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Abstract

Optimizing Data-Intensive Computing with Efficient
Configuration Tuning

Ayat Fekry

As the complexity of distributed analytics systems evolves over time, more configuration
parameters get exposed for tuning. While these numerous parameters allow users more control
over how their workloads are executed, this flexibility comes at a cost, since finding the right
configurations for such systems in a cost-effective way becomes challenging.

In practice, several factors contribute to the complexity of tuning the configuration of those
systems: the large configuration space, the diversity of the served workloads (each workload
possibly requiring a different resource allocation strategy to run optimally), and the dynamic
characteristics of these systems’ environment (e.g., increase in input data size, changes in the
allocation of resources). Paradoxically, existing solutions for workload tuning either assume
static tuning environment or workloads that are inexpensive to run (i.e. requiring hundreds of
execution samples).

Recently, Bayesian Optimisation (BO) strategies have been applied as a solution to enable
efficient autotuning. They build a probabilistic model incrementally to predict the impact of
the parameters on performance using a small number of execution samples. The incrementally
constructed BO model is used to guide the tuning process and accelerate convergence to a
near-optimal configuration. Unfortunately, for distributed analytics systems, the configuration
space is too large to construct a good model using traditional BO, which fails to provide quick
convergence in high dimensional configuration space.

I argue that cost-effective tuning strategies can only be developed when taking into account:
the frequent changes that can happen in the analytics workload/environment, the amortization

of tuning costs and how this influences tuning profitability, the high dimensionality of configu-
ration space and the need to cater for diverse workloads.

To tackle these challenges, I propose Tuneful, an efficient configuration tuning frame-
work for such expensive to tune systems. It works efficiently both initially (when little data
is available) as well as later (as more tuning knowledge is acquired). It starts with learning



workload-specific influential parameters incrementally and tunes those only, then when more
tuning knowledge becomes available, it detects similarity across workloads and utilizes multi-
task BO to share the tuning knowledge across similar workloads. I show how augmenting the
BO approach with parameters’ significance and workload similarity characteristics enables an
efficient configuration tuning in high dimensional configuration space. Over diverse analytics
workloads, this significantly accelerates both configuration tuning and cost amortization, saving
search time by 2.7-3.7X at median compared to the-state-of-the-art approaches.
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Chapter 1

Introduction

Recent years have witnessed a rapid growth in data volume in both research and industry [1].
Processing this ever growing data is crucial to extract valuable information that can be used to
support decision making in businesses and strengthen their competitive advantage, or uncover
insights and hidden patterns in research areas.

DISC (Data Intensive Scalable Computing) systems such as Hadoop [2], Spark [5] and
Flink [3] have become a common choice when processing this “big data”. These systems are
typically characterized by the ease of writing analytics workloads and scaling them to accom-
modate the ever growing volume of data. They enable the manipulation and analysis of data by
distributing work over a cluster of machines, making it easier to scale horizontally. Importantly,
their abstracted programming model enables the programmer to simply write few lines of code
to define a parallelizable function—the programmer is not exposed to any under the hood issues
such as load balancing and fault tolerance. These characteristics have led to the wide adoption of
DISC systems in businesses (53% of companies have embraced big data analytics in 2017 [48]),
as well as in research areas such as biology [54], physics [102] and astronomy [132].

While DISC systems provide a convenient abstraction for a programmer to express a par-
allelizable workload, how to execute the workload is left to the system itself. Therefore, to
allow the programmer to govern workload execution, DISC systems inevitably expose a set of
configuration parameters. These include factors ranging from number of cores, settings of data
transfer across cluster nodes (e.g., buffer size, compression technique).

1.1 Problem Statement
A poor choice of configuration parameters can have a dramatic impact on execution time.

Misconfiguration can lead to either resource contention/exhaustion or under-utilization, with the
former potentially triggering errors hours after the start of execution (e.g., the optimum configu-
ration for a workload can lead to a late failure after hours of computation when used for another
workload). Finding the right configuration for these systems is daunting, with each workload
potentially requiring a different resource allocation strategy to run optimally, as will be shown
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in the experiments of Chapter 5 and Chapter 7. Even worse, changes in workload or environ-
ment characteristics (input size, data, Virtual Machine (VM) migration) means that re-tuning
might be needed. As an example on how running a workload with the optimum configuration
of another leads to unpredictable results, when the optimal configuration of a Pagerank work-
load receiving 10 million pages is used for evolving input size of 15 million pages, it yields
85% longer execution time compared to the optimal configuration that can be found for the 15
million pages workload (according to the experiments illustrated in Chapter 7). Consequently,
developers spend significant time and resources identifying the appropriate configuration for
their workload.

Some work has been proposed towards the automation of configuration tuning that ranges
from generic autotuners [135, 21] to system-specific ones [83, 129, 56], requiring hundreds of
execution trails and incurring thousands of hours of computational power and associated mone-
tary cost. Those high tuning costs are not practical for workloads that either take a long time to
execute or change over time and require frequent re-tuning due to running in a rapidly chang-

ing environment, where workloads are subject to changes in their characteristics as a result of
growth in the volume of data received or a change in the underlying physical infrastructure
(e.g., VM migration, adding/shrinking cluster nodes). This is because retuning the configura-
tion based on the existing work requires restarting the whole process from scratch, yielding an
investment in time and resources comparable to the initial tuning costs.

To alleviate these high tuning costs, Bayesian Optimization (BO) strategies have been ap-
plied recently as a solution to enable efficient autotuning. They build a probabilistic model
incrementally to predict the impact of the parameters values on performance using a small
number of execution samples. The incrementally constructed BO model is used to guide the
tuning process and accelerate the convergence to a near-optimal configuration. Unfortunately,
for DISC systems, the configuration space is too large to construct a good model using tradi-
tional BO, which fails to provide quick convergence in high dimensional configuration spaces
(more than 10 parameters [103]).

1.2 Proposed solution
This dissertation tackles the configuration tuning of systems that are complex and expen-

sive to tune such as DISC systems. I propose an efficient incremental tuning framework that
automates the configuration tuning. It is incremental since tuning is not done as an offline stage
but incrementally using real workload executions, aiming to provide a better configuration each
time. It can also consider similarities between workloads to reduce exploration costs and pro-
vide faster amortization. It is designed to work efficiently both initially (when little data is
available) as well as later (as more tuning knowledge is acquired).

To achieve this, the framework augments BO with incrementally acquired knowledge. It
starts with incremental learning of workload-specific influential parameters and tunes those
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only, then when more tuning knowledge becomes available (through tuning more workloads),
it detects similarity across workloads and utilizes Multitask Bayesian optimization (MTBO) to
share the tuning knowledge across these similar workloads.

I show how augmenting the BO approach with incrementally acquired knowledge (i.e., pa-
rameters’ significance and workload similarity characteristics) enables efficient configuration
tuning in high dimensional configuration space. Over a diverse range of analytics workloads,
this significantly accelerates both the configuration tuning and cost amortization. I argue the
following thesis:

Augmenting BO with incrementally acquired knowledge can enable cost-effective tuning

of diverse analytics workloads in a rapidly changing environment.

1.3 Contributions
This dissertation makes three particular contributions, each of which is a fundamental aspect

to enable efficient configuration tuning of data intensive computing:

1. My first contribution is to demonstrate, with a series of experiments, a number of overlooked
issues that pose a challenge for practical configuration tuning in data analytics frameworks.
I demonstrate that: 1) ignoring the dynamic characteristics (e.g., increase in input data size,
changes in allocation of resources) of the analytics environment has a significant impact on
performance; 2) cost-effective tuning requires that one amortizes tuning costs over saved
execution time: many tuning solutions fail to provide a benefit in this respect; 3) optimal
tuning varies between workloads and over the dynamic evolution of a workload.

2. My second contribution is to show that augmenting BO with incrementally acquired knowl-
edge of parameters significance can efficiently tune high-dimensional configurations of di-
verse analytics workloads, outperforming the-state-of-the-art tuning approaches and saving
search time by 2.7X at the median in comparison. This is the first work to propose a data-

efficient [40] tuning of high-dimensionality configurations. Earlier solutions either require
expensive offline phases or address low-dimensionality configurations. To achieve this, I
develop an Online Significance-aware Configuration Tuner that leverages incremental
Sensitivity Analysis (SA) to identify workload-specific influential configuration parameters,
which represent the ones that influence performance most and are detected out of a high-
dimensional space. It then tunes those detected parameters only using BO.

3. My third contribution is to provide evidence that extending BO with workload similarity
characteristics can significantly accelerate the amortization of tuning costs and enable effec-
tive tuning in a rapidly changing environment—even when tuning configurations of high-
dimensionality, which was previously thought to be impractical with BO. This extension is
developed as a Similarity-aware Configuration Tuner that leverages neural encoding of
workload execution metrics to detect similarity across workloads. It then shares the tuning
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knowledge between similar workloads using MTBO. Over diverse analytics workloads, this
significantly accelerates both configuration tuning and cost amortization (saving 56% of the
search time when compared to an independent single tasked BO based tuning).
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1.4 Dissertation Outline

The rest of the dissertation is structured as follows: I start with describing the needed back-
ground information and survey the existing related work in the first two chapters. I then present
the thesis contributions in the following chapters.

Chapter 2 presents a background on big data, analytics workloads, Spark—which is the
DISC system used to run the analytics workloads—and finally describes the machine learning
algorithm that the proposed tuning approaches are based on. In particular, Gaussian Process
(GP) and how it is used in the context of the BO framework.

Chapter 3 provides a survey of the existing approaches for tuning the configuration param-
eters of DISC systems. It also covers the tuning approaches used in generic tuning systems
and other domains such as Cloud Computing (CC), Hyperparameter Optimization (HPO) and
Database Management System (DBMS).

Chapter 4 describes the first contribution. It studies the challenges of configuration tuning
and demonstrates, using a series of experiments, a set of overlooked issues in existing solu-
tions. Lastly, it presents Tuneful, a comprehensive incremental tuning framework to overcome
those issues and how it works efficiently both initially (when little data is available, I refer to
this as zero tuning knowledge) as well as later (as more tuning knowledge is acquired). In
a top-down manner, it briefly describes the fundamental components of this framework and
how they work incrementally to enable efficient configuration tuning in both modes (zero and
extended tuning knowledge). A detailed description of each mode is covered separately in the
following chapters.

Chapter 5 presents the second contribution, an online significance-aware tuning approach
and illustrates how Tuneful works efficiently when zero tuning knowledge is available ini-
tially. It describes Tuneful’s incremental SA algorithm to identify the influential configu-
ration parameters in a high-dimensional space and how it efficiently tune those parameters
using BO. It then evaluates the proposed approach using four applications from two well
known big data benchmarks (Hibench and TPC-H), and compares against the state-the-art
tuning approaches.

Chapter 6 presents the third contribution, a similarity-aware multitasked tuning approach
and illustrates how Tuneful works efficiently later when more tuning knowledge is acquired.
Firstly, it describes Tuneful’s learning of workload representation through encoding workload
execution metrics into a lower dimensional space. Secondly, it shows how Tuneful detects
workload similarities using this learnt representation. Lastly, it illustrates Tuneful sharing of
the tuning knowledge gained previously across the similar workloads using MTBO.
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Chapter 7 evaluates the similarity-aware multitasked tuning approach (Chapter 6) against:
1) Independent single tasked BO tuning as described in Chapter 5, 2) Direct transfer of the
configuration across the similar workloads, 3) Transfer learning based tuning with single
tasked BO and 4) Random search.

Chapter 8 concludes this dissertation and highlights avenues for future work.
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Chapter 2

Background

The fundamental contribution of this dissertation is to enable cost-effective configuration tuning
for DISC systems. This is done through augmenting BO with incrementally acquired knowl-
edge (i.e., parameters’ significance and workload similarity characteristics). In order to facili-
tate presenting how this contribution is realized, I start with providing the needed background
information in this chapter. It gives an overview of big data, analytics workloads, and the DISC
systems in particular Apache Spark [5], which is the representative DISC system chosen to
run the analytics workloads for evaluating the algorithms developed in this dissertation. Then,
I describe BO and GP and how they can optimize the exploration of the configuration space.
Lastly, I demonstrate BO and GP limitations which make directly employing them to enable
cost-effective tuning is not practical.

2.1 Big data and analytics workloads
In spite of being the “big data” era, there is no unified definition for big data. One of the

most common definitions is: the data that can not be captured, stored, managed and processed
using traditional computing tools in acceptable time [33]. Big data is characterized by 3V’s:
Volume refers to the amount of data; Velocity is the speed of capturing, preprocessing and ana-
lyzing data; and Variety refers to the heterogeneous types of data [136]. Oracle added a fourth
’V’ to represent the value that could be obtained by analyzing data. Recently, veracity was
added as a fifth ’V’, it is the need to deal with uncertainty due to the inherited bias and inac-
curacy in data [87]. Gartner defines big data as “high-volume, high-velocity and high-variety

information assets that demand cost-effective, innovative forms of information processing for

enhanced insight and decision making” [52].

The successful use of big data solutions mainly depends on the prompt extraction of valuable
insights from data. This will continue to become more challenging due to the growth in data
volume without a corresponding increase in the velocity to process this data. It is crucial to
accelerate processing done by analytics pipelines to catch up with the ever growing data volume.
For example, IDC predicts the global datasphere, which represents the amount of data created,
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captured and replicated per year across the world, to reach 175 zettabytes (1021) by 2025 [100],
shaping 5X growth compared to 33 zettabytes in 2018.

The value of big data is revealed only when harnessed in decisions of big impact [51].
Timely analytics helps organizations make better and faster decisions that strengthen the com-
petitive advantage of their businesses. With data volume growing exponentially in a way that
poses the prompt distillation of insights as a fundamental challenge, the ability to process and
analyze this exponentially growing amount of data will be critical to the success of every in-
dustry. The straightforward solution to process this huge data volume is to add more nodes and
scale horizontally. However, this solution incurs high deployment, operational and maintenance
costs—with data centres across the world already using around 3% of the world’s electricity [9].

To accelerate the processing of this data, it is important to leverage the readily available
optimization opportunities (scale up), thus saving extra scaling out costs.

2.1.1 Analytics workloads
Unlike previously, where businesses used basic analytics through spreadsheets or traditional

relational database systems to uncover insights and trends in data [7]. Now, as the amount
of data continued to grow, those systems failed to cope with this ever growing data volume,
therefore distributed analytics systems have been developed to cope with bigger amounts of
data. These distributed analytics systems enabled advanced analytics of high diversity (ranging
from text analysis, machine learning, Structured Query Language (SQL) to graph analysis) to
take place on large datasets, automating the discovery of hidden patterns and insights in data.
A recent study shows that 53% of companies have adopted big data analytics in 2017 [48].

A workload in general is defined as all inputs received by a technological infrastructure [30].
In our context, an analytics workload is an application/service deployed on the cloud and con-
suming resources such as CPU, network, I/O. Workloads can be classified based on their re-
source requirements. A workload can be CPU-intensive requiring high computational power
such as Wordcount, memory-intensive such as Pagerank, I/O intensive requiring frequent access
to the data and causing significant data shuffle such as Terasort (also known as shuffle-intensive
workload), or a hybrid workload that intensively requires multiple resources (e.g., Pagerank
is both memory and shuffle intensive) [80]. It is worth noting that the classification of these
workloads is subject to change depending on cluster setup, configuration parameters and input
content and size. However, the classification is provided here to reflect the possible diversity in
resource usage across workloads.

Another way to classify workloads is based on their usage patterns: while some work-
loads are static receiving fixed amount of data and have a predictable resource requirements,
other workloads can be dynamic receiving evolving inputs and their resource requirements are
susceptible to change. Unfortunately, there’s very limited data published about workloads exe-
cution patterns in data centres [125, 8]. Google open-sourced 29 days logs of 12,500-machine
cluster that does not tell much about workload execution patterns. Alibaba open-sourced two
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datasets (one is the logs of 12 hours cluster usage and the other is 8 days usage). Those datasets
are not sufficient to accurately describe the usage patterns of a cluster’s workload.

Recently, a study reported that recurring jobs, where similar/static workloads are executed
repeatedly (e.g., daily log analysis) shapes up to 40% of analytics jobs [16, 45].

Analytics benchmarks: In order to characterize the performance and trade-offs made by
various data processing systems in a consistent way. It was essential to come up with represen-
tative benchmarks for the analytics workloads. Two of the common comprehensive benchmarks
for analytics workloads are Hibench [62] and TPCH [6]. Hibench consists of real-life analytics
workloads such as Pagerank, Bayesian classifier, wordcount, terasort and KMeans clustering.
TPCH is a benchmark for SQL-based workloads. It consists of 22 decision support SQL queries.
These benchmarks are used throughout the dissertation since they represent numerous real-life
analytics workloads ( e.g., while Pagerank was initially developed by Google to rank the pages
of the search result, it can also be used in product recommendation, friend suggestion in social
network, or ranking news feeds).

Diversity-representative workloads: To cover diverse workloads throughout the disser-
tation, I selected a set of applications commonly used in the top three reported application
domains. According to a recent study [121], the top three application domains are search en-
gines, social networks, and e-commerce, contributing with 80% page views of all the internet
services in total. The applications selected to build a diversity-representative set of analytics
workloads are:

1. Bayes is an application that builds a Bayesian classification model. This kind of appli-
cation is used in domains such as social network (e.g., Facebook status sentiment analy-
sis [113], spam detection in social network [117]) and e-commerce (e.g., product review
classification [118], product recommensation [109]).

2. Pagerank is a link analysis application used broadly in web search engines to calculate
the ranks of web pages based on the number of reference links. It is also used as a graph
analytics application that ranks the influence of graph vertices in social network domain.

3. Wordcount is a textual analysis application that counts word occurrences. It is commonly
used in sentiment analysis applications [36] in social network domain.

4. TPC-H is a benchmark for big data systems that runs a suite of business oriented SQL
queries that support decision making. The queries and the data populating the database is
designed to have industry-wide relevance. SparkSQL is used to run these queries. This is
a representative application in the e-commerce domain.

5. KMeans is an application that performs unsupervised machine learning to cluster data. It
has many applications in social network (e.g., community detection [96]) and e-commerce
(e.g., clustering customer trust [99]).

6. Terasort is a numeric data sorter that can be used in various applications in those top three
domains.
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2.2 DISC systems
DISC Systems such as Hadoop [2], Spark [5], Storm [4] and Flink [3] have been well

received as platforms for processing huge data volumes. These DISC systems enable the ma-
nipulation and analysis of data by distributing the data over a cluster of machines. Each ma-
chine performs the same operation but on a different subset of data, hence the systems are
sometimes referred to as “data-parallel” processing systems. Unlike compute-intensive systems
where most of the execution time spent to meet computational requirements, DISC systems
receive large volumes of data and spend most of the execution time in I/O and manipulation
of data. There are a set of characteristics that distinguish DISC systems form other systems:
1) Scalability: they are designed to seamlessly scale horizontally by adding more nodes to fa-
cilitate accommodating the growing data volume. 2) Abstracted programming model: which
enables the programmer to simply write few lines of code to define a parallelizable function—
the programmer is not exposed to any under the hood issues such as load balancing and fault
tolerance. 3) Reliability and availability: they are designed to be resilient to faults such as node
failures or communication errors. Such faults are tolerated through failure detection, selective
re-computation of missing results instead of re-executing the whole job.

DISC systems can be categorized into batch, stream or hybrid systems [32]. The batch
processing systems (e.g., Hadoop MapReduce) receive a huge volume of data collected over
a period of time (e.g., daily logs) then process them. In contrast, stream processing systems
(e.g., Storm) receive continual input which should be processed in a small time period (i.e.,
near real time). An example of workloads running using stream processing systems is real-time
sensor data analysis. On the other hand, the hybrid systems (e.g., Spark, Flink) combines both
the capabilities of batch and stream processing systems. This is usually done through micro-
batching, wherein streams of data is considered as a series of very small batches that can be
processed using the batch engine.

In this section, a system of each category is described—with Spark described in more detail
since it is the representative DISC system chosen for evaluating the algorithms developed in
this dissertation. Spark is chosen not only due to its wide popularity [48], but also as it poses
significant challenges for state-of-the-art configuration tuners (huge configuration search space,
a variety of ways to process data) [129].

Storm is a stream processing system characterized by its scalability, fault tolerance and low
latency. Storm processing model is based on defining togologies, which describe the transfor-
mations applied on each piece of data received by the system. The topology consists of: 1)
streams of data continuously received by the system. 2) Spouts which represent sources of data
stream such as queues producing data to be processed. 3) Bolts represent a processing step that
takes one or more input stream(s) as an input (from a Spout), applies certain transformation on
it and possibly outputs new stream.

Storm has a number of configuration parameters that govern its execution behaviour. Re-
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# Parameter Default
Memory Tuning

1 mapreduce.map.memory.mb 1GB
2 mapreduce.reduce.memory.mb 1GB
3 mapreduce.task.io.sort.mb 100

46 mapreduce.map.sort.spill.percent 0.8
5 mapreduce.reduce.shuffle.input.buffer.percent 0.7
6 mapreduce.reduce.shuffle.merge.percent 0.66
7 mapreduce.reduce.shuffle.memory.limit.percent 0.25
8 mapreduce.reduce.merge.inmem.threshold 1000
9 mapreduce.reduce.input.buffer.percent 0

CPU Tuning
10 mapreduce.map.cpu.vcores 1
11 mapreduce.reduce.cpu.vcores 1
12 mapreduce.task.io.sort.factor 10
13 mapreduce.reduce.shuffle.parallelcopies) 5

Table 2.1: Example of performance related Hadoop configuration parameters

cently, some work has been proposed to tune a set of parameters that impact performance
most [27, 65]. This includes the number of worker Java VMs that Storm generates for a topol-
ogy, number of Spout executors (threads generating tuples for the topology), number of Bolt
executors and the max Spout pending which determines the maximum number of tuples (per
spout) that can be at once in the topology.

