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Preface

...Once upon a time, there lives an old master and his pupils. They are working on a skill

called “dragon slay” at the academy. One day, a monster came to their country. This hideous

monster attacked the helpless villagers, burned their houses, and ate their grazing cattle. People

called this monster “the dragon”. The master was called in by the king for a solution. “Your

Majesty,” said the master, “although I have work on ‘dragon slay’ for my whole life, till now

I have never seen a real dragon. We should first know if this monster is a ‘real dragon’ as

described by the books. From the books, I learned how to make a ‘dragon-slay sword’. To make

this sword, I need several special metals. The problem is that the books do not tell me the

proportion of metals used to cast the sword. Fortunately, I know how to tell if the sword is

a real ‘dragon-slay sword’ by using a touchstone. Unfortunately, this touchstone can be found

only in the depth of the ocean. I have no idea about the exact location of it. Moreover, I am

too old to fight with a dragon using the real ‘dragon-slay sword’. We need to find someone who

is able to use it.”

——————— Wei Sun
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Chapter 1

Introduction

A plethora of research articles on the topic of high frequency data has been observed, some of

which are of high interest for financial economists and practitioners (such as investors and fund

managers). The former group believes that high frequency provides the micro-perspective that

was lacking from the traditional analysis so far and is able to decipher the puzzles of empirical

finance, since the microstructure theory has unveiled patterns and relationships that could not

be uncovered at daily or weekly frequencies. Traditional financial studies mainly consider the

prevailing linear paradigm and efficient market hypothesis that severely distort the perspective

of how markets effectively operate. Empirical evidence points to the realization that linearity

and the efficient market hypothesis have less power in the explanation of phenomena observed

from financial markets. The latter group, who has been equipped with the insights about

the micro-perspective of financial markets and movements of speculative prices, could exploit

them in asset allocation or establishing trading models. A new body of financial study has

started emerging as a result of the availability of financial data at frequencies higher than daily.

Such a new body of financial study in this dissertation is defined as high frequency financial

econometrics.

Besides developments of high frequency data analysis in the academic field, growing interna-

tional trade and the wide seeking for profit opportunities drive the integration and globalization

of the markets, which induce increased uncertainty and volatility across global markets. It is

generally agreed that the more global the markets become, the finer the frequency at which

the analysis should be conducted. The reason is straightforward. Volatility brings risk and

risk encourages the introduction of derivatives which, although designed to head off a disaster,

can hold their own dangers (see, for instance, the recent collapse of subprime mortgage mar-

ket). The boom in derivatives, globalization, electronic trading, and multiplication of markets

transforms so much not only the markets themselves but also the way of investors manage their
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funds. Complex portfolios are often comprised of foreign exchange, equity, interest rates, and

derivatives, and tend to diversify their risks over many geographical regions and different indus-

tries. Volatility grows with such global portfolios, which pushes portfolio managers to monitor

and evaluate their assets at substantially high frequencies. Although long-term performance

still remains the overriding objective, the yardstick of evaluation has actually become smaller

with respect to real-time information from different markets.

Performance of assets is tightly linked to and evaluated through the risk perspective. Al-

though the idea and practice of evaluating risk and reward simultaneously is not new to the

empirical finance literature, what is novel are the newly developed methods for risk evalua-

tion. Meantime, the growing complexity and automation of the markets require greater use

of advanced quantitative methods, by which risk (i.e., volatility) can be accurately predicted.

Good performance is rewarded only if it is the result of adhering to given risk limits that are

relatively accurate and practical. As a result, the coherent risk measures are increasingly paid

attention to with the aim of maintaining real-time risk control. Value at Risk (VaR) and risk

management unit (RMU) methodologies that are used by practitioners, but neither their use

nor their analytical sophistication has the possibility to be uniformly accepted. As a result, the

New Basel Capital Accord (Basel II) places emphasis on flexibility and sensitivity of risk man-

agement. Consequently, market operators, from traders to funds managers, are increasingly

paid more attention to the risks they undertake. It is obvious that there exist certain links

between trading risks and real-time high frequency information, but the potential of exploit-

ing such links is possible only by analyzing high frequency data with the help of technological

advances (e.g., a powerful computer).

