
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03263-5

1 3

Autotuning based on frequency scaling toward energy
efficiency of blockchain algorithms on graphics processing
units

Matthias Stachowski1 · Alexander Fiebig1 · Thomas Rauber1

© The Author(s) 2020

Abstract
Energy-efficient computing is especially important in the field of high-performance
computing (HPC) on supercomputers. Therefore, automated optimization of energy
efficiency during the execution of a compute-intensive program is desirable. In this
article, a framework for the automatic improvement of the energy efficiency on
NVIDIA GPUs (graphics processing units) using dynamic voltage and frequency
scaling is presented. As application, the mining of crypto-currencies is used, since
in this area energy efficiency is of particular importance. The framework first deter-
mines the energy-optimal frequencies for each available currency on each GPU of a
computer automatically. Then, the mining is started, and during a monitoring phase
it is ensured that always the most profitable currency is mined on each GPU, using
optimal frequencies. Tests with different GPUs show that the energy efficiency,
depending on the GPU and the currency, can be increased by up to 84% compared
to the usage of the default frequencies. This in turn almost doubles the mining profit.

Keywords DVFS · GPU · Blockchain · Energy · HPC

1 Introduction

Modern supercomputers provide massive computing power, but they also require large
amounts of energy for computing. As an example, the current number one supercom-
puter in the June 2019 TOP 500 listing has 4608 computing nodes, each consisting of

 * Matthias Stachowski
 stachowski@uni-bayreuth.de

 Alexander Fiebig
 alexander.fiebig@uni-bayreuth.de

 Thomas Rauber
 rauber@uni-bayreuth.de

1 University of Bayreuth, Bayreuth, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03263-5&domain=pdf

 M. Stachowski et al.

1 3

two IBM POWER9 processors and six NVIDIA Tesla V100 GPUs. Each GPU has a
maximal power consumption of 300 W. The maximal power consumption of the entire
system is 13 MW, 8.29 MW of which can be attributed to the power consumption of
the GPUs [1, 2]. This indicates the importance of GPUs in high-performance comput-
ing and the tremendous energy consumption of supercomputers.

The energy consumption can be influenced by the operational frequency used by the
hardware, and modern CPUs (central processing unit) and GPUs (graphics processing
unit) provide DVFS (dynamic voltage and frequency scaling) to reduce the energy con-
sumption by reducing the operational frequency. However, reducing the frequency usu-
ally increases the execution time. Therefore, it is important to select a frequency that
reduces the energy consumption without increasing the execution time by a significant
amount. The automatic optimization of energy efficiency during the compute-intensive
execution of application programs is especially desirable for GPUs due to their large
power consumption.

Blockchain mining algorithms play an increasingly important role due to the use
of crypto-currencies such as Bitcoin, which are used to secure financial transactions,
especially in the Internet. When mining crypto-currencies, solving a mathematical puz-
zle earns a reward in coins, which can then be exchanged for real money. The prob-
ability to win the reward is proportional to the computing power invested, whereas the
costs correspond to the energy consumption of the hardware. Blockchain mining algo-
rithms are often executed on GPUs, since GPUs are more effective than CPUs for these
algorithms.

The goal of this article is to investigate how the energy consumption of blockchain
mining algorithms can be optimized for NVIDIA GPUs. For the investigation, we
propose and use a framework that automates the energy reduction using a systematic
exploration. The framework consists of three phases. The first two phases determine
optimal frequencies for each currency and each GPU using an offline selection pro-
cess and an online optimization process. The third phase is a monitoring phase, which
ensures that on each GPU, the most profitable currency is mined at each point of execu-
tion time. Tests with different GPUs show that the energy efficiency, depending on the
GPU and the currency, can be increased by up to 84% compared to the usage of the
default frequencies. This in turn almost doubles the mining profit.

The rest of the article is structured as follows. Section 2 gives a brief introduc-
tion to blockchain technology and the underlying algorithms. Section 3 explains
some technical background, e.g., how the energy measurement and frequency scal-
ing are performed. Section 4 introduces the energy-oriented autotuning framework.
Section 5 presents an experimental evaluation with different currencies for different
NVIDIA GPUs. Section 6 describes and discusses related work. Section 7 concludes
the article.

2 Blockchain technology

In this chapter we shortly introduce how a blockchain works in general and intro-
duce the three main blockchain algorithms used in this article, Ethereum (ETH),
Monero (XMR) and ZCash (ZEC).

1 3

Autotuning based on frequency scaling toward energy efficiency…

2.1 Introduction to blockchains

A blockchain is a list of data (blocks) which are connected through cryptographi-
cal hashes. Each block consists of a header and a body. The body contains an
amount of finished transactions and their hashes which are stored in a hash tree
(Merkle Tree). The header contains the root of this tree, a time stamp and a ran-
dom number (Nonce). Additionally, the header includes the hash value of the pre-
vious block. This ensures a non-modified belated transaction. Depending on the
blockchain technology, the header can include more information. Also the hash-
ing function used can differ.

A blockchain is managed decentrally, meaning that there are no central servers
where the blockchain is stored. Instead, a peer-to-peer network is used. Each par-
ticipant of this network stores the complete blockchain. If a new block is gener-
ated by a set of transactions, every node verifies these transactions locally before
sending this block to the other nodes in the network. To be prepared for failures
or attacks, different blockchains offer different possibilities for protection. One of
them is Proof of Work (PoW).

PoW participants are called miners. A miner can only add a new block of
transactions, when he solves a Nonce. Simplified, the miner has to solve the fol-
lowing equation:

where X is the Nonce and Y is the given difficulty target. The target changes dynami-
cally with the combined computing power of all miners to achieve the same time
to solve this equation every time. The target corresponds to the difficulty to mine
a block. Solving Eq. (1) is called mining a block. This procedure can only be done
with a brute-force approach. If a miner mines a block, he gets a block reward [3].
This computation provides a large potential of parallelism, and GPUs can be used
efficiently, as described in Sect. 3.1. However, a lot of energy may be used. Since it
is almost impossible to find a block alone, miners are connected through a so-called
mining pool. These pools concentrate the computing power of each miner who sub-
scribes to this pool. The miner with the highest computing power contributed earns
the most reward.

The crypto-currencies Ethereum (ETH), Monero (XMR) and ZCash (ZEC) are
shortly described in the following subsection.

2.2 Overview of the algorithms of ETH, XMR and ZEC

This chapter explains the main concepts of the algorithms of the crypto-curren-
cies ETH, XMR and ZEC used in this article. Ethereum uses the Ethash algo-
rithm, Monero uses the CryptoNight algorithm, and ZCash uses the Equihash
algorithm. These algorithms will be shortly explained in the following. A more
detailed description can be found in [4].

(1)hash(block_data||X) < Y ,

 M. Stachowski et al.

1 3

2.2.1 ETH: the Ethash algorithm for Ethereum

Ethereum mining is based on the Ethash algorithm, also known as the Dagger-
Hashimoto algorithm. The simplified flow diagram in Fig. 1 shows the main struc-
ture of the algorithm [5].

The Ethash algorithm uses a pseudo-generated data set [called DAG (directed
acyclic graph)] based on all blocks generated so far by all participants and a nonce
counting all confirmed transactions contributed by the specific participant. To gener-
ate a new block, the header from the previous block and the current nonce is hashed
by a hashing algorithm similar to SHA-3 to get the initial 128-byte mix, also called
Mix 0 (step 1 in Fig. 1). By using this Mix 0 the 128-byte site of the DAG can be
determined (step 2). Then in step 3, Mix 1 is calculated based on this site and Mix
0. Steps 2 and 3 are repeated 64 times until Mix 64 is generated. In step 5, Mix 64 is
compressed to a 32-byte mix, also called Mix Digest. This Mix Digest is then com-
pared to the target threshold (also 32 bytes). If the value of Mix Digest is smaller or

Fig. 1 Flow diagram of the Ethash algorithm used by Ethereum mit a DAG size of 2.37 GB of late 2018
[5]

1 3

Autotuning based on frequency scaling toward energy efficiency…

equal to this target threshold, the nonce is accepted and transferred to the Ethereum
network. If this is not the case, the nonce is dismissed and a new nonce is used for
the comparison, which is usually a newly generated random number, see step 6.