MapReduce is a programming model proposed by Google to process large volumes of data
in parallel in a cluster of nodes. It used to be one of the most adopted models in DISC systems.
The MapReduce model offers developers to write their workloads using two functions: map and
reduce. The Map function takes a set of inputs in the form of <key,value>and transforms them
to another set of <key,value>. The output of the Map is fed as an input to the Reduce function
to combine the data that has the same key into a smaller set of outputs. Apache Hadoop [2]
embraces the MapReduce programming model and has been broadly used as big data process-
ing system. More recently, Apache Spark [5] has gained a wide adoption, it is a successor
of Hadoop MapReduce outperforming its performance by 10X in iterative applications [131].
Hadoop has a number of configuration parameters that control its execution behaviour in terms
of CPU and memory. Table 2.1 lists examples of those performance related configuration pa-
rameters tuned in [81].

2.2.1 Spark

Spark has been widely adopted for in-memory big data analytics—with 30% of businesses
considering Spark framework critical to their big data analytics strategies and 73% considering
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...

Figure 2.1: Spark internal architecture, redrawn with further edits from [72]

SparkSQL critical to their big data access strategies [48].

While Spark is designed with batch-oriented workloads in mind, it can support stream pro-
cessing capabilities. To achieve that, it employs micro-batching, considering a streams of data
as a series of very small batches that can be processed like a normal batch workload. It buffers
the stream in sub-second increments, with this buffered data received as small input datasets for
batch processing.

On the batch processing side, Spark has been developed to overcome the limitations of
the MapReduce [39] paradigm in handling iterative workloads. MapReduce forces mappers to
write data to disk for reducers to read, which consumes significant I/O resources for iterative
applications. Spark keeps the data in memory as Resilient Distributed Dataset (RDD)s [130], a
choice that significantly reduces I/O costs and speeds up iterative job execution time by up to
10X compared to Hadoop [131]. RDDs are immutable collections distributed over a cluster of
machines to form a restricted shared memory, with each RDD consisting of a set of partitions.
Figure 2.1 shows how Spark works internally. Users write a program and submit it to the Spark
Driver, a separate process that executes user applications and schedules them into executable
jobs. The Spark programming model is based on two types of function: transformations and
actions. Transformations represent lazy computations on the RDD that create a new RDDs
(e.g., map, filter). Actions trigger computation on an RDD and produce an output (e.g., count,
collect). When an application invokes an action on an RDD, it triggers a Spark job. Each job has
an RDD dependency graph containing all the ancestor RDDs, representing a logical execution
plan for the set of transformations. The RDD graph is mapped into a Directed Acyclic Graph
(DAG) defining the physical execution plan: a split of the job into stages, the dependencies
between stages and the partitions processed in each stage. The driver uses this DAG to define
the set of tasks to execute at each stage. Typically, an RDD partition is given as input to a stage
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# Parameter Default Description
Execution Behavior

1 spark.executor.cores 1 The number of cores per each Spark executor
2 spark.executor.instances 2 The number of Spark executor instances
3 spark.default.parallelism - The number of partitions in a returned RDD by the distributed shuf-

fle operation, its default value varies depending on the distributed
shuffle operation

46 spark.broadcast.blockSize(MB) 4 The size of the broadcatsed blocks in Spark, larger value would de-
crease broadcast parallelism

5 spark.storage.memoryMapThreshold 2 A block size beyond which Spark performs memory mapping of
the disk read blocks, memory mapping very small blocks will incur
higher overheads

Memory Management
6 spark.executor.memory(GB) 1 The memory size of each Spark executor
7 spark.memory.offHeap.enabled false If set to true, Spark will try to use the off-heap space for cetrain

operations
8 spark.memory.offHeap.size(MB) 0 The size of memory that can be used for off-heap allocation
9 spark.memory.fraction 0.6 The fraction of heap space used for execution and storage, if set to a

low value spills and cached data eviction takes place more often.
10 spark.memory.storageFraction 0.5 The fraction of spark.memory.fraction that is not evicted by Spark,

if set to high value, less memory will be available to execution and
disk spill will occur more frequently

Shuffle Behavior
11 spark.shuffle.file.buffer(KB) 32 The size of each shuffle buffer output stream in-memory
12 spark.reducer.maxSizeInFlight(MB) 48 The maximum allowed size to fetch from a map output of each re-

duce task
13 spark.shuffle.sort.bypassMergeThreshold 200 How often Spark avoids merge-sorting data in the sort-based shuffle

manager
14 spark.shuffle.compress true Specifies if Spark compresses map output file, compression happens

using spark.io.compression.codec
15 spark.shuffle.spill.compress true Determines if Spark compresses data spilled during shuffles

Scheduling
16 spark.speculation false If set to true, Spark will check if one task or more are running slowly

in a stage, it will re-launch them
17 spark.speculation.interval(MS) 100 How frequently Spark will check for tasks to speculate, Spark spec-

ulation is a procedure that detects the tasks running slower than the
median of all the successful tasks, Spark then restart these tasks

18 spark.speculation.multiplier 1.5 Defines how to consider a task for speculation w.r.t the successful
tasks median exection time

19 spark.speculation.quantile 0.75 The fraction of tasks that should be finished before starting specula-
tion on a stage

20 spark.locality.wai 3 The amount of time Spark waits to launch a data-local task before
moving the task to a less-local node

Compression and Serialization
21 spark.io.compression.codec lz4 The compression technique spark uses for its internal data such as

RDD
22 spark.io.compression.lz4.blockSize(MB) 32 The block size used by lz4 compression
23 spark.io.compression.snappy.blockSize(MB) 32 The block size used by snappy compression
24 spark.kryo.referenceTracking true Determines if Spark will track references to the same object when

using kryo serializer
25 spark.kryoserializer.buffer.max(MB) 64 The maximum size of the buffer used by Kryo serializer
26 spark.kryoserializer.buffer 64 The size of kryo serialization buffer initially
27 spark.broadcast.compress true Decides if Spark compresses broadcast variables before sending

them
28 spark.rdd.compress false Specifies if Spark compresses serialized RDD partitions
29 spark.serializer JavaSerializer Sets the serialization strategy in Spark

Networking
30 spark.network.timeout 120 The timeout of all network interactions in Spark

Table 2.2: Example of Spark configuration parameter with categories
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and is processed by a Spark task. Finally, the driver sends tasks to the cluster manager, which
assigns them to worker nodes. A worker node can have multiple executors, with each of them
being a process executing an assigned task and sending the result back to the driver.

For each workload, the user needs to find the best choice for configuration parameters cov-
ering different execution aspects such as processing, memory, networking and data shuffling.
Example to these choices are: how many executor instances? what is the size of memory per
executor? what is the number of cores per executor? how many partitions within RDD? what is
the size of shuffled data buffer? should the shuffled data be compressed?

Spark has around 200 configuration parameters with many of them do not influence Spark
performance (e.g., Spark UI parameters). However, there are various parameters that control
shuffle behavior, compression and serialization, memory management, execution behavior, net-
working and scheduling and can significantly impact Spark performance. Table 2.2 categorizes
and describes example parameters that govern the behaviour of each these aspects. Exposing
all of those knobs makes the system flexible. It also makes it difficult to run efficiently without
significant expertise and measurement. Even so, human expertise is of little help in dynamic
tuning.

While all the configuration tuning methods proposed throughout the dissertation are not
limited to a particular system or cost function, I have targeted Spark as the data processing
framework to configure, because it is both popular and poses significant challenges for state-
of-the-art configuration tuners (huge configuration search space, a variety of ways to process
data) [129].

2.3 Bayesian Optimization
While several machine learning algorithms can be employed to tune the configuration pa-

rameters, this dissertation leverages BO algorithms due to their data-efficient learning, making
them widely applicable for modeling expensive cost functions (e.g., big data workloads). Other
employed machine learning algorithms (e.g., hierarchical models [129], neural network [88],
support vector regression [78]) incur high tuning costs, requiring hundreds of workload execu-
tions to build a tuning model. In a rapidly changing environment such as big data systems, these
tuning costs are hardly amortized within workload’s lifetime (as will be shown in Chapter 4).

This section describes the machine learning algorithm, which the proposed tuning approaches
throughout the dissertation are based on. In particular, GP and how it is used in the context of
the BO framework. It demonstrates how BO can optimize the exploration of the configura-
tion space. Lastly, it illustrates BO limitations which make directly employing them to enable
cost-effective tuning is not practical.

BO [89] is a method for minimizing blackbox functions f iteratively, using a limited number
of samples. This is useful when it is expensive to evaluate f at a given point (such as running
a big-data workload with a given configuration). BO is characterized by its prior model and
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acquisition function: the prior model represents a space of possible target functions f , and the
acquisition function guides the selection of the next evaluation point based on the prior modelled
knowledge.

One of the widely accepted prior models for BO is GP. It represents a distribution over
functions (a sample drawn from this process is a function) with given mean and covariance.
Here, the mean function describes expected values at each point and the covariance function
(also known as kernel) defines the smoothness of the functions which can be drawn as samples,
encoding prior assumptions about the data that we want to model [97].

On of the broadly adopted covariance functions is Automatic Relevance Determination
(ARD), which determines the relevance of each input dimension to the modelled function. This
relevance is represented using the length scale, indicating how far a movement (along a particu-
lar dimension in the input space) is needed so that the function values become uncorrelated. The
inverse of the length scale indicates the relevance. If the length-scale is high, then covariance
is almost independent of that input dimension. This can be leveraged to get rid of exploring
irrelevant input points. One of the widely used ARD kernel implementations is Matern 5/2 [98]
which proved to be effective for modelling practical functions [105].

The GP maintains a probabilistic belief about what functions f are possible, given known
characteristics and already seen data. This belief is updated by using an acquisition function,
which determines the best point of f to sample next. After sampling, the prior belief about
possible functions f is updated and a new sampling decision can be made, iteratively. At each
step, the posterior distribution has filtered-out functions that are not consistent with the sampled
data and will ideally have a narrower candidate function space.

The BO acquisition function represents the metric by which the next input point to sample is
picked so that it improves the probabilistic model function. It is typically a function that is cheap
to evaluate at a given point x and its value is proportional to how useful evaluating f(x) would
be for the optimisation problem. Various acquisition functions have been proposed to define the
way the BO samples the input space, e.g., random, sequential, Probability of Improvement (PI)
or Expected Improvement (EI) [116, 107, 57].

The existing acuistion functions are either parametric (requiring setting its own hyperpa-
rameter(s) such as Gaussian Process-Upper Confidence Bound (GP-UCB)) or nonparameteric
which optimizes its own hyperparameters without a need to set them priori.

GP-UCB [97] has a hyperparameter that balances exploration and exploitation. As shown
in Equation 2.1, the function finds the next point to sample xt+1 that maximizes a weighted sum
of both mean µt (represents the exploitation) and standard deviation σt (represents the uncer-
tainty) across all the function’s input space. The function is fine adjusted by k to address the
exploitation/exploration trade-off of the BO algorithm. While a small k value yields choosing
input points that are expected to be high-performing, a high k focuses on exploring new areas of
the search space that potentially have high-performing solutions. It is important to pick the right
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(a) t = 2

(b) t = 3

(c) t = 4

Figure 2.2: An example of how BO works incrementally( figure source is [20]).

value for k in order to accurately model the function while bounding the number of sampled
input data.

xt+1 = arg
x

max( µt(x) + kσt(x)) (2.1)

On the other hand, EI with Markov Chain Monte Carlo (MCMC) [105] is an example of
nonparametric acquisition function, wherein the grid is densely sampled and its hyperparame-
ters are fine-tuned to optimize the EI.

I discuss the BO as it applies to DISC system’s configuration tuning in Chapter 5 and Chap-
ter 7.

2.3.1 How it works?
Figure 2.2 shows an example of how BO works incrementally on modelling an objective

function and finding its minimum, the dashed line represents the actual objective function that
BO tries to model, the black line represents the mean function of the possible functions. The
purple area indicates the confidence interval, the range that the actual function should fall in
with a high probability. The green curve at the bottom represents the acquisition function. The
acquisition is high when the GP predicts high exploitation (high objective) and/or high explo-
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ration (wider confidence interval/high uncertainty). BO samples the areas with both exploration
and exploitation are high first then starts to compromise exploration for exploitation when a
model of acceptable certainty is reached. At t = 2, BO has witnessed two observations (sam-
ples) that maps input into output, it filters out any functions that are not consistent with those
samples, update the mean function and finds the next point to sample with the max acquisition.
At t = 3, the point with the max acquisition is sampled leading to a narrower confidence inter-
val (lower uncertainty), then at t = 4, the suggested next new sample is the one that maximizes
the exploitation.

It is important to note that the BO did not select any points from the left side of the figure,
since those points do not have the potential to maximize the acquisition. Leaving them unex-
plored saves modelling costs and makes BO a common choice for modelling expensive cost
functions.

2.3.2 Advantages
BO has three fundamental advantages that makes it appealing for modelling expensive

blackbox functions: Firstly, BO models objective function using a small number of observa-
tions/samples since it focuses on sampling the points that has the highest potential gain. It is
not only efficient in terms of the number of needed samples, but also the cost of the picked sam-
ples. This means that it can model blackbox function with minimal exploration cost. Secondly,
BO does not commit the modelled function to a predefined shape, because it is nonparametric.
This flexibility allows the GP to model diverse functions. Lastly, BO can model the uncertainty
region of the modeled function, this uncertainty can happen in several contexts such as mod-
elling the performance of cloud-hosted analytics. The BO’s computed confidence interval can
be used as a representation of this uncertainty.

2.3.3 Limitations
Despite the numerous advantages of BO, it converges slowly when instructed to model high

dimensional space (more than 10 variables) [103]. Another limitation is that its computation
complexity grows significantly with the number of observations (i.e. its complexity is O(N4),
where N is the number of observations/execution samples). This computational overhead does
not shape an issue in the context of this dissertation since I target using the BO to model the
performance of analytics workload using a small number of observations (i.e., building a per-
formance model from a maximum of 15 executions for any given workload).

2.3.4 Multitask Bayesian Optimization
MTBO is an extension to the standard BO that enables modelling and minimizing different

tasks. This modelling principally relies on defining a covariance function between input-task
pairs. While the covariance function of the standard GP defines the relationship between inputs,
the covariance function of Multitask Gaussian Process (MTGP) defines the relationship between
inputs and tasks. It learns the degree of correlation between tasks and utilizes this information
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(a) Multitask GP sample functions (b) Independent GP Modelling (c) Multitask GP Modelling

Figure 2.3: (a) an example sample function from a Multitask GP with three tasks. Task 2
and 3 are strongly correlated, 1 and 3 are anti-correlated, and 1 and 2 are not correlated. (b)
Independent single tasked GP modelling for Task 3. (c) Multitask GP modelling for Task 3,
utilizing the other tasks (figure source is [108] with some edits applied for more clarity).

to guide the search for the best point to sample. Figure 2.3 shows an example MTGP with
three tasks. In 2.3(a) the actual functions of the three tasks are depicted. Task 2 and 3 are
strongly correlated, 1 and 3 are anti-correlated, and 1 and 2 are not correlated. The goal is to
model task 3, the dots represent observations and the dashed lines represent the predictive mean.
The curve at the bottom represents the EI for each input location on Task 3. The confidence
interval indicates the range that the actual function should fall in with a high probability, the
narrower the better. Whereas the independent GP in 2.3(b) has a wide confidence interval
and optimizing EI leads to a false minimum as the next point to sample, the MTGP in 2.3(c)
leverages the correlation across the tasks, thus the confidence interval is improved (narrowed)
and the maximal EI point corresponds to the true minimum.

2.4 Summary
This chapter provided the needed background information in order to facilitate present-

ing the dissertation’s key contributions. It gave an overview of big data, analytics workloads,
the DISC systems and the different aspects of BO and GP in terms of how they work, limitations
and their advantage of optimizing the exploration of the configuration space.

With this background in mind and before proceeding to the contributions, it is essential to
demonstrate the context of these contributions through describing the related work. This is to
show where the proposed contributions fit. The next chapter studies the existing configuration
tuning approaches in various domains, spots the existing gap and illustrates what distinguishes
our work to fill this gap.
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Chapter 3

Related Work

In order to distinguish the proposed work in this dissertation from others and show how it fits
in, this chapter studies existing approaches for tuning the configuration parameters of DISC
systems. It also covers tuning approaches used in generic tuning systems and other domains
such as CC, HPO and DBMS.

Most frequently, end-users tune system configuration manually based on expertise and/or
trial-and-error. However, this manual tuning approach can lead to missing optimization oppor-
tunities. Further, it is extremely challenging to apply in a high-dimensional space. Similarly, a
number of general methods (USE, TSA)1 have been suggested as recipes for figuring out the lo-
cation of bottlenecks and explaining the time spent by applications. Those are ways of guiding
tuning or debugging performance issues rather than automating the tuning process for dynamic
workloads.

Therefore, the problem of configuration autotuning gained traction from developers, re-
searchers and end-users, with dedicated efforts put to propose strategies that address configura-
tion autotuning in different domains. Generally, the tuning approaches either follow a search-
based or model-based strategy:

Model-based configuration Tuning where a model is built to predict the execution time given
a set of workload characteristics (resource consumption metrics) and a particular configura-
tion [56, 78]. The model is pre-trained on numerous executions of different workload types
and configurations, after which it can cheaply estimate run times for a new (workload, config-
uration) pair. However, tuning results are highly dependent on the model accuracy and on the
similarity between workloads seen during training and actual workloads.

Search-based configuration Tuning where a random or incremental search of the configura-
tion space is done. The latter feeds back information about the workload actual execution cost
under a given configuration to select a better configuration for the next run [83]. Current ap-
proaches require a long search phase (around 500 executions) [135]. The practicality of such
solutions hinges on the challenge of amortizing the cost of the optimisation, a function of both

1http://www.brendangregg.com/methodology.html
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how fast the algorithm converges to very good configurations and how many bad (slow) config-
urations are explored in order to get there.

Out of the several domains in which autotuning approaches have been proposed, this chapter
covers the recent work done in five domains of relevance and growing popularity, illustrating a
set of representative autotuning approaches from each domain. I start with studying the config-
uration tuning in DISC systems, then cloud computing, machine learning, and lastly database
management systems and generic tuning systems. Additionally, I give an overview on existing
work that leverages workload similarity.

I characterize the existing work based on a set of features: 1) The domain which the work
targets. 2) The tuning approach, wherein a search-based or model-based approach is employed.
3) Configuration dimensionality, which represents whether the work supports high dimensional
configuration tuning or not. 4) The need for upfront profiled dataset, indicates if the work re-
quires an expensive offline phase to build a dataset upfront, which is used to enable the tuning
approach (e.g., build a performance prediction model, detect system-wide significant parame-
ters). 5) Similarity-awareness, indicating whether the work can detect similarity across work-
loads and leverage this similarity to accelerate configuration tuning. 6) Dynamic tuning, this
represents whether the work is designed to to detect the need for configuration retuning and per-
forms retuning efficiently in response. This is crucial to accommodate workload/environment
changes to avoid workload performance degradation. Table 3.1 shows a summary of the studied
work based on those features, with each of this work described in detail in the next sections.
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Work Domain Approach upfront profiled dataset? high dimensional conf. space? similarity-aware? dynamic-tuning?
Cherrypick [20] Cloud Model-based 5 5 5 X

Scout [59] Cloud Model-based 5 5 5 5

Arrow [58] Cloud Model-based 5 5 X 5

PARIS [127] Cloud Model-based X 5 5 5

Autotune [74], Optuna [19] HPO Search-based 5 5 5 5

Flash [133] HPO Model-based X 5 5 5

[34], [101] HPO Search-based 5 5 5 5

Ottertune [114] DBMS Model-based X X X 5

Rafiki [88], ituned [42] DBMS Model-based X X 5 5

AROMA [78] Hadoop Model-based X 5 X 5

Starfish [56], RFHOC [24], H-Tune [61] Hadoop Model-based X 5 5 5

Gunther [83], JellyFish [41], MROnline [81] Hadoop Search-based 5 5 5 5

DAC [129] Spark Model-based X X 5 5

ATCS [82] Spark Model-based X X 5 5

BestConfig [135] Generic Search-based 5 X 5 5

Spearmint [105] Generic Model-based 5 5 5 5

OpenTuner [21] Generic Search-based 5 X 5 5

Tuneful (this work) Spark Model-based 5 X X X

Table 3.1: The characteristics of the work addressing configuration tuning in different domains.
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3.1 Configuration Tuning for DISC systems
Several solutions have been proposed for tuning the configurations of Hadoop/MapReduce

workloads and more recently for Spark.

