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Abstract
Energy-efficient computing is especially important in the field of high-performance 
computing (HPC) on supercomputers. Therefore, automated optimization of energy 
efficiency during the execution of a compute-intensive program is desirable. In this 
article, a framework for the automatic improvement of the energy efficiency on 
NVIDIA GPUs (graphics processing units) using dynamic voltage and frequency 
scaling is presented. As application, the mining of crypto-currencies is used, since 
in this area energy efficiency is of particular importance. The framework first deter-
mines the energy-optimal frequencies for each available currency on each GPU of a 
computer automatically. Then, the mining is started, and during a monitoring phase 
it is ensured that always the most profitable currency is mined on each GPU, using 
optimal frequencies. Tests with different GPUs show that the energy efficiency, 
depending on the GPU and the currency, can be increased by up to 84% compared 
to the usage of the default frequencies. This in turn almost doubles the mining profit.

Keywords DVFS · GPU · Blockchain · Energy · HPC

1 Introduction

Modern supercomputers provide massive computing power, but they also require large 
amounts of energy for computing. As an example, the current number one supercom-
puter in the June 2019 TOP 500 listing has 4608 computing nodes, each consisting of 
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two IBM POWER9 processors and six NVIDIA Tesla V100 GPUs. Each GPU has a 
maximal power consumption of 300 W. The maximal power consumption of the entire 
system is 13 MW, 8.29 MW of which can be attributed to the power consumption of 
the GPUs [1, 2]. This indicates the importance of GPUs in high-performance comput-
ing and the tremendous energy consumption of supercomputers.

The energy consumption can be influenced by the operational frequency used by the 
hardware, and modern CPUs (central processing unit) and GPUs (graphics processing 
unit) provide DVFS (dynamic voltage and frequency scaling) to reduce the energy con-
sumption by reducing the operational frequency. However, reducing the frequency usu-
ally increases the execution time. Therefore, it is important to select a frequency that 
reduces the energy consumption without increasing the execution time by a significant 
amount. The automatic optimization of energy efficiency during the compute-intensive 
execution of application programs is especially desirable for GPUs due to their large 
power consumption.

Blockchain mining algorithms play an increasingly important role due to the use 
of crypto-currencies such as Bitcoin, which are used to secure financial transactions, 
especially in the Internet. When mining crypto-currencies, solving a mathematical puz-
zle earns a reward in coins, which can then be exchanged for real money. The prob-
ability to win the reward is proportional to the computing power invested, whereas the 
costs correspond to the energy consumption of the hardware. Blockchain mining algo-
rithms are often executed on GPUs, since GPUs are more effective than CPUs for these 
algorithms.

The goal of this article is to investigate how the energy consumption of blockchain 
mining algorithms can be optimized for NVIDIA GPUs. For the investigation, we 
propose and use a framework that automates the energy reduction using a systematic 
exploration. The framework consists of three phases. The first two phases determine 
optimal frequencies for each currency and each GPU using an offline selection pro-
cess and an online optimization process. The third phase is a monitoring phase, which 
ensures that on each GPU, the most profitable currency is mined at each point of execu-
tion time. Tests with different GPUs show that the energy efficiency, depending on the 
GPU and the currency, can be increased by up to 84% compared to the usage of the 
default frequencies. This in turn almost doubles the mining profit.

The rest of the article is structured as follows. Section 2 gives a brief introduc-
tion to blockchain technology and the underlying algorithms. Section  3 explains 
some technical background, e.g., how the energy measurement and frequency scal-
ing are performed. Section 4 introduces the energy-oriented autotuning framework. 
Section 5 presents an experimental evaluation with different currencies for different 
NVIDIA GPUs. Section 6 describes and discusses related work. Section 7 concludes 
the article.

2  Blockchain technology

In this chapter we shortly introduce how a blockchain works in general and intro-
duce the three main blockchain algorithms used in this article, Ethereum (ETH), 
Monero (XMR) and ZCash (ZEC).
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2.1  Introduction to blockchains

A blockchain is a list of data (blocks) which are connected through cryptographi-
cal hashes. Each block consists of a header and a body. The body contains an 
amount of finished transactions and their hashes which are stored in a hash tree 
(Merkle Tree). The header contains the root of this tree, a time stamp and a ran-
dom number (Nonce). Additionally, the header includes the hash value of the pre-
vious block. This ensures a non-modified belated transaction. Depending on the 
blockchain technology, the header can include more information. Also the hash-
ing function used can differ.

A blockchain is managed decentrally, meaning that there are no central servers 
where the blockchain is stored. Instead, a peer-to-peer network is used. Each par-
ticipant of this network stores the complete blockchain. If a new block is gener-
ated by a set of transactions, every node verifies these transactions locally before 
sending this block to the other nodes in the network. To be prepared for failures 
or attacks, different blockchains offer different possibilities for protection. One of 
them is Proof of Work (PoW).

PoW participants are called miners. A miner can only add a new block of 
transactions, when he solves a Nonce. Simplified, the miner has to solve the fol-
lowing equation:

where X is the Nonce and Y is the given difficulty target. The target changes dynami-
cally with the combined computing power of all miners to achieve the same time 
to solve this equation every time. The target corresponds to the difficulty to mine 
a block. Solving Eq. (1) is called mining a block. This procedure can only be done 
with a brute-force approach. If a miner mines a block, he gets a block reward [3]. 
This computation provides a large potential of parallelism, and GPUs can be used 
efficiently, as described in Sect. 3.1. However, a lot of energy may be used. Since it 
is almost impossible to find a block alone, miners are connected through a so-called 
mining pool. These pools concentrate the computing power of each miner who sub-
scribes to this pool. The miner with the highest computing power contributed earns 
the most reward.

