm.createNode(i8* @tensorReluNode)

; Creating data-flow edges between different DFG nodes

call void @llvm.hpvm.createEdge(i8* %nodeConv, i8* %nodeAdd, 1, 0, 0, 0)

call void @llvm.hpvm.createEdge(i8* %nodeAdd, i8* %nodeRelu, 1, 0, 0, 0)

; Binding the parent input to inputs of the leaf nodes

call void @llvm.hpvm.bind.input(i8* %nodeConv, 0, 0, 0)

call void @llvm.hpvm.bind.input(i8* %nodConv, 1, 1, 0)

call void @llvm.hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)

; Binding final DFG node output to parent node output

call void @llvm.hpvm.bind.output(i8* %nodeRelu, 0, 0, 0)

}

Figure 6.4: Convolution Layer in ApproxHPVM before Node Fusion.

ical sort, and identify node sequences that constitute fully connected or convolution layers.

We refer to node sequence as a set of dataflow nodes that form a straight line graph. Each

node must have a single predecessor (the previous node in the sequence) and a single succes-

sor (the next node in the sequence) except the start and end node that have no predecessor

and successor in the sequence respectively. A node sequence corresponding to a fully con-

nected layer is identified by a start node containing an llvm.hpvm.tensor.mul intrinsic,

followed optionally by a node containing llvm.hpvm.tensor.add and an a node containing

an activation intrinsic, in this order. Similarly, a convolution layer corresponds to a node

sequence beginning with a node containing a llvm.hpvm.tensor.conv, optionally followed

by llvm.hpvm.tensor.add, an activation intrinsic, and a pooling intrinsic, in this order.

Once an appropriate node sequence has been identified, if all nodes that belong to the

node sequence have been annotated to be mapped to PROMISE (as enabled by the HPVM

infrastructure), we proceed to the fusion of the nodes in the sequence. This involves the

following main steps:

• Creating a new leaf node FN that eventually replaces the nodes in the layer node

sequence. This involves creating a function that invokes the ApproxHPVM intrin-

sics corresponding to the operations performed by the identified layer. Dataflow
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define i8* @convLayerNode(i8* %input, i8* %filter, i8* %bias_weights) {

%conv_result = call i8* @llvm.hpvm.tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding)

%add_result = call i8* @llvm.hpvm.tensor.add(i8* %conv_result, i8* %bias_weights)

%relu_result = call i8* @llvm.hpvm.tensor.relu(i8* %add_result)

return i8* %relu_result

}

define void @DFG_root(i8* %W, i8* %X, i8* %B) { ; Root node of the Dataflow Graph

; Creating DFG nodes

%nodeConvLayer = call i8* @llvm.hpvm.createNode(i8* @convLayerNode)

%nodeConv = call i8* @llvm.hpvm.createNode(i8* @tensorConvNode)

%nodeAdd = call i8* @llvm.hpvm.createNode(i8* @tensorAddNode)

%nodeRelu = call i8* @llvm.hpvm.createNode(i8* @tensorReluNode)

; Binding the parent input to inputs of the leaf nodes

call void @llvm.hpvm.bind.input(i8* %nodeConvLayer, 0, 0, 0)

call void @llvm.hpvm.bind.input(i8* %nodeConvLayer, 1, 1, 0)

call void @llvm.hpvm.bind.input(i8* %nodeConvLayer, 2, 2, 0)

; Binding final DFG node output to parent node output

call void @llvm.hpvm.bind.output(i8* %nodeConvLayer, 0, 0, 0)

}

Figure 6.5: Convolution Layer in ApproxHPVM after Node Fusion.

edges that were between nodes within the node sequence now express intra-node

communication, and will now be expressed using registers. This is illustrated in fig-

ures 6.4 and 6.5, where the two edges of the root node between nodeConv-nodeAdd

and nodeAdd-nodeRelu are simply represented by using registers %conv result and

%add result in the body of the leaf node function convLayerNode. Dataflow edges

to or from this node that are with nodes that do not belong in the node sequence

represent data transfers that still need to be expressed at the dataflow graph level, and

are handled at the next step.

• Updating the internal node that contained the node sequence, to contain the node FN

instead. The internal node creates an instance of FN. Dataflow edges between the nodes

of the identified sequence are deleted. Remaining edges/binds incoming to the start

node of the node sequence are moved to the new node FN, and outgoing edges/binds

of the end node of the sequence are moved to start from FN. The unused nodes are

deleted.

Node Fusion is invoked before all code generation passes. This is safe to do, since it will

only fuse node sequences where all nodes have been mapped to PROMISE. Therefore code

generation for node sequences not mapped to PROMISE will not be transformed by Node

Fusion. Instead, nodes belonging to such sequences will be handled by other backends.

After Node Fusion is complete, the granularity of the leaf dataflow nodes has been raised

to that of layer operations, as supported by PROMISE. We simply map the instruction

sequences found to the interfaces exposed by the PROMISE hardware simulator.
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6.3.2 GPU Backend

Except from mapping the tensor operation of the ApproxHPVM dataflow nodes to the

corresponding DNN operation, code generation for GPU requires an additional analysis pass

to determine the legality of the translation.

Specifically, the ApproxHPVM tensor intrinsics have not been defined as in place opera-

tions, i.e. we expect them to always return a new tensor as the result of operating on their

respective data. However, cuDNN and cuBLAS libraries only offer in place implementations

for some of the tensor operations, updating one of their operands.

Therefore, we implement an analysis pass on top of ApproxHPVM dataflow graph, to

determine when it is legal to use an in place implementation of a not in place operation, and

we query this result during code generation for GPU.

Specifically, the analysis pass traverses the ApproxHPVM dataflow graph and determines

for each dataflow node’s input edges, whether the transferred operand can be used in an in

place implementation. This is legal if both properties hold:

• It is defined as an output of a tensor intrinsic, not an argument passed to the dataflow

graph by the host. This is expected, as the host code does not expect the values it

passed to the dataflow graph to be changed unpredictably.

• It is only transferred by a single dataflow edge E. This means that that its value is

expected to only be read by the destination node of E and then discarded, therefore

it can be legally written after read within the destination node.

After this analysis is completed, we proceed to code generation. At a high level, this is a

mapping between the ApproxHPVM intrinsic within each leaf node and the corresponding

API call in our cuDNN and cuBLAS based library runtime. The backend consults the

in place analysis when performing the translation, to ensure that the use of not in place

operands within an intrinsic is valid when using an in place implementation of the intrinsic.

The intrinsic is then replaced with the corresponding call to our library that implements its

functionality.

The implementation of each call provides a wrapper around a base cuDNN or cuBLAS

routine that performs the main computation. For the list of supported intrinsics, Table 6.2

indicates the corresponding cuDNN/cuBLAS call.

71



Tensor Intrinsic Base cuDNN/cuBLAS call
i8* llvm.hpvm.tensor.mul cublasSgemm
i8* llvm.hpvm.tensor.conv cudnnConvolutionForward
i8* llvm.hpvm.tensor.depthwise conv cudnnConvolutionForward / Custom GPU kernel
i8* llvm.hpvm.tensor.add cudnnAddTensor
i8* llvm.hpvm.tensor.reduce window cudnnPoolingForward
i8* llvm.hpvm.tensor.relu cudnnActivationForward
i8* llvm.hpvm.tensor.clipped.relu cudnnActivationForward
i8* llvm.hpvm.tensor.tanh cudnnActivationForward
i8* llvm.hpvm.tensor.batchnorm cudnnBatchNormalizationForwardInference
i8* llvm.hpvm.tensor.softmax cudnnSoftmaxForward

Table 6.2: Corresponding cuDNN/cuBLAS calls for tensor intrinsics in the ApproxHPVM
runtime.

6.4 EVALUATION

6.4.1 Platform

For our evaluation, we use the NVIDIA Jetson Tegra TX2 developer kit [116]. For the

experiments done on PROMISE, we use the functional simulator and the timing and energy

model obtained from its authors [19]. The SOC we model extends the Tegra TX2 board

with the PROMISE accelerator. The communication across the GPU, CPU, and PROMISE

happens through main memory.

We utilize a split approach where we collect profiler performance and energy numbers from

direct execution on the GPU and simulator results for operations mapped to PROMISE.

6.4.2 Functional Experiments Methodology

To verify the functional correctness of our generated binaries and to measure the end-

to-end accuracy of each network given a configuration, we use the GPU in tandem with

PROMISE functional simulator. If a layer is mapped to the GPU, the corresponding tensor

operations are executed on the GPU. If a layer is mapped on PROMISE, it is offloaded to

PROMISE functional simulator. Consequently, the final result is the same as it would be

if these operations were all executed on a real SoC containing both a GPU and PROMISE.

Since the PROMISE simulator adds Gaussian random error to each run, we use statistical

testing to measure the fraction of program runs that satisfy the end-to-end quality metric -

we call this Rsuccess. We run each configuration 200 times to obtain the mean and standard

deviation of the classification accuracy, and Rsuccess of the configuration.
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6.4.3 Time and Energy Experiments Methodology

We measure the time and energy of tensor operations on GPU by assigning a timestamp

pair to the beginning and end of each tensor operation and reading the Jetson’s power rails

at regular intervals for the GPU and DRAM power. Total time is computed by subtracting

the timestamp difference, and total energy by integrating the power readings.

We obtain per-tensor operation time and energy for both full-precision floating point

(FP32) and half-precision floating point (FP16) for each benchmark, using the average time

and energy over 100 runs. Instead of rerunning an operation on the GPU each time we

ran a configuration, we collected these results once per benchmark and tabulated them.

Then, whenever a particular tensor operation or network layer was mapped to the GPU, we

obtained the required values from this lookup table.

We use a timing and energy model for PROMISE, that analytically computes the time

and energy of tensor operations on PROMISE, by accumulating the compute cost with the

cost of loading data from and writing data to main memory.

We obtained the total time and energy for a network by summing the time and energy of

each layer, using the PROMISE analytical model if the layer was mapped to PROMISE or

the GPU time and energy lookup tables.

6.4.4 Benchmarks

We evaluate ApproxHPVM on nine benchmarks from the deep learning domain and five

convolution-based image processing benchmarks.

DNN Benchmarks. We use popular DNN benchmarks including LeNet[117], AlexNet [118]

(reference implementation [119]), ResNet-18 [120], VGG-16 [121] on two different datasets,

MobileNet [122], and Shallow MobileNet [122]. We created a variant of Alexnet (called

Alexnet v2) that includes an extra convolution layer and provides approximately 6% higher

end-to-end accuracy. We also include a 4 layer fully-connected DNN, called FC-4.

We use MNIST [123] (Lenet, FC-4), CIFAR-100 [124] (VGG-16), and CIFAR-10 (Alexnet,

Alexnet v2, Resnet-18, VGG-16, MobileNet, Shallow MobileNet). All of them have 60K

images, which we split into 50K for training and 10K for inference. The latter is split

further into 5K calibration and validation sets for autotuning and evaluation respectively.

Image Processing Benchmarks. We also include 5 convolution-based image process-

ing benchmarks. We construct these benchmarks by including different combinations of

commonly-used image filters: Gaussian (G), Emboss (E), Outline (O), MotionBlur (M), and

Sharpen (S). At the IR level, the filters are represented as tensor convolutions, with the
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Figure 6.6: Speedup and energy reduction (over baseline) of all nine DNNs for Loss1% and
Loss2% experiments (higher is better). 6.6a: Speedup. 6.6b: Energy reduction.

exception of Emboss which is a convolution followed by a bias add operation. The identified

filter combinations are GEO, GSM, GEOM, GEMO, and GSME.

6.4.5 Results

Our results show that our framework can offload approximable computations to special-

purpose accelerators that provide significant gains in performance and energy, while staying

within user-specified application-level quality metrics with high probability. A less strict

user-specified quality metric leads to more opportunities for approximation, allowing for

higher performance and energy benefits on average.

Across the DNN benchmarks, we observe 1.02-9x performance speedups (figure 6.6a) and
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Figure 6.7: Speedup and energy reduction (over baseline) of all 5 image processing bench-
marks for PSNR30 (p30) and PSNR20 (p20) thresholds. 6.7a: Speedup. 6.7b: Energy
reduction.

1.14-11.3x energy reduction (figure 6.6b) with user-specified accuracy loss threshold of 1%

or 2%. Most networks obtain from 1.5x–4x and 1.5x–5x improvements in performance and

energy respectively.

Image processing benchmarks show performance and energy benefits ranging from 1.04x

to 6.1x (figure 6.7a) and from 1.2x to 7.9x (figure 6.7b) respectively for user-specified

application-level quality metric PSNR30, with the benefits increasing when the quality spec-

ification dropped to PSNR20.
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CHAPTER 7: APPROXTUNER: A COMPILER AND RUNTIME SYSTEM
FOR ADAPTIVE APPROXIMATIONS

With the increasing need for machine learning and data processing near the edge, software

stacks and compilers must provide optimizations for alleviating the computational burden on

low-end edge devices. Approximate computing can help bridge the gap between increasing

computational demands and limited compute power on such devices.

We present ApproxTuner, a portable optimizing compiler and runtime system that enables

flexible, optimized used of multiple software and hardware approximations in a unified easy-

to-use framework. ApproxTuner provides a wide range of software and hardware approxima-

tions, focused on tensor operations used in deep neural networks and image processing. Ap-

proxTuner uses a combination of development-time and install-time analyses to leverage both

hardware-independent approximations and hardware-specific approximations, while preserv-

ing application portability. To reduce the cost of install-time autotuning, we propose a novel

mechanism called federated autotuning for retuning with additional hardware-specific ap-

proximation choices. At runtime, ApproxTuner leverages a Pareto-optimal curve of approx-

imation configurations constructed in the offline phases to dynamically tune approximation

levels in response to load and power fluctuations.

Across 10 evaluated benchmarks from deep learning and image processing domains, Ap-

proxTuner provides significant benefits. For 7 DNN benchmarks, ApproxTuner achieves

geometric mean speedup of 1.9x and geometric mean energy reduction of 2x with only

hardware-independent approximations. Additionally, install-time retuning with hardware-

specific approximation choices further improves these results to a geometric mean speedup of

5.6x and geometric mean energy reduction of 5.9x. Similarly, for 3 image processing bench-

marks, ApproxTuner achieves a geometric mean speedup of 2.14x and a geometric mean

energy reduction of 2.4x.

7.1 MOTIVATING EXAMPLE

Section 1.4.3 describes, at a high level, our approach in selecting approximation tech-

niques by decomposing the static selection, i.e. before dynamic approximation tuning,

in two stages: ahead-of-time hardware-independent approximation tuning and install-time

hardware-specific retuning. Both the ahead-of-time, development-time tuning and the install-

time tuning utilize actual approximation techniques in the autotuning loop instead of arti-

ficial error injection and L1-error and L2-error metrics to capture its effect, as illustrated in

ApproxHPVM (refer to section 6.2).
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This section demonstrates that the previous approach is not general enough to capture

a wide range of approximations. This is because each approximation technique and each

approximation knob has its own unique error model. Hence, in ApproxTuner we use the

actual approximation methods in the autotuning loop instead of an artificial error injection

process that simulates a single error model.

To illustrate this, figure 7.1 shows 5 layers of the VGG-16 DNN and two potential mappings

of approximation knobs to tensor operations. The first configuration applies filter sampling

to all 5 layers and the second configuration maps 4 layers to PROMISE, the analog deep

learning accelerator that we target throughout this work, as mentioned in 1.1.1. For each

of the layers in both configurations, we measure the L1-norm and L2-norm (compared to

the ground truth tensors) and also generate an error distribution. Note that layers in both

configurations have a Gaussian error distribution. Moreover, the L1- and L2- norms of

the first 4 layers in the filter-sampling based configuration are higher than the L1- and

L2- norms of the corresponding layers in the PROMISE based configuration, suggesting

that the end-to-end accuracy loss of the PROMISE based configuration should be lower.

However, the PROMISE based configuration has a 2.3 percentage point higher accuracy

loss (83.93%) compared to the filter-sampling based configuration (86.26%). This shows

that using aggregate error metrics to capture the operation-level error distribution does not

necessarily capture the actual sensitivity of the end-to-end application result.

Figure 7.1: End-to-end accuracy impact of applying different Filter-Sampling vs PROMISE
to layers in VGG-16.
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7.2 APPROXTUNER

Figure 7.2 shows the high-level system workflow of ApproxTuner. Broadly, the system

is composed of three phases: i) development-time, ii) install-time, and iii) runtime. Ap-

proxTuner takes as input programs in the ApproxHPVM Intermediate Representation, that

is HPVM IR extended with tensor intrinsics that represent data parallel patterns. These

data parallel patterns include high-level linear algebra tensor operations used in the domains

of neural networks and image processing. Tables 6.1 and 7.1 include the tensor intrinsics

supported in the IR, for the domains of neural networks and image processing respectively.