3.1.1 Hadoop Configuration Tuning
Some early work [50, 104] targeted the analysis of MapReduce performance without tack-

ling configuration autotuning. Ganapathi et al. [50] leverage Hadoop logs for a period of 6
months to build a model that predicts jobs’ performance under different execution features
(e.g., inputs bytes, number of map and reduce stages, query operator). Shi et al. [104] utilize
logs of Yahoo’s M45 supercomputing cluster to analyse the performance of MapReduce jobs,
leading to the characterization of job patterns, completion times, job failures and resource uti-
lization. This characterization has suggested improvements in Hadoop MapReduce to mitigate
performance bottlenecks and limit job failures.

Nearly a decade ago, the work on Hadoop configuration tuning has started with proposing
whitebox model-based tuning approaches such as StarFish [56] and MRTuner [104]. These
whitebox tuning approaches adopt the idea of transparent modelling, which requires a deep
understanding of the system’s internals to estimate the cost of executing a job under certain
configuration. This is done through profiling numerous jobs under various configurations, then
analyzing how they perform by breaking down their execution cost (e.g., execution time) into
a set of basic operations attributing to the total cost (e.g., CPU utilization, memory utilization,
size of shuffled data, configuration parameters), this breakdown is used to derive formulas for
execution cost estimation (some work refers to these formulas as a cost model).

StarFish is a Hadoop tuning system inspired by the self-tuning database systems. It uses a
configuration tuning approach in which cost estimation is derived by a What-If engine, predict-
ing the cost of different configurations given some profiled data. For example, the engine can
answer a query like “Given the profile of a job A, input data x, cluster resources c1, what will
the performance of job A be with input data y and cluster resources c2”. Here, finding good
configurations hinges on the accuracy of the what-if engine itself. Similarly, MRTuner em-
braces a whitebox model-based tuning approach in which an anlytical model is built to estimate
the tradeoffs in MapReduce execution plans and the execution cost accordingly. It also detects
the relationship among parameters to develop a fast search algorithm for good configurations.

However, this whitebox model-based tuning approach has some limitations: It is very com-
plex to capture such system’s internal knowledge to build an accurate cost model. Moreover, the
built cost model is tightly coupled to the system’s internals and a change in the system would
trigger a change in the model. Overall, this approach is hard to adopt to build a cost model with
good accuracy for complex system such as Hadoop while keeping flexible and robust [128, 83].

These limitations have motivated the wide adoption of Machine Learning (ML) model-based
tuning approaches, since they do not require extensive knowledge of the system’s internals and
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work in a black-box fashion. The work on ML model-based configuration tuning has started
with AROMA [78], which is a system for Hadoop resource provisioning and configuration tun-
ing. It uses the k-medoids algorithm to cluster the executed jobs and leverages Support Vector
Machine (SVM) to build a ML model that predicts job’s performance under different provi-
sioned resources and configurations. The built model is used to automate resource provisioning
and the tuning of 10 Hadoop configuration parameters.

Lee et al. [79] have proposed a fuzzy prediction controller to optimize the number of concur-
rent MapReduce jobs. The fuzzy prediction controller constructs rules that can predict resource
usage and the number of concurrent tasks. Those predicted values are used to dynamically tune
a single Yarn (Hadoop job scheduler) parameter (i.e., number of jobs in running state).

Liu et al. [86] have proposed a Reinforcement Learning (RL) based approach for managing
resources in Hadoop. The proposed approach proved to outperform rule-based approaches for
resource management in terms of reducing the chances of missing deadline for time-critical
applications and lowering average job delay for all jobs.

Some work has been proposed leveraging ensemble learning [24, 61] where multiple models
are combined to build a performance prediction model of better accuracy, the model is then used
to search for good configuration thereafter. In H-Tune [61] a two-level fusion model is built to
predict job performance considering the configurations and input data size. The constructed
model is leveraged to search for the optimal configuration using a modified genetic algorithm.

Similarly, RFHOC [24] constructs an ensemble prediction model using random forest then
employs a genetic algorithm to search the configuration space.

On the search-based tuning front, Gunther [83] has been proposed leveraging genetic algo-
rithms to tune the Hadoop configuration parameters. Then, MROnline [81] proposed a modified
Hill climbing technique to find good configurations; it limits the search space using prede-
fined tuning rules. Lastly, JellyFish [41] tunes the configuration parameters using a divide-
and-conquer approach (dividing the parameters into map-related and reduce related ones) then
searches for good configurations using hill climbing algorithm. It also re-schedules resources
in nodes to maximize the utilization of the cluster’s resources.

Those MapReduce tuning systems are optimized for a low number of parameters, which fits
Hadoop well but not other systems in general (for example, Spark). To demonstrate that, the
proposed work in this dissertation will be comparatively evaluated against one of the MapRe-
duce configuration tuners (Gunther [83] in particular due to the sufficient details presented in
the paper to implement it and compare against, as will be discussed in Chapter 5).

3.1.2 Spark Configuration Tuning
More recently, a few systems have been developed for tuning Spark configurations—addressing

a larger number of tunable parameters compared to MapReduce configuration tuners. Yu et al.
have proposed DAC [129], a data-size aware Spark configuration tuning system, which uses a
hierarchical modelling approach to approximate workload execution time as a function of input
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data-size and configuration. It then leverages Genetic algorithms to search for good configura-
tions based on the execution time estimated by the model. The work in this dissertation aims to
avoid incurring the high data collection costs of DAC when modelling execution time as a func-
tion of a given configuration. Those high costs are hard to amortize before re-tuning is needed
(e.g. because of environment change). DAC improves performance by 30-80X with respect
to the default configuration and tunes 41 configuration parameters in Spark 1.6. Throughout
the dissertation, I consider all parameters (30) of a more recent Spark release (some of the
parameters have been deprecated). Wang et al. [119] leverage regression trees to tune Spark
configurations; they tune 16 configuration parameters and improve performance by 36% with
respect to the default configuration. This approach also needs a significant number of execution
samples to build an accurate regression tree model. BestConfig [135] is a general-purpose tun-
ing system that uses a divide-and-diverge sampling method and a recursive bound-and-search
algorithm to tune configurations. BestConfig was used to tune 30 Spark configuration param-
eters using 500 execution samples and achieved 80% runtime performance improvement with
respect to the default configuration. Zhao et al. [134] have proposed an Adaptive Serializa-
tion Strategy to improve Spark performance. It tunes Spark’s serialization strategy dynamically
based on runtime statistics. The work in this dissertation addresses tuning a large set of Spark
configuration parameters, not just the serialization strategy.

MEMTUNE [126] is a memory manager for in-memory data analytics. It dynamically
tunes the memory allocated for computing and caching based on workload memory demand.
Likewise, ATuMm [66] enables dynamic memory allocation for Spark while taking into con-
sideration both memory demands and the latency caused by garbage collection.

PETS [93] uses a resource bottleneck-aware approach to iteratively tune parameter ensem-
bles. Gu et al. [53] proposed a neural network based tuning approach, wherein a neural network
model is built to predict the next step to take during the configuration search (i.e. each con-
figuration parameter increase/decrease). It also utilizes a random forest prediction model to
predict the performance under the suggested configuration. It tunes 15 parameters and outper-
forms the default configuration by 42.8%. ATCS [82] have proposed a Generative Adversarial
Nets (GAN)-based tuning approach, which builds a performance prediction model using less
data without degrading the accuracy using GANs. The constructed model is then leveraged to
search for good configuration using an optimized genetic algorithm. A+Tuning [120] proposed
to tune the architecture and application parameters to optimize energy consumption. It starts
with profiling the applications and clustering them based on their resource usage characteristics
(e.g., compute-bound, memory-bound), then co-locate the applications and leverage a machine
learning model to tune the architecture and applications parameters of the co-located applica-
tions. ReB [60] proposed balancing the resource allocation of Spark jobs based on predicting
Job Completion Time (JCT). It employs a prediction model to estimate the JCT then leverages
this model to minimize the JCT of multiple Spark jobs. This results in an average JCT decrease
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by 10%-30% compared to existing solutions. Ousterhout et al. [92] highlight the effects of
resource bottlenecks in Spark, but do not address the autotuning problem.

Some work has been proposed to study Spark performance on HPC systems [111, 122, 123],
tuning a few selected Spark parameters. There are also some developer guides [5, 71] that
document an explanation of each Spark parameter and guide end-users to the impact of tuning
them. Nevertheless, those guides do not address the automated tuning of Spark parameters and
the challenge of manually tuning them remains a burden on the end-user.

In a relevant work, Bilal et al. [27] have proposed a framework to tune the configuration of
stream processing systems such as Storm. The tuning takes place using a modified hill-climbing
search with heuristic sampling inspired by Latin Hypercube.

Unlike this earlier work, the proposed work in this dissertation aims to maintain a signifi-
cantly lower tuning cost, making dynamic tuning in a rapidly changing environment possible.

3.2 Configuration Tuning for Cloud Computing
Some other systems have looked at tuning cloud configurations (selecting cloud instances,

the number of instances, number of cores). Cherrypick [20] finds near-optimal cloud configu-
rations iteratively. It leverages GP to build a performance model that allows picking good con-
figurations using a small number of samples. This work suits well the low dimensional space of
cloud configurations, but is harder to apply directly to the higher-dimensionality search space
such as Spark. Similarly, Arrow [58] and Scout [59] employed GP to find near-optimal con-
figurations while augmenting the GP with performance metrics [58] to improve the accuracy
of the GP constructed performance model, or historical information to explore the search space
more effectively [59]. Ernest [115] efficiently builds a performance model by utilizing the in-
ternal structure of the machine learning jobs. The model predicts workload performance under
different VM configurations (e.g., number of cores, memory size, number of VM instances).
However, the constructed model is tied to a specific VM type. PARIS [127] is a system for
selecting the best VM for certain workloads based on user defined metrics. It uses offline profil-
ing for benchmarking various VM types, then combines this with an online fingerprint of each
workload. The combined data is used to build a decision tree and a random forest-based model
that predicts performance and cost of workloads on different VM types.

Selecta [73] finds near-optimal configurations for cloud compute and storage of the analyt-
ics workloads. It employs latent factor collaborative filtering to predict the application’s per-
formance under different configurations. Lynceus [31] tunes both cloud and application (e.g.,
hyperparameters of machine learning algorithms) related configuration parameters. It reduces
the tuning cost by employing a time-out approach that aborts the less promising configurations.
Besides, it employs a budget-aware tuning technique that decides which configuration to try
next. The decision is taken based on predicting the impact of exploring a candidate configura-
tion.
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Those systems are designed to address the low dimensionality of the cloud configuration
parameters and hard to adopt for the high dimensionality of Spark. To demonstrate that, I
compare Cherrypick for tuning Spark configurations against Tuneful (Chapter 5). Tuneful can
work together with those CC tuning systems to enable optimization at the DISC system level
after finding the best cloud configuration.

3.3 Hyperparameter Optimization (HPO)
HPO is the process of finding the right hyperparameters for a learning algorithm to achieve

a certain objective (e.g., better model accuracy and/or learning speed). A hyperparameter is a
parameter used to control the learning process during the training (e.g., learning rate in gradient
descent or batch size in neural networks).

One of the widely used approaches for hyperparameters optimization is the manual tuning
based on the user’s experience. However, this approach is tedious to apply given the growing
complexity of machine learning models. Further, it yields a workable solution but does not
guarantee optimal tuning. Therefore, automating the optimization of machine learning models
through hyperparameter tuning gained wide traction over the last two decades.

Historically, the work on hyperparameter tuning started with employing grid search in
1994 [63], which specifies a grid of each combination of algorithm parameters. However,
the growth in the data (i.e the training data) and parameters dimensionality made exhaustive
grid search not a viable solution for HPO. Therefore, random search and adaptive optimization
methods such as pattern search [90] have been employed, leading to faster tuning compared to
grid search.

In 2004, evolutionary algorithms such as genetic algorithms have been employed in the hy-
perparameter optimization of SVM [34] and neural networks [101]. As the size of training data
continued to grow exponentially, the application of data-efficient hyperparameter optimization
approaches has become urging. Consequently, HPO using BO gained a wide adoption. It has
been employed to tune two hyperparameters of SVM, outperforming grid search by a factor of
10 in terms of the tuning speed [49]. Then BO has been utilized to tune the hyperparameters
of deep neural networks [75, 105]. Similar in spirit, recent work has been proposed not only
to tune the hyperparameters of the deep neural network but also to search for the best network
architecture (i.e number of layers, neurons per layer) [23, 85, 94]. The proposed work revolves
around either predicting the performance of a given architecture [23], searching for the best ar-
chitecture by growing the architecture’s complexity iteratively [85], or sharing weights between
architectures [94].

In 2009, the problem of HPO has been reshaped to include both algorithm selection and
HPO [43], which addresses all the decisions across a machine learning pipeline, starting from
selecting a preprocessing algorithm, feature selection algorithm, classifier/regressor to tuning
their associated hyperparameters. For example, Flash [133] proposes a two-layer BO frame-
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work for algorithm selection and hyperparameter optimization. The first layer employs a linear
model to quickly explore the learning algorithms space, then the second layer applies nonpara-
metric tuning of the hyperparameters.

Starting from 2013, existing machine learning frameworks have been extended to facilitate
picking the right algorithm and hyperparameters for end-users [110, 47, 70]. More recently,
some work has been proposed to speed up HPO through distributed tuning [74, 19], allowing to
try multiple candidate configurations simultaneously.

Overall, some of these techniques are common across other configuration tuning systems
in different domains (e.g., BO and genetic algorithm based tuners). The cost-effective tuning
approaches proposed in this dissertation would be of great value if successfully applied in HPO.
This is because of the rapidly growing number of configuration parameters, demanding cost of
each workload execution sample and the dynamic nature of the running workloads. Experi-
menting with the tuning strategies proposed in this dissertation for HPO is an interesting future
avenue.

3.4 Configuration Tuning for Database Management Systems
(DBMS)

On the DBMS front, iTuned [42] has been proposed to tune SQL database systems. It em-
ploys GP to build a performance prediction model that enables automatic configuration tuning.
Similarly, OtterTune [114] is a recent work that leverages GP. It also performs a feature se-
lection step in which it reduces the number of parameters. This step finds the most influential
configuration parameters (system-wide) to mitigate the complexity of the configuration tuning
problem. However, it requires hundreds of trials in an offline phase to define a system-wide
significant parameters for the DBMS workloads. Likewise, Rafiki [88] performs a similar step
to define system-wide significant parameters. Then builds a neural network performance model
using those parameters and tune them using genetic algorithms.

More recently, SageDB [76] has been proposed as a new vision for data processing systems,
which departs from processing the data in a general purpose approach to a specialized one that
takes advantage of the characteristics of a particular database, query workload and execution
environment. This is done through modeling data distribution, workload and hardware char-
acteristics. Then learning the best ways to structure the data, access data efficiently and plan
query execution.

Generally, those proposed tuning solutions proved to be effective in the DBMS domain.
However, applying such techniques directly in DISC systems is not only expensive, requiring
hundreds of executions to define a system-wide set of significant parameters, but also imprac-
tical given the higher diversity of analytics workloads (e.g., graph analytics, machine learning,
text analysis and SQL based analytics)—with the significant parameters possibly varying from
workload to another.
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3.5 Generic configuration Tuners
Generic autotuners are general-purpose tuning systems in which the end-user defines the

configuration parameters, their types and range of values. The end-user also defines an objec-
tive function that the tuning systems aim to minimize/maximize (e.g., execution time, energy
consumption).

OpenTuner [21] is a general tuning system that uses ensembles of search techniques such as
hill climbing, differential evolution, particle swarm optimization and pattern search. OpenTuner
evaluates which techniques perform well over a window of time and picks them more frequently
than the ones that have poor performance (those can even get disabled).

Spearmint [105] is a Python BO library that employs GP prior model to tune a user-defined
configuration parameters with respect to a user-defined objective function. Similarly, SMAC [64]
is a BO configuration tuning system that employs a random forest prior model to tune user-
defined configuration parameters.

More recently, BestConfig [135] has been proposed as a generic autotuning system that
leverages a divide-and-diverge sampling method and a recursive bound-and-search algorithm to
tune configurations. BOAT [38] a BO based autotuner that enables developers to provide con-
textual information, in the form of a bespoke probabilistic model of the workload’s behaviour,
to accelerate tuning convergence. Since it is tedious to define those probabilistic models for non
expert users, the work in this dissertation aims at minimizing user’s intervention. FLASH [91]
is a generic autotuning system that starts with 30-50 execution samples to build a decision tree
model then incrementally execute more samples till it converges.

Overall, those systems are either tedious to specialize to enable faster convergence to near-
optimal configuration [38], or hard to converge to near-optimal configuration quickly while
keeping generic [21, 135]. The proposed tuning approach in the dissertation will be compara-
tively evaluated against one of those generic autotuners (Opentuner in particular since it covers
a wide array of search algorithms).

3.6 Similarity-aware configuration Tuning
In practice, detecting similarity across workloads has a significant potential for accelerating

the configuration tuning. However, as a prerequisite step, it is necessary to characterize the
different workloads, wherein the main components distinguishing each workload are identified.
The aim of workload characterization is either detecting similarity across workloads [18], com-
ing up with representative benchmarks of workloads [68], or revealing existing performance
issues [35].

Historically, research into workload characterization started four decades ago [46] to help
selecting representative workloads during computer performance measurement, then kept evolv-
ing to cope with advances in various domains that ranges from web workloads, social network
workloads, mobile services, and cloud services [30]. Generally speaking, workload charac-
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terization usually involves two fundamental steps: first, collecting measurements of various
execution features describing how a workload is executed (e.g., CPU utilization, memory foot-
print). Then measurement analysis which aims at summarizing the patterns of how various
workloads are executed (e.g., I/O intensive, CPU intensive). This is usually done through ap-
plying statistical approaches to represent the properties of each collected feature (e.g., mean,
percentile, variance), then employing multivariate analysis approaches to analyze each feature
in a multidimensional space of features (e.g., principal component analysis, factor analysis,
clustering). This analysis enables summarizing the overall properties of a workload. Lastly,
visualization approaches can be employed to uncover insights across workloads (e.g., scatter
plots, dendrograms) [30].

Recently, a relatively few work has been proposed to characterize and cluster Hadoop and
Spark analytics workloads, with the majority of work employing principal Component Anal-
ysis (PCA) to identify the most important metrics to lower the dimensionality of the captured
execution metrics [68]. Besides finding the important execution metrics, some work has been
proposed to cluster the workloads using KMeans, grouping the various workloads based on
their execution patterns [68, 18].

Jia et al. [67] characterize data analytics workloads (most of them are Hadoop based work-
loads) in data centers based on their microarchitectural characteristics (e.g., L1 instruction cache
misses per thousand instructions). They concluded that data analytics workloads have inherent
different characteristics from traditional workloads (e.g., High Performance Computing (HPC)
workloads). Similarly, some work has been proposed characterizing in-memory analytics work-
loads [69, 22]. Jiang et al. [69] characterize Spark workloads and compare them against Hadoop
and traditional HPC workloads. Their work shed light on the significant differences in Spark in
terms of memory utilization, memory access and disk I/O frequency. Awan et al. [22] highlight
thread scalability issues in Spark (i.e., Spark does not scale linearly when more than twelve
threads are running). Chiba et al. [35] characterize the memory, network, Java Virtual Ma-
chine (JVM), and Garbage Collection (GC) usage to tune the performance TPC-H workloads
on Spark.

On top of workload characterization, some configuration tuning systems have leveraged
similarity to accelerate the tuning process: AROMA [78] clusters the Hadoop workloads then
builds a performance model that guides the tuning of each workload cluster. Scout [59] explores
the search space more effectively for cloud configuration tuning. Lastly, OtterTune [114] guides
the tuning of similar workloads in DBMS.

3.7 Summary
This chapter studied the work addressing configuration tuning in different domains that

range from DISC systems, cloud computing, machine learning systems, database management
systems to generic tuning systems.
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As Table 3.1 showed, none of the existing work addresses dynamic high-dimensional con-
figuration tuning—keeping in mind the dynamic environment of the analytics workloads and the
need for frequent retuning. This dissertation tackles filling this gap to enable efficient tuning of
the analytics workloads in a rapidly changing environment.
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Chapter 4

Incremental Configuration Tuning
Framework

Automatic configuration tuning has been based on developing strategies for the exploration of
the configuration space, building on search-based techniques such as hill climbing [81] and
genetic algorithms [83], or model-based techniques that explore hundreds of configurations to
build a prediction model of workload performance under a given configuration.

Existing solutions incur expensive tuning cost since they require numerous execution sam-
ples. This is impractical for workloads that take long time to execute (e.g., big data analytics
workload) or change over time (e.g., due to change in the environment or growth in the volume
of data the workload receives) and might require re-tuning. This is because getting optimal
configurations through re-tuning requires an investment in time and resources comparable to
the initial tuning costs.

This chapter brings into focus these trade-offs and how they should be considered when
performing tuning without assuming a static environment or workload. It further sheds light
on a set of overlooked issues in the existing solutions that pose a challenge for data analytics
configuration tuning in a dynamic environment. Ultimately, I propose Tuneful, a framework
that makes tuning in those scenarios possible. Tuneful does not require an expensive offline
phase to build performance prediction model and reaches close-to-optimal configurations sig-
nificantly faster than existing incremental search strategies. It does this by running the actual
workloads—instead of relying on predicted execution cost using offline model—making bet-
ter decisions about which configuration to explore next. This is done online, in the context of
workloads that are run periodically. Each execution is used to: First, pick a configuration that
helps exploring workload-specific influential parameters. Then, once the influential parameters
are known, select a configuration that has the maximum probability to minimize a cost function
(e.g. runtime or actual costs). It is designed from the start to perform incremental optimizations,
enabling a cost-effective re-tuning across a diverse set of workloads.

The key contributions of this chapter are:
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• Show that configuration tuning of data analytics need to be addressed differently to enable
cost-effective tuning. This is done through a series of experiments that: 1) Bring into focus
the trade-offs that need to be considered when performing tuning without assuming a static
environment or workload. 2) Shed light on a set of overlooked issues that pose a challenge
for cost-effective tuning of data analytics workloads.

• Propose the first work to address cost-effective tuning of high dimensional configurations in a
dynamic environment, Tuneful, a comprehensive incremental configuration tuning framework
that overcomes those overlooked issues and enables cost-effective configuration tuning.

I demonstrate the applicability of the proposed framework through its implementation as
an open-source extension to the Spark framework, directly usable within existing PaaS deploy-
ments. Tuneful optimizes configuration parameters without requiring any user input or changes
to Spark. The source code is available online under the Apache 2.0 open-source license at [15].
This work has been published in the applied data science track of ACM knowledge discovery
and data mining conference (KDD’20) [44].

4.1 Amortization of tuning cost
An entire class of workloads can be optimized without considering the cost of tuning: those

are workloads that will be recurring indefinitely (e.g. every day, week), without significant input
size changes (e.g. stable size of data since last execution). It is also likely that those workloads
will not require dynamic resource allocation, having stable computational, I/O, and network
requirements (e.g. delta log processing). This is intuitive: a static, predictable workload can be
tuned once and executed optimally thereafter. However, any departure from those characteristics
implies a finite window of time to amortize optimization costs: If the workload will only be
executed x times, then the cost of exploring the search space for a good configuration needs to
amortize well within those x runs. In the extreme case of a single execution, tuning can only
be cost effective if “guessing” a good configuration by static analysis or matching to similar
workloads.

If the input data size grows over time, previous optimal configurations lose their efficiency,
as data gets re-partitioned, communication costs grow (i.e. increased data shuffling) or some
processing gets serialized. At some point, more resources (cores, disks, VM instances) need
to be allocated at the cluster level. Taken together, those will change the performance char-
acteristics and invalidate previously learned models, requiring re-tuning (§ 4.2.3 shows a case
study demonstrating that). Here, the window to get benefits from optimization depends on how
quickly the configuration tuning takes place, the workload execution frequency, the data growth
rate and how quickly an existing performance model becomes obsolete.

Ass an illustrative toy example of how tuning cost amortization works, Figure 4.1 shows
the amortization of tuning costs over the number of workload executions. This compares the

1This figure is a result of collaboration with Lucian Carata
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Figure 4.1: The amortization of tuning cost over workload executions 1

cumulative execution time of running with a fixed configuration to the one obtained through
incremental tuning. Normally, in the search phase, the tuning algorithm will incur higher costs
as it tries to find good configurations. Once a stopping criteria is met, the best found configu-
ration is used for the following executions. The sufficient condition for tuning profitability is
for the expenses to be recovered before the cost model built through tuning becomes obsolete.
This might happen due to changes in input data size or in the environment where the workload
executes. Once that happens, it is impossible to predict how either the original configuration or
the tuned one will behave, and re-tuning needs to be triggered.

The point at which this change happens represent a break-even deadline (longest possible
time for the tuning cost recovery phase while not losing money), after d executions. In Fig-
ure 4.1, assuming d = 9. It is crucial for the tuning costs to be recovered before execution
number 9. The faster the tuning costs are recovered, the higher the tuning profit.

4.2 Configuration Tuning Challenges
This section demonstrates a set of issues that shape a challenge for cost-effective tuning of

data analytics configuration. Those challenges are not solved yet by existing solutions, firmly
showing that configuration tuning of data analytics needs to be addressed differently.

4.2.1 Finding best estimated “ground truth” for the optimum configura-
tion:

Given the high dimensionality of the configuration parameters and the demanding cost to
run a workload execution sample, it is impossible to exhaustively search for the optimum con-
figuration. For example, considering tuning the configuration parameters listed in Table 4.3,
there will be approximately 2 · 1041 configurations possible in total (this represents the size of
the search space). Nevertheless, it is essential to have a good estimate of the optimum con-
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# Configuration name Range Default Description
1 spark.executor.cores [1,16] 1 The number of cores per each Spark ex-

ecutor
2 spark.executor.memory(GB) [3,43] 1 The memory size of each Spark executor
3 spark.executor.instances [5,80] 2 The number of Spark executor instances
4 spark.default.parallelism [8,50] - The number of partitions in a returned

RDD by the distributed shuffle operation,
its default value varies depending on the
distributed shuffle operation

5 spark.memory.offHeap.enabled [true,false] false If set to true, Spark will try to use the off-
heap space for cetrain operations

6 spark.memory.offHeap.size(MB) [10,100] 0 The size of memory that can be used for
off-heap allocation

7 spark.memory.fraction [0.5,1] 0.6 The fraction of heap space used for ex-
ecution and storage, if set to a low value
spills and cached data eviction takes place
more often.

8 spark.memory.storageFraction [0.5,1] 0.5 The fraction of spark.memory.fraction
that is not evicted by Spark, if set to high
value, less memory will be available to
execution and disk spill will occur more
frequently

9 spark.shuffle.file.buffer(KB) [2,128] 32 The size of each shuffle buffer output
stream in-memory

10 spark.speculation [true,false] false If set to true, Spark will check if one task
or more are running slowly in a stage, it
will re-launch them

Table 4.1: System-wide set of configuration parameters

figuration, since it works as a reference the one uses to compare against. To achieve this, I
employ an extensive exploratory approach using Random search with the configurations being
generated using low-discrepancy sequences [106], since they cover the search space quicker
and more evenly than the standard random numbers2. This enables exploring the search space
with a smaller number of execution samples. A budget of 100 execution samples is used to
limit the cost of the experiments. In our experiment, some workloads take more than 2 hours
to execute once, which means more than 8 days of processing to find an estimate of the ground
truth for a single workload, let alone the need to experiment with workloads of evolving input
sizes running across different clusters. I have also experimented with allocating larger search
space exploration budgets (more execution samples) to other methods (e.g., OpenTuner [21]
and Gunther [83]) but the exploratory approach with low-discrepancy sequences guaranteed
finding comparable configurations using lower number of executions. § 5.3.3 will also show
how when the same budget (execution samples) is allocated to those methods, sampling using
low-discrepancy sequences guarantees finding the best estimated optimal.

2The Random search approach used throughout the dissertation always generate the configuration using low-
discrepancy sequences, a decision taken to make sure the search space is widely covered.
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Figure 4.2: The percentile-based interval of each execution sample using Bayesian Optimization
with system-wide set of configuration parameters.

4.2.2 High dimensionality and significant number of execution samples
The search space for good configurations grows exponentially with the number of config-

uration parameters. Spark [5] has over 180 configuration parameters. Not all of them impact
performance, but the relevant ones are still of high dimensionality and with large intervals of
possible values. Complex data processing frameworks such as Spark commonly have 20 - 60
parameters that are relevant for tuning. In practice, tuning the configuration using evolutionary
or hill climbing approaches [83, 21] requires hundreds of execution samples, representing thou-
sands of hours of computational power and associated monetary cost. It is therefore crucial to
minimize the number of configurations evaluated to reach an optimal configuration. BO strate-
gies have been applied recently as a solution to this problem. However, BO does not provide
quick convergence in high dimensional configuration spaces (more than 10 parameters) [103].

Figure 4.2 demonstrates this slow convergence when tuning a set of 10 performance-related
configuration parameters (listed in Table 4.1) using BO, the lines show the median and the
shaded area represents the space between the 10th and 90th percentile of 10 experiments. At
the median, the BO finds a configuration within 30% and 20% of the estimated optimal config-
uration for Pagerank and Bayesian workloads respectively, while finding a configuration of up
45% and 30% distance from the estimated optimal at the 90th percentile. The estimated optimal
configuration is found as illustrated in § 4.2.1. A Google Compute Platform (GCP) cluster of 6
n1-standard-16 nodes is used to run this experiment.

This experiment supports existing reports in the literature showing BO converges relatively
slowly when tasked with approximating functions in a high dimensional space [112]. This is
because the BO relies on the Euclidean distance to define input space correlations. Euclidean
distance becomes less informative as the input space dimensionality increases [26] and the
number of samples required to learn the model grows exponentially—a phenomena coined as
the curse of dimensionality [25]. Withe Complex data processing frameworks such as Spark
commonly have 20 - 60 parameters that are relevant for tuning, this means that employing the
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Figure 4.3: Execution time savings when retuning the configuration for each input size, com-
pared against reusing the best configuration found for input size 20GB (TPCH benchmark))

standard BO in isolation is not enough, the percentile-based interval of each execution sample
in Figure 4.2 is too wide to be acceptable in practice. This will ultimately yield the exploration
cost incurred by the execution samples to outweigh the gains arising from the tuning.

4.2.3 Frequent workload changes

Most of the existing configuration tuning work assumes either static or inexpensive work-
loads running in a fixed environment. Paradoxically, the analytics workloads upon which they
are evaluated have different characteristics: they are expensive to run, can receive evolving
inputs, run in a dynamic environment and are susceptible to frequent changes. A change in
a workload takes place either through modifying the execution logic or through a significant
change in the processed data size (e.g., new records need analysis) or the physical underlying
environment. While the former is rare in a deployed system, the later is common in the big data
world. For example, let’s consider a TPCH workload, initially processing a dataset of 20GB
of data. Running once daily and receiving roughly 1GB of additional data at each run, the
dataset grows to 80GB in 2 months (60 executions of the workload). Such changes can lead to
significant changes in the workload’s behaviour under particular configurations.

Figure 4.3 shows that the potential savings from retuning can be significant, evaluated as
shown in Equation 4.1, where runtimereusedConfig represents the runtime of the workload with
the reused configuration of the initial input size (20GB), runtimeretuned represents the runtime
of the workload when the configuration is retuned for the evolving input size.

savings = ((runtimereusedConfig − runtimeretuned)/runtimereusedConfig) ∗ 100 (4.1)

It demonstrates tuning TPCH workloads of evolving input sizes as illustrated in § 4.2.1. The
configuration parameters under tuning are listed in Table 4.3 (expanding the previous list of con-
sidered parameters in Table 4.1 towards a more comprehensive list, the configurations’ value
range also may vary since a different cluster is used to run this experiment—an Amazon Web
Services (AWS) cluster of 4 h1.4xlarge instances). Those parameters are selected as they rep-
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resent a superset of the ones used in related work [135, 129]). Initially, a TPCH workload of
scale factor 20 (20GB of compressed input) is tuned. Then the scale factor is incremented to
represent an extra data received for processing and configurations are tuned again for each input
size in Figure 4.3. The aim of this experiment is to compare the amount of potential savings
of retuning the configuration for the increased input sizes against reusing the original configu-
ration of the 20 scale factor workload. As shown in the figure, reusing old configuration does
not guarantee near optimal tuning and the potential savings of retuning the configuration can be
significant, reaching up to 45%.

The configuration should therefore be re-tuned accordingly. While the decision about when

to re-tune is independent from the tuning strategy, its feasibility relies on how expensive is to
re-run tuning in the setting of gradually changing workloads. Existing approaches require a sig-
nificant number of executions for finding close-to-optimal solutions. In particular, the number
of executions required generally exceeds the number of times the workload might run before re-
tuning is necessary, making such solutions impractical. For example, the BestConfig [135]
system requires 100-500 samples to identify a good configuration, exceeding the 60 “normal”
runs of our TPCH example workload over the 2 months period. This dissertation focuses on
developing strategies that are able to identify good configurations using a significantly smaller
number of samples.

4.2.4 One model does not fit all
It is reasonable to ask whether tuning can not be efficiently done using a single cost model

to predict the best configurations for a wide range of data processing workloads. With this
“one model fits all”, amortization of tuning costs could be done over the lifetime of a cluster
rather than for individual workloads. The main difficulties posed for training such a model are:
1) hundreds of executions are needed to build it [129]; 2) difficulties in adapting to dynamic
resource allocation in the cluster; 3) the high diversity of the workloads makes it harder to build
a single cost model of a good accuracy [20]; 4) the high dimensionality of the search space: one
dimension per configuration parameter.

While the first 3 issues can be directly solved by moving to workload-specific tuning, the
typical way to solve the dimensionality problem is to employ dimensionality-reduction methods
such as factor analysis, PCA, autoencoders, etc. The assumption is that almost all information
can be retained in a lower-dimensionality space. This is certainly true for configurations when
looking at individual workloads. However, the problem is that different workloads are sensitive
to different sets of parameters and respond to each in different ways, increasing the minimal
number of dimensions that need to be considered. This makes it difficult to obtain models that
generalize well, even after hundreds of training examples (workload executions).

I demonstrate this with three workloads from Hibench [62]: Pagerank and two Bayesian
classifiers with different input sizes, each workload is executed 100 times using random con-
figurations for 30 parameters. Table 4.3 describes each configuration parameter and its range.
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Figure 4.4: Relative configuration parameter importance for 3 Hibench workloads, showing that
the parameters which affect runtime the most are workload-specific.

Application Input Size Dataproc exec. time (m) Best exec. time (m) Potential savings
Pagerank 10m pages 22 10 54%
TPC-H 40GB 28 10 63%
Terasort 40GB 14 10 29%

Bayes Classifier 20m pages 41 23 43%

Table 4.2: The execution time of the configuration suggested by Dataproc against the best
configuration found by random search.

Figure 4.4 depicts the significant configuration parameters for the three workloads. The cal-
culation of the significance is based on the contribution of each configuration parameter in
predicting the execution time, as determined from the 100 executions of each workload. More
details on the importance calculation of each parameter is given in § 5.1.1. As expected, for
each of these workloads, the set of significant configuration parameters is different. Even for
the same application, different input data sizes (Bayes-large, Bayes-Big) have different im-
portant parameters. This suggests that even parameters’ significance need to take palace in a
workload-specific approach rather than learning system-wide significant parameters.

4.2.5 Cloud provider’s workload-agnostic tuning
Cloud providers such as Amazon and Google offer Platform as a service (PaaS) Spark ser-

vices [11, 12], the configurations in such services are generically-tuned taking only into account
available cluster resources. Table 4.2 shows the difference in execution time between the con-
figuration suggested by Dataproc [12]3 and the best configuration that can be found as described
in § 4.2.1. A GCP cluster of 4 n1-standard-16 nodes is used to run this experiment. As shown
in the table, in the typical case, the suggested configurations by cloud provider yield execution
times 29–63% longer than the optimum for a given workload. The configurations provided are
a significantly better starting point than the default Spark configuration. However, it is diffi-
cult to bring them closer to the optimum while staying workload-agnostic. Obviously there
will be workloads with similar characteristics. To exploit this one needs a concept of workload

3Spark as a service provided by GCP [77]
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Figure 4.5: Tuneful–Spark integration: (1) On workload submission, the Driver requests the
next configuration from Tuneful. (4) After workload execution, metrics are collected and used
to update existing optimization models.

similarity, which is developed in Chapter 6.

4.2.6 The need for incremental tuning

The idea of workload and data-aware tuning is further strengthened if a dynamic context
is considered, where both the input data and the cluster resources may change. This means
that the conditions under which we ask for predictions drift away from the conditions during
training, unless resources are spent for updating the model. For example, DAC [129] takes 92
hours to collect data for KMeans clustering workloads of evolving input sizes. This data is
used to build an offline data-size aware prediction model that works for a given cluster. This
model is then used to perform configuration tuning for KMeans workloads with various input
sizes. However, a change in the cluster resources will degrade this model accuracy and imply
recollecting more data to maintain the model’s accuracy, incurring high tuning costs in a rapidly
changing environment.

Thus, a changing environment suggests tuning that is not done as an offline stage but in-

crementally using real workload executions, aiming to provide a better configuration each time.
This can also consider similarities between workloads to reduce exploration costs and provide
faster amortization.
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4.3 Incremental Configuration Tuning Framework
The challenges demonstrated above firmly show that configuration tuning of data analyt-

ics should be addressed differently. Taking into consideration the diverse workloads, high di-
mensionality of configuration parameters, dynamic workload environment and importantly the
amortization of tuning cost and how this should be accelerated. I advocate that tuning should
follow an incremental workload-specific approach to address these issues. Tuneful is a tuning
framework which makes incremental tuning a viable proposition. It aims to use information
from each execution sample efficiently, in order to minimize the time spent in significant pa-
rameters exploration and tuning, even when considering evolving workloads.

4.3.1 Overview
The Tuneful framework is designed to work efficiently both initially (when zero/ little data

is available) as well as later (as more tuning knowledge is acquired).

It efficiently tune the high-dimensional configurations of various data analytics workloads
(e.g., graph analytics, machine learning, SQL, text analysis).

Unlike usual configuration tuning approaches, Tuneful is designed to avoid expensive of-
fline phases for significant parameters identification or tuning, computing everything as part of
incremental optimization. An illustration of the framework is shown in Figure 4.5. It consists of
three main components controlled by the Tuneful Manager: Significance Analyzer, Cost Mod-
eler and Similarity Analyzer. At the beginning of the search phase, the Significance Analyzer
uses executions to pick configurations that enable a quick exploration of workload-specific in-
fluential parameters. Once those are determined, the Cost Modeler can take over and build a
lower-dimensionality model. However, the experiments show that those two steps still require
around 35 workload executions to obtain good results. Once sufficient workload/environment
changes and types of workloads have been seen, the Similarity Analyzer reduces the exploration
costs further by reusing existing information when tuning new workloads.

When a workload is submitted for execution, as shown in Figure 4.5, Tuneful suggests either
an exploratory configuration (generated by the Significance Analyzer), a tuned one (generated
by the Cost Modeler), or starts tuning from an existing model based on workload similarities
(determined by the Similarity Analyzer). After execution, performance and cost metrics are
fed back into Tuneful where they are used to update choices for the next configuration. Over
time, the Similarity Analyzer is able to match more and more workloads, which significantly
improves the tuning speed as demonstrated in Chapter 7.

I illustrate the zero-knowledge tuning approach of the framework, namely, significant pa-
rameters exploration and tuning in Chapter 5—as a use case of a new cluster receiving work-
loads without having any prior tuning knowledge. Then Chapter 6 covers how to characterize
workload similarity and perform similarity-aware tuning (Tuneful’s extended knowledge tuning
mode).
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4.4 Summary
The chapter argued that configuration tuning should be addressed differently. This is done

through bringing into focus the trade-offs that need to be considered when performing tuning
without assuming a static environment or workload, demonstrating a set of overlooked issues
that pose a challenge for practical configuration tuning for data analytics: the high dimension-
ality of configuration parameters and the large search space, the dynamic environment of the
analytics workloads, and the diversity of the analytics workloads and lastly advocating that
configuration tuning should take place in an incremental workload-specific approach, propos-
ing Tuneful, a comprehensive framework for efficient high-dimensional configuration tuning.
In the next chapters, I present Tuneful’s high-dimensional significance-aware tuning approach
(Chapter 5). Then, explore how to leverage the knowledge acquired during tuning a workload to
accelerate another similar workload. To answer this question, as a first step, I start with defining
similarity in this context through: studying how to represent a workload based on its execution
metrics and how to leverage the tuning knowledge across similar workloads(Chapter 6). Lastly,
Chapter 7 evaluates the benefits of similarity-aware tuning.
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# Configuration name Range Default Description
1 spark.executor.cores [3,16] 1 The number of cores per each Spark executor
2 spark.executor.memory(GB) [5,43] 1 The memory size of each Spark executor
3 spark.executor.instances [19,304] 2 The number of Spark executor instances
4 spark.default.parallelism [8,50] - The number of partitions in a returned RDD by the dis-

tributed shuffle operation, its default value varies de-
pending on the distributed shuffle operation

5 spark.memory.offHeap.enabled [true,false] false If set to true, Spark will try to use the off-heap space for
cetrain operations

6 spark.memory.offHeap.size(MB) [10,100] 0 The size of memory that can be used for off-heap alloca-
tion

7 spark.memory.fraction [0.5,1] 0.6 The fraction of heap space used for execution and stor-
age, if set to a low value spills and cached data eviction
takes place more often.

8 spark.memory.storageFraction [0.5,1] 0.5 The fraction of spark.memory.fraction that is not evicted
by Spark, if set to high value, less memory will be avail-
able to execution and disk spill will occur more fre-
quently

9 spark.shuffle.file.buffer(KB) [2,128] 32 The size of each shuffle buffer output stream in-memory
10 spark.speculation [true,false] false If set to true, Spark will check if one task or more are

running slowly in a stage, it will re-launch them
11 spark.reducer.maxSizeInFlight(MB) [2,128] 48 The maximum allowed size to fetch from a map output

of each reduce task
12 spark.shuffle.sort.bypassMergeThreshold [100,1000] 200 How often Spark avoids merge-sorting data in the sort-

based shuffle manager
13 spark.speculation.interval(MS) [10,100] 100 How frequently Spark will check for tasks to speculate,

Spark speculation is a procedure that detects the tasks
running slower than the median of all the successful
tasks, Spark then restart these tasks

14 spark.speculation.multiplier [1,5] 1.5 Defines how to consider a task for speculation w.r.t the
successful tasks median exection time

15 spark.speculation.quantile [0,1] 0.75 The fraction of tasks that should be finished before start-
ing speculation on a stage

16 spark.broadcast.blockSize(MB) [2,128] 4 The size of the broadcatsed blocks in Spark, larger value
would decrease broadcast parallelism

17 spark.io.compression.codec [snappy,lzf,lz4] lz4 The compression technique spark uses for its internal
data such as RDD

18 spark.io.compression.lz4.blockSize(MB) [2,128] 32 The block size used by lz4 compression
19 spark.io.compression.snappy.blockSize(MB) [2,128] 32 The block size used by snappy compression
20 spark.kryo.referenceTracking [true,false] true Determines if Spark will track references to the same ob-

ject when using kryo serializer
21 spark.kryoserializer.buffer.max(MB) [8,128] 64 The maximum size of the buffer used by Kryo serializer
22 spark.kryoserializer.buffer [2,128] 64 The size of kryo serialization buffer initially
23 spark.storage.memoryMapThreshold [50,500] 2 A block size beyond which Spark performs memory

mapping of the disk read blocks, memory mapping very
small blocks will incur higher overheads

24 spark.network.timeout [20,500] 120 The timeout of all network interactions in Spark
25 spark.locality.wait [1,10] 3 The amount of time Spark waits to launch a data-local

task before moving the task to a less-local node
26 spark.shuffle.compress [true,false] true Specifies if Spark compresses map output file, compres-

sion happens using spark.io.compression.codec
27 spark.shuffle.spill.compress [true,false true Determines if Spark compresses data spilled during shuf-

fles
28 spark.broadcast.compress [true,false] true Decides if Spark compresses broadcast variables before

sending them
29 spark.rdd.compress [true,false] false Specifies if Spark compresses serialized RDD partitions
30 spark.serializer [JavaSerializer,

KryoSerializer]
JavaSerializer Sets the serialization strategy in Spark

Table 4.3: Configuration parameters under tuning
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Chapter 5

High Dimensional Significance-aware
configuration Tuning

This chapter illustrates how Tuneful employs a significance-aware configuration tuning ap-
proach in high dimensional configuration space. It is the first work to propose a data-efficient [40]
tuning of high-dimensionality configurations. It is designed to perform incremental optimiza-
tions and make retuning cost-effective, requiring 62% less search time at the median and 97%
less in the best-case, while finding configurations with similar runtimes when compared to cur-
rent state-of-the-art approaches. Tuneful achieves this by leveraging incremental SA to identify
the influential configuration parameters in a high-dimensional space and BO using GP for effi-
cient tuning of those parameters.

The key contributions of this chapter are:

• Show how data-efficient machine learning techniques can be leveraged to find workload-

specific influential parameters incrementally using a small number of workload executions,
within a high dimensional configuration space.

• Demonstrate how applying BO to tune the influential configuration parameters incrementally
widen the types of workloads that can be tuned in a cost-effective manner.

• Show that successfully applying data-efficient learning enables obtaining comparable or bet-
ter configurations than prior work but converging to those significantly faster.

5.1 Approach
5.1.1 Identifying Significant Parameters

Virtually all complex systems have numerous configuration parameters that can be set to
user-given values. However, only a small subset of those parameters has a significant impact on
workload overall performance. Figure 4.4 demonstrates an example of this for a set of work-
loads, showing that out of the selected 30 Spark configuration parameters only a small fraction
influence the execution time significantly. Tuning the others (non-influential parameters) simply
wastes resources and does not bring the algorithm closer to the optimal solution.
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Figure 5.1: Tuneful’s incremental algorithm for detecting the significant parameters and tuning
them.

A common approach for identifying parameter significance is to perform SA [28]. In our
context, SA studies how the variation of the cost function (e.g., execution time) can be attributed
to the different configuration parameters.

The SA is usually done by running intensive offline benchmarks under numerous configura-
tion values, analyzing the variance in performance with respect to each configuration parameter
and ultimately building a system-wide set of influential parameters. This approach has been
applied to tune systems such as DBMSs [88, 114]. However, applying such techniques directly
to a DISC system is not only expensive, requiring hundreds of executions, but also impractical
given the diversity of workloads.

Tuneful does not seek to identify system-wide influential parameters. Instead, it incremen-
tally identifies workload-specific influential parameters using a multi-round SA method that is
efficient in our problem domain.

For each workload, Tuneful incrementally defines the set of parameters that impact its per-
formance the most. Figure 5.1 shows the general strategy used, with each workload execution
being used to advance through the steps of the algorithm. In each SA round, the aim is to
prune some low-influence parameters in order to get better information about the highly in-
fluential ones in the next round. To achieve that efficiently, Tuneful first builds a metamodel
for predicting the execution cost of a given configuration. The implementation uses Random
Forest Regression (RFR), as it improves the prediction accuracy compared to single learning
models [84]. Because it is empirically observed that most parameters will have little effect
and only few parameters dominate workload performance, this metamodel does not need to be
extremely accurate; even a rough approximation will enable correct detection of important pa-
rameters, since they highly dominate the performance and are amenable for detection with an
approximate metamodel. However, the metamodel needs to provide estimates over a wide area
of the configuration search space. This is why Tuneful will first suggest configurations sampled
incrementally using low-discrepancy sequences [106]. Experimentally, I have determined that
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the lowest number of executions that provides acceptable accuracy of the RFR model (less than
40% error) across diverse workloads is 10. More details about this design choice can be found
in § 5.1.1.1.

Tuneful then calculates the importance of each input configuration parameter in the meta-
model based on Gini importance [124]. This is a measure of each feature’s contribution to the
prediction of the execution time, considering the number of times a given feature is used in a
tree split. Across all the forest trees, important features are used more frequently in decision
tree splits, so they have higher Gini importance.

This allows selecting the most influential parameters and considers the remaining ones as
non-influential. Non-influential parameters are fixed for the remaining SA rounds to the mean
of their value range (integer and float parameters) or their default values (boolean and enum pa-
rameters); a decision made since the default values are excluded from the values range of some
integer/float parameters due to their poor performance (e.g., the default Spark.executor.memory
is 1GB). Fixing those non-influential parameters allows a faster detection of the influential ones.
Then the next SA round is started to determine the most influential parameters among the ones
that can still vary. Tuneful can additionally detect dependencies between parameters by includ-
ing polynomial features, similar to [114], i.e. the method does not change, the metamodel just
works on polynomial representation of the parameters—instead of individual parameters. For
example, to detect if two parameters depend on each other, a feature that represents the product
of these parameters’ values can be included. If this feature has high importance, then those two
dependent parameters will be detected.

The algorithm is described in the rest of this subsection. It is repeatedly called during the
SA phase for each execution of a workload. Its input arguments are as follows:

• d the number of configuration parameters considered;
• P = {p1, ..., pd} the configuration parameters;
• R = {r1, ..., rd} the range of values of each pi configuration parameter;
• α the fraction of configuration parameters retained in each SA round (configurable and § 5.1.1.1

provides more details on how it is determined);
• n the number of samples required per SA round;

Conceptually, Tuneful considers three global variables: n SA rounds, the number of SA
rounds remaining; n executions, initialized to 0; and Pfixed, represents the set of fixed param-
eters and is initialized to the empty set. Variable states are maintained between calls, so that
Pfixed grows between SA rounds.

Let Xi = {xi1, xi2, ...xid} be a particular configuration chosen by Tuneful’s SA algorithm,
C(Xi) its execution cost, and M(X,C) the constructed metamodel that maps a given configu-
ration X to its execution cost C, used to distinguish the influential parameters. The goal is to
identify Ps = {p1, p2, ..ps} where |Ps| < |P | such that Ps contains the selected top s influential
parameters. Alg. 1 shows the steps of the SA algorithm:
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Algorithm 1: Significant Parameter exploration
Input : d, α, n, n SA rounds, P,R
Output: Ps = Pα∗d

1 Xi = sample(P,R, Pfixed)
2 run workload using Xi and get Ci(Xi)
3 n executions← n executions+ 1
4 if n executions > n and n SA rounds > 0 then
5 build M(X,C)
6 find the importance imp{p1, ..., pd} using M
7 find Pα∗d ⊂ P with the highest importance
8 Pfixed ← P − Pα∗d
9 d← α ∗ d

10 n SA rounds← n SA rounds− 1
11 n executions← 0;

The algorithm is run for each workload execution, until the influential parameters are deter-
mined. An incremental sampling is performed at line 1 using low-discrepancy sequences [106],
which represent numbers that are evenly distributed in a given space to provide a quicker cover-
age. This quick coverage is crucial in the high-dimensional space as exploring the whole space
is not a viable option. Once Tuneful has n samples and their associated C(Xi), a RFR modelM
is built, approximating the true dependence between C andX (line 5). At line 6, the importance
of each input configuration parameter in M is calculated based on Gini importance [124].

Then the highest influence parameters are selected (line 7), a fraction α of the total d param-
eters, and the remaining ones are considered as non-influential (line 8). Those are fixed for the
remaining rounds to the mean of their value range and the next iteration is started to determine
the most influential parameters among the ones that can still vary. The algorithm stops after the
pre-defined number of SA rounds n SA rounds.

5.1.1.1 Design choices:

Tuneful has three internal variables for which I empirically set their values:

• α, the fraction of configuration parameters retained in each SA round: I observed the
impact of different values of α from 0.1 to 0.9 across different workloads. Table 5.1 il-
lustrates this impact. It shows the Serror for the various values of α. Serror represents the
proportion of the best estimated significant parameters (estimated ground truth of parame-
ter importance foreach workload, found through running known SA algorithms with a large
number of sample executions) missing in the output of Alg. 1 (the top 6 important parameters
in Ps). More details on Serror evaluation is in § 5.3.2. While a very small value for α leads
to pruning influential parameters (higher Serror), high values for α will eventually lead to a
wider search space that includes many uninfluential parameters and slows the identification
of the highly-influential ones. As the table shows, setting α to 0.6 in the SA stage represents a
good compromise between the accuracy of detecting the influential parameters and bounding
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the number of SA runs.
• n, the number of samples required per SA round: I experimented with different values for
n. While larger values for n generates a metamodel with lower learning error, setting n to 10
execution samples guarantees generating an RFR model of an acceptable accuracy (less than
40% error), enabling a good approximation of the true dependence between the configuration
parameters and execution time while limiting the number of execution samples.

• n SA rounds, the number of SA rounds: needs to be selected to provide good guarantees,
while minimizing cost. I discuss how it is selected in practice for Tuneful in section § 5.3.2.

With the values of those Tuneful’s variables set as specified above, Tuneful is experimented
with various workloads running on different clusters (§ 5.3).

Workload\Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bayes 0.92 0.16 0.12 0.12 0.08 0.04 0.04 0.04 0.04

Pagerank 0.92 0.92 0.92 0.88 0.88 0.08 0.08 0.08 0.04
TPCH 1. 1. 0.2 0.16 0.12 0.12 0.12 0.12 0.08

Wordcount 0.2 0.18 0.16 0.16 0.16 0.16 0.16 0.12 0.04
Table 5.1: The sensitivity error (Serror) over different alpha values.

5.1.2 Configuration Tuning
To perform data-efficient tuning, the aim is to get as close to the optimal configuration

as possible, using the minimum number of executions. Tuneful employs BO using GP due
to its data-efficient learning performance, which makes it an effective approach for modelling
expensive functions [40, 20]. Furthermore, GP is nonparametric, which means that it does not
need users to pre-commit to the shape of the function that models the cost. This flexibility allows
GP to model the runtime of heterogeneous workloads and the influence of various configuration
parameters on them.

Problem formulation: The objective function that the BO tries to minimize is defined as the
execution time of the workload. Tuneful’s proposed approach is extensible and can handle any
other objectives such as minimizing energy consumption, cluster utilization or a weighted sum
of objectives.

Acquisition function: Tuneful uses the GP EI with a MCMC hyperparameter marginalization
algorithm [105] as an acquisition technique. This is an EI based [29] function, which itera-
tively selects the next configuration sample as one that has the highest potential to minimize
the objective function. It has the distinct advantage of not requiring any external tuning of GP
hyperparameters unlike other acquisition functions such as GP-UCB [97]. Other acquisition
functions are possible, such as random, sequential and PI. EI MCMC is used as it has shown
better performance compared to other acquisition functions across a wide array of applications
and test cases [105].

Prior and covariance functions: I assume that the multi-dimensional function that maps a set
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Figure 5.2: Details on how Tuneful performs an incremental significant parameter detection and
tuning
of configuration parameter values to the runtime cost can be modelled by a GP (this is a GP prior
model). This assumption is made as GP can provide a wide range of flexible nonparametric
statistical models over the function space. ARD Matern 5/2 kernel [97] is chosen as the GP
covariance function (kernel), because it is able to control how smooth the estimated function is
along each of its dimensions independently. This allows Tuneful to learn the objective function
quickly and just sample the data that most likely has the minimum objective function, while
leaving the other less useful points unexplored. This kernel has been successfully adopted for
modelling practical functions [105].

Starting points: The GP cost model is built incrementally, starting with just three samples gen-
erated using low-discrepancy sequences [106]. Then the model is improved after each further
execution, picking the next candidate configuration that is estimated to reduce the execution
time.

Stopping Criteria: The GP modeling stops after suggesting a minimum of n samples (e.g 10
samples) and then after the EI drops below 10%. This decision is made to make sure that the
exploration of the tuning space and exploitation of the best configuration found is balanced.

5.2 Implementation
This section shows how Tuneful can be seamlessly integrated into Spark in order to auto-

matically tune configurations. This integration has been tested both in AWS and Google Cloud
services, without requiring changes to the Spark binary that is used. Tuneful consists of four
components: the Configuration Sampler, the Significance Analyzer, the Cost Modeller and the
Tuneful Manager. In the rest of this section, Tuneful’s components and their interactions with
Spark are described (Figure 5.2).

When a workload execution starts, Spark’s driver calls into Tuneful, registered as an exten-
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1 $ . / b i n / spa rk−su bmi t
2 −− j a r s t u n e f u l−with−d e p e n d e n c i e s . j a r
3 −−con f s p a r k . e x t r a L i s t e n e r s = Tunefu lManager
4 −−c l a s s B a y e s C l a s s i f i e r . j a v a
5 bayes−workload . j a r

Listing 5.1: Tuneful example usage

sion. In response, it returns the configuration that should be used next.

Tuneful Manager: This component first identifies the workload being submitted and re-
trieves its profile if it exists. During a first phase, configurations are obtained through the
Significance Analyzer aiming to identify the significant parameters (as described in § 5.1.1).
In a second phase, once those parameters have been identified, the Cost Modeller takes over
to minimise the objective function (as described in § 5.1.2). Once a workload execution is fin-
ished, relevant performance metrics are provided to Tuneful and used either by the Significance
Analyzer or the Cost Modeller. This process is performed automatically every time a work-
load is scheduled for execution, identifying the significant parameters incrementally in the first
phase then optimising the configuration by reducing cost of the objective function iteratively.
The practical effectiveness of the approach is demonstrated in § 5.3.

The Tuneful Manager monitors the performance of the workload over time to determine if
reconfiguration is necessary. This can be due to a number of factors, such as changes to the size
of the data to be analysed, or to the workload logic or changes in the underlying physical archi-
tecture of the cloud platform hosting the workload. Once performance degradation is detected,
the Tuneful process restarts (i.e. Tuneful suggests a configuration that helps with identifying
new significant parameters then tuning them, following Alg. 1 steps again). Currently, this
can be detected through monitoring the gap between the predicted execution time by the GP
model and the actual execution time. If continuous degradation takes place, then retuning can
be triggered.

Significance Analyzer: The Significance Analyzer finds the influential configuration pa-
rameters using Alg. 1. It uses the Configuration Sampler to sample values for these potential
influential parameters and fixes the non-influential ones. The implementation uses Python3 and
the Scikit library [37].

Configuration Sampler: During the phase that explores parameter significance, the Con-
figuration Sampler is used by the Significance Analyzer to sample the configuration values in a
manner that accelerates the coverage of the exploration space. It uses low-discrepancy indices,
which provide a good coverage of the sampling space [106].

Cost Modeler: The Cost Modeler uses GP optimization to build the configuration cost
model of a workload. The model is built incrementally and the GP suggests the next configu-
ration that has high potential to minimize the objective function. To implement this module, I
used Spearmint [105], which is a Python BO library.
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Example usage: Listing A.1 shows an example of using Tuneful when tuning the Bayes
workload. In order to use Tuneful, a Spark user simply adds Tuneful library as a dependency
and TunefulManager as an extra Spark listener while submitting his workload to Spark. In other
words, Tuneful can run seamlessly on an unmodified Spark infrastructure without complex user
intervention.

5.3 Evaluation
Tuneful is evaluated in two stages: first, examining the properties of the algorithm proposed

for picking significant configuration parameters; then, examining Tuneful as a whole perform-
ing online tuning of typical cloud-computing workloads. For the latter I consider the savings
in execution time obtained through tuned configurations and the search time required to get
close to the optimal when compared to three state-of-the-art approaches (Opentuner, Gunther
and Random search).

5.3.1 Experimental setup
Cluster and configuration specification: A cluster of 20 GCP [77] instances (1 driver + 19
workers) is used, with the driver being an n1-highmem-8 instance with 8 vCPUs, 52 GB mem-
ory and 300GB SSD storage and the 19 workers being n1-standard-16 instances with 16 vC-
PUs, 60GB memory and 500GB storage each. The total cluster memory and storage size is
1.2 TB and 5.48 TB respectively. The cluster is over-provisioned so that resources can be re-
stricted through configuration rather than due to physical limitations. A smaller cluster of 4
AWS h1.4xlarge instances is also used to validate the robustness of Tuneful in a more resource-
constrained environment, but experiments are run on the 20 nodes cluster unless otherwise
mentioned. HDFS [13] version 2.7 is used for accessing the shared data and Spark version
2.2.1 as the system under tuning. I tune 30 configuration parameters that cover Spark memory,
processing, shuffle and network aspects, with approximately 2 · 1041 configurations possible
in total (this represents the size of the search space). A list of the configuration parameters
and their ranges are in Table 4.31. The same ranges are used when evaluating the other tuning
approaches.

Applications: 4 diversity-representative workloads are chosen to experiment with the effec-
tiveness of Tuneful in searching for close-to-optimal configurations. The workloads are chosen
from the well known big data benchmarks (Hibench [62] and TPC-H [6]) due to their broad
real-life applications as described in § 2.1.1:

1. Bayes workload with a total Spark executors input of 350GB.
2. Pagerank workload with the Hibench-defined huge data size is used.
3. Wordcount workload that counts word occurrences in 320GB of input.

1For the experiments executed on the 20 instances cluster, the range of spark.executor.cores configuration
parameter starting from 1 instead of 3, since the cluster is well provisioned already in terms of the number of
nodes.
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Figure 5.3: Error across the different models when computing influential configuration param-
eters using a large number of samples (lower is better).
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Figure 5.4: Weighted sensitivity error over each of three SA rounds. The error remains low
across all workloads (lower is better).

4. TPC-H workload that runs 22 decision support SQL queries on data of scale factor 20.
This scale is chosen to limit the expenses of our experiments; however, I made sure that
this scale is representative enough in terms of input size, with 300GB of total input to
Spark executors.

5.3.2 Significant Parameters Exploration
This section evaluates the accuracy with which Tuneful’s algorithm detects significant con-

figuration parameters in each SA round. I start by estimating a ground truth parameter impor-
tance for each workload, running known SA algorithms (requiring a large number of sample
executions). This is then compared with the output of our algorithm (identification from a small
number of executions).

5.3.2.1 Estimated significant configuration parameters

Each workload is run 100 times with different configurations sampled using low-discrepancy
indices, then a RFR execution time prediction model is built. From this, the most significant
configuration parameters are selected using Recursive Feature Elimination (RFE) [55]. To make
sure that the built model has an acceptable prediction error, 20% of the samples are used as the
test dataset and excluded from the training data when building the model. Figure 5.3 demon-
strates the accuracy of the RFR model compared to other other strategies, namely, Support
Vector Regression (SVR) and Linear Regression (LR). The y axis shows the absolute mean
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Figure 5.5: Coefficient of Variation (CV, cv = σ
µ

, top) and normalized workload execution time
(bottom) when using the parameters picked after each SA round.

square error, and the plot displays median values, with bars for the 10th and 90th percentile.

The RFR model has a median error less than 20% across all workloads, and also maintains
the lowest error for all the workloads at the 90th percentile compared to SVR and LR. This
concludes that it represents the best estimate of the true significant parameters and select the
top 6 of those (out of 30) for comparing with the SA stage of Tuneful (that also selects the top
6). This selection is made following the Pareto principle (80/20 rule).