The crypto-currencies Ethereum (ETH), Monero (XMR) and ZCash (ZEC) are 
shortly described in the following subsection.

2.2  Overview of the algorithms of ETH, XMR and ZEC

This chapter explains the main concepts of the algorithms of the crypto-curren-
cies ETH, XMR and ZEC used in this article. Ethereum uses the Ethash algo-
rithm, Monero uses the CryptoNight algorithm, and ZCash uses the Equihash 
algorithm. These algorithms will be shortly explained in the following. A more 
detailed description can be found in [4].

(1)hash(block_data||X) < Y ,
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2.2.1  ETH: the Ethash algorithm for Ethereum

Ethereum mining is based on the Ethash algorithm, also known as the Dagger-
Hashimoto algorithm. The simplified flow diagram in Fig. 1 shows the main struc-
ture of the algorithm [5].

The Ethash algorithm uses a pseudo-generated data set [called DAG (directed 
acyclic graph)] based on all blocks generated so far by all participants and a nonce 
counting all confirmed transactions contributed by the specific participant. To gener-
ate a new block, the header from the previous block and the current nonce is hashed 
by a hashing algorithm similar to SHA-3 to get the initial 128-byte mix, also called 
Mix 0 (step 1 in Fig. 1). By using this Mix 0 the 128-byte site of the DAG can be 
determined (step 2). Then in step 3, Mix 1 is calculated based on this site and Mix 
0. Steps 2 and 3 are repeated 64 times until Mix 64 is generated. In step 5, Mix 64 is 
compressed to a 32-byte mix, also called Mix Digest. This Mix Digest is then com-
pared to the target threshold (also 32 bytes). If the value of Mix Digest is smaller or 

Fig. 1  Flow diagram of the Ethash algorithm used by Ethereum mit a DAG size of 2.37 GB of late 2018 
[5]
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equal to this target threshold, the nonce is accepted and transferred to the Ethereum 
network. If this is not the case, the nonce is dismissed and a new nonce is used for 
the comparison, which is usually a newly generated random number, see step 6.

Analyzing the different steps of the algorithm, it becomes clear why memory 
bandwidth is the limiting factor: Each read of a new mix needs 128 byte from the 
DAG. Hashing just one nonce needs 64 mixes which corresponds to 8 KB of data. 
But reading one site of the DAG is random, so caching the DAG in a small CPU 
cache would be of no benefit because reading the next site of the DAG would be 
probably out of the cache. When benchmarking Ethereum for this article, the DAG 
size was around 2.37 GB, while the biggest CPU cache was around 128 MB at this 
time [6].

In conclusion, the only way to improve the performance is to decrease the 
access time to the DAG, which is equivalent to an increase in the overall memory 
bandwidth.

2.2.2  XMR: the CryptoNight algorithm

CryptoNight is the algorithm used by the crypto-currency Monero [4]. The algo-
rithm basically consists of three main steps: the scratchpad initialization, the mem-
ory-hard loop and hashing operations.

In the first step, a large scratchpad is initialized with pseudo-random data. To do 
so, input data are hashed with Kecccak-1600 (from which the well-known SHA-3 
(Secure Hash Algorithm 3) is a subset), which results in 200 bytes of pseudo-ran-
dom data. By applying AES-256 (Advanced Encryption Standard) encryption to 
these 200 bytes, a 2-MB buffer of pseudo-random data is seeded. Bytes 0 to 31 of 
the Keccak-1600 hash are used as AES key. The encryption is performed on 128-
byte payloads until 2 MB is reached. The Keccack-1600 bytes 66 to 191 are used 
as the first payload. The next payloads are encrypted on the results of the previous 
ones. Finally each 128-byte payload is encrypted 10 times.

The second step, the so-called memory-hard loop, basically consists of 524,288 
iterations of a simple stateful algorithm. All iterations read and write the scratchpad 
at pseudo-random locations. It is not possible to calculate the state of future itera-
tions directly.

The last step performs a hashing of the entire scratchpad to produce the result-
ing value. The step combines the original Keccak-1600 data with the entire scratch-
pad. Then, the algorithm picks one of four hashing algorithms (BLACK-256, 
Groestl-256, JH-256 or Skein-256) and hashes the result with the selected hashing 
function. The resulting 256-bit hash is the final output of the CryptoNight algorithm 
[7]. To make this algorithms ASICS (application-specific integrated circuit) safe, the 
algorithm is changed slightly every 6 months [8, 9].

2.2.3  ZEC: the Equihash algorithm for ZCash

Equihash is a Proof-of-Work algorithm which is based on the generalized birthday 
problem and the enhanced Wagner’s algorithm. The algorithm uses three parameters 
n, k, and d [10, 11]. The values of these parameters determine the time and memory 
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requirements of the algorithm. The Equihash algorithm solves a modified general-
ized birthday problem: Given a single list L of n-bit strings xi with |L| ≪ 2n , find 
exactly 2k distinct strings x1, x2,… , x2k from L such that

and H(x1||x2||… ||x2k ) has d leading zeros. H is a given hash function and ⊕ denotes 
the XOR on bit strings. ZCash uses the Equihash algorithm with n = 200 and k = 9 
(d is set to zero), see Fig. 2 for an illustration. With these parameters the birthday 
problem has a minimum memory size of 522 MB. The algorithm also uses a seed 
I which is obtained by a hash transfer. V is a 160-bit nonce to be determined. The 
Equihash algorithm solves the modified generalized birthday problem by finding 
x1, x2,… , x2k with all numbers smaller than 2

n

(k+1)
+1 to solve Eq. (2) as stated above. 

H is a Blake2b hashing function [11]. For a detailed explanation it is recommended 
to read the original publication [10].

