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Abstract

Given the explosion of new sensing technologies, data storage has become
significantly cheaper and consequently, people increasingly rely on wearable
devices to create personal digital archives. Lifelogging is the act of recording
aspects of life in digital format for a variety of purposes such as aiding human
memory, analysing human lifestyle and diet monitoring. In this dissertation
we are concerned with Visual Lifelogging, a form of lifelogging based on the
passive capture of photographs by a wearable camera. Cameras, such as Mi-
crosoft’s SenseCam can record up to 4,000 images per day as well as logging
data from several incorporated sensors. Considering the volume, complexity
and heterogeneous nature of such data collections, it is a significant challenge
to interpret and extract knowledge for the practical use of lifeloggers and oth-
ers.

In this dissertation, time series analysis methods have been used to identify
and extract useful information from temporal lifelogging images data, without
benefit of prior knowledge. We focus, in particular, on three fundamental
topics: noise reduction, structure and characterization of the raw data; the
detection of multi-scale patterns; and the mining of important, previously un-
known repeated patterns in the time series of lifelog image data.

Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the
feature of very high correlation in lifelogging image collections. Secondly, we
show that study of equal-time Cross-Correlation Matrix demonstrates atypi-
cal or non-stationary characteristics in these images. Next, noise reduction in
the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT)
before Wavelet multiscaling is used to characterize the ‘most important’ or
‘unusual’ events through analysis of the associated dynamics of the eigenspec-
trum. A motif discovery technique is explored for detection of recurring and
recognizable episodes of an individual’s image data. Finally, we apply these
motif discovery techniques to two known lifelog data collections, All I Have
Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recur-
rent patterns of multiple-lifelogging users.

x



Chapter 1

Introduction

1.1 Motivation

Many people have recently developed the habit of keeping certain documents

or materials (e.g. photographs, postcards, letters, bills, etc) throughout their

day-to-day lives. Such ways of storing collections can be considered as personal

archives. With the ubiquity of personal computing devices and advances in

storage technology, the process or action of storing increasing amounts of per-

sonal information in digital format, is referred to as Personal Digital Archives

or Personal Informatics (Waters & Garrett 1996, Lindley et al. 2013, Rooksby

et al. 2014). Today, individuals can choose from a variety of tools and ser-

vices to achieve this. Examples include messaging systems (Email, What-

sApp, SMS...), social network activities (Facebook, Twitter, Linkedin...), data

shared and stored in the information cloud (YouTube, Pinterest, Instagram..)

or posted directly on Web blogs (WordPress, Blogger, Tumblr...). In partic-

ular, as these activities are directly connected to the rise of the Internet of

Things (IoTs), this topic has received a lot of attention over the last years
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(Atzori et al. 2010, Gubbi et al. 2013, Sarkar et al. 2018).

With the proliferation of new sensing technologies has come significantly

cheaper hard-drive or cloud storage and consequently, this has led individuals

increasingly to rely on such wearable devices to create their personal digital

archives. There is also a growing number of people interested in constant

measurement of the performance level of their bodies, where these are using

a variety of types of equipment to collect and store the data. These individ-

uals can be considered as part of the Quantified Self (QS) movement1 that

uses instruments to record numerical data on all aspects of our lives: input

(food consumed, surrounding air-quality), states (mood, arousal, blood oxy-

gen levels), and performance (mental, physical). Such self-monitoring and

self-sensing, which combines wearable sensors and wearable computing, is also

sometimes referred to as Lifelogging. Lifelogging information shares features

(volume, variety, velocity and veracity) usually identified with so called Big

Data (Gurrin et al. 2014).

Lifelogging has been around for a long time, but has only become popular

in recent years. Consequently a generally accepted definition of lifelogging has

yet to crystallize. Lifelogging can however be defined as “a form of pervasive

computing consisting of a unified digital record of the totality of an individual’s

experiences, captured multimodally through digital sensors and stored perma-

nently as a personal multimedia archive” (Dodge & Kitchin 2007). Recently,

Gurrin et al. (2014) have argued that “lifelogging represents a phenomenon

whereby people can digitally record their own daily lives in varying amounts

of detail, for a variety of purposes”. “Lifelogging” is considered as a process of

1http://quantifiedself.com
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automatically, passively and digitally recording aspects of our life experience,

creating a comprehensive archive of an individual’s quotidian existence. Lifel-

ogs can consist of such unstructured data as heterogeneous sensor data such

as images, GPS coordinates, WiFi streams, accelerometer and light level mea-

surements amongst others. Lifelogging can take many forms, such as capturing

everything seen through wearable cameras, detection of people met (through

bluetooth devices), identifying places visited (through GPS), calculating dis-

tances or speed (by accelerometer readings), etc. One vision of lifelogging is

that the user never forgets anything since everything is being tracked, pho-

tographed and recorded. Lifelogging can provide useful information for the

lifeloggers in different domains such as lifestyle analysis (Doherty et al. 2011,

Bolaños et al. 2013), diet monitoring (Reddy et al. 2007), analysis of Activities

of Daily Living (ADLs) (Cartas et al. 2017), recognition of physical activities

(Zhang et al. 2010), memory reinforcement (Spector et al. 2003, Sellen et al.

2007, Harvey et al. 2016) and so on.

A special case of lifelogging is Visual Lifelogging (also called Egocentric

Vision (Doherty et al. 2013, Betancourt et al. 2015, Bolaños et al. 2017)),

where lifeloggers wear a camera mounted on the head (Hori & Aizawa 2003,

Mann et al. 2005) or chest (Blum et al. 2006, Sellen et al. 2007), that cap-

tures personal activities through the medium of images or video. Despite its

relative novelty, visual lifelogging is gaining popularity due to projects such

as the Microsoft SenseCam camera (Hodges et al. 2006). The SenseCam is

a small, lightweight wearable device that automatically captures a wearer’s

every moment as a series of images and sensor readings. Normally, the device

captures an image at the rate of one every 30 seconds and collects about 4,000

3



images in a typical day. Research shows that the SenseCam can be an effective

memory-aid device (Spector et al. 2003, Sellen et al. 2007, Harper et al. 2007,

2008, Harvey et al. 2016), as it helps to improve retention of an experience.

However, wearers’ seldom wish to review life events by browsing large collec-

tions of images manually (Ashbrook et al. 2006, Lin & Hauptmann 2006, Bell

& Gemmell 2007, Lee & Dey 2007). The challenge tackled in this thesis then

is to manage, organise and analyse these large image collections in order to

interpret and extract knowledge for practical use of lifeloggers and others.

In this thesis, we argue that the lifelogging process is a Complex System as

are the data collected (Li, Crane & Ruskin 2013, Li, Crane, Ruskin & Gurrin

2013b, Li et al. 2014, Li, Crane, Ruskin & Gurrin 2013a, Li, Crane, Gurrin

& Ruskin 2016, Li, Gurrin, Crane & Ruskin 2016). After all, Complex Sys-

tems are often affected by a variety of phenomena at multiple temporal scales

and the data, which typically display non-linear dynamics, are unpredictable,

non-stationary and high dimensional. From the Internet to the global ecosys-

tem, from road traffic networks to stock markets, from biological to social

systems, time series methods are often employed to monitor and analyze com-

plex, dynamic systems, which exhibit atypical or non-stationary characteristics

(Hamilton 1989, Gopikrishnan et al. 2000, Schütte & Huisinga 2003, Horenko

et al. 2008, Putzig et al. 2010, Vespier et al. 2012).

To add difficulties of analysis, lifelogging data is also affected by external

factors such as temperature, movement, light and so on. Despite this, these

data record repeated patterns at different resolutions due to the device’s re-

sponse to recurring events such as everyday life activities. In consequence of

these characteristic features, lifelogging is an ideal test-bed for evaluating the
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methods we introduce, which typically have been applied previously to other

domains, (as above).

1.2 Objectives

In this dissertation, time series methods have been used to identify and extract

useful information from temporal lifelogging image data, for which we do not

have the benefit of prior knowledge. Important aspects include: noise reduc-

tion, structure and characterization of the raw data; the detection of multiscale

patterns; and the mining of important, previously unknown repeated patterns.

To achieve this, we have developed the following set of specific sub-goals or

objectives:

1. To detect presence of any strong long-range correlation relationships in

image time series (through Detrended Fluctuation Analysis (DFA)).

2. To demonstrate atypical or non-stationary characteristics in image time

series (through investigation of equal-time Cross-Correlation Matrix).

3. To address the issue of noise reduction in the Cross-Correlation Matrix

(using Random Matrix Theory (RMT)).

4. To characterise the ‘most important’ or ‘unusual’ events to the wearer

(through analysis of the associated dynamics of the eigenspectrum).

5. To identify feature patterns characteristic of an individual’s ‘lifestyle’

(using a motif discovery technique in image time series).

6. To test our motif discovery technique (by application to two known lifelog

data collections, in this case the AIHS and NTCIR-12 Lifelog).
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1.3 Outline of Thesis

Here, we give a brief outline of the dissertation, summarizing the contents of

the following chapters. As most chapters are based on previous publications

by the author, we also give the appropriate references, where applicable.

In Chapter 2, (Background) we outline the research context, review pre-

vious work and introduce some of the ideas followed in the thesis.

In Chapter 3, (Multiscaled Cross-Correlation Dynamics) we first intro-

duce the Detrended Fluctuation Analysis (DFA) method, which aims to de-

tect long-range correlation relationships in image time series. Equal-time

Cross-Correlation Matrix is analysed to characterise dynamical changes in

non-stationary multivariate image time series. Finally, the Maximum Overlap

Discrete Wavelet Transform (MODWT) is used to calculate the equal-time

Cross-Correlation Matrix over different time scales and to examine the details

of the eigenvalue spectrum. This work has been published in the following

papers:

• Li, N., Crane, M. & Ruskin, H. J. (2013), ‘Automatically Detecting

“Significant Events” on SenseCam’, International Journal of Wavelets,

Multiresolution and Information Processing 11(06), 1350050.

• Li, N., Crane, M., Ruskin, H. J. & Gurrin, C. (2013b), ‘Multiscaled

Cross-Correlation Dynamics on SenseCam Lifelogged Images’, Interna-

tional Conference on Multimedia Modeling, pp. 490–501.

In Chapter 4, we consider use of Random Matrix Theory (RMT) in order

to investigate noise reduction in the Cross-Correlation Matrix. This work has

been published in the following papers:
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• Li, N., Crane, M., Ruskin, H. J. & Gurrin, C. (2013a), ‘Application

of Statistical Physics for the Identification of Important Events in Vi-

sual Lifelogs’, IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), pp. 589–592.

• Li, N., Crane, M., Ruskin, H. J. & Gurrin, C. (2014), ‘Random Matrix

Ensembles of Time Correlation Matrices to Analyze Visual Lifelogs’, In-

ternational Conference on Multimedia Modeling, pp. 400–411.

In Chapter 5, (Finding Motifs in Large Personal Lifelogs) we introduce

a motif discovery technique to explore detection of recurring and recognizable

episodes of an individual’s image data. These discovery techniques are applied

to two lifelog data sets, the AIHS and NTCIR-12 Lifelog, in order to examine

multivariate recurrent patterns of multiple-lifelogging users. This work has

been published in the following papers:

• Li, N., Crane, M., Gurrin, C. & Ruskin, H. J. (2016), ‘Finding Motifs

in Large Personal Lifelogs’, Proceedings of the 7th Augmented Human

International Conference, pp. 9:1–9:8.

• Li, N., Gurrin, C., Crane, M. & Ruskin, H. J. (2016), ‘NTCIR-12 Lifelog

Data Analytics’, Proceedings of the first Workshop on Lifelogging Tools

and Applications, pp. 27–36.

In Chapter 6, Conclusions and Future Work, we provide a summary of

the research to date, our conclusions and a discussion of potential future work.
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Chapter 2

Background

2.1 Introduction

In this chapter, we elaborate on the history of lifelogging and its applications

and review prior work on visual lifelogging, followed by a survey of event seg-

mentation literature. Introducing the scientific field of Complex Systems, we

describe some of the common characteristics found in nature, society and sci-

ence. The features that are common to visual lifelogging and its representation

as a complex system, such as high correlation, non-linear dynamics and mul-

tiple time scales, are briefly described. Next, we review several time series

concepts and methods that are proposed for organising, analysing and man-

aging lifelogging data sets. Finally, we introduce the data sets that are used

in this thesis to test our methods.
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2.2 History and Applications of Lifelogging

Lifelogging has a very long history: it can after all, arguably be traced back to

1917, when Fuller created a very large scrapbook called “Dymaxion Chronofile”

(Harwood 2009), which he subsequently used to document all correspondence,

manuscripts, drawings and audio-visual material and other documents relevant

to his personal and professional life. This record of his personal archive divided

into 15-minute increments is now the center piece of the Buckminster Fuller

Archive at Stanford University.

The concept of logging and storing all of an individual’s accumulated data

(in digital format) was first proposed by the American engineer Bush in 1945

under the article “As We May Think”. He described a hypothetical computer

system called “Memex”, as illustrated in Fig. 2.1. The Memex would pro-

vide an “enlarged intimate supplement to one’s memory”. Bush describes a

Memex as a desk-based mechanical device that would allow individuals, specif-

ically researchers, to develop their personal research archives by creating and

following associative links or trails, allowing content to be used for their own

individual use or for sharing with others (Bush & Think 1945, Buckland 1992).

Although this device was never built, the concept of the Memex influenced the

development of early personal knowledge base software.

Early research into lifelogs started in the 1980s when Mann began using

wearable computing devices to create a record of his life. He performed sig-

nificant studies on visual memory prosthetics that transformed his eye into a

camera and his body into a Web server (Mann 1997, 2004). He refers to this

technique as “cyborg logging” or “glogging”2. As one of the pioneers in the

2http://wearcam.org/glogs.htm
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Figure 2.1: The Memex. Source: Bush & Think (1945)

field in lifelogging his research has led to the development of novel types of

sensors and display hardware.

Another milestone in lifelogging research was the “MyLifeBits” project

sponsored by Microsoft in 1998 to explore the potential of digitally chroni-

cling a person’s life (Gemmell et al. 2002, 2006). MyLifeBits was inspired by

the above-mentioned Memex idea. The project focuses on preserving the life-

profile of veteran researcher Bell. Using an infrared “SenseCam” camera worn

around his neck, as well as scanners, and computing devices, Bell has cap-

tured a lifetime’s worth of photographs, pictures, presentations, home movies,

videotapes lectures, voice recordings, articles, books CDs, letters, memos and

papers into the MyLifeBits software (Bell & Gemmell 2007). The MyLifeBits

software supported full-text search, text and audio annotations, hyperlinking,

reporting, visualising and clustering between content. This project shows the

origins of the idea of lifelogging and digital self-tracking. The goal techno-

logically is to create a personal archive, or a “portable, infallible, artificial

memory” that can be exploited to increase job productivity, serve as a basis
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Figure 2.2: Overview of MyLifeBits. Source: Gemmell et al.
(2006)

for medical treatment or to improve performance in school and in many other

scenarios.