Tuneful detects the significant configuration parameters within 20 samples: To validate
our algorithm, I measure the classification error Serror, representing the proportion of the best
estimated significant parameters missing in the output of Alg. 1 (the top 6 important parameters
in Ps after each round). Serror is weighted based on importance, with each configuration param-
eter classified either as high-influence or low-influence according to its normalised importance
(as determined by RFR). The error weight of misclassifying a configuration parameter varies
depending on its class, as follows: the weight of misclassifying all the high-influence parame-
ters is 0.8 of the total error, while the weight of misclassifying all the low-influence ones is 0.2
of the total error. Figure 5.4 shows the Serror associated with each SA round, I ran the entire
experiment 10 times to plot the median, 10th percentile and 90th percentile.

Across all workloads, Tuneful reaches a 90th percentile error of 20% or less using only 2 SA
rounds, detecting all the highly-influential parameters. For TPC-H, the error slightly increases
when running 3 SA rounds. This can happen with all workloads having very few influential
parameters, and it means that in top 6 some non-influential parameters have been selected; those
are unstable across the SA rounds and differ from the estimated ground truth. Tuneful relies on
the GP phase later to detect those non-influential parameters and focus the tuning towards the
high-influence ones. I experiment with tuning the configuration of TPC-H workload using the
parameters detected by the second and third SA rounds and found similar results, since the high-
influence parameters were already detected by the second SA round. Taking this into account,
only two SA rounds are used, picking the parameters selected by the second, as a compromise
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Figure 5.6: Relative configuration parameter importance for the Pagerank workload executed
in 2 different clusters. Parameters with the largest impact on runtime can be cluster-specific.

between exploration (number of samples) and exploitation (information extracted from each
round).

I also experiment with a smaller cluster of 4 AWS h1.4xlarge instances to validate that
two SA rounds are enough over clusters of different resources. Figure 5.5 (top) shows the
coefficient of variation (CV, defined as the ratio between the standard deviation and the mean)
in execution time for the Bayes and TPCH-H workloads if I picked parameters selected by
different SA rounds for tuning. At the 90th percentile, the CV at the first SA round is small as
the picked parameters for tuning do not include all the highly-influential ones. The parameters
detected as important by the second SA round have higher influence, leading to higher variation
(the changes made by the tuning stage to the values of parameters selected as important lead to
wider variations in execution time). The third SA round has only a marginal change over the
previous round. Figure 5.5 (bottom) shows the execution time when using tuned parameters
picked by each SA round. Similarly, at the 90th percentile, the parameters picked by the second
SA round achieve a better execution time compared to the first SA round, with only marginal
improvements made by a third SA round.

Significance-awareness in different environments: Figure 5.6 demonstrates how the sig-
nificant parameters of the same workload vary in different clusters. It shows the estimated
significant parameters along with their importance of the Pagerank workload across two differ-
ent environments: a AWS cluster of 4 nodes and a Google compute engine cluster of 20 nodes.
When the Pagerank workload was deployed in the two clusters, Tuneful detected some entirely
expected differences, e.g. CPU and the parallelism level (param. 4) being the most important
in the large, over-provisioned cluster and memory (param. 2) the most influential in the small
cluster. However, there are also less obvious differences in parameter importance: speculative
execution of tasks (param 15) and whether to compress variable broadcasts (param 28) being
more important on the large cluster, and the choice of the serializer (param 30) being more
important in the small cluster. Overall, the algorithm proposed is able to tune accordingly for
changes in the environment that reflect indirectly on how configuration values map to workload
runtime.
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5.3.3 Tuning Effectiveness and Efficiency
I evaluate Tuneful in the zero-knowledge tuning mode, the evaluation of tuning a new work-

load in a new cluster, assuming that there is no previous knowledge about tuning this or other
workloads, which would be a typical scenario if you have just adopted a tuning strategy. In this
bootstrapping context and zero knowledge mode, I only look at workloads that do not evolve.
This is for the scope of this chapter, evolving workloads are experimented in the extended

knowledge mode of Tuneful in Chapter 7; a decision made to compare the behaviour of Tune-
ful’s strategy against existing state-of-art tuners and establish a performance baseline. Each
state-of-the-art system that I compare against was allowed a maximum budget of 100 execu-
tions (representing a good balance between space exploration and experiment cost) for reaching
a stable tuned configuration. Then I compare the configurations picked by Tuneful with the
configuration tuned by:

1. OpenTuner [21], a general tuning system that uses ensembles of search techniques such
as hill climbing, differential evolution, particle swarm optimization and pattern search.
OpenTuner evaluates which techniques perform well over a window of time and picks
them more frequently than the ones that have poor performance (those can even get dis-
abled). OpenTuner is selected as it covers a wide range of search algorithms.

2. Gunther [83], is a Hadoop configuration tuning system that leverages genetic algorithms
to search for good configurations. To compare Gunther with Tuneful, I implemented it for
Spark based on the details given in the paper [83], choosing a population size of 60 and
evolving for 20 generations (as reasonable limits for the number of workload executions
required).

3. A configuration picked through Random search.
4. Cherrypick [20], is a GP based configuration tuner for the cloud configuration (low di-

mensional number of parameters). I compare against it to demonstrate that directly apply-
ing the standard GP to tune the high dimensionality of Spark parameters is not practical.
Other published work either uses search techniques already covered by OpenTuner, or the
implementation details were too sparse to reproduce the approach.

Metrics: Three metrics are used to evaluate Tuneful:

1. Execution time saving, the amount of execution time saved by Tuneful and competing
approaches with respect to the default configuration. The target here is to obtain tuned
configurations similar to what state-of-the-art tuners achieve.

2. Search Cost, the amount of time and actual cost (in $) required by each system to find
good configurations while repeatedly running workloads in a cloud environment. The
target is to get close-to-optimal configurations (within 5% of the estimated best configu-
ration) significantly faster than the state-of-the-art.

3. Amortization speed, the number of needed workload executions to amortize the tuning
costs. The target is to amortize the tuning cost after a small number of workload execu-
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Figure 5.7: Execution time acceleration (X times) w.r.t Spark default configuration (higher is
better).
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Figure 5.8: Search time of the different tuning algorithms to find 5% of the optimal configura-
tion (the lower the better).

tions.

The Tuneful results are always presented as the median of 10 runs, with bars for the 10th
and the 90th percentile.

Tuneful finds configurations comparable to the state of the art tuning systems: Figure 5.7
shows that at the median, Tuneful is able to obtain effective configurations for all workloads,
with a very small inter-percentile (10-90) range. Tuneful maintains a comparable performance
to the other non-incremental tuning systems. I am comparing against the default configuration
as a baseline usable across workloads. The relative differences between algorithms are relevant
rather than the precise acceleration figures (in a realistic setting those would be lower when
starting from reasonably hand-tuned configurations). In evaluating the execution time accelera-
tion with the best configuration found by each tuner per workload, the other algorithms are not
penalized if they are slow in finding good configurations. Therefore each of them is allowed to
use 100 execution samples per workload (our fixed maximum budget). In comparison, the re-
sults of Tuneful is presented using just 35 execution samples per workload (as it would normally
be used).

For evaluating differences in time taken to find configurations close-to-optimal, each algo-
rithm is allowed to execute workloads until it finds the first configuration resulting in a runtime
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Figure 5.9: Cumulative execution time over 100 workload executions, under iterative tuning.
Shallow slopes represent better configurations (smaller time increment for executing the work-
load once). Steeper slopes represent worse configurations.

within 5% of the one produced by the estimated optimal configuration. This is defined as the
best configuration ever found across all our tests for each workload, irrespective of the tuning
algorithm or experiment.
The median search time for other algorithms is 2.7X longer when compared to Tuneful:
Figure 5.8 shows that for the Bayes workload, OpenTuner, Random Search and Gunther need
2.7X, 3.3X and 2.7X more search time compared to the median Tuneful search time. For Pager-
ank, Random Search takes 1.4X the time while Gunther has comparable performance. However,
Opentuner never finds a configuration with a runtime within 5% of the optimum within the al-
located 100 executions. That represents a 49X increase in search time. For TPC-H, Opentuner,
Random Search and Gunther take 2.8X, 3.6X and 3.2X more time than Tuneful, respectively.
For Wordcount, Opentuner takes 2.6X the time while Random Search and Gunther 1.3X. The
search time in Tuneful is the sum of the workload execution times needed by the tuning algo-
rithm to: (i) explore for significant configuration parameters, (ii) tune those to their optimal
values. For each execution, the time spent in the tuning algorithm for actions such as sampling,
running Bayesian optimisation on GP, etc is included. Tuneful runs 2 SA rounds, each using
10 execution samples, followed by tuning (15 execution samples at maximum). The reported
search time does not only depend on the number of samples but also on the actual samples that
are picked, as exploring a bad configuration leads to slow execution of the workload. The GP
model suggests samples that most likely have the minimum execution time, leaving others un-
explored. However, it still needs to explore the configuration space in order to build an accurate
cost model. Finally, the algorithm overhead is negligible: a few seconds to run and pick the next
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configuration for exploration/tuning. This is due to the small number of samples used during the
SA rounds and optimization, in addition to restricting the tuning to the influential parameters.
The search time for the other three systems is significantly higher than Tuneful, mostly due to
them not being data-efficient in finding close-to-optimal configurations.

The search cost is estimated based on GCP’s [77] per-second pricing, which charges the
user based on the number of seconds a machine instance is used. The search cost for tuning a
workload is calculated through: summing up the number of seconds spent to execute the work-
load during the tuning phase, then multiplying the total number of seconds by the per-second
usage price and the number of instances. The total cost for tuning the four workloads is $379,
$354, $288 using Opentuner, Gunther and Random Search, respectively. In comparison, tuning
the four workloads with Tuneful costs $94 (incurred during the normal workload executions not
in a separate offline phase like the other approaches).

Tuneful accelerates the amortization of tuning costs: the previous experiment does not show
the full story on how the different approaches compare in behaviour as they perform incremental
tuning from one execution to the next. For that, it is useful to have a timeline view. Figure 5.9
shows the cumulative execution time of running each workload over multiple configurations,
as determined iteratively by the tuning algorithms considered. Here, I start from a plausible
developer-guided configuration to reduce exploration costs across the large search space. The
dotted line shows cumulative execution time for this configuration without any tuning.

The tuning “pays off” only after the lines intersect the dotted line (which represents the
plausible initial configuration), even if good configurations were found much earlier (finding
them required exploring some configurations worse than the initial). Tuneful explores the search
space for 35 executions (20 during SA and 15 for tuning), then it picks the best configuration it
found and continue only using that. I let other tuning algorithms run longer (100 executions) to
see if they find configurations that are better or equivalent to Tuneful’s. Better configurations are
shown as lines with shallower slopes (e.g. when Wordcount is tuned by Gunther, after execution
60), while equivalent configurations appear as lines parallel to Tuneful’s (e.g. Gunther for the
Bayes workload).

For Pagerank, the initial configuration proved to be a very good one and hard to beat through
tuning. While both Tuneful and Gunther find better configurations than it (shallower slope), the
exploration cost for certain configurations is high (the hump after execution 20) and can not be
amortized in 100 executions.

This result suggests that if a workload is executed a small number of times, then tuning does
not pay off during the workload’s lifetime and it is more practical to use a plausible configura-
tion (developer-guided or default cloud-provider configuration), even if it is suboptimal. On the
other hand, if a workload is to be executed more frequently, then it is worthwhile to tune the
configuration as long as the tuning cost is amortized during the workload’s lifetime. Here, the
benefits of the tuning hinge on how quickly the tuning approach converges to a good configura-
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Figure 5.10: Convergence speed of Cherrypick versus Tuneful (Pagerank workload). The
shaded space represents the area between the 90th and 10th percentile of execution time.
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Figure 5.11: Execution time of Tuneful picked configuration over the evolving input sizes.

tion and how long the workload remains “alive” (with the same characteristics) after amortizing
the tuning cost.

Tuneful compared to other GP approaches: By leveraging significance-aware GP optimiza-
tion, Tuneful is able to find good configurations significantly faster than the other approaches.
In comparison, it is known that just using GP directly for the high dimensional configuration
space will converge slowly or get stuck in local minimums [112].

I experiment with tuning the Pagerank workload using Cherrypick [20], with the same 30
configuration parameters are used, and compare against Tuneful. The experiment is performed
10 times, each starting with a different initial random configuration, given to both systems (they
start exploring the space from the same point). In Figure 5.10 the area between the 90th and
10th percentile of execution time is shaded, and the line shows the median of 10 experiments.
I plot the minimum execution time found by the tuning algorithm until each sample on the x
axis (akin to stopping the tuning at that point and running with the best configuration so far).
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At the 90th percentile, Cherrypick tries configurations that are more costly (more variation,
Cherrypick’s median at execution 100 is above the 90th percentile of Tuneful) and takes a
significantly longer time to find configurations close to the ones found by Tuneful: Tuneful’s
median best execution time still 7% faster than Cherrypick’s median at sample 100; Tuneful’s
90th percentile is 29% faster than Cherrypick’s.

On the other hand, strategies employing SA on its own, without data-efficient tuning ap-
proaches such as GP fail as well: For example, even after reducing the search space, Gunther
tunes the 6 significant configuration parameters for the Bayes workload using 2X the search
cost needed by Tuneful.

Tuneful accommodates the need for configuration retuning over evolving input sizes through
its data-efficient tuning: Figure 5.11 shows the execution time of Tuneful-picked configura-
tions when the input size evolves. As shown in the figure, reusing the same configuration over
evolving input sizes misses further optimization opportunities and retuning the configuration
enables additional optimizations, with execution time savings of up to 40%.

Retuning the configuration by restarting Tuneful is still efficient and happens incrementally
compared to the other state-of-the-art approaches, which need hundreds of execution samples.
Nevertheless, understanding the reasons behind the need for retuning can help making retuning
more efficient. The need for retuning usually happens due to a change in workload character-
istics. This change causes a previously used configuration to become obsolete and degrade the
performance. This happens due to: 1) a need to adjust the values of the significant parameters
to adapt to the workload change (e.g., increase the shuffle buffer size or the executor allocated
memory or cores), or 2) a need to consider other parameters as influential for this workload
due to change in workload/environment (e.g., the workload becomes not only CPU intensive
but also shuffle intensive, with a need to consider shuffle related configuration parameters for
tuning).

In the latter scenario, retuning by restarting Tuneful from scratch is needed to detect the new
significant parameters and tune them accordingly. On the other hand, the first scenario means
the influential parameters are still similar over the evolving input sizes, yet their values need to
be adjusted. In this case, leveraging the knowledge of these influential parameters is crucial to
saving the cost of re-exploring them, and utilizing the previously tried executions during tuning
them has the potential to guide the retuning process. These potential benefits trigger finding an
answer to a couple of prerequisite intriguing questions: 1) how to define if two workloads are
similar and share the same influential parameters? 2) how to share the tuning experience (the
tried executions during tuning) between similar workloads? Sharing such knowledge not only
has the potential to accelerate the retuning of a specific seen workload, but also the tuning of a
similar unseen workload. Chapter 6 tackles those two questions.
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5.4 Summary
This chapter showed how data-efficient machine learning techniques can be leveraged to

accelerate the tuning of DISC system configurations, presenting the first work to enable data-
efficient tuning of high dimensional configuration parameters. I argued that configuration tun-
ing should take place in an incremental workload-specific approach, proposing Tuneful’s data-
efficient tuning approach, which leverages incremental SA and BO.

Further, this chapter showed that Tuneful significantly reduces the exploration costs and
accelerates the amortization of tuning costs, while online finding configurations that are com-
parable to the ones from state-of-the-art tuning algorithms. It also illustrated how Tuneful is
designed to be integrated into Spark to provide an efficient configuration tuning with negligible
overhead.

In the next chapter, I explore how to leverage the knowledge acquired during tuning a work-
load to accelerate another similar workload. To answer this question, as a first step, I start
with defining similarity in this context. This is done through studying how to represent a work-
load based on its execution metrics to detect similar workloads and share the tuning knowledge
across them (Chapter 6).
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Chapter 6

Similarity-aware Configuration Tuning

Virtually all of the existing work for DISC systems configuration tuning assume a static en-
vironment, such as a stable workload running in a fixed underlying cluster. Therefore, it is
assumed that changes in the workload/environment are infrequent and re-tuning from scratch is
cost-effective.

On the contrary, in a rapidly changing environment such as big data systems where the
input sizes keep evolving and the underlying cluster dynamically changes (as demonstrated
in Figure 5.11), it is crucial to perform tuning/retuning efficiently using a small number of
executions to accomodate these frequent environment changes, which eventually will accelerate
the amortization of tuning costs.

The existing work retunes the configuration either by re-learning the models or restarting
the search algorithm, which is slow and prohibitively expensive. Ignoring any prior knowledge
acquired during workload tuning poses poor adaptivity to such changes and slows down the
tuning process, incurring high re-tuning costs. In this chapter, I propose solving this problem
using a similarity-aware multitasked tuning approach (Similarity-aware Tuneful). To achieve
this, the similarity-aware Tuneful leverages neural encoding of workload execution metrics to
detect workload similarities, then shares the tuning knowledge gained previously across the
similar workloads using Multitask Bayesian Optimization (MTBO). The main focus of this
chapter is on how to define similarity across workloads and leverage to accelerate the config-
uration tuning. I consider workloads already tuned using Tuneful’s significance-aware tuning
algorithm (Chapter 5) and address accelerating the tuning of similar/evolving workloads using
the proposed similarity-aware tuning approach.

The key contributions of this chapter are:

• Show how to learn a representation of a workload through encoding its execution metrics in
a lower dimensional space, while capturing nonlinear dependencies across these metrics—a
prerequisite step for similarity identification across workloads.

• Propose a novel similarity-aware tuning approach that detects similarity across workloads and
shares the tuning knowledge between them using MTBO to accelerate workload configuration
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Figure 6.1: Configuration parameter importance for TPCH-20 and TPCH-100 workloads, show-
ing that the parameters which affect runtime the most are similar yet vary in their impact.

tuning.

6.1 Motivation

As Figure 4.3 showed that the best configuration of TPCH-20 becomes obsolete for the
evolving input sizes such as TPCH-100. Despite this, both workloads have similarities in
terms of the configuration parameters that influence performance most. Still, there is a cru-
cial need to adjust these parameters to accommodate evolving input sizes. Figure 6.1 shows
the importance of the configuration parameters of TPCH-20 and TPCH-100 workloads. The
calculation of the significance is based on the contribution of each configuration parameter
in predicting the execution time, as determined from the 100 executions of each workload
(as described earlier in § 5.3.2.1). For interest, spark.executor.cores, spark.executor.memory,
spark.shuffle.compress, and spark.serializer (parameter 1, 2, 26 and 30) have the highest influ-
ence on performance. While the influence of each parameter varies from workload to another
depending on its resources’ needs, they still share the same significant parameters. For exam-
ple, spark.executor.memory and spark.shuffle.compress are of significance for both workloads
but have more importance for TPCH-100 than TPCH-20 due to the growth in the amount of
processed and shuffled data.

This motivates sharing the knowledge of these influential parameters and the experience
of tuning them across these similar workloads. This shared knowledge can save the cost of
significant parameters exploration (an expensive process) and the previous experience of tuning
them has the potential to guide the tuning process, ultimately accelerating the convergence to
near-optimal configuration. However, the success of exploiting the similarity hinges on the
accuracy of detecting similar workloads in the first place.
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6.2 Approach
To accommodate the need for cost-effective configuration tuning, I propose a similarity-

aware tuning approach that leverages the tuning knowledge between the similar workloads and
effectively accelerates the tuning process.

Assumptions: I assume the existence of readily available workloads tuned using a base tuner. I
build on top of Tuneful (Chapter 5) and use it as a base tuner, since it finds a configuration com-
parable to the-state-of-the-art significantly faster and exposes workload-specific influential pa-
rameters. Moreover, it tunes the configurations using Single Tasked Gaussian Process (STGP),
which has been widely adopted in several configuration tuning systems ([42, 20]).

Leveraging the proposed approaches in this dissertation to automate the extraction and shar-
ing of tuning knowledge in any GP-based tuner is an interesting future avenue.

This work addresses how to define similarity across workloads and efficiently leverage this
similarity in twofold: 1) tune a new similar workload, 2) retune already seen workload to accom-
modate workload changes. In this context, similar workloads are workloads that have similar
resource usage characteristics and thus have similar influential parameters. For example, they
might have a similar amount of data shuffled with respect to the whole input, or spend a similar
amount of time doing GC with respect to the whole CPU time.

To define similarity across workloads, I start with identifying the main components that
distinguish each workload. In order to achieve this, the execution metrics of a diverse set of
workloads are monitored to learn the main aspects that represent each workload. I then de-
tect workload similarity using the learnt workload representation, and lastly employ MTBO to
accelerate the tuning of these similar workloads.

6.2.1 Workload Monitoring
For each workload, the monitored metrics involve CPU time, number of tasks per stage,

number of stages per job, input and output size, GC time, execution time, data serialization/de-
serialization time, the size of shuffled data, memory spilled data and disk spilled data. All the
numeric metrics that relate to those workload execution features are collected, Table 6.1 lists
the captured metrics and their description. The overhead of collecting these metrics is minimal
as they are already present in Spark logs.