Analyzing the different steps of the algorithm, it becomes clear why memory
bandwidth is the limiting factor: Each read of a new mix needs 128 byte from the
DAG. Hashing just one nonce needs 64 mixes which corresponds to 8 KB of data.
But reading one site of the DAG is random, so caching the DAG in a small CPU
cache would be of no benefit because reading the next site of the DAG would be
probably out of the cache. When benchmarking Ethereum for this article, the DAG
size was around 2.37 GB, while the biggest CPU cache was around 128 MB at this
time [6].

In conclusion, the only way to improve the performance is to decrease the
access time to the DAG, which is equivalent to an increase in the overall memory
bandwidth.

2.2.2 XMR: the CryptoNight algorithm

CryptoNight is the algorithm used by the crypto-currency Monero [4]. The algo-
rithm basically consists of three main steps: the scratchpad initialization, the mem-
ory-hard loop and hashing operations.

In the first step, a large scratchpad is initialized with pseudo-random data. To do
so, input data are hashed with Kecccak-1600 (from which the well-known SHA-3
(Secure Hash Algorithm 3) is a subset), which results in 200 bytes of pseudo-ran-
dom data. By applying AES-256 (Advanced Encryption Standard) encryption to
these 200 bytes, a 2-MB buffer of pseudo-random data is seeded. Bytes 0 to 31 of
the Keccak-1600 hash are used as AES key. The encryption is performed on 128-
byte payloads until 2 MB is reached. The Keccack-1600 bytes 66 to 191 are used
as the first payload. The next payloads are encrypted on the results of the previous
ones. Finally each 128-byte payload is encrypted 10 times.

The second step, the so-called memory-hard loop, basically consists of 524,288
iterations of a simple stateful algorithm. All iterations read and write the scratchpad
at pseudo-random locations. It is not possible to calculate the state of future itera-
tions directly.

The last step performs a hashing of the entire scratchpad to produce the result-
ing value. The step combines the original Keccak-1600 data with the entire scratch-
pad. Then, the algorithm picks one of four hashing algorithms (BLACK-256,
Groestl-256, JH-256 or Skein-256) and hashes the result with the selected hashing
function. The resulting 256-bit hash is the final output of the CryptoNight algorithm
[7]. To make this algorithms ASICS (application-specific integrated circuit) safe, the
algorithm is changed slightly every 6 months [8, 9].

2.2.3 ZEC: the Equihash algorithm for ZCash

Equihash is a Proof-of-Work algorithm which is based on the generalized birthday
problem and the enhanced Wagner’s algorithm. The algorithm uses three parameters
n, k, and d [10, 11]. The values of these parameters determine the time and memory

 M. Stachowski et al.

1 3

requirements of the algorithm. The Equihash algorithm solves a modified general-
ized birthday problem: Given a single list L of n-bit strings xi with |L| ≪ 2n , find
exactly 2k distinct strings x1, x2,… , x2k from L such that

and H(x1||x2||… ||x2k) has d leading zeros. H is a given hash function and ⊕ denotes
the XOR on bit strings. ZCash uses the Equihash algorithm with n = 200 and k = 9
(d is set to zero), see Fig. 2 for an illustration. With these parameters the birthday
problem has a minimum memory size of 522 MB. The algorithm also uses a seed
I which is obtained by a hash transfer. V is a 160-bit nonce to be determined. The
Equihash algorithm solves the modified generalized birthday problem by finding
x1, x2,… , x2k with all numbers smaller than 2

n

(k+1)
+1 to solve Eq. (2) as stated above.

H is a Blake2b hashing function [11]. For a detailed explanation it is recommended
to read the original publication [10].

2.3 Pre‑profiling ETH, XMR, ZEC

The currencies employed in the evaluation in Chapter 5 are Ethereum (ETH),
Monero (XMR) and ZCash (ZEC) which are all Proof-of-Work (PoW) algorithms.
Ethereum, Monero and ZCash were chosen due to their different hashing functions,
which lead to different computing characteristics. Ethereum uses the Ethash-based
hashing function. Monero utilizes the CryptoNight protocol, and ZCash is Equihash
based. At the time of writing this paper, CryptoNight in version 7 has been avail-
able. For the mining of ETH, the ethminer [12] in version 0.15.0.dev11 has been
used, for XMR the xmr-stak [13] in version 2.4.5, and for ZEC the excavator [14] in
version 1.1.0a.

The hash function used in the blockchain of the corresponding currency is essen-
tial for the performance: To quantify this effect, the mining of different currencies
has been profiled in Windows 10 with the NVIDIA-Driver in version 391.24 and
the CUDA toolkit in version 9.1. Figure 3 shows the profiling results of ETH, ZEC
and XMR on a NVIDIA Titan X (Pascal) with the NVIDIA Visual Profiler, NVVP
[15]. The utilized memory bandwidth for reading and writing access, as well as the
number of instructions per clock cycle (IPC), is measured. The memory bandwidth
measured indicates how much a program is memory-bound, while the IPC meas-
ured indicates how much a program is compute-bound. As the miner uses several

(2)H(x1)⊕ H(x2)⊕⋯⊕ H(x2k) = 0

Fig. 2 Flow diagram of the
Equihash algorithm used by
ZCash [10]

1 3

Autotuning based on frequency scaling toward energy efficiency…

CUDA kernels, the weighted mean of the individual kernels after the GPU time is
displayed.

The memory bandwidth indicates that ETH is most strongly memory-bound
among the currencies examined, followed by XMR and ZEC. The executed IPC
shows that ZEC is most strongly compute-bound, followed by ETH and XMR.
The stronger a currency is memory-bound, the faster and longer the hashrate will
increase when the VRAM frequency is raised. Similarly, the stronger a currency is
compute-bound, the faster and longer the hashrate will increase when the core fre-
quency is raised.

3 Technical background

In this section, we will explain some technical background. This includes informa-
tion about the hardware used for the experimental evaluation, the operating system,
the energy measurement and the frequency adaptation.

3.1 How GPUs work in this context

GPUs are massive parallel many core processors, which have, compared to CPUs, a
high amount of computing power and a large memory bandwidth. On GPUs a larger
number of transistors are assigned to data processing than on CPUs, where a relative
high amount of transistors is used for caches and control logic. The reason for this
lies in the fact that CPUs and GPUs serve different purposes: CPUs are designed to
minimize the latency for one thread, whereas GPUs are designed to maximize the
throughput of all threads.

On a GPU a thread corresponds to a sequence of SIMD (Single Instruction Mul-
tiple Data) lane operations. As a result, GPUs are well suited for computations in
which the same instructions are executed on different data in parallel in SIMD style.

 0

 50

 100

 150

 200

 250

ETH
XM

R
ZEC

dr
am

-b
an

dw
id

th
 [G

B
/s

]

Titan X (Pascal) used dram-bandwidth currencies

read
write

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ETH
XM

R
ZEC

ip
c

Titan X (Pascal) executed ipc currencies

Fig. 3 Measured VRAM memory bandwidth (left) and executed IPC (right) during mining of ETH (eth-
miner), XMR (xmr-stak) and ZEC (excavator) on the Titan X with standard frequencies

 M. Stachowski et al.

1 3

Executing the same instructions on different data allows to hide memory access
latencies by computations. This reduces the need for big caches on GPUs [16].

The hash algorithms described in Sect. 2.2 are utilized during the PoW approach
described in Sect. 2.1 for the different currencies evaluated. To solve the PoW, dif-
ferent numbers (nonces) can be checked with the hash algorithms in parallel. This
corresponds to SIMD computations suitable for GPUs (1:1 mapping of nonces to
SIMD lanes). The more nonces can be checked in parallel, the faster a solution to
the PoW can be found, earning the block reward. The number of checked nonces per
second is called hashrate.

3.2 Energy measurement

The energy measurement is incorporated as an individual module and is activated
separately for each GPU as a background process. During the energy measurement,
the real-time energy consumption of the specific GPU is measured periodically via
an infinite loop using the NVML [17] library. The energy data are reported in a file
with the corresponding system time. The energy consumption for a given time frame
is calculated by reading the energy values for the specific time period and calculat-
ing the mean value.

