
Graduate Theses, Dissertations, and Problem Reports

2006

Modeling operating system crash behavior through multifractal Modeling operating system crash behavior through multifractal

analysis, long range dependence and mining of memory usage analysis, long range dependence and mining of memory usage

patterns patterns

Vijai Gandikota
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Gandikota, Vijai, "Modeling operating system crash behavior through multifractal analysis, long range
dependence and mining of memory usage patterns" (2006). Graduate Theses, Dissertations, and Problem
Reports. 1700.
https://researchrepository.wvu.edu/etd/1700

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1700?utm_source=researchrepository.wvu.edu%2Fetd%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Modeling Operating System Crash Behavior through

Multifractal Analysis, Long Range Dependence and Mining

of Memory Usage Patterns

Vijai Gandikota

A Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in Computer Science

Bojan Cukic Ph.D., Chair
Katerina Goseva-Popstojanova, Ph.D.

John Atkins, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2006

ABSTRACT

Modeling Operating System Crash Behavior through Multifractal Analysis,

Long Range Dependence and Mining of Memory Usage Patterns

Vijai Gandikota

Software Aging is a phenomenon where the state of the operating systems degrades over a

period of time due to transient errors. These transient errors can result in resource

exhaustion and operating system hangups or crashes.

Three different techniques from fractal geometry are studied using the same datasets for

operating system crash modeling and prediction. Holder Exponent is an indicator of how

chaotic a signal is. M5 Prime is a nominal classification algorithm that allows prediction

of a numerical quantity such as time to crash based on current and previous data. Hurst

exponent measures the self similarity and long range dependence or memory of a process

or data set and has been used to predict river flows and network usage.

For each of these techniques, a thorough investigation was conducted using crash, hangup

and nominal operating system monitoring data. All three approaches demonstrated a

promising ability to identify software aging and predict upcoming operating system

crashes. This thesis describes the experiments, reports the best candidate techniques and

identifies the topics for further investigation.

ii

To Prasanthi,

and Kishore.

iii

ACKNOWLEDGEMENTS

I would like to express my deep respect and profound thanks to Dr. Bojan Cukic. Any words

cannot truly express my gratitude for the opportunities, encouragement and knowledge that

you have bestowed upon me and the skills that I have gathered through my interaction with

him. I have learnt a lot from you both professionally and personally. I was very excited

to work with you and I shall cherish the fun times with you and the team outside of work.

Dr. Tim Menzies it was great to work with you on the Data Mining part of this work. Dr.

Mark Shereshevsky, thank you for your guidance on the Fractal Analysis part of this work.

John Atkins, you are one of the best teachers I ever had and I shall always be grateful to

you for the high standards and expectations you set very early on that has set me up do

well ever since. I also would like to thank Dr. Katerina for her advice on this work.

My colleagues Yan Liu, Martin Mladenovsky, Sampath Yerramalla, Srikanth Gururajan,

Dejan Desovski, Paola Bracchi and Yue Jiang deserve a big thanks as well. Srikanth thanks

for all the thesis discussions and being a great friend. Yan thanks for being a great friend

and colleague and for all your interesting insights during the course of this work. Sam, it

was a whole lot of fun to work on setting up HASRC together. Your dedication to your work

will always be an inspiration to me. Martin and Dejan thanks for the umpteen number of

things I learnt from you guys and for your friendship. Yue it was great to work with you.

I am fortunate for the life and guidance that my parents have given me. Their support

was invaluable when I formed my desire to pursue this line of study. None of this would

have been possible but for their sacrifices. I also express my deepest gratitude to my

sister Prasanthi Ganti and brother in-law Kishore Ganti for their undying support and

understanding during the past few years. You both will always inspire me to do better than

my best in work and life.

Vijai Gandikota

March 2006

iv

TABLE OF CONTENTS

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

I INTRODUCTION . 1

1.1 Computer Crashes . 2

1.2 Crash Anticipation and Early Warning System 2

1.3 Motivation for this research . 2

1.4 Operating Systems . 3

1.4.1 Processes . 5

1.4.2 Threads . 5

1.4.3 Scheduling . 5

1.4.4 Windows 2000 Memory Model . 7

1.4.5 Crashes . 8

1.5 Fractals . 9

1.6 Self Similarity and Hurst Exponent . 10

1.7 Data Mining and Nominal Classifiers . 10

1.8 Overview of the thesis . 12

II REVIEW OF PREVIOUS WORK . 13

2.1 Software Aging and Rejuvenation . 13

2.1.1 Software Aging . 13

2.1.2 Related Literature Software Aging 14

2.1.3 Software Rejuvenation . 17

2.2 Software Aging Prediction by Multi-fractal Analysis of Memory Usage Pat-
terns . 18

2.2.1 Three system parameters . 18

2.2.2 Hölder Exponent . 19

v

2.2.3 Hölder Exponent Computation Algorithm 20

2.2.4 Multidimensional Hölder Exponent 21

III A DISCUSSION OF THE THEORY FOR THIS RESEARCH 23

3.1 Data Mining : Model Trees and M5’ Algorithm 23

3.1.1 Data Mining and Machine Learning applied to Crash Data Analysis 23

3.1.2 Model Trees . 24

3.2 Fractal Analysis : Holder Exponent . 26

3.3 Fractal Analysis : Self Similarity and Hurst Exponent and Long Range
Dependence . 28

3.3.1 Random walk . 28

3.3.2 Hurst Exponent . 29

3.3.3 Fractional Brownian Motion (fBM) 30

3.3.4 Hurst Exponent and Self Similarity 30

3.3.5 Hurst Exponent Estimation Methods 33

3.3.6 Long Range Dependence Detection using Bucket Shuffling 36

3.4 Using Hurst Exponent Estimation to analyze network traffic for self similarity 37

3.4.1 Impact of self similarity on network performance 38

3.5 Using Hurst Exponent Estimation to analyze operating system parameters
for self similarity . 38

IV EXPERIMENTS CONDUCTED AND APPLICATIONS DEVELOPED 40

4.1 Design of the Experiment . 40

4.2 Crash Tools . 40

4.2.1 The StressCtrlRandConsole.exe application 41

4.2.2 The ProcessRemovalConsole.exe application 42

4.3 Monitoring Tools . 43

4.3.1 Performance Logs . 43

4.3.2 Addmonsrvr and Delmonsrvr . 43

4.3.3 EventLogMonitor . 43

4.3.4 Shareout.exe . 44

4.3.5 Remote Performance Logs Monitor 44

4.4 Experiments and Data Collection . 44

vi

4.4.1 Experiment Set 1 . 44

4.4.2 Experiment Set 2 . 46

4.4.3 Experiment Set 3:Nominal . 47

4.4.4 Experiment Set 4 . 47

4.4.5 Experiment Set 5 . 47

4.5 Analysis Tools . 48

4.5.1 Weka Machine Learning Tool . 48

4.5.2 Selfis . 48

4.5.3 Data Analysis 1.0 . 50

4.5.4 Fractal Analysis 1.0 . 50

V RESULTS AND DISCUSSION . 51

5.1 M5’ Data Analysis . 51

5.1.1 As Is Approach . 51

5.1.2 Delayed Data Approach . 52

5.2 Holder Exponent Analysis . 56

5.2.1 Crash Data Analysis . 56

5.2.2 Nominal Data Analysis . 59

5.2.3 Removing False Positives and False Negatives 63

5.3 Hurst Analysis . 71

5.3.1 Introduction . 71

5.3.2 Experiments . 71

5.3.3 Crash Data Analysis . 72

5.3.4 Nominal Data Analysis . 77

5.3.5 Combining all three data sets for Hurst Analysis 83

VI CONCLUSIONS . 87

6.1 Future Work . 88

APPENDIX A — RUNNING THE CRASH TESTS 89

APPENDIX B — RUNNING THE FRACTAL APPLICATION 92

APPENDIX C — RUNNING THE JAVA HOLDER COMPUTATION
PROGRAMS OF JOHN CROWELL . 93

vii

REFERENCES . 96

VITA . 100

viii

LIST OF TABLES

1 Blue Screen Death crashes recorded on October 31, 2002 9

2 An Example of a Random Walk . 28

3 Orders of Mean and Standard Deviations 52

4 Results of processing the Computer Crash Data Sets by the M5’ Model Tree
Learner. 52

5 Mean Absolute Error Comparison . 53

6 M5’ output for combined data set with data from 250 intervals in the past. 54

7 M5’ output with 2-fold cross-validation for combined data set with data from
250 intervals in the past. 56

8 Shewhart Series Parameter Values . 57

9 Various parameters tried for the removal of false positives in the nominal
data. Some of these (the most appropriate candidates) were tried on crashed
data to see how well they responded. Set Delay Threshold Alarm No. of
spikes Position . 67

10 False Positives(FP), False Negatives(FN), True Positives(TP) and True Neg-
atives(TN) . 68

11 Table for ROC curve with input and output comparison for deciding true
positives, true negatives, false positives and false negatives 68

12 Table for ROC curve with observed false positives false negatives etc. in-
put and output comparison for deciding true positives, true negatives, false
positives and false negatives . 68

13 Table for ROC curve with observed % false positives, false negatives, true
positives and true negatives. 71

14 Hurst Analysis on Available Bytes Parameter 73

15 Hurst Analysis on 29 data sets on Pool Paged Alloc parameter 74

16 Hurst Analysis on 29 data sets on the System Cache Resident Bytes Parameter 75

17 Hurst Analysis conducted on the absolute difference values of recorded pa-
rameters of 29 data sets . 76

18 Hurst Estimation with internal bucket shuffling with Artificial Data 80

19 Hurst Estimation with external bucket shuffling with Artificial Data 80

20 Hurst exponent value with Variance method on data for each day in the data
set of nominal data collected on Europa. 81

ix

21 Hurst Estimation with for locally recorded nominal data with internal bucket
shuffling . 81

22 Hurst Estimation with external bucket shuffling for locally recorded nominal
data . 81

23 Hurst exponent estimation values and correlation values using Variance and
R/S analysis methods with the data sets of the three parameters over nominal
data collected remotely . 81

24 Hurst Estimation with internal bucket shuffling for remotely recorded nomi-
nal data . 83

25 Hurst Estimation with external bucket shuffling for remotely recorded nom-
inal data . 83

26 Hurst Exponents of Multi-Dimensional Holder Series of Crash and Nominal
Data . 84

27 Correcting Near False Postives and Near False Negatives 86

x

LIST OF FIGURES

1 The Windows NT 4.0 Operating System Architecture 4

2 Microsoft Stress Kit’s Shareout.exe allows the monitoring of the remote ma-
chines being tested. 44

3 A section of the model tree generated from the first crash dataset. 49

4 Data Set 1 applied to Model Tree learnt from Data Set 1 54

5 Data Set 2 applied to Model Tree learnt from Data Set 1 55

6 Data Set 9 applied to Model Tree learnt from Data Set 1 55

7 Crash time distributions . 58

8 Distribution of percent time to second spike from start of experiment 58

9 Distribution of second spike to the time to crash 59

10 Second spike occurrence location, Second Spike location (Percent), Spike to
Crash Time . 60

11 Sorted Time To Crash of all experiments. Time Range from close to an hour
to 95000 seconds . 60

12 Shewhart series for nominal data collected remotely for one day 61

13 Crashpoint indicators on nominal data collected remotely for a period of one
day . 62

14 Multidimensional Holder exponent plot for the three parameters on nominal
data collected remotely for a period of one day. 62

15 Nominal data (No crash or hangup) collected locally on Europa for 5 days . 64

16 Multidimensional Holder exponent values, Shewharts series with 25, 5, 25
values and crash point indicator. 65

17 Last 4 days worth of nominal data (from that collected in Figure 12) collected
locally on Europa . 65

18 Shewhart Series and Crash Point Indicators for nominal data in Figure 15
collected locally on Europa . 66

19 ROC Curve with true positives vs false positives 69

20 ROC Curve with true negatives vs false negatives 70

21 Slopes of linear approximation of Hurst Exponent computed for each hour of
a crash data set . 78

22 Slopes of linear approximation of Hurst Exponent computed for each hour of
nominal data sets set . 79

xi

23 XY Scatter Plot of Multidimensional Holder exponent values for Crash and
Nominal Data. 85

xii

CHAPTER I

INTRODUCTION

This thesis is a presentation of the investigations of techniques to identify, model and predict

software aging in operating systems and the results of these investigations. Software Aging

is a phenomena where the state of the operating system degrades over time due to transient

errors. The focus of this work is the analysis of resource usage using fractals and data

mining algorithms. This chapter introduces the goals of this research, background concepts

and organization of the thesis.

Fractal Geometry is a relatively new field having mostly been developed during the latter

part of the 20th century. However a technique being studied here was used over a century

ago in the study of Nile river flows in Africa. Fractals have been found to be very useful

in modelling the complex and chaotic phenomena of many events in nature. It has been

shown that stock market behavior, cellular division etc. exhibit fractal behavior. About a

decade ago, ground breaking research conducted at Bellcore (now Telcordia Inc.) showed

that internet traffic exhibits a high degree of fractal behavior and is not poisson in nature

as was previously assumed. Internet traffic was shown to also exhibit a high degree of self

similarity. Self Similarity is a very important property of fractals. This knowledge has led to

development of many effective models and routing strategies for internet traffic[58][26][58].

Since the subject of analysis is resource usage data, looking at appropriate data mining

algorithms that allow classification and prediction of future data is one of the natural

investigation choices.

If the data collected while studying the resource usages of operating system shows un-

derlying patterns of fractal behavior or if the data can be mined for information about the

state of the system, then this information or hidden characteristics can be marshalled to

demonstrate the aging of the operating systems. This knowledge can be further exploited

to predict optimal times and strategies for software rejuvenation.

1

1.1 Computer Crashes

Most industries that depend on large servers to process and run applications face a big risk

to their revenues and the ability to retain customers if these servers crash due to any number

of possible reasons. In most cases large volumes of important commercial transactions are

processed by these servers. Most computer users these days are sure to have experienced

either a system crash or ”hang-up”. Most of the time the reasons for the problem seem

unclear. It is imperative to try to keep the system running because a downed system is

revenue lost. Unplanned downtime could result in loss of data and service causing further

loss in revenue.

1.2 Crash Anticipation and Early Warning System

Computer Servers in major industries process large volumes of data and also run large

number of applications. Faults in either the systems or the applications or the sheer volume

of data processing can cause systems to be brought down. Due to the highly sensitive

information that resides on today’s computer systems in various industries there is the

possibility of malicious attacks like Denial of Service Attacks which result in system crashes.

An Early warning system that detects the degradation and raise a red flag well in advance

would allow the system administrators to try and invoke a disaster prevention process and

guide the system away from the road to a crash.

1.3 Motivation for this research

This research was motivated by a need to develop software aging detection and rejuvenation

systems for mission critical applications where the system is at such a remote location that

it would would be virtually too difficult or would take too long to communicate with the

remote system to debug any problems or command it to rejuvenate itself. Examples of such

system include the deep space probes and Mars rovers sent out by NASA. Such systems

travel to distances so large from earth that a signal can take a very long time to reach

its destination. Manually fixing problems from the ground are very difficult. A multitude

of errors either known (like flipped bits) or unknown can occur in deep space due to a

2

number of factors like high radiation as well as strong gravitational or electromagnetic

fields in outer space. In such systems it is imperative to have an on board module that can

detect software failures, especially operating system aging. Such a module can then safely

transfer control to an alternate or secondary system while issuing commands to rejuvenate

the primary system. Many such projects use real time operating systems. This research

focusses on more widely used operating systems in order to develop techniques and test

them. Common operating systems like Windows and UNIX have a wide range of uses and

many mission critical systems in the industry rely on these operating systems. Failures due

to aging have serious ramifications. Study of aging in these operating systems therefore has

a very high value in being able to ensure a more reliable environment for critical systems.

Aging studies on UNIX have been reported in [19][61] and [53] and the previous work done

in this project and reported in [19] and [31] involved UNIX as well as Windows NT. In

the research work presented in this thesis detailed crash testing, analysis and investigation

of aging prediction techniques was done on Windows 2000 Server operating system. This

is due to the fact that Windows 2000 is widely used and is a successor to Windows NT.

Conclusions drawn from the work done on Windows NT were used in the current work on

Windows 2000. This research was supported in part by NASA IV & V research center and

by the Lane Department of Computer Science and Electrical Engineering at West Virginia

University.

1.4 Operating Systems

Windows NT and 2000 to be effective with any useful software like SQL Server would need

about 128 MB RAM or more. This family of operating systems do not allow direct hardware

access due to security issues. The NT family uses hardware memory protection and do not

allow errant tasks from destroying the operating system. The Windows NT family uses

preemptive multitasking for all applications and conducts self tuning. The Windows NT

operating system architecture is shown in Figure 1. Windows NT family supports Win 32

API and has a virtual memory manager as well as a registry [39].

3

Figure 1: The Windows NT 4.0 Operating System Architecture

4

1.4.1 Processes

Processes in Windows NT and 2000 are programs loaded into memory, prepared for execu-

tion and include all the resources that the program needs like code, files, data, files, pipes

and synchronization objects. Each process has its own private virtual address space that is

shared with all the threads of the process. When there are multiple processes the operating

system implements multitasking. Each new process that is created is created with a primary

thread initially[39].

1.4.2 Threads

Within a process a thread is a unit of execution. It is threads that execute and not processes.

All the necessary parameters to control execution including an entry point, an area for

register saves used during context switching and control parameters such as base page

limits are contained within a process. In a process the first thread is called the primary

thread[39].

1.4.3 Scheduling

In Windows NT family of operating systems thread scheduling is done on the basis of priority

classes and not based on thread priority. The thread priority determines the amount of CPU

time that a thread receives relative to another thread within the same process or in other

processes [32]. The priority class determines the base priority of the thread. Priority classes

for normal scheduling include high, normal foreground, normal background and low or idle

classes. Initially threads are selected based on the priority class and then the thread priority

is considered. In the case of the five priority classes mentioned above the ”normal” priority

is called the base priority. The base priority within a priority class is relative zero. In

absolute terms this base priority may have a different value. The priority of a thread is a

combination of the base priority and the values of the other relative priorities. There are

five relative priority levels (-2, +2)[39].