To build representative statistics of each metric, for each stage in the Spark job, the 95%
quantile of the metric across the tasks of the stage is calculated. Then, the captured metric is
averaged across all the stages and represented in terms of ratios comparable across workloads.
For example, I consider the amount of GC time relative to the total CPU time and the amount
of shuffled data with respect to the total input data, rather than the quantitative values of GC,
CPU time, shuffled and input data size. This choice is made since this characterization is ulti-
mately used to detect similarity between workloads, in this context two workloads are similar
if they inherent similarity in terms of their relative resource usage- not the quantitative resource
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Metric Description
Executor runtime Average executor runtime across the job’s stages
Executor CPU time Average executor CPU time across the job’s stages
Input size Average input size across the job’s stages
Shuffle read bytes Average number of bytes read during data shuffle across the

job’s stages
Shuffle written bytes Average number of bytes written during data shuffle across

the job’s stages
Memory spilled bytes Average number of bytes spilled into memory across the

job’s stages
Disk spilled bytes Average number of bytes spilled into disk across the job’s

stages
Executor deserialization time Average time spent to deserialize data across the stages
Executor deserialization CPU time Average CPU time spent to deserialize data across the

stages
Result size average result size across the stages
Number of stages number of stages of the job
GC time Average time spent performing GC across the job’s stages
Stage output size Average output size of tasks within a stage
Result serialization time Average time spent to serialize data across the stages
Input records read Average number of records read across the job’s stages
Output records written Average number of records written across the job’s stages
Shuffle remote blocks fetched Average number of remote blocks read during data shuffle

across the job’s stages
Shuffle remote bytes read Average number of remote bytes read during data shuffle

across the job’s stages
Shuffle local blocks fetched Average number of local blocks read during data shuffle

across the job’s stages
Shuffle fetch waiting time Average waiting time during data shuffle across the job’s

stages
Total shuffle blocks fetched Average number of blocks read during data shuffle across

the job’s stages
Shuffle write time Average time spent writing bytes during data shuffle across

the job’s stages
Shuffle written records Average number of records written during data shuffle

across the job’s stages
Shuffle read records Average number of records written during data shuffle

across the job’s stages

Table 6.1: The set of execution metrics monitored to learn workload representation.

usage. Intuitively, the workloads that are similar in their relative resource usage are expected to
have similar influential parameters (as shown in Figure 6.1, two TPCH workloads have similar
influential parameters. § 6.2.3 will show how they are also highly similar in terms of resource
usage with a very small distance as depicted in Figure 6.3).
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Encoder
Decoder

Figure 6.2: AE learning how to represent workload execution metrics.

6.2.2 Workload Representation Learning
One approach for detecting similarities relies on first projecting the workload execution

metrics in a low dimensional space then calculating the distance within this space, this is due
to the fact that distance metrics such as Lp norm become more informative as you move to a
lower-dimensional space [17].

I embrace the same approach but instead use neural encoding to embed workload execution
metrics in a low-dimensional space. This is in contrast to previous work which uses PCA for this
purpose. The benefit of using a neural encoding is that it can capture nonlinear dependencies
in the latent space as opposed to PCA which projects into linear space, leading to a higher data
reconstruction loss. Therefore, a nonlinear neural autoencoder is employed to lower this loss.
The nonlinear autoencoder has been successfully applied to encode data in different domains
such as image processing, natural language processing and signal compression. This is the first
work to encode workload execution metrics using nonlinear autoenecoder and validate it against
PCA (as will be shown in § 7.1.3).

An AutoEncoder (AE) is a neural network that learns how to represent data in a low di-
mensional space. It consists of two components: encoder and decoder. The encoder has one or
more neural layers that learns f(x), which transforms input x ∈ Rd into h ∈ Rn latent space,
such that n < d. The decoder learns g(h), which reconstructs the latent low dimensional h back
to x̂ of the same dimensionality as the original input space. The AE compares the decoder’s
output (reconstructed input) x̂ to the encoder’s original input x and update the neurons’ weights
accordingly to minimize the loss of the re-constructed input L as shown in Equation 6.1, where
L is a function that penalizes g(f(x)) for not being similar to x (e.g., the mean square error).

L(x, x̂) = ||x− g(f(x))||2 (6.1)

85



B
ay
es
-D

S1
B
ay
es
-D

S2
B
ay
es
-D

S3
B
ay
es
-D

S4
B
ay
es
-D

S5

P
R
-5
m

P
R
-1
0m

P
R
-1
5m

P
R
-2
0m

P
R
-2
5m

W
C
-D

S1
W
C
-D

S2
W
C
-D

S3
W
C
-D

S4
W
C
-D

S5
T
P
C
H
-2
0

T
P
C
H
-4
0

T
P
C
H
-6
0

T
P
C
H
-8
0

T
P
C
H
-1
00

T
er
as
or
t-
20

T
er
as
or
t-
40

T
er
as
or
t-
60

T
er
as
or
t-
80

T
er
as
or
t-
10

0

Bayes-DS1
Bayes-DS2
Bayes-DS3
Bayes-DS4
Bayes-DS5

PR-5m
PR-10m
PR-15m
PR-20m
PR-25m
WC-DS1
WC-DS2
WC-DS3
WC-DS4
WC-DS5
TPCH-20
TPCH-40
TPCH-60
TPCH-80

TPCH-100
Terasort-20
Terasort-40
Terasort-60
Terasort-80

Terasort-100

0.0

0.2

0.4

0.6

0.8

1.0

(a) 1 instance

B
ay
es
-D

S1
B
ay
es
-D

S2
B
ay
es
-D

S3
B
ay
es
-D

S4
B
ay
es
-D

S5

P
R
-5
m

P
R
-1
0m

P
R
-1
5m

P
R
-2
0m

P
R
-2
5m

W
C
-D

S1
W
C
-D

S2
W
C
-D

S3
W
C
-D

S4
W
C
-D

S5
T
P
C
H
-2
0

T
P
C
H
-4
0

T
P
C
H
-6
0

T
P
C
H
-8
0

T
P
C
H
-1
00

T
er
as
or
t-
20

T
er
as
or
t-
40

T
er
as
or
t-
60

T
er
as
or
t-
80

T
er
as
or
t-
10

0

Bayes-DS1
Bayes-DS2
Bayes-DS3
Bayes-DS4
Bayes-DS5

PR-5m
PR-10m
PR-15m
PR-20m
PR-25m
WC-DS1
WC-DS2
WC-DS3
WC-DS4
WC-DS5
TPCH-20
TPCH-40
TPCH-60
TPCH-80

TPCH-100
Terasort-20
Terasort-40
Terasort-60
Terasort-80

Terasort-100

0.0

0.2

0.4

0.6

0.8

1.0

(b) 5 instances

B
ay
es
-D

S1
B
ay
es
-D

S2
B
ay
es
-D

S3
B
ay
es
-D

S4
B
ay
es
-D

S5

P
R
-5
m

P
R
-1
0m

P
R
-1
5m

P
R
-2
0m

P
R
-2
5m

W
C
-D

S1
W
C
-D

S2
W
C
-D

S3
W
C
-D

S4
W
C
-D

S5
T
P
C
H
-2
0

T
P
C
H
-4
0

T
P
C
H
-6
0

T
P
C
H
-8
0

T
P
C
H
-1
00

T
er
as
or
t-
20

T
er
as
or
t-
40

T
er
as
or
t-
60

T
er
as
or
t-
80

T
er
as
or
t-
10

0

Bayes-DS1
Bayes-DS2
Bayes-DS3
Bayes-DS4
Bayes-DS5

PR-5m
PR-10m
PR-15m
PR-20m
PR-25m
WC-DS1
WC-DS2
WC-DS3
WC-DS4
WC-DS5
TPCH-20
TPCH-40
TPCH-60
TPCH-80

TPCH-100
Terasort-20
Terasort-40
Terasort-60
Terasort-80

Terasort-100

0.0

0.2

0.4

0.6

0.8

1.0

(c) 10 instances

B
ay
es
-D

S1
B
ay
es
-D

S2
B
ay
es
-D

S3
B
ay
es
-D

S4
B
ay
es
-D

S5

P
R
-5
m

P
R
-1
0m

P
R
-1
5m

P
R
-2
0m

P
R
-2
5m

W
C
-D

S1
W
C
-D

S2
W
C
-D

S3
W
C
-D

S4
W
C
-D

S5
T
P
C
H
-2
0

T
P
C
H
-4
0

T
P
C
H
-6
0

T
P
C
H
-8
0

T
P
C
H
-1
00

T
er
as
or
t-
20

T
er
as
or
t-
40

T
er
as
or
t-
60

T
er
as
or
t-
80

T
er
as
or
t-
10

0

Bayes-DS1
Bayes-DS2
Bayes-DS3
Bayes-DS4
Bayes-DS5

PR-5m
PR-10m
PR-15m
PR-20m
PR-25m
WC-DS1
WC-DS2
WC-DS3
WC-DS4
WC-DS5
TPCH-20
TPCH-40
TPCH-60
TPCH-80

TPCH-100
Terasort-20
Terasort-40
Terasort-60
Terasort-80

Terasort-100

0.0

0.2

0.4

0.6

0.8

1.0

(d) 15 instances

Figure 6.3: Distance across workloads using different number of fingerprint instances.
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Figure 6.2 illustrates how the AE learns workload representation, starting from the high
dimensional execution metrics as encoder’s input to learn the low dimensional representation,
then feeding back the reconstructed execution metrics using the decoder to the encoder. The
reconstructed metrics are compared against the original execution metrics and the weights of
the encoder’s neurons are updated accordingly, minimizing the information loss in the learnt
workload representation.

A one layer nonlinear AE is used to encode the execution metrics into a low dimensional
latent space. This decision was made as it minimizes the reconstruction loss compared to linear
AE and PCA, moreover it has a smaller number of model parameters compared to multilayer
AE.

6.2.3 Similarity Analysis

The aim of the similarity Analysis is to find a source—already tuned—workload and share
its influential parameters with the target workload (the one under tuning). The source workload
is the most similar one based on the Manhattan distance between the encoded execution metrics
h. Manhattan distance is used as the distance metric since it provides more contrast compared
to the Euclidean distance and other Lp norm metrics [17].

The distance is calculated between workloads running under the same configuration, using
Equation 6.2. A fixed representative configuration is used to run the workload once and extract
workload execution metrics using the learnt workload representation (this works as a workload
fingerprint). The workload’s fingerprint is then matched to a fingerprint of the seen workloads.
I experimented with varying the number of workload executions used for workload fingerprint-
ing and how this influences the accuracy of workload matching. As shown in Figure 6.3, using
a single representative configuration was sufficient to provide the same matching as multiple
executions. Thus a single execution instance is used to limit the cost of workload fingerprint-
ing. The benefit from running multiple executions might exist but the returns diminish quite
quickly. The 1 instance case still captures the essential similarity patterns (e.g., the high sim-
ilarity across TPCH workloads, the distances between Terasort-80 and other workloads). Two
workloads are considered similar if they have the smallest distance in terms of their relative re-
source usage, since this implies that they have similar influential parameters. Figure 6.2 shows
how the similarity analysis takes place online, upon receiving a new target workload, the Tun-
ing Manager, as a first step, checks if this workload has a similarly matched workload or not. If
not, it suggests the fingerprinting configuration to the Spark driver, which then forwards to the
Spark workers and execute the workload. After workload execution, the Tuning Manager pro-
vides the workload’s execution metrics to the Similarity Analyzer, which encodes the execution
metrics of this workload—leveraging the learnt workload representation from the offline phase.
Then the workload with the smallest distance is selected as the source workload and shares its
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Figure 6.4: Similarity-aware Tuneful in the offline and online phases to tune Spark

influential parameters with the target workload.

d =
n∑
i=1

|h1i − h2i| (6.2)

6.2.4 Multitask Configuration Tuning
After finding a similar source workload, already tuned using the base tuner, the knowledge

gained during tuning the source workload is transferred to the target workload. This knowledge
includes: 1) the significant configuration parameters. As illustrated in Chapter 5, in DISC
systems, not all the workloads share the same influential parameters, this is due to the high
diversity of the workloads served (e.g., graph analytics, machine learning, SQL, text analysis).
2) the execution samples evaluated during tuning this source workload.

The Tuning Manager passes the tuning knowledge of the source workload to the Cost Mod-
eler to reuse the significant configuration parameters and leverages the previously seen exe-
cution samples. This knowledge guides the Cost Modeler to suggest the next configuration

88



Algorithm 2: Similarity-aware Multitask configuration tuning
Input : α,w,Wseen, GP

1 forall xi ∈ Wseen do
2 calculate distance d between wmetrics and xi;
3 Find workload s with the smallest d
4 Transfer s significant parameters to w
5 Add new task tj for workload w to GPs
6 Find config: xi ← arg

x
max α(GPs(x, tj))

7 Evaluate config: yi ← Cw(xi)
8 Update: GPs ← GPs|(tj, xi, yi)

sample, with the highest potential to maximize the EI. In the beginning, it suggests the config-
uration samples that help to learn the covariance across the different workloads (modelled as
tasks). Then it decides the next sample to try based on this covariance (i.e. if the covariance
is strong, it picks the sample that maximizes the EI of the source task, otherwise it picks the
sample that maximizes the EI of the target task). More details on how MTGP works can be
found in [108] and § 2.3.4.

In Alg. 2, the steps of the multitask configuration tuning algorithm is shown, its input argu-
ments are as follows:

• w target workload;
• Wseen = {w1, w2, ..} the matrix of the encoded execution features for the seen workloads;
• α the acquisition function;
• GP = {GP1, GP2, ..} the Gaussian process models of the seen workloads;

After fingerprinting the new target workload w (as described in § 6.2.3) through finding its
execution metrics wmetrics, the algorithm performs the followings steps:

• The algorithm starts at line 2 with calculating the distance between the execution metrics of
the target workload wmetrics and the seen workloads Wseen, the distance is calculated based
on the learnt low dimensional encoding of workload execution metrics.

• Then workload s with the smallest distance is selected to use as the source task for the multi-
task tuning at line 3.

• The significant parameters of s is reused to tune w and a new task tj is added to the GP of s
for w (line 5).

• At line 6, I leverage the GP of s to select the next configuration to execute w, the next config-
uration is selected so that it maximizes α acquisition function over task tj .

• Lastly, workload w is executed using the selected configuration (line 7) and the execution cost
C is used to update the GP model of task tj(line 8).

Figure 6.4 shows how the tuning takes place online during the normal workload executions.
The Cost Modeler suggests the next configuration to explore, then the Tuning Manager feeds
the execution cost (execution time) back to the Cost Modeler to update the MTGP model. The
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Cost Modeler detects if it is time to stop the optimization. It stops modelling a workload after
suggesting a minimum of n samples (e.g 10 samples) and then after the EI drops below 10%—a
decision made to ensure balancing between the exploration of the tuning space and exploitation
of the best configuration found.
Resilience to workload mismatching: The inaccuracies in workload matching can be detected
through monitoring the gap between the predicted execution time by the MTGP model and
the actual execution time. If a continuous degradation takes place, then workload matching is
triggered again (given that sufficient workloads have been seen, otherwise a standalone tuning
is performed using Tuneful’s Significance-aware tuning, as described in Chapter 5). Even if a
workload mismatching happens due to the limited number of seen workloads, Similarity-aware
Tuneful guarantees that the found configuration is not worse than the reused state-of-the-art’s
configuration, which implies reusing the configuration suggested by the state-of-the-art for a
similar workload (I refer to this as Direct Transfer and illustrate that more in § 7.1.1).

Similarity-aware Tuneful is implemented in Python on top of Spearmint [105], a Python BO
framework that implements MTBO based on [108].

6.3 Summary
The chapter argued that extending BO with workload similarity characteristics has the po-

tential to significantly accelerate the amortization of tuning costs and enable effective tuning
in a rapidly changing environment—even when tuning configurations of high-dimesnionality,
which was previously thought to be impractical with BO. It proposed a similarity-aware tun-
ing approach that detects similarity across workloads leveraging a neural encoding of workload
execution metrics, then shares the tuning knowledge across similar workloads using MTBO.

The next chapter evaluates how effective is the proposed similarity-aware tuning approach
in accelerating the configuration tuning and cost amortization.
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Chapter 7

Evaluation of the Similarity-aware
Configuration Tuning

In the previous chapters, I started with addressing the configuration tuning in the case of zero
knowledge, proposing Tuneful’s significance-aware tuning approach (Chapter 5), which proved
to be cost-effective for recurring workloads (i.e., repeatable stable workloads, representing 40%
of the analytics workloads [16, 45]).

To have a wider application of the cost-effective tuning to other types of workloads (e.g.,
evolving dynamic workloads), Chapter 6 argues that the tuning knowledge acquired over time
(using Tuneful significance-aware tuning) can be shared to make the tuning efficient further
for similar workloads, with the success of exploiting that being subject to the accuracy of de-
tecting similar workloads in the first place. This chapter puts things together and evaluates
how effective can the tuning be for evolving workloads when more tuning knowledge becomes
available and shared across similar workloads. This is done through assuming the existence of
readily available workloads tuned using the Tuneful’s significance-aware approach (Chapter 5),
then employing similarity matching for a newly received workload against the seen workloads
(§ 6.2.3) and lastly, sharing the pre-acquired tuning knowledge with this new workload.

This chapter validates the contributions of Chapter 6:

• It shows, using a series of experiments, how exploiting a nonlinear neural encoder can ef-
fectively learn the nonlinear dependencies between workload execution metrics, leading to a
representation learning accuracy that surpasses other earlier adopted techniques such as PCA.
This learnt representation is used to detect similarity between workloads.

• It demonstrates that extending BO with workload similarity characteristics can significantly
accelerate the configuration tuning—even when tuning configurations of high-dimensionality,
which were previously thought to be impractical with the traditional BO.

• It shows how the proposed similarity-aware tuning approach obtains configurations compara-
ble to prior work but converging to those significantly faster, enabling a quicker amortization
of the tuning costs in a rapidly changing environment.
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Application Abbr. Input data sizes (DS)
Pagerank PR 5, 10, 15, 20, 25 (million pages)

TPC-H benchmark TPCH 20, 40, 60, 80, 100 (compressed GB)
Terasort TR 20, 40, 60, 80, 100 (GB)

Bayes Classifier Bayes 5, 10, 30, 40, 50 (million pages)
Wordcount WC 32, 50, 80, 100, 160 (GB)

Table 7.1: The set of applications and input sizes used to learn workload representation.

7.1 Evaluation

7.1.1 Methodology
I start with evaluating the accuracy of learning how to represent a workload execution met-

rics in a low dimensional space (§ 6.2.2) using nonlinear AE, linear AE and PCA (a prerequisite
step for similarity detection across workloads). I then evaluate how effective is the similarity-
aware Tuneful in two scenarios: 1) as workloads evolve, but assuming the need of running a
limited number of types of workloads – this would be the case for targeted use of cloud data
processing. 2) as more tuning knowledge is acquired. This is to assess the impact of having
extended tuning knowledge on the performance and the speed of tuning cost amortization. The
context might be one where the user executes a wide array of types of workloads, or that of
a cloud provider offering a PaaS solution to its customers (e.g., Tuned-Configuration-As-A-
Service).

7.1.2 Experimental setup
Cluster and configuration specification: I use a cluster of 4 AWS h1.4xlarge instances with
16 vCPUs, 64 GB memory, and 2TB storage each.

HDFS [13] version 2.7 is used for accessing the shared data and Spark version 2.2.1 as the
system under tuning. A list describing each configuration parameter and its range can be found
in Table 4.3. I use the same ranges when evaluating the other tuning approaches.

7.1.3 Workload Representation Learning
Environment setup: Keras v2.3.0 is used to build the AE running on AWS c5.large in-
stance, with epoch (the number of complete passes over the dataset to update the internal model
parameters) of 300 and a sigmoid activation function. Multiple other activation functions were
tried and this one was selected since it yields the minimal information loss. For setting the
epoch, as shown in Figure 7.1 different values until 1000 were tried and the information loss
converged at 300. The same number of epoch is used for the linear AE.

Dataset: A dataset of execution metrics using two well known big data benchmarks (Hi-
bench [62] and TPC-H [6]) was built. I selected five different applications from those bench-
marks due to their wide adoption in real-life applications (§ 2.1.1). For each application, I
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Figure 7.1: Reconstruction loss over the number of epochs at median, the shaded area represents
that space between the 90th and 10th percentile of 10 experiments.

experimented with five different input sizes under different configurations for the 30 parameters
in Table 4.3. with a total of 2200 application executions that took 2188 compute hours to exe-
cute. This time is not considered as an overhead of the proposed tuning approach as this data
will be readily available over time in a deployed system. Table 7.1 lists the applications and
input sizes, the dataset is publicly available on the project’s data repository [14].

To evaluate the accuracy of learning how to represent workload’s execution features in a low
dimensional space, I compare the loss of our representation using nonlinear AE against PCA and
linear AE. Figure 7.2 shows the reconstruction loss over the number of components/encoded
dimensions during learning the representation using PCA, linear AE and nonlinear AE at the
median, 90th and 10th percentile. The nonlinear encoder can represent the execution metrics
using a smaller number of components/dimensions while maintaining less reconstruction loss
compared to PCA and the linear AE. For example, at the 90th percentile the nonlinear AE
can encode the execution metrics using 5 dimensions with a loss lower than PCA and linear
AE using 6 dimensions, since they restrict the encoding of data into a linear space that does
not capture the nonlinear relationships across the execution metrics. The close performance of
PCA and the linear AE is due to the fact that a single layer linear AE learns a representation
that spans the same subspace as PCA—the learnt representations are not identical though [95].