2.3  Pre‑profiling ETH, XMR, ZEC

The currencies employed in the evaluation in Chapter  5 are Ethereum (ETH), 
Monero (XMR) and ZCash (ZEC) which are all Proof-of-Work (PoW) algorithms. 
Ethereum, Monero and ZCash were chosen due to their different hashing functions, 
which lead to different computing characteristics. Ethereum uses the Ethash-based 
hashing function. Monero utilizes the CryptoNight protocol, and ZCash is Equihash 
based. At the time of writing this paper, CryptoNight in version 7 has been avail-
able. For the mining of ETH, the ethminer [12] in version 0.15.0.dev11 has been 
used, for XMR the xmr-stak [13] in version 2.4.5, and for ZEC the excavator [14] in 
version 1.1.0a.

The hash function used in the blockchain of the corresponding currency is essen-
tial for the performance: To quantify this effect, the mining of different currencies 
has been profiled in Windows 10 with the NVIDIA-Driver in version 391.24 and 
the CUDA toolkit in version 9.1. Figure 3 shows the profiling results of ETH, ZEC 
and XMR on a NVIDIA Titan X (Pascal) with the NVIDIA Visual Profiler, NVVP 
[15]. The utilized memory bandwidth for reading and writing access, as well as the 
number of instructions per clock cycle (IPC), is measured. The memory bandwidth 
measured indicates how much a program is memory-bound, while the IPC meas-
ured indicates how much a program is compute-bound. As the miner uses several 

(2)H(x1)⊕ H(x2)⊕⋯⊕ H(x2k ) = 0

Fig. 2  Flow diagram of the 
Equihash algorithm used by 
ZCash [10]
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CUDA kernels, the weighted mean of the individual kernels after the GPU time is 
displayed.

The memory bandwidth indicates that ETH is most strongly memory-bound 
among the currencies examined, followed by XMR and ZEC. The executed IPC 
shows that ZEC is most strongly compute-bound, followed by ETH and XMR. 
The stronger a currency is memory-bound, the faster and longer the hashrate will 
increase when the VRAM frequency is raised. Similarly, the stronger a currency is 
compute-bound, the faster and longer the hashrate will increase when the core fre-
quency is raised.

3  Technical background

In this section, we will explain some technical background. This includes informa-
tion about the hardware used for the experimental evaluation, the operating system, 
the energy measurement and the frequency adaptation.

3.1  How GPUs work in this context

GPUs are massive parallel many core processors, which have, compared to CPUs, a 
high amount of computing power and a large memory bandwidth. On GPUs a larger 
number of transistors are assigned to data processing than on CPUs, where a relative 
high amount of transistors is used for caches and control logic. The reason for this 
lies in the fact that CPUs and GPUs serve different purposes: CPUs are designed to 
minimize the latency for one thread, whereas GPUs are designed to maximize the 
throughput of all threads.

On a GPU a thread corresponds to a sequence of SIMD (Single Instruction Mul-
tiple Data) lane operations. As a result, GPUs are well suited for computations in 
which the same instructions are executed on different data in parallel in SIMD style. 
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Executing the same instructions on different data allows to hide memory access 
latencies by computations. This reduces the need for big caches on GPUs [16].

The hash algorithms described in Sect. 2.2 are utilized during the PoW approach 
described in Sect. 2.1 for the different currencies evaluated. To solve the PoW, dif-
ferent numbers (nonces) can be checked with the hash algorithms in parallel. This 
corresponds to SIMD computations suitable for GPUs (1:1 mapping of nonces to 
SIMD lanes). The more nonces can be checked in parallel, the faster a solution to 
the PoW can be found, earning the block reward. The number of checked nonces per 
second is called hashrate.

3.2  Energy measurement

The energy measurement is incorporated as an individual module and is activated 
separately for each GPU as a background process. During the energy measurement, 
the real-time energy consumption of the specific GPU is measured periodically via 
an infinite loop using the NVML [17] library. The energy data are reported in a file 
with the corresponding system time. The energy consumption for a given time frame 
is calculated by reading the energy values for the specific time period and calculat-
ing the mean value.

3.3  Frequency adaptation

DVFS enables us to change the operational frequencies of a computing unit dynami-
cally. DVFS is also available for GPUs. The frequency adaptation uses the NVML 
[17] library and, depending on the operating system, the NVAPI [18] (Windows) 
or the NV-Control X [19] (Linux) library. The parameters are the device ID, the 
adjustable VRAM frequency, as well as the core frequency as an index of a vector 
which holds the available frequencies. There are three ways of determining a suit-
able frequency, depending on which APIs are supported on the specific GPU:

• NVML and NVAPI/NV-Control X: The VRAM and the core frequency can be 
set in the full available range of frequencies.

• NVML only: The core frequency can be set in a slightly restricted value range; 
however, the VRAM frequency cannot be set.

• NVAPI/NV-Control X only: The VRAM frequency can be set in the full range, 
and the core frequency is set in a strongly restricted range.

3.4  Hardware setup

The GPUs used to evaluate the framework are shown in Table 1 along with impor-
tant hardware information. The table also displays which APIs from Sect.  3.3 are 
available for overclocking and underclocking, as well as the adjustable frequency 
area.
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The CPU used is an Intel Broadwell 6950X Processor. Since all measurements 
run on the GPUs, the main task of the CPU is to schedule work on the GPUs and to 
run the operating systems.

4  Autotuning framework

For our experiments, we have developed a framework with autotuning features. The 
source code of the framework is available at https ://githu b.com/UBT-AI2/dvfs_gpu.

In this section, we focus on the main modules of the autotuning framework and 
its implementation. The framework has been developed for a collection of GPUs 
attached to the same computer. The goal is to reduce the overall energy consumption 
of the entire system as far as possible with a stable performance rate. The framework 
developed is organized in three main autotuning phases: (1) an offline frequency 
(pre-)selection, (2) an online frequency optimization and (3) a monitoring phase. 
This chapter describes the different phases in Sects. 4.2, 4.3 and 4.4. As usual for 
autotuning, we also use search strategies to determine whether a setting is better 
than another setting, see Sect. 4.1.