Much of the early research into lifelogging has focused, therefore, on de-

veloping technology to automatically populate a computer-based storage of

life experiences in as much detail as possible. Until around 2007 there were

no commercial lifelogging apps available but, through the emerging ubiquity

of smartphone platforms (notably iOS and Android) and their associated app

stores, we now have hundreds of lifestyle apps, many in the health and fitness

sector with a significant number focussed specifically on lifelogging. While sen-

sors such as heart rate monitors and pedometers have been around for more

than ten years, the automated recording and especially processing of such data

into a lifelogging format is more recent (Li & Hopfgartner 2016).

The technology research and advisory company Gartner predicts that, by

2020, the analysis of consumer data, collected from wearable devices, will be
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the foundation for up to five percent of sales from the Global 1000 companies

(Franklin 2013). Given these predictions, it comes as no surprise that more

and more companies such as Apple, Fitbit, Garmin and Huawei entered the

market with novel wearable devices. Due to improved sensing devices, increas-

ing processor power, reducing cost of data storage and improvements in speed

of data networks and battery technology, a multitude of devices, services and

apps are now available that track almost everything we do. Lifelogging apps

of note include Saga, Track my Life, Instant, Journaly, Loca, Fit Time and

Sleeply. In addition to the phone apps there has been a proliferation of wear-

able technologies such as Fitbit3, Google Glass4, Apple Watch5 and many more

that can track activities and specific aspects of a subject’s life.

2.3 State-of-the-Art in Visual Lifelogging

Wearable cameras play an important role in research on lifelogging since analysing

camera data streams can reveal a lot of information. Visual Lifelogging is a

form of lifelogging based on the passive capture of photographs of a person’s

experience. Fig. 2.3 shows some pictures taken by author-wearable camera,

the SenseCam device, over the course of a day.

3https://www.fitbit.com/ie/
4https://www.x.company/glass/
5https://www.apple.com/ie/watch/
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Figure 2.3: Examples of images taken by author-worn Sense-
Cam.

Visual lifelogging as such also dates back to early work of Mann, who led

the Digital Eye project in the 1980s that aimed to develop the first customised

lifelogging and ubiquitous computing hardware, called EyeTap (see Fig. 2.4

(a)). This device allows “the user’s eye to operate as both a monitor and a

camera as the EyeTap intakes the world around it and augments the image the

user sees.” Mann has gone on to develop many generations of wearable camera

devices for recording aspects of his life by means of continuously improving

technology. In 1994 Mann began to record his life 24 hours per a day and 7 days

per week. The EyeTap addressed many of the fundamental challenges found

in wearable lifelogging (personal imaging (Mann 2004)). From the observer’s

perspective, EyeTap looks quite similar to today’s Google Glass as shown Fig.

2.4 (b).

Visual lifelogging gained in popularity when Microsoft introduced their

SenseCam (as shown in Fig. 2.4 (c)) to the market in 2006. Motivated by an

accident causing memory-loss, the designer wished to reinforce recall by use of

an automatic device that could automatically record and save everything that

occurred (Selke 2016). The SenseCam is a small and lightweight device that

is designed to be worn on the chest and to take images and sensor readings
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passively, without user-intervention. Normally, the SenseCam takes a picture

every 30 seconds and thus thousands of pictures will be collected per day.

Wearable Cameras such as Microsoft SenseCam and the more recent Narrative

Clip (as shown in Fig. 2.4 (d)), are producing low temporal resolution (LTR)

images (e.g. 2-4 frames per minute) that allow capturing of images over a

long time period without the need to recharge the battery. Consequently,

they are a promising source for inferring details such as behaviour patterns,

habits or lifestyles of the user. Other devices like the GoPro and Google

Glass are wearable cameras that are commonly mounted on the head. These

devices have a relatively high temporal resolution (HTR) (e.g. 25-60 frames

per second); in other words, they can capture smooth continuous video during

certain moments of time with high quality resolution. Consequently, these

devices offer potential for in-depth analysis of daily or special activities.

The visual analysis of the HTR wearable cameras (continuous video) data

can be treated as a conventional videos processing task. The recent develop-

ment of deep learning techniques in the computer vision field has resulted in

powerful approaches to extract meaningful context from video material. How-

ever, lifelogging cameras with LTR are generating temporally ordered images

taken over the course of a day, not continuous video. Therefore, we cannot

just simply adopt deep learning techniques for analysing these temporal images

data sets. They are much more challenging than the conventional videos due

to the nature of the data sets: free motion of the camera with low resolution

images, long and unstructured images sets, motion blur and rapid illumination

changes (very noisy), large number of non-informative images, etc (Tan et al.

2014). Hence, computer vision techniques based on feature extraction have
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(a) EyeTap (b) Google Glass (c) SenseCam (d) NarrativeClip

Figure 2.4: A range of the popular wearable cameras. Source:
Streams (2012), Michael et al. (2018)

proven to be rather limited for such photographic cameras data streams.

In this thesis, we focus on Visual Lifelogging created by low temporal res-

olution cameras such as SenseCam. The SenseCam has received a lot of at-

tention from scientific researchers with more than three thousand papers on

various aspects of lifelogging since 2005. It has been shown that such lifelogging

images and other data can be periodically reviewed to recall and strengthen

an individual’s memory (Hodges et al. 2006, Sellen et al. 2007, Berry et al.

2007, Arcega et al. 2013). Lifelogging enables memory to be searchable, re-

trievable and shareable. The use of wearable cameras such as SenseCam has

been explored, so far mainly for memory enhancement, but also for health

monitoring and well-being, in social iterations and for leisure activity records

amongst others (Fleck & Fitzpatrick 2009, Aghaei et al. 2018). A recent study

suggests that lifelogging has even wider application such as detecting stress in

real-world driving (Dobbins & Fairclough 2018), analysing human nutritional

habits (Aguilar et al. 2018) and that an increasing number of devices are likely

to be available in the near future (Askoxylakis et al. 2011).

One observation that can be made is that wearable cameras such as Sense-

Cam generate a very large amount of data for a single typical lifelogger’s day.

Since many will contain similar features, not all pictures are needed to capture
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moments of the lifelogger’s life. The challenge with lifelogging, especially vi-

sual lifelogging, is extracting meaningful insights for the users. To date, much

of the research on lifelogging has focused on aspects such as developing sen-

sors, capture and storage of data (Mann et al. 2005, De Jager et al. 2011, Qiu

et al. 2012), processing data into annotated events (Lin & Hauptmann 2006,

Doherty & Smeaton 2008, Doherty et al. 2008, Spriggs et al. 2009, Li, Crane

& Ruskin 2013, Lu & Grauman 2013, Bolaños et al. 2014, Poleg et al. 2014,

Talavera et al. 2015, Castro et al. 2015), search and retrieval of information

(Wang et al. 2006, Aghazadeh et al. 2011, Wang & Smeaton 2012, Chan-

drasekhar et al. 2014), assessing user experience and designing user interfaces

for applications of the memory aids (Hodges et al. 2006, Sellen et al. 2007,

Berry et al. 2007, Arcega et al. 2013), diet monitoring (Reddy et al. 2007),

analysis of activities of daily living (ADL) (Danna & Griffin 1999) and so on.

However, although some of these challenges have been comparatively well ad-

dressed (Hodges et al. 2006), resulting in improved wear-ability of devices and

inexpensive storage, (Gemmell et al. 2006), the challenge has now shifted to

interpretation and extraction of knowledge from the vast quantities of captured

data. Research on visual lifelogging data mainly focuses on five areas: Data

Acquisition, Informative Image Detection, Temporal Segmentation, Egocentric

Summarization and Content-Based Search and Retrieval (Bolaños et al. 2017).

In this thesis, we are principally concerned with Temporal Segmentation, in

an effect to render tractable the large volume of lifelogging data.

Motived by Lin and Hauptmann’s argument that “...continuous video needs

to be segmented into manageable units ...” (Lin & Hauptmann 2006), segment-

ing visual lifelogging data into different events or activities offers an ideal way
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to organise and structure lifelogging images. Previous work has been carried

out on the segmentation of lifelogs by Doherty et al. (2007) who used a wear-

able camera’s readings such as low-level image descriptors, audio, temperature,

light and movement data to segment the SenseCam images into distinct ac-

tivities. However, the accuracy of automatic detection varies greatly and an

analysis of specific activities is still lacking. Later on, Doherty & Smeaton

(2008) improved their previous work on event segmentation by incorporat-

ing time periods (morning, afternoon and evening) as crude event boundaries.

They segmented SenseCam images into approximately twenty distinct events

that occur in a wearer’s day, which translates to over 7,000 events per year (as

illustrated in Fig. 2.5). Nevertheless, this large collection of personal infor-

mation still contains a significant percentage of routine events and an analysis

of individual specific activities on natural activity boundaries is still lacking.

More recent work carried out by Wang & Smeaton (2013) focused on the idea

of developing an ontology framework by mapping low-level features like colour

and texture, to high-level concepts such as ‘indoor’, ‘outdoor’, ‘driving’, ‘eat-

ing’ etc. Although this method improves accuracy, it is still important to note

that the approach is based on training classifiers on a set of annotated ground

truth6 images. Subsequently, an automatic egocentric video segmentation was

developed by applying the R-clustering segmentation approach based on a

convolutional neural network (CNN, or ConvNet) technique to compute the

whole image as a fixed feature extractor for image representation (Talavera

et al. 2015). The authors offer the possibility to integrate different cluster-

ing and segmentation methods, giving more robust results. More recently,

6Ground truth is a term used in statistics and machine learning that means checking the
results of machine learning for accuracy against the real world.
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researchers have looked at the relationship between lifelog images and non-

lifelog images, by applying a domain-adversarial CNN deep learning model to

the domain of visual lifelogs in order to transfer knowledge from the domain

of visual non-lifelog data. The accuracy of this approach depends heavily on

the number of training examples (Ye 2018).

To date, advances in visual Lifelogging analysis is driven by computer vision

research. However, the automatic visual analysis of lifelogs remains a signifi-

cant challenge due to two main reasons: On the one hand, wearable cameras

have a small field of view which produces low temporal resolution images; On

the other hand, the free motion of wearable cameras result in most images often

being rotated, blurred, or capturing fast illumination changes. Many computer

vision researchers have tried to extract low-level features such as colour his-

tograms, textures, and shapes from visual lifelogging images. Although the

computational cost for extracting low level features are incredibly cheap, re-

searchers struggle to achieve high accuracy for automatic visual analysis. More

recently, deep learning networks have been heavily applied by computer vision

researchers to classifying and tagging images and the level of accuracy has

improved significantly. However, the effective transfer of learned models to

different application domains such as visual lifelogs is still questionable (Wang

et al. 2018). This is due to the quality of lifeloggging images, as outlined above.

All methods mentioned above apply machine learning techniques or deep

learning techniques. The drawback of these techniques is that they require

prior training of models, so that features which do not appear in the training

data set tend to be less well detected in the new data. Given that visual

lifelogs usually consist of large and often unstructured collections of multimedia
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Figure 2.5: Segmenting a day of SenseCam images into distinct
events. Source: Doherty (2009)

information, such rule-based and concept-based techniques may not offer the

best solution for this content. Furthermore, for privacy reasons, the amount

of visual data that can be used for training purposes is very limited as not

many lifeloggers are willing to share their personal images. Even those who

are willing to do so may partially share only or perform some pre-processing

tasks to anonymise the data (Gurrin et al. 2016a). Another limitation is that

all the training data has to be labelled7, which is extremely costly due to the

large volume of images. Moreover, due to the free motion of wearable cameras

and passive acquisition, lifelogging data presents huge variability in terms of

illumination conditions and object appearance, i.e. considerable noise. Given

all these limitations, we argue that concept-based and rule-based methods for

segmenting lifelog sequences into a set of discrete events are not suitable for

all use cases. In this thesis, we address this by introducing an approach to

organise and manage such varied and large data sets without prior knowledge.

7In machine learning, labeled data is a group of samples that have been tagged with one
or more labels.
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2.4 Complex Systems

The field of Complex systems is an interdisciplinary one concerned with de-

scription of systems composed of many interacting components that interact

with each other across many different temporal and spatial scales. The con-

cept has played an important role in studying natural phenomena, physical

and artificial or hybrid systems. Application examples from different domains

include the immune system (Varela & Coutinho 1991), the human brain (Rubi-

nov & Sporns 2010), flocking or schooling behaviour in birds or fish (Sumpter

2010), road traffic flows (Lämmer & Helbing 2008), the economy and financial

markets (Sornette 2017), cloud platform based on online services (Patel et al.

2013) and complex software based on large-scale and distributed architectures

(Lou et al. 2013). However, there is no precise definition of a Complex System.

We attempt to characterize them here and include a core set of features that

are widely associated with them (Kantelhardt 2009, Newman 2011, Ladyman

et al. 2013):

• Agent-Based

The system is composed of independent agents which assess their situa-

tion and make decisions on the basis of a set of rules.

• Nonlinearity Dynamics

The system behaves in an unpredictable and chaotic manner due to

agents responding to their environment in different ways. For this reason

the system displays highly non-linear dynamics and is why it can not just

simply be described by linear equations.

• Emergence
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The appearance of patterns, structures or properties occurs due to co-

evolutionary behaviour or self-organisation; emergence cannot be previ-

ously observed or planned from functional characteristics of the system.

This implies that direct forecasting is impossible. Uncertainty analysis

and sensitivity analysis are commonly used approaches for evaluating

stochastic outcomes.

• Feedback

The process whereby a system variable influences another variable, either

positively or negatively.

• Fractal (Multifractal) Structure

A pattern or a structure that is self-similar at different spatial scales.

• Critical Points

The accumulation of small events can lead to main changes. Once the

aggregation of small stimuli reaches a particular threshold (the critical

point) large fluctuations in the system can ensue.

• Adaptation

The agents have the ability to learn from and adapt to each other. They

are able to change their behaviour under different circumstances and

evolving.

In this thesis, lifelogging data (which display a number of the characteris-

tics above, such as high correlation, uncertainty, non-stationary, nonlinearity

and diverse behaviour at different temporal scales) are, to our knowledge, con-

sidered as a complex system for the first time. However, the understanding

and characterisation of the complex system is a challenging task, since splitting
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a system into simpler subsystems or single components is not possible with-

out losing dynamical properties. One approach in studying such systems is the

recording of long time series of several selected observed variables, which reflect

the state of the system in a dimensionally reduced representation (Kantelhardt

2009, Meyers 2011). In this thesis, therefore, the analysis of complex image

sensor data in the form of time series is of primary interest. Usually, the data

generated by complex systems exhibit fluctuations or non-stationarity over a

wide range of time scales. In order to observe the data’s dynamical properties,

and draw on earlier research in differ domains, several methods originating

from Statistical Physics have been used for studying the statistical character-

istics and examining the structure and dynamics of lifelogging images time

series. The goal of these methods is to identify and extract useful knowledge

from these data.