The workload execution metrics are encoded using 5 dimensions, representing a good com-
promise between the reconstruction loss and the number of components for all the three ap-
proaches (e.g., the PCA represents 92% of the data variance using 5 components).

20% of the dataset was excluded as a hold out validation dataset to evaluate the learnt rep-
resentation. Further, to evaluate the generalization of the learnt representation in a different
environment, a test dataset was built including the execution metrics of 5 applications running
on a cluster of different characteristics: a 20 GCP instances (1 driver + 19 workers), with the
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Figure 7.2: Reconstruction loss over the number of encoded low dimensional components,
showing median, 90th and 10th percentile of 10 experiments.
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Figure 7.3: Reconstruction loss for 20% holdout validation dataset (left) and test dataset of 500
workloads execution metrics running on a different cluster (right).
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driver being an n1-highmem-8 instance with 8 vCPUs, 52 GB memory and 300GB storage and
the 19 workers being n1-standard-16 instances with 16 vCPUs, 60 GB memory and 500GB
storage each. The dataset contains the execution metrics of 500 executions of TPC-H, PR,
bayes, WC, TR and KMeans workloads. Figure 7.3 shows the reconstruction loss for the val-
idation and test dataset. As shown in the figure the nonlinear AE maintains the lowest loss for
the validation dataset at the 90th percentile and generalizes better than the other approaches for
the test dataset with a smaller reconstruction loss at the median. Unlike the linear methods, the
nonlinear AE has numerous ways of non-linearly representing the execution metrics in a lower
dimensionality space (varies depending on the used random seed). Therefore, its percentile bar
is larger than the other linear methods.

7.1.4 Tuning Effectiveness and Efficiency
In order to mimic a big data analytics environment executing dynamic workloads (e.g. grow-

ing input sizes or receiving workloads similar to already seen ones), I evaluate the effectiveness
of tuning a set of workloads with growing input data and evaluate how this influences the speed
of tuning cost amortization. I consider a limited set of “auxiliary workloads” that represents the
workloads already seen and tuned using standalone Tuneful (Chapter 5), then evaluate tuning
a set of similar workloads with evolving input sizes using Tuneful’s similarity-aware tuning
algorithm (Alg. 2), comparing against:

1. Direct transfer, which implies transferring the tuned configuration from the source work-
load directly to the target workload—comparing against this to show the importance of
retuning the configuration.

2. Independent workload tuning using Tuneful’s significance aware algorithm (as described
in Chapter 5), comparing against it to assess the accuracy of reusing the significant param-
eters of a similar workload against performing an independent detection of the significant
parameters and tuning. I refer to this as Standalone Tuneful throughout this chapter.

3. Transfer learning and single tasked GP tuning (TL+STGP), which implies transferring
the significant parameters from a similar workload then performing configuration tuning
using STGP, comparing against this approach to evaluate the benefits of using MTGP
against STGP.

4. For the sake of completeness, I also compare the tuned configuration against Random
search, with a budget of 100 executions generated using low-discrepancy sequences [106].
I compare against this approach to assess how far the configurations provided by the
Similarity-Aware Tuneful is from the best estimated configuration using this intensive
exploratory approach.

Metrics: I use the same metrics as discussed in the evaluation of Standalone Tuneful (Chap-
ter 5):

1. The execution time of the tuned configuration, akin to the running cost of the tuned con-
figurations. The target here is to obtain tuned configurations close to what the-state-of-
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the-art achieves.
2. Search Cost, the amount of time and actual cost (in $) required by each approach to

find good configurations while repeatedly running workloads in a cloud environment.
The target is to get close-to-optimal configurations (within 10% of the estimated best
configuration) significantly faster than the state-of-the-art.

3. Amortization speed, the number of needed workload executions to amortize the tuning
cost. The target is to amortize the tuning cost after a small number of workload execu-
tions.

The results are always presented as the median of 10 experiments, bars represent the 10th and
90th percentile.

Auxiliary workload set: consists of three workloads from three applications (Bayes-DS1, PR-
DS1 and WC-DS1), each tuned using Tuneful as described in Chapter 5, performing an inde-
pendent significant parameter detection and tuning for each workload. Table 7.2 shows the
auxiliary workloads colored in green. I exclude two applications (TPC-H and TS) from the set
of the auxiliary workload to evaluate the effectiveness of tuning unseen applications.

Application Input data sizes (DS{1,2,3,4})
PR 5, 10, 15, 20 (million pages)

Bayes 5, 10, 30, 40 (million pages)
WC 32, 50, 80, 100 (GB)

TPC-H 20 (compressed GB)
TS 200 million rows

Table 7.2: The set of applications and input sizes used to evaluate the dynamic configuration
tuning.

Workloads under tuning: To evaluate the effectiveness of Similarity-aware Tuneful in finding
good configurations, for each application in the auxiliary workload set, I tune three workloads
of evolving input sizes using Similarity-aware Tuneful and compare against direct transfer, stan-
dalone Tuneful, and Random search. Table 7.2 shows each workload’s input size. I also consider
tuning two workloads of two applications that were not included in the auxiliary workload set
(TPC-H-DS1 and TS-DS1), evaluating the benefit of the proposed approach in tuning unseen
applications.

Similarity-aware Tuneful finds configurations comparable to the state-of-the-art outper-
forming the direct transfer by 32% at median and 79% at the 90th percentile: Figure 7.4
shows the execution time of the configurations found by the different tuning approaches, the
direct transfer of the configurations does not guarantee near-optimal performance, with a po-
tential performance degradation of up to 85% compared to retuning the configuration. Across
all workloads, similarity-aware Tuneful finds on average a configuration with an execution time
within 8% of Tuneful’s and 12% of Random search’s. This average is computed over the dif-
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Figure 7.4: Execution time of the direct transferred configuration, the tuned configurations
using Tuneful, Random search and the proposed Similarity-aware Tuneful approach.

Figure 7.5: Search time till finding 10% of the optimal configuration using Tuneful, Random
search and our proposed Similarity-aware Tuneful approach (note the logarithmic y axis). The
dashed bars represent the total Search Time (ST) when a configuration within 10% is not found.

ference in median execution times for each workload that is shown in Figure 7.4. For some
workloads, namely Bayes-DS3 and WC-DS4, standalone Tuneful and Random search outper-
form the similarity-aware Tuneful. This is due to the limited set of source workloads. The next
section shows how this can be mitigated through extending the tuning knowledge ( having a
larger set of source workloads).

To evaluate differences in time taken to find configurations close-to-optimal, each approach
is allowed to execute workloads until it finds the first configuration resulting in a runtime within
10% of the one produced by the estimated optimal configuration. This is defined as the best con-
figuration ever found across all our tests for each workload, irrespective of the tuning approach
or experiment.

The median search time for the-state-of-the-art is 2.3-3.7X longer when compared to
Similarity-aware Tuneful: Figure 7.5 shows the search time of each approach until find-
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Figure 7.6: Convergence speed of the Bayes-DS3 workload when the significant parameters are
transferred from Bayes-DS2.

ing a configuration within 10% of the estimated optimum. For some workloads, a configuration
within 10% of the estimated optimal configuration is never found (due to the limited number
of seen workloads), and I present those cases as dashed bars in the figure, with their height
representing the total search time.

Overall, the median search time for the standalone Tuneful and Random search is 2.3 - 3.7X
longer when compared to the similarity-aware Tuneful. Out of the 11 workloads considered and
given a limited set of auxiliary workload, the similarity-aware Tuneful significantly accelerates
the search time of 6 workloads while finding a configuration within 10% of the estimated opti-
mal. For the remaining workloads, the total search time of the similarity-aware Tuneful is still
considerably smaller, with a configuration that is not only notably outperforming direct transfer,
but also comparable to the standalone Tuneful for most of the workloads and within 17%-37%
of Random search.

This shows that a significantly shorter search phase is possible even with a limited number
of source workloads to transfer tuning data from. However, in around 45% of the cases this
also means that the reached configuration is slightly further away from the optimum. The next
experiment suggests mitigating that through using a larger set of auxiliary workloads.

Tuning with extended knowledge: I give an example of better matching to related workloads
by extending the auxiliary workload set to include the Bayes-DS2 workload. This allows the
similarity-aware algorithm to select it as the source workload for Bayes-DS3, since it has a
closer fingerprint than Bayes-DS1. Although Figure 6.3 shows that the Bayes workloads are
close in distance (have similar resource usage and influential parameters), the covariance of the
workloads (closeness in behaviour and how they respond to the different configuration values)
still might vary. This is why Bayes-DS2 has a closer fingerprint than Bayes-DS1. Those work-
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Approach/application Bayes PR WC TPC-H TS
Random Search $168 $483 $247 $9 $26

Tuneful $116 $257 $132 $34 $9
Similarity-aware Tuneful $35 $77 $123 $13 $7

Table 7.3: The search cost based on AWS [10] per-second pricing of the different tuning ap-
proaches.

loads transition between bottlenecks as processed data size increases. Hence it’s expected to
see better behaviour correlation when using a workload with a fingerprint closer to the target
workload.

As shown in Figure 7.6, extending the auxiliary workload set enables finding a configuration
comparable to Tuneful and Random search reported values in Figure 7.4 (outperforming direct
transfer by 54%), while the similarity-aware tuning happens in 38% less time compared to
results in the previous section. This completely eliminates the trade-off between search time
and optimality of the configuration that was present in the limited auxiliary workload set case.

It also suggests that cloud providers, if able to observe executions across clients, would be in
the ideal position to offer tuning-as-a-service in a way that minimizes costs, even for workloads
that are repeated just a couple of times. Individual customers doing their own tuning will have
a more complex decision to make depending on their workload and estimates provided by an
amortization model.

The search time in Similarity-aware Tuneful is the sum of the workload execution times

needed by the tuning algorithm to run the fingerprinting instance and tune the configuration
parameters using MTGP. The MTGP needs 15 execution samples at maximum to tune the con-
figurations. The reported search time does not only depend on the number of samples but also
on the actual samples that are picked, as exploring a bad configuration leads to slow execution
of the workload. Leveraging similarity suggests samples that most likely have the minimum
execution time, minimizing the chance of exploring other costly configurations. Finally, the al-
gorithm overhead is negligible: a few seconds to select the most similar workload, transfer the
significant parameters and pick the next configuration during tuning. This is due to the small
number of samples that I use during the MTGP optimization. The search time for the standalone
Tuneful is significantly higher than Similarity-aware Tuneful, since it is the sum of the work-
load execution times needed by the tuning algorithm to: (i) explore for significant configuration
parameters, (ii) tune those to their optimal values.

To evaluate the amount of cost saving, I estimate the search cost based on AWS [10] per-
second pricing ( the cloud infrastructure used to run the experiments). Table 7.3 shows the total
cost for tuning the workloads of Bayes, PR, WC, TPC-H, and TS at the median. Overall, the
similarity-aware Tuneful achieves a median cost saving of 3.3X and 4.7X compared to Tuneful
and Random search.
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Figure 7.7: Convergence speed of transfer learning and single tasked GP against the Similarity-
aware Tuneful.
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Figure 7.8: Amortization speed of using the different tuning approaches (Bayes-DS3 workload).

Single tasked versus multitasked tuning: In order to evaluate the benefits of MTGP over
STGP, I experiment with TL+STGP for three evolving input sizes of the Bayes workloads. This
is to show the benefits of sharing the tuning experience (execution samples tried during tuning)
of a similar workload in limiting the exploration time. By leveraging similarity-aware MTGP
optimization, as shown in Figure 7.7, at the 90th percentile TL+STGP tries configurations that
are more costly with a wider inter-percentile range. Similarity-aware Tuneful finds configura-
tions close to the ones found by TL+STGP (within 10%) while not only avoiding the cold start
problem of TL+STGP but also bounding the inter-percentile range overall. It is worth noting
that the closer the source workload is to the target workload (e.g., Bayes-DS2), the smaller
the inter-percentile range of similarity-aware Tuneful and the faster the convergence to near-
optimal configuration. This suggests that having more seen workloads in the auxiliary set has
the potential to save more search time.

The similarity-aware tuning accelerates the amortization of tuning costs: the previous ex-
periments do not show the full story on how the different approaches compare in behaviour as
they perform incremental tuning from one execution to the next. For that, it is useful to have a
timeline view. Figure 7.8 shows the cumulative execution time of running Bayes-DS3 work-
load over multiple configurations, as determined iteratively by the tuning algorithms considered.
It represents the amortization of the tuning cost under different tuning scenarios. I compare
against the directly transferred configuration from a source workload. This represents the static

tuning approach followed by most of the existing tuners, in which the workload is tuned once
and the tuned configuration is reused—ignoring the need for dynamic workload retuning. The
dotted line shows cumulative execution time for this configuration without any tuning. The
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dynamic tuning “pays off” only after the lines intersect the dotted line. The similarity-aware
Tuneful runs a fingerprinting execution sample once and tunes the configurations incrementally
within 15 executions, then picks the best configuration it found and continues only using that
until retuning is needed. As shown in Figure 7.8, it takes less than 5 executions to amortize
the tuning cost using the similarity-aware Tuneful, with a better configuration (shallower slope)
found when the tuning knowledge is extended (Sim-aware extended). This enables a quicker
adoption for workload retuning in a rapidly changing environment. On the other hand, stan-
dalone Tuneful needs more executions to amortize this cost (e.g. 50 executions), but remains
necessary for building an initial tuning database against which similarity analysis can be done.

7.2 Summary
This chapter presented an evaluation of a similarity-aware tuning approach that puts together

the benefits of the zero knowledge tuning (Chapter 5) with similarity detection and utilization
across workloads (Chapter 6).

This evaluation proved that extending BO with workload similarity characteristics can sig-
nificantly accelerate the amortization of tuning costs and enable effective tuning in a rapidly
changing environment. The chapter studied the different ways for learning how to represent
workload execution metrics in low dimensional space—a prerequisite step for similarity iden-
tification across workloads. I experimented with a diverse set of workloads running on two
different clusters. These experiments showed that representing the execution metrics using
nonlinear AE outperforms PCA and the linear AE, minimizing information loss. The chapter
then evaluated how effective is the proposed similarity-aware tuning approach in accelerating
the configuration tuning and cost amortization. This showed that the proposed approach sig-
nificantly reduced the exploration cost and accelerated the amortization of tuning costs, while
finding configurations that are comparable to the ones from the-state-of-the-art (when provided
with sufficient auxiliary workloads).

This ultimately enabled a cost-effective tuning of the configuration parameters in a dynamic
and rapidly changing environment.
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Chapter 8

Conclusion and Future work

The dissertation demonstrated that augmenting BO with incrementally acquired knowledge can
enable cost-effective tuning of diverse analytics workloads in a rapidly changing environment.
The effectiveness of the proposed approaches firmly shows the need to address the configuration
tuning of data analytics differently. The dissertation presented three particular contributions,
each of which is a fundamental aspect to enable cost-effective configuration tuning of data
intensive computing:

1. It brought into focus the trade-offs that need to be considered when performing tuning with-
out assuming a static environment or workload. Further, I demonstrated, with a series of
experiments, a number of overlooked issues that pose a challenge for practical configuration
tuning in data analytics frameworks. These issues include: 1) The dynamic characteristics
of the analytics environment ( e.g., increase in input data size, changes in allocation of re-
sources). 2) the amortization of tuning costs and how this influences what workloads can be
tuned in practice in a cost-effective manner. 3) the need for a comprehensive incremental
tuning solution for a diverse set of workloads. (Chapter 4)

2. It showed that augmenting BO with incrementally acquired knowledge of parameters sig-
nificance can efficiently tune high-dimensional configurations of diverse analytics work-
loads, outperforming the-state-of-the-art tuning approaches and saving search time by 2.7X
at the median in comparison. This was the first work to propose a data-efficient [40] tun-
ing of high-dimensionality configurations. Earlier solutions either require expensive offline
phases or address low-dimensionality configurations. To achieve this, I developed an Online
Significance-aware Configuration Tuner that leverages incremental SA to identify workload-
specific influential configuration parameters in a high-dimensional space, then tunes those
parameters using BO. (Chapter 5)

3. It showed that extending BO with workload similarity characteristics can significantly ac-
celerate the amortization of tuning costs and enable effective tuning in a rapidly changing
environment—even when tuning configurations of high-dimensionality, which were previ-
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ously considered to be impractical with BO. This extension was developed as a Similarity-
aware Configuration Tuner that leverages neural encoding of workload execution metrics
to detect similarity across workloads. It then shares the tuning knowledge between similar
workloads using MTBO. Over diverse analytics workloads, this significantly accelerated
both configuration tuning and cost amortization ( saving 56% of the search time when com-
pared to an independent single tasked BO based tuning). (Chapter 6 , Chapter 7)

8.1 Limitations
The proposed data-efficient tuning approaches can significantly reduce the exploration costs

and accelerate their amortization, while finding configurations that are comparable to the ones
of existing state-of-art tuning algorithms. Not all workloads will benefit from these approaches
(e.g., workloads that execute once or few number of times, workloads that execute in a cluster
with very limited types of workloads and lacks sufficient similarity knowledge). However, the
workloads that are recurrent and subject to variations in input data size or in the resources
allocated for execution fit the proposed tuning cost amortization model (§ 4.1). Those will be
tuned in a cost-effective manner using the approaches proposed here.

8.2 Future work
As a future work, I will investigate a set of interesting aspects:

• Extended-knowledge Tuning: I experimented the impact of tuning the configuration with an
extended tuning knowledge (§ 7.1.4). As expected, extending the tuning knowledge showed
better performance and enabled finding better configuration with less search time. However,
there is a need to gauge when exploiting the readily acquired knowledge in similarity-aware
tuning is a better strategy than acquiring more tuning knowledge (i.e., by tuning more work-
loads using standalone Tuneful as described in Chapter 5). I plan to formulate that as an
exploration-exploitation problem, where I find an answer to when should I exploit the exist-
ing knowledge rather than waiting to explore more workloads.

• Experiment with different systems and domains: The tuning approaches adopted by Tune-
ful have application beyond Spark. I selected Spark as the data processing framework to
configure, because it is both popular and poses significant challenges for state-of-art con-
figuration tuners (huge configuration search space, a variety of ways to process data). Ex-
perimenting Tuneful with other DISC systems such as Storm is an interesting future work.
Further, experimenting with systems from other domains such as HPO is an appealing future
avenue.

• Port Similarity-aware Tuning to any GP-based Tuner: I plan to leverage the proposed
approaches in this dissertation to automate the extraction and sharing of tuning knowledge
for any GP-based tuner, converting any GP-based configuration tuner in any domain into a
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significance and similarity-aware tuner to enable cost-effective tuning.

• Dynamic identification of configuration search space: Throughout the dissertation, I con-
sidered developer-guided configuration ranges (Table 4.3), which I slightly tweaked across the
different cluster (i.e., depending on the cluster characteristics) to enable a faster exploration
of the search space. For example, starting the range of spark.executor.cores configuration
parameter from 1 core in the AWS 4 nodes cluster would slow down the exploration and it
is sensible to start the search space from a larger number of cores — which might not be the
case in a larger cluster such as the GCP 20 nodes cluster and the configuration range should
be adjusted accordingly. I plan to explore how to automate the exploration of the parameter
search space dynamically across different clusters.

• Dataset Maintenance: The dataset of workload representation learning (Chapter 6) along
with the experiment data (Chapter 5, Chapter 7) are open-sourced and can be found in [14].
This data can be used as a starting point for bootstrapping a database of tuning models and
fingerprints against which similarity-aware tuning is possible. I plan to maintain this data in
the open-source space with external contributions, this could make fast-amortizing tuning a
reality even if tuning-as-a-service does not materialize on the cloud provider side.
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Appendix A

Experiment Reproducibility

A.1 Tuneful Usage
In order to use Tuneful, a Spark user simply adds Tuneful library as a dependency and

Tuneful as an extra Spark listener while submitting his workload to Spark. In other words,
Tuneful can run on an unmodified Spark infrastructure. Listing A.1 shows how to clone Tuneful
code, build and use to tune one of Spark’s example workloads (SparkPi).

1 $ g i t c l o n e h t t p s : / / g i t h u b . com / aya t−k h a i r y / t u n e f u l−code . g i t
2 $ cd t u n e f u l−code
3 $ mvn c l e a n package
4 $ / u s r / l i b / s p a r k / b i n / spa rk−su bmi t
5 −− j a r s t a r g e t / t u n e f u l −0.0.1−SNAPSHOT−j a r−with−d e p e n d e n c i e s . j a r
6 −−con f s p a r k . e x t r a L i s t e n e r s = T u n e f u l L i s t e n e r
7 −−c l a s s o rg . apache . s p a r k . examples . S p a r k P i
8 / p a t h / t o / examples . j a r 100

Listing A.1: Tuneful example usage

A.2 Experiment data and workload representation learning
dataset

The experiment data of Tuneful and the-state-of-the-art approaches are publicly available
on [14] under experiment folder. This data can be leveraged for significant configuration pa-
rameter analysis for various workloads over different clusters. This data also shows the benefits
of Tuneful’s similarity-aware tuning in accelerating the tuning of a similar workload or retuning
a seen workloads to accommodate the growing input sizes.

The built dataset of execution metrics—used for workload representation learning—is pub-
licly available on the project data repository [14] under dataset folder.
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