4.1  Optimization procedure

Three different search strategies have been implemented to find the energy optimal 
frequencies: Hill Climbing, Simulated Annealing, and Nelder-Mead [20]. The 
optimization function maps the adjustable frequency range to the amount of hashes 
per Joule, obtained while mining a currency.

The target function f ∶ [a, b] × [c, d] ⟼ ℝ
+

0
 with a, b, c, d ∈ ℕ maps the adjust-

able frequency range of a GPU to the amount of hashes per Joule which are achieved 
while mining a crypto-currency in (3) where [a, b] corresponds to the range of the 
adjustable core frequencies and [c,  d] corresponds to the range of the adjustable 
VRAM frequencies. The frequencies are expressed as integer values in MHz. The 
target function is computed by:

Table 1  GPUs used for evaluation

TITAN X TITAN V GTX 1080 P4000

Architecture Pascal Volta Pascal Pascal
CUDA-Cores 3584 5120 2560 1792
Memory type 12 GB GDDR5X 12 GB HBM2 8 GB GDDR5X 8 GB GDDR5
Memory bandwidth (GB/s) 480 652 320 243
Power cap (W) 250 250 180 105
NVML Yes Yes No Yes
NVAPI Yes Yes Yes No
NV-Control X Yes No Yes No
VRAM-clock range (MHz) 4005–6005 850–1050 4005–6005 3802
Core-clock range (MHz) 139–2011 139–2012 1711–2011 139–1708

https://github.com/UBT-AI2/dvfs_gpu
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The optimization procedure aims to maximize the value of f in the adjustable fre-
quency range. Additionally, as a side condition for the optimization procedure, a 
minimum hashrate to adhere to can be specified. The value range for the frequency 
to be adjusted is determined for each GPU at program start. It depends on the APIs 
supported on the GPU for frequency adjustment. Depending on supported APIs, the 
target function (3) is zero-dimensional, one-dimensional or two-dimensional.

4.2  Offline phase

The frequency optimization is executed for each GPU in a separate CPU thread 
which determines the energy optimal frequency for each currency assigned to the 
GPU. This is performed by using the optimization procedure introduced in Sect. 4.1.

The frequency optimization itself is divided in an offline and an online phase. 
These two phases differ in the evaluation of the target function from Eq. (3), i.e., in 
determining the hashrate and energy consumption at the given frequency.

In the offline phase, the frequencies are optimized via short offline benchmarks. 
In this context, offline is defined as having no connection to the mining pool and 
a lack of network communication. The performance (hash amounts per second) of 
the hash algorithm is thus determined under ideal conditions, as network faults and 
latency are no longer a bottleneck.

During every evaluation of the target function from Eq. (3), the binary of the 
miner is invoked in benchmark mode for the currency to be optimized. The hashrate 
achieved is stored in a data structure together with the maximum energy consump-
tion measured during the benchmarking. Information regarding frequencies used in 
these measurements and the time frame of this benchmarking are also saved.

The duration of an offline phase depends on the run time of a measurement and 
the applied optimization procedure. For the tested currencies, the measurement 
duration ranged between 2 and 30 s. The optimization procedures need 10–15 func-
tion evaluations, depending on their individual starting points.

This module is also suitable for every kind of benchmarks to determine the opti-
mal frequency setting if an energy optimal setting is considered.

4.3  Online phase

During the online phase, frequencies are optimized under real conditions. The online 
mining with a mining pool is initiated at the beginning of the online frequency opti-
mization phase as a background process. This background process continuously 
writes the hashrate currently achieved along with the corresponding system time to 
a log file.

To evaluate the target function, the desired frequencies must be set and the cur-
rent system time saved. While waiting for a determinable time frame, which is typi-
cally between two and three minutes, the average hashrate can be read off the log file. 

(3)f (vram, core) =
hashrate(vram, core)

energyconsumption(vram, core)
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Moreover, the average energy consumption during this time can be determined as 
described in Sect. 3.2. Hashrate, energy consumption and measuring period are stored 
in a data structure as in the offline phase.

The result of the offline phase serves as a starting point for the online phase. The 
creation of a measuring point (function evaluation) takes significantly more time in 
the online phase compared to the offline phase. However, less function evaluations 
are needed as the starting point is usually already close to the optimum. Moreover, 
mining incomes can be earned during the online phase, as real mining is running in 
the background.

4.4  Monitoring

Similar to the frequency optimization phase, the monitoring phase is also executed 
by a separate CPU thread for each GPU. The monitoring thread executes an infinite 
loop and is started when there are optimal frequencies available for all currencies on 
the corresponding GPU. This is the case when the frequency optimization phase is 
completed for all GPUs of the associated GPU group (see Sect. 4.5).

The monitoring phase is responsible for the periodic calculation of energy costs 
and mining revenues. The energy costs in Euro per second are computed as follows:

To compute the mining revenue in Euro per second the following formula is used 
where hr is the abbreviation for hashrate [21]:

Here the user hashrate ( user_hr ) is the hashrate that is obtained by the miner and the 
network hashrate ( net_hr ) is the total hashrate of all miners of the currency. Moreo-
ver, block_time is the average time needed to mine a new block, block_reward is the 
reward of the mined currency that a miner receives when finding a new block, and 
stock_price is the stock price for one unit of the currency in Euros.