2.5 Time Series Analysis

Given the recent rapid development of data collection and data storage, we can

easily collect vast quantities of sensory temporal data with large dimensional-

ity, (commonly used to detect the dynamic change of some specific Complex

System). Time series data are recorded in many areas of science and engineer-

ing including signal processing for finance, biosystems and chemical processes,

and statistical analysis of such series is widely used for extracting characteris-

tics of data sequences (Ding et al. 2008). Before introducing the approaches

for analysis of lifelogging images, we first review some relevant time series con-

cepts. An understanding of these concepts provides motivation for the methods

introduced. Results are discussed in the remainder of the chapter.
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2.5.1 Stationary and Non-Stationary Time Series

Stationary time series are those for which statistical properties such as mean

signal value, variance, or autocorrelation are constant over time (Adhikari &

Agrawal 2013). A given series thus remains in relative equilibrium in rela-

tion to its corresponding mean value. In contrast, non-stationary is exhibited

when statistical properties change over time. A majority of applications cre-

ate non-stationary time series. Such applications include financial markets

(Hamilton 1989, Putzig et al. 2010), biophysical systems (Schütte & Huisinga

2003), climate systems (Horenko et al. 2008), and so on.

2.5.2 Univariate and Multivariate Time Series

A time series is described as a set of data points, measured typically over

successive time points, where time implies a recognizable continuum. It is

mathematically defined as Xi(t) where [i = 1, .., n; t = 1, ..,m], where i in-

dexes the measurements made at each time point t (Cochrane 2005, Box et al.

2015). A univariate time series has n equal to unity, and a multivariate time

series has n equal to, or greater than, two. A multivariate time series item

is typically stored in an m x n matrix, where m is the number of observa-

tions and n is the number of variables. Generally speaking, a univariate time

series has only one variable that varies over time, while multivariate time se-

ries have several. Multivariate time series data sets are commonly found in

various domains such as finance (Laloux et al. 1999, Plerou et al. 1999, 2000,

Siwy et al. 2002, Jánosi & Müller 2005, Santhanam et al. 2006, Carpena et al.

2007), electroencephalography (EEG) (Gopikrishnan et al. 2000), magnetoen-

cephalography (MEG) (Utsugi et al. 2004). Modelling of a univariate time
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series is well-established, but, in practice may be of limited value as most ex-

periments collect a multiplicity of data sets. The most commonly used method

for the modelling and interpretation of multivariate time series is the study of

cross-correlation relationships among the time series. For example, in finance,

cross-correlation among different financial markets has been studied to improve

the predictability of financial return series (Duan & Stanley 2011) and for risk

management (Conlon et al. 2009). In this dissertation, for the lifelogging de-

vice, we consider the generated image sequence as a time series, which exhibits

non-stationary fluctuations across a wide range. Although visual lifelogging

devices like the SenseCam normally take a picture every 30 seconds, such im-

ages are also affected by different external temporal factors at different scales

such as light, temperature and so on. Moreover, the lifelogging image data set

displays repeated patterns at different resolutions due to recording individual

local life activity and interactions at larger scales. Time series methods that

are often used to structure and characterise non-stationary multivariate time

series are discussed in what follows.

2.5.3 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA), an example of a nonlinear signal anal-

ysis technique, has been used commonly to characterise power-law scaling in

time series. It was originally developed for the evaluation of DNA sequences

(Peng et al. 1993, 1994, Buldyrev et al. 1993, Stanley et al. 1999). However,

in the last few decades it has been widely applied to many natural time series,

generated by complex systems, including those in meteorology, (Koscielny-

Bunde et al. 1998, Talkner & Weber 2000, Ausloos & Ivanova 2001), cardiac
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dynamics (Ivanov et al. 1996, 1999), astrophysics (Moret et al. 2003), climate

change (Pelletier 1997, Zheng et al. 2018), stock prices (Vandewalle & Ausloos

1998, Gopikrishnan et al. 1999, Ausloos & Ivanova 2000, Caraiani 2012) and

many others. More recently, DFA has also been applied to detect activity

fluctuations at different time scales created by accelerometer sensors worn by

elderly people (e.g. those with Alzheimer’s Disease (Hu et al. 2014)). DFA has

thus been established as an important tool for the detection of long range auto-

correlations in time-series with non-stationary signals. The advantage of DFA

is that it can both remove different trends from external factors in the data and

reduce noise level measurement. The images captured from lifelogging devices

are characterised by many examples of the former: multiple sensor data, an

accelerometer to detect motion, sensors to detect changes in light levels and

so on. Image time series are consequently complex and composed of many

interacting units. The DFA method can thus be adapted initially to analyse

these and remove stationary trends, helping to highlight non-stationary events,

which could be of importance. The DFA method can be used, therefore, to

provide valuable initial background analysis for lifelogging image time series.

2.5.4 Cross-Correlation Analysis and Noise Reduction

Cross-Correlation analysis, as noted previously, is in common use when deal-

ing with multivariate time series. The behaviour of the largest eigenvalue

of a cross-correlation matrix over small windows of time has been studied

for financial series (Laloux et al. 1999, Plerou et al. 1999, 2000, Siwy et al.

2002, Jánosi & Müller 2005, Santhanam et al. 2006, Carpena et al. 2007),

electroencephalographic (EEG) recordings (Gopikrishnan et al. 2000), mag-
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netoencephalographic (MEG) recordings (Utsugi et al. 2004) and a variety of

other multivariate data. Drawing on these applications in this thesis, we adopt

a similar approach to investigate the dynamics of Lifelogging image sequences.

However, as available series are typically of limited length, using such fi-

nite series to estimate cross-correlation results in a correlation matrix contain-

ing much which corresponds to “random” contributions (Wigner 1951, Dyson

1962, Dyson & Mehta 1963, Mehta & Dyson 1963). This phenomenon can

also be observed in other domains including number theory and combinatorics

(Conrey et al. 2005), wireless communications (Tulino et al. 2004), and in mul-

tivariate statistical analysis and Principal Components Analysis (Ulfarsson &

Solo 2008), as well as for financial and other large dimensional data analysis

(Plerou et al. 2002, Conlon et al. 2007). A well-proven technique to handle

the issue of noise and to help reduce this is the application of Random Matrix

Theory (RMT) (Plerou et al. 2002).

Random Matrix Theory (RMT) was first introduced by Wigner, Dyson,

Mehta, and others who aimed to study the energy levels of complex atomic

nuclei (Plerou et al. 2002). RMT predictions represent an average over all

possible interactions. Deviations from the universal predictions of RMT can

be used to identify system-specific, non-random properties of the system under

consideration, providing clues about the underlying interactions (Dyson 1962,

Dyson & Mehta 1963, Mehta & Dyson 1963). Applications to analysis of

the spectral properties of an empirical correlation matrix show that a large

proportion of the eigenvalues of the cross-correlation matrix agree with RMT

predictions, (indicating a considerable degree of randomness in measured cross-

correlation), but major deviations are also observed.
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2.5.5 Wavelet Analysis

An additional mathematical tool used here is the wavelet transform (WT), that

can decompose time series into different frequency components (sub-series), en-

abling the study of each component with a resolution matched to its scale. This

method has been applied to studying the dynamical features of non-stationary

time series and has served as the most important signal processing tool in

image analysis (Zhu 2008), meteorology (Can et al. 2005), and financial time

series (Bouchaud & Potters 2003). Specifically, it has been used to decompose

a signal into different time scales (time components) instead of frequencies, as

is the case with the Fourier transform. As it is composed of basis functions

that are discontinuous, it can be used to analyse time series which contain

discontinuities and sharp spikes. Further, the wavelet technique can be used

to zoom in on detailed features of the time series and to construct the whole

picture of a time series at different ‘window’ sizes 8. The wavelet transform

focuses on two parameters, frequency (scale) and time. Fig. 2.6 shows the

time-frequency resolution property of the wavelet transform. It demonstrates

that a narrow window variable yields information on high frequency move-

ments, while a wide window yields information on low frequency movements.

Wavelet methods have achieved an impressive popularity for studying in-

terdependence of economic and financial time series and have been widely used

since such data contain layered structure, each feature occurring at a different

time scale. In applying wavelet methods to a multiresolution analysis of the

high frequency stock index, it has been shown that a wavelet-matching pursuit

8Long time intervals when a more precise low frequency information is needed, and shorter
intervals when high frequency is needed.
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Figure 2.6: The wavelet transform partitioning of frequency
and time plane. Source: Gallegati (2008)

algorithm can be used to uncover hidden periodic components (Capobianco

2004). For the investigation of scaling properties of foreign exchange rates us-

ing Maximum Overlap Discrete Wavelet Transform (MODWT - a method for

the modification of ordinary discrete wavelet transform), Gençay et al. (2001),

found for example, that foreign exchange rate volatilities can be described

by different scaling laws over different horizons. Similarly, wavelet-multiscale

studies have also been reported (Conlon et al. 2008) where the authors have ex-

amined Wavelet multiscaling for medium and high-frequency intra-day stock

returns. In this thesis, we apply a similar technique to investigation of the

atypical or non-stationary characteristics in lifelogging image time series at

different scales, in order to highlight the ‘most important’ or ‘unusual’ events

for the lifelogger.
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2.5.6 Time Series Motifs

Taking this idea of sub-patterns further, many researchers have worked recently

on the extraction of various repeated short - to mid-length characteristics of

time series. Keogh & Lin (2005) have demonstrated that finding such time

series motifs offers a promising solution for extracting meaningful results in

a massive time series’ database. Previously unknown or seldom applied in a

general context, motif analysis seeks to identify frequently occurring patterns

in time series data, where these have proved powerful for various mining tasks

including clustering, classification, summarization and visualization (Lin et al.

2002, Chiu et al. 2003). Fig. 2.7 illustrates an example of a motif discovered

in an astronomical database, showing repeated patterns.

Time series motifs, stemming originally from genomic analysis ideas, such

as selection of maximally informative genes (Androulakis 2005), protein se-

quence identification (Nevill-Manning et al. 1998) have been widely applied

also in domains as diverse as measuring data from body sensors (Minnen et al.

2006), finding patterns in sports in motion capture data (Tanaka et al. 2005)

as well as in video surveillance applications (Hammid et al. 2005).

Many researchers have proposed algorithms for identifying time series mo-

tifs (Lin et al. 2002, Chiu et al. 2003). SAX (Symbolic Aggregate approX-

imation); (Lin et al. 2003), in particular, has been extremely successful due

its simplicity and efficiency for representation. It has been readily adopted

in various domains such as bioinformatics, information retrieval and language

processing (Lin et al. 2003, Ross et al. 2012, Lagun et al. 2014). The SAX

technique transforms a numerical time series into a sequence of symbols rep-

resenting values by a finite alphabet. This method is very simple and does
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Figure 2.7: An astronomical time series contains 3 near iden-
tical subsequences. Source: Lin et al. (2002)

not require any a priori information about the input time series. Fig. 2.8

illustrates ideas of the SAX method, where the algorithm consists of three

steps:

• Divide a time series into segments of length L

• Compute the average of the time series for each segment

• Quantize the average values into a symbol from an alphabet of size N

Figure 2.8: The SAX motif discovery technique. The differ-
ent letters represent repeated motifs or patterns.
Source: Lin et al. (2007)
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SAX achieves dimensionality reduction and indexing with a lower-bound

distance measure, providing fast answers whether exact or approximate. How-

ever, it is less suitable for extraction of characteristic features from multi-

dimensional time series data. Consequently, Principal Component Analysis

(PCA) has been used to transform multi-dimensional time series into a one

dimensional realisation to detect motifs that are common to all (Tanaka et al.

2005). More recently, an extended motif discovery method has been reported

for a single time series designed to detect motifs occurring across several di-

mensions of a multi dimensional signal (Minnen et al. 2007). Visual lifelogs

contain records of a wearer’s life activities that occur over different time periods

and, in consequence, we argue that discriminating motifs can help represent

activities of different length and timing.

2.6 Data Sets Used in this Thesis

Although the concept of lifelogging is not novel, the number of quality and

quantitative activities is growing rapidly. This is mainly the result of a rising

profile of lifelogging and its key aspects of being perceived as self-aware and

personal archives. Given the nature of lifelogging data i.e., personal informa-

tion content, privacy, security and ethical issues have been carefully concerned

by lifeloggers as lifelogging images might capture sensitive information of the

lifeloggers or reveal the identity of others who are captured by the wearable

cameras (Li & Hopfgartner 2016). To the best of our knowledge, prior to

the release of the NTCIR-12 Lifelog data set, only two public lifelogging data

sets consisting of Images were made available to the public, namely the “All

I have Seen” (AIHS) (Jojic et al. 2010) and “The Egocentric Dataset of the
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University of Barcelona” (EDUB) (Bolaños et al. 2018) data sets. It is noted

that most lifelogging image data collections are far from perfect, due to incom-

patible Lifelogging devices, errors occurring during the lifelogging process and

passive acquisition of lifelog material. Therefore, the construction of rich data

sets and accurate annotations become crucial for the development of analytic

methods on visual lifelogging (photographic cameras).

Four data sets have been used for our study. The first data set (D1) (D1=

AUTHOR6DAYS) was generated by the author, who wore the SenseCam over

a six day period, from a Saturday to a Thursday, forming a total Lifelog of

10,260 images, the average wearing time varied from about 6 hours to 11

hours between weekends and weekdays respectively. Descriptive statistics are

reported in Table 2.1. These particular days were chosen in order to include

a weekend, where normal home activity varied in comparison to events on

weekdays or within the (extended day of a) working week:

• Weekend

Saturday, a typical example to illustrate the difference mentioned above,

involved the subject walking to the nearest bus stop from home, a bus

journey to the city centre, walking through local streets as well as a visit

to a shopping centre. This day also involved dinner with a friend and a

bus journey back to the original bus stop. On the next day, the subject

only wore the SenseCam during the afternoon to the office: thus images

described the journey of the subject from the home to office, a period

spent working in front of the laptop and the return journey back home.

• Weekdays

Over the next four days, these images described a typical day for the
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subject: sitting in the office, talking with a colleague and sharing lunch

in the cafeteria and so on. On some days, the subject wore the SenseCam

home, so that it recorded the wearer’s journey from the office to home,

and the next morning from home to the office.

Table 2.1: The AUTHOR6DAYS data set (D1)

User Events Catalogue Images

1 Working 6146

1 Walking Outside 1494

1 Shopping 826

1 Eating 658

1 Taking Bus 297

1 Others 839

Total: 10,260
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The second data set (D2) (D2=AUTHORTYPICAL) consists of 2,096 lifelog

images, recorded by the author using a SenseCam over a ‘typical day’ of her

life. It contains activities such as commuting to the office in the morning,

sitting and working in the office at a desk, talking with colleagues and sharing

lunch in the cafeteria, as well as commuting back home in the evening and so

on. Descriptive statistics are given in Table 2.2.

Table 2.2: The AUTHORTYPICAL data set (D2)

Event Number Event Series Number of Images

1 Travelling to work 38

2 Arriving in the office 21

3 Working 136

4 Chatting with people 107

5 Working 157

6 Walking in a building 29

7 Working 234

8 Going to the bank 108

9 Working 412

10 Lunch 148

11 Working 668

12 Leaving the office 38

Total: 2096
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The third data set (D3) (D3=AIHSWEDS) was obtained from a different

wearer who wore the SenseCam continuously over an extended period captur-

ing, on average, an image every 20 seconds. The data set is referred to as “All

I have Seen” (AIHS) (Jojic et al. 2010). On some days, data were captured for

a few hours only. In order to investigate the predominantly ‘active’ lifestyle of

the wearer more accurately, these incomplete ‘days’ have been removed from

our study. AIHS data set thus included 18 days with a total of 34,846 im-

ages. Descriptive statistics are reported in Table 2.3. The data set contains

a mix of indoor and outdoor scenes. In order to investigate the wearer’s ‘typ-

ical day’ lifestyle, we studied data recorded on four Wednesdays. Selecting

data recorded in the middle of the week was deliberate, given the likelihood of

a more regular routine. The third data set (D3) (D3=AIHSWEDS) selected

subset consists of 7,549 images. Descriptive statistics are reported in Table

2.4.