The Kernel is responsible for thread scheduling and object management and makes pol-

icy decisions about when a process ought to be removed from memory. The implementation

5

of the policy is however done by the Executive. Threads are dispatched by the Kernel and

are controlled by a Process object which consists of the virtual address space and control

information necessary for thread execution. Information contained in a process includes list

of ready threads, total accumulated thread execution time, a base priority and a thread

affinity[39].

As mentioned above the thread execution policies are implemented by the Executive and

it consists of various managers like the Object Manager, Process manager, I/O Manager

and Virtual Memory Manager. Among other things the Object Manager tracks the creation

and use of an object by a process. Here objects can be Directory objects, Symbolic Link

objects, Process and Thread objects, Port objects, File Systems objects, Object-type objects,

Semaphore and Event objects, Section and Segment objects, Device objects or File objects.

The Process Manager is responsible for the creation and deletion of the process objects,

policy imposition and process hierarchy or grouping rules for processes. It tracks the Process

and Thread objects. Interprocess protection is imposed by the Process Manager using a

security access token assigned by the Security Manager[39].

CPU Scheduling leads to a requirement to share memory and message passing. Virtual

memory is a means for the operating system to allocate more memory than physically

available. A page in the virtual memory is 512 bytes long and has states Free, Reserved,

Committed and Not Present. Page faults occur when the referenced page is not in memory.

In virtual memory management, pages are mapped to to a linear address space. A working

set is the collection of memory pages currently in use. The pages in a working set are called

committed pages. Newly referenced pages which are not in the working set are earned by

the tasks by causing a page fault. The newly loaded page is mapped to a physical address

that may be different from its virtual address. Newly referenced pages are obtained from

the page pool in memory or from the page file on the disk. If the desired page is not in

memory older pages are flushed to the disk to make space for new pages. This process is also

known as demand paging. Performance degradation can be observed during operations like

file copy because the virtual memory manager swaps code pages of a task to disk to make

space for file copy pages. When an application needs those code pages it has to re-initiate

6

their loading through page faults[39].

Memory management selection scheme depends on the hardware design of a system.

Each memory management algorithm needs its own type of hardware support.

1.4.4 Windows 2000 Memory Model

In Windows 2000 operating system, the kernel heavily uses the protected-mode virtual

memory management mechanisms of the Intel i386 CPU class. This operating system

has been designed for the Pentium CPUs. Despite this these CPUs rely on the memory

management model of Intel’s 80386[45].

1.4.4.1 The 80386 memory model

Among the many innovative features of the 80386 CPU architecture like 32-bit linear ad-

dresses, twice the size of the CPU’s data registers from 80286 it also introduced the concept

of demand paging where a section of physical memory’s contents were swapped out to disk

to allow the CPU to access more memory than was physically available. This is not fast but

allows a CPU to process large amounts of data that would exceed the available memory[45].

1.4.4.2 The Pentium and 80486 memory model

The Pentium and 80486 CPUs use the same segmentation and paging scheme of the 80386.

Other addressing features like Physical Address Extension(PAE) of Pentium Pro, higher

clock frequencies, dual instruction pipeline and other optimizations made this set of CPUs

a major advancement in the hardware on which to run the Windows operating system[45].

1.4.4.3 Memory Segmentation of Windows 2000

The Windows NT and 2000 operating systems have a memory segmentation scheme in

which 4-GB process address space is divided in two equal parts. Low privileged code and

application data resides in the lower half and the upper half is used by the system. Low

privileged code cannot execute certain instructions and cannot access restricted regions of

memory[45].

7

1.4.4.4 Tracking memory usage

While good design and programming practices go a long way in creating software that be-

haves well it is also important to track memory usage for understanding how an application

is using the memory of the system it runs on. [46] lists a way to track resource exhaustion

by implementing memory tracking. When a block of memory is allocated on the heap but

not properly released then memory leaks occur. This article presents a library of routines

called Mtlib to implement memory tracking in code. The library of routines help identify a

leak and which memory block is leaked. One has to then set breakpoints and trace the code

that allocated that memory. This can be quite time consuming so Mtlib2 also has features

to identify exactly where a leaked memory block is allocated.

1.4.5 Crashes

As mentioned in 1.4.4.3 the process address space is divided into upper and lower halves.

What happens when a crash occurs? If a user-mode application accesses memory in the

upper (system) memory a memory exception is thrown and the application is terminated.

Kernel-mode drivers have the highest privilege for running on the system and accessing

all memory locations. However if a virtual memory address is not backed up by physical

or page file memory and if the kernel-mode driver accesses such an address it results in

the Blue Screen of Death. Unlike in the case of an application memory exception, where

only the application is terminated, in the case of a driver exception, the entire system is

stopped and a reboot is forced. As stated in [39] a faulty GDI driver or a faulty printer

driver can bring a whole Windows operating system to a crash.[45] discusses details of the

Windows 2000 memory management and presents examples of building a driver that reads

the memory and interacts with a user application to display the contents.

Table 1 shows the test resulting in a crash. This test was started on October 11 2002

and the crash occurred on October 12, 2002. The type of stress tests collection used

from the Microsoft Stress Test Kit was default. Please refer to Appendix A.3 for the

contents of the default set of stress tests. The selection method for adding processes was

randomized using the SctrlRandConsole.exe file. Please refer to Appending A.1 on how to

8

Table 1: Blue Screen Death crashes recorded on October 31, 2002
The message displayed on a dual processor 2.2 GHz Pentium 4 server with 1GB RAM

*** STOP: 0x000000001E (0xC0000005, 0x8046749B, 0x00000000,0x00000000)

KMODE EXCEPTION NOT HANDLED

*** Address 8046749B base at 80400000, DateStamp 384d9b17 -ntoskrnl.exe

Beginning dump of physical memory Physical memory dump complete.

Contact your system administrator or technical support group.

The message displayed on a 200Mhz GHz Pentium PC with 256MB RAM

On test machine Blue Screen

*** STOP: 0x0000000A (0x00000000, 0x00000002,0x00000000,0x80432196)

IRQL NOT LESS OR EQUAL

*** Address 80432196 base at 80400000, DateStamp 384d9b17 - ntoskrnl.exe

Beginning dump of physical memory Physical memory dump complete.

Contact your system administrator or technical support group.

run SctrlRandConsole.exe.

We shall now take an introductory look at some of the techniques used in this work to

model operating system behavior during the software aging process.

1.5 Fractals

Mandelbrot offered the following definition for the term fractal[30]: A fractal is by defi-

nition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological

dimension.

The topological dimension (DT) is always an integer. This is also known as the Euclidean

dimension. This definition is however too restrictive. Mandelbrot also says that a fractal is

a shape made of parts similar to the whole in some way [30]. This being a better definition

of fractal, means that at any scale a fractal looks the same.

For non-fractal sets of points both the topological dimension DT and the Hausdorff-

Besicovitch dimension D are the same. For example for a set of points that form a line,

D = 1 = DT . For a surface D = 2 = DT . For a sphere D = 3 = DT .

There also another term called the similarity dimension defined as in Section 2.5 of

9

[30] as DS = −lnN/lnr(N). In the case where the fractal is self-similar the Hausdorff-

Besicovitch dimension D equals the similarity dimension.

Falconer in [9] and Crowell in [6] present the five properties of fractals as fine structure,

irregularity, self-similarity, fractional dimension and recursive definition.

1.6 Self Similarity and Hurst Exponent

Self Similarity occurs in network traffic, memory reference traces, cartography, biology, and

medicine. Geometric figures are similar if they have the same shape (not necessarily the

same size). Self similarity can be observed when one zooms into a figure and sees the same

pattern repeated. A simple example is the Sierpinski Triangle where many triangles of

different sizes are enclosed in a bigger triangle. In three dimensions this can be observed

with the Sierpinski Pyramid. Each of the enclosed triangle is similar to the largest one

displaying self-similarity. In self-similar shapes there is a pattern that occurs repeatedly

at each level of scaling applied to the original shape. This may continue to many levels of

scaling(even infinite).

Hurst invented a statistical method called the rescaled range analysis method or R/S

analysis method during his studies of water reservoir construction sizes. He used this to

estimate the size of reservoir sizes required to collect water from the Nile river in Africa.

The Hurst exponent has been shown to be useful in measuring the self-similarity or long

range dependence exhibited by a process or data set. In this thesis we look at the results

of the search for long range dependence in operating system memory parameters.

1.7 Data Mining and Nominal Classifiers

Machine learning is the process of learning a ”concept” from a set of data which can be

applied to understanding or predicting future data. This learning is carried out by comput-

ers using Machine Learning algorithms which provide the technical ability to learn. Data

mining is the process of extracting or mining previously unknown and implicit information

that is potentially useful and can be ”learnt” and applied to similar and subsequent data.

Information is the term used to refer to the underlying pattern found in a dataset. On the

10

other hand Data is the hard recorded facts obtained empirically from various sources in

different fields of study.

In the case of empirical learning there are large data sets with a large number of ex-

emplary cases and there are machine learning algorithms that build and revise models. In

many cases many of these learners are classification learners which learn a concept and use

it to classify every new instance. The data applied to the classification learners contains

a single class column which is predicted. The class column contains only a discrete set of

values. However there are cases when it is required that the learned model should be able to

predict a numerical value associated with each instance rather than a class. Such classifiers

are called nominal or numerical classifiers.

Classically continuous, numerical or nominal prediction is done by writing the predicted

value as a linear sum of the parameters each multiplied by an appropriate weight. The

weight determination process is called regression the linear prediction equation is called

a regression equation. Regression refers to the process of computing an expression that

predicts a numeric quantity. Their disadvantage is that most regression methods are not

useful in mining nonlinear relationships. Such situations that cannot be represented well

by a linear model can be modelled much better by decision trees.

Decision trees can be used for prediction of numerical quantities (i.e numerical classi-

fiers). In this case the leaf nodes would contain a numeric value. This numeric value is

the average of all the training set values that the leaf applies to. Such trees are called

regression trees. When comparing regression equations and regression trees, the regression

trees show lower values of the average absolute errors between actual and predicted values.

These trees however tend to be very large and cumbersome to use and manipulate. The

advantages of both approaches can be combined by replacing the average numerical values

at the leaf nodes with a linear expression (regression equation). Such a tree is called a model

tree. M5 and M5’ (pronounced as M5 prime) are examples of model tree based nominal

classifiers. Such trees are smaller, more comprehensible than regression trees and also have

lower average error values on the training data.

11

1.8 Overview of the thesis

This thesis is organized as follows. Chapter two presents a review of previous work done

in software aging, prediction and rejuvenation. Chapter three presents the development

of a theory for software aging prediction using concepts from fractals and data mining.

Chapter 4 discusses the experiments and applications developed. Chapter 5 shows results

and discusses their implications. Chapter 6 presents conclusions of this research work.

12

CHAPTER II

REVIEW OF PREVIOUS WORK

2.1 Software Aging and Rejuvenation

2.1.1 Software Aging

Software Aging refers to the degradation of a software system, such as an operating system,

over a period of hours to months as errors accumulate while the system is running and the

system is not able to recover from it. Such systems are designed to run over long periods of

time providing uninterrupted service, for example a server for client-server applications in an

e-commerce environment. While advances are being made in better design of the operating

systems the complexity of the systems and the variety of the applications as well as the

resources they consume far outpaces these modifications. It is therefore very important

to have a second line of defense where the system is monitored and proactive measures

are taken to provide pre-disaster alerts. This is so that data can be saved, ongoing work

transferred to another server and the system brought down in a controlled way, cleaned and

restarted in a rejuvenated state. This process is called Software Rejuvenation.

As a note of caution it is necessary to point out that the software aging referred to here

is not what is discussed by Parnas in [37]. In that paper Parnas discusses Software Aging

from a Software Engineering standpoint. Software aging there is regarded as the inability

of a software product to meet the changing needs of its users and the negative effects of

changes that are made during the course of maintenance of a software product. Software

obsoleteness, its prevention, costs associated with the loss of usability of the software are

discussed. Recommendations for good software engineering practices are made to improve

the long term viability of software. Among others these include designing for change through

object orientation, designing for changes in operating systems and hardware, estimation of

the probability of changes to be better prepared for them, separation of design and imple-

mentation, proper documentation, reviews, retroactive documentation and modularization

13

of code. His paper briefly mentions some of the issues discussed in this thesis but states

that that is not what is meant as software aging in that paper[37].

2.1.2 Related Literature Software Aging

Trivedi in [49] describes a fault model for software components and the ways in which it can

be handled. Software faults can be classified into Bohrbugs, Heisenbugs and Aging related

bugs.

1. The class of bugs called Bohrbugs can be prevented by debugging the application. If

these bugs escape detection or correction before deployment of the application then

the approach to tolerating these faults is through creation of multiple applications

with differing designs and implementation. This provides redundancy and masks the

faults. These bugs can be reproduced and removed very easily.

2. Heisenbugs are a class of bugs that may not be detected except under a certain set

of conditions. These conditions can be the sequence or time of occurrence of events.

These transient faults may not necessarily occur when repeated. Rejuvenation can be

carried out by retrying the failed operation or restarting the process that has crashed.

3. Aging related bugs occur due to faults that appear when the system resources approach

or reach the point of exhaustion. Lack of proper programming practices resulting in

memory leaks or not releasing all the resources results in exhaustion of swap space,

free memory etc. A consequence of this is system hang-ups (soft failure) or a memory

dump (crash) due to access of privileged memory by an un-privileged code.

Garg, Moorsel, Vaidyanathan and Trivedi in [41] proposed a methodology for detection

and estimation of software aging in the UNIX operating system. Operating system resource

usage and system activity data was collected periodically using an SNMP based distributed

monitoring tool. Their analysis consisted of application of statistical trend detection tech-

niques to detect resource exhaustion and is quantified through a metric that they called

”estimated time to exhaustion”. This was calculated using slope detection techniques. They

14

state that software aging is the accumulation of errors with time and also with computa-

tional load during the execution of a software eventually leading to either a memory dump

of the operating system commonly referred to as a crash or an unusable state commonly

referred to as a hangup. Performance degradation due to these errors is also an expected

phenomenon in software aging. The kinds of errors that can cause the degradation of a

software’s performance include exhaustion of operating system resources, data corruption,

numerical rounding errors, unreleased file locks, memory bloating and leakage and frag-

mentation of storage space. Despite advances in design of all kinds of operating systems

Software Aging is observed in all of them. [41] lists previous work done in dependability

evaluation. The data used for dependability evaluation was collected for failure events only.

Garg et. al.[41] however focussed on periodically monitoring the software. The operating

system object values were collected every fifteen minutes. A timeout interval of two minutes

was set. If there was a timeout or an error a ”No Response” value was recorded.

Their analysis techniques looked into the presence of a long term trend of software aging,

exhibition of any periodic behavior and if there was any relation of failures to observed

data values. Visual cues were used to identify if ”periodicities” were observed justifying a

harmonic analysis or a trend was observed necessitating a trend estimation. In the presence

of both of these effects, a de-trending is needed to perform a harmonic analysis or remove

the cyclic variations to do a trend analysis.

Linear dependency was studied through the plotting of correlograms. Periodicity was

studied using harmonic analysis by fitting a known periodic function or a certain frequency

to the data. Smoothing of data by robust locally weighted regression is used for detecting the

trend. The true slope of the trend is estimated by a least squares estimation for prediction

purposes using a non parametric linear regression methods. The seasonal Kendall test

was used to test the null hypothesis of the non-existence of a trend versus the alternative

hypothesis of the existence of an upward or downward trend. This was regarded as a suitable

test also due to the reason that their data consisted of missing values. On detecting a trend

and the slope an Estimated Time to Exhaustion is calculated.

15

Resource exhaustion due to a particular resource only is calculated. No study was made

into the interaction and correlation of other resources that can lend themselves to a reliable

prediction. So this paper proposed a methodology, a metric and suggests the usage of this

metric to identify resources to be monitored but does not proposed a definite list of such

resources to be monitored. Also as pointed out in a later paper [53] which is discussed

next, this method of detection and estimation of Software Aging does not take into account

system workload.

Vaidyanathan and Trivedi, in [53] and [43] list the causes of software aging. These

causes which are called Heisenbugs are difficult to detect during system test due to their

non-deterministic character and also depend on the actual run time situations. Since these

bugs are difficult to detect and predict directly, other ways of indirect prediction are pro-

posed. Vaidyanathan and Trivedi propose a semi-Markov reward model based on system

workload and resource usage to estimate the time of failure of a system [53].This semi-

Markov reward model is built using the workload and resource usage data obtained from

UNIX machines. The semi-Markov model consists of states where transitions do not de-

pend on states before the state that the system was in before it got to the current state.

Workload was characterized and modelled with the help of various CPU and file system

I/O parameters and a set of workload states was identified using the Hartigan’s k-means

clustering algorithm. These states were then selectively merged into a smaller set of states.

To include the effect of workload on the resources a reward function was assigned to the

model which corresponded to each resource considered. This reward rate rWR for each

workload state W and resource R is the slope of the resource value in each state. A non-

parametric procedure was used to estimate the slope of a resource at each workload state.

A correspondence between workload and resource exhaustion was demonstrated and a time

to exhaustion calculated. However this estimator cannot be taken as an actual estimation

of the failure times for the machines. The measurements were taken quite far apart in

time. Relationships between multiple parameters and combinations of such parameters for

analysis, was not considered.

16

2.1.3 Software Rejuvenation

Huang, Kintala, Kolettis and Fulton in [62] discuss approaches and costs in implementing

software rejuvenation for continuously running applications as well as client server sys-

tems where the server has to be continuously available. Cost estimation models, software

implementation to implement rejuvenation and experiences with implementing software

rejuvenation in telecommunication systems are described in that paper.

Trivedi, Vaidyanathan, Goseva-Popstojanova in [61] present an evaluation of stochastic

models for proactive fault management in operational software. They present an analytical

approach to calculate optimal rejuvenation times. Two policies to implement preventive

maintenance (PM) are proposed. Behavior of a system in a state under both the policies is

modelled through state diagrams.

In [1] Pfening et. al. discuss how to determine an optimal time for software rejuvenation

and why it is necessary to rejuvenate software even in the event of ”soft failures”. This

makes the study of predictability of operating system crashes as well as hang-ups and

slowdowns more necessary. This is because as in the case of telecommunication systems

even if the system continues to function with an unacceptably high rate of packet loss, it is

virtually useless or highly inefficient resulting in financial loss. Faced with such a situation,

it becomes imperative to conduct software rejuvenation through a reboot of a computer or

through other activities such as file system cleanup, buffer queue flushing, internal kernel

table re-initialization and garbage collection.