The average block time is given by the currency (e.g., 15 s for Ethereum) and 
should remain constant, independently from the miner and the current network 
hashrate. For this reason the block difficulty is continuously adjusted accord-
ing to the current network hashrate. If it increases (decreases), the block difficulty 
(block_df ) will rise (fall). Thus:

In the framework, stock_price from CryptoCompare [22], and net_hr , block_time as 
well as block_reward from WhatToMine [23] are retrieved over their REST-APIs. 
Subtracting energy costs from the mining revenue gives the profit:

(4)energy_cost
[
Euro

s

]
= energy_consumption [Ws] ⋅

energy_cost
[
Euro
kWh

]

1000 ⋅ 3600

(5)mining_reward =
user_hr

net_hr
⋅

1

block_time
⋅ block_reward ⋅ stock_price

(6)block_df = net_hr ⋅ block_time

(7)mining_profit = mining_reward − energy_cost
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If the currently mined currency is no longer the most profitable one after the recal-
culation of energy costs and mining revenues, the background mining of this cur-
rency is terminated and the mining of a new, more profitable currency is initiated.

Subsequently, energy-efficient frequencies for the newly mined currency are 
determined again, trying to find even better frequencies. The search method is 
identical to the online frequency optimization method in Sect.  4.3. The start-
ing point of the search is the previously used frequency for the particular cur-
rency. The previous optimization result is updated with the result of the new 
optimization.

4.5  Handling multiple GPUs

The device information of the hardware system to be used is read for all GPUs. 
The GPUs are subdivided into groups for the offline and the online frequency 
optimization. Identical GPUs will be allocated to the same group. Each GPU 
group must be able to optimize the frequencies for all available currencies. After 
the program is started, existing optimization results from previous measurements 
can be incorporated for the individual groups. This will reduce the optimization 
effort needed. If the optimization result of a group contains values for all cur-
rencies, the complete frequency optimization phase is skipped for the particular 
group. The currencies with no optimization result available are divided onto the 
individual GPUs of the group for frequency optimization.

The reason behind the arrangement of GPUs into groups is that the optimum 
frequencies for the individual currencies are considered to be identical for identi-
cal GPUs. Thus, the optimization for the individual currencies can be performed 
in a parallel fashion within each group, exchanging optimization results between 
the GPUs of the group. This results in an acceleration of the frequency optimiza-
tion phase.

Subsequently, a thread is started for every GPU. These threads run for the 
complete length of the program, i.e., the complete frequency optimization and 
monitoring phase are executed separately for each GPU in a separate thread. In 
the monitoring phase, the threads run in an infinite loop until the user stops the 
program. At program termination the optimization results that have been updated 
during the monitoring phase are saved as a JSON file. These results contain infor-
mation about optimal frequencies, hashrates and energy consumption for each 
currency on each GPU.

5  Experimental evaluation

In this section, we evaluate the framework introduced in Sect. 4. For the evalu-
ation, the framework is tested with different GPUs and different currencies as 
introduced in Sects. 2.3 and 3.4.



1 3

Autotuning based on frequency scaling toward energy efficiency…

5.1  Energy optimum ETH‑Ethash

In order to determine the energy optimum, i.e., the maximum number of hashes 
per Joule, the hashrates and the corresponding energy consumption are measured 
for all adjustable frequencies on the individual GPU.

Figure 4 shows the results of the measurement on the Titan X and Titan V for 
ETH. It can be seen that ETH benefits most from higher VRAM frequencies com-
pared to XMR and ZEC, confirming the profiling result in Sect. 2.3. The energy 
optimum is usually located in mid-range core frequencies and mid-range to high-
range VRAM frequencies.

To detect the efficiency increase, the values at optimum frequencies are com-
pared with those at default frequencies (see Table 2). The default frequencies are 
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determined by starting the miner on the corresponding GPU and by observing the 
frequencies adjusted by the NVIDIA-Driver.

5.2  Energy optimum XMR‑CryptoNight

As can be seen in Fig. 5, XMR behaves similar to ETH. However, as XMR is less 
compute-bound and less memory-bound than ETH (see Fig. 3), the increase of the 
hashrate while raising the frequency level produces a flatter slope. It is also notewor-
thy that XMR requires relatively low amounts of energy. The efficiency gain via the 
optimization of frequencies is summarized in Table 3.

Unlike other currencies, the mining of XMR is also worthwhile on CPUs. A 
possible reason for this is that the higher amount of computing units does not push 
a GPU to the limits of its capacity, as the low IPC values demonstrate. This also 
explains the low demand for energy.

5.3  Energy optimum ZEC‑Equihash

In comparison with ETH and XMR, ZEC is more compute-bound, as visible in 
Fig. 3. Hence, the energy optimum is usually located at lower VRAM-clock rates 
and slightly higher core-clock rates (see Fig. 6). For this reason, mining of ZEC on 
the Titan V is also not very efficient, as this GPU is characterized by a fast HBM2 
memory which cannot be utilized by the ZEC algorithm very well. Moreover, due 
to the high IPC value (see also Fig. 3) and the corresponding compute-bound char-
acteristic, ZEC requires a higher energy demand because of a high exploitation of 
the CUDA cores. Table 4 indicates the efficiency gain for ZEC when using optimal 
frequencies.

Table 2  ETH: optimal versus default frequencies on different GPUs

Currency: ETH TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 4955 1010 5805 3802
 Core-Clock 1151 1035 1711 1088
 Hashrate 31,119,928 82,603,192 25,339,050 26,496,646
 Power 113.095 155.207 156.29 77.036
 Hashes/Joule 275,166 532,213 162,128 343,951

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1822 1335 1885 1695
 Hashrate 31,532,634 67,375,607 21,387,776 26,630,501
 Power 161.008 147.519 135.96 104.775
 Hashes/Joule 195,845 456,725 157,309 254,168

Efficiency gain (%) 40.5 16.53 3.06 35.32
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5.4  Search strategies evaluation

In this section, we will look at the different optimization algorithms (see 
Sect.  4.1), which are used during the frequency optimization phases (see Sects. 
4.2 and  4.3). To do so, we will observe both a 2D optimization (VRAM fre-
quency, core frequency) on the Titan X and a 1D optimization (core frequency) 
on the Quadro P4000 since the Quadro does not allow us to change the VRAM 
frequency. ZEC will be used as currency.

Every algorithm (Hill Climbing, Simulated Annealing and Nelder-Mead) is 
executed three times with different starting frequencies. The different starting 
points are the maximum, the minimum and the middle frequency. Furthermore all 
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algorithms are also evaluated with a minimum hashrate as constraint. The maxi-
mum number of iterations is set to six for all tests.

The following sections introduce the optimization process and evaluate the per-
formance of the individual algorithms. The performance of the optimization is 
measured with the following two criteria:

• deviation between the estimated optimum and the real optimum and
• required number of function evaluations to find the best frequency value.

5.4.1  Performance of Hill Climbing

The results of optimizing with Hill Climbing are summarized in Table 5. The first 
table row shows the optimum found by an exhaustive search (see Table 4). The sec-
ond table row lists the energy efficiency (number of hashes per Joule) obtained with 
the associated frequencies in brackets (VRAM frequency, core frequency) for the 
different starting points. The third table row displays the required number of func-
tion evaluations to find the best energy efficiency, as well as the total number of 
function evaluations until termination in brackets. Both are shown columnwise for 
the Titan X (2D optimization) and the Quadro P4000 (1D optimization).

Figure 7 shows the associated optimization procedure of Hill Climbing by follow-
ing the additional black lines. The focus of these figures is more the amount of itera-
tions than the exact path of the Hill Climbing approximation itself. The algorithm 
process is always shown in combination with the function to be optimized at differ-
ent starting points for both GPUs.

Amid all starting points, Hill Climbing attains a good result value near the opti-
mum on both GPUs. On average a result value of 3.98 H/J is found on the Titan X. 
The optimum from Table 4 lies at 4.13 H/J. On the Quadro P4000, the result value 
of 3.31 H/J found on average is almost identical to the optimum from Table 4, which 

Table 3  XMR: optimal versus default frequencies on the different GPUs

Currency: XMR TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 5155 1010 5502 3802
 Core-Clock 1202 1035 1811 999
 Hashrate 744.5 1277.6 581.0 554.1
 Power 86.42 88.115 85.51 45.589
 Hashes/Joule 8.6149 14.4992 6.79453 12.1542

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1847 1335 1911 1708
 Hashrate 753.5 1178.2 523.8 593.9
 Power 161.02 106.495 126.34 73.179
 Hashes/Joule 4.67954 11.0634 4.14596 8.11572

Efficiency gain (%) 84.1 31.06 63.88 49.76
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is 3.34 H/J. These small deviations can be explained by measurement inaccuracies. 
In general, it is easier to find the optimum at a 1D optimization like on the Quadro 
P4000. On average it requires five function evaluations to find the best value on the 
Quadro P4000 and 15 evaluations on the Titan X.

5.4.2  Performance of Simulated Annealing

The performance of Simulated Annealing is similar to that of Hill Climbing 
on both GPUs. Yet, it is not necessary to escape local optima with Simulated 
Annealing, since they do not exist. Table  6 shows the result and the required 
amount of function evaluations for the optimization. The table structure is iden-
tical to that of Table 5 explained in Sect. 5.4.1. The corresponding optimization 
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Fig. 6  ZEC: hashrate (above), energy consumption (middle) and hashes per Joule (below) at all adjust-
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procedures at different starting points are shown in Fig. 8. Again, the exact paths 
shown as black lines are not as important as the amount of iteration of the Simu-
lated Annealing needs to find a point near the optimum.

On average a value of 4 H/J is found on the Titan X. This is equivalent to a 
deviation of 0.13 H/J from the optimum 4.13 H/J in Table 4. Aside from meas-
urement inaccuracies, the maximal value is also found on the Quadro P4000. 
The average number of function evaluations is identical to that of Hill Climbing, 
being 15 on the Titan X and five on the Quadro P4000. This is in part due to the 
fact that Simulated Annealing uses the same pattern as Hill Climbing to explore 
new solution candidates.

Table 4  ZEC: optimal versus default frequencies on the different GPUs

Currency: ZEC TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 4155 850 5555 3802
 Core-Clock 1151 1185 1861 1025
 Hashrate 433.525144 525.599705 432.495997 191.152922
 Power 104.826 109.25 129.22 57.176
 Hashes/Joule 4.13566 4.81098 3.34697 3.34324

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1784 1335 1885 1708
 Hashrate 538.831065 579.105294 395.216173 219.175340
 Power 159.64 128.46 156.30 100.79
 Hashes/Joule 3.37529 4.50806 2.52857 2.17457

Efficiency gain (%) 22.53 6.72 32.37 53.74

Table 5  Hill Climbing: result 
and number of function 
evaluations of optimization with 
starting points minimum, medial 
and maximum frequencies

Hill Climbing ZEC TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 3.97659 (4006, 1126) 3.31102 (3802, 961)
 Start-Mid 4.02499 (4248, 1177) 3.31719 (3802, 1088)
 Start-Max 3.94662 (4024, 1265) 3.31502 (3802, 999)
 Average 3.98273 (4093, 1189) 3.31438 (3802, 1016)

Evaluations
 Start-Min 8 (19) 6 (9)
 Start-Mid 18 (23) 3 (6)
 Start-Max 18 (19) 6 (8)
 Average 14.66 (20.33) 5 (7.66)
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5.4.3  Performance of Nelder‑Mead