35



Table 2.3: AIHS Data Set Overall Summary

User Day Number Date Week Day Images

1 1 21-04-2009 Tuesday 1656

1 2 22-04-2009 Wednesday 1913

1 3 23-04-2009 Thursday 3286

1 4 24-04-2009 Friday 1619

1 5 28-04-2009 Tuesday 1683

1 6 29-04-2009 Wednesday 1921

1 7 30-04-2009 Thursday 1726

1 8 02-05-2009 Saturday 2100

1 9 03-05-2009 Sunday 1517

1 10 06-05-2009 Wednesday 2095

1 11 07-05-2009 Thursday 2019

1 12 09-05-2009 Saturday 2842

1 13 11-05-2009 Monday 1284

1 14 13-05-2009 Wednesday 1654

1 15 14-05-2009 Thursday 1097

1 16 17-05-2009 Sunday 2267

1 17 18-05-2009 Monday 1433

1 18 13-06-2009 Saturday 2734

Total: 34,846

36



Table 2.4: The AIHSWEDS data set (D3)

User Date Week Day Images

1 22-04-2009 Wednesday 1913

1 29-04-2009 Wednesday 1921

1 06-05-2009 Wednesday 2095

1 13-05-2009 Wednesday 1620

Total: 7549

The fourth data set is from the public domain, namely the NII Testbeds

and Community for Information access Research (NTCIR-12) Lifelog data

set9. The NTCIR-12 Lifelog data set was initially created for supporting the

Information Retrieval (IR) community to develop new and novel lifelogging

retrieval and visualisation systems, i.e. as a test baseline. The vast majority

of published Information Retrieval (IR) research assesses effectiveness using

resources known as test collections, in conjunction with evaluation measures.

Test collections have a history dating from the 1990s: Text REtrieval Con-

ference (TREC)10 in US, Cross-Language Education and Function (CLEF)11

in Europe and NTCIR in Asia run evaluation campaigns aimed at support-

ing the development, testing and evaluation of IR systems. In 2016, for the

first time, NTCIR included The NTCIR-12 Lifelog as a pilot task (Kishida

& Kato 2016). This represents the first data set test collection in lifelogging

for the Information Retrieval community and the purpose of it as a pilot task

was to explore methods of searching through large lifelog archives. The two

9http://ntcir-lifelog.computing.dcu.ie
10https://trec.nist.gov
11http://www.clef-campaign.org
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subtasks are: 1) the Lifelog Semantic Access Task (LSAT); to examine search

and retrieval from lifelogs and 2) the Lifelog Insight Task (LIT); to investigate

knowledge mining and visualisation of lifelogs (Gurrin et al. 2016b).

NTCIR-12 Lifelog data were generated by three individuals, wearing the

Autographer (as shown in Fig. 2.9)12 camera for periods of about one month,

capturing on average 1000-1500 images per day, where a sample image is also

shown (Fig. 2.9). This camera uses five built-in sensors which include on

accelerometer, magnetometer, temperature, color, PIR (infrared motion de-

tector), and GPS. With a 5 megapixel low light image sensor and offering a

136 degree wide-angle lens, it captures images and other sensor readings au-

tomatically, recording the wearer’s every moment. In the NTCIR-12 Lifelog,

every image was resized down to 1024 x 768 resolution and all faces were

blurred13 manually. For our study, we selected a total of 34,758 images to

include three lifelogging profiles over ten days from NTCIR-12 Lifelog data set

to test our methods. Table 2.5 reports the full details of the fourth data set

(D4), where D4=NTCIR-12 (3 USERS).

Figure 2.9: Autographer Wearable Camera and Sample; an im-
age from the NTCIR12-Lifelog Test Collection

12https://en.wikipedia.org/wiki/Autographer
13Photo sharing can cause privacy issues. Face blurring is one method to deal with this

issue.
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2.7 Summary

In Chapter 2, we outlined the background to our research, introducing some

of the difficulties inherent in analysis and the methods used to address these.

We introduced the several data sets used for our research and described the

sources. The history of lifelogging is extensively reviewed and seminal prior

work on visual lifelogging - (in particular on event segmentation) is described.

In this chapter, we also gave a broad introduction to features of Complex

Systems and covered some relevant concepts and methods from time series

and their analysis of similar features that arise in visual lifelogging. We first

employ the Detrended Fluctuation Analysis (DFA) method to try to detect the

statistical features in image time series. We then consider use of the Equal-time

Cross-Correlation Matrix method to examine and characterise the structure

and dynamic features of the data. We propose, further, the application of

the Maximum Overlap Discrete Wavelet Transform (MODWT) technique to

investigate the scaling properties of the series and the lead/lag relationships

among the different time scales. The Random Matrix Theory (RMT) method

also is applied to address noise reduction in the Cross Correlation Matrix.

Finally, we introduce a novel motif discovery technique to extract patterns or

motifs from image data. Fig. 2.10 illustrates the methodology covered by this

thesis.
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Figure 2.10: Outline of the Research Methods covered by this
thesis
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Chapter 3

Multiscaled Cross-Correlation

Dynamics

3.1 Introduction

In Chapter 2, we reviewed methods that we proposed to use for analysis of

lifelogging image data sets. The justification is that these methods are suitable

as lifelogging captures primarily the sequence of a user’s everyday activities,

taking account of the fact that each image is affected by various factors such

as movement, light, temperature and so on. In this chapter, we apply the

proposed time series methods to the SenseCam AUTHOR6DAYS data set (D1)

to illustrate. The results obtained are discussed at the end of the chapter.

3.2 Methods

In what follows, DFA, Equal-time Cross-Correlation Matrix and MODWT

are used to explore, respectively, long-range correlations, dynamical changes
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and equal-time Cross-Correlation over different time scales for SenseCam non-

stationary multivariate time series. The wavelet method also permits exami-

nation of details of the eigenvalue spectrum.

3.2.1 Detrended Fluctuation Analysis

DFA, proposed (Peng et al. 1994) is used extensively to estimate the Hurst

exponent, (indicating the quantity of long term memory in non-stationary time

series data), having the advantage that it can remove different trends due to

external factors in the data and reduce noise. We apply a similar approach

therefore, to initial analyses of lifelog data streams. The DFA algorithm is

illustrated in what follows.

We first generate the images time series X(t). The series X(t) is then

divided into boxes of equal size, n. In each box n, a least-squares function,

z(t)=at + b is fitted to the data representing the trend in that box. The

root-mean-square fluctuation of this integrated and detrended time series is

calculated by:

F (n) =

√√√√ 1

N

N∑
t=1

[
X(t)− z(t)

]2
, (3.1)

The calculations are repeated for all considered n. We are interested in the

relation between F (n) and size of segment n. In general F (n) will increase

with the size of segment n, (Peng et al. 1994).

This linear dependence indicates the presence of self-fluctuations and the

slope of the line F (n) determines the scaling exponent H (Peng et al. 1995,

Absil et al. 1999, Lee et al. 2002, Stam et al. 2005, Rodriguez et al. 2007). If the
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observable X(t) are random uncorrelated variables or short-range correlated

variables, the behaviour is expected to obey a power law relationship of the

form:

F (n) ∼ nH (3.2)

The exponent H is called the Hurst exponent and represents the autocorre-

lation properties of the time series (Acharya et al. 2002, Lee et al. 2002, Stam

et al. 2005, Rodriguez et al. 2007, Gifani et al. 2007, Phinyomark et al. 2009)

in the following way: if

• 0 < H < 0.5 then the process has an intermediate memory, and it

exhibits anti-correlations (or anti-persistent behaviour), i.e. deviations

of one sign are generally followed by deviations with the opposite sign.

• 0.5 < H < 1 then the process shows evidence of long memory, and it

exhibits positive correlations (or persistence), i.e. deviations tend to keep

the same sign.

• H = 0 then the process has a short memory, corresponding to white

noise14, where fluctuations at all frequencies are equally present.

• H = 0.5 then the process is indistinguishable from a random process

with no memory.

• 1 < H < 2 then the process is non-stationary.

14In signal processing, white noise is a random signal having equal intensity at different
frequencies, giving it a constant power spectral density (Martin 2001)
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3.2.2 Correlation Dynamics

The DFA method provides the initial background analysis for lifelogging time

series data. The equal-time Cross-Correlation Matrix can be formed and used

to characterise dynamical changes in non-stationary multivariate series of this

type. Correlation is a typical statistical measure of the strength and direction

of a linear relationship between two random variables (Plerou et al. 1999).

The equal-time Cross-Correlation Matrix between time series of images is

calculated using a sliding window, where the number of pixels in one image, N ,

is smaller than the window size T . Given pixels Gi(t), i=1,...,N , of a collection

of images, we normalise Xi within each window in order to standardise the

different pixels for the images as follows:

gi(t) =
Gi(t)−Gi(t)

σ(i)
(3.3)

where σ(i) is the standard deviation of Gi for image numbers i=1,...,N , and Gi

is the time average of Gi over a time window of size T . Then the equal-time

Cross-Correlation Matrix may be expressed in terms of gi(t)

Cij ≡
〈
gi(t)gj(t)

〉
(3.4)

The elements of Cij are limited to the domain -1≤Cij≤1,where Cij=±1 defines

perfect positive/negative correlation and Cij=0 corresponds to no correlation.

In matrix notation, the correlation matrix can be expressed as C = 1
T
GGt

where t is the transpose of a matrix and G is an N × T matrix with elements

git.

The eigenvalues λi and eigenvectors vi of the correlation matrix C are found
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from the eigenvalue (characteristic) equation Cvi = λivi. The eigenvalues

are then ordered by size, such that λ1≤λ2≤...≤λN . Given that the sum of

the diagonal elements of a matrix (the Trace) remains constant under linear

transformation (Schindler et al. 2006),
∑

iλi must always equal the Trace of

the original correlation matrix. Hence, if some eigenvalues increase then others

must decrease, to compensate, and vice versa, (a feature known as Eigenvalue

Repulsion).

There are two limiting cases for the distribution of the eigenvalues: (i)

with perfect correlation, Ci≈1, when the largest is maximised with value N ,

(all others taking value zero); (ii) when each time series consists of random

numbers with average correlation Ci≈0 and the corresponding eigenvalues are

distributed around 1, (where any deviation is due to spurious random corre-

lations). Between these two extremes, the eigenvalues at the lower end of the

spectrum can be much smaller than λmax. To study the dynamics of each of

the eigenvalues using a sliding window, we normalise each eigenvalue in time

using

λ̃i(t) =
(λi − λ)

σλ
(3.5)

where λ and σλ are the mean and standard deviation of the eigenvalues

over a particular reference period, respectively. This normalisation allows us

to visually compare eigenvalues at both ends of the spectrum, even if their

magnitudes are significantly different. The reference period used to calculate

the mean and standard deviation of the eigenvalue spectrum can be chosen to

be a low volatility sub-period (which helps to enhance the visibility of high

volatility periods) or can be the full time-period studied.
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3.2.3 Wavelet Multiscale Analysis

Wavelet analysis is one of the most important tools for statistical signal extrac-

tion, filtering and denoising (Pollock 2006). The advantage of wavelet analysis

is the ability to decompose a signal into time-scale (or time-frequency) ba-

sis. If we look at a signal in a large ‘window’, we can see the gross features.

Conversely, in a small ‘window’, detailed features would be apparent. Thus,

the wavelet break down of a signal is very useful to show markedly different

behaviour in the different time periods.

Specifically, the wavelet transform decomposes a signal into sets of coeffi-

cients where each set of coefficients is associated with a spatial scale and each

coefficient in a set is associated with a particular location. Each single coef-

ficient is called an ‘atom’ and the set of coefficients for each scale a ‘crystal’

(Gallegati 2008). The wavelet coefficients are obtained through the mother

and father wavelets. The former represent the detailed (high frequency) com-

ponents and the latter represent the smooth (low frequency) components of

the signal, respectively.

In particular, the discrete wavelet transform (DWT) is useful in dividing

the data series into components of different frequency, so that each component

can be studied separately to investigate the series in depth (Burrus et al. 1998).

Fig. 3.1 shows a flowchart for a three-level DWT. As seen in Fig. 3.1, the signal

is first passed through a low pass filter (L0). The signal is also decomposed

simultaneously using a high-pass filter (Hi). A3 is the approximation signal

which shows the general trend of the low frequency component. D1, D2 and

D3 are details of signal and are associated with its high frequency component.
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Figure 3.1: Flowchart for a three-level DWT. Source from: Seo
et al. (2017)

It should be noted, however, that one of the limitations of DWT is a re-

striction on the length of the data set to a multiple of 2j. Secondly, the output

generated by DWT is highly dependent on the origin of the signal. A small

shift in origin affects the outputs generated (Jothimani et al. 2016). Due to

these shortcomings, a modification of DWT called Maximum Overlap Discrete

Wavelet Transform, (MODWT) is applied.

3.2.3.1 MODWT

The MODWT, is a linear filter that transforms a series into coefficients re-

lated to variations over a set of scales (Burrus et al. 1998). Like the DWT it

produces a set of time-dependent wavelet and scaling coefficients with basis

vectors associated with a location t and a unitless scale τj=2j−1 for each de-

composition level j=1,...,J0. Unlike the DWT, the MODWT has a high level

of redundancy. However, it is non-orthogonal and can handle any sample size

N . MODWT retains downsampled15 values at each level of the decomposition

15Downsampling or decimation of the wavelet coefficients retains half of the number of
coefficients that were retained at the previous scale. Downsampling is applied in the Discrete
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that would be discarded by the DWT (Percival & Walden 2006). This reduces

the tendency for larger errors at lower frequencies when calculating frequency

dependent variance and correlations, as more data are available. Fig. 3.2 shows

a flowchart for three-level MODWT. As seen in Fig. 3.2, the MODWT decom-

poses an original signal X into a low-pass filtered approximation component

(A3) and high-pass filtered detail components (D1, D2 and D3).

Figure 3.2: Flowchart for a three-level MODWT. Source from:
Seo et al. (2017)

Decomposing an infinite sequence Xt of Gaussian random variables, using

the MODWT to J0 levels, theoretically involves the application of J0 pairs of

filters. Following Percival & Walden (2006) then, the filtering operation at

the jth level consists of applying a rescaled mother (high frequency) wavelet

to yield a set of scaling coefficients W̃j,t and is given by:

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l (3.6)

and a rescaled father (low frequency) wavelet to yield a set of scaling coef-

ficients Ṽj,t given by:

Wavelet Transform.
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Ṽj,t =

Lj−1∑
l=0

g̃j,lXt−l (3.7)

for all times t = ...,−1, 0, 1, ...; where the MODWT wavelet and scaling

filters h̃j,l and g̃j,l are obtained by rescaling the DWT filters as follows:

h̃j,l =
hj,l
2j

(3.8)

and

g̃j,l =
gj,l
2j

(3.9)

where wavelets for the jth level are a set of scale-dependent localised dif-

ferencing and averaging operators and can be regarded as rescaled versions

of the originals. The jth level equivalent filter coefficients have a width Lj =

(2j−1)(L−1)+1, where L is the width of the j = 1 base filter. In practice the

filters for j > 1 are not explicitly constructed because the detail and scaling

coefficients can be calculated, using an algorithm that involves the j = 1 filters

operating recurrently on the jth level scaling coefficients, to generate the j + 1

level scaling and detail coefficients.

The MODWT offers several advantages over the DWT:

• The MODWT can handle all sample sizesN ; For complete decomposition

of J levels is achievable the DWT requires N to be a multiple of 2J ;

• The MODWT is not influenced by circular shifting of the signal (the

signal does not change the pattern of wavelet transform coefficients),

whereas DWT depends upon the starting point of the signal;

• The MODWT wavelet coefficients increases the effective degrees of free-
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dom on each scale and thus produces a more asymptotically efficient

wavelet variance estimator than DWT modestly (Cornish et al. 2006,

Gallegati 2008);

3.2.3.2 Wavelet Variance

The decomposition of a time series into scale-dependent coefficients using the

MODWT permits the statistical analysis of a signal as a function of scale. The

MODWT is energy-conserving; i.e.

‖ X ‖2=
J0∑
j=1

‖ W̃j ‖2 + ‖ ṼJ0 ‖2 (3.10)

Where X is as above and W̃ and Ṽ are defined in Equations (3.6), (3.7),

respectively. The wavelet variance ν2X(τj) is defined as the expected value of

W̃ 2
j,t if we consider only the non-boundary coefficients16. An unbiased estimator

of the wavelet variance is formed by removing all coefficients that are affected

by boundary conditions and is given by

ν2X(τj) =
1

Mj

N−1∑
t=Lj−1

W̃ 2
j,t (3.11)

where Mj = N − Lj + 1 is the number of non-boundary coefficients at

the jth level (Percival & Walden 2006). The wavelet variance decomposes the

variance of a process on a scale-by-scale basis (at increasingly higher resolutions

of the signal) and allows us to explore how a signal behaves over different time

horizons.

16The MODWT treats the time-series as if it were periodic using “circular boundary con-
ditions”. There are Lj wavelet and scaling coefficients that are influenced by the extension,
and which are referred to as the boundary coefficients.
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3.2.3.3 Wavelet Covariance and correlation

The wavelet covariance between two functions X(t) and Y (t) is similarly de-

fined to be the covariance of the wavelet coefficients at a given scale. The

unbiased estimator of the wavelet covariance at the jth scale is given by:

νXY (τj) =
1

Mj

N−1∑
t=Lj−1

W̃
X(t)
j,t W̃

Y (t)
j,t (3.12)

where all the wavelet coefficients affected by the boundary are removed,

and Mj = N − Lj + 1.

The MODWT estimate of the wavelet cross-correlation between functions

X(t) and Y (t) may be calculated using the wavelet covariance and the square

root of the wavelet variance of the functions at each scale j. The MODWT

estimator of the wavelet correlation is given by:

ρXY (τj) =
νXY (τj)

νX(τj)νY (τj)
(3.13)

where, at scale j, νXY (τj) is the covariance between X(t) and Y (t), νX(τj)

is the variance of X(t) and νY (τj) is the variance of Y (t).

3.3 Results

In this chapter, we applied methods discussed in Section 3.2 to the AU-

THOR6DAYS data set (D1) (Section 2.6). A total of 10,260 SenseCam im-

ages17 were available in the time series.

17Generated by author over 6 days including a weekend (Saturday to Thursday)
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3.3.1 Detrended Fluctuation Analysis
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Figure 3.3: Plot of log F (n) vs log n , where n = box size,
ranging from 10 to 1000 for the AUTHOR6DAYS
data set (D1).

According to Section 3.2.1, if the scaling exponent H= 0.5, there is no correla-

tion and the time series is uncorrelated; if H> 0.5, the time series exhibits pos-

itive correlation and if H> 0.5, the time series is anti-correlated. In Fig. 3.3,

long-range correlation is demonstrated for the AUTHOR6DAYS data set D1

with an exponent H=0.93 Equation (3.2). This indicates that the time series

is not a random walk18, but is cyclical, implying that continuous low levels of

background information are picked up constantly by the device. Consequently,

the DFA provides a measure of the predominance of ‘typical’ backgrounds or

environments.

18A random walk is a mathematical formalisation of a path that consists of a succession
of random steps.
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3.3.2 Dynamics of the largest Eigenvalue for different

sliding window sizes

Figure 3.4: The largest Eigenvalue Distribution using a sliding
window of 50 Images(a), 100 Images(b), 200 Im-
ages(c) and 400 Images(d) of the AUTHOR6DAYS
data set (D1).

Fig. 3.4 shows the time series of the Largest Eigenvalue dynamics across

different wavelet scales. From these, we note the following features:

• At increased scale, (i.e for longer time periods), of the wavelet crystal

components, increased smoothing was observed- as expected. Increasing

the scale has the effect of removing some of the high frequency small-scale

changes, typically associated with noise.
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• The different features, found at various scales, suggest that the correla-

tion matrix captured different major events with different time horizons.

This will be examined in more detail in the next subsection.

3.3.3 Wavelet Multiscale Anlaysis

In order to perform wavelet analysis on a time series, we first need to con-

sider the selection of a wavelet filter. There are several available, including

the haar (discrete), symmlets and coiflets (symmetric), daublets (asymmet-

ric), etc (as shown in Fig. 3.5), where these differ in terms of characteristics

of the in-transfer function and filter length. Daubechies (1992) developed a

family of compactly supported wavelet filters of various lengths, where the

least asymmetric family or (LA) are defined in even widths with the optimal

filter width dependent on the characteristics of the signal and the length of

the data series. The filter width chosen for this study was the LA8, (where 8

refers to the width of the scaling function). This choice enables accurate calcu-

lation of wavelet correlations to the 10th scale, which is appropriate given the

length of data series available19. Although MODWT can accommodate any

level, J0, the largest level is chosen in practice so as to prevent decomposition

at scales longer than the total length of the data series (hence the choice of

the 10th) while still containing enough detail to capture subtle changes in the

signal (Percival & Walden 2006). The MODWT was implemented using the

WMTSA (Wavelet Methods for Time Series Analysis)20 Toolkit for Matlab

(Cornish et al. 2003).

19This implies 10th is largest possible since the jth level equivalent filter coefficients have
a width Lj = (2j − 1)(L− 1) + 1.

20https://atmos.washington.edu/wmtsa/
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Figure 3.5: Examples of wavelet filters (a) Haar (b) Daublets
(c) Coiflets (d) Symmlets. Source:(Zubal’ 2015)

First, the MODWT of the pixels for each image was calculated within each

window and the correlation matrix between pixels at each scale found. The

eigenvalues of the correlation matrix in each window were determined, and the

eigenvalue time series was normalised in time. Then the largest eigenvalue for

different window sizes was analysed for the AUTHOR6DAYS data set (D1).

Results are illustrated by a heatmap (Fig. 3.6) and discussed below.
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3.3.3.1 Dynamics of the largest Eigenvalue at various wavelet scales

λ
1
(%

)

Figure 3.6: Heatmap diagram of the largest Eigenvalue λ1
dynamics across 9 wavelet scales of the AU-
THOR6DAYS data set (D1). Scales 1 (a) to 9 (i)
correspond to time periods of 1-2, 2-4, 4-8, 8-16,
16-32, 32-64, 64-128, 128-256 and 256-512 minutes,
respectively

Fig. 3.6 shows time series dynamics of the largest Eigenvalue across different

wavelet scales. Some peaks are consistently captured by the SenseCam at

certain scales, such as the peak around 3000 minutes, (captured by wavelet

scales 1, 2, 3 and corresponding to a 1-2 minute period, a 2-4 minute period

and a 4-8 minute period, respectively). These peaks should help to identify

major events or activities in the data. The different features, found at various

scales, suggest that the correlation matrix captured different major events with

different time horizons.
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3.3.3.2 The largest Eigenvalue λ1 compared with the ratio of λ1/λ2

dynamics

We also wished to determine whether the sub-dominant eigenvalues e.g. λ2

hold further information on the key sources of major events and what informa-

tion these contribute additionally from the images. In Fig. 3.7, the dynamics

of the series from the MODWT analysis for the largest eigenvalue and changes

of the eigenvalue ratio λ1/λ2 were examined. Here, we detail several scenarios

for the peaks in the largest eigenvalue and the ratio of the largest to the next

largest eigenvalue for a window size of 400 images.

Analysis of Scenarios: We have studied both the largest eigenvalue λ1

and the ratio of λ1/λ2 time series for a window size of 400 images to try to

identify the position and nature of such events from the real images gener-

ated from SenseCam. The different features, found at various scales, suggest

that the correlation matrix captured different major events with some features

consistent and others specific to certain scales. We group peaks in reporting,

where scenarios are very similar, with more details as given below.

1. Peaks a1, b1, c3

This group of fluctuations in the signal relate to the subject arriving at the

office, and switching on the lights and the laptop. The laptop colour is white,

with the screen the largest object in the field of view of the SenseCam. Thus,

the lights and the laptop mainly contribute to these peaks.

Peak a1 was less noticeable for λ1/λ2 due to an increase in λ2. The subject

was moving during this event. Peak a1 corresponds to the wavelet scale of a

1-2 minute period. Over this short time period, λ2 carries other information

on the environment, such as the white wall, desk and chairs in the office (peak
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a1). As the time period increases, the subject stopped moving and sat down

so that the λ1 and λ1/λ2 peaks coincide at peak c3.

2. Peaks a2, b2, b3, c4

These peaks occurred when the subject was working in front of the laptop,

with slight movements, partially obscuring the camera, (e.g. hair or hand

interruption). Here, peaks are due to the differences in light level from the

laptop, ceiling lights and another desktop. Thus, the laptop screen and ceiling

light register higher pixel values than other objects, for which changes are

picked up by the SenseCam.

3. Peaks c1, d1, f1, g1

These peaks refer to the period while the subject was walking in the city

centre during the day time. During this period, the subject visited several

shops, with lights in the shops reflecting higher pixel values than other objects

that contribute to the peaks. A point to note was that a small dip in peaks d1

and f1 can be observed, corresponding to the subject picking up clothes, i.e.

introducing a new major object into the image field at that time.

In peaks d1, f1, g1, the ratio λ1/λ2 implies that λ1 increased with λ2. The

scenario involved the subject moving along a street, visiting shops, with the

strong light in the shops dominating during less movement and less change in

other objects.

4. Peaks c2, d2, e1, f3, h1, i1

These peaks involved the subject walking from home to office in the morn-

ing, working in front of the laptop and talking with her colleagues. Note that

the office was dark until the subject switched on the lights and laptop, conse-

quently the lights and laptop introduction are highlighted by the peaks. While
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the subject was standing and talking with colleagues, the camera captured of-

fice lights which contributed to the peaks.

At peak f3 in wavelet scale 6, corresponding to a 32-64 minute period, the

highest value of the λ1/λ2 ratio occurs earlier in time than that for the largest

eigenvalue λ1, which may imply capture of other effects compared to that of

the largest eigenvalue λ1; This shift in the peak of λ1 relative to that in λ1/λ2

occurred when the subject was talking with colleagues (so during localised

position change relative to lighting). These movements may contribute to

difference in peak position.

For peaks h1, i1, the ratio λ1/λ2 was less affected, implying that λ1 in-

creased with λ2. These features involved the subject sitting in front her desk

and standing in front of a colleague’s desk, talking to colleagues. During the

standing period, more objects were captured by the SenseCam especially the

lights, with light changes also featuring during localised movement, which may

have caused increases in λ1 and λ2.

5. Peak d3

The d3 peak ratio of λ1/λ2 occurs slightly earlier in time than that for the

largest eigenvalue λ1, corresponding to a period when the subject was sitting

in front of her laptop, with the exception of a short period when the subject

moved to another PC on the desk. This produced a small dip in the largest

eigenvalue λ1.

6. Peaks d4, e3

These involved the subject sitting in front of her laptop, leaving to have

lunch in the cafeteria with colleagues and then returning to the office. The

static period in front of the laptop is reflected in a higher pixel value for this
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peak. When the subject was moving the images were less clear, hence a small

dip around this peak was observed.

For peak d4, the maximum value for λ1/λ2 ratio occurs slightly earlier in

time than that for the largest eigenvalue λ1, which may be caused by the

subject changing position from sitting to moving.

7. Peaks e2, h2

These describe the movement of the subject from outside coming into the

office and sitting in front of the laptop. The white laptop and screen are the

major objects in these images.

8. Peak f2

The peak of the ratio of the λ1/λ2 series is shifted slightly in time in

comparison to that for the largest eigenvalue λ1. The peak involved the subject

walking down an urban street during the evening. The camera captured the

lights on the road and in the shops.

9. Peaks f4, g2, h3

These peaks occurred while the subject was sitting in front of the laptop; it

is important to note that the camera was inadvertently blocked by the subject

on numerous occasions.

10. Peak h4

The subject was sitting in front of the laptop and then visited the cafeteria

with colleagues. While there, she ordered lunch, after which she returned to

the office and sat in front of the laptop. Some partial or total blocking of the

laptop occurs during the seated periods.

11. Peak i2

This peak was a typical case for the subject’s activities. She was working
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in front of laptop, with the camera sometimes obscured and sometimes fully

capturing the ceiling light.

MODWT gives a clear picture of the movements in the image time series

by reconstructing them using each wavelet component. The method captured

the features markedly apparent at specified scales. A number of features from

the image are reproduced and can be examined by studying these eigenvalue

series.

For lower scales (1-8 minutes), most of the peaks highlight dramatic light

level changes, such as the subject switching on the lights in the dark office

or the camera being totally blocked, etc. The subject activity changes, where

more people were involved in an event such as (i) visiting the cafeteria and

subsequently returning to the office (about 1 hour) or (ii) travelling from home

to the office (about 15 minutes), were highlighted by the middle wavelet scales

(8 minutes -1 hour). We found that most distinct events or activities were

marked in wavelet scale4 (8 minutes -16 minutes), e.g. in peak d2, which

describes the journey for the subject from the home to the office, (about 15

minutes), and is sufficiently fine-grained to pick up other activities. At higher

scales (larger periods 1- 8.5 hours), the SenseCam mostly captured the subject

maintaining a single activity, which may generally be of less interest to wearers

or analysts due to these being remembered more easily.

For the majority of images, the subject was seated in front of her laptop,

with laptop, lights and seating position unchanged over on extended period,

contributing consistently high pixel values in a sequence of images. This typ-

ical case was always marked by a peak in the SenseCam signal. The signal

fluctuation is caused by light level changes, such as the subject moving from
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indoors to outdoors, the subject changing position from sitting to moving,

movement increase and more people joining in the scene. Note that a move-

ment or multiple person interactions can be captured by specific scales, using

the MODWT method. The ratio analysis strongly reinforces observations on

the largest eigenvalue over time. The ratio of λ1/λ2 has smaller variation com-

pared to that for the largest eigenvalue λ1. This implies that the second largest

eigenvalue (λ2) carries additional information to describe events, but does not

decide the occurrence of major events for SenseCam. It appears, however, that

is does carry information for events surrounding the major ones, e.g. possible

lead-in, lead-out. Nevertheless it does represent a significant finding.