Pfening et. al. state that a large percentage of failures are such that if a program is

re-executed the failure may not necessarily occur. This is a reality even in the environment

of outer space where deep space probes may not necessarily encounter the same kind of

situations in which an error occurs. It is therefore essential to conduct randomized crash

studies where a system is made to crash with a random set of conditions. This is the

approach taken in this thesis.

Many techniques that enable the tolerance of software failures are reactive in nature.

This however is not useful when faced with a prospect of losing a space mission. This thesis

investigates into techniques to present a proactive approach to operating system failure

17

detection.

Pfening discusses two approaches for the development of a theoretical MDP model. He

also discusses cost estimation for the two approaches with the simple rules as well as a

numerical example.[1]

Castelli et. al. in [51] discuss software rejuvenation, prediction of software aging, pre-

diction of time remaining for complete resource exhaustion and implementation of these

strategies in IBM Xserver series.

2.2 Software Aging Prediction by Multi-fractal Analysis of
Memory Usage Patterns

Crowell, Shereshevsky and Cukic [19] suggest a promising approach based on fractal analysis

of patterns of resource use in a software system and try to identify a consistent pattern of

behavior in the time series data of three system parameters in order to predict that the

system is about to crash. The extent to which the values of these series display fractal and

multi-fractal characteristics was elucidated through the calculation of the Holder exponent.

Operating systems have a variety of parameters that can be measured. However not all are

suitable for fractal analysis. The Holder exponent calculation is only suited to time-series

of non-additive data. And each data point has to be an actual measurement of the internal

state of the system at a particular point in time as opposed to some other parameters called

”measures” which are a function of the interval of time and are additive. Memory use

parameters are a right fit for the criteria necessary for fractal analysis because they are not

regarded as a ”measure” [19].

2.2.1 Three system parameters

Available Bytes is the number bytes of physical memory that is available to running

processes. This consists of all the space on the ”Zeroed”, ”Free” and ”Standby”

memory lists. Zeroed memory is that section of memory with pages that have been

filled with zeros to hide the data used by a previous process, from processes that

subsequently use this section of the memory. Free memory is memory that is available

immediately for use. Standby memory is the chunk of memory that has been removed

18

from a process’ physical memory or working set but it is still recallable if needed.

Available Bytes is a last observed aggregate quantity and is neither an average nor a

per unit time quantity.

Pool Paged Allocs represents the number of system calls made by the operating system

for space allocation in the paged pool. The system memory consists of an area that

is used for storing objects that can be swapped to a hard disk when unused. This

represents the total number of calls made irrespective of the amount of space requested

and like the Available Bytes it is also a last observed aggregate quantity and is neither

an average nor a per unit time quantity.

System Cache Resident Bytes This parameter represents the size, in bytes, of the op-

erating system code that is pageable (currently residing physical pages and not virtual

memory pages) in the file system cache. This parameter represents the last observed

value only and is not an average or a per unit time quantity.

2.2.2 Hölder Exponent

The Hölder exponent measures the fluctuation of a function at a certain point and indicates

the fractality of the function at that point. Since a function can have changes in the amount

of local fractality that it displays, it can have different values of Hölder exponents at different

points. A continuous function f : R → R is said to be Hölder function with exponent α if

|f(x)− f(y)| ≤ c |x − y|α (1)

where c is some constant. If at a certain point a function is highly irregular and chaotic,

it will have a lower Hölder exponent. At a smoother point the function will have a higher

value. A fractal function is characterized by the fact that the Hölder exponent stays within

the range of (0,1).

The Hölder exponent at a certain point in a function can be calculated as [19][6]

Hf (t) = lim inf
h→0

log(|f(t + h)− f(t)|)
log(|h|) (2)

19

2.2.3 Hölder Exponent Computation Algorithm

Crowell in [6] gives an algorithm to calculate the Hölder exponent for a time-series of discrete

data points. This algorithm was developed by Dr. Mark Shereshevsky at West Virginia

University. This algorithm is described here.

Let Yi represent a time series of n values, {y0, y1, ..., yn} measured at uniform intervals.

The value of the Hölder exponent at a point yi is is a function of a certain number s data

points that are before and after its location in the series. s is called the Window Width

and is user specified. Thus there are 2s data points on either side of yi that are taken to

compute the Hölder exponent at that point. Each of these 2s points do not however have

the same level of influence in the Hölder exponent calculation. This influence or ”weight” is

specified by a parameter λ called the Weighted Regression Coefficient. λ falls in the range

(0,1) its value is adjusted to dictate how much of an influence the data points far away from

the point yi have on the Hölder exponent calculation. The values of s and λ have been

chosen as 10 and 0.5 respectively for the calculations here.

1. For each integer value k (6= 0) such that −s ≤ k ≤ s, a value Ri,k is computed as

Ri,k =
log|yi+k − yi|

log(|k|n)
(3)

where 0 ≤ i+k ≤ n. If on the ends of the time series sufficient values are not available

on either side of yi, s is shrunk appropriately.

2. A value hi,j is computed to correspond to lim inf computation in equation 3, where

1 ≤ j ≤ k as

hi,j = min{Ri,k : |k| ≤ j} (4)

3. The estimate of the Hölder exponent Hi is calculated as the weighted average of the

approximations hi as

Hi =
1− λ

1− λk
(hi,1 + λhi,2 + ... + λk−1hi,k) (5)

As can be seen from equation 5 more weight is given to those terms that have a smaller

value of k.

20

The veracity of this algorithm has been shown in [31].

2.2.4 Multidimensional Hölder Exponent

When more than one parameter is involved in a data set and the fractality of each parameter

might change the behavior of all the parameters. The fractality of the function can be

studied by computing the multidimensional Hölder exponent. Consider a data set consisting

of p parameters. An observation at a time t can be represented as a point in a p-dimensional

space, Rp. The distance D between two points, x=(x1, x2, ..., xp) and y = (y1, y2, ..., yp) in

Rp can be computed as

D = ||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + ... + (xp − yp)2 (6)

where ”|| ||” is used to represent distance between two vectors. Thus the Hölder exponent

for a function f : R → Rp is given as

Hf (t) = lim inf
h→0

log(||f(t + h)− f(t)||)
log(|h|) (7)

Crowell in [6] considered signals rather than measures for the Hölder Exponent analysis.

The Hölder exponent computation equation in equation 5 assumes that the parameter being

analyzed is a signal. Unlike in the case of internet traffic data analysis where the granularity

of data was very fine, the measurements here are one second apart and are considered too

coarse for a reliable measures based multidimensional Hölder exponent analysis. Data of

memory related parameters was normalized into the range of (0,1) for a more meaningful

comparison between the various parameters as the actual values of the parameters as well

as the fluctuations observed differed by several orders of magnitude.

The normalization was performed by taking the maximum and minimum values of the

data for each parameter and adjusting it as

f(x) =
f(x)−min

max−min
(8)

This normalization preserves information from the original data set like shape of the graph

and the fractality of the data set.

21

When the Holder exponent of a function f(t) at a certain point t is greater than or equal

to 1, the function is differentiable or locally smooth at that point t. That means that the

magnitude of oscillations of the function near t decreases much faster than the distance to

the point t. In the case of a function that is locally constant, it behaves similar to a linear

function. In the case of linear functions the Hölder exponent is 1. Therefore for constant

functions(i.e when the values of a string of data points in a time series did not change)

the Hölder exponent was adopted as 1. This is because, the Hölder exponent calculation

involves taking the logarithm of the absolute value of the difference between the values

of two points. When the function is constant this difference is zero and the logarithm is

undefined.

22

CHAPTER III

A DISCUSSION OF THE THEORY FOR THIS

RESEARCH

3.1 Data Mining : Model Trees and M5’ Algorithm

In this section we look into some promising continuous class prediction algorithms for soft-

ware aging prediction and propose some future work in this area. The algorithm chosen for

this work is M5’ [57].

3.1.1 Data Mining and Machine Learning applied to Crash Data Analysis

[6] and [53] are two of some of the different approaches that are being taken in studying the

crash data on various systems. However the approach taken in the work reported in this part

of the thesis tries to investigate the effectiveness of applying Machine Learning Algorithms

that have been published and which perform numerical prediction, to this problem. Various

examples given in [40] and [8] demonstrate the effectiveness of applying model tree learners

to different types of numerical data like CPU Performance, Car Prices and a variety of data

sets available at the UCI Collection [50]. The CPU Performance example in [40] gives a

very good example of predicting CPU Performance using M5 Model Tree Learner for data

sets with numeric attributes and provided. This suggests that application of model tree

learners would be a very promising approach to the study of crash data analysis. If the

results of this analysis displays the ability to predict a degradation in the system it gives a

very simple yet sound approach to solving this problem using commonly available machine

learning algorithms.

23

3.1.2 Model Trees

3.1.2.1 M5 Model Tree Learner

It is a system for learning models that predict numerical values. It builds a tree based model

but unlike regression trees where values are present at the leaves the trees obtained from M5

called Model Trees are binary decision trees that can have linear regression equations at the

leaves. Model trees represent a piecewise linear regression approximation to an unknown

function [40], [8].

Consider a set of T training instances each consisting of a fixed set of attributes and an

associated numeric target value. M5 aims to build a model that associates the target values

of the training instances with the values of the various attributes. These attribute values

can be either numeric or discrete[40].

To build the tree M5 computes the standard deviation of the target values and the set

of T training instances is split on the outcomes of a test. If Ti is the subset of cases that

have the ith outcome of a potential test, the standard deviation sd(Ti) of the target values

of cases in Ti is treated as a measure of the error and the expected reduction in error is

then represented as [40]

sdr = sd(T)−
∑

i

(
|Ti|
|T |)× sd(Ti) (9)

After examining all possible tests the test that maximizes (9) is chosen. Once the

initial tree has been grown M5 determines the average residual error on the set of training

instances. The residual error is the absolute difference between the actual and predicted

value. This underestimates the error on new instances. In order to increase the estimated

error of models with small number of training instances and a large number of parameters

M5 multiplies this residual error with (n+v)
(n−v) where n is the number of training instances

and v the number of parameters in the model [40].

Next a linear model with multiple variables is constructed at each node for the training

instances at the node and this model is restricted to only those attributes that are referenced

somewhere in the subtree at this node. This linear model is then further simplified by

24

eliminating parameters to minimize the estimated error further. A greedy search tries to

eliminate variables and in some cases may return only a numeric value. Next pruning is

performed on the tree starting at the bottom set of non-leaf nodes. If the simplified linear

model gives a smaller estimated error, the subtree maybe replaced by a leaf with the linear

model. To improve the prediction accuracy of the tree-based models a smoothing process

is performed at each leaf by adjusting the value given at that leaf to better reflect the

predicted values at the nodes above the leaf [40].

Ps =
(n× p + k ×m)

(n + k)
(10)

Where Ps is the predicted value backed upto the node of subtree S, n is the number of

training instances taking branch Si from S and reaching its node, p is the predicted value

at the node of Si and n is the value given by the model at the node of S. k is a smoothing

constant with default value 15.

Model trees are more efficient to learn and are more compact and have better prediction

accuracy. Model trees can extrapolate and predict values outside the range observed in the

training instances. These advantages makes them better suited to the problem at hand

than other schemes like regression trees or classifiers like C 5.0 [40],[8].

Common measures of performance include the relative error which is the ratio of the

variance of the predicted to the variance of the target values, correlation between the actual

and predicted values.

3.1.2.2 M5’ Model Tree Learner

The main difference between M5 and M5’ is in the smoothing process representation. M5’

[8] also improves on the handling of missing values of M5 [40] as well as a previous imple-

mentation of M5’. The adjustment to the smoothing process is made by creating a new

linear model at each leaf that combines the linear models along the path back to the root.

Any need for further smoothing during the prediction process is thus eliminated by the leaf

model that automatically create smoothed prediction [40].

If a and b are two attributes at a leaf and have linear coefficients u and v; and b and c

25

are two attributes in the model at the parent node with linear coefficients w and x, then in

the above equation 10 [8]

p = ua + vb m = wb + xc (11)

Ps =
(nua + (nv + kw)b + kxc)

(n + k)
(12)

This process is continued up to the root giving a single, smoothed linear model which

is put at the leaf to be used for subsequent predictions.

3.2 Fractal Analysis : Holder Exponent

A function that displays the characteristics of more than one fractal is referred to as a

multifractal function. Three parameters, were identified by Crowell, Shereshevsky and

Cukic [31][19], for a Windows 2000 Server System based on a set of three predetermined

criteria. These are Memory Available Bytes, Memory Pool Paged Allocations and Memory

System Cache Resident Bytes. The extent to which this three dimensional data exhibited

multifractality was studied by computing the Hölder Exponent at each point of the data

set and then calculating the degree to which the function has a fractal dimension greater

than one. Multi-fractal analysis was applied to this three-dimensional data and certain

points of fractal breakdown were identified and the second fractal breakdown was chosen to

signal a dangerous level of resource exhaustion. That work however did not consider any

investigation into analyzing the data using already existing machine learning algorithms for

prediction of continuous classes [40][8].

Most of the work done in [6] by Crowell involves parameter measurements on a UNIX

system. A strong correlation between the fractality of a memory resource (lg alloc) and the

workload event of system backup. However the same level of correlation between workload

and traditional measures of system workload such as percentage CPU usage was not ob-

served. It is seen that the fractality of memory related parameters show more correlation

with the workload of the system. This is not seen in sustained behavior of a parameter even

it is a rise or fall. It is however seen quite clearly when there is a increase in the fluctuation

26

of the values of the parameter in question. This leads Crowell to state that the issue of

importance might not be workload but the type of work.

Thus large processes consuming many resources and having more fluctuations might

have a greater effect on the multifractality (multiple values of the Hölder exponent) of of

the memory usage patterns in an operating system. This is a reason for the pattern of stress

loading employed in the research work presented in this thesis.

Due to the nature of the data recorded, Crowell [6] found that one parameter dominated

the multidimensional holder analysis of the data series. Therefore other parameters under

different stress conditions needed to be recorded and analyzed. Crowell also found that

the calculation of the fractal dimension D corresponded well to the dominant value of the

Hölder exponent of the series. It was found that the series yielded different values of Hölder

exponent through the series rather than one single value, however there is a dominant value

of the Hölder exponent. The results therefore indicate strong fractality displayed in lg alloc

parameter.

The computation and study of the Holder exponent at a certain point of a time series

is very useful for the study of fractal behavior through just the analysis of numbers in

a series. This is especially more important because a series may begin to exhibit fractal

behavior even without the exhibition of a dramatic rise or fall in the scale of its values.

Thus the onset of fractality would be difficult to detect without a plot of an appropriate

computed(moving average or holder exponent) value. Crowell further hypothesizes that a

computer that exhibits high level of fractality in values of its resources might not be in a

stable state. This was supported through examples of observed behavior.

Crowell suggests fractality studies of measures recorded at very small intervals as a next

step. Studies suggested include Wavelet based fractal analysis and multifractal browni-

nan motion analysis. Crowell further suggests investigation into techniques used to study

network behavior such as Hurst Exponent analysis and long range dependence studies. Sim-

ulating operating system crashes to investigate the effectiveness of using fractals to predict

operating system crashes was also suggested.

27

Table 2: An Example of a Random Walk
Random walk Step Value(Rn = gaussian random number)

0 0

1 0+R0

2 R0+R1

3 R0+R1+R2

3.3 Fractal Analysis : Self Similarity and Hurst Exponent
and Long Range Dependence

3.3.1 Random walk

Random walk is also known as brownian motion or Gaussian noise. A simple way to generate

a random walk is for every time instant generate a random number and add it to the sum

of the previously generated random numbers. An example is shown in TABLE 2. We can

differentiate noise from predictable and deterministic components.

3.3.1.1 Autocorrelation Function

The auto-correlation measure is a displays the relationship of a random variable with itself

over various lags. The autocorrelation coefficient [-1,+1]for different time lags is given by

ρ(k) = E[(Xt − µ)(Xt+k)]/σ2 (13)

3.3.1.2 Stationarity testing

The estimators for long range dependence and the hurst exponent can fail in the case of

non-stationarity of data. It is therefore important to test for stationarity. A run in a time

series is a sequence of identical observations. The run test in [24] can be used to detect a

monotonic trend in a series with the evaluation of the number of runs. The number of runs

should have a mean N
2 + 1 and variance N(N−2)

4(N−1) , where N is the length of the time series.

3.3.1.3 Long memory processes and long range dependence

Long range dependence is a property of a time series which indicates whether the time

series preserves some memory of events in the past. That is whether future values of a

series are correlated to values in the past. This correlation can be measured through the

28

autocorrelation function which measures the similarity of a series is with a time shifted

version of itself. If a time-series has long range dependence its auto correlation function

decays slowly to zero. Whereas if it exhibits more of a short range dependence the decay is

much faster. Examples of such processes are ARMA processes or Markov Processes. Hurst

exponent H, can be used as a measure of the strength of the long range dependence in a

process. A value of H between 0.5 and 1.0 corresponds to the process exhibiting long range

dependence. The closer H is to 1.0, the stronger it exhibits long range dependence.

Mathematically a stationary process Xt exhibits long range dependence if

lim
k→∞

ρ(k)
[cpk−α]

= 1 (14)

where ρ(k) is the sample autocorrelation function and such that there exists a real

number α ∈ (0, 1) and a constant value cp > 0. Equation 15 states that ρ(k) decays to zero

with the approximate rate of k−α where H = 1− 1
α .

3.3.2 Hurst Exponent

Hurst invented a new statistical method called the rescaled range analysis method or R/S

analysis method during his studies of water reservoir construction sizes. Water inflows and

outflows are random processes.

The roughness of a surface is given by the the fractal dimension(D). Hurst exponent is

related to the fractal dimension as in equation 1 for statistically self similar data.

D = 2−H (15)

Statistical self similarity occurs in datasets (for example network traffic) where any section

of the data would have the same statistical properties as any other section and as the data

set as a whole. Some examples of areas where statistical self similarity has been observed is

memory reference traces, congested networks, cartography (coastlines), computer graphics,

biology, and medicine. Network traffic has traditionally been assumed to have poisson

distribution. However studies have found that network traffic is best modelled with a non-

random hurst exponent.

29

3.3.3 Fractional Brownian Motion (fBM)

Random walks also known as Brownian walks (as described above) can be generated by

using a defined Hurst exponent. Such a random walk will exhibit long term memory or

can be described as a long term memory process if the Hurst exponent lies in a range

0.5 < H < 1.0. This type of data sets are referred to as Fractional Brownian Motion

(fBM). Fractional Brownian Motion is also referred to as 1
f noise or fractional gaussian

noise (fGn) or fractal gaussian noise because these data sets are generated from Gaussian

random variables or sets of numbers.

fBM can be generated by spectral synthesis using Fourier transform or the wavelet trans-

form. In the case of fourier transform method the spectral density is inversely proportional

to frequency raised to the power of β

Spectral Density ∝ 1
fβ

(16)

where

β = 2H + 1 (17)

Small Hurst exponent ⇒ higher fractal dimension and rougher surface

Large Hurst exponent ⇒ lower fractal dimension and smoother surface

3.3.4 Hurst Exponent and Self Similarity

The authors in [9] give a set of very good definitions of self-similar processes. These defini-

tions are quoted here as they were given in that paper.

1. Continuous-time : Let Xt be a continuous-time stochastic process. It is said to be

strongly self-similar with a parameter H (0 < H < 1) called the Hurst exponent, if for

any positive stretching factor c, the rescaled process(that is a process that is scaled or

shifted to another time scale) with time scale ct, c−HXct, is equal in distribution to

the original process {Xt}. Consequently if {Xt1 , Xt2 , ..., Xtn} are the values of Xt at

time instants t1, t2, ..., tn then for all c > 0, {c−HXct1 , c
−HXct2 , ..., c

−HXctn} has the

same distribution as {Xt1 , Xt2 , ..., Xtn}.

30

2. Discrete-time process : Let us consider a discrete-time stationary process(what is a

stationary process?) {Xk} where k = 0, 1, 2..., with mean µ, variance σ2, and an

autocorrelation function {ρk} where k = 0, 1, 2, Then the sequence of batch means

of the process are given by {X(m)
k }∞k=1 = {X(m)

1 , X
(m)
2 , ...}, where X

(m)
k is given by

(Xkm−m+1 + ... + Kkm)/m,∀k ≥ 1 and m = 0, 1, 2, ...

(a) Exactly self-similar : Consider a discrete-time stationary process {Xk} with ρk →
k−β where k →∞ and 0 < β < 1. Such a process is said to be exactly self-similar

with a self-similarity parameter H = 1− (β
2) if ρ

(m)
k = ρk, ∀m = 1, 2, 3, This

means that the discrete-time stationary process {Xk} and the averaged processes

given by {X(m)
k } where m ≥ 1, have identical correlation structure(what does

this mean?).

(b) Asymptotically self-similar : The discrete-time stationary process {Xk} is said to

be asymptotically self-similar with the Hurst exponent H = 1−(β
2), if ρ

(m)
k → ρk,

as m →∞.

The properties of self-similar processes as explained in [9] are described below.

(i)Slowly decaying variance : The variance of the sample mean decreases more slowly

than the reciprocal of the sample size. V ar[{X(m)
k }] → c1m

−β1 as m →∞.

(ii)Long-range dependence: The autocorrelation function of the stationary process is

non-summable (
∑∞

k=0 ρk = ∞). In this case it is observed that autocorrelations have a

hyperbolic decay rather than exponential.

(iii)Exhibition of the Hurst effect : Hurst found that many naturally occurring data sets

can be represented well by E[R(n)
S(n)] ∼ c1n

H , as n → ∞, where 0.5 < H < 1.0 and c1

is a finite positive constant independent of n[52]. However for a short-range dependent

process E[R(n)
S(n)] ∼ c2n

0.5, as n →∞ where c2 is a finite positive constant independent of n.

This discrepancy between many naturally occurring processes and short-range dependent

processes is called the Hurst effect or Hurst Law

Hurst exponent can be used to measure self similarity exhibited by a process or data set.

It gives us an idea of whether a process is a pure random walk or has some underlying trends.

31

If the random process has an underlying trend it exhibits some degree of autocorrelation.

A long term memory process is a gaussian process which has an autocorrelation that has

a very long or infinite decay. Long-range dependence is same as long memory process. A

long term memory process can be described as a process with a random component and the

characteristic of the process is that a past event has a decaying effect on future events. The

process retains some memory from past events. However this memory is slowly lost with

time.

A long memory process exhibits some autocorrelation. Lets consider a data set where

a random variable X has value xi at time ti. After a certain time interval d, X has value

xi+d at time ti+d. Then the data set is said to exhibit autocorrelation if xi is correlated

with xi+d. However the key feature of a long memory process is that this autocorrelation

exhibits a decay. This decay obeys a power law. Simply put a power law is a function such

as x = yz. Power laws describe Brownian motion or random walk. In the case of fractals a

power law that represents a random walk can also be used to describe fractal characteristics.

This is shown in equation 18.

p(k) = Ck−α (18)

where H = 1 − α/2, k is the lag and C is a constant. Here H is the Hurst exponent

and 0 < H < 1.0. If the Hurst exponent of a process is given by H = 0.5, the process

is a pure random walk or a Brownian time series (if we prefer that terminology) with no

autocorrelation. In a Brownian time series there is no correlation between any value of a

variable and the future value of that variable.

A process with Hurst exponent as 0.5 < H < 1 represents positive autocorrelation and

persistent behavior. This means that the process is a random process that follows a trend

like increases are followed by increases and decreases are followed by decreases (xi+d > xi).

Consequently such an increase can be seen even other future values of variable or process

X.

A process with Hurst exponent as 0 < H < 0.5 represents anti-persistent behavior.

Such a process exhibits negative autocorrelation. That is the process is a random process

32

which exhibits mean reversion. That is increases are more likely to be followed by decreases

((Xi+d < Xi)).

3.3.5 Hurst Exponent Estimation Methods

Hurst exponent is not calculated but is estimated. This estimation will have a certain

amount of error involved. Given below are some of the techniques that can be used to

estimate the Hurst exponent value for a given data set.

3.3.5.1 Rescaled Range Analysis (R/S Analysis)

Hurst exponent can be estimated using Rescaled Range Analysis (R/S Analysis). R/S

Analysis was first used in reservoir storage size studies. Let us consider the water flowing

into a reservoir during a certain time period(in years) T. Since the water inflow depends on

the amount of rainfall and/or the inflow from other streams it is a random process. The

mean of the inflow is given by

Mean =
1
T

T∑

t=1

ξ(t) (19)

If we represent the water inflow for one year as ξ(u) then the deviation from the mean

for that year would be ξ(u)−Mean.

The accumulated deviation from the mean from years 1 to T is

X(t, T) =
∑t

u=1{ξ(u)−Mean}. The following is a simple pseudo-code to carry out this

R/S Analysis.

sum = 0

X(0) = 0

for(t = 0; t < T ; t++)

{
sum = sum + ξ(t)

}
Mean = sum

T

Where ξ(t) is the inflow in year t.

Accumulated Deviation from mean :

33

for(t = 1; t <= T ; t++)

{
X(t) = X(t− 1) + (ξ(t− 1)−mean)

}

Where ξ(t− 1) is the inflow in year t-1. The range, R(T) is the difference between the

maximum value of X and the minimum value of X over a time period T

R(T) = Max(X(t, T))−Min(X(t, T)) (20)

where 1 < t < T The standard deviation of the data set is given by equation 21.

S(T) =

√√√√ 1
T

T∑

t=1

{ξ(t)−Mean}2 (21)

The rescaled range is given by dividing R(T) by S(T) as in equation 22.

R

S
=

R(T)
S(T)

(22)

where S(T) = standard deviation over range 1 to T. We now calculate average R/S over

multiple regions to get

E[R(n)/S(n)] = CnH as n →∞ (23)

where E[R(n)/C(n)] is the expected value or mean of R/S (H = 0.5 for Random walk, 0.5 <

H < 1.0 for persistence and 0 < H < 0.5 for anti-persistence)

In the case of a random walk we have equation 24.

E[
R(n)
S(n)

] = Cn0.5 as n →∞ (24)

Such a process is also known as a short-range dependence. To estimate Hurst exponent,

plot log2(R/S) vs log2(regionsize) and the slope of the line is the estimate of the Hurst

exponent.

3.3.5.2 Wavelet Spectral Density Analysis

This technique requires a data set of size that is a power of 2. The Hurst exponent for a data

set can be estimated from the wavelet spectral density or the scalogram. Wavelet octave

34

structure is used for Hurst exponent estimation. A wavelet spectral density plot is generated

from the wavelet power spectrum. There are 2j wavelet coefficients in a wavelet octave. The

normalized power is calculated as a summation of the squares of these coefficients, which is

the power, and then dividing by 2j . Normalized power is a requirement for Hurst exponent

estimation.

The Hurst exponent is proportional to the slope of a regression line through the set of

{xj , yj} points obtained from the wavelet spectral density. Here xj is the octave and yj

is the log2 of the normalized power. The estimation of Hurst exponent by this method is

given in equation 25.

H = |(slope− 1)
2

| (25)

Examples of wavelet transforms that can be used are Daubechies D4, Haar and lin-

ear interpolation wavelet, which are energy normalized wavelet transforms. It is generally

regarded that an energy normalized wavelet transform is required for Hurst exponent esti-

mation. The wavelet used in combination with the type of data can determine the amount

of error of the linear regression. [21] shows that for some of the analysis done in that work,

the R/S estimation procedure had a lower linear regression error than that obtained from

the wavelet transform method.

Other methods for Hurst exponent estimation using wavelet transforms are Haar wavelet

[23] and maximum likelihood estimation, Whittle estimator etc.

3.3.5.3 Wavelet Packet Analysis

[7] presents a new scaling relation to generate the Hurst exponent from the slope of decay

for the size distribution of coefficient energies calculated from Wavelet Packet Analysis.

3.3.5.4 Variance Method

In this method a log-log plot of the sample variance and the aggregation level is considered.

If the plot is a straight line with slope β being greater than -1 then the series is self

similar with long range dependence and the Hurst Exponent of the series is estimated as

H = 1 + β
2 [47][24][48].

35

3.3.5.5 Absolute Moment Method

A log-log plot of the aggregation level versus the absolute first moment of the aggregated

series X(m) is taken. If the plot is a straight line the series exhibits long range dependence

and its slope is H − 1 where H is the Hurst Exponent[47][24][48].

3.3.5.6 Ratio Variance of Residuals

A log-log plot is made of the aggregation level versus the average of the variance of the

residuals of the series. If it is a straight line then its slope is H
2 where H is the Hurst

Exponent[47][24][48].

3.3.5.7 Periodogram Method

The slope of a straight line (if observed) in a plot of log-log plot of spectral density of a time

series versus the frequencies gives an estimate of the Hurst Exponent H. The periodogram

is given by I(v) = 1
2πn |

∑N
j=1 X(j)eijv|2 where X represents the time series with length N

the frequency is v[47][24][48].

3.3.5.8 Whittle

In this method the minimization of a likelihood function is applied to the Periodogram of

the time series. This gives an estimation of the Hurst exponent H as well as a confidence

interval[47][24][48].

3.3.5.9 Abry-Veitch

The Hurst Exponent is estimated using Wavelets and the energy of the series in various

scales.

3.3.6 Long Range Dependence Detection using Bucket Shuffling

Long range dependence in a time series can be detected using a technique called Bucket

Shuffling. This technique is helpful in decoupling the short range dependence correlations

of a time series from the long range dependence correlations. The time series is partitioned

into a series of buckets of length l. An observation Xi in the time series is said to reside in

its ”Home” bucket H(i) given by [il]. Each bucket has l items. If two observations Xi, Xj

36

have the same home they are said to be an in-bucket pair and if not they are said to be an

out-bucket pair with an offset given by |H(i)−H(j)|. These buckets and/or their contents

are now reordered to expose short or long range dependence.

3.3.6.1 Internal Shuffling

To conduct internal shuffling the order of the buckets is kept constant and the contents of

each bucket are shuffled. This preserves the long range dependencies and the short range

dependencies are subdued. The autocorrelation function will continue to show power-law

behavior.[47][24]

3.3.6.2 External Shuffling

The goal of external shuffling is to preserve short range dependencies or correlations of the

time-series up to the length of the bucket. This is done by keeping the contents of each of

the buckets intact but shuffling the order of the buckets alone. The result is that the long

range correlations are subdued and the autocorrelations function does not exhibit significant

correlations beyond the bucket size.[47][24]

3.3.6.3 Multiple Level Shuffling

Karagiannis in [48] presents another type of shuffling where each bucket is further subdivided

into smaller internal buckets. External shuffling is applied and the order of all the smaller

internal buckets that are within a larger bucket is shuffled. This helps to preserve both

very short range and long range correlations and while medium range dependencies that

comprise multiple smaller internal buckets within a larger bucket are reduced.

3.4 Using Hurst Exponent Estimation to analyze network
traffic for self similarity

In [59] the authors give a modified definition of a self similar continuous time stochastic

process X and describe the process to be exactly self-similar or asymptotically self-similar

by looking at the correlation structure.

The authors of [58] further present techniques to model self-similarity. The authors

suggest that using the definition of autocorrelation that they present, a process with such

37

a structure and which is viewed as a continuous sum of Gauss-Markov processes implies

the existence of multiple levels of hierarchies of underlying mechanisms. This accounts for

self similarity in the process. While it is difficult to demonstrate the physical existence

of a multilevel of hierarchies of underlying behavior and to show why this would cause

self similarity, some formal mathematical models have been developed that allow modeling

self similar processes. The drawback however is that these techniques do not provide any

explanation as to why the self similarity is observed. [58] presents two such models and

a third model that attempts to give an explanation for the occurrence of self-similarity.

The first two models are 1.The exactly self-similar fractional Gaussian noise 2.The class of

asymptotically self-similar fractional autoregressive intergrated moving-average (ARIMA)

processes.

3. A model of self-similar processes based on aggregating many simple renewal reward

processes exhibiting inter-renewal times with infinite variances.

3.4.1 Impact of self similarity on network performance

3.5 Using Hurst Exponent Estimation to analyze operating
system parameters for self similarity

Initially the rescaled range (R0) is calculated for the entire data set. In this case the average

(RAV G0) is same as the rescaled range for the entire data set. Next the range is halved

and the rescaled range is calculated for each section giving R0 and R1. The average of

these two gives RAV G1.This process is continued till the subdivided regions become very

small. Each subdivision should have at least 8 data points. A table with the columns

RegionSize, RSAverage, log2(regionsize), log2(RSAverage) should be created. A chart

with log2(regionsize) on the x-axis and log2(RSAverage) on the y-axis should be created.

A linear regression line through the plotted points is used to estimate the Hurst exponent.

A plot of the autocorrelation for the data set should also be generated along with the

approximate power curve.

The classical technique for R/S analysis described in the previous paragraph and in

section I.E.2 uses non-overlapping data regions and where the data-size is a power of two.

38

However there do exist versions of the same technique where overlapping regions are used.

There are also versions of this technique that aim to improve the accuracy of the classical

R/S calculation as in [52]. These have to still be researched and their suitability to the

problem at hand investigated.

An important issue to consider when developing code for the Hurst exponent estimation

using either R/S analysis or the Wavelet analysis is that the software needs to be tested

with data that has a known Hurst exponent value. Generation of the data is not a trivial

issue. [12] discusses and provides a comparison of three methods to generate self similar

data. The three methods considered were (i)fast Fourier transform(FFT) algorithm based

method, (ii)random midpoint displacement (RMD) algorithm based method and (iii)the

successive random addition algorithm based method.

A suggestion made in [22] was to investigate the use of the wavelet packet algorithm

for Hurst exponent estimation. This is a possible path of study for estimation of Hurst

exponent for operating system parameters.

Another important point to note is that the Hurst exponent by itself may provide

sufficient information for forecasting and a relatively large number of data points are needed

for the estimation.

39

CHAPTER IV

EXPERIMENTS CONDUCTED AND APPLICATIONS

DEVELOPED

4.1 Design of the Experiment

To collect the data needed for the crash analysis, experiments were performed on personal

computers running Windows 2000 operating system. These experiments involved contin-

uous monitoring of operating system resources. In the work presented in this thesis, the

data collection interval was set to 1 sec. In the case of a crash or the system being ren-

dered unusable due to a hang-up the recording of the data would immediately stop as the

performance tool is one of the tools running on the system.

4.2 Crash Tools

The software used for the experiments included the ”Performance Logs and Alerts” Utility

available in the Administrative Tools group on Windows 2000 Server and the ”System

Stress for Windows NT 4.0 and Windows 2000” software available in a subscription to the

Microsoft Developer Network (MSDN). Unlike previous work done for this project[19][6]

the process of addition of the stress scripts to start different types of stress on the machine

was automated and randomized. For this purpose a Win32 Console Application called

”StressCtrlRandConsole.exe” was built.

The ”System Stress for Windows NT 4.0 and Windows 2000” is a set of tests that are

designed to test specific areas of the operating system and to stress the capabilities of the

system hardware.

On Server A, a console was started to monitor the progress of any machine that connects

to it for the purposes of being stressed.

On Server B a stress command script was invoked which connected to Server A (after

authentication) and copied some initial files, after which a stress manager utility was started

40

by the copied files to enable selection of the ”type” of stress and other parameters like

time of shutdown, debug options etc. The type of stress chosen for the experiments was

”default”. After the selection process another dialog window displays the type of stress and

the available stress scripts. The ”default” stress type consists of 96 stress scripts of different

types like access16, word32 and vdm fltsimulator.

One list box contains all the stress scripts available. Once a stress script is selected and

added it is moved to the second window which contains a list of selected scripts. At this

point the StressCtrlRandConsole.exe Application is invoked to take control of the Stress

Manager Dialog window and manage the process of selecting and adding the stress scripts.

Once a stress script is added and the ”Go” button on the Stress Manager Dialog pressed, the

relevant files are copied from the Server A to Server B into a ”stress” folder and execution

starts. As the stress scripts are added, the system would be loaded with process and memory

requirements to a severe enough level to cause it to either crash or hang-up. While the crash

or hang-up process naturally stops the data collection, the process was robust enough to

collect data until the penultimate second before the crash. Once the system crashed or

hung-up it was forcibly shutdown and restarted. At this point the stress utility’s clean up

program is invoked which cleans up the remnants of the stress previously performed by

deleting the previous scripts. The duration of data collection was found out by checking

the created and last modified times of the performance log file.