The optimization with the Nelder-Mead procedure performs slightly worse 
than with Hill Climbing and Simulated Annealing. The values obtained and the 
required number of function evaluations are summarized in Table  7. The table 
structure is already described in Sect.  5.4.1. Figure  9 shows the corresponding 
optimization procedures at different starting frequencies. The black lines in this 
figure represent the path of Nelder-Mead. More important than the exact path is 
the amount of iterations Nelder-Mead uses to get near the minimum which is rep-
resented by the green dot.
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Fig. 7  Hill Climbing: frequency optimization procedure of ZEC with starting points of minimal (above), 
medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro P4000 
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The energy efficiency averages at 3.88 H/J on the Titan X, corresponding to a 
deviation of 0.25 H/J from the optimum in Table 4. Especially when starting with 
maximum frequency, the VRAM frequency area is not explored enough and hence 
only a value of 3.72 H/J is found. As with Hill Climbing and Simulated Annealing 
and irrespective of measurement inaccuracies, the maximum value is also found on 
the Quadro P4000. In order to find the best value, the Nelder-Mead procedure needs 
on average ten function evaluations on both the Titan X and the Quadro P4000. This 
makes the Nelder-Mead procedure faster on the Titan X (10 vs. 15 function evalua-
tion), but at the same time slower than Hill Climbing and Simulated Annealing on 
the Quadro P4000 (10 vs. 5 function evaluations).

In general, the Nelder-Mead procedure is relatively independent of the dimen-
sion when exploring new solution candidates. Though the simplex has more or less 
points depending on the dimension, the worst point of the simplex must be substi-
tuted or the simplex must be compressed as a whole in each iteration [24]. Only 
when calculating the initial simplex or when compressing the simplex the dimension 
has an influence on the number of function evaluations.

5.4.4  Optimization with constraints

To evaluate an optimization under constraints the three different algorithms are exe-
cuted with a minimum target hashrate of 80% (95%) of the maximum hashrate on 
the Titan X (Quadro P4000). The starting frequencies must always be at the maxi-
mum for optimization with minimum hashrates, as the absolute value of applicable 
hashrates is calculated using the measurement values at maximum frequencies.

The results and the required number of function evaluations for the different 
algorithms are shown in Table 8. The table structure is similar to that described 
in Sect.  5.4.1. However, instead of different starting points, the different algo-
rithms are displayed. Figure 10 shows the optimization procedures corresponding 
to the table. The purple grid (Titan X) or the green line (Quadro P4000) marks 
the function area where the constraint of the applicable hashrate is satisfied. The 

Table 6  Simulated Annealing: 
result and amount of function 
evaluations of optimization of 
ZEC, starting with minimal, 
medial and maximal frequencies

Simulated 
Annealing ZEC

TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 4.02485 (4127, 1126) 3.32891 (3802, 987)
 Start-Mid 4.05375 (4036, 1189) 3.31112 (3802, 1063)
 Start-Max 3.9611 (4091, 1126) 3.32744 (3802, 1037)
 Average 4.013 (4085, 1147) 3.32249 (3802, 1029)

Evaluations
 Start-Min 9 (16) 10 (14)
 Start-Mid 12 (19) 4 (13)
 Start-Max 24 (26) 2 (15)
 Average 15 (20.33) 5.33 (14)
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best value of energy efficiency on this grid or line is the result. The optimum is 
subject to measurement fluctuations and is around 3.6 H/J on the Titan X and 
3.05 H/J on the Quadro P4000.

The results of the different algorithms are relatively similar. Nonetheless, the 
Nelder-Mead procedure provides slightly worse values. The number of function 
evaluations needed to find the best value behaves similar to an optimization with-
out a constraint. The Nelder-Mead procedure needs less function evaluations than 
Hill Climbing and Simulating Annealing during 2D optimization on the Titan X, 
but more function evaluations than these procedures during 1D optimization on 
the Quadro P4000.
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Fig. 8  Simulated Annealing: frequency optimization procedure of ZEC with starting points of minimal 
(above), medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro 
P4000 (right column)
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5.5  Monitoring

To evaluate the monitoring phase, the framework has been executed on a computer 
with all four GPUs from Table 1 attached in a time frame from 04.10.2018 20:00h 
till 07.10.2018 20:00h. The currencies used were ETH, XMR and ZEC, as well as 
some new, less popular currencies Lux-Coin, Raven, Bitcore and Vertcoin (LUX, 
RVN, BTX and VTC), so-called Altcoins. Those were added for this evaluation due 
to their popularity at the time. For Altcoins the ccminer [25] in version 2.3 has been 
used. The energy costs were set to 0.1 Euro/kWh.

Figure 11 shows the calculated mining profit at energy optimal frequencies for 
every currency on the individual GPUs. In each case only the most profitable cur-
rency is mined. Figure 12 shows the earnings obtained and the energy costs, as well 
as the resulting profits for all GPUs individually and overall.

The figure indicates that the Titan V draws the highest profits, followed by the 
Titan X. Here, the GTX 1080 and Quadro P4000 lie on average. The energy costs 
are quite similar for the Titan V and the Titan X, followed by the GTX 1080 and the 
Quadro P4000, the latter being the most economical one. The currency ETH is pre-
dominantly mined on the Titan V, Titan X and Quadro P4000, while LUX is mostly 
mined on the GTX 1080.