3.3 Frequency adaptation

DVFS enables us to change the operational frequencies of a computing unit dynami-
cally. DVFS is also available for GPUs. The frequency adaptation uses the NVML
[17] library and, depending on the operating system, the NVAPI [18] (Windows)
or the NV-Control X [19] (Linux) library. The parameters are the device ID, the
adjustable VRAM frequency, as well as the core frequency as an index of a vector
which holds the available frequencies. There are three ways of determining a suit-
able frequency, depending on which APIs are supported on the specific GPU:

• NVML and NVAPI/NV-Control X: The VRAM and the core frequency can be
set in the full available range of frequencies.

• NVML only: The core frequency can be set in a slightly restricted value range;
however, the VRAM frequency cannot be set.

• NVAPI/NV-Control X only: The VRAM frequency can be set in the full range,
and the core frequency is set in a strongly restricted range.

3.4 Hardware setup

The GPUs used to evaluate the framework are shown in Table 1 along with impor-
tant hardware information. The table also displays which APIs from Sect. 3.3 are
available for overclocking and underclocking, as well as the adjustable frequency
area.

1 3

Autotuning based on frequency scaling toward energy efficiency…

The CPU used is an Intel Broadwell 6950X Processor. Since all measurements
run on the GPUs, the main task of the CPU is to schedule work on the GPUs and to
run the operating systems.

4 Autotuning framework

For our experiments, we have developed a framework with autotuning features. The
source code of the framework is available at https ://githu b.com/UBT-AI2/dvfs_gpu.

In this section, we focus on the main modules of the autotuning framework and
its implementation. The framework has been developed for a collection of GPUs
attached to the same computer. The goal is to reduce the overall energy consumption
of the entire system as far as possible with a stable performance rate. The framework
developed is organized in three main autotuning phases: (1) an offline frequency
(pre-)selection, (2) an online frequency optimization and (3) a monitoring phase.
This chapter describes the different phases in Sects. 4.2, 4.3 and 4.4. As usual for
autotuning, we also use search strategies to determine whether a setting is better
than another setting, see Sect. 4.1.

4.1 Optimization procedure

Three different search strategies have been implemented to find the energy optimal
frequencies: Hill Climbing, Simulated Annealing, and Nelder-Mead [20]. The
optimization function maps the adjustable frequency range to the amount of hashes
per Joule, obtained while mining a currency.

The target function f ∶ [a, b] × [c, d] ⟼ ℝ
+

0
 with a, b, c, d ∈ ℕ maps the adjust-

able frequency range of a GPU to the amount of hashes per Joule which are achieved
while mining a crypto-currency in (3) where [a, b] corresponds to the range of the
adjustable core frequencies and [c, d] corresponds to the range of the adjustable
VRAM frequencies. The frequencies are expressed as integer values in MHz. The
target function is computed by:

Table 1 GPUs used for evaluation

TITAN X TITAN V GTX 1080 P4000

Architecture Pascal Volta Pascal Pascal
CUDA-Cores 3584 5120 2560 1792
Memory type 12 GB GDDR5X 12 GB HBM2 8 GB GDDR5X 8 GB GDDR5
Memory bandwidth (GB/s) 480 652 320 243
Power cap (W) 250 250 180 105
NVML Yes Yes No Yes
NVAPI Yes Yes Yes No
NV-Control X Yes No Yes No
VRAM-clock range (MHz) 4005–6005 850–1050 4005–6005 3802
Core-clock range (MHz) 139–2011 139–2012 1711–2011 139–1708

https://github.com/UBT-AI2/dvfs_gpu

 M. Stachowski et al.

1 3

The optimization procedure aims to maximize the value of f in the adjustable fre-
quency range. Additionally, as a side condition for the optimization procedure, a
minimum hashrate to adhere to can be specified. The value range for the frequency
to be adjusted is determined for each GPU at program start. It depends on the APIs
supported on the GPU for frequency adjustment. Depending on supported APIs, the
target function (3) is zero-dimensional, one-dimensional or two-dimensional.

4.2 Offline phase

The frequency optimization is executed for each GPU in a separate CPU thread
which determines the energy optimal frequency for each currency assigned to the
GPU. This is performed by using the optimization procedure introduced in Sect. 4.1.

The frequency optimization itself is divided in an offline and an online phase.
These two phases differ in the evaluation of the target function from Eq. (3), i.e., in
determining the hashrate and energy consumption at the given frequency.

In the offline phase, the frequencies are optimized via short offline benchmarks.
In this context, offline is defined as having no connection to the mining pool and
a lack of network communication. The performance (hash amounts per second) of
the hash algorithm is thus determined under ideal conditions, as network faults and
latency are no longer a bottleneck.

During every evaluation of the target function from Eq. (3), the binary of the
miner is invoked in benchmark mode for the currency to be optimized. The hashrate
achieved is stored in a data structure together with the maximum energy consump-
tion measured during the benchmarking. Information regarding frequencies used in
these measurements and the time frame of this benchmarking are also saved.

The duration of an offline phase depends on the run time of a measurement and
the applied optimization procedure. For the tested currencies, the measurement
duration ranged between 2 and 30 s. The optimization procedures need 10–15 func-
tion evaluations, depending on their individual starting points.

This module is also suitable for every kind of benchmarks to determine the opti-
mal frequency setting if an energy optimal setting is considered.

4.3 Online phase

During the online phase, frequencies are optimized under real conditions. The online
mining with a mining pool is initiated at the beginning of the online frequency opti-
mization phase as a background process. This background process continuously
writes the hashrate currently achieved along with the corresponding system time to
a log file.

To evaluate the target function, the desired frequencies must be set and the cur-
rent system time saved. While waiting for a determinable time frame, which is typi-
cally between two and three minutes, the average hashrate can be read off the log file.

(3)f (vram, core) =
hashrate(vram, core)

energyconsumption(vram, core)

1 3

Autotuning based on frequency scaling toward energy efficiency…

Moreover, the average energy consumption during this time can be determined as
described in Sect. 3.2. Hashrate, energy consumption and measuring period are stored
in a data structure as in the offline phase.

The result of the offline phase serves as a starting point for the online phase. The
creation of a measuring point (function evaluation) takes significantly more time in
the online phase compared to the offline phase. However, less function evaluations
are needed as the starting point is usually already close to the optimum. Moreover,
mining incomes can be earned during the online phase, as real mining is running in
the background.

4.4 Monitoring

Similar to the frequency optimization phase, the monitoring phase is also executed
by a separate CPU thread for each GPU. The monitoring thread executes an infinite
loop and is started when there are optimal frequencies available for all currencies on
the corresponding GPU. This is the case when the frequency optimization phase is
completed for all GPUs of the associated GPU group (see Sect. 4.5).

The monitoring phase is responsible for the periodic calculation of energy costs
and mining revenues. The energy costs in Euro per second are computed as follows:

To compute the mining revenue in Euro per second the following formula is used
where hr is the abbreviation for hashrate [21]:

Here the user hashrate (user_hr) is the hashrate that is obtained by the miner and the
network hashrate (net_hr) is the total hashrate of all miners of the currency. Moreo-
ver, block_time is the average time needed to mine a new block, block_reward is the
reward of the mined currency that a miner receives when finding a new block, and
stock_price is the stock price for one unit of the currency in Euros.

The average block time is given by the currency (e.g., 15 s for Ethereum) and
should remain constant, independently from the miner and the current network
hashrate. For this reason the block difficulty is continuously adjusted accord-
ing to the current network hashrate. If it increases (decreases), the block difficulty
(block_df) will rise (fall). Thus:

In the framework, stock_price from CryptoCompare [22], and net_hr , block_time as
well as block_reward from WhatToMine [23] are retrieved over their REST-APIs.
Subtracting energy costs from the mining revenue gives the profit:

(4)energy_cost
[
Euro

s

]
= energy_consumption [Ws] ⋅

energy_cost
[
Euro
kWh

]

1000 ⋅ 3600

(5)mining_reward =
user_hr

net_hr
⋅

1

block_time
⋅ block_reward ⋅ stock_price

(6)block_df = net_hr ⋅ block_time

(7)mining_profit = mining_reward − energy_cost

 M. Stachowski et al.

1 3

If the currently mined currency is no longer the most profitable one after the recal-
culation of energy costs and mining revenues, the background mining of this cur-
rency is terminated and the mining of a new, more profitable currency is initiated.

Subsequently, energy-efficient frequencies for the newly mined currency are
determined again, trying to find even better frequencies. The search method is
identical to the online frequency optimization method in Sect. 4.3. The start-
ing point of the search is the previously used frequency for the particular cur-
rency. The previous optimization result is updated with the result of the new
optimization.

4.5 Handling multiple GPUs

The device information of the hardware system to be used is read for all GPUs.
The GPUs are subdivided into groups for the offline and the online frequency
optimization. Identical GPUs will be allocated to the same group. Each GPU
group must be able to optimize the frequencies for all available currencies. After
the program is started, existing optimization results from previous measurements
can be incorporated for the individual groups. This will reduce the optimization
effort needed. If the optimization result of a group contains values for all cur-
rencies, the complete frequency optimization phase is skipped for the particular
group. The currencies with no optimization result available are divided onto the
individual GPUs of the group for frequency optimization.

The reason behind the arrangement of GPUs into groups is that the optimum
frequencies for the individual currencies are considered to be identical for identi-
cal GPUs. Thus, the optimization for the individual currencies can be performed
in a parallel fashion within each group, exchanging optimization results between
the GPUs of the group. This results in an acceleration of the frequency optimiza-
tion phase.

Subsequently, a thread is started for every GPU. These threads run for the
complete length of the program, i.e., the complete frequency optimization and
monitoring phase are executed separately for each GPU in a separate thread. In
the monitoring phase, the threads run in an infinite loop until the user stops the
program. At program termination the optimization results that have been updated
during the monitoring phase are saved as a JSON file. These results contain infor-
mation about optimal frequencies, hashrates and energy consumption for each
currency on each GPU.

5 Experimental evaluation

In this section, we evaluate the framework introduced in Sect. 4. For the evalu-
ation, the framework is tested with different GPUs and different currencies as
introduced in Sects. 2.3 and 3.4.

1 3

Autotuning based on frequency scaling toward energy efficiency…

5.1 Energy optimum ETH‑Ethash

In order to determine the energy optimum, i.e., the maximum number of hashes
per Joule, the hashrates and the corresponding energy consumption are measured
for all adjustable frequencies on the individual GPU.

Figure 4 shows the results of the measurement on the Titan X and Titan V for
ETH. It can be seen that ETH benefits most from higher VRAM frequencies com-
pared to XMR and ZEC, confirming the profiling result in Sect. 2.3. The energy
optimum is usually located in mid-range core frequencies and mid-range to high-
range VRAM frequencies.

To detect the efficiency increase, the values at optimum frequencies are com-
pared with those at default frequencies (see Table 2). The default frequencies are

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

hashrate ETH ethminer-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 2x107
 3x107
 4x107
 5x107
 6x107
 7x107
 8x107
 9x107

hashrate ETH ethminer-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 2x107
 3x107
 4x107
 5x107
 6x107
 7x107
 8x107
 9x107

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 80
 100
 120
 140
 160
 180
 200
 220
 240

energy-consumption ETH ethminer-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 80
 100
 120
 140
 160
 180
 200
 220
 240

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 60

 80

 100

 120

 140

 160

 180

 200

energy-consumption ETH ethminer-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 60

 80

 100

 120

 140

 160

 180

 200

 4000
 4200
 4400
 4600
 4800
 5000
 5200
 5400
 5600
 5800
 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 140000
 160000
 180000
 200000
 220000
 240000
 260000
 280000

hash/energy ETH ethminer-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

hash/energy ETH ethminer-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 250000

 300000

 350000

 400000

 450000

 500000

 550000

Fig. 4 ETH: hashrate (above), energy consumption (middle) and hashes per Joule (below) for all adjust-
able frequencies on the Titan X (left column) and the Titan V (right column)

 M. Stachowski et al.

1 3

determined by starting the miner on the corresponding GPU and by observing the
frequencies adjusted by the NVIDIA-Driver.

5.2 Energy optimum XMR‑CryptoNight

As can be seen in Fig. 5, XMR behaves similar to ETH. However, as XMR is less
compute-bound and less memory-bound than ETH (see Fig. 3), the increase of the
hashrate while raising the frequency level produces a flatter slope. It is also notewor-
thy that XMR requires relatively low amounts of energy. The efficiency gain via the
optimization of frequencies is summarized in Table 3.

Unlike other currencies, the mining of XMR is also worthwhile on CPUs. A
possible reason for this is that the higher amount of computing units does not push
a GPU to the limits of its capacity, as the low IPC values demonstrate. This also
explains the low demand for energy.

5.3 Energy optimum ZEC‑Equihash

In comparison with ETH and XMR, ZEC is more compute-bound, as visible in
Fig. 3. Hence, the energy optimum is usually located at lower VRAM-clock rates
and slightly higher core-clock rates (see Fig. 6). For this reason, mining of ZEC on
the Titan V is also not very efficient, as this GPU is characterized by a fast HBM2
memory which cannot be utilized by the ZEC algorithm very well. Moreover, due
to the high IPC value (see also Fig. 3) and the corresponding compute-bound char-
acteristic, ZEC requires a higher energy demand because of a high exploitation of
the CUDA cores. Table 4 indicates the efficiency gain for ZEC when using optimal
frequencies.

Table 2 ETH: optimal versus default frequencies on different GPUs

Currency: ETH TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 4955 1010 5805 3802
 Core-Clock 1151 1035 1711 1088
 Hashrate 31,119,928 82,603,192 25,339,050 26,496,646
 Power 113.095 155.207 156.29 77.036
 Hashes/Joule 275,166 532,213 162,128 343,951

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1822 1335 1885 1695
 Hashrate 31,532,634 67,375,607 21,387,776 26,630,501
 Power 161.008 147.519 135.96 104.775
 Hashes/Joule 195,845 456,725 157,309 254,168

Efficiency gain (%) 40.5 16.53 3.06 35.32

1 3

Autotuning based on frequency scaling toward energy efficiency…

5.4 Search strategies evaluation

In this section, we will look at the different optimization algorithms (see
Sect. 4.1), which are used during the frequency optimization phases (see Sects.
4.2 and 4.3). To do so, we will observe both a 2D optimization (VRAM fre-
quency, core frequency) on the Titan X and a 1D optimization (core frequency)
on the Quadro P4000 since the Quadro does not allow us to change the VRAM
frequency. ZEC will be used as currency.

Every algorithm (Hill Climbing, Simulated Annealing and Nelder-Mead) is
executed three times with different starting frequencies. The different starting
points are the maximum, the minimum and the middle frequency. Furthermore all

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 300

 400

 500

 600

 700

 800

 900

 1000

hashrate XMR xmrstak-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 300

 400

 500

 600

 700

 800

 900

 1000

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

hashrate XMR xmrstak-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 500
 600
 700
 800
 900
 1000
 1100
 1200
 1300
 1400
 1500

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 60

 80

 100

 120

 140

 160

 180

energy-consumption XMR xmrstak-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 60

 80

 100

 120

 140

 160

 180

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

energy-consumption XMR xmrstak-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 40
 50
 60
 70
 80
 90
 100
 110
 120
 130

 4000
 4200
 4400
 4600
 4800
 5000
 5200
 5400
 5600
 5800
 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

hash/energy XMR xmrstak-titanX
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 3.5
 4
 4.5
 5
 5.5
 6
 6.5
 7
 7.5
 8
 8.5
 9

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 10
 10.5

 11
 11.5

 12
 12.5

 13
 13.5

 14
 14.5

hash/energy XMR xmrstak-titanV
optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 10
 10.5
 11
 11.5
 12
 12.5
 13
 13.5
 14
 14.5

Fig. 5 XMR: hashrate (top), energy usage (middle) and hashes per Joule (below) at all adjustable fre-
quencies on the Titan X (left column) and the Titan V (right column)

 M. Stachowski et al.

1 3

algorithms are also evaluated with a minimum hashrate as constraint. The maxi-
mum number of iterations is set to six for all tests.

The following sections introduce the optimization process and evaluate the per-
formance of the individual algorithms. The performance of the optimization is
measured with the following two criteria:

• deviation between the estimated optimum and the real optimum and
• required number of function evaluations to find the best frequency value.