3.3.4 Evaluation

Video segmentation is useful for video classification, summarization, index-

ing and retrieval. Extensive research has been done by the computer vision

research community to create different approaches and algorithms for video

segmentation. Nevertheless, it is still difficult to judge which approach or al-

gorithm works best. Two main reasons can be identified for that: First, there

is a lack of a benchmark data sets and a standardized evaluation methodol-

ogy. There are some common approaches for evaluating video segmentation

that focus on Precision/Recall, F1 measure, Receiver Operator Characteristics

(ROC), Jacard Coefficient. The boundary precision/recall is the most popular

evaluation for image segmentation. However, this metric is of limited use in

a video segmentation benchmark, as it evaluates every frame independently.

The volume precision-recall metric has been proposed for evaluating video seg-

mentation (Galasso et al. 2013). In this chapter, we focus on the analysis of an
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image data set generated by SenseCam, so precision, P, and recall, R metrics

are employed for evaluating the performance at different wavelet scales.

We evaluate the performance at the different wavelet scales using the pre-

cision21, P , and recall22, R, metrics - as defined below. Moreover, we compute

the F1 score23 as a measure of a method’s accuracy (Perry et al. 1955).

Precision =
|determined boundaries| − |wrong boundaries|

|determined boundaries|
(3.14)

Recall =
|detected reference boundaries|
|determined boundaries|

(3.15)

F1 = 2× P ×R
P +R

(3.16)

Table 2.1 in Chapter 2 shows more than 60 ground truth events manually

segmented by a user. In order to determine accurate boundaries, each peak

point boundary is calculated, (for the difference between neighbouring left-

and right- most trough values) (Doherty & Smeaton 2008). This is obviously

a crude boundary designation; All values within a peak area are combined

so that a signal value is less informative. Significant peaks are determined

(distinct events or activities) by λ1/λ2 percentage pixel values that are larger

than zero.

21Precision is the probability that a (randomly selected) retrieved document is relevant.
22Recall is the probability that a (randomly selected) relevant document is retrieved in a

search.
23A measure that combines precision and recall is the harmonic mean of precision and

recall.
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Table 3.1: Precision, Recall and F1 measures for MODWT
method

λ1/λ2

Wavelet Scales Precision Recall F1

(minute period)

1 0.3929 0.4058 0.3992

2 0.7857 0.2029 0.3225

3 0.5000 0.3188 0.3894

4 0.4783 0.3333 0.3929

5 0.5238 0.3043 0.3850

6 0.5789 0.2754 0.3732

7 0.7333 0.2174 0.3354

8 0.9167 0.1739 0.2924

9 1 0.1594 0.2750

Table 3.1 shows the precision, recall and F1 measure for λ1/λ2 at different

wavelet scales. As we can see, the wavelet scale 1 gives the best result for

the F1 measure. However, in real life, we argue that middle wavelets 4 to 6

(corresponds to 8-16, 16-32 and 32-64) captures the information that should be

of interest to the users. Imagine, for example, the scenario where elderly people

have a problem to remember if they have already taken their pills. Such an

event normally lasts about 30-60 minutes as people usually take their pills at a

certain time of the day. In Table 3.1, overall, most scales return high precision

and very low recall. The main weakness as well as strength for wavelet scales is

that different scales highlight different distinct events dependent on the time

horizons. Some events at certain scales will be missed, so that the overall recall
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values are low for this approach. In addition, some activities, such as working

in front of the laptop, last for several hours. In manually segmenting 69 events

out of 10,260 images only, the detection probability for a given event is quite

low. In consequence this approach is still quite crude and we would suggest

that further modifications are needed, such as incorporating other than peak

distance and weighting scale combinations.

3.4 Summary

In this chapter we performed DFA on image time series recorded by the Sense-

Cam. The results suggest strong long-range correlations in the time series,

which means that some information is always picked up by the device, even

during relatively static periods. Consequently, DFA provides a useful back-

ground summary.

Using the Maximum Overlap Discrete Wavelet Transform (MODWT) es-

timates of wavelet variance we provide a scale-based analysis of variance that

allow us to identify the main event captured by the SenseCam as well as addi-

tional information surrounding the main event. The main scale-by-scale results

deriving from the MODWT analysis variance are: i) we identified light level

as a major event delineator during static periods of image sequences; ii) we

have shown that the wavelet scale from 8 minutes to 16 minutes can be seen

as the most important time horizon for the identification of distinct events or

activities of the users, e.g., the subject changing position from sitting indoors

to walking outdoors, as graining is sufficiently fine to enable recording of short

term activities. This time scale, on the other hand, is not so fine-grained as

to be swamped by noise. The MODWT method provides a powerful tool for
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the examination of the nature and quality of the captured SenseCam data for

categories of users, such as the case described.
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Chapter 4

Random Matrix Theory

4.1 Introduction

In the last Chapter, we have shown that SenseCam image time series exhibit

a strong long-range correlation, concluding that the time series does not have

the form of a random walk, but is cyclical, with continuous low levels of back-

ground information picked up constantly by the device. Further, we adopted

a Cross-Correlation Matrix method to highlight key episodes, thus identify-

ing natural boundaries between different daily events. However, the length of

time series available to estimate the empirical Cross-Correlation Matrix is lim-

ited, so that, we speculate, the Cross-Correlation Matrix contains much which

corresponds to “random” contributions (Wigner 1951, Dyson 1962, Dyson &

Mehta 1963, Mehta & Dyson 1963). As a consequence, this technique results

in the identification of a high percentage of noise or routine events, with its ap-

plication in many disciplines of science (Sengupta & Mitra 1999, Mehta 2004,

Mezzadri et al. 2005, Couillet & Debbah 2011).

Random Matrix Theory (RMT) was first introduced by author Wigner
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(1951) to explain the energy levels of complex interactions between nuclei

interactions. This technique has subsequently been applied to noise filtering

in financial time series (Laloux et al. 2000, Plerou et al. 2002). In this chapter,

we investigate whether RMT can be used to distinguish routine events from

important events in the SenseCam series. Our goal is to segment the content

of the Cross-Correlation Matrix into two: (a) the part that conforms to the

properties of Random Matrix (‘noise’) and (b) the part that deviates from

random (i.e. has ‘information’ on important events).

4.2 Methods

In this section, we analyse the distribution of the correlation coefficients of the

Cross-Correlation Matrix C to examine if it exhibits non-Gaussian fluctuations

with fat tails and long-range time correlations. Next, we apply RMT meth-

ods to analyse the C to see if the eigenvalues agree with RMT predictions.

Further, we use the Inverse Participation Ratio (IPR)24 concept to analyze

the eigenvectors of the Cross-Correlation Matrix to find out if the eigenvalue

spectrum of C deviates from RMT prediction.

4.2.1 Random Matrix Theory

As described by Laloux et al. (2000), Plerou et al. (2002) and others, the

Random Matrix R can defined by:

R =
1

T
AAt (4.1)

24Inverse participation ratio is a measure of localization and is defined as the average of
the absolute value of the fourth power of the wave function.
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Where A is an N×T matrix whose elements are i.i.d.25 random distributed,

with zero mean and unit variance. In particular, the limiting property for the

sample size N → ∞ and sample length T → ∞, (providing that the ‘quality

factor’ Q = T/N ≥ 1 is fixed (Bouchaud & Potters 2003)), has been analysed

for the distribution of eigenvalues λ of the Random Matrix R (Sengupta &

Mitra 1999), given by:

Prm(λ) =


Q

2πσ2

√
(λ+−λ)(λ−λ−)

λ
for λ− ≤ λi ≤ λ+

0 otherwise

(4.2)

where λ− and λ+ are the minimum and maximum eigenvalues of R, respec-

tively, given by


λ+ = σ2(1 + 1

Q
+ 2
√

1
Q

)

λ− = σ2(1 + 1
Q
− 2
√

1
Q

)

(4.3)

Then σ2 is the variance of the elements of G (defined in Chapter 3 section

3.2.2 above) and λ− and λ+ are the bounds of the theoretical eigenvalue dis-

tribution. Eigenvalues that fall outside this region are said to deviate from the

expected values of the Random Matrix. Hence, by comparing the empirical

distribution of the eigenvalues of the Cross-Correlation Matrix to the distribu-

tion for a Random Matrix, as given in Equation (4.2), we can identify those

key eigenvalues which can be used to identify the specific information relat-

ing to the system. Eigenvector analysis enables identification of the specific

information present, in terms of contributory components.

25i.i.d ≡ independent and identically distributed
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4.2.2 Eigenvector Analysis

Differences between the eigenvalues P (λ) of C and RMT eigenvalues, Prm(λ)

should also be evident, therefore, in the statistics of the corresponding eigen-

vector components. In order to interpret this deviation of the eigenvectors,

we note that the largest eigenvalue is an order of magnitude larger than the

others, which constrains the remaining N − 1 eigenvalues, since the trace of

C, Tr[C] sums to N . Hence, in order to analyse the contents of the remaining

eigenvectors, we must first remove the effect of the largest eigenvalue. To do

this we can use linear regression (Plerou et al. 2002):

Gi(t) = αi + βiG
large(t) + εi(t) (4.4)

where

Glarge =
N∑
1

ulargei Gi(t) (4.5)

and N is the number of images in our sample. Here ulargei corresponds to

the components of the largest eigenvector. The Cross-Correlation Matrix C,

is then recalculated, using the residuals εi(t). If we quantify the ‘remainder

variance’, (i.e., that part not ‘explained’ by the largest eigenvalue) as σ2 =

1− λlarge/n, this value can be used to recalculate our values of λ±.

To assess whether random effects are less marked further away from the

RMT upper boundary λ+, we use the Inverse Participation Ratio (IPR). The

IPR allows quantification of the number of components that participate signif-

icantly in each eigenvector and tells us more about the level and nature of the

deviation from RMT. The IPR of the eigenvector uk is given by Ik ≡
N∑
l=1

[ukl ]
4

and allows us to compute the inverse of the number of eigenvector components
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that contribute significantly to each eigenvector.

4.3 Results

In this chapter, we analysed the AUTHORTYPICAL data set (D2) introduced

in Section 2.626. The author recorded an average day of her life: commuting

to the office in the morning, sitting and working in the office at a desk, talking

with colleagues and sharing lunch in the cafeteria, as well as commuting back

home in the evening and so on. When exploring one’s lifelog, reviewing routine

or ‘boring’ events has only limited interest, depending on the device’s purpose.

Efforts to determine automatically which events are most important or unusual

(e.g., talking with a colleague as opposed to working in front of a computer),

is an open research challenge. In order to offer a preliminary attempt to dis-

tinguish routine or ‘boring’ events from important events, we apply the RMT

method which has proved useful in noise filtering for the Cross-Correlation

Matrix enabling important signal features to be highlighted.

4.3.1 Statistics of Correlation Coefficients

In order to quantify correlations, we first analyse the distribution P (Cij) of

the elements {Cij : i = j} of the Cross-Correlation Matrix C and distribution

P (Rij) of the elements {Rij : i = j} of the Random Matrix. Fig. 4.1 shows

that P (Rij) appears to be consistent with a Gaussian with zero mean, in

contrast to P (Cij), which is asymmetric, with a longer positive tail and a high

peak, implying that positively correlated behaviour is more prevalent than

26The author wearing SenseCam generated total 2096 images for her a typical working
day
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negative. We argue that the fat positive tail represents significant or unusual

events in the data stream. In addition, we see that much of P (Cij) falls within

the Gaussian curve for the control, suggesting the possibility that observed

similarities with R in the Cross-Correlation Matrix C may be an effect of

randomness.
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Figure 4.1: Correlation Coefficient Distribution of the AU-
THORTYPICAL data set (D2) for the Cross-
Correlation Matrix C for SenseCam data (black)
and Random Matrix R (red).

4.3.2 Eigenvalue Analysis

Given the aim is to distinguish between information (major events) and noise

in the Cross-Correlation Matrix C, we compare the eigenvalue distribution

P (λ) of C with the corresponding eigenvalue distribution predicted by RMT

Prm(λ). We compute the eigenvalues λi of C, where λi are rank ordered

(λi+1>λi). Fig. 4.2 compares the probability distribution P (λ) with Prm(λ).

74



We note the presence of a well-defined ‘bulk’ of eigenvalues which fall within

the bounds [λ−, λ+] for Prm(λ). We also note deviations for (≈ 80%) largest

and smallest eigenvalues. This suggests that the Cross-Correlation Matrix has

captured most major events from the data streams, but still contains some

percentage of noise (≈ 20%).
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4.3.3 Eigenvector Analysis

Deviations from RMT: The deviations of P (λ) from the RMT result Prm(λ)

suggest these deviations will also be observed in the statistics of the corre-

sponding eigenvector components (Conlon et al. 2009). The distribution of

the components {ukl ; l = 1, ..., N} of eigenvector Uk of a Random Matrix R

should conform to a Gaussian distribution with zero mean and unit variance.

First, we consider the distribution of eigenvector components of C. We analyse

P (u) for C and choose one typical eigenvalue λk from the bulk (λ−≤λk≤λ+)

defined by Prm(λ) from Equation (4.2). This aims to demonstrate that P (u)

for a typical Uk from the bulk shows reasonable total agreement with the RMT

result Prm(u). Other eigenvectors, belonging to eigenvalues within the bulk,

yield consistent results, (in agreement with those of the previous sections) to

Random Matrix predictions. We test the agreement of the distribution P (U)

with Prm(u) by calculating the kurtosis, which for a Gaussian has the value

3. In Fig. 4.3, we find that the largest eigenvector (≈ 4.07) deviates signif-

icantly from the Gaussian value. The second and third Eigenvectors (≈ 3.7,

3.8) are also have P (U) larger than the Gaussian value, but not markedly

so. The Eigenvector from the bulk is however consistent with the Gaussian

value 3. These findings suggest that the largest eigenvalue (corresponding to

the largest eigenvector) represents information from the image on the largest

change in the SenseCam recording, which is typically the illumination level or

light level.
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In order to remove the effects of the largest eigenvalue we use the techniques

described in Section 4.2.2. We remove the contribution of Glarge(t) to each time

series Gi(t), and construct C from the residuals εi(t) of Equation (4.4). Fig.

4.4 for the AUTHORTYPICAL data set D2 shows that the distribution P (Cij)

thus obtained has a smaller average value <Cij>, showing that some of the

Cross-Correlation contained in C can be attributed to the influence of the

largest eigenvalue and its corresponding eigenvector.
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Figure 4.4: Probability distribution P of the Cross-Correlation
coefficients of the AUTHORTYPICAL data set
(D2) for data before (black) and after (red) remov-
ing the effect of the largest eigenvalue by linear
regression method

Inverse Participation Ratio (IPR): So we next focus on the remaining

eigenvalues to see whether these relate also to key sources or major events

and what information these contribute additionally to the images. The IPR

quantifies the reciprocal of the number of eigenvector components that con-
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tribute significantly. Fig. 4.5 (a) for the AUTHORTYPICAL data set D2

shows Ik for the case of the control of Equation (4.1). The average value of Ik

is <I>≈0.0014≈1/N with a very narrow spread, indicating that the vectors

are “extended” (Lee & Ramakrishnan 1985) - i.e., almost all component ele-

ments (of the vector) contribute, with fluctuations around this average value

confined to a narrow range. Fig. 4.5 (b) shows Ik for the Cross-Correlation

Matrix constructed from the 2096 SenseCam images. The edges of the eigen-

value spectrum of C show significant deviations of Ik from <I>, indicating

that there are major events contributing also to these eigenvectors. In addi-

tion, we find a number of small eigenvalues deviating from the control case,

which suggests that these vectors are localized (Lee & Ramakrishnan 1985) -

i.e. only a few images contribute to them.