The development-time phase includes an approximation tuner that takes as input a pro-

gram and a domain-specific quality threshold. This phase is designed to enable ahead-of-time

approximation tuning in an application-specific but hardware-independent manner. The ap-

proximation tuner uses an autotuning search to identify mappings of individual tensor op-

erations to software approximations that maximize performance and energy benefits while

staying within the provided end-to-end quality constraint. The output of this phase is a set

of configurations that are then shipped along with the application. This phase is detailed in

section 7.2.3. The approximation methods employed are detailed in section 7.2.2.

The install-time phase uses the configurations shipped from the development-time step and

generates a performance-accuracy Pareto-optimal curve. Since the performance of software

approximations is also hardware-dependent, the Pareto curve is constructed after profiling

the different configurations on the target hardware. The install-time phase includes an

optional retuning phase. The retuning phase attempts to maximize performance benefits by

mapping computations to hardware-specific knobs for approximation. To render this feasible

for low-end edge devices, we also propose a strategy called federated autotuning detailed in

section 7.2.4.

At runtime, the performance-vs-accuracy Pareto curve constructed at install-time is used

for dynamic approximation tuning. In the face of load, power, and frequency variations,

the performance monitor gives feedback to the dynamic control. Based on the feedback,

the dynamic control computes a target speedup to maintain a required level of system

responsiveness (configurable by the user). The runtime control is described in section 7.2.5.

7.2.1 Tensor Operations

ApproxTuner is implemented on top of the HPVM compiler infrastructure. Therefore,

to represent tensor-based domains such as DNNs and image processing (among potential

others), we extend the tensor operations supported in ApproxHPVM (refer to table 6.1)
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Figure 7.2: End-to-end system workflow of ApproxTuner.

Tensor Intrinsic Description
i8* llvm.hpvm.tensor.map(i8* function,
i8* input1, i8* input2, . . . )

Zips multiple equal-shaped tensors and applies function
element-wise.

i8* llvm.hpvm.tensor.reduce(i8* func-
tion, i8* input, i32 axis)

Performs a reduction operation along an axis of the input
tensor.

i8* llvm.hpvm.tensor.fft2D(i8* input) 2-dimensional Fast Fourier Transform on the last 2 dimen-
sions of the input tensor.

Table 7.1: Additional Tensor intrinsics in the ApproxHPVM representation

with additional tensor operations, identified after studying the image processing domain.

Table 7.1 lists the tensor operations identified for the image processing domain. Section 6.1.1

describes the benefits of the design choice of including high level operations at the IR level,

as well as the implementation mechanism of choice for them, the use of LLVM intrinsics.

7.2.2 Approximation Methods

We describe the approximation optimizations used in ApproxTuner. Specifically, we in-

clude 3 software approximations techniques and 2 hardware approximation techniques. The

software approximation techniques include: i) filter sampling for convolutions, ii) perforated

convolutions, and iii) reduction sampling. The hardware ones include i) reduced floating

point precision (FP16) and ii) a highly energy and performance-efficient analog accelerator,

PROMISE [19]. Note that our framework is extensible to all types of software and hardware

approximations.

Filter Sampling for Convolutions. Convolutions are widely used in deep learning, but

they are expensive to compute and therefore important to optimize [125]. Based on Kernel

Perforation proposed by Maier et al. [126], we implement filter sampling, which skips certain
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input and filter elements in the computation of each output element. For example, with a

sampling rate of 50%, every other element in both the filter and the input are skipped. This

technique shrinks the size of the filter and the input, reducing both compute operations and

memory traffic.

Rescaling the values of the sampled filter elements is necessary for retaining reasonable

end-to-end accuracy. For example, we found that rescaling reduces absolute end-to-end

accuracy loss by 60% for ResNet-18 when using 25% filter sampling across all convolutional

layers. Based on empirical testing, we apply a rescaling factor of stride
stride−1

to all filter elements.

We support two sampling rates for filter sampling: 50% (skip 1 out of 2) and 25% (skip 1

out of 4); benefits become negligible with lower sampling rates. The skip rate is exposed as

a knob to the autotuner.

We present an additional knob to our autotuner: the initial offset at which the elements

are skipped. We have observed this to have a noticeable impact on overall accuracy, as

different offsets may align with more or less important filter elements. We permit an initial

offset up to the length of the skipping stride.

Perforated Convolutions. Recent work [103] has proposed perforated convolutions, which

correctly computes a subset of the spatial positions of the output tensor and computes the

rest using nearest neighbor averaging from the previously computed positions. This tech-

nique reduces the size of the input matrix that feeds into the convolution thereby reducing

both the data movement and the compute overheads.

Figurnov et al. [103] propose this technique and several strategies for selecting perforation

patterns; we select row- and column-based perforation. Row perforation skip whole rows at

a regular stride, and similarly column perforation skips columns. We export a skip rate as

a knob to the autotuner, and supports 50% skip rate (skip 1 out of 2) and 33% skip rate

(skip 1 out of 3). Perforating less than 33% does not provide any noticeable improvements,

due to the overhead introduced when interpolating the perforated elements.

Similar to filter sampling, we have observed a sizable impact of the initial offset on the

accuracy, and also expose the initial offset as a tuning knob.

Reduced Floating Point Precision. Reduced floating point precision is used in many

domains including machine learning and image processing; it has been shown that reduced

precision often has minimal accuracy impact while providing significant performance im-

provements [127].

We specifically target IEEE 754 half-precision floating point (FP16), which is supported

across a variety of devices and deep learning frameworks. FP16 reduces memory bandwidth

usage by up to 50% and can achieve great acceleration with modern GPU supports. We

support FP16 for all the tensor operations in our framework.
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Reduction Sampling. Tensor reduction reduces a number of elements along an axis into

a single value. When reducing N elements into one, reduction sampling samples from these

elements with a sampling ratio η ≤ 1, so that only ηN elements are used in the computation.

Zhu et al [97] propose reduction sampling and prove error bounds for several special cases.

We implement this sampling technique and expose the sampling ratio as a knob to the

autotuner.

Depending on the task performed by reduction, sampling can incur not only random but

also systematic error on the result. For example, the result in expectation of a sampled

average reduction is equal to that of a precise reduction, but a sampled summation needs

to be scaled up by 1
η

to remove systematic errors. For many common cases of reduction,

such as summation, average, max/min, and argmax/argmin, we can apply a corresponding

adjustment to compensate for this error.

Analog Computations with PROMISE accelerator. We support mapping to the

PROMISE accelerator that provides efficient convolution and matrix multiply operations in

the analog domain. PROMISE uses in-memory, low signal-to-noise ratio analog computa-

tion on the bit lines of an SRAM array to perform faster and energy efficient vector dot

products. Srivastava et al. [19] show that PROMISE consumes 3.4-5.5x less energy and

has 1.4-3.4x higher throughput than custom non-programmable digital accelerators. The

PROMISE hardware provides seven different voltage levels (P1-P7), in increasing order of

voltage and decreasing error.

7.2.3 Development-time Approximation Tuning

Prior to shipping application code, the development-time approximation tuner applies

approximations that are not specific to any particular hardware configuration. The only

hardware-based approximation choice we consider in this phase is reduced floating point

precision (FP16) since it is supported on most modern GPUs and recent CPUs [128, 129, 130].

The goal of this phase is to identify mappings of approximations to ops that provide an

optimal trade-off between performance and accuracy loss (i.e., maximize performance for

given accuracy). Figure 7.3 shows the workflow for development-time approximation tuning.

Search Space of Approximations. In the autotuning search, we include 4 approxima-

tion techniques from section 7.2.2: perforated convolutions, filter sampling for convolutions,

reduction sampling, and FP16 reduced precision. For each, we consider various knobs as

shown in figure 7.4:

Note that the possible offsets for each skip rate differ. If the skip factor is 50% (skip

1 in 2) only two offsets are possible: {0,1}. Similarly for 33% perforation, 3 offsets are
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Figure 7.3: Development-time autotuning workflow.

perforation: {row, col} {50%, 33%}, offsets = {0, 1, 2}

filter_sampling: {50%, 25%}, offsets = {0, 1, 2, 3}

reduction_sampling: {50%, 40%, 25%}

FP precision: {FP32, FP16}

Figure 7.4: Knobs for approximation techniques.

possible and for 25% sampling, 4 offsets are possible. Hence, in total, we have 10 choices for

perforation with 5 each for row-only and column-only perforation, each with varying offsets

and perforation rates (33%, 50%). For sampling, we have 6 choices with varying skip offsets

(2 for 50% sampling and 4 for 25% sampling). For reduction, we support 3 choices. For

precision, we support 2 choices (FP16 and FP32).

Autotuning Workflow. To enable efficient search, we use OpenTuner [78], an extensible

library that provides an API for developing autotuners with customizable search spaces and

objective functions that rank configurations. We use OpenTuner since it has been shown to

provide good results with search spaces as large as 103600 possible configurations. To extract

configurations with varying performance-accuracy tradeoffs, we tune with different accuracy

thresholds; e.g., Loss ≤ 1%, Loss ≤ 2%, and Loss ≤ 3%. We run the autotuner separately

for each accuracy threshold for a total of 3000 autotuning iterations.

Hardware-agnostic objective function. To drive the autotuner search over the con-

figuration space, we use a hardware-independent objective function. The objective function

uses operation count (i.e., the amount of work) as a proxy for the predicted execution time

of a configuration. The speedup of a configuration is computed as the ratio of the cost of the

baseline configuration (no approximations) and predicted execution time of the particular

configuration. A configuration, config, is the mapping of an approximation choice, K(i),

to each tensor operation, op(i). We denote the cost of mapping K(i) for op(i) as C(op(i),

K(i)). We sum the costs for individual tensor operations to derive the cost function CTotal
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of the full candidate configuration consisting of N total tensor operations as:

CTotal(config) =
N∑
i=0

C(op(i), K(i)) (7.1)

For the cost (execution time) of running approximation K on operation op, we use a proxy

based on the sum of the count of memory operations and compute operations:

C(op,K) =
Nm(op)

Rm(K)
+
Nc(op)

Rc(K)
(7.2)

where Nm and Nc are the number of memory and compute operations, respectively, for

the baseline (non-approximate) version of op. Rm and Rc are the corresponding reduction

factors applied that are specific to each approximation method. For instance, an FP16 50%

filter sampling method would have Rm = 4 since it loads 2× less memory due to FP16 and

2× less loads because only 50% of input and filter values are loaded from memory, Rc = 2

since it skips half the computations. This coarse heuristic estimation allows for assigning the

configurations a relative ordering and drives the autotuning search towards more profitable

configurations. That is, the search seeks candidate configurations that satisfy the accuracy

threshold at the lowest cost based on the above heuristic.

Shipping Configurations. Once the autotuner has discovered the best configurations

that satisfy each considered accuracy threshold, these configurations (with their associated

speedup and accuracy loss) are shipped with the application package. To avoid shipping

suboptimal configurations, we construct a Pareto-frontier using the predicted speedups and

skip configurations that do not lie on the Pareto-frontier for speedup vs. accuracy. Across

the 7 DNNs, we observe this to reduce the shipped configurations on average by 3.2x.

7.2.4 Install-time Federated Tuning

At install time, ApproxTuner performs two additional tuning tasks. First, it updates

the performance estimates of the configurations shipped with the application by measuring

the performance directly on the target hardware, in order to obtain a more precise Pareto-

optimal curve. Second, it optionally invokes an install-time retuning phase that can exploit

hardware-specific knobs for approximation to maximize performance and energy benefits.

The optional install-time retuning can be prohibitively expensive on resource-constrained

edge compute devices (as our experiments show). Inspired by federated machine learn-

ing [131, 132], we propose federated autotuning, which renders install-time autotuning fea-
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sible for resource constrained edge devices. Federated learning involves a centralized con-

trol that coordinates among distributed devices and combines the results of the individual

distributed training runs. Similarly, federated autotuning distributes the autotuning task

among edge devices where a single edge device performs a fraction of the autotuning and

returns the top performing configurations back to the centralized server.

Client-server Interaction. At the heart of federated tuning is a centralized server that

coordinates tuning among distributed edge devices. The client receives the development-time

shipped configurations and the calibration inputs (used for retuning) from the server. The

server has a database to cache the results retrieved from the edge devices. After the system

converges on good configurations, edge devices can simply retrieve a Pareto-optimal curve

for configuration performance vs. accuracy from the coordinating server, hence avoiding the

need to do tuning on the edge device. Figure 7.6 shows the overall workflow of federated

tuning and the interaction between the centralized cloud server and distributed edge devices.

Synergy between development-time and install-time tuning. While autotuning

has been shown to work with significantly large search spaces [78], autotuning can require

a large time budget. In ApproxTuner we exploit the synergy between the development-

time phase and the install-time phase to accelerate autotuning at install-time by leveraging

some information from the ahead-of-time approximation tuning phase. The install-time

tuning phase is designed to utilize approximation sensitivity information being fed from

the development phase tuning. For instance, the development-time phase may identify

that a certain convolution layer is very sensitive to approximation. The retuning phase

leverages such sensitivity information to reduce the search space of approximation choices to

be considered for each operation. Since the application is shipped with a set of configuration

points, analyzing the union of points allows for eliminating approximation choices on a

per-operation basis. The install-time retuning process can be summarized as:

1. Scan all the shipped configurations to construct a list of approximation choices to be

considered for each tensor operation. We simply take the union of all approximations

that were mapped to a certain operation across all shipped configurations.

2. The search space of approximations must include the set of choices identified in step 1

and any additional hardware approximation choices to be considered. Operations that

were not mapped to any approximation (in any of the configurations) are considered

sensitive and are skipped for approximation in the retuning step.

3. Start the autotuning loop, where the autotuner considers only the selected subset of

approximations above for a given operation.
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Configuration: {

tensor.conv: samp50%, samp25%, hardware_knobs,

tensor.conv: perf33%, hardware_knobs,

tensor.conv: fp32

}

Figure 7.5: Approximation choices per tensor operation.

Figure 7.6: Federated Autotuning Workflow

Example. Consider a benchmark with 3 convolution operations with 20 different configu-

rations shipped (not shown). After Step 1 above, for each tensor operation, we consider only

the union of approximations that were mapped to that operation across all 20 configurations.

Consider the following to be the space of approximation choices that were mapped to each

operation, as shown in figure 7.5:

Note that no hardware knobs are allocated to the third convolution because it was deemed

not approximable at development time (albeit for the software approximations considered

then). For the target platform considered in our evaluation, we have observed this design

choice to work well. We also allow this behaviour to be configurable for scenarios where the

user would like to control how the hardware knobs get included/excluded from the search

space.

7.2.5 Runtime Dynamic Approximation Tuning

Our dynamic tuning scenario is invoked when resources available to our application change

dynamically. We assume our application runs in a loop, with each iteration performing

inferences (for the DNN) or image processing for the images currently being considered.

We assume an independent mechanism (e.g., a real-time scheduler or the operating system)

that determines how much time (and energy) can be allocated to the next iteration of the

85



application and how much accuracy loss is acceptable. This decision must take into account

other applications in the system, available resources (e.g., battery life and bandwidth), and

an overall notion of utility for the entire system. Significant prior work has addressed this

problem (e.g., [133]) and it is outside the scope of this work. This work concerns how

ApproxTuner can determine the right configuration (approximations for the different tensor

operations), given that the system allocates certain resources and accuracy requirements for

this application.

Our dynamic tuning approach utilizes the Pareto curve for speedup vs. accuracy loss

generated through the combination of the development time and install time tuning phases.

Each point on the Pareto curve contains the program configuration, which includes the

mapping of an approximation to a tensor operation that achieves the best speedup for the

given accuracy. At runtime, whenever the application receives a new set of expectations from

the system, it invokes an application level controller at the end of the application loop to

determine the appropriate configuration choice from the Pareto curve for the next iteration.

We implement different control strategies; e.g.,

1. Achieve target speedup (resp. energy reduction, accuracy loss): Search in the Pareto-

optimal set for the first configuration that achieves speedup (resp. energy reduction,

accuracy loss) no lower than the target speedup (resp. energy reduction, accuracy

loss), namely C. Select C.

2. Achieve target speedup on average: The first strategy overshoots the desired target

speedup because the selected configuration in the Pareto-optimal set may deliver

higher speedup, but this comes at the cost of potentially worse accuracy. Instead,

we can search for the configuration, C, but switch to it with some probability, pC ,

and otherwise remain with the previous configuration, with lower speedup but better

accuracy. The probability pC is chosen so that E(pC ·speedupC+(1−pC) ·speedupP ) =

target speedup.

The different control strategies have different strengths and applications. Deadline driven

systems, needing to ensure that the deadline is met at all times, would select strategy 1.

Systems focused on maintaining the desired performance goal in the long term, in which it

is acceptable for individual outputs to be sometimes slower than the target speedup, would

benefit from strategy 2.
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7.3 METHODOLOGY

7.3.1 Benchmarks

We evaluate 7 DNN benchmarks (Table 7.2a) and 3 image processing benchmarks (Ta-

ble 7.2b).

Datasets. We evaluate our DNNs on 3 datasets: i) MNIST [123] for handwritten digits,

ii) CIFAR-10 [124] with 3 × 32 × 32 sized color images belonging to 10 classes, and iii)

CIFAR-100 [124] with 3× 32× 32 sized color images belonging to 100 distinct classes.

Each dataset has a total of 60K images, from which we randomly sample 10K into equal-

sized calibration and test sets (5K each). The calibration set is used in the autotuning phases

while the test set is used to evaluate the accuracy impact on unseen data.

For image processing benchmarks, we use the classification dataset from Intel Scene Clas-

sification Challenge [134] (referred to as “Scene” dataset below). This dataset contains 24K

3 × 150 × 150 sized color images. We randomly sample 6K images from the dataset into

equal-sized calibration and test set (3K each) for autotuning and test respectively.

DNN Benchmarks. We include popular DNN models in our evaluation including: Alexnet,

Resnet-18, MobileNet, VGG-16, and Lenet-5 networks. We trained VGG-16 for both CIFAR-

10 and CIFAR-100 since it provides reasonably good end-to-end accuracy on both datasets

[121]. We also use a variant of Alexnet (called Alexnet2) that makes slight adaptations

(including one additional convolution layer) to the original Alexnet model to give better end-

to-end accuracy on the CIFAR-10 dataset. We observe this variant to provide an additional

6% higher end-to-end accuracy. We also include MobileNet which is known to be an efficient

DNN model in terms of both performance and model size.

Image Processing Benchmarks. We also include 3 image processing benchmarks ex-

tracted from common image processing tasks: Blending, Blur, and Canny (Table 7.2b). As

Blending is a binary kernel (i.e., takes two images and yields one image), we use both the

dataset and a shuffled copy of the dataset as input. At the IR level, these kernels apply

convolution, map and reduce operations.

7.3.2 Quality Metrics

For the DNN benchmarks, we measure the accuracy degradation with respect to the

baseline. Lossx% refers to an accuracy degradation of x percentage points compared to the

baseline.

For the image processing benchmarks, we use the average PSNR to quantify the error in
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Network Dataset Layers Accuracy
Alexnet CIFAR-10 6 79.16%
Alexnet2 CIFAR-10 7 85.09%
Resnet-18 CIFAR-10 22 89.44%

VGG-16-10 CIFAR-10 15 89.41%
VGG-16-100 CIFAR-100 15 66.19%

Lenet-5 MNIST 4 98.7%
MobileNet CIFAR-10 28 83.69%

(a) DNN benchmarks, corresponding datasets, layer count, and classification accuracy with FP32
baseline.

Benchmark Dataset Description
Blending Scene Image sharpening + 2-image blending

Blur Scene Image blur with a Gaussian kernel
Canny Scene Canny edge detection

(b) Image processing benchmarks and corresponding datasets.

Table 7.2: Description of evaluated benchmarks.

Tegra TX2 Parameters
CPU Cores 6
GPU SMs 2

GPU Cores 128
GPU Frequency 1.12 GHz

DRAM Size 8 GB
PROMISE Parameters

Memory Banks 256× 16 KB
Frequency 1 GHz

Table 7.3: System parameters for TX2 and PROMISE.

the output of the processed images in comparison to the baseline. We reject configurations

with violation rate exceeding 5%.

For our baseline comparison, we map all computations to FP32 with no approximations.

7.3.3 Hardware Platform

Similar to section 6.4.1, for our evaluation we assume a modern SoC architecture with

CPUs, GPUs and accelerators that communicate via global shared memory. The specific

system we model is the NVIDIA Jetson Tegra TX2 developer kit [116], augmented with a

PROMISE accelerator.

We chose a split approach where we collect profiler performance and energy numbers from

direct execution on the GPU and simulator results for operations mapped to PROMISE.

While a cycle-accurate CPU-GPU-PROMISE simulator would be an alternate approach to
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model the SoC, this is infeasible since: 1) open-source GPU simulators (such as GPGPU-Sim)

do not support linking against external dynamically linked libraries such as cuBLAS and

cuDNN (required for supporting high performance DNN computations), and 2) simulator

execution is orders of magnitude slower than real hardware, thus making it infeasible to run

heavier computations.

7.3.4 Compilation Flow

ApproxTuner is implemented on top of the HPVM-ApproxHPVM infrastructure. Our

DNN benchmarks are written in Keras [135], a popular framework for developing neural

network models. The existing ApproxHPVM Keras frontend is invoked to automatically

translate from Keras to ApproxHPVM IR. The image processing benchmarks are written in

C extended with a set of C functions corresponding to tensor intrinsics. From this tensor-

level representation, the existing HPVM C frontend is invoked to compile to ApproxHPVM

IR.

We extend the infrastructure with an additional backend, that translates the tensor in-

trinsics to our runtime. This backend handles translation of only the tensor intrinsics, and

translation of all other HPVM constructs (e.g., internal nodes, dataflow edges) is handled

by the existing HPVM infrastructure (section 4). Our runtime is implemented on top of

NVIDIA’s cuDNN library and also includes custom CUDA kernels for certain tensor oper-

ations. The runtime includes the implementations of tensor operations along with approxi-

mate counterparts introduced in section 7.2.1.

Note that our runtime includes custom handwritten CUDA kernels for convolution since

our approximations are based on our custom implementation. While cuDNN convolution is

2-3x faster than our handwritten convolution kernel, the source code is not open-source and

hence cannot be used to define approximate versions.

7.3.5 Dynamic Approximation Tuning Experiments

We execute the programs over their respective data set on the target platform. Note

that we disable Dynamic Voltage and Frequency Scaling (DVFS) to avoid variations in

measurements. Across different runs for each benchmark, we invoke the runtime with a

monotonically increasing target speedup value and observe if the measured speedup matches

the expected speedup. For each DNN run, we include 5000 images that are split across 10

batches of 500 images. For each image benchmark run, we include 3000 images that are

split across 16 batches of 250 images. We do batching because of memory constraints. For
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each speedup value, we run the configuration(s) indicated by the runtime controller (refer to

section 7.2.5) per batch and average across batches. Across runs, we see negligible standard

deviation in runtime measurements.

When targeting configurations that contain software only approximations, the tensor op-

erations are executed directly on the target hardware. When targeting the PROMISE hard-

ware approximation option, we invoke the PROMISE functional simulator for the accuracy

of the tensor operations and the PROMISE timing simulator, whose result is added to the

application time.

7.3.6 Autotuning Experiments

We run our development-time approximation tuning on a server with NVIDIA V100 GPU

with 5120 cores and 16GB HBM2 global memory. For federated tuning, we use a combination

of experimental and analytical timing since the times for execution on PROMISE accelerator

are returned by the PROMISE timing model while the end-to-end accuracy is validated

through the provided functional model. For tensor operations scheduled on the GPU, we

use the measured time on hardware and for computations mapped to PROMISE, we query

the timing model.

7.4 EVALUATION

This section presents an evaluation of ApproxTuner. We seek to answer the following

questions:

• What are the performance and energy benefits enabled by the development-time autotun-

ing, using hardware-independent approximations?

• Can ApproxTuner do an install-time autotuning to map to additional available hardware-

specific approximation choices?

• Can ApproxTuner adapt to runtime resource variations by leveraging dynamic approxi-

mation tuning to maintain a target level of application responsiveness?

We refer to development-time generated configurations, that can only include hardware-

independent approximations, also as hardware-independent, and install-time generated con-

figurations that may additionally include hardware-specific approximations as hardware-

specific.
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Figure 7.7: (a) Speedups and (b) energy reductions achieved using hardware-independent
approximations for Loss1%, Loss2%, Loss3%.

7.4.1 Performance and Energy Evaluation of Development Time Tuning

Figures 7.7a and 7.7b show the performance and energy benefits achieved by the best

autotuner-generated hardware-independent configuration, for all DNN benchmarks, for the

Loss1%, Loss2% and Loss3% experiments. The baseline is the non-approximate computation

using 32-bit floating point (FP32) on the GPU.

Each configuration is a set of values for the knobs that control the level of approximation.

Using hardware-independent approximations, the autotuner is able to find configurations

that achieve speedup ranging from 1.18x to 2.64x and energy reduction from 1.22x to 2.80x,
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Figure 7.8: Speedups with hardware-independent approximations v.s. speedups with
hardware-independent and hardware-specific approximations.

compared with the baseline. The effect of increasing the accuracy loss threshold varies. For

example, for VGG-16-100, VGG-16-10 and Alexnet we see increasingly better speedup and

energy reduction, while for MobileNet, Resnet, Lenet and Alexnet2 there is no effect on the

resulting benefits.

In some DNNs, different approximation choices that result in accuracy loss exceeding the

Loss1% result in an acceptable accuracy loss, within the next Loss2% threshold, leading

to performance and energy benefits. In other DNNs, different approximation choices lead

to dramatic increase in accuracy loss, which exceeds any acceptable loss threshold. Some

DNNs such as Lenet, are very approximable even with a small accuracy loss threshold. More

detailed explanation and insights are provided in section 7.5.

7.4.2 Benefits of Install Time Tuning

Figure 7.8 compares the performance and energy benefits achieved by the best hardware-

specific configuration, generated after the retuning step, to the best hardware-independent

configuration. We observe a significant improvement in the achieved speedup, from a ge-

ometric mean of 1.9x to 5.6x, and energy reduction, from 2.0 to 5.9x, over the hardware-

independent configurations for all DNNs except MobileNet, which only improves by 0.34x for

both speedup and energy reduction. MobileNet is not very amenable to our approximation

techniques, as we are able to approximate very few of its layers, leading to lower perfor-

mance and benefits for both hardware-independent and hardware-specific configurations.

We elaborate more in section 7.5.
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These results indicate that install-time autotuning can take advantage of additional hard-

ware-specific approximation techniques to greatly improve upon (already good) speedup

and energy reductions obtained from hardware-independent techniques alone. Note that the

install-time autotuning achieves this by building on the approximate Pareto-optimal curves

created by portable, development-time autotuning.

7.4.3 Dynamic Approximation Tuning

For this experiment, where the goal is maintaining a certain level of application respon-

siveness, we use the control strategy 2 detailed in section 7.2.5. There are multiple conditions

that could cause a perceived system slowdown; e.g., system load variation or frequency scal-

ing due to a power cap. The ability to respond to such situations stems from being able

to achieve a target speedup at the application level equal to the system slowdown. Thus,

for a range of target speedups simulating system slowdowns, we measure the application

response. For each DNN in each experiment, below, we limit the target speedup to the max-

imum observed speedup for the best configuration, since a higher speedup is not achievable

by definition. The question, therefore, is how well the runtime system can adapt to changing

targets within the achievable range (for each benchmark).

Figures 7.9a, 7.9b and 7.9c show the results of obtained speedup for our benchmarks vs

the target speedup, and Figures 7.10a and 7.10b show the corresponding quality loss. For all

the speedup graphs, the x-axis is the (normalized) target speedup increase over the baseline

configuration, and y-axis is the (normalized) obtained speedup increase over the baseline

configuration. Both axes are normalized to the maximum achievable speedup increase for

each benchmark, e.g., determined using data from figure 7.7a for DNNs. If s is the target

speedup (x-axis) or the obtained speedup (y-axis), then we compute the normalized speedup

increase over the baseline speedup as s−1
smax−1

, where we subtract 1 because the baseline

configuration always has a speedup of 1.

Figures 7.9a and 7.10a show the normalized obtained speedup increase and accuracy loss

for all DNN benchmarks, using only hardware-independent approximations. In figure 7.9a,

we observe that the DNNs are mostly able to adapt to the target speedup, since they are

close to the diagonal.

Figure 7.10a shows that accuracy loss tends to increase as the target speedup increases,

with the exceptions of VGG-16-10 and VGG-16-100. For both these cases, the behavior

of two configurations was different on the calibration set and the test set. For VGG-16-

10, two configurations C1 and C2 in the Pareto optimal set are ordered such that C2 has

higher speedup but worse accuracy loss according to the calibration set measurements, but
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(a)

(b)

(c)

Figure 7.9: Normalized obtained speedup increase over respective benchmark baseline for
target speedup increase. Obtained and target speedup increase are normalized to each
benchmark’s maximum achievable speedup− 1. (a) DNNs with hardware-independent con-
figurations. (b) DNNs with hardware-specific configurations. (c) Image benchmarks with
hardware-independent configurations.
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(a) DNN accuracy loss.

(b) PSNR of image benchmarks.

Figure 7.10: Quality loss over respective benchmark baseline with hardware-independent
approximations, for target speedup.

C2 outperforms C1 on the test set. As C2 is gradually selected with higher probability,

the accuracy loss gradually decreases. A similar situation occurs in VGG-16-100, where

a configuration shows better end-to-end accuracy on the unseen test data compared to

calibration data. This behavior is uncommon but can manifest in certain scenarios. A final

observation is the steep increase of accuracy loss for MobileNet. It occurs because in the

search for configurations during the autotuning, the autotuner found configurations with

very little performance benefit for much higher accuracy loss, which still constitute Pareto-

optimal points. Aiming for the highest possible speedup results in getting the configuration

with the worst accuracy loss, and due to the small performance difference between these

configurations we observe the steep increase.

Figure 7.9b shows the speedup increase for Alexnet2 and Resnet using hardware-specific

approximations, for a target speedup increase (again normalized to the maximum achievable
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Benchmark GPU
Lenet-5 samp-50%:1 perf-50%:1 FP16:2
Alexnet FP16:2 samp-50%:2 samp-25%:2
Alexnet2 FP16:4 perf-50%:1 samp-50%:1 perf-33%:1
Resnet-18 FP16:11 perf-50%:5 perf-33%:4 samp-25%:2

VGG-16-10 FP16:5 perf-50%:4 perf-33%:2 samp-50%:4
VGG-16-100 FP16:3 perf-50%:2 samp-50%:8 perf-33%:2
MobileNet FP16:21 perf-50%:5 perf-33%:2

(a) Approximation knobs for GPU configuration with maximum speedup and accuracy loss < 3.

Benchmark GPU + Promise
Lenet-5 samp-50%:1 P5:1 FP16:2
Alexnet FP16:2 P3:2 P6:1 P7:1
Alexnet2 FP16:2 P6:3 P5:1 P3:1
Resnet-18 FP16:6 P7:6 perf-50%:2 P6:4 P5:3 P3:1

VGG-16-10 FP16:4 P5:3 P6:2 P7:2 P3:3 samp-50%:1
VGG-16-100 FP16:4 P5:4 samp-50%:3 P3:2 perf-33%:1 perf-50%:1
MobileNet FP16:17 P5:2 P3:3 P6:3 P4:2 perf-33%:1

(b) Approximation knobs for GPU and promise configuration with maximum speedup and accuracy
loss < 3.

Table 7.4: Selected Approximation Knobs for Evaluated DNNs.

additional speedup, obtained from Figure 7.8). Alexnet2 and Resnet are representative

of those with the highest and those with lower to moderate benefits from retuning with

hardware-specific approximations. We observe that the DNNs are able to adapt to the

target speedup, and doing so on the much wider range of target speedups enabled by the

hardware-specific configurations.

Similarly, figures 7.9c and 7.10b show the normalized obtained speedup increase and

PSNR for all image benchmarks, using hardware-independent approximations. Similar to

the DNNs, figure 7.9c shows the ability to adapt to the target speedup requirement. Fig-

ure 7.10b shows that PSNR tends to decrease as target speedup increases.

7.5 SENSITIVITY TO APPROXIMATION TECHNIQUES

In this section, we discuss the impact of the various approximations on the evaluated

benchmarks. Table 7.4a includes the knob settings corresponding to the best configura-

tion for each DNN benchmark considering only hardware-independent approximations. Ta-

ble 7.4b includes the knob settings of the best configuration after the install-time retuning

that maps certain convolution and fully-connected layers to PROMISE.

General trends. We find that all DNNs are very amenable to FP16 compute with minimal

accuracy loss and providing benefits ranging from 1-1.6x. The filter sampling and output
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perforation also use FP16 precision (since FP16 has minimal accuracy impact) and hence the

benefits these techniques provide are in addition to those provided by merely FP16 compute.

The individual benefits achieved by mapping a layer to filter sampling range from 1-2.6x and

for perforation range from 1-2.6x. We summarize some key insights per DNNs:

Alexnet: With Alexnet, we observe a few interesting insights: i) the model is very amenable

to the filter sampling approximation but very susceptible to perforated convolutions. None

of the layers in Alexnet (for all configurations) map to the perforated convolutions approxi-

mation while all layers (in various configurations) are amenable to filter sampling. ii) Layer 2

and Layer 4 are relatively more susceptible to approximation since only 25% sampling could

be mapped to these layers (without losing significant accuracy). Table 7.4b shows that after

retuning a lot of layers can be mapped to PROMISE which shows that Alexnet is also very

amenable to the hardware approximation offered by PROMISE.

MobileNet: For the best configuration, only 7 layers (out of 28) are mapped to approxima-

tion techniques. Since 75% layers are not found to be approximable by the approximation

tuner (except for FP16), MobileNet gives the least benefits (1.18x speedup) across all the

benchmarks. FP16 also doesn’t provide significant benefits for MobileNet.

We find another observation with MobileNet: across all 85 configurations, layer 5, 9, 10

can only be mapped to column perforation but not row perforation.

Resnet: Across all configurations, 7 of the 21 convolution layers are not mapped to any

approximation. Interestingly, 4 of the 21 layers are only mapped to 33% perforation and all

4 perforations start at different start offsets. Such observations confirm the hypothesis that

varying start offsets with perforation (and sampling) combine well together.

Lenet: We find Lenet to be highly approximable. The first layer in Lenet can map to all 10

knobs of perforation and all 6 knobs for filter sampling. Note that after retuning, 2 layers

(except for first layer and last layer) can be mapped to PROMISE.

VGG-16-100: Similar to Resnet, we find that 3 layers in VGG-16-100 can only be mapped

to column-based perforation while row-based perforation leads to high accuracy loss.

Key Takeaways. For 4 of the 7 DNN benchmarks, the first layer is found susceptible

and not approximated. In Resnet and MobileNet, the first 3 layers are never mapped to any

approximation.

These insights show that different benchmarks and operations within benchmarks have

highly varying susceptibility to the different approximations. Since ApproxTuner uses develop-

ment-time and install-time approximation tuning, it is able to discover good configurations

for most benchmarks.
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CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS

8.1 CONCLUSION

The slow down of Moore’s law and the end of Denard’s scaling has given rise to hetero-

geneous systems, with custom hardware components with superior performance and energy

efficiency. However, the diversity of the underlying hardware components also gives rise

to new programmability challenges. We identify the root causes of the programmability

challenges as

1. diverse parallelism models

2. diverse memory systems

3. diverse instruction sets

4. diverse approximation methods, in software and hardware

and we propose compiler solutions for addressing the object code and performance porta-

bility challenge of heterogeneous systems, as well as techniques for exploiting their superior

performance and energy efficiency. Specifically, we make the following contributions:

1. We proposed HPVM, a portable parallel program representation for a wide range

of parallel hardware. HPVM is a based on a hierarchical dataflow graph with side

effects. Based on the HPVM representation, we define an HPVM prototype on top

of LLVM that successfully serves as a virtual ISA, a compiler IR and a Runtime

Representation. We implement translators for NVIDIA’s GPUs, Intel’s AVX vector

units, and multicore X86-64 processors. We implement node fusion as a compiler

transformation and show that tiling is also captured in the HPVM representation. Our

evaluation shows that HPVM achieves functional and performance portability across

these classes of hardware, that the optimizations can achieve significant performance

gains, and the HPVM representation is able to support flexible scheduling policies both

statically and dynamically.

2. We extended HPVM to ApproxHPVM, introducing support for domain specific infor-

mation and approximation in the HPVM framework. ApproxHPVM IR extends the

HPVM IR in two key ways: (1) with tensor operations, thereby adding domain spe-

cific information at the IR level, and (2) accuracy metrics, that capture the allowable

difference between the exact and approximate execution of the tensor operations.
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3. We proposed ApproxTuner, an extension of ApproxHPVM that addresses the chal-

lenges that arise on heterogeneous systems at the edge. ApproxTuner utilizes a three

step approximation tuning strategy: development time, install time, and dynamic

tuning, thus ensuring object code portability, practical tuning times, and fast dy-

namic approximation tuning. Our evaluation shows that ApproxTuner achieves good

performance and energy benefits during development time tuning, which are further

improved after the install time tuning phase, and that the system can adapt as needed

to dynamic variations through dynamic approximation tuning.

8.2 FUTURE DIRECTIONS

8.2.1 HPVM Extensions for Complex Memory Systems

The HPVM abstractions successfully abstract away he diversities in underlying hardware

ISAs and parallelism models exposed by a variety of different hardware targets. However,

although the hierarchical dataflow graph abstraction is able to capture tiling and private

memories at any level of a memory system, there is a wide margin for improvement in

the memory abstractions in HPVM. Systems like Sequoia [72] and Legion [70] have rich

memory abstractions, for example Legion allows tasks to specify logical regions of data that

will be accessed, specifying the privileges and coherence of that access. In HPVM, much

more limited properties of accessed memory are specified, offering fewer opportunities for

data partitioning, movement and optimization to the HPVM runtime. Identifying a set of

information pertinent to memory system optimizations and introducing them to the HPVM

model will enable optimizations for systems with complex memory hierarchies, where the

cost of communication is significant, and may even overcome the cost of computation.

8.2.2 Introducing Cycles in the HPVM Dataflow Graph

The HPVM representation is designed as a hierarchical dataflow graph, that is required to

be acyclic. The acyclic property is beneficial albeit limiting in certain ways, e.g., we study

error propagation through the acyclic graph, however it would be increasingly difficult to

study how the error evolves in a dataflow graph with cycles. However, there are important

applications that would benefit from the presence of cycles in the dataflow graph. At the

moment we rely on the host code to repeatedly launch the dataflow graph in a loop to

represent such applications. Introducing a “backwards dataflow edge” to the dataflow graph,

effectively creating a cycle, would represent a change in the HPVM model that poses research
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challenges, but enables a wide range of applications to be represented as dataflow graphs in

HPVM.

8.2.3 Compiler Optimizations on The HPVM IR

The HPVM representation has been used as a compiler IR in performing the node fu-

sion optimization. However, currently the optimization is performed without estimating its

profitability, and can be enhanced with a model or tuning driven component to select the

fusion targets. Additionally, a wider set of transformations can be designed on top of the

dataflow graph representation, both target independent and target dependent. For example,

the opposite transformation, node splitting can be implemented, to be performed as deemed

beneficial by an appropriate (target specific) cost model, but as an target independent graph

transformation. More generally, a wide set of transformations on top of the dataflow graph

will enable easier and better code generation for a range of target hardware. Different hard-

ware targets may have different characteristics and target specific translators for them may

need to transform the dataflow graph. Identifying and designing these transformations on

the hardware independent dataflow graph representation is an open problem, that will enable

all translators to benefit from them and improve the performance of generated code.

8.2.4 Efficient Scheduling Policy in HPVM

In the evaluation section of the HPVM prototype (section 5.3) we demonstrate that HPVM

enables flexible runtime scheduling decisions. The HPVM representation allows the runtime

scheduler to dynamically select between different native versions of generated code for HPVM

dataflow nodes to compensate for load variations at runtime. However, implementation of

more sophisticated scheduling policies within the framework is an open problem, especially

in combination with performing compiler transformations on the HPVM representation and

memory model extensions.

8.2.5 Extension of HPVM IR to Other Domains/Classes of Algorithms

We have currently extended the HPVM IR with domain specific information in the form

of high level operations. Direct representation of high level operations at the IR level is a

design choice that enables mapping to efficient hardware and utilization of domain specific

optimizations and approximations. The current set of operations captures tensor operations

for the domains of convolutional neural networks and image processing. However, extending

100



to other domains, or classes of algorithms within a domain is not straightforward. Identifying

a minimal but sufficient set of operations and any other information required to represent

computations within a domain and developing domain specific approximation techniques are

interesting and open problems in this direction.
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[69] Z. Budimlic, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,
D. Peixotto, V. Sarkar, F. Schlimbach, and S. Tasirlar, “Concurrent Collections,”
Scientific Programming, vol. 18, no. 3-4, pp. 203–217, 2010.

[70] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing Locality and
Independence with Logical Regions,” ser. SC, 2012.

[71] S. Treichler, M. Bauer, and A. Aiken, “Realm: An Event-Based Low-Level Runtime
for Distributed Memory Architectures,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser. PACT ’14. New
York, NY, USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2628071.2628084 p. 263–276.

107



[72] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: Programming
the Memory Hierarchy,” in Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, ser. SC ’06. New York, NY, USA: Association for Computing
Machinery, 2006. [Online]. Available: https://doi.org/10.1145/1188455.1188543 p.
83–es.

[73] M. Bauer, J. Clark, E. Schkufza, and A. Aiken, “Programming the Memory Hierarchy
Revisited: Supporting Irregular Parallelism in Sequoia,” in Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, ser. PPoPP
’11. New York, NY, USA: Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/1941553.1941558 p. 13–24.

[74] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability Type Inference for
Flexible Approximate Programming,” in OOPSLA. ACM, 2015, pp. 470–487.

[75] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze et al., “TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning,” in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 578–594.

[76] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman, R. Levenstein,
B. Maher, N. Satish, J. Olesen, J. Park, A. Rakhov, and M. Smelyanskiy,
“Glow: Graph Lowering Compiler Techniques for Neural Networks,” CoRR, vol.
abs/1805.00907, 2018. [Online]. Available: http://arxiv.org/abs/1805.00907

[77] “Domain-specific compiler for linear algebra to optimize tensorflow computations,”
https://www.tensorflow.org/xla/overview, 2018.

[78] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly,
and S. Amarasinghe, “OpenTuner: An Extensible Framework for Program Autotun-
ing,” in Proceedings of the 23rd international conference on Parallel architectures and
compilation. ACM, 2014, pp. 303–316.

[79] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S. Amarasinghe,
“Autotuning Algorithmic Choice for Input Sensitivity,” in Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2737924.2737969 pp. 379–390.

[80] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and
S. Amarasinghe, “SiblingRivalry: Online Autotuning Through Local Competitions,”
in Proceedings of the 2012 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’12. New York, NY, USA: ACM,
2012. [Online]. Available: http://doi.acm.org/10.1145/2380403.2380425 pp. 91–100.

[81] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of Service Profil-
ing,” ser. ICSE, 2010.

108



[82] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing Per-
formance vs. Accuracy Trade-offs With Loop Perforation,” in Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 2011, pp. 124–134.

[83] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” in ACM SIGARCH Computer
Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 367–379.

[84] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, “Cambricon:
An Instruction Set Architecture for Neural Networks,” in ACM SIGARCH Computer
Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 393–405.

[85] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the Sensor,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 3. ACM, 2015, pp. 92–104.

[86] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun
et al., “DaDianNao: A Machine-Learning Supercomputer,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 2014, pp. 609–622.

[87] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration
for General-Purpose Approximate Programs,” in Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45. USA: IEEE Computer Society, 2012. [Online]. Available: https:
//doi.org/10.1109/MICRO.2012.48 p. 449–460.

[88] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi,
L. Ceze, and D. Burger, “General-Purpose Code Acceleration with Limited-Precision
Analog Computation,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3,
pp. 505–516, 2014.

[89] D. Lin, S. Talathi, and S. Annapureddy, “Fixed Point Quantization of Deep Con-
volutional Networks,” in International Conference on Machine Learning, 2016, pp.
2849–2858.

[90] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical Guarantees on Numerical Precision of
Deep Neural Networks,” in International Conference on Machine Learning, 2017, pp.
3007–3016.

[91] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.
Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning Assistant for Floating-Point
Precision,” in High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. IEEE, 2013, pp. 1–12.

[92] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-Point
Programs with Tunable Precision,” ser. PLDI, 2014.

109



[93] M. Rinard, “Probabilistic Accuracy Bounds for Fault-Tolerant Computations that
Discard Tasks,” ser. ICS, 2006.

[94] S. Chakradhar, A. Raghunathan, and J. Meng, “Best-Effort Parallel Execution Frame-
work for Recognition and Mining Applications,” ser. IPDPS, 2009.

[95] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna, “Exploiting the Forgiving
Nature of Applications for Scalable Parallel Execution,” ser. IPDPS, 2010.

[96] S. Misailovic, D. Roy, and M. Rinard, “Probabilistically Accurate Program Transfor-
mations,” ser. SAS, 2011.

[97] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard, “Randomized Accuracy-Aware
Program Transformations for Efficient Approximate Computations,” in Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’12. New York, NY, USA: Association for Computing
Machinery, 2012. [Online]. Available: https://doi.org/10.1145/2103656.2103710 p.
441–454.

[98] M. Samadi, D. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-Based Approxi-
mation for Data Parallel Applications,” ser. ASPLOS, 2014.

[99] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop: Bringing
Approximations to MapReduce Frameworks,” in ASPLOS. ACM, 2015, pp. 383–397.

[100] S. Misailovic, D. Kim, and M. Rinard, “Parallelizing Sequential Programs with Statis-
tical Accuracy Tests,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 12, no. 2s, p. 88, 2013.

[101] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing with Uncertainty,” in
Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore
and manycore scalability. ACM, 2012, pp. 51–60.

[102] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “HELIX-UP: Relaxing
Program Semantics to Unleash Parallelization,” in Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization. IEEE
Computer Society, 2015, pp. 235–245.

[103] M. Figurnov, A. Ibraimova, D. Vetrov, and P. Kohli, “Perforated CNNs:
Acceleration through Elimination of Redundant Convolutions,” in Proceedings
of the 30th International Conference on Neural Information Processing Systems,
ser. NIPS’16. USA: Curran Associates Inc., 2016. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3157096.3157203 pp. 955–963.

[104] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“MCDNN: An Approximation-Based Execution Framework for Deep Stream Process-
ing Under Resource Constraints,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2016, pp. 123–136.

110



[105] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, G. Maghanath, and S. Bagchi, “ApproxNet:
Content and Contention Aware Video Analytics System for the Edge,” arXiv preprint
arXiv:1909.02068, 2019.

[106] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and
S. Adve, “HPVM: Heterogeneous Parallel Virtual Machine,” in Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3178487.3178493 pp. 68–80.

[107] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation,” in Proc. Conf. on Code Generation and Optimization,
San Jose, CA, USA, Mar 2004, pp. 75–88.

[108] NVIDIA, “PTX: Parallel Thread Execution ISA,” 2009, http://docs.nvidia.com/cuda/
parallel-thread-execution/index.html.

[109] NVIDIA, “NVVM IR,” http://docs.nvidia.com/cuda/nvvm-ir-spec, 2013.

[110] “LIBCLC,” https://libclc.llvm.org/.

[111] Khronos Group, “SPIR 1.2 Specification,” https://www.khronos.org/registry/spir/
specs/spir\ spec-1.2.pdf, 2012.

[112] R. Allen and K. Kennedy, Optimizing Compilers for Modern Architectures. San Fran-
cisco, CA: Morgan Kaufmann Publishers, Inc., 2002.

[113] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,
and W.-M. W. Hwu, “Parboil: A revised benchmark suite for scientific and commercial
throughput computing,” Tech. Rep., 2012.

[114] Li-wen Chang, “Personal Communication,” August 2015.

[115] H. Sharif, P. Srivastava, M. Huzaifa, M. Kotsifakou, K. Joshi, Y. Sarita, N. Zhao,
V. S. Adve, S. Misailovic, and S. Adve, “ApproxHPVM: A Portable Compiler IR for
Accuracy-Aware Optimizations,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
Oct. 2019. [Online]. Available: https://doi.org/10.1145/3360612

[116] NVIDIA, “NVIDIA Jetson TX2 Developer Kit,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems-dev-kits-modules, 2018.

[117] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,”
in Advances in neural information processing systems, 1990, pp. 396–404.

[118] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with Deep
Convolutional Neural Networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

111



[119] W. Yang, “Classification on CIFAR-10/100 and ImageNet with PyTorch,” https:
//github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py,
2019.

[120] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[121] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv 1409.1556, 09 2014.

[122] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” CoRR, vol. abs/1704.04861, 2017. [Online].
Available: http://arxiv.org/abs/1704.04861

[123] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST Database of handwritten digits,”
http://yann.lecun.com/exdb/mnist, 1998.

[124] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” University
of Toronto, 05 2012.

[125] P. Wang and J. Cheng, “Accelerating Convolutional Neural Networks for Mobile Ap-
plications,” in Proceedings of the 24th ACM international conference on Multimedia.
ACM, 2016, pp. 541–545.

[126] D. Maier, B. Cosenza, and B. Juurlink, “Local Memory-Aware Kernel Perforation,”
in Proceedings of the 2018 International Symposium on Code Generation and
Optimization, ser. CGO 2018. New York, NY, USA: Association for Computing
Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3168814 p. 278–287.

[127] H. Wu, “Low Precision Inference on GPU,” 2019, gTC. [Online].
Available: https://developer.download.nvidia.com/video/gputechconf/gtc/2019/
presentation/s9659-inference-at-reduced-precision-on-gpus.pdf

[128] Mark Harris, NVIDIA, “Mixed-Precision Programming with CUDA 8,” https://
devblogs.nvidia.com/mixed-precision-programming-cuda-8/, 2016.

[129] P. Konsor, “Performance Benefits of Half Precision Floats,” https://software.
intel.com/en-us/articles/performance-benefits-of-half-precision-floats, 2011, accessed:
2019-11-21.

[130] ARM, “Half-precision floating-point number format,” https://
developer.arm.com/docs/dui0774/e/other-compiler-specific-features/
half-precision-floating-point-number-format, 2019, accessed: 2019-11-21.

[131] B. McMahan and D. Ramage, “Federated Learning: Collaborative Machine
Learning without Centralized Training Data,” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html, April 2017.

112



[132] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
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