5.4.1 Performance of Hill Climbing

The results of optimizing with Hill Climbing are summarized in Table 5. The first
table row shows the optimum found by an exhaustive search (see Table 4). The sec-
ond table row lists the energy efficiency (number of hashes per Joule) obtained with
the associated frequencies in brackets (VRAM frequency, core frequency) for the
different starting points. The third table row displays the required number of func-
tion evaluations to find the best energy efficiency, as well as the total number of
function evaluations until termination in brackets. Both are shown columnwise for
the Titan X (2D optimization) and the Quadro P4000 (1D optimization).

Figure 7 shows the associated optimization procedure of Hill Climbing by follow-
ing the additional black lines. The focus of these figures is more the amount of itera-
tions than the exact path of the Hill Climbing approximation itself. The algorithm
process is always shown in combination with the function to be optimized at differ-
ent starting points for both GPUs.

Amid all starting points, Hill Climbing attains a good result value near the opti-
mum on both GPUs. On average a result value of 3.98 H/J is found on the Titan X.
The optimum from Table 4 lies at 4.13 H/J. On the Quadro P4000, the result value
of 3.31 H/J found on average is almost identical to the optimum from Table 4, which

Table 3 XMR: optimal versus default frequencies on the different GPUs

Currency: XMR TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 5155 1010 5502 3802
 Core-Clock 1202 1035 1811 999
 Hashrate 744.5 1277.6 581.0 554.1
 Power 86.42 88.115 85.51 45.589
 Hashes/Joule 8.6149 14.4992 6.79453 12.1542

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1847 1335 1911 1708
 Hashrate 753.5 1178.2 523.8 593.9
 Power 161.02 106.495 126.34 73.179
 Hashes/Joule 4.67954 11.0634 4.14596 8.11572

Efficiency gain (%) 84.1 31.06 63.88 49.76

1 3

Autotuning based on frequency scaling toward energy efficiency…

is 3.34 H/J. These small deviations can be explained by measurement inaccuracies.
In general, it is easier to find the optimum at a 1D optimization like on the Quadro
P4000. On average it requires five function evaluations to find the best value on the
Quadro P4000 and 15 evaluations on the Titan X.

5.4.2 Performance of Simulated Annealing

The performance of Simulated Annealing is similar to that of Hill Climbing
on both GPUs. Yet, it is not necessary to escape local optima with Simulated
Annealing, since they do not exist. Table 6 shows the result and the required
amount of function evaluations for the optimization. The table structure is iden-
tical to that of Table 5 explained in Sect. 5.4.1. The corresponding optimization

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

hashrate ZEC excavator-titanX

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

hashrate ZEC excavator-titanV

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/s

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

energy-consumption ZEC excavator-titanX

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 60
 80
 100
 120
 140
 160
 180
 200
 220
 240
 260

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

energy-consumption ZEC excavator-titanV

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

J/s

 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150

 4000
 4200
 4400
 4600
 4800
 5000
 5200
 5400
 5600
 5800
 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

hash/energy ZEC excavator-titanX

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 850

 900

 950

 1000

 1050

 200 400 600 800 1000 1200 1400 1600 1800 2000

 2

 2.5

 3

 3.5

 4

 4.5

 5

hash/energy ZEC excavator-titanV

optimal frequencies
default frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2

 2.5

 3

 3.5

 4

 4.5

 5

Fig. 6 ZEC: hashrate (above), energy consumption (middle) and hashes per Joule (below) at all adjust-
able frequencies on the Titan X (left column) and the Titan V (right column)

 M. Stachowski et al.

1 3

procedures at different starting points are shown in Fig. 8. Again, the exact paths
shown as black lines are not as important as the amount of iteration of the Simu-
lated Annealing needs to find a point near the optimum.

On average a value of 4 H/J is found on the Titan X. This is equivalent to a
deviation of 0.13 H/J from the optimum 4.13 H/J in Table 4. Aside from meas-
urement inaccuracies, the maximal value is also found on the Quadro P4000.
The average number of function evaluations is identical to that of Hill Climbing,
being 15 on the Titan X and five on the Quadro P4000. This is in part due to the
fact that Simulated Annealing uses the same pattern as Hill Climbing to explore
new solution candidates.

Table 4 ZEC: optimal versus default frequencies on the different GPUs

Currency: ZEC TITAN X TITAN V GTX 1080 Quadro P4000

Optimal frequencies
 VRAM-Clock 4155 850 5555 3802
 Core-Clock 1151 1185 1861 1025
 Hashrate 433.525144 525.599705 432.495997 191.152922
 Power 104.826 109.25 129.22 57.176
 Hashes/Joule 4.13566 4.81098 3.34697 3.34324

Default frequencies
 VRAM-Clock 5005 850 5005 3802
 Core-Clock 1784 1335 1885 1708
 Hashrate 538.831065 579.105294 395.216173 219.175340
 Power 159.64 128.46 156.30 100.79
 Hashes/Joule 3.37529 4.50806 2.52857 2.17457

Efficiency gain (%) 22.53 6.72 32.37 53.74

Table 5 Hill Climbing: result
and number of function
evaluations of optimization with
starting points minimum, medial
and maximum frequencies

Hill Climbing ZEC TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 3.97659 (4006, 1126) 3.31102 (3802, 961)
 Start-Mid 4.02499 (4248, 1177) 3.31719 (3802, 1088)
 Start-Max 3.94662 (4024, 1265) 3.31502 (3802, 999)
 Average 3.98273 (4093, 1189) 3.31438 (3802, 1016)

Evaluations
 Start-Min 8 (19) 6 (9)
 Start-Mid 18 (23) 3 (6)
 Start-Max 18 (19) 6 (8)
 Average 14.66 (20.33) 5 (7.66)

1 3

Autotuning based on frequency scaling toward energy efficiency…

5.4.3 Performance of Nelder‑Mead

The optimization with the Nelder-Mead procedure performs slightly worse
than with Hill Climbing and Simulated Annealing. The values obtained and the
required number of function evaluations are summarized in Table 7. The table
structure is already described in Sect. 5.4.1. Figure 9 shows the corresponding
optimization procedures at different starting frequencies. The black lines in this
figure represent the path of Nelder-Mead. More important than the exact path is
the amount of iterations Nelder-Mead uses to get near the minimum which is rep-
resented by the green dot.

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

hill-climbing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

hill-climbing hash/energy ZEC excavator-p4000

memClock-3802
hill-climbing

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

hill-climbing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

hill-climbing hash/energy ZEC excavator-p4000

memClock-3802
hill-climbing

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

hill-climbing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

hill-climbing hash/energy ZEC excavator-p4000

memClock-3802
hill-climbing

optimal frequencies

Fig. 7 Hill Climbing: frequency optimization procedure of ZEC with starting points of minimal (above),
medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro P4000
(right column)

 M. Stachowski et al.

1 3

The energy efficiency averages at 3.88 H/J on the Titan X, corresponding to a
deviation of 0.25 H/J from the optimum in Table 4. Especially when starting with
maximum frequency, the VRAM frequency area is not explored enough and hence
only a value of 3.72 H/J is found. As with Hill Climbing and Simulated Annealing
and irrespective of measurement inaccuracies, the maximum value is also found on
the Quadro P4000. In order to find the best value, the Nelder-Mead procedure needs
on average ten function evaluations on both the Titan X and the Quadro P4000. This
makes the Nelder-Mead procedure faster on the Titan X (10 vs. 15 function evalua-
tion), but at the same time slower than Hill Climbing and Simulated Annealing on
the Quadro P4000 (10 vs. 5 function evaluations).

In general, the Nelder-Mead procedure is relatively independent of the dimen-
sion when exploring new solution candidates. Though the simplex has more or less
points depending on the dimension, the worst point of the simplex must be substi-
tuted or the simplex must be compressed as a whole in each iteration [24]. Only
when calculating the initial simplex or when compressing the simplex the dimension
has an influence on the number of function evaluations.

5.4.4 Optimization with constraints

To evaluate an optimization under constraints the three different algorithms are exe-
cuted with a minimum target hashrate of 80% (95%) of the maximum hashrate on
the Titan X (Quadro P4000). The starting frequencies must always be at the maxi-
mum for optimization with minimum hashrates, as the absolute value of applicable
hashrates is calculated using the measurement values at maximum frequencies.

The results and the required number of function evaluations for the different
algorithms are shown in Table 8. The table structure is similar to that described
in Sect. 5.4.1. However, instead of different starting points, the different algo-
rithms are displayed. Figure 10 shows the optimization procedures corresponding
to the table. The purple grid (Titan X) or the green line (Quadro P4000) marks
the function area where the constraint of the applicable hashrate is satisfied. The

Table 6 Simulated Annealing:
result and amount of function
evaluations of optimization of
ZEC, starting with minimal,
medial and maximal frequencies

Simulated
Annealing ZEC

TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 4.02485 (4127, 1126) 3.32891 (3802, 987)
 Start-Mid 4.05375 (4036, 1189) 3.31112 (3802, 1063)
 Start-Max 3.9611 (4091, 1126) 3.32744 (3802, 1037)
 Average 4.013 (4085, 1147) 3.32249 (3802, 1029)

Evaluations
 Start-Min 9 (16) 10 (14)
 Start-Mid 12 (19) 4 (13)
 Start-Max 24 (26) 2 (15)
 Average 15 (20.33) 5.33 (14)

1 3

Autotuning based on frequency scaling toward energy efficiency…

best value of energy efficiency on this grid or line is the result. The optimum is
subject to measurement fluctuations and is around 3.6 H/J on the Titan X and
3.05 H/J on the Quadro P4000.

The results of the different algorithms are relatively similar. Nonetheless, the
Nelder-Mead procedure provides slightly worse values. The number of function
evaluations needed to find the best value behaves similar to an optimization with-
out a constraint. The Nelder-Mead procedure needs less function evaluations than
Hill Climbing and Simulating Annealing during 2D optimization on the Titan X,
but more function evaluations than these procedures during 1D optimization on
the Quadro P4000.

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

simulated-annealing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

simulated-annealing hash/energy ZEC excavator-p4000

memClock-3802
simulated-annealing
optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

simulated-annealing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

simulated-annealing hash/energy ZEC excavator-p4000

memClock-3802
simulated-annealing
optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

simulated-annealing hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

simulated-annealing hash/energy ZEC excavator-p4000

memClock-3802
simulated-annealing
optimal frequencies

Fig. 8 Simulated Annealing: frequency optimization procedure of ZEC with starting points of minimal
(above), medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro
P4000 (right column)

 M. Stachowski et al.

1 3

5.5 Monitoring

To evaluate the monitoring phase, the framework has been executed on a computer
with all four GPUs from Table 1 attached in a time frame from 04.10.2018 20:00h
till 07.10.2018 20:00h. The currencies used were ETH, XMR and ZEC, as well as
some new, less popular currencies Lux-Coin, Raven, Bitcore and Vertcoin (LUX,
RVN, BTX and VTC), so-called Altcoins. Those were added for this evaluation due
to their popularity at the time. For Altcoins the ccminer [25] in version 2.3 has been
used. The energy costs were set to 0.1 Euro/kWh.

Figure 11 shows the calculated mining profit at energy optimal frequencies for
every currency on the individual GPUs. In each case only the most profitable cur-
rency is mined. Figure 12 shows the earnings obtained and the energy costs, as well
as the resulting profits for all GPUs individually and overall.

The figure indicates that the Titan V draws the highest profits, followed by the
Titan X. Here, the GTX 1080 and Quadro P4000 lie on average. The energy costs
are quite similar for the Titan V and the Titan X, followed by the GTX 1080 and the
Quadro P4000, the latter being the most economical one. The currency ETH is pre-
dominantly mined on the Titan V, Titan X and Quadro P4000, while LUX is mostly
mined on the GTX 1080.

6 Related work

The effect of DVFS on the energy consumption of CPUs and GPUs has been
explored by several research papers, see [1, 26] for an overview. In [27] different
technologies for DVFS on GPUs are introduced and compared. In [28] the effect of
DVFS is studied on a NVIDIA Geforce GTX 560 Ti using various sample programs.
Both core and VRAM frequencies as well as core and VRAM voltages are manually

Table 7 Nelder-Mead: result
and number of function
evaluations from optimizing
the ZEC, starting with minimal,
medial and maximal frequencies

Nelder-Mead ZEC TITAN X Quadro P4000

Optimum 4.13566 (4155, 1151) 3.34324 (3802, 1025)
Result
 Start-Min 4.01787 (4050, 1177) 3.33445 (3802, 1025)
 Start-Mid 3.90598 (4732, 1151) 3.33988 (3802, 1037)
 Start-Max 3.72097 (5549, 1164) 3.34415 (3802, 1037)
 Average 3.8816 (4777, 1164) 3.3395 (3802, 1029)

Evaluations
 Start-Min 4 (12) 5 (12)
 Start-Mid 16 (18) 15 (16)
 Start-Max 11 (15) 11 (14)
 Average 10.33 (15) 10.33 (10.66)

1 3

Autotuning based on frequency scaling toward energy efficiency…

adjusted using the tools NVIDIA Inspector and MSI Afterburner. This paper was
the inspiration for our work. Our contribution is the dynamic setting of the frequen-
cies and the determination of the optimal frequencies. In [29] the effect of DVFS on
GPU and CPU is compared using matrix calculation as example. Cameirinha Diogo
Mineiro [30] introduces a technology to reduce the energy consumption during the
run time of GPU programs using DVFS and monitoring of the memory bandwidth
currently observed. Bishwajit et al. [31] presents models to forecast the energy con-
sumption of a GPU when using different core and VRAM frequencies. The models
are trained using machine learning techniques and measurement data from different

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

nelder-mead hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

nelder-mead hash/energy ZEC excavator-p4000

memClock-3802
nelder-mead

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

nelder-mead hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

nelder-mead hash/energy ZEC excavator-p4000

memClock-3802
nelder-mead

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

nelder-mead hash/energy ZEC excavator-titanX
hill-climbing

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

nelder-mead hash/energy ZEC excavator-p4000

memClock-3802
nelder-mead

optimal frequencies

Fig. 9 Nelder-Mead: frequency optimization procedure of ZEC with starting points of minimal (above),
medial (middle) and maximal (below) frequencies on the Titan X (left column) and the Quadro P4000
(right column)

 M. Stachowski et al.

1 3

applications. In [32], these kinds of models are used to increase the energy effi-
ciency of mobile video games. The trained models are then used in a power manage-
ment system which adjusts CPU and GPU frequencies at run time. In [33] a general
overview and a categorization of various autotuning techniques are given.

There exists commercial software in the field of mining, named Awesome Miner
[34]. This software is able to manually issue a profile with GPU frequencies,
hashrates and energy consumption for every GPU and currency. The mining profit
is calculated based on these profiles and their equivalent coin statistics. The most
profitable currency is then mined.

7 Summary and conclusion

In this article, we have presented an autotuning framework to augment the energy
efficiency on NVIDIA GPUs. Special attention has been given to the application of
the framework for the mining of crypto-currencies.

The framework has been applied in a manner so that several GPUs of a computer
and as many parameters as possible can be adapted using configuration data. The
program procedure is divided into a frequency optimization and a profit monitoring
phase.

During the frequency optimization phase, the frequency optimization occurs
simultaneously on all specified GPUs. Yet, for each GPU every available currency
must be optimized individually. The concept of GPU groups for identical GPUs
solves this issue and allows for a division of currencies onto the different GPUs
of a group. In order to permit frequency adjustments in a large enough area and
allow for energy demand measurements on Windows and Linux, three NVIDIA-
specific libraries (NVML, NVAPI, NV-Control X) were necessary. The optimization
itself is based on three different optimization algorithms (Hill Climbing, Simulated

Table 8 Result and number of function evaluations of ZEC optimization with different algorithms under
the constraint of a minimally applicable hashrate

Constrained optimization ZEC TITAN X Quadro P4000

Constraint 80% hashrate 95% hashrate
Optimum ca. 3.6 (4755, 1379) ca. 3.05 (3802, 1303)
Result
 Hill Climbing 3.44178 (5421, 1430) 3.05715 (3802, 1341)
 Simulated Annealing 3.48682 (4749, 1430) 3.0806 (3802, 1316)
 Nelder-Mead 3.3656 (4836, 1468) 3.00388 (3802, 1328)

Evaluations
 Hill Climbing 12 (22) 3 (6)
 Simulated Annealing 18 (21) 2 (9)
 Nelder-Mead 6 (16) 8 (12)

1 3

Autotuning based on frequency scaling toward energy efficiency…

Annealing, Nelder-Mead). These are employed in an offline phase based on short
benchmarks and an online phase during which the mining with mining pools is
already running. At the end of the frequency optimization phase, energy optimal
frequencies are made known on all GPUs for all available currencies. In the fol-
lowing profit monitoring phase, energy costs and mining revenues at optimal fre-
quencies are calculated and mining of the most profitable currency is initiated. E
The energy consumption and mining revenues are periodically updated while tak-
ing into account current stock prices and hashrates. If the presently mined currency

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

hill-climbing hash/energy ZEC excavator-titanX
hill-climbing min-hashrate

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

hill-climbing hash/energy ZEC excavator-p4000

memClock-3802
hill-climbing min-hashrate

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

simulated-annealing hash/energy ZEC excavator-titanX
simulated-annealing min-hashrate

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

simulated-annealing hash/energy ZEC excavator-p4000

memClock-3802
simulated-annealing min-hashrate

optimal frequencies

 4000
 4200

 4400
 4600

 4800
 5000

 5200
 5400

 5600
 5800

 6000
 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

nelder-mead hash/energy ZEC excavator-titanX
nelder-mead min-hashrate

optimal frequencies

mem-clock [MHz]

graph-clock [MHz]

H/J

 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4
 4.2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

H
/J

graph-clock [MHz]

nelder-mead hash/energy ZEC excavator-p4000

memClock-3802
nelder-mead min-hashrate

optimal frequencies

Fig. 10 Frequency optimization procedure of ZEC with Hill Climbing (above), Simulated Annealing
(middle) and Nelder-Mead (below) with the constraint of a minimally applicable hashrate on the Titan X
(left column) and the Quadro P4000 (right column)

 M. Stachowski et al.

1 3

is not the most profitable one anymore, it is substituted followed by a frequency
re-optimization.

The framework has been evaluated using different GPUs and currencies. First,
the energy optimal frequencies were determined and the energy efficiency was com-
pared with the optimum frequencies and the frequencies used by the NVIDIA driver.
Depending on GPU used and the currency, an efficiency increase of up to 84% could
be obtained. In the following, the different optimization algorithms were evaluated
using the optimum found and the required number of function evaluations. Finally,
the mining revenues calculated in the profit monitoring phase for available curren-
cies were researched on a computer with four GPUs for a longer time period.

Our new contribution is the development of an easy-to-use open-source frame-
work which allows to start program binaries which then are automatically adjusted
to the best energy-efficient GPU setting. Until our publication there was no open-
source project which was able to adjust the frequencies automatically. We used min-
ing algorithms for evaluation because of the high energy consumption. But, it is also
possible to run our framework with other GPU implementations like weather simu-
lations. The criterium of the hashrate would be replaced with some other application
specific or general criterium like the inverse run time.

For future work the voltages of the GPUs should also be considered. But, since
our free available APIs NVAPI and NV-Control X do not provide this functionality,
we were not able to change the voltages.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

04
/1

0/
18

 1
8:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 0
6:

00

05
/1

0/
18

 1
2:

00

05
/1

0/
18

 1
8:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 0
6:

00

06
/1

0/
18

 1
2:

00

06
/1

0/
18

 1
8:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 0
6:

00

07
/1

0/
18

 1
2:

00

07
/1

0/
18

 1
8:

00

08
/1

0/
18

 0
0:

00

pr
of

it
[e

ur
/h

ou
r]

mining profit titanV (0.1 eur/kWh)
ETH
ZEC
XMR
LUX
VTC
BTX
RVN

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

04
/1

0/
18

 1
2:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 1
2:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 1
2:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 1
2:

00

08
/1

0/
18

 0
0:

00

pr
of

it
[e

ur
/h

ou
r]

mining profit titanX (0.1 eur/kWh)
ETH
ZEC
XMR
LUX
VTC
BTX
RVN

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

04
/1

0/
18

 1
8:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 0
6:

00

05
/1

0/
18

 1
2:

00

05
/1

0/
18

 1
8:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 0
6:

00

06
/1

0/
18

 1
2:

00

06
/1

0/
18

 1
8:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 0
6:

00

07
/1

0/
18

 1
2:

00

07
/1

0/
18

 1
8:

00

08
/1

0/
18

 0
0:

00

pr
of

it
[e

ur
/h

ou
r]

mining profit gtx1080 (0.1 eur/kWh)
ETH
ZEC
XMR
LUX
VTC
BTX
RVN

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

04
/1

0/
18

 1
2:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 1
2:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 1
2:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 1
2:

00

08
/1

0/
18

 0
0:

00

pr
of

it
[e

ur
/h

ou
r]

mining profit p4000 (0.1 eur/kWh)
ETH
ZEC
XMR
LUX
VTC
BTX
RVN

Fig. 11 Calculated mining profits of the available currencies on the individual GPUs of a computer dur-
ing the monitoring phase

1 3

Autotuning based on frequency scaling toward energy efficiency…

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

 1. TOP500.org (2018) TOP500 List November 2018. https ://www.top50 0.org/lists /2018/11/. Accessed
18 Mar 2020

 2. Oak Ridge National Laboratory (2018) SUMMIT. https ://www.olcf.ornl.gov/olcf-resou rces/compu
te-syste ms/summi t/. Accessed 18 Mar 2020

 3. Konstantopoulos G (2017) Understanding blockchain fundamentals. https ://mediu m.com/loom-
netwo rk/searc h?q=Under stand ing%20Blo ckcha in%20Fun damen tals. Accessed 18 Mar 2020

 4. Bashir I (2017) Mastering blockchain. Packt Publishing Ltd., ISBN: 978-1-78712-544-5

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

04
/1

0/
18

 1
2:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 1
2:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 1
2:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 1
2:

00

08
/1

0/
18

 0
0:

00

pr
of

it
[e

ur
/h

ou
r]

max mining profit all gpus (0.1 eur/kWh)

all gpus
p4000
titanX

gtx1080
titanV

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

04
/1

0/
18

 1
2:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 1
2:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 1
2:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 1
2:

00

08
/1

0/
18

 0
0:

00

ea
rn

in
gs

 [e
ur

/h
ou

r]

mining earnings all gpus
all gpus

p4000
titanX

gtx1080
titanV

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

04
/1

0/
18

 1
2:

00

05
/1

0/
18

 0
0:

00

05
/1

0/
18

 1
2:

00

06
/1

0/
18

 0
0:

00

06
/1

0/
18

 1
2:

00

07
/1

0/
18

 0
0:

00

07
/1

0/
18

 1
2:

00

08
/1

0/
18

 0
0:

00

co
st

s
[e

ur
/h

ou
r]

mining cost all gpus (0.1 eur/kWh)
all gpus

p4000
titanX

gtx1080
titanV

Fig. 12 Calculated mining profits (above), mining earnings (below left) and energy costs (below right) of
the most profitable currency, respectively, on all GPUs of a computer during profit monitoring

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.top500.org/lists/2018/11/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://medium.com/loom-network/search?q=Understanding%20Blockchain%20Fundamentals
https://medium.com/loom-network/search?q=Understanding%20Blockchain%20Fundamentals

 M. Stachowski et al.

1 3

 5. Unknown (2018) ETHASH. https ://minin gbitc oingu ide.com/minin g/sposo by/ethas h. Accessed
18 Mar 2020

 6. Constantin V (2018) ETHASH. https ://crypt omond ay.de/wie-funkt ionie rt-minin g-in-ether eum/.
Accessed 18 Mar 2020

 7. Cavicchioli M (2018) CryptoNight. https ://moner odocs .org/proof -of-work/crypt onigh t/.
Accessed 18 Mar 2020

 8. Dölle M (2018) Ende der Grafikkarten- Ära: 8000 ASIC-Miner für Zcash, Bitcoin Gold & Co.
https ://www.heise .de/newst icker /meldu ng/Ende-der-Grafi kkart en-Aera-8000-ASIC-Miner -fuer-
Zcash -Bitco in-Gold-Co-40918 21.html. Accessed 18 Mar 2020

 9. Vorick D (2018) The state of cryptocurrency mining. https ://blog.sia.tech/the-state -of-crypt ocurr
ency-minin g-53800 4a37f 9b. Accessed 18 Mar 2020

 10. Biryukov A, Khovratovich D (2018) Equihash: asymmetric proof-of- work based on the gen-
eralized birthday problem (full version). https ://orbil u.uni.lu/bitst ream/10993 /22277 /2/946.pdf.
Accessed 18 Mar 2020

 11. Cavicchioli M (2018) Proof of work algorithms: Blake2b, Equihash, Tensority and X16R & S.
https ://en.crypt onomi st.ch/2019/07/28/minin g-algor ithms -proof -of-work-2/. Accessed 18 Mar
2020

 12. Oberhumer S (2018) ethminer. https ://githu b.com/ether eum-minin g/ethmi ner. Accessed 18 Mar
2020

 13. fireice-uk. xmr-stak (2018) https ://githu b.com/firei ce-uk/xmr-stak. Accessed 18 Mar 2020
 14. Nicehash (2018) excavator. https ://githu b.com/niceh ash/excav ator. Accessed 18 Mar 2020
 15. NVIDIA (2018) NVIDIA Visual Profiler. https ://devel oper.nvidi a.com/nvidi a-visua l-profi ler.

Accessed 18 Mar 2020
 16. NVIDIA (2019) CUDA C++ programming guide. https ://docs.nvidi a.com/cuda/cuda-c-progr

ammin g-guide . Accessed 18 Mar 2020
 17. NVIDIA (2018) NVIDIA Management Library (NVML). https ://devel oper.nvidi a.com/nvidi

a-manag ement -libra ry-nvml. Accessed 18 Mar 2020
 18. NVIDIA (2018) NVAPI. https ://devel oper.nvidi a.com/nvapi . Accessed 18 Mar 2020
 19. NVIDIA (2018) NV-CONTROL X Extension-API specification v 1.6. https ://githu b.com/NVIDI A/

nvidi a-setti ngs/blob/maste r/doc/NV-CONTR OL-API.txt. Accessed 18 Mar 2020
 20. ASL ETHZ (2018) Numerical methods. https ://githu b.com/ethz-asl/numer ical_metho ds. Accessed

18 Mar 2020
 21. Forum Bitcoin (2017) Ethereum (ETH) mining profit formula. https ://bitco intal k.org/index

.php?topic =22623 28.0. Accessed 18 Mar 2020
 22. CryptoCompare.com (2018) CryptoCompare API. https ://www.crypt ocomp are.com/api/#-api-data-

price -. Accessed 18 Mar 2020
 23. whattomine.com (2018) Coin calculators. https ://whatt omine .com/calcu lator s. Accessed 18 Mar

2020
 24. Cheng J (2018) Numerical optimization.http://www.jade-cheng .com/au/coalh mm/optim izati on/.

Accessed 18 Mar 2020
 25. Pruvot T (2018) ccminer. https ://githu b.com/tpruv ot/ccmin er. Accessed 18 Mar 2020
 26. Rauber T et al (2014) Energy measurement, modeling, and prediction for processors with frequency

scaling. J Supercomput 70(3):1451–1476. https ://doi.org/10.1007/s1122 7-014-1236-4
 27. Mishra A, Khare N (2015) Analysis of DVFS techniques for improving the GPU energy efficiency.

Open J Energy Effic 4:77–86
 28. Mei X, Yung LS, Zhao K, Chu X (2013) A measurement study of GPU DVFS on energy conserva-

tion. https ://www.resea rchga te.net/publi catio n/26236 5062. Accessed 18 Mar 2020
 29. Ge R, Vogt R, Majumder J, Alam A, Burtscher M, Zong Z (2013) Effects of dynamic voltage and

frequency scaling on a K20 GPU. https ://ieeex plore .ieee.org/docum ent/66874 22. Accessed 18 Mar
2020

 30. Cameirinha DM (2015) Exploiting DVFS for GPU energy management. https ://fenix .tecni co.ulisb
oa.pt/downl oadFi le/56334 50904 14604 /Disse rtaca o.pdf. Accessed 18 Mar 2020

 31. Dutta B, Adhinarayanan V, Feng W (2018) GPU power prediction via ensemble machine learn-
ing for DVFS space exploration. https ://www.resea rchga te.net/publi catio n/32663 7320. Accessed 18
Mar 2020

 32. Park J-G, Dutt N, Lim S-S (2017) ML-Gov: a machine learning enhanced integrated CPU-GPU
DVFS governor for mobile gaming. https ://www.resea rchga te.net/publi catio n/32085 0321. Accessed
18 Mar 2020

https://miningbitcoinguide.com/mining/sposoby/ethash
https://cryptomonday.de/wie-funktioniert-mining-in-ethereum/
https://monerodocs.org/proof-of-work/cryptonight/
https://www.heise.de/newsticker/meldung/Ende-der-Grafikkarten-Aera-8000-ASIC-Miner-fuer-Zcash-Bitcoin-Gold-Co-4091821.html
https://www.heise.de/newsticker/meldung/Ende-der-Grafikkarten-Aera-8000-ASIC-Miner-fuer-Zcash-Bitcoin-Gold-Co-4091821.html
https://blog.sia.tech/the-state-of-cryptocurrency-mining-538004a37f9b
https://blog.sia.tech/the-state-of-cryptocurrency-mining-538004a37f9b
https://orbilu.uni.lu/bitstream/10993/22277/2/946.pdf
https://en.cryptonomist.ch/2019/07/28/mining-algorithms-proof-of-work-2/
https://github.com/ethereum-mining/ethminer
https://github.com/fireice-uk/xmr-stak
https://github.com/nicehash/excavator
https://developer.nvidia.com/nvidia-visual-profiler
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvapi
https://github.com/NVIDIA/nvidia-settings/blob/master/doc/NV-CONTROL-API.txt
https://github.com/NVIDIA/nvidia-settings/blob/master/doc/NV-CONTROL-API.txt
https://github.com/ethz-asl/numerical_methods
https://bitcointalk.org/index.php?topic=2262328.0
https://bitcointalk.org/index.php?topic=2262328.0
https://www.cryptocompare.com/api/#-api-data-price-
https://www.cryptocompare.com/api/#-api-data-price-
https://whattomine.com/calculators
http://www.jade-cheng.com/au/coalhmm/optimization/
https://github.com/tpruvot/ccminer
https://doi.org/10.1007/s11227-014-1236-4
https://www.researchgate.net/publication/262365062
https://ieeexplore.ieee.org/document/6687422
https://fenix.tecnico.ulisboa.pt/downloadFile/563345090414604/Dissertacao.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563345090414604/Dissertacao.pdf
https://www.researchgate.net/publication/326637320
https://www.researchgate.net/publication/320850321

1 3

Autotuning based on frequency scaling toward energy efficiency…

 33. Durillo JJ, Fahringer T (2014) From single- to multi-objective auto-tuning of programs: Advantages
and implications. https ://www.resea rchga te.net/publi catio n/27172 4916. Accessed 18 Mar 2020

 34. IntelliBreeze Software AB (2018) Awesome Miner.http://www.aweso memin er.com/home. Accessed
18 Mar 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.researchgate.net/publication/271724916
http://www.awesomeminer.com/home

	Autotuning based on frequency scaling toward energy efficiency of blockchain algorithms on graphics processing units
	Abstract
	1 Introduction
	2 Blockchain technology
	2.1 Introduction to blockchains
	2.2 Overview of the algorithms of ETH, XMR and ZEC
	2.2.1 ETH: the Ethash algorithm for Ethereum
	2.2.2 XMR: the CryptoNight algorithm
	2.2.3 ZEC: the Equihash algorithm for ZCash

	2.3 Pre-profiling ETH, XMR, ZEC

	3 Technical background
	3.1 How GPUs work in this context
	3.2 Energy measurement
	3.3 Frequency adaptation
	3.4 Hardware setup

	4 Autotuning framework
	4.1 Optimization procedure
	4.2 Offline phase
	4.3 Online phase
	4.4 Monitoring
	4.5 Handling multiple GPUs

	5 Experimental evaluation
	5.1 Energy optimum ETH-Ethash
	5.2 Energy optimum XMR-CryptoNight
	5.3 Energy optimum ZEC-Equihash
	5.4 Search strategies evaluation
	5.4.1 Performance of Hill Climbing
	5.4.2 Performance of Simulated Annealing
	5.4.3 Performance of Nelder-Mead
	5.4.4 Optimization with constraints

	5.5 Monitoring

	6 Related work
	7 Summary and conclusion
	Acknowledgements
	References