Component content: Examination of the eigenvalue and eigenvector con-

tent indicates that the largest percentage of noise (≈ 20%) for that period is

described by the wearer ‘working in front of the laptop’ for a long time with-

out performing any other activities. The eigenvalues deviating from the RMT

upper bound indicate the wearer ‘moving from in front of the laptop and

preparing to go home’, with every image capturing different moments of this

event. For example, considerable light is captured at the moment of standing

up, different colours appear when she turns around, etc. Although the images

are visually very diverse, all have been captured in the same space, i.e. in the

office. The eigenvalues deviating from the RMT lower bound involve several

that are implicated in different minor activities; events such as ‘commuting

from home to the work place’, the wearer ‘talking with her colleague’, ‘the

wearer sharing lunch with her colleague’ etc. Only a few images, at a time, de-
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pict the same ‘environment’. We argue that this confirms our observation that

the IPR shows that smallest eigenvalue deviations are ‘localized’, i.e. ‘capture

short-lived scenes’.

The distribution of the components of the remaining largest eigenvectors

and their deviations show some distinctive clustering in Fig. 4.6 (a). In par-

ticular, Events {2, 6, 12}, Events {4, 5} and Events {3, 7} (in Table 2.2) are

the major contributors here. Examination of the images indicates that each

cluster reflects quite similar light levels for a group of events. For instance

in the cluster of Events 2, 6 & 12: Event 2 describes the user ‘passing from

outdoors into the office’; The office is dark; When the user switches on the

lights, light level changes are immediately captured. Similarly for Events {6,

12}, when the user is ‘walking through the building’, the camera sometimes

‘registers’ the lights and sometimes not. When the user ‘prepares to leave

the office’, i.e. packing and, finally, standing, the camera captures lights from

the ceiling, several images of the (dark) bag and so on. This light blockage

strongly affects the information content from the sequence of images. Events

{3, 7} are also similar: the scenario is that of ‘the user sitting in front of her

laptop, with laptop, lights and seating position unchanged over on extended

period’, contributing similar pixel values to this sequence of images. However,

Event 11, although apparently describing a similar scenario (working at the

PC), has not been grouped into the same cluster. Re-examination of these

images indicates important differences in the scenarios: while the working pe-

riod was long, the camera was inadvertently blocked by the user on numerous

occasions. Clusters also emerge for other deviating eigenvalues, shown in Fig.

4.6 (b) and (c). However, events {2, 5, 6, 8, 9, 12}, {1, 3, 10}, {1, 2, 5, 8, 12}
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and {3, 6, 10} mainly contribute to the second and third largest remaining27

deviating eigenvector, respectively. This implies that these eigenvectors may

carry additional information on the description of possible lead-in, lead out to

major event since the sets of events share common features.

4.4 Summary

In this chapter, we studied whether Random Matrix Theory (RMT) can be

applied to extract meaningful information and noise from a data sets. Signifi-

cant deviations of the signal eigenvector from those of from RMT predictions

are observed. Further, we analyze the deviations from RMT, and find that

(a) different eigenvectors encapsulate different features, suggesting that dif-

ferent major events are captured by various eigenvectors. (b) By examining

the eigenvectors corresponding to identifiable image components, we find that

alternating light levels as a key source of deviation are always picked up by

the device in terms of contributions to the largest remaining deviating eigen-

vector. In addition, similar events have been grouped together, and captured

by distinctive clusters in the eigenvector distribution. (c) The second and

third largest remaining deviating eigenvectors have a similarly-clustered dis-

tribution to that of the largest remaining deviating eigenvector. However, the

different clusters here relate to different events. We take from that these eigen-

vectors carry additional information to the description of events leading-in or

leading-out to major events. (d) We also note that even ‘quite similar’ sce-

narios, stemming from identifiably slightly different key sources28, are distin-

27The smaller eigenvalues, and their corresponding eigenvectors
28Change of illumination levels: from outdoor to indoor, block or unblock the computer

screen, switch on/switch off the lights;
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guishable; these events have been classified by different clustered distributions.

This implies such key sources play a major part in classification by the Cross-

Correlation Matrix. The proposed cleaning technique of separating the noisy

part from the non-noisy part proved clearly useful. Overall, the RMT tech-

nique provides a powerful tool in analysis of cross-correlations across whole

data streams.
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Chapter 5

Finding Motifs in Large

Personal Lifelogs

5.1 Introduction

In previous chapters, we introduced and evaluated the use of sophisticated time

series analysis methods for interpretation of large lifelogging SenseCam data

sets, generated by the author. The results of this evaluation suggest that strong

correlations do exist in lifelogging image time series, with recognisable cycles

representing specific events. In this chapter, we build on this observation to

address the challenge of refining the analysis of lifelogs by studying time series

motifs. Such motifs are frequently occurring, (but often previously unknown),

subsequences of longer time series (Lin et al. 2002). Many researchers have

studied the extraction of characteristics features from multi-dimensional time

series data (Nevill-Manning et al. 1998, Androulakis 2005, Minnen et al. 2006).

Given that visual lifelogs contain records of a wearer’s daily activities and

events that occur over different time periods, we argue that motifs can be used
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to identify and represent activities of different length and timing in such data

(which share common features with big data types). We explore this idea by

analysing high frequency patterns in multi-dimensional visual lifelogging data.

5.2 Methods

In Chapter 3, we studied the spectral dynamics of SenseCam images by ap-

plying the multi-scaled Cross-Correlation Matrix technique, for time series

exhibiting atypical or non-stationary characteristics, symptomatic of ‘Distinct

Significant Events’ in the data. This suggests that we can use such key episodes

to identify boundaries between different distinct daily events. The results indi-

cated that such events or activities can be detected at different scales through

wavelet analysis. Building on this observation, we aim in this chapter to extract

motifs or extended sub-sequences at different wavelet scales using the Mini-

mum Description Length (MDL) principle. Our method is first to calculate

the Cross-Correlation Matrix structure and the Maximum Overlap Discrete

Wavelet Transform (MODWT) (introduced in Chapter 3, sections 3.2.2 and

3.2.3). We then employ the Symbolic Aggregate approXimation (SAX) algo-

rithm for discretization of time series data into symbolic strings. Finally we

detail our motif extraction algorithm, based on the MDL principle.

5.2.1 Symbolic Aggregate approXimation (SAX)

Time series are always complex and large, in order to reduce the magnitude

of time series, some of dimensionality reductions methods are used, they are

including: DFT (Discrete Fourier Transform), DWT (Discrete Wavelet Trans-
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form), PAA (Piecewise aggregate Approximation). In this chapter, we use

dimensionality-reduction algorithm called Symbolic Aggregate approximation

(SAX) based on PAA (Lin et al. 2002, Keogh et al. 2001, Lin et al. 2007). PAA

is dividing a time-series into several segments and calculating the average value

in each segment. We apply this technique to transform the largest eigenvalue

time series into a sequence of symbols. For the largest eigenvalue time series

λ1(t) (obtained from Equation (3.5)) with number of images n (n is length

of the time series), then time series n can be reduced to a string of arbitrary

length w, (where w < n, typically w << n) and an alphabet size of arbitrary

length a, (where 2 <= a <= 10). In SAX, parameters w and a setting are

depending on the data set. In this thesis, we implemented SAX algorithm in

MATLAB with local machine (8GB RAM), we tried parameter w from 8 to 16

and parameter from 3 to 5, the results obtained are quite similar. The largest

eigenvalue time series λ1(t) = {x1, ..., xn} of length n can be represented as a

w-dimensional space by a vector λ̄ = {x̄1, ..., x̄w}:

x̄i =
w

n

w
n
i∑

j=w
n
(i−1)+1

xi (5.1)
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Figure 5.1: Example of time series transformation into SAX
symbols. Here, n=112, w=16, a=4. The time se-
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Figure 5.2: Example of ‘behaviour symbol’ assignment for pat-
tern order of PAA symbols. In this, A=bacc,
B=ccbc and C=bcdc.

In order to transform the vector of w dimension into a sequence of ‘PAA

symbols’, it is necessary also to determine ‘breakpoints’ that determine the

range of the PAA value for assigning unique PAA symbols. One approach is

to determine the breakpoints that will produce an equal-sized area under a Nor-

mal distribution. Breakpoints are a sorted list of numbers B = {β1, ..., βa−1}

such that the area under a N(0,1) Standard Normal distribution from βi to

βi+1 = 1/a(β0) and βa are defined as −∞ and ∞, respectively. Once the

breakpoints have been obtained we can discretize a time series as follows. We

first obtain a PAA of the time series; All PAA coefficients that are below the
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smallest breakpoint are mapped to the symbol ‘a’, all coefficients greater than

or equal to the smallest breakpoint and less than the second smallest break-

point are mapped to the symbol ‘b’, etc. Fig. 5.1 illustrates the idea; Finally,

a ‘behaviour symbol’ is assigned to every subsequence of PAA symbols. An

example is given in Fig. 5.2, for which the analysis window of Tmin is the

minimum length of motif for the time series.

5.2.2 Estimating Extracted Motif Candidate Based on

MDL Principle

Several theoretical information theory principles from literature are relevant

to the current analysis, including AIC (Akaike’s Information Criterion), BIC

(Bayesian Information Criterion) and MDL (Minimum Description Length)

principles (Pitt & Myung 2002).

The AIC estimates the best model based on ‘prediction capability’, while

BIC estimates the best model based on Bayesian principles. Our approach is

focused however, on finding frequent patterns, rather than prediction, for the

time series. The MDL principle states that the best model to describe a set of

data is that which minimises the description length of the entire data set. The

underlying concept is the selection of the best model to compress the data.

Table 5.1 summarises the principal notation used in this sub-section.

The ‘data encoding cost’ is the lower bound of description length that is

required to encode each segment. The ‘parameter encoding cost’ is the de-

scription length that is required to describe the order of the behaviour symbol

(BS) in each segment. Finally, the ‘segmentation cost’ is required to describe

the location of all segments. The work-flow of the MDL pattern algorithm
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can be visualized in Fig. 5.2. For example, in this figure, the length of the

first segment is s1=7, the length of the second segment is s2=3 and so on. In

addition, we assume that the jth BS has a length lij. A data encoding cost for

the jth BS in the ith segment is calculated then as:

− lijlog2
lij
ti

(5.2)

By calculating this cost for all unique Behaviour Symbol Sequences (BSS) in

the i-th segment, we obtain the data encoding cost of the whole segment as:

∑
j

−lijlog2
lij
ti

(5.3)

Using the following equation, we then calculate the data encoding costDL1(C̃|SC)

of C̃ that is segmented by the pattern SC:

DL1(C̃|SC) =
m∑
i

∑
j

−lijlog2
lij
ti

(5.4)

We calculate the complementary parameter encoding cost of each segment as

log2ti. Then, the second segment cost DL2(C̃|SC) of C̃ is calculated as:

DL2(C̃|SC) =
m∑
i

log2ti (5.5)

and the segmentation cost DL3(C̃|SC) as:

DL3(C̃|SC) = mlog2(
m∑
i

ti) (5.6)
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Finally, based on this table, we obtain the description length of C̃ that is

segmented by the pattern SC as follows:

MDL(C̃|SC) = DL1(C̃|SC) +DL2(C̃|SC) +DL3(C̃|SC) (5.7)

We use Equation (5.7) as the MDL estimation function for the MDL pattern

detection algorithm.
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Figure 5.3: Calculation of the MDL pattern algorithm
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5.3 Results

In order to evaluate our technique, we tested our method on two data sets: the

AIHSWEDS data set (D3)
29 and the NTCIR-12 (3 USERS) data set (D4)

30

have been introduced above in Chapter 2 Section 2.6.

First, the MODWT of the pixels for each image was calculated within each

window of size 400 images and the Cross-Correlation Matrix between pixels

at each scale found. The eigenvalues of the Cross-Correlation Matrix in each

window were determined, and the eigenvalue time series was normalised in

time. Then, the largest eigenvalue for different window sizes was calculated.

Finally, the SAX algorithm was applied to transform the time series to PAA

symbols.

Fig. 5.4. illustrated the AIHSWEDS data set (D3), where wavelet scales 1-

4 correspond to a 1-2 minute period, a 2-4 minute period, a 4-8 minute period

and a 8-16 minute period, respectively. The different features, found at vari-

ous scales, suggest that the Cross-Correlation Matrix captured different major

events with different time horizons. The largest Eigenvalue dynamics show

that with increased wavelet scales comes increased smoothing, as expected.

This removes some of the high frequency small-scale changes, typically associ-

ated with noise.

29From the AIHS data set includes 7,549 images from one lifelogger
30From the NTCIR-12 Lifelog data set includes 34,758 images from three lifeloggers
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Fig. 5.5 depicts examples of motifs discovered from different wavelet scales

using the method we introduced in Section 5.2 for the AIHSWEDS data set

(D3). As depicted, different motifs were extracted from different wavelet scales.

Since different wavelet scales correspond to different time horizons, the motifs,

extracted from different scales, should represent different ‘events’ that the

wearer experienced each Wednesday.

Examining the images that are identified by the motif analysis, we find

that both a1 and a2 describe the combined event of driving back home in the

afternoon, followed by watching TV. Motif b1 combines activities of eating,

and then moving to the living room. Motif b2 corresponds to driving to the

shopping mall. Both c1 and c2 are similar events where the wearer drives to

work and then sits for some time in front of the computer. For d1 the event

sequence comprises sitting and watching TV, talking with family and then

starting to cook, while d2 comprises sitting in the shopping mall and then

driving to an outdoor garden with children.

By examining the data set, we determine that most motifs discovered at

the same wavelet scale represent similar scenarios. We note also that most

describe the change from a static setting (e.g., sitting in front of a computer or

TV) to a more dynamic activity. Light change remains an important feature

in identifying/distinguishing between key episodes detected by our technique.

An added value here is a way of aggregating related or sequential events in a

recognisable template, which can be used as potential marker for automatic

extraction or comparison of similar episodes from an extended time series.

The descriptive statistics for NTCIR-12 (3 USERS) data set (D4) is re-

ported in Table 2.5. The organisers of the NTCIR-12 Lifelog also identified
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about 1,000 concepts by using the CAFFE visual concept detector. The out-

put of this concept detector, however, cannot be used to evaluate our method

since it includes recognition only of simple visual objects such as a desktop

computer, beer glass, banana, car wheel and so on. Moreover, the annota-

tions provided are not very accurate. In order to evaluate our methodology,

therefore, we first had to create a gold standard by identifying key lifelogger

activities. We manually annotated activities that the three lifeloggers per-

formed over ten days, resulting in annotations for a total of 34,758 images.

Descriptive statistics of these extracted data are reported in Table 5.2.

Fig. 5.6 shows the time series of the largest Eigenvalue dynamics across

different wavelet scales for the NTCIR-12 (3 USERS) data set (D4) from three

lifeloggers. The heatmaps show clearly different life patterns for the three. For

example, for lifelogger 1, some areas are consistently captured by the camera at

certain scales, such as the section of map around Day 8, (captured by wavelet

scales 4, 5, 6 and corresponding to periods of 8-16, 16-32 and a 32-64 minutes,

respectively). These peaks refer to periods when the lifelogger was sitting in the

living room; the camera consequently captures the ceiling lights. For lifelogger

3, the section of the map around Day 1 at high frequency scales and section

of the map around Day 7 at middle frequency scales are consistently captured

by the camera. This represents light captured from similar appliances - as in

the previous case. By examining the data sets, we note however that lifelogger

3’s lifestyle is more active and veried compared to the other two lifeloggers.

Activities include passing through airport and train stations, visiting the pub,

attending a party in a friend’s home and so on. The Fig. 5.6 heatmap reflects

the increased number of peaks in lifelogger 3’s time series compared to the
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other two. The heatmap shows that some features such as watching TV and

working in front of computer are consistently captured at certain scales, while

others, such as light changes, features across scales, suggesting that the Cross-

Correlation Matrix successfully highlight different major events with different

time horizons.
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Figure 5.6: Heatmap diagram showing the dynamics of the
largest Eigenvalue λ1 across 9 wavelet scales.
Scales 1 to 9 correspond respectively to periods of
1-2 , 2-4, 4-8, 8-16, 16-32, 32-64, 64-128, 128-256
and 256-512 minutes, respectively, for the NTCIR-
12 (3 USERS) data set (D4).
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As shown in Table 5.3, our approach extracted key ‘motifs’ such as ‘working

in front of a computer’. We defined a ‘matching’ pair as similar event ‘iden-

tification’, while a ‘mismatch’ was recorded if the event occurred but was not

identified by the motif technique (i.e. a false negative). The results suggest

that the high frequency wavelet scales perform better for lifeloggers 1 and 3

while the middle frequency wavelet scales are more accurate for lifelogger 2.

Unfortunately, the number of ‘match’ pairs is less than that of ‘mismatch’ pairs

for each wavelet scale. The main weakness, as well as strength, is that different

wavelet scales highlight different distinct events dependent on the time hori-

zons. In our example, working in front of the computer can last for several

hours or a few seconds, so that some additional measure indicating event du-

ration is required. In the wavelet approach also, some events are missing from

some scales but prominent in others. We found that a few extracted ‘motifs’

in consecutive wavelet scales do overlap, so that some aggregation is possible

to address in part of this issue. We can roughly calculate ‘our approach to

identification’ accuracy by adding the ‘match’ pairs of wavelet scales 1, 3, 5,

7 & 9 and dividing by the total number of events of identified type. Iden-

tification accuracy for lifeloggers 1, 2 & 3 is ∼ 40%, 76% and 65% of total

events, respectively. We note that while this accuracy is not ideal and sug-

gests that further modification is needed for motifs consecutively repeated or

persistent over time, this does seem to indicate that frequent activitity change

may improve identification and help in refining the wavelet application.

Table 5.4 shows the accuracy of different motifs cross different wavelet

scales. In general, the middle wavelets 3 to 5 (corresponding to 4-8, 8-16

and16-32) give us the best results on the motifs “Playing with Phone”, “Talk-
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ing with People”, “Walking” and “Working in front of Computer”. It was

noted that the accuracy of results vary from 37.72% to 10.12%. This is due to

two main reasons: First, our method is powerful in extracting activity changes,

such as light level changes, so the single activity evaluation depends on before

and after activities; Second, as we mentioned in Chapter 3, the main weakness

as well as strength for wavelet scales is that different scales captured different

events depending on the time horizons. Some events are missing by certain

wavelet scales. It was also noted on the same motif, for example “Working

in front of Computer”, different users received the best results from differ-

ent wavelet scales. It indicates the results linked with different user profiles

(lifestyles). One of the promising approaches is transforming the visual Lifel-

ogging images into semantic contexts. The semantics contexts will help us to

better understand visual Lifelogs images.

5.4 Summary

The major contributions of this chapter include exploration of MODWT & mo-

tif approaches for investigation of two well-known lifelogging data sets31. Our

methods demonstrate considerable potential for the organisation, structuring

and interpretation of vast amount of heterogeneous streams of visual data.

In particular, through application of the Maximum Overlap Discrete Wavelet

Transform (MODWT) on equal-time Cross-Correlation Matrix, we find that

different features occur at different wavelet time-scales. This suggests that

the Cross-Correlation Matrix captures different major events corresponding to

different time horizons. Further, the discovery of distinct behavioural motifs

31AIHS & NTCIR-12(subsets)
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provides a basis for prototype templates for identification of similar scenarios

at specific time scales e.g., ‘typical’ lifestyle patterns of lifeloggers. Indications

are that wavelet methods may be more effective for identification of motifs

in time series with frequent activity changes, but clearly this requires further

evaluation. For less active lifestyles, it seems likely that additional statistical

information criteria will also need to be used in enhancement of the technique.

Nevertheless, the identification of specific behavioural motifs does indicate po-

tential for refinement of the method.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Visual Lifelogging is used to describe the process of tracking personal activities

by using wearable cameras. A wearable camera such as the SenseCam gener-

ates large volumes of continously streamed personal data. The key challenge

is in extracting meaningful information from such large data sets in order to

make these useful for the user. Although deep learning techniques for improved

classification of images have increased in popularity, lifelogging presents dif-

ficulties, due to the lack of annotation, incompatible lifelogging devices and

incompleteness of data sets; (errors occurring during the lifelogging process).

In consequence, promising results for lifelogging image data continue to prove

elusive.

In this thesis, for the first time, we considered lifelogging image data as

a Complex System, (with typical shared features). We proposed a novel ap-

proach based on application of time series methods, commonly used for analysis

of various other Complex Systems. Several large lifelogging image data sets
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were generated by different users, and from different lifelogging devices, and

were used to test the approach. The time series analysis methods aimed to re-

structure the lifelogging data sets, identify common causes (or factors) of the

dynamics, and to identify and extract common life ‘patterns’ from the lifelogs.

In order to achieve these aims, we initially applied the Detrended Fluctuation

Analysis (DFA) method to the SenseCam image time series. The results show

that ((i) a) the data set is not a random walk and ((i) b) strong correlation

exists in the time series with recognisable cyclic fluctuation. The DFA method

provided the initial background information for SenseCam.

We further applied the equal-time Cross-Correlation Matrix method to

characterise dynamical changes in non-stationary multivariate SenseCam time

series. The behaviour of the largest eigenvalue of a Cross-Correlation Matrix

with different sliding window sizes was studied. Results show that ((ii) a) large

window size gives smoother series, as expected, and highlights major features

with some peaks in the series becoming more pronounced. The sliding window

approach thus helped to remove some of the high frequency small-scale changes,

many of which can be treated as noise. Results also suggest that ((ii) b) the

largest eigenvalue can be used to explore information from the image series,

which reflects the largest change overall. This was found to apply for data

from several user SenseCam recordings in different data sets. By applying

the Maximum Overlap Discrete Wavelet Transform (MODWT) and from the

information present in the largest eigenvalue, we further found that ((ii) c)

different features occur at different wavelet time-scales suggesting that the

Cross-Correlation Matrix of different major events corresponds to different

time horizons. In addition, by examining the change in eigenvalue-ratios over
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time, we confirmed that the largest eigenvalue carries most of the major event

information (as for (ii) b), while subsequent eigenvalues carry information on

supporting or lead-in/lead-out events ((ii) d). These consistently occurring

peaks thus help to identify major and subsidiary events of lifelogging data.

For the major events, it is clear that light level is a major delineator during

static periods of image sequence ((ii) e).

We also considered the effects of noise on the image time series. Random

Matrix Theory (RMT) was exploited to filter noise from the Cross-Correlation

Matrix, constructed using lifelog data streams. Significant deviations from

RMT predictions were observed. In analysing these deviations confirmation

was obtained ((iii) a) that the largest eigenvalue and its corresponding eigen-

vector present information from the image that reflects the largest change in

the image data recording, and ((iii) b & c) the smallest eigenvalues, and their

corresponding eigenvectors, represent short duration major events from the

SenseCam recording. The ‘cleaning technique’ (of separating the noisy part

from the non-noisy part) is demonstrated to be particularly useful ((iii) d).

We also proposed using motif discovery techniques based on SAX discretiza-

tion and wavelet methods to investigate subsets of two well known Lifelogging

data sets, AIHSWEDS data set (D3) and the NTCIR-12 (3 USERS) data

set (D4). We showed that ((iv) a) Minimum Description Length (MDL) and

wavelet analysis can be used to extract motifs (repeated patterns of different

length) from multi-dimensional time series data. The motifs discovered ((iv)

b) provide prototype templates for identification of similar scenario behaviours

at specific time scales e.g. ‘typical’ lifestyle patterns of lifeloggers such as

that of ‘working at the computer’. The evidence from motif methods pro-
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vides additional confirmation of the previous findings on the nature of major

events, indicating that light changes are natural markers for distinguishing key

episodes (as (ii) e). Further, ((iv) c) while behavioural motif identification is

modest for some data sets, it is more successful in the case of extended and

multiple activities, suggesting potential for refinement by means of statistical

information criteria and weighting of events by type.

6.2 Future Work

The ideas and methods presented in this thesis provide new insights on how

to structure, organise and analyse lifelogging images. Given the novelty of

the approach described, there are a number of research challenges that can be

undertaken in the future.

From the data perspective: although the concept of lifelogging is not

that recent, large lifelogging data sets of decent quality are still very limited.

Such data contain personal information and consequently, privacy and secu-

rity issues are a concern for most lifeloggers (Li & Hopfgartner 2016). In

this thesis, where we have examined two public domain data sets, referred to

as ‘AIHS’ and ‘NTCIR-12’, these are far from perfect, due to incompatible

recording errors caused by human error and devices limitations or differences.

For example, the AIHS data set reportedly includes 19 days with a total of

45,612 images, but if each image is examined, the actual coverage is 29 days

with a total of 43,399 images. Similarly, for the NTCIR-12 Lifelog data set;

e.g., for Lifelogger 2 on the tenth day of collection, some images are not in the

correct order while on the ninth day of Lifelogger 3, most images appear to

be the same. In addition, (for there are many generations of lifelogging de-
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vices available on the market), the quality of images produced by the different

cameras vary significantly. By comparing images recorded by two lifelogging

devices (SenseCam and Narrative), we notice that not only do camera lenses

differ (fisheye vs normal)32, but the SenseCam device captures images with

a larger field of view (and of poorer quality due to movement and occlusion

from the wearer’s hands). In contrast, the images produced by the Narrative

device in general have a normal field of view and are of much better quality

than those of SenseCam. Clearly, it would be useful to evaluate the robustness

of our methods by benchmarking on visual lifelogging data sets and devices

with good enough resolution, low noise and accurate lifelogging recording. The

ideal would be at least to ascertain what is ‘good enough’ to some not same

extent defined by context.

Other future work could include investigation of the range of other sen-

sors data inputs and their value towards, e.g., improved activity recognition.

Accelerometer data could be an important addition in this respect, (see e.g.,

(Albatal et al. 2013)). Inference of contextual information about common daily

activities such as sitting, walking, driving and lying down should be possible

to detect. In particular, combination of accelerometer and image sensor data

streams together may enable more accurate event boundary identification for

lifelogging data. Distinguishing consecutive movements indicate that the as-

sociated image shift is quite likely to represent a boundary between different

events or activities such as walking from home to work, walking from the of-

fice to lunch, walking from home to the shops, etc. but with different scope

of environment, levels of personal interaction and so on. Combining sensor

32fisheye means wide-angle; normal means straight lines of perspective
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information may thus help to classify lifelogging images into more meaningful

activities. However, one immediate improvement in this regard might be to

sample the different sensor data at different rates in order to apply the meth-

ods described. The most common among them are those using a fixed window

size (Maurer et al. 2006) or sensor methods such as Kalman filter (Alatise &

Hancke 2017) or convolutional neural network (Ordóñez & Roggen 2016).

From the implementation perspective: one limitation of the presented

methods is that these require extensive computer memory and the speed to

solve large systems of equations. In this thesis, all methods were implemented

using MATLAB, which is widely accessible and regularly updated, but speed

of computation is limited. In future work, a highly scalable High Perfor-

mance Computing (HPC) framework should be considered, such as cluster or

grid computing (Foster et al. 2008) or the recently extended HPC framework

MapReduce/Hadoop33 and Apache Spark34. Such a framework would help to

evaluate larger lifelogging data sets using our methods, both to confirm initial

results and help explore further the detailed features of lifelogging images. The

availability of larger lifelogging data sets would enable more precise validation

of the methods proposed, together with the potential to explore other features

of these data in more detail, not least in order to provide typical real-time

‘system alerts’ for more immediate practical and personal feedback.

From the methods perspective: improvement of current motif discov-

ery technique is a promising direction to explore. The SAX motif discovery

algorithm employed in Chapter 5 has weaknesses in term of being approximate,

slow and requiring many parameters, which have to be carefully chosen to en-

33https://hadoop.apache.org
34https://spark.apache.org
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sure high precision. For future work, it would be worth while to consider the

algorithm STAMP (Scalable Time series Anytime Matrix Profile) (Yeh et al.

2016) which promises exact, parameter free and speed up pattern identifica-

tion. Further, it would be interesting to benchmark the results between the

mSTAMP (Yeh et al. 2017) algorithm discovery of multidimensional motifs

and STAMP with wavelet methods for similar type of lifelogging data.

In addition, in Chapter 5, we have used the dimensionality reduction of the

symbolic representation approach for discovering repeated distinctive patterns

(motifs) for the lifelogging images data. In the future, it would be useful to

have a module to predict subsequent events given the context of an existing

event. Recently, Hu (2016) shows that lifelog data (accelerometer sensors)

can be modelled and predicted with suitable models and under several con-

straints. Model-based methods, such as Gaussian Mixture Models, Hidden

Markov Models and autoregressive moving average (ARMA) models are pop-

ularly used for forecasting or predicting multivariate data sets (Williams et al.

1998, Krogh et al. 2001, Wiest et al. 2012, Eirola & Lendasse 2013, Li et al.

2018, Yang et al. 2018). However, for model comparison, measures of model fit

and model complexity are required. Statistical analysis and mixed information

criteria (such as Akaike’s information criterion (AIC), corrected AIC (AICc),

Bayesian information criterion (BIC), minimum description length (MDL), and

the Hannan-Quinn (HQ)) provide a basis for interpretation of data, especially

where these are incomplete and imperfect and offer a novel way to choose the

“best” time series models (Yang 2005, Fonseca & Cardoso 2007, Dziak et al.

2017).

We provided some initial results from application of time series methods to
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lifelogging image data, but there is still much work to be done. However, we

believe that work presented in the this thesis provides a good starting point

for future research work in this area.
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