6  Related work

The effect of DVFS on the energy consumption of CPUs and GPUs has been 
explored by several research papers, see [1, 26] for an overview. In [27] different 
technologies for DVFS on GPUs are introduced and compared. In [28] the effect of 
DVFS is studied on a NVIDIA Geforce GTX 560 Ti using various sample programs. 
Both core and VRAM frequencies as well as core and VRAM voltages are manually 

Table 7  Nelder-Mead: result 
and number of function 
evaluations from optimizing 
the ZEC, starting with minimal, 
medial and maximal frequencies

Nelder-Mead ZEC TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 4.01787 (4050, 1177) 3.33445 (3802, 1025)
 Start-Mid 3.90598 (4732, 1151) 3.33988 (3802, 1037)
 Start-Max 3.72097 (5549, 1164) 3.34415 (3802, 1037)
 Average 3.8816 (4777, 1164) 3.3395 (3802, 1029)

Evaluations
 Start-Min 4 (12) 5 (12)
 Start-Mid 16 (18) 15 (16)
 Start-Max 11 (15) 11 (14)
 Average 10.33 (15) 10.33 (10.66)
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adjusted using the tools NVIDIA Inspector and MSI Afterburner. This paper was 
the inspiration for our work. Our contribution is the dynamic setting of the frequen-
cies and the determination of the optimal frequencies. In [29] the effect of DVFS on 
GPU and CPU is compared using matrix calculation as example. Cameirinha Diogo 
Mineiro [30] introduces a technology to reduce the energy consumption during the 
run time of GPU programs using DVFS and monitoring of the memory bandwidth 
currently observed. Bishwajit et al. [31] presents models to forecast the energy con-
sumption of a GPU when using different core and VRAM frequencies. The models 
are trained using machine learning techniques and measurement data from different 
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Fig. 9  Nelder-Mead: frequency optimization procedure of ZEC with starting points of minimal (above), 
medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro P4000 
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applications. In [32], these kinds of models are used to increase the energy effi-
ciency of mobile video games. The trained models are then used in a power manage-
ment system which adjusts CPU and GPU frequencies at run time. In [33] a general 
overview and a categorization of various autotuning techniques are given.

There exists commercial software in the field of mining, named Awesome Miner 
[34]. This software is able to manually issue a profile with GPU frequencies, 
hashrates and energy consumption for every GPU and currency. The mining profit 
is calculated based on these profiles and their equivalent coin statistics. The most 
profitable currency is then mined.

7  Summary and conclusion

In this article, we have presented an autotuning framework to augment the energy 
efficiency on NVIDIA GPUs. Special attention has been given to the application of 
the framework for the mining of crypto-currencies.

The framework has been applied in a manner so that several GPUs of a computer 
and as many parameters as possible can be adapted using configuration data. The 
program procedure is divided into a frequency optimization and a profit monitoring 
phase.

During the frequency optimization phase, the frequency optimization occurs 
simultaneously on all specified GPUs. Yet, for each GPU every available currency 
must be optimized individually. The concept of GPU groups for identical GPUs 
solves this issue and allows for a division of currencies onto the different GPUs 
of a group. In order to permit frequency adjustments in a large enough area and 
allow for energy demand measurements on Windows and Linux, three NVIDIA-
specific libraries (NVML, NVAPI, NV-Control X) were necessary. The optimization 
itself is based on three different optimization algorithms (Hill Climbing, Simulated 

Table 8  Result and number of function evaluations of ZEC optimization with different algorithms under 
the constraint of a minimally applicable hashrate

Constrained optimization ZEC TITAN X Quadro P4000

Constraint 80% hashrate 95% hashrate
Optimum ca. 3.6 (4755, 1379) ca. 3.05 (3802, 1303)
Result
 Hill Climbing 3.44178 (5421, 1430) 3.05715 (3802, 1341)
 Simulated Annealing 3.48682 (4749, 1430) 3.0806 (3802, 1316)
 Nelder-Mead 3.3656 (4836, 1468) 3.00388 (3802, 1328)

Evaluations
 Hill Climbing 12 (22) 3 (6)
 Simulated Annealing 18 (21) 2 (9)
 Nelder-Mead 6 (16) 8 (12)
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Annealing, Nelder-Mead). These are employed in an offline phase based on short 
benchmarks and an online phase during which the mining with mining pools is 
already running. At the end of the frequency optimization phase, energy optimal 
frequencies are made known on all GPUs for all available currencies. In the fol-
lowing profit monitoring phase, energy costs and mining revenues at optimal fre-
quencies are calculated and mining of the most profitable currency is initiated. E 
The energy consumption and mining revenues are periodically updated while tak-
ing into account current stock prices and hashrates. If the presently mined currency 
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Fig. 10  Frequency optimization procedure of ZEC with Hill Climbing (above), Simulated Annealing 
(middle) and Nelder-Mead (below) with the constraint of a minimally applicable hashrate on the Titan X 
(left column) and the Quadro P4000 (right column)
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is not the most profitable one anymore, it is substituted followed by a frequency 
re-optimization.

The framework has been evaluated using different GPUs and currencies. First, 
the energy optimal frequencies were determined and the energy efficiency was com-
pared with the optimum frequencies and the frequencies used by the NVIDIA driver. 
Depending on GPU used and the currency, an efficiency increase of up to 84% could 
be obtained. In the following, the different optimization algorithms were evaluated 
using the optimum found and the required number of function evaluations. Finally, 
the mining revenues calculated in the profit monitoring phase for available curren-
cies were researched on a computer with four GPUs for a longer time period.

Our new contribution is the development of an easy-to-use open-source frame-
work which allows to start program binaries which then are automatically adjusted 
to the best energy-efficient GPU setting. Until our publication there was no open-
source project which was able to adjust the frequencies automatically. We used min-
ing algorithms for evaluation because of the high energy consumption. But, it is also 
possible to run our framework with other GPU implementations like weather simu-
lations. The criterium of the hashrate would be replaced with some other application 
specific or general criterium like the inverse run time.

For future work the voltages of the GPUs should also be considered. But, since 
our free available APIs NVAPI and NV-Control X do not provide this functionality, 
we were not able to change the voltages.
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Fig. 11  Calculated mining profits of the available currencies on the individual GPUs of a computer dur-
ing the monitoring phase
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