4.2.1 The StressCtrlRandConsole.exe application

This is a Win32 Console application developed for this work to automate the stress script

addition and to randomize the selection and the time of addition of the script. The applica-

tion was developed using Visual C++ and used the standard C++ rand() function with the

current time as the seed to avoid the replication of the same sequence of random numbers

each time the application is run. If there are n items left in the list of available scripts the

program waits till the random number generator generates a number x between 0 to n-1

(the first item in the list has the index 0). Once the number is generated a message is sent

to the Stress Manager dialog window to select the stress script having the index number x.

41

Later on this was changed such that the random number generated was between 0 and the

number of stress scripts left in the list minus 1.

Various aspects of the Stress Manager like window and button handles as well as the

messages required to be sent were discovered, by using Microsoft Spy++.

This process is repeated until all the scripts in the available lists window are selected or

until the system crashes, whichever occurs first. Other variations of the program also have

been developed that add the stress scripts in a linear sequence (i.e 0 to n-1).

4.2.2 The ProcessRemovalConsole.exe application

This is a Win 32 console application that was developed to randomly remove a few of the

processes currently running in order to introduce a further randomness in the load increase.

This was used in some of the experiments. Initially the startup list of processes on a

system were logged and any additional processes added (which were essentially the stress

processes) were continuously monitored. The newly added processes became candidates for

random selection and removal. A process was randomly selected and removed by forcibly

terminating the application. The initial list of processes, number of new processes and the

process selected for removal are all displayed in the console window. All this information

as well as the delay till the next process removal is sent to Delmonsrvr (discussed in section

4.2.3) on the server Agni over TCP/IP sockets. The next process removal was scheduled

to occur after a random delay of 0 ≤ t ≤ 40 minutes. This time was selected so that

it was approximately twice the similar time period for addition of processes. Thereafter

the addition of the first 30 processes every minute the delay between the addition of the

remaining processes was randomly selected as 0 ≤ t ≤ 20.

It was however tougher to crash or hang-up a machine while using this application in

conjunction with the SCtrlRandConsole.exe application. The removal of processes (even

though the rate of process removal is slower than the rate of stress addition) tends to

decrease the rate of load addition to the system and requires a much longer time for the

system to crash.

A Termination of a process terminates all threads of a process. For example if we have

42

two windows of Internet explorer running. A termination of an internet explorer process

will terminate all internet explorer windows.

Hard termination of a process is dirty(there maybe DLLs hanging without their state

getting updated).

4.3 Monitoring Tools

4.3.1 Performance Logs

Prior to the start of each stress experiment the a performance log was setup to record data

every second for the duration of the experiment. This was setup using the Performance

Logs and Alerts Utility. The log was setup to collect data on three parameters identified

by Crowell [19][6], as being of interest by showing fractal behavior and not being strongly

correlated to each other. This data was stored in a log file which was transferred to Server

A and logged for further analysis.

The experiment was run multiple times as described below in the Experiments and Data

Collection section, with the time of crash ranging from a couple of hours to 5 days. Most

of the times the time to crash was around 24 hours. In some cases the system completely

hung up or in some other cases the system displayed a blue screen with a pertinent memory

dump message. In one case however (data was not recorded as this happened on a separate

machine) all it took to crash a brand new Windows 2000 Server on a dual processor 2.54

GHz machine was to edit a paper in Microsoft Word!

4.3.2 Addmonsrvr and Delmonsrvr

Whenever processes gets added or deleted a message is sent from the machine under stress

to the server Agni where two applications coded in C on UNIX, monitor the addition and

deletion messages from all machines under stress and logs them in separate log files one for

each machine.

4.3.3 EventLogMonitor

This application was developed on the Windows platform to remotely monitor the event

logs of the remote machines. In some instances the Event Viewer in the administrative

43

Figure 2: Microsoft Stress Kit’s Shareout.exe allows the monitoring of the remote machines
being tested.

tools section of Windows 2000 was examined to look for events that might correlate to the

behavior of the values of the parameters recorded.

4.3.4 Shareout.exe

Before starting any stress experiment the Microsoft Stress Kit’s Shareout.exe application

is started. This makes the computer administering the stress scripts to the test machines

as a stress server. It continuously displays the state of the the individual machines tested.

The status is indicated as Shutdown, Rebooted, Dead, Alive, Aliven etc. This is shown

in Figure 2. It displays type of stress, information about machine being tested like name,

location, CPU, memory, hard disk capacity contact person’s location and email address.

4.3.5 Remote Performance Logs Monitor

This application was developed on the windows platform to remotely monitor various system

parameters of remote machines.

4.4 Experiments and Data Collection

4.4.1 Experiment Set 1

These first 10 sets of experiments were conducted by simply adding all the stress processes

either manually or with the help of a primitive version of SCtrlRandConsole.exe which

implemented minimal fixed delays(few seconds) between stress process addition.

StressControl.exe was developed to add stress tests from the ”Default” Stress Test list.

It is believed that the time period between the generation of requests to add stress tests is

44

constant in ”normal” conditions. Here normal is defined as conditions that exist immedi-

ately after the startup of a Windows 2000 Server when no other applications are running.

Initially all the tests are cleared from the selected tests list. Subsequently tests are

added from the available 96 tests in the Default test list.

The Random Stress Controller generates random positive numbers that are greater than

96(the number of stress tests available in the ”default” list). The stress loading attempt

starts with the addition of the first item in the list and then the subsequent items are

randomly chosen based on the numbers generated by the rand() function. Basically the

program waits for a number to be generated between 0 and 94(total of 95 numbers. Please

remember that the first test from the 96 available ones has already been added). Once that

number is generated a stress test with that index is selected from the available tests and

moved over to the selected tests. Now there are 94 tests available to be added. Now the

program waits for a number to be generated between 0 and 93. This continues until there

are no more tests left in the available lists or the computer crashes - whichever may occur

first.

1. The time duration between the generation of the requests by itself is not constant.

2. As the stress tests get added and the applications begin to run and spawn new

processes the load on the system increases and this causes further delay in the servicing of

a message sent to the Microsoft Stress Test Application. So there is introduced a further

uncertainty about the exact time when the next random number is generated due to the

load on the computer resources. In addition once the number is generated and request is

dispatched to the Microsoft Stress Test Application there is more uncertainty about the

exact time when it is serviced and the test actually started. Once the test scripts begin to

run they generate processes based on the processor scheduling and the individual algorithm.

3. It follows from 2. that we have coarse grained control on the addition of the processes.

We can only control the start of the individual test scripts and not how many individual

processes or threads. Individual applications and processes are generated by the stress test

script.

4. We also do not know the way the tests load the server. That is we cannot predict

45

the load addition / generation due to the stress tests at this point in order to be able to

sequence a specific loading pattern. So it is not clear whether we can assign any specific

weights to the various stress tests.

While the above unknowns exist there is a definite advantage in using the current ap-

proach. 1. The tests and their load generation algorithms are well proven and manufactured

by the OS manufacturer. 2. We do not want to have too much of a control over the gen-

eration of the processes as we would like to simulate a real world scenario where process

addition is a consequence of the starting of one or more applications ”at random”.

4.4.1.1 Hardware Setup for crash experiments

For this purpose two machines were set up with Windows 2000 Server operating system.

One called Server A to act as the Stress Server and the other called Server B to be the

machine that is ”stressed”. A block diagram representation is given in Figure 2.

Unlike previous experiments where the machines were directly connected to each other

(and only each other) using a crossover cable, in these experiments the machines were left

connected to the regular LAN in the Department of CSEE at West Virginia University.

The Server A machine had the following configuration. Vendor : Dell Optiplex Gn+

Processor: Intel Pentium RAM: 163, 384 KB RAM Operating System: Windows 2000

Server

Server B machine had the following configuration Vendor: Dell Optiplex GXPro 200

Processor:Intel Pentium 233 MHz RAM Base : 640 K Extended Memory 162816KB Oper-

ating System: Windows 2000 Server (Service Pack 2)

4.4.2 Experiment Set 2

In this set of experiments increasing stress was added to a machine without removing any

processes. The delays between the addition of processes were random and were between 0

and 20 minutes.

46

4.4.2.1 Hardware Setup for crash experiments

This experiment setup was further expanded to include six computers Jupiter, Europa,

Ganymede, Callisto, Agni and Vijai. Jupiter was alternately used as the server for crash

scripts or as a debug machine. Europa, Ganymede and Callisto were used as the machines to

be crashed. Agni was a linux server used to record information sent over TCP/IP sockets

and Vijai was another server used as a server for crash scripts and remote monitoring

(performance logs and event logs). This hardware setup was also used for Experiment Set

3, 4 and 5.

4.4.3 Experiment Set 3:Nominal

Nominal data was collected in three ways.

Nominal Data Locally Recorded Data was collected locally by logging parameters.

There was no load except for the regular recording of data every second onto the

hard disk.

Nominal Data Remotely Recorded This data was recorded One application (Internet

Explorer) was started to add some minimal load just above no load. Data was collected

for five consecutive days and later split up in different sizes for analysis.

Artificial Nominal Data This data was artificially generated by generating a day’s worth

of data with the value of the parameter kept at one constant level. This value was

selected from previously recorded data.

4.4.4 Experiment Set 4

In this set of experiments stress or load was added on to a machine in an increasing and

decreasing manner. Stress processes were added and with a much lower frequency processes

were also removed. It was much tougher to make a computer crash in this way.

4.4.5 Experiment Set 5

Nominal data was also recorded on a Windows XP machine when there was normal daily

work taking place.

47

4.5 Analysis Tools

4.5.1 Weka Machine Learning Tool

Weka is a comprehensive tool suite of Machine Learning algorithms. This is a freely available

tool suite downloadable from the internet and is implemented in JAVA. The capabilities of

Weka also include data pre-processing, data loading into various learning schemes, analysis

of resulting classifiers and their performance. Weka includes classification rule learners,

classification tree learners, association rule learners and clustering learners [13] [14].

The M5’ implementation in Weka allows the selection of the attribute to be used as the

class attribute. It provides 10-way cross-validation for performance assessment. The loaded

data is split into ten equal sized blocks and each time a model was constructed using nine

blocks and tested on the remaining tenth block. Another option of using a percentage data

split is also provided to train on a percentage of the dataset other than 90% as in the case

of 10-way cross-validation. Another approach given is to use a designated training set and

test the model on the same data set. One can also supply a separate test set for testing

purposes [13] [14].

The output of Weka’s M5’ learner includes a tree representation, its associated linear

model equations and evaluation results. All these are shown in Figure 3.

4.5.2 Selfis

SELFIS is a software tool that provides implementation of various algorithms to estimate

the Hurst Exponent[47][48][24]. It provides functions to carry out internal, external and

multilevel bucket shuffling. Other functions like the estimation of autocorrelation function,

calculation of basic statistics and estimation of the power spectrum are also provided.

The tool also allows one to zoom in and out of a data plot. The tool was developed by

Thomas Karagiannis. Long Range Dependence analysis is provided through Fourier and

wavelet transforms as well as data transformation and cleansing algorithms. Results are

very conveniently displayed in plots on the screen.

48

Figure 3: A section of the model tree generated from the first crash dataset.

49

4.5.3 Data Analysis 1.0

This is a windows based application developed for this work. It reads processed crash data

and generates values for a nominal class. Data from one crash data set was used to obtain

a decision tree in Weka. This was then manually coded into if statements which were

incorporated into the application. Data from other crash tests were then filtered through

this decision tree to obtain predictions made by the M5’ Model Tree based nominal classifier.

The predicted value was the number of intervals to crash. These predicted values were then

compared with actual time to crash and plotted on screen as a graph.

4.5.4 Fractal Analysis 1.0

This is a Java Swing based application that uses the initial classes developed by Crowell

[6] with some modifications. The application plots the data values, generates and plots

the multidimensional Hölder Exponent and it can compute and plot the Shewhart Series

and Crash Prediction plots. It is a multithreaded application and has a processing log

printing in a separate threads. User can add comments for the analysis. This application

also integrates the Selfis tool. However one needs to have the Selfis tool installed on their

system for this feature to function. Other features like reading model trees and processing

data with them are planned.

The next chapter discusses how the collected data was analyzed and presents the results.

50

CHAPTER V

RESULTS AND DISCUSSION

5.1 M5’ Data Analysis

The initial 10 crash data sets collected were cleaned and processed before analysis by Weka’s

M5’ learner.

5.1.1 As Is Approach

The data file consisted of data collected at one second intervals. This data was processed

by combining data collected in every ten seconds and for each of the three parameters the

mean and standard deviation was computed.

Each column(There are three columns in the raw data set one for each of the memory

parameters being monitored) was replaced with the mean and standard deviation of each

column for 10 time ticks. The date and time column was replaced by a new column which

indicated the number of intervals to crash, the crash interval being designated as 0. Each

of this processed data sets was called output classified.csv. This initial processing was

performed using AWK. The results were processed by Weka which generated the model

tree, the Linear Model Equations and Error Estimates.

Each of the output classified.csv files were combined into one large file and processed

by Weka. Additionally four of the largest data files with greater than 4500 intervals were

combined into another file to be processed by Weka. Weka generated a model tree for each

data set along with error estimates.

From the results of Weka a model tree generated from the first data set was coded in

Visual C++ as the Data Analysis 1.0 application discussed in the previous chapter. Each

of the remaining data sets were fed to this program to generate a prediction on the number

of intervals to crash. The application also calculated the difference between the predicted

interval to crash times of the decision tree and the actual interval to crash time of that

51

Table 3: Orders of Mean and Standard Deviations
Parameter Value Order
Available Bytes Mean1 108

Available Bytes Stddev1 107to108

Pool Paged Allocs Mean2 105

Pool Paged Allocs Stddev2 103

System Cache Res. Bytes Mean3 108

System Cache Res. Bytes Stddev3 106

Table 4: Results of processing the Computer Crash Data Sets by the M5’ Model Tree
Learner.

Set No. of Correlation Mean Root Mean Relative % Root Rel %
Instances Coefficient Abs Error Sqrd Error Abs Error Sqrd Error

1 459 0.990 13.57 18.61 11.83 14.045
2 6856 0.996 106.18 166.84 6.195 8.429
3 5164 0.927 338.76 558.05 26.24 37.435
4 356 0.96 19.27 28.77 21.65 27.997
5 541 0.925 33.26 59.51 24.59 38.105
6 5124 0.991 110.64 195.69 8.63 13.229
7 1860 0.990 47.84 74.31 10.28 13.840
8 1310 0.977 45.71 79.68 13.95 21.070
9 4957 0.999 45.31 58.57 3.656 4.093
10 3728 0.999 32.32 48.87 3.46 4.541

particular data set. This was output in a file called errorout.txt. The order of each of the

mean and standard deviations are listed in Table 3 to compare with the linear regression

functions on the leaves of the tree.

Mean1 corresponds to Available Bytes parameter, Mean2 corresponds to Pool Paged

Allocs, Mean3 corresponds to System Cache Resident Bytes.

5.1.2 Delayed Data Approach

Another approach taken was to add six more columns to each of the output classifed.csv

files. These six columns were the mean and standard deviations computed for the three

parameters in ten second intervals from a certain time period(250 intervals) in the past.

The number of attributes were seven and were Mean1, Stddev1, Mean2, Stddev2, Mean3,

Stddev3, Crash Occurs In.

The results of M5 prime’s cross-validation for all the ten data sets are shown in Table 4.

All the results show a very high correlation coefficient. In addition the Relative Absolute

Error % and the Root Relative Squared Error are very small. The high correlation and low

52

Table 5: Mean Absolute Error Comparison
Mean Absolute Error Percentage DataSet Correlation
/ Number of Intervals Coefficient
(of 10 seconds)
13/459 2.8% 1 0.9903
106/6856 1.54% 2 0.9964
338/5164 6.5% 3 0.9274
19/356 5.3% 4 0.96
33/541 6.09% 5 0.925
110/5124 0.2146% 6 0.9912
47/1860 2.5% 7 0.9904
45/1310 3.4% 8 0.9776
45/4957 0.907% 9 0.9992
32/378 0.858% 10 0.999
560/30355 1.844% All 10 data sets combined 0.8443
331/18004 1.838% 4 data sets with 4500 0.898

Intervals each

errors indicate that this is a promising technique.

A comparison of the Mean Absolute Error obtained in Table 4 for all the sets was made

along with the Mean Absolute Error obtained from the M5’ processing of all the data sets

put together into one set, and four data sets with more that 4500 intervals put together in

another data set. These results are shown in Table 5.

From Table 5 it is seen that the mean absolute error of the combined data sets is

approximately 560 intervals. This suggests that pending further analysis this technique

might be useful to give an advance warning of dangerously high levels of loads (which might

lead to a crash) for data sets that are larger than 560 intervals. Of the data sets used for

testing this technique this was found applicable to 9 out of 13 datasets (69% success rate).

Figure 4, Figure 5 and Figure 6 show the results of analyzing the output of M5’ with

the other data sets. For example a decision tree was constructed using the output of M5’

from data set 1. The data from the remaining data sets were applied to the tree and the

resulting predicted values were plotted on a graph along with the actual values of intervals

to go before crash. An error value was also plotted.

In Figure 4. the yellow line indicates the predicted value, which very closely follows the

actual value. However, it is seen that in most cases the plots take the form of Figure 5.

There is a gradual decline seen in the predicted values (indicating that the interval of crash

53

Figure 4: Data Set 1 applied to Model Tree learnt from Data Set 1

Table 6: M5’ output for combined data set with data from 250 intervals in the past.
Correlation coefficient 0.9643
Mean absolute error 243.8117
Root mean squared error 456.2966
Relative absolute error 16.8568 %
Root relative squared error 26.8336 %
Total Number of Instances 30355

is approaching), however the scale of these seems much smaller than the actual values.

In addition the graph hugs the origin line. Further processing of this predicted values

may be necessary like application of a linear correction to the predicted value so that it

closely matches the actual value and is more useful in actual prediction. Further analysis

in terms of applying the data to other more general and suitable decision trees is also

warranted to further investigate this technique. The high correlations seen in the outputs

of M5’ certainly are very promising as this indicates a linear relationship between the actual

and predicted values. Another advantage of this technique is that it is a very simple way

to combine the effects of all the three parameters.

The result of processing the output classified.csv along with six attributes which are

54

Figure 5: Data Set 2 applied to Model Tree learnt from Data Set 1

Figure 6: Data Set 9 applied to Model Tree learnt from Data Set 1

55

Table 7: M5’ output with 2-fold cross-validation for combined data set with data from 250
intervals in the past.

Correlation coefficient 0.9184
Mean absolute error 369.9304
Root mean squared error 674.1185
Relative absolute error 25.5764
Root relative squared error 39.6432
Total Number of Instances 30355

basically the original attributes from a certain time period in the past (250 intervals) yielded

the results shown in Table 6. The same data set used for training was also used for testing.

10-way cross-validation and 5-fold cross-validation of M5’ in Weka did not complete for this

data set.

This shows a high correlation coefficient of 0.96 again indicating a very strong linear

relationship between the actual and predicted values.

An interesting fact from Table 6 is that the Mean absolute error for the combined data

set that also considers the values from 250 intervals prior to the values of the current instance

have a much lower Mean Absolute Error that is very close to the interval difference between

the current instance values and prior instance values.

Table 7 shows the cross-validation summary values for 2 fold cross-validation which did

complete and still indicates a much lower mean absolute error than in the case of all the

data sets just combined together.

5.2 Holder Exponent Analysis

5.2.1 Crash Data Analysis

Of the 29 crash or hang up data sets collected through experiments, 26 were used for this

analysis. For each of the data sets Multi-dimensional Hölder and Shewhart Series were

computed. Crash Point Predictions were plotted and their number and location in the data

set were recorded. The crash point predictions ranged between 0 and 2. A 0 indicated no

crash/hang up. This is a false positive since all the data sets involved a crash or hang up.

Data sets having only one crash point predictor was regarded as having a warning. In those

data sets having two crash point predictors the second predictor was regarded as a definite

56

Table 8: Shewhart Series Parameter Values
No. Local Avg. Time Dev. Threshold Change Conf. Time
1 25 5 15
2 50 5 15
3 25 5 25
4 50 5 25
5 25 5 40
6 50 5 40

indicator for a crash.

The analysis involved data sets that had increasing as well as increasing and with some

decreasing levels of loads. That is there were data sets with constantly increasing load levels

and there were also data sets where as the load increased some processes were randomly

removed.

This analysis was repeated for six different combinations of the Shewhart parameters.

These parameters are Local Averaging Time, Deviation Threshold and Change Confirma-

tion Time. The Shewhart Series parameter combinations considered are listed in Table

8.

Of The resulting 156 sets of analysis experiments, 88 showed 2 spikes (56.41%), 41

showed 1 spike (26.28%) and the rest showed no spikes. That is in 82.69% of the cases there

was at least 1 spike. In all the six sets the data sets were actually the same. The Shewhart

parameters that most accurately predicted crashes by demonstrating the most number of

dual spikes were 50, 5, 15 (92.3%)and 50, 5, 25 (88.5%).

Figure 7 displays the distribution of the Crash Times. Of the 26 data sets four crashed

in less than 14,000 intervals. Six data sets crashed in between 30,000 and 40,000 intervals.

Figure 8 displays the distribution of the time of occurrence of the second spike as a

percentage of the whole data set size.

Figure 9 displays the distribution of time to crash from the second spike.

Figure 10 displays three plots. The top one is the plot for each data set indicating the

number of intervals to the occurrence of the second spike in each of those data sets. The

x-axis is the data set and the y axis is the number of intervals. The middle plot in figure 10

displays the location of the second spike in the data set as a percentage of the whole data

57

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

Figure 7: Crash time distributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Figure 8: Distribution of percent time to second spike from start of experiment

58

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 9: Distribution of second spike to the time to crash

set size. The last (lowest) plot in figure 10 shows the time to crash from the second spike.

In figure 11, the data sets are sorted in the order of the time to crash for all data sets.

As can be seen the time to crash is not constant and this is in part due to the randomness in

the addition and removal of load. Each experiment is different from another one in the order

of the load addition as well as the time of addition of loads. In experiments where processes

were removed there is a randomness in the processes eligible for removal(this depends on

the processes that were added) as well as the exact process removed and the time it was

removed.

5.2.2 Nominal Data Analysis

In [] Crowell presented a novel idea to predict operating system crashes. However no analysis

was performed on data from computers that did not crash. Analysis on non-crash data is

essential to eliminate false positives and validate that the technique truly predicts crashes

or hang-ups in data sets obtained from crashed machines. Data sets were collected as

explained in the previous chapter to study nominal(non-crash) data sets. These data sets

were subjected to the Holder analysis to study the behavior of the technique. Figure 12

59

0 10 20 30 40 50 60 70 80 90
0

2

4

6
x 10

4

0 10 20 30 40 50 60 70 80 90
0

0.5

1

0 10 20 30 40 50 60 70 80 90
0

5

10
x 10

4

Figure 10: Second spike occurrence location, Second Spike location (Percent), Spike to
Crash Time

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Figure 11: Sorted Time To Crash of all experiments. Time Range from close to an hour to
95000 seconds

60

Figure 12: Shewhart series for nominal data collected remotely for one day

shows the Shewharts series and figure 8 shows the Crash Point Predictor lines. Figure 13

shows that in the case of data collected remotely on server Vijaiwhen no other processes

were running on the tested machine (thus minimizing the load on the system to a very low

level) the technique still displayed two spikes.

Figure 14 shows the multidimensional holder exponent plot for the same data set.It was

noticed that the values are mostly above 1. This deviation is due to the property of the

data set and explains the occurrence of false positives in Figure 12.

Figure 15 displays the nominal data collected on Europa for five days. This data was

collected locally on the tested machine Europa. Figure 16 show the multidimensional holder

exponent value, the Shewhart’s Series and the Crash Point Plots. Notice the abnormally

high values of MDHolder (above 1), which indicates the reason for the false positive. This

again shows a false positive occurring around one tenth of the whole data set size. This

data set showed some initial changes despite the fact that there was no load on the system.

These changes can be observed in Figure 15 during the first 10% period of the data set.

These changes could have been due to various factors like the system running some initial

61

Figure 13: Crashpoint indicators on nominal data collected remotely for a period of one
day

Figure 14: Multidimensional Holder exponent plot for the three parameters on nominal
data collected remotely for a period of one day.

62

processes on startup.

To further eliminate changes like this that might trigger a crash prediction, only the last

4 days of the nominal data set was taken (which did not exhibit any of the changes seen

in figure 15 from the start till the 50,000 interval mark). This is shown in Figure 17 and

the corresponding Shewhart Series and Crash Point Predictor plots are shown in Figure 18.

However even in this case a false positive is observed.

5.2.3 Removing False Positives and False Negatives

Due to the false positives observed in the nominal data analysis further analysis was man-

dated to see if the occurrence of the false positives depended on the parameters selected

for the Shewhart Series computation. A detailed analysis was performed to try to tune the

parameters to eliminate false positives and avoid false negatives. This is shown in Table

25. It was observed that as the Shewhart parameter values were tuned by raising the Delay

or the Alarm it did not have a major effect on the occurrence of spikes. Increasing the

threshold value however did. While processing nominal data it was observed that increas-

ing the Threshold from 5 to 10 removed the false positives. This however was too much

of an increase in the case of crash data sets. Therefore the increase was done in steps as

seen in rows 24 to 27 and 28 to 31 and the holder analysis was done on both crashed and

nominal data sets. This was done to see if the false positives that occured in the non crash

data sets could be eliminated as the parameter value increased and if false negatives were

avoided in crashed data sets as the threshold parameter progressed from 5 to 10.It was

however observed that the parameter was either too high or too low. When false positives

were removed in non crash data set analysis by increasing the parameter false negatives

occurred in crashed data set analysis. When the parameter was decreased to remove the

false negatives from crash data sets, false positives occurred in the case of non crash data

sets. The aim was to find one or more sets of three parameters which would predict a crash

in the case of crash data sets and not predict a crash in the case of nominal data sets.

Four Crash/Hang data sets and four Non Crash Data Sets were to do further analysis

and nine sets of Delay, Threshold and Alarm values of most interest were selected from

63

Figure 15: Nominal data (No crash or hangup) collected locally on Europa for 5 days

64

Figure 16: Multidimensional Holder exponent values, Shewharts series with 25, 5, 25 values
and crash point indicator.

Figure 17: Last 4 days worth of nominal data (from that collected in Figure 12) collected
locally on Europa

65

Figure 18: Shewhart Series and Crash Point Indicators for nominal data in Figure 15
collected locally on Europa

66

Table 9: Various parameters tried for the removal of false positives in the nominal data.
Some of these (the most appropriate candidates) were tried on crashed data to see how well
they responded. Set Delay Threshold Alarm No. of spikes Position

Delay Threshold Alarm Spikes Location FP FN TP TN
1 25 15 5 2 1
2 25 25 5 1 1
3 25 5 15 2 < 10% 1
4 25 10 15 2 < 20% 1
5 25 20 15 1 Between 10 and 20% 1
6 25 5 25 2 <10% 1
7 25 10 25 2 Between 10 and 20 % 1
8 25 20 25 0 1
9 25 5 40 2 Between 10 and 20 % 1
10 25 10 40 0 8 1
11 25 20 40 0 1
12 50 15 5 2 1
13 50 5 15 2 < 10% 1
14 50 10 15 2 Between 10 and 20% 1
15 50 20 15 2 Between 10 and 20% 1
16 50 5 25 2 <10% 1
17 50 10 25 2 Between 10 and 20% 1
18 50 20 25 1 Between 10 and 20% 1
19 50 5 40 2 < 10% 1
20 50 10 40 2 Between 10 and 20% 1
21 50 20 40 0 1
22 100 20 40 1 Between 80% and 90% 1
23 100 40 50 0 1
24 20 6 40 1 Between 10 and 20% 1 1
25 20 7 40 1 Between 10 and 20% 1 1
26 20 8 40 0 1 1
27 20 9 40 0 1 1
28 25 6 40 2 Between 10 and 20% 1
29 25 7 40 2 Between 10 and 20% 1
30 25 8 40 2 Between 10 and 20% 1
31 25 9 40 1 Between 10 and 20% 1 1

67

Table 10: False Positives(FP), False Negatives(FN), True Positives(TP) and True Nega-
tives(TN)
Set Delay Threshold Alarm FP FN TP TN Interpretation
1 25 5 15 4 1 3 0 In almost all data sets the technique predicted a crash.

2 25 5 25 4 1 3 0 In almost all data sets the technique predicted a crash.

3 25 5 40 3 2 2 1 Predicted opposite results

4 25 10 40 0 4 0 4 In all datasets these parameters predicted no crash

5 50 5 15 4 0 4 0 In all data sets parameters predicted crashes

6 50 5 25 4 0 4 0 In all data sets parameters predicted crashes

7 50 5 40 4 0 4 0 In all data sets parameters predicted crashes

8 50 10 0 3 3 1 1 Predicted opposite results

9 100 40 50 0 4 0 4 In all datasets these parameters predicted no crash

Table 11: Table for ROC curve with input and output comparison for deciding true posi-
tives, true negatives, false positives and false negatives

Crashed Did not crash
Predicted Crash TP FP
Predicted No Crash FN TN

Table 25. Each of the eight data sets was subjected to holder analysis using Fractal 1.0

software with each of the nine parameter sets. The Crash Point Plot was observed for crash

point predictor spikes.One Spike or two spikes were considered as crash predictions and

therefore positive. No spike was considered as no crash prediction and therefore negative.

Table 10 shows the total number of false positives (FP), false negatives (FN), true positives

(TP) and true negatives (TN) for each of the nine parameter sets.

Table 10 shows which combinations of predictions and observations are categorized as

TP, FP, TN and FN. The actual observed values after the analysis are shown in table 11.

Table 13 displays the values in Table 25 as a percentage of the total number experiments

for each set of parameters. The values of this table were used to plot the ROC curve with

True Positives vs False Positives in figure 19 and the ROC curve with True Negatives vs

False Negatives in figure 20.

Table 12: Table for ROC curve with observed false positives false negatives etc. input
and output comparison for deciding true positives, true negatives, false positives and false
negatives

Crashed Did not crash
Predicted Crash 21 26
Predicted No Crash 15 10

68

Figure 19: ROC Curve with true positives vs false positives

69

Figure 20: ROC Curve with true negatives vs false negatives

70

Table 13: Table for ROC curve with observed % false positives, false negatives, true posi-
tives and true negatives.

Set Delay Threshold Alarm FP FN TP TN
10. 25 5 15 50 12.5 37.5
11. 25 5 25 50 12.5 37.5
12. 25 5 40 37.5 25 25 12.5
13. 25 10 40 0 50 0 50
14. 50 5 15 50 0 50 0
15. 50 5 25 50 0 50 0
16. 50 5 40 50 0 50 0
17. 50 10 40 37.5 37.5 12.5 12.5
18. 100 40 0 50 0 50 50

5.3 Hurst Analysis

5.3.1 Introduction

This section describes the experiments and analysis of data to analyze operating system

behavior for modelling and prediction purposes. The analysis presented here uses the studies

fractal properties of the data. The goal of this work is to measure the self similarity and long

range dependence or memory behavior of the operating system data. Self similarity and the

long range dependence are measured by estimating the Hurst Exponent. The data for the

analysis was collected through experiments that involved local and remote data collection.

Analysis was performed using SELFIS, a Self Similarity Analysis Tool [47]. SELFIS helps

in the estimation of the Hurst Exponent, which can be used as an indicator of self similarity.

5.3.2 Experiments

The following types of data were analyzed.

1. Nominal case data collection on machine (Europa) locally

2. Nominal case data collection on a remote machine (Vijai) to collect data from two

different machines (Europa and Ganymede)

3. Artificial data set creation with the last record’s values from data collected in case 1

above

4. Crash Data on the machine Vijai

71

The parameters monitored were

1. Available Bytes

2. Pool Paged Allocs

3. System Cache Resident Bytes

5.3.3 Crash Data Analysis

The question of whether current total value of data versus a rate (per time) value was

considered for suitability to the Hurst Analysis. After literature survey and consultation

with other experts it was concluded that the only requirement placed on the data was that

it should be stationary.

Table 14, 15 and 16 display the results from Hurst Analysis conducted on 29 Crash/Hangup

data sets. Table 14 displays Hurst Exponent Values for Available Bytes parameter, Table

15 for Pool Paged Allocs Parameter and Table 16 for System Cache Resident Bytes Param-

eter. Along with this were plotted the Hurst Exponent Values estimated using Variance

Method and the Rescaled Range (RS) method. Plots were also made of the Sizes of data

sets ordered by increasing Hurst Exponent to see if there was any relationship between the

data set size and the Hurst Exponent.

It is observed from tables 14, 15 and 16 that in all the data sets while the Variance

method displayed high Hurst Exponent Values, the R/S method displays very low values.

Further the correlation coefficients are very low. Correlations coefficients are expected to

be greater than 97% to be assured of the existence of self similarity. This effect could be

due to the non-stationarity of the raw data. This therefore necessitates further processing

of data to make it stationary.

For this purpose, the data set was also processed by calculating the absolute value of

the difference between the value recorded at one time interval to the next. This processed

data was then subject to Hurst Analysis to study the Long Range Dependence behavior.

Each data set was processed by taking the absolute differences from one time interval

to the next. Each of these data sets were then subjected to Hurst Analysis. The results

72

Table 14: Hurst Analysis on Available Bytes Parameter
No. Size Variance Correlation(%) RS Method RS Correlation

1 67926 0.958 88.34 0.622 92.05
2 39395 0.910 96.53 0.635 94.65
3 34691 0.957 95.42 0.643 94.28
4 37824 0.955 96.09 0.65 94.25
5 42087 0.851 91.71 0.633 95.36
6 91221 0.930 85.9 0.553 90.86
7 44028 0.953 86.33 0.477 85.28
8 77673 0.943 87.15 0.682 93.61
9 36072 0.968 96.31 0.648 93.75

10 67461 0.961 90.5 0.556 89.68
11 44579 0.886 87.9 0.659 94.33
12 112169 0.933 76.29 0.661 92.35
13 95374 0.906 84.28 0.646 93.2
14 21529 0.925 91.19 0.63 94.23
15 45437 0.914 92.64 0.629 94.41
16 38228 0.920 98.44 0.669 96.19
17 38986 0.949 94.72 0.67 95.48
18 38618 0.924 95.09 0.656 94.93
19 4945 0.684 79.34 0.558 90.76
20 3556 0.780 98.04 0.57 94.97
21 51642 0.983 74.32 0.503 85.19
22 4585 0.933 75.63 0.403 71.21
23 68559 0.857 75.1 0.645 94.03
24 5406 0.958 78.93 0.322 63.26
25 51241 0.892 75.11 0.581 89.79
26 18602 0.898 90.7 0.566 90.53
27 13094 0.854 81.88 0.498 82.46
28 49564 0.968 77.96 0.644 93.71
29 37274 0.963 94.19 0.488 85.2

Average 44199 0.914 87.44931034 0.58955172 90.34482759

73

Table 15: Hurst Analysis on 29 data sets on Pool Paged Alloc parameter
No. Size Variance Method Correlation(%) RS Method Correlation

1 67926 1.003 63.68 0.195 34.14
2 39395 1.002 54.22 0.198 46.54
3 34691 0.987 44.37 0.034 7.261
4 37824 1.007 74.88 0.171 40.84
5 42087 1.005 75.25 0.209 45.6
6 91221 0.989 71.89 0.184 39.47
7 44028 0.933 70.77 0.02 4.348
8 77673 0.986 42.13 0.007 1.299
9 36072 1.012 71.56 0.202 40.46

10 67461 0.949 72.97 0.152 39.47
11 44579 1.013 70.17 0.159 34.38
12 112169 1.008 69.37 0.26 48.53
13 95374 1.000 11.92 0.209 45.56
14 21529 1.011 71.06 0.136 35.41
15 45437 1.008 70.4 0.222 48.7
16 38228 1.013 66 0.16 36.58
17 38986 1.010 70.39 0.224 52.71
18 38618 1.011 69.82 0.153 36.75
19 4945 0.946 95.3 0.192 44.7
20 3556 0.977 57.23 0.089 27.52
21 51642 0.951 75.98 0.137 31.58
22 4585 0.983 77.98 0.259 53.91
23 68559 1.011 66.3 0.25 50.55
24 5406 0.832 55.7 0.218 45.56
25 51241 0.981 84.41 0.244 49.7
26 18602 1.009 69.8 0.106 25.41
27 13094 1.013 61.03 0.154 36.14
28 49564 1.011 72.02 0.176 37.75
29 37274 0.999 0.781 0.157 29.88

Average 44198.82759 0.988 64.04762069 0.168172414 36.92234483

74

Table 16: Hurst Analysis on 29 data sets on the System Cache Resident Bytes Parameter
No. Size Variance Method Correlation(%) RS Method Correlation

1 67926 0.986 60.68 0.272 68.96
2 39395 0.903 95.16 0.383 77.56
3 34691 0.968 77.69 0.332 66.42
4 37824 0.856 62.36 0.288 62.34
5 42087 0.795 59.82 0.436 76.4
6 91221 0.926 83.45 0.257 59.98
7 44028 0.952 76.95 0.247 51.67
8 77673 0.952 80.24 0.114 32.12
9 36072 0.973 86.31 0.337 67.5

10 67461 0.95 83.59 0.296 60.67
11 44579 0.896 50.38 0.227 51.09
12 112169 0.992 50.71 0.387 69.62
13 95374 0.978 93.54 0.323 66.16
14 21529 0.88 88.73 0.382 75.89
15 45437 0.805 69.83 0.382 74.95
16 38228 0.917 94.45 0.424 77.68
17 38986 0.791 76.31 0.299 69.23
18 38618 0.768 74.27 0.24 58.66
19 4945 0.985 78.91 0.357 68.82
20 3556 0.704 81.29 0.316 72.24
21 51642 0.992 54.23 0.313 59.37
22 4585 0.951 70.9 0.383 76.6
23 68559 0.946 85.84 0.332 62.93
24 5406 0.991 66.33 0.196 41.98
25 51241 1.001 14.35 0.311 62.87
26 18602 0.97 55.36 0.263 57.59
27 13094 0.986 74.55 0.068 16.98
28 49564 0.822 65.36 0.232 56.56
29 37274 0.947 63.1 0.093 27.02

Average 44198.82759 0.917 71.54103448 0.292758621 61.02965517

75

Table 17: Hurst Analysis conducted on the absolute difference values of recorded parame-
ters of 29 data sets

No H AB H PPA HSCRB
26 0.616 0.651 0.683
20 0.637 0.688 0.698
19 0.64 0.556 0.673
5 0.641 0.736 0.711

21 0.654 0.638 0.702
24 0.692 0.567 0.65
12 0.703 0.637 0.738
22 0.707 0.664 0.668
23 0.718 0.73 0.642
17 0.733 0.628 0.655
15 0.735 0.758 0.727
4 0.745 0.592 0.646

14 0.756 0.544 0.588
13 0.759 0.649 0.665
2 0.76 0.603 0.6

18 0.768 0.578 0.643
25 0.771 0.648 0.676
16 0.773 0.705 0.678
11 0.778 0.642 0.628
28 0.783 0.677 0.718
9 0.784 0.683 0.673

10 0.799 0.708 0.696
27 0.806 0.637 0.696
6 0.806 0.699 0.698
1 0.81 0.673 0.729
8 0.812 0.683 0.719
3 0.818 0.623 0.699

29 0.839 0.667 0.75
7 0.844 0.763 0.698

are shown in table HurstAbsDiff29Datasets. The correlation values were also observed to

be greater than 97%.

The results in Table 17 show that all the data sets collected in the case of crashes or

hang-ups exhibit self similarity and long range dependence. That is the data set retains

memory of events occurring in the past. This makes the data set very suitable for modelling

and predictions. Analysis is therefore mandated on nominal data sets. The Hurst Exponent

Analysis conducted on nominal data sets is presented in the next section.

The available bytes parameter values in 16 of the above 29 data sets were then broken

76

down into separate data sets of one hour each and subjected to Hurst Analysis. Hurst

Exponent and the Correlation Coefficients for each hour in each data set were recorded for

the Available Bytes Parameter. The hourly behavior of the hurst exponent was plotted and

a line drawn through the points using linear approximation. The slopes of all these lines

were then recorded and plotted as an XY Scatter Plot. This was also done for the nominal

data sets. The results are shown in figures 21 and 22.

Figure 16 shows that a large majority of the crash data sets exhibit slopes of between

-0.005 and -0.02. In the case of nominal data sets the slope differ from the crash data sets

by at least an an order of magnitude and lie between 0.00001 and 0.0018. This clearly shows

that the nature of the change in the values of the parameters changes in a certain way as

we approach a system overload or crash. The fact that the slope is negative indicates that

the self similarity of the absolute differences reduces from normal circumstances to hang-up

or crash circumstances. It is also observed that while the processed nominal data sets show

a negative slope too, the self similarity levels are much lower than in the case of crash or

hang-up data sets.In addition the hurst exponent levels are almost steady and the slopes

are very small indicating that the data of nominal data sets indicates very low levels of long

range dependence.

A third set of analysis was started on the Multidimensional Hölder Exponent computed

on all data sets.

5.3.4 Nominal Data Analysis

In the case of crash data as the bucket size is increased (100, 250, 500, 1000, 2000) for

internal shuffling the hurst parameter as well as the correlation coefficient increase. As the

bucket size is increased (100, 250, 500, 1000, 2000) for external shuffling the hurst parameter

is below 0.5 and increases approaching 0.5(0.467-0.47). The Correlation coefficient also

marginally increases. It is very close to but just below 90%. (89.86). Employing multilevel

shuffling increases the H value for RS method (0.705) with 95.70 % correlation coefficient.

• Artificial Nominal Data

For a flat line (artificial data)the R/S method gives a value close to 0.5 (0.519) and

77

Figure 21: Slopes of linear approximation of Hurst Exponent computed for each hour of a
crash data set

78

Figure 22: Slopes of linear approximation of Hurst Exponent computed for each hour of
nominal data sets set

79

Table 18: Hurst Estimation with internal bucket shuffling with Artificial Data
Bucket Size Hurst Correlation

Exponent H
100 0.522 99.91
250 0.522 99.91
500 0.522 99.91
1000 0.522 99.91
2000 0.522 99.91

Table 19: Hurst Estimation with external bucket shuffling with Artificial Data
Bucket Size Hurst Correlation

Exponent H
100 0.522 99.91
250 0.522 99.91
500 0.522 99.91
1000 0.522 99.91
2000 0.522 99.91

the correlation coefficient is 99.92%. However the tool was not able to compute an

estimate with variance method.

Table 18 and table 25 show the hurst exponent estimation values with internal and

external bucket shuffling respectively. Even with multi level shuffling of level 1 size =

100 and level 2 size = 50 the values are the same.

• Nominal Data Locally Recorded

In the case of nominal data that was locally recorded on one of the test machines, The

hurst analysis results are shown in Table 20. By using a linear approximation this

displays a fairly steady slope for the hurst exponent through out the data set. Table

21 and table 22 display the results of the Hurst Analysis using internal and external

bucket shuffling. The low correlation coefficient numbers point to the data exhibiting

very poor self similarity.

• Nominal Data Remotely Recorded

In Table 23, AB = Available Bytes PPA=Pool Paged Allocs SCRB = System Cache

Resident Bytes AB Section = A section of the data set was taken which only consisted

of (seemingly) randomly changing data. This pattern was found to repeatedly occur

80

Table 20: Hurst exponent value with Variance method on data for each day in the data set
of nominal data collected on Europa.

Day Hurst Exponent
Variance Method

1. 0.805
2. 0.775
3. 0.804
4. 0.849
5. 0.799

Table 21: Hurst Estimation with for locally recorded nominal data with internal bucket
shuffling

Bucket Size Hurst Correlation
Exponent H Correlation

100 0.840 74.80
250 0.841 74.94
500 0.843 74.81
1000 0.847 75.57
2000 0.832 78.31

Table 22: Hurst Estimation with external bucket shuffling for locally recorded nominal
data

Bucket Size Hurst Correlation
Exponent H Correlation

100 0.752 93.9
250 0.743 86.43
500 0.788 90.27
1000 0.862 85.74
2000 0.866 81.62

Table 23: Hurst exponent estimation values and correlation values using Variance and R/S
analysis methods with the data sets of the three parameters over nominal data collected
remotely
Data Timeline Variance Method Correlation % R/S Method Correlation %

Hurst Estimation Coefficient Hurst Estimation Coefficient
AB 1 day 0.995 20.36 0.038 19.01
PPA 1 day 1.010 66.66 0.110 27.57
SCRB 1 day 0.998 7.717 0.316 96.51
AB Section 1.014 63.83 0.182 91.13
4375 Records

(180-4554)

81

over a saw tooth like waveform of the data. Here again the low correlation coefficient

indicates a data set exhibiting very poor self similarity. Table 24 and 25 show the

results of hurst analysis done on remotely recorded nominal data while employing

internal and external bucket shuffling which again exhibits poor self similarity.

1. (a) Parameter 1 seems to exhibit high Hurst Exponent values using Variance

Method (but not exceeding 1)

(b) Parameter 2 exhibits values about or slightly greater than 1 using Variance

method

(c) Parameter 3 exhibits Hurst Exponent values close to 1 (but not exceeding)

(d) A section of the data set was taken which only consisted of (seemingly)

randomly changing data. This pattern was found to repeatedly occur over

a saw tooth like waveform of the data. This exhibits values greater than 1

from the Hurst Exponent.

2. In all the cases above the Hurst Exponent computed using the R/S Method gave

results where the Hurst Exponent was 0 < H < 0.5 where as in the case of

Variance method it was mostly 0.5 < H < 1.02. In other data sets (> 30) of

similar source the behavior is similar.

3. Using the other methods like Whittle or Periodogram methods gives H values

even greater than 1 (more than what was observed for Variance Method). As

the bucket size (100, 250, 500, 1000, 2000) was increased for internal shuffling

the hurst parameter as well as the correlation coefficient increase.

As the bucket size is increased(100, 250, 500, 1000, 2000) for external shuffling the

hurst parameter is below 0.5 and increases approaching 0.5(0.467-0.47). The Corre-

lation coefficient also marginally increases. It is very close to but just below 90%.

(89.86)

When employing multilevel shuffling an increased H value is observed for RS method

(0.705) with 95.70 % correlation coefficient).

82

Table 24: Hurst Estimation with internal bucket shuffling for remotely recorded nominal
data

Bucket Size Hurst Correlation
Exponent H Correlation

100 1.006 53.93
250 1.006 54.71
500 1.006 54.47
1000 1.006 52.34
2000 1.006 43.21

Table 25: Hurst Estimation with external bucket shuffling for remotely recorded nominal
data

Bucket Size Hurst Correlation
Exponent H Correlation

100 0.691 88.93
250 0.772 83.06
500 0.868 79.32
1000 0.910 81.30
2000 0.931 70.56

5.3.5 Combining all three data sets for Hurst Analysis

In the case of Holder Exponent a multi-dimensional holder exponent value was calculated

thus combining the effects of all three parameters that were being monitored. This was used

to generate the Shewharts Series. Similarly it would be beneficial to see if the combination

of the three signals can lend us any idea of the self similarity of the chaotic nature of this

combination.

For each data set the multi-dimentional Holder exponent value series was generated and

the self similarity of the signal was calculated by generating the Hurst exponent value. This

value was generated using the Variance Method.

The table 26 summarizes the results.

Figure 23 shows the XY Scatter plot the Hurst exponent values of the multi-dimensional

holder data. This clearly shows a separation between the self similarity of crash data sets

and that of the nominal (non-crash data sets).

The values close to the 0.629 line chosen to demarcate the crash and non crash data

sets can in various situations be interpreted as near false positives or near false negatives.

However simple internal shuffling shows the presence of high self similarity in crash data

83

Table 26: Hurst Exponents of Multi-Dimensional Holder Series of Crash and Nominal Data
No. Data Set Hurst Value Crash or Nominal Method
1. 02083019 0.896 Crash/Hangup Variance
2. 02101120 0.790 Crash/Hangup Variance + Int. Shuffling
3. 02102215 0.797 Crash/Hangup Variance
4. 02102419 0.867 Crash/Hangup Variance
5. 02102909 0.825 Crash/Hangup Variance
6. 02110221 0.855 Crash/Hangup Variance
7. 02110417 0.717 Crash/Hangup Variance
8. 02111121 0.816 Crash/Hangup Variance
9. 02111214 0.893 Crash/Hangup Variance
10. 02111313 0.835 Crash/Hangup Variance
11. 02111418 0.960 Crash/Hangup Variance
12. 03020523 0.844 Crash/Hangup Variance
13. 03020600 0.874 Crash/Hangup Variance
14. 03020710 0.842 Crash/Hangup Variance
15. 03021312 0.841 Crash/Hangup Variance
16. 03021313 0.779 Crash/Hangup Variance
17. 03021412 0.846 Crash/Hangup Variance
18. 03021815 0.727 Crash/Hangup Variance
19. 03040720 0.974 Crash/Hangup Variance
20. 03041015 0.781 Crash/Hangup Variance + Int.Shuffling
21. 03042219 0.892 Crash/Hangup Variance
22. 03051215 0.834 Crash/Hangup Variance
23. 03052310 0.956 Crash/Hangup Variance
24. 03052616 0.771 Crash/Hangup Variance
25. 03052714 0.799 Crash/Hangup Variance
26. 03110521One 0.563 Nominal 1 Variance
27. 03110521Two 0.585 Nominal 2 Variance
28. 03110521Three 0.558 Nominal 3 Variance
29. 03110521Four 0.580 Nominal 4 Variance
30. 00112233One na Nominal 5 Variance
31. 03110521Day1 0.593 Nominal 6 Variance + Ext. Shuffling

84

Figure 23: XY Scatter Plot of Multidimensional Holder exponent values for Crash and
Nominal Data.

85

Table 27: Correcting Near False Postives and Near False Negatives
No. Data Set FP or FN Processing
2101120 0.639 Near False Negative
2101120 0.79 True Positive Int Shuffle
3041015 0.644 Near False Negative
3041015 0.781 True Positive Int Shuffle
03110521Day1 0.845 False Positive
03110521Day1 0.619 True Negative Ext Shuffle

sets and simple external shuffling shows the lack of such self similarity in the non crash data

sets. This is shown in table 27.

Further it is seen that the hurst exponent of nominal data sets tends towards 0.5 indi-

cating little or no self similarity, where as the values of the crash data sets are very high

and point to high self similarity.

86

CHAPTER VI

CONCLUSIONS

M5 Prime Method M5’ shows promise in its application to crash data sets for giving

advance warning using the model trees generated from it.

The high correlation coefficients obtained after cross-validation was performed by

Weka indicate a strong linear relationship between the actual and predicted values.

However the nature of the plots of the predicted values indicate that the technique

has to be further developed and maybe used in conjunction with other techniques to

develop a reliable predictor of operating system crashes.

This study also indicates that for data sets larger than 560 intervals (based on the

ten data sets studied here) an advance warning can be given.

Holder Exponent and Shewhart Series Analysis Crash predictions using multidimen-

sional holder exponent and shewhart series plots successfully detects changes and gives

crash prediction warnings. At this point one or more sets of Shewharts parameters

(Delay, Threshold and Alarm) have not been found that consistently remove false

positives from non crash data sets and false negatives from crash data sets.

Hurst Exponent Analysis and Long Range Dependence It has been clearly shown

here that the crash and hang up data sets exhibit self similarity making them can-

didates for the use of prediction techniques used in many well known problems like

Nile river flows. In addition it has also been shown here that the nature of the self

similarity changes as one approaches a crash or hang up. This is consistently seen and

is not observed in the case of nominal data. The multi-dimension holder exponent of

the three parameters monitored also clearly shows a self similarity in the crash data

sets and no self similarity in the non-crash data sets.

87

6.1 Future Work

1. Further research has to be conducted into the user of M5 Prime Model Tree Learners

as they show promise in being able to predict operating system crashes. Investigation

into making changes to the model tree and developing a better predictor as well

as investigation into the use of the model tree learner in conjunction with another

technique is recommended.

2. Further investigation is required in the use of Holder Exponent Analysis and Shewhart

Series to tuning the three parameters in order to develop a reliable predictor.

3. Further analysis by studying the delta of change of the hurst exponent from one

hour to the next can be performed to give a much better idea of the behavior of the

time series. Predictive methods mentioned in [38] and [4] can used to predict the

behavior of the parameter in question. Further, the lessons learnt from the study of

the self similar nature of Ethernet Traffic and the studies conducted on the impact

of self similarity on network performance can be applied to operating system data for

development of predictive models.

88

APPENDIX A

RUNNING THE CRASH TESTS

A.1 List of stress tests in the Microsoft Stress Kit

1. csd

2. default

3. directx

4. german

5. germancsd

6. hct

7. ie4

8. lastrun

9. netmeet

10. nt

11. nt4onnt5

12. ntam

13. ntds

14. ntjpn

15. ntnet

16. ntpnp

17. nttrmsrv

89

18. ntwin32k

19. ntwx86

20. ole

21. pkclient

22. pksrvtype

23. private

24. shellnt

25. tester

A.2 The default set of stress scripts

The Microsoft Stress Test Kit has the following stress groups in the default set.

1. required group -1

2. internet stuff 0

3. openglconflict 0 1

4. gdi 2

5. dsgrp 2

6. olebasic 1

7. mem 0

8. vdm 0 2

9. confoc 0 1

10. app 0 1

11. filesystem 1 2

90

12. net 0 1

13. direct3d 1 3

14. directdraw 1

15. directsound 1

16. directinput 0

17. lsasam 1 2

18. misc 1

19. shell 1 3

20. rpc group -1

21. rpc group2 -1

After each of the groups the numbers indicate the following-

-1 = Run all tests in this group

0 = Don’t include in the initial 16 tests selected

1 5 = run atleast one test but no more than 5 from this group

Each group consists of a set of tests. For more information please contact Microsoft Inc.

91

APPENDIX B

RUNNING THE FRACTAL APPLICATION

The Fractal Application was developed using Oracle’s JDeveloper. Include the files into a

project with JDeveloper and run the application.

Open the data file to be processed and select from the menu to either run Multi-Holder

Exponent computation or Shewarts series computation.

92

APPENDIX C

RUNNING THE JAVA HOLDER COMPUTATION

PROGRAMS OF JOHN CROWELL

Please note that the source code may have to be modified if you wish to process a data file

of size larger than 499999 records.

1. Create folders: These instructions are for a Windows 2000 or XP operating system.

(a) Create a folder ”C:\softwareaging”.Place the data files here. The data files should

have a naming format as Flog xxxxxxxx.csv. Where the eight x characters rep-

resent a number which may be used to indicate when the data file was generated.

For example to indicate that the data was collected on November 5, 2003 with the

hour part of the time being 9 pm the data file name should be Flog 03110521.csv.

(b) Under that folder create a folder called ”java” to hold the .java files

(c) Also create a folder called ”classes” to hold the compiled java byte-code files

(d) Create a folder ”C:\Perflogs” and in that create folders ”C”, ”H” and ”K” for

the three parameters we are dealing with here.

2. Compile : You must have the Java SDK installed and have the path variable set to

the bin directory of the SDK so that you can execute javac and the java commands.

(a) Change directory to ”C:\softwareaging\java”. This is where you have the files

compute.java, holder.java, MA.java, MDholder.java and Shewhart.java

(b) Run the command ”javac -d ..\classes *.java”

(c) Change directory to ”C:\softwareaging\classes”

3. Clean data files: Data files can have different names and different formats of data.

They have to be ”cleaned” and put in the right format. If there are quotes around

93

the data values(the windows performance monitor places quotes) be sure to remove

them using a unix command or with an awk script. The data format of the data file

should be as follows.

(a) Column 1 is the ”Date” column, Column 2 is the ”Available Bytes” column

Column 3 is the ”Pool Paged Allocs” column and Column 4 is the ”System

Cache Resident Bytes” column

(b) The first row should have the headings. The program automatically excludes the

heading row from processing.

4. Locate data files : Place the data files (with the file name and data formatted as

described in 3. above)into the folder ”C:\Perflogs”.

5. Run ”compute.class”: Change directory to ”C:\softwareaging\classes” and execute

the command ”java compute”. The files have the necessary output statements to

keep you aware of the processing thats going on. Please note that the set of files

provided here are the modified versions of John’s files. The modifications performed

were to use only 3 parameters and have status messages printed.

6. Computing the Shewhart’s Series : The Shewhart algorithm is used for detecting the

moment of downward shift in a time-series. For every data point in a time series the

mean and standard deveiation of the current fragment of the time series is computed

using all the previous points. If a certain inequality holds true for a number of

concurrent points it indicates the detection of a sustained drop. In this thesis a

second drop was attempted to be discovered to give a clear alarm of a crash.

(a) usage:”javaShewhart < datafilename >< delay >< threshold >< alarm > ”.

Set delay to 25 or 50, threshold to 5 and alarm to 15, 25, 40. Try different

combinations of the tuning parameters delay, threshold and alarm.

(b) Copy the .datMDholder file created in the classes directory into a separate folder,

say ”C:\Shewharts”. Use that as the input to shewhart program along with the

94

tuning parameters as the other input arguments. Please note that the program

takes a long time to run.

95

REFERENCES

[1] A. Pfening, S. Garg, A. P. M. T. and Trivedi, K. S., “Optimal software re-
juvenation for tolerating software failures,” Performance Evaluation, vol. 27 and 28,
October 1996.

[2] Aadland, D., “Detrending time-aggregated data,” October 2002.

[3] Barnsley, M., Fractals Everywhere. Academic Press, 1988.

[4] Beran, J., Statistics for Long-Memory Processes. Monographs on Statistics and Ap-
plied Probability. New York, NY: Chapman and Hall, 1994.

[5] Cameron L. Jones, Greg T. Lonergan, D. E. M., “Wavelet packet computation
of the hurst exponent,” Journal of Physics A: Mathematical and General, vol. 29,
pp. 2509–2527.

[6] Crowell, J., Multifractal Analysis of Memory Usage Patterns, M.S. Thesis. Mor-
gantown, West Virginia: West Virgnia University, 2001.

[7] Daubechies, I., Ten lectures on wavelets. Philadelphia, PA: SIAM, 1992.

[8] Eibe Frank, Yong wang, S. I. G. H. I. H. W., “Using model trees for clas-
sification,” Tech. Rep. 1, Department of Computer Science, University of Waikato,
Hamilton, New Zealand, 1998.

[9] Falconer, K., Fractal geomety; Mathematical foundations and Applications. John
Wiley and Sons, 1990.

[10] Feder, J., Fractals. New York: Plenum Press, 1988.

[11] Gammel, B. M., “Hursts r/s analysis,” http://www1.physik.tu-muenchen.de/ gam-
mel/matpack/html/Mathematics/RSAnalysis.html.

[12] Gray, J., “Why do computers stop and what can be done about it?,” tech. rep., HP
Labs, June 1985.

[13] Ian H. Witten, E. F., Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. San Francisco: Morgan Kaufmann, 1999.

[14] Ian H. Witten, Eibe Frank, L. T. M. H. G. H. S. J. C., “Weka: Practical
machine learning tools and techniques,” In: Proc ICONIP/ANZIIS/ANNES’99 Int.
Workshop: Emerging Knowledge Engineering and Connectionist-Based Info. Systems.
(1999) 192-196”, 1999.

[15] Ian Kaplan, L. K., “Estimating the hurst exponent,”
http://www.bearcave.com/misl/misl tech/wavelets/hurst/.

96

[16] J. S. Marron, C. P., Internet Traffic Data Analysis Study Group.
Department of Statistics, University of North Carolina, http://www-
dirt.cs.unc.edu/netdata/networkdata2004.htm, February 2003.

[17] Jeong, H., McNickle, D., and Pawlikowski, K., “A comparative study of gener-
ators of synthetic self-similar teletraffic,”

[18] Jiang, M., Nikolic, M., Hardly, S., and Trajkovic, L., “Impact of selfsimilar-
ity on wireless data network performance,” ”Proc. IEEE ICC’01”, Helsinki, Finland,
pp. 477–481, June 2001.

[19] Jonathan Crowell, Mark Shereshevsky, B. C., “Using fractal analysis to model
software aging,” tech. rep., Lane Department of CSEE, West Virginia University, Mor-
gantown, WV, May 2002.

[20] K. S. Trivedi, K. V. and Goseva-Popstojanova, K., “Modeling and analysis of
software aging and rejuvenation,” IEEE Annual Simulation Symposium, April 2000.

[21] Kaplan, I., “Estimating hurst exponent,” www.bearcave.com.

[22] Kaplan, I., “Spectral analysis and filtering with the wavelet transform,”
www.bearvave.com, vol. 10, August 2002.

[23] Kaplan, L. and Kuo, C. J., “Fractal estimaton from noisy data via discrete frac-
tional gaussian noise (dfgn) and the haar basis,” IEEE Trans. on Signal Proc., vol. 41,
December 1993.

[24] Karagiannis, T., SELFIS: A Short Tutorial. University of California, Riverside,
Department of Computer Science, November 2002.

[25] Koutsoyiannis, D., “Supplementary material for the paper climate change, the hurst
phenomenon, and hydrological statistics,”

[26] Leland, W. E. and Wilson, D. V., “High time-resolution measurement and analysis
of lan traffic: Implications for lan interconnection.,” In Proceeedings of IEEE Infocomm
’91, pp. 1360–1366, June 1991.

[27] M. Barnsley, R. Devaney, B. M. H. P. D. S. R. V. Y. F. M. M., The Science
of Fractal Images. Springer-Verlag, 1988.

[28] Mallat, S., “A theory for multiresolution signal decomposition: The wavelet rep-
resentation,” IEEE Transactions on Pattern Recognition and Machine Intelligence,
vol. 11, pp. 675–693, July 1989.

[29] Mandelbrot, B. B., “Long-run linearity, locally gaussian processes, h-spectra and
infinite variances,” Intern. Econom. Rev., vol. 10, pp. 82–113, May 1969.

[30] Mandelbrot, B. B., The Fractal Geometry of Nature. New York: W. H. Freeman &
Co., 1983.

[31] Mark Shereshevsky, Jonathan Crowell, B. C. V. G. Y. L., “Software aging
and multifractality of memory resources,” International Conference on Dependable
Systems and Networks, p. 721, 2003.

97

[32] Marshall Brain, R. R., Win32 System Services: The Heart of Windows 98 and
Windows 2000. Addison Wesley, December 2000.

[33] Martin J. Fischer, T. B. F., “Fractals, heavy-tails, and the internet,” SIGMA,
Mitretek Systems, McLean, Virgnina, 2001.

[34] Mengzhi Wang, tara Madhyasta, N. H. C. S. P. c. F., “Data mining meets
performance evaluation¿ fast algorithms for modeling bursty traffic,” 18th International
Conference on Data Engineering, 2002, 2002.

[35] Murad S. Taqqu, Vadim Teerovsky, W. W., “Estimators for long-range depen-
dence: an empirical study,” Fractals, vol. 3, no. 4, pp. 785–798, 1995.

[36] P. Devynck, G. Wang, G. A. G. B., “The hurst exponent and long-time cor-
relation,” 27th EPS Conference on Contr. Fusion and Plasma Physi. Budapest,
vol. 24B(2000), pp. 632–635, June 2000.

[37] Parnas, D. L., “Software aging,” In Proceedings of the 16th International Conference
on Software Engineering, Sorrento, Italy, pp. 279–287, May 1994.

[38] Peter J. Brockwell, R. A. D., Time Series: Theory and Methods. New York, NY:
Springer-Verlag, 1987.

[39] Prendergast, B. T., Windows Architecture I & II MCSD Study Guide. Wiley Pub-
lishing, 1998.

[40] Quinlan, J. R., “Learning with continuous classes,” Proceedings of AI’92 (Adams
and Sterling Eds), World Scientific, pp. 343–348, 1992.

[41] S. Garg, A. van Moorsel, K. V. and Trivedi, K. S., “A methodology for detec-
tion and estimation of software aging,” Int’l. Symp. on Software Reliability Engineer-
ing,ISSRE 1998, November 1998.

[42] S. Garg, A. Puliafito, M. T. and Trivedi, K. S., “On the analysis of software
rejuvenation policies,” Annual Conference on Computer Assurance (COMPASS), June
1997.

[43] S. Garg, A. Puliafito, M. T. and Trivedi, K. S., “Analysis of preventive main-
tenance in transactions based software systems,” IEEE Transactions on Computers,
January 1998.

[44] Saupe, D., Algorithms for random fractals, Chapter 2 of The Science of Fractal Images
by Barnsley et al. Springer-Verlag, 1988.

[45] Schreiber, S. B., Exploring Windows 2000 Memory. Addison Wesley, July 2001.

[46] Tabini, M., “The mtlib memory-tracking library, a memory-leak-tracking system for
c developers,” Dr. Dobb’s Journal, October 2003.

[47] Thomas Karagiannis, M. F., “Selfis: A tool for self-similarity and long-range de-
pendence analysis. extended abstract,”

98

[48] Thomas Karagiannis, M. F., “The selfis tool: Long-range dependence and self-
similarity analysis,” 1st Workshop on Fractals and Self-Similarity in Data Mining:
Issues and Approaches (in KDD) Edmonton, Canada, July 2003.

[49] Trivedi, K. S., “Software bugs,” http : //srejuv.ee.duke.edu/software bugs.htm,
1993.

[50] UCI, “Collection of different datasets http://www.ics.uci.edu/ mlearn/mlsummary.html,”

[51] V. Castelli, R. E. Harper, P. H. S. W. H. K. S. T. K. V. and Zeggert, W. P.,
“Proactive management of software aging,” IBM Journal of Research & Development,
vol. 45, March 2001.

[52] V. Teverovsky, Murad S. Taqqu, W. W., “A critical look at lo’s modified r/s
statistic,” Journal of Statistical Planning and Inference, vol. 80, pp. 211–227, May
1998.

[53] Vaidyanathan, K. and Trivedi, K. S., “A measurement-based model for estimation
of software aging in operational software systems,” Int’l. Symp. on Software Reliability
Engineering ISSRE 1999, November 1999.

[54] Vaidyanathan, K. and Trivedi, K. S., “A comprehensive model for software rejuve-
nation,” IEEE Transactions on Dependable and Secure Computing, vol. 2, April-June
2005.

[55] Vern Paxson, S. F., “Wide-area traffic: The failure of poisson modeling,”
IEEE/ACM Transactions on Networking, vol. 3, pp. 226–244, June 1995.

[56] Walter Willinger, Murad S. Taqqu, R. S. D. V. W., “Self-similarity in high-
speed packet traffic: Analysis and modeling of ethernet traffic measurements,” Statis-
tical Science, vol. 10, no. 1, pp. 67–85, 1995.

[57] Wang, Y. and Witten, I., “Inducing model trees for continuous classes,” Proc of
Poster Papers, 9 th European Conference on Machine Learning, Prague, April 1997.

[58] Will E. Leland, Murad S. Taqqu, W. W. D. V. W., “On the self-similar nature of
ethernet traffic,” tech. rep., Bellcore Inc., Boston University, Morristown, New Jersey,
March 1993.

[59] Will E. Leland, Murad S. Taqqu, W. W. D. V. W., “On the self-similar nature
of ethernet traffic,” IEEE/ACM Transactions on Networking, vol. 2, pp. 1–15, February
1994.

[60] Y. Bao, X. S. and Trivedi, K. S., “A workload-based analysis of software aging and
rejuvenation,” to appear in IEEE Transactions on Reliability.

[61] Y. Bao, X. S. and Trivedi, K. S., “Adaptive software rejuvenation: Degradation
model and rejuvenation scheme,” Proceedings of the International Conference on De-
pendable Systems and Networks, DSN2003,San Francisco, pp. 241–248, June 2003.

[62] Y. Huang, C. M. R. Kintala, N. K. and Fulton, N. D., “Software rejuvenation:
Analysis, module and applications,” In Proc. 25th International Symposium on Fault-
Tolerant Computing, Pasadena, CA,, 1995.

99

VITA

SUMMARY

• 6 years experience in the design & development life cycle of object oriented applications,

distributed systems, database management & customer relationship management systems

• MSEE and pursuing MS in Computer Science with excellent academic record

• Brainbench Certified C++ Programmer

PROFESSIONAL SKILLS

Languages Java, C++, C, TCL/TK, PL/SQL, XML, JavaScript, HTML, AWK, Shell Scripts

IDE Visual Studio 6.0, Visual Studio .NET, Oracle Jdeveloper10g, DELPHI

Technologies J2EE, MFC, MPI, TCP/IP, UDP, RPC, Web Services

Database Administration Sybase SQL Server 12.0, Microsoft SQL Server 2000, Oracle 9i Database,

Oracle 9i Developer Suite, Oracle Warehouse Builder 9.0.3.37, MySQL 4.0.13, Postgresql 7.4

Operating Systems UNIX, FreeBSD, Linux, WINDOWS XP, 2000

CASE Tools Rational Rose Enterprise Edition, Teamwork CASE Tool, Scitools Understand Java

Siebel eBusiness 2000 Siebel Tools, EIM, EAI, Siebel VB, Call Center Enterprise, Server and

Application Administration, Requirements Analysis, Workflow and Assignment Manager

Other CRM Tools Scopus Foundation, Synchronicity

Application Servers Weblogic Server, Zope, Tomcat, Axis, Websphere Server, MS IIS

Enterprise Systems IBM DB2 Content Manager and IBM WebSphere II OmniFind Edition

WORK EXPERIENCE

• (December 2004 - Present) Software Engineer, IBM Inc.

• (October 2004 - November 2004) Software Engineer, Global Pundits Inc.

• (September 2004 – October 2004) Consultant, Information Solutions Group, The World Bank

• (June 2004 – August 2004) Summer Intern, Information Solutions Group, The World Bank

100

• (December 2003 – May 2004) Graduate Assistant, Business Intelligence Project, Office of

Information Technology, WVU

• (Jan 2002 – December 2003) Research Assistant, NASA IV and V and Limbic Systems Re-

search Projects Department of CSEE, WVU

• (Jan 1999 – Dec 2001) Member of Technical Staff 1, Broadband Access/ FPGA Groups

Lucent Technologies Microelectronics /Agere Systems

– (Oct 2000 Dec 2001) BBACS Organization Siebel Implementation Project

– (Jan 2000 – Sept 2000) Siebel 99.5 and 2000 Implementation Projects Setup Siebel

eBusiness 2000 and 99.5 for FPGA, Sonet and BBACS Groups.

– (Jan 1999 – Dec 2001) CRM System Development/ Administration

• (Nov 1998 – Jan 1999) Software Developer-Insurance Software Development Project, Norell

Information Systems, Cincinnati Financials, Ohio

• (Aug 1996 – Aug 1998) Research Assistant/Teaching Assistant- NSF Funded Project, West

Virginia University, Morgantown, WV

EDUCATION

1. Master of Science in Computer Science WEST VIRGINIA UNIVERSITY Morgantown, WV,

Expected, Spring 2006, GPA 4.0/4.0, Advisor: Prof. B. Cukic

2. Master of Science in Electrical Engineering WEST VIRGINIA UNIVERSITY Morgantown,

WV, August 1998, GPA 4.0/4.0, Advisor: Prof. S. K. Tewksbury

3. Bachelor of Engineering in Electronics and Communications Engineering, ANDHRA UNI-

VERSITY, Visakhapatnam, India, May 1996, Advisor: Prof. G. S. N. Raju

4. Honors in Systems Management National Institute of Information Technology (NIIT), India,

May 1994, Grade Excellent

ACHIEVEMENTS

1. Awarded IBM Bravo Awards April and May 2005

2. Publicly recognized in All Hands Meeting for work performed on TIMES

3. Awarded Lucent Performance Award for implementation of a Customer Relationship Man-

agement (CRM) System for the SONET/ONS Customer Applications Group, August 2000

101

4. Placed in the top of the batch at the end of MSCS and MSEE Programs

5. Brainbench Certification in C++, September 2003

PUBLICATIONS

• Validation and Reliability Estimation of a Fingerprint Image Registration Software, ISSRE

2004, St-Malo, France

• Software Aging and Multifractality of Memory Resources, DSN-2003, San Francisco, CA, 2003

• Int. Memory, Network Architectures for Cluster Organized, Parallel DSP architectures, Santa

Cruz, CA. 1998

• A Parallel DSP Testbed with a Heterogeneous and Reconfigurable Network Fabric, IEEE

1997, ISIS, Austin, TX

102

	Modeling operating system crash behavior through multifractal analysis, long range dependence and mining of memory usage patterns
	Recommended Citation

	Modeling Operating System Crash Behavior through Multifractal Analysis, Long Range Dependence and Mining of Memory Usage Patterns

		2006-05-02T18:24:50-0400
	John H. Hagen
	I am approving this document