Still, the analysis of high frequency data retains different kind of challenges for financial

market analysts and researchers. The contributions of this dissertation are threefold. First,

challenges of employing advanced quantitative methods in the study of high frequency data and

sought for solution by practitioners have been stated under a unified field of high frequency

financial econometrics based on mining high frequency financial data. Second, more sophisti-

cated models (i.e., ARMA-GARCH model with fractional Gaussian noise and fractional stable

noise) are proposed for analyzing stylized facts of high frequency data. Third, sophisticated

models (i.e., copula-based ARMA-GARCH models with fractional Gaussian/stable noise) are

proposed for analyzing co-movement of international financial markets with different correlation

styles (i.e., correlation with symmetric and asymmetric volatility).

In Chapter 2, high-frequency financial data are introduced. The major content of this chapter

is to discuss topics about mining high-frequency data, which include information extraction and

knowledge discovery from high-frequency data, practical issues of dealing with high frequency
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data, computational data mining methods, statistical data mining methods, and criteria for

evaluating data mining methods.

In Chapter 3, high-frequency financial econometrics is defined. The research fields of high-

frequency financial econometrics typically touched are discussed, which cover mechanisms in

economic settings for financial markets, market price formation, study of transparency, liquidity,

and volatility of financial markets, and pattern recognition and some stylized facts (i.e., random

durations, heavy-tailed distributional properties, autocorrelation, seasonality, clustering, and

long-range dependence).

In Chapter 4, long-range dependence effect is discussed in detail. Two self-similar processes,

i.e., fractional Gaussian noise and fractional stable noise are discussed in this chapter.

In Chapter 5, I empirically investigate the return distribution of 27 German DAX stocks using

high-frequency data under two separate assumptions regarding the return generation process:

(1) It does not follow a Gaussian distribution and (2) it does not follow a random walk. In

the empirical study, I develop the ARMA-GARCH model with one of the typical self-similar

processes, fractional stable noise. I empirically compare this process with several alternative

distributional assumptions in either fractal form or i.i.d. form (i.e., normal distribution, frac-

tional Gaussian noise, generalized extreme value distribution, generalized Pareto distribution,

and stable distribution) for modeling German equity market volatility. The empirical results

suggest that fractional stable noise dominates these alternative distributional assumptions both

in in-sample modeling and out-of-sample forecasting. My findings suggest that models based

on fractional stable noise perform better than models based on the Gaussian random walk, the

fractional Gaussian noise, and the non-Gaussian stable random walk.

Several studies that have investigated a few stocks have found that the spacing between

consecutive financial transactions (referred to as trade duration) tend to exhibit long-range

dependence, heavy tailedness, and clustering. When considering irregularly spaced tick-by-tick

time series data, time durations should be modeled. In Chapter 6, I empirically investigate

whether a larger sample of stocks exhibits those characteristics. Based on the modeling mech-

anism of self-similar processes, in this chapter I empirically compare a stable distribution with

fractional stable noise with several alternative distributional assumptions (lognormal distribu-

tion, fractional Gaussian noise, exponential distribution, and Weibull distribution) in modeling

trade duration data. The empirical results suggest that fractional stable noise and stable dis-

tribution dominate these alternative distributional assumptions. Comparing goodness of fit in

modeling trade duration data for stable distribution and fractional stable noise based on a pro-

cedure using bootstrap methods, I find that empirically the autoregressive conditional duration
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model with stable distribution fits better than other combinations, while fractional stable noise

itself fits better for the time series of trade duration.

Analyzing equity market co-movements is important for risk diversification of an interna-

tional portfolio. Copulas have several advantages compared to the linear correlation measure

in modeling co-movement. In Chapter 7, I introduce a copula ARMA-GARCH model for an-

alyzing the co-movement of international equity markets. The model is implemented with

an ARMA-GARCH model for the marginal distributions and a copula for the joint distribu-

tion. After goodness of fit testing, I find that the Student’s t copula ARMA(1,1)-GARCH(1,1)

model with fractional Gaussian noise is superior to alternative models investigated in my study

where I model the simultaneous co-movement of nine international equity market indexes. This

model is also suitable for capturing the long-range dependence and tail dependence observed

in international equity markets.

In order to modeling asymmetric correlation, in Chapter 8, I introduce a skewed Student’s

t copula ARMA-GARCH model for analyzing the co-movement of indexes in German equity

markets. The model is implemented with an ARMA-GARCH model for the marginal distribu-

tions and a skewed Student’s t copula for the joint distribution. After goodness of fit testing, we

find that the skewed Student’s t copula ARMA(1,1)-GARCH(1,1) model with Lévy fractional

stable noise is superior to alternative models investigated in this study when modeling the

simultaneous co-movement of six German equity market indexes. This model is also suitable

for capturing the long-range dependence, tail dependence, asymmetric correlation observed in

German equity markets.

In Chapter 9, I perform three empirical studies in high-frequency financial econometrics,

i.e., volatility prediction, computing Value at Risk (VaR), and short-term portfolio selection.

In this chapter, I show that the neural network has the advantages in prediction. I compare

several models in computing VaR and show that parametric models using stable distribution

and fractional stable noise is better than those who use normal and fractional Gaussian noise.

I propose a new methodology of selecting portfolios in a hypothetic real-time financial market,

i.e., selecting stocks by their clustered risk measures. The result shows that accurately clustering

the risk measures can generate a better portfolio performance.

I conclude this dissertation in Chapter 10 and point out future researches.



Chapter 2

Mining High-Frequency Financial Data

Many companies and scientific communities have been utilizing data mining technology as more

and more success stories of data mining technology become known. Most banks and financial

institutions offer a wide variety of financial services such as issuing bank checks, savings and

loans, mortgages, customer transactions, investment services, credit cards, and derivatives. Fi-

nancial data collected in the banking and financial industry are often relatively complete and

informative that facilitates systematic data analysis and data mining to improve the manage-

ment quality and competitiveness of financial institutions. In the banking industry, data mining

is used heavily in the areas of modeling and predicting credit fraud, evaluating performance,

controlling risks, analyzing profitability, and supporting direct-marketing campaigns. In the

financial markets, data mining is used to forecast stock and commodity prices, to trade options

and finanical derivaties, to rank bonds, to manage portfolio, and to analyze mergers and ac-

quisitions. After the new Basel II Acord, data mining has been used for forecasting financial

disasters. Due to the confidential policies, it is not easy to find reports about financial compa-

nies who use data mining in their bussiness. An easy way to imply the companies who use data

mining technology in their bussiness is to look at the US Government Agency SEC1 reports of

some of the data mining companies who sell their produc. One finds some big customers such as

Bank of America, First USA bank, Daiwa Securities, LBS Capital Management, and U.S. Ban-

corp. Kantardzic (2003) gives several examples of financial companies who utilizes data mining

technology, for example, the “FAIS” system developed by the Financial Crimes Enforcement

Network (FINCEN) of the US Treasury Department for detecting potential money-laundering

activities from a large number of big cash transactions, the credit card-attrition model devel-

oped by the Mellon bank based on the IBM Intelligent Miner, and the data mining techniques

1Securities and Exchange Commission or SEC is a U.S. regulatory commission established by Congress in 1934
with primary responsibility for enforcing the federal securities laws and regulating the securities industry/stock
market. More detialed information can be found from www.sec.gov.
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used by Capital One Financial Croup based on Oracle datawarehouse.

With employing electronic trading and order routing systems in financial markets, an enor-

mous quantity of trading data in electronic form is now available. A complete data set of

transactions recorded and their associated characteristics such as transaction time, transaction

price, posted bid/ask prices, and volumes are provided. These data are gathered at the ultimate

frequency level in the financial markets and usually referred to as (ultra-)high-frequency data.

Looming atop a wide variety of events in financial markets menace profiles of ever-growing

mountains of high-frequency data after employing electronic trading system. These mountains

grew as a result of great demand for efficient technology to generate, collect, and store such

digital data. Unfortunately, the size of a high-frequency database usually is greater than the

main memory of a normal PC. Without advanced computational techniques to help us analyze

such accumulated datasets, we risk missing useful information that the data offer.

Faced with massive high-frequency data sets, people might find traditional approaches in

statistics and pattern recognition fail to explain the data. For example, a statistical analysis

package usually assumes data can be “loaded” into memory for future manipulation. But it is

no longer true when we are dealing with large high-frequency data sets. Several problems have

be pointed out, for example: What happens when the size of a dataset exceeds the capacity of

a computer’s main memory? What happens if the database is on a remote server that does not

allow a näive scan of the data? How do we sample effectively if we are not permitted to query

for a stratified sample because the relevant fields are not indexed? What if the data set is in

a multitude of tables and can only be accessed via some hierarchically structured set of fields?

What if the relations are sparse (not all fields are defined or even applicable to any fixed subset

of the data)? What can we do if the subsets of the database are collected at different scales

without index for the differences? How do we identify a statistical model with a large number

of variables? Therefore, new approaches, techniques, and solutions have to be developed to

enable analysis based on large high-frequency databases. Data mining techniques may enable

us in analyzing massive high-frequency databases with respect to solve the questions posted

above.

Data mining has been defined as “the nontrivial extraction of implicit, previously unknown,

and potentially useful information from data (see Frawley et al. 1992)” and “the science of

extracting useful information from large data sets or databases (see Hand et al. 2001)”. John-

son and Wichern (2002) classified data mining problems into five categories, i.e., classification,

prediction, association, clustering, and description. Data mining involves sorting through large

amounts of data and picking out relevant information from them. It is increasingly used in

business research and financial analysis. Data mining is a process requiring a sequence of steps:
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(1) Define the problem and identify the objectives. (2) Gather and prepare the appropriate

data. (3) Explore the data for suspected associations, unanticipated characteristics, and obvious

anomalies with robust methods. (4) Clean the data and perform necessary variable transfor-

mation in the appropriate way. (5) Establish a rigth model right to explain the information

discovered from the data.

What is the difference between data mining methods and statistical modeling? It is true that

data mining methods and statistical modeling share a same subset. The major differences are

(1) data mining methods are designed for massive data set but statistical modeling and inference

is usually based on limited samples and (2) data mining methods are more robust (model-

free or assumption-free) but statistical modeling are often model-based with some preliminary

assumptions.

In this chapter, we are going to outline the potential data mining techniques used in high-

frequency financial econometrics. The structure of this paper is: in Section 2, we introduce

the basic structure of the high frequency financial database. In Section 3, we will talk about

the research scope of high-frequency financial econometrics by introducing the latest relavent

studies. In Section 4, some topics about information extraction and knowledge discovery will

be discussed. Two principles of data mining methods, i.e., computational data mining and

statistical data mining are introduced in Sections 5 and 6 respectively. In Section 7, several

methods for evaluating data mining methods are reported. We summarize in Section 8.

2.1 High-Frequency Financial Data

There is no standardization of the term intra-daily data adopted by researchers in the market

microstructure area. In this literature, there are several descriptions for intra-daily data. Has-

brouck (1996) mentions microstructure data or microstructure time series. Engle (2000) uses

the term ultra-high frequency data to describe the ultimate level of disaggregation of financial

time series. Alexander (2001) describes high-frequency data as real time tick data. Gourieroux

and Jasiak (2001) use the expression tick-by-tick data while Tsay (2002) writes “high frequency

data are observations taken at fine time intervals.” In this article, the term intra-daily data will

be used interchangeably with the other terms used by market structure researchers as identified

above.

As the full record of every movement in financial markets, intra-daily data offer the researcher

or analyst a large sample size that increases statistical confidence. The data can reveal events

in the financial market that are impossible to identify with low frequency data. While in some
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sense, intra-daily data might be regarded as the microscope used for studying financial markets,

these data have broader interest in econometric modeling and market microstructure research.

Extremely large amounts of high frequency data have been generated by the expanding

financial market with the implementation of powerful computer systems designed for electronic

trading. The electronic trading systems fulfill vital tasks on stock markets such as maintaining

an electronic order book ranked according to the goodness of price and time entry, entering

new incoming buy and sell orders into the order book, matching automatically the buy and

sell orders, reporting the recorded trade characteristics and releasing information either in real

time or in historical data files ( Gourieroux and Jasiak 2001). Performance of such tasks has

been recorded in a continuous way that creates the high frequency data. Figure 2.1 shows one

example of high frequency transaction data of German Münchener Rückversicherