284 research outputs found

    Variable bit rate video time-series and scene modeling using discrete-time statistically self-similar systems

    Get PDF
    This thesis investigates the application of discrete-time statistically self-similar (DTSS) systems to modeling of variable bit rate (VBR) video traffic data. The work is motivated by the fact that while VBR video has been characterized as self-similar by various researchers, models based on self-similarity considerations have not been previously studied. Given the relationship between self-similarity and long-range dependence the potential for using DTSS model in applications involving modeling of VBR MPEG video traffic data is presented. This thesis initially explores the characteristic properties of the model and then establishes relationships between the discrete-time self-similar model and fractional order transfer function systems. Using white noise as the input, the modeling approach is presented using least-square fitting technique of the output autocorrelations to the correlations of various VBR video trace sequences. This measure is used to compare the model performance with the performance of other existing models such as Markovian, long-range dependent and M/G/(infinity) . The study shows that using heavy-tailed inputs the output of these models can be used to match both the scene time-series correlations as well as scene density functions. Furthermore, the discrete-time self-similar model is applied to scene classification in VBR MPEG video to provide a demonstration of potential application of discrete-time self-similar models in modeling self-similar and long-range dependent data. Simulation results have shown that the proposed modeling technique is indeed a better approach than several earlier approaches and finds application is areas such as automatic scene classification, estimation of motion intensity and metadata generation for MPEG-7 applications

    Modeling operating system crash behavior through multifractal analysis, long range dependence and mining of memory usage patterns

    Get PDF
    Software Aging is a phenomenon where the state of the operating systems degrades over a period of time due to transient errors. These transient errors can result in resource exhaustion and operating system hangups or crashes.;Three different techniques from fractal geometry are studied using the same datasets for operating system crash modeling and prediction. Holder Exponent is an indicator of how chaotic a signal is. M5 Prime is a nominal classification algorithm that allows prediction of a numerical quantity such as time to crash based on current and previous data. Hurst exponent measures the self similarity and long range dependence or memory of a process or data set and has been used to predict river flows and network usage.;For each of these techniques, a thorough investigation was conducted using crash, hangup and nominal operating system monitoring data. All three approaches demonstrated a promising ability to identify software aging and predict upcoming operating system crashes. This thesis describes the experiments, reports the best candidate techniques and identifies the topics for further investigation

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation

    Get PDF
    International audienceTexture characterization is a central element in many image processing applications. Multifractal analysis is a useful signal and image processing tool, yet, the accurate estimation of multifractal parameters for image texture remains a challenge. This is due in the main to the fact that current estimation procedures consist of performing linear regressions across frequency scales of the 2D dyadic wavelet transform, for which only a few such scales are computable for images. The strongly non-Gaussian nature of multifractal processes, combined with their complicated dependence structure, makes it difficult to develop suitable models for parameter estimation. Here, we propose a Bayesian procedure that addresses the difficulties in the estimation of the multifractality parameter. The originality of the procedure is threefold. The construction of a generic semiparametric statistical model for the logarithm of wavelet leaders; the formulation of Bayesian estimators that are associated with this model and the set of parameter values admitted by multifractal theory; the exploitation of a suitable Whittle approximation within the Bayesian model which enables the otherwise infeasible evaluation of the posterior distribution associated with the model. Performance is assessed numerically for several 2D multifractal processes, for several image sizes and a large range of process parameters. The procedure yields significant benefits over current benchmark estimators in terms of estimation performance and ability to discriminate between the two most commonly used classes of multifractal process models. The gains in performance are particularly pronounced for small image sizes, notably enabling for the first time the analysis of image patches as small as 64 × 64 pixels

    Quantitative methods in high-frequency financial econometrics: modeling univariate and multivariate time series

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Discrete-Time continuous-dilation construction of linear scale-invariant systems and multi-dimensional self-similar signals

    Get PDF
    This dissertation presents novel models for purely discrete-time self-similar processes and scale- invariant systems. The results developed are based on the definition of a discrete-time scaling (dilation) operation through a mapping between discrete and continuous frequencies. It is shown that it is possible to have continuous scaling factors through this operation even though the signal itself is discrete-time. Both deterministic and stochastic discrete-time self-similar signals are studied. Conditions of existence for self-similar signals are provided. Construction of discrete-time linear scale-invariant (LSI) systems and white noise driven models of self-similar stochastic processes are discussed. It is shown that unlike continuous-time self-similar signals, a wide class of non-trivial discrete-time self-similar signals can be constructed through these models. The results obtained in the one-dimensional case are extended to multi-dimensional case. Constructions of discrete-space self-similar ran dom fields are shown to be potentially useful for the generation, modeling and analysis of multi-dimensional self-similar signals such as textures. Constructions of discrete-time and discrete-space self-similar signals presented in the dissertation provide potential tools for applications such as image segmentation and classification, pattern recognition, image compression, digital halftoning, computer vision, and computer graphics. The other aspect of the dissertation deals with the construction of discrete-time continuous-dilation wavelet transform and its existence condition, based on the defined discrete-time continuous-dilation scaling operator

    Learning and mining from personal digital archives

    Get PDF
    Given the explosion of new sensing technologies, data storage has become significantly cheaper and consequently, people increasingly rely on wearable devices to create personal digital archives. Lifelogging is the act of recording aspects of life in digital format for a variety of purposes such as aiding human memory, analysing human lifestyle and diet monitoring. In this dissertation we are concerned with Visual Lifelogging, a form of lifelogging based on the passive capture of photographs by a wearable camera. Cameras, such as Microsoft's SenseCam can record up to 4,000 images per day as well as logging data from several incorporated sensors. Considering the volume, complexity and heterogeneous nature of such data collections, it is a signifcant challenge to interpret and extract knowledge for the practical use of lifeloggers and others. In this dissertation, time series analysis methods have been used to identify and extract useful information from temporal lifelogging images data, without benefit of prior knowledge. We focus, in particular, on three fundamental topics: noise reduction, structure and characterization of the raw data; the detection of multi-scale patterns; and the mining of important, previously unknown repeated patterns in the time series of lifelog image data. Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the feature of very high correlation in lifelogging image collections. Secondly, we show that study of equal-time Cross-Correlation Matrix demonstrates atypical or non-stationary characteristics in these images. Next, noise reduction in the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT) before Wavelet multiscaling is used to characterize the `most important' or `unusual' events through analysis of the associated dynamics of the eigenspectrum. A motif discovery technique is explored for detection of recurring and recognizable episodes of an individual's image data. Finally, we apply these motif discovery techniques to two known lifelog data collections, All I Have Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recurrent patterns of multiple-lifelogging users
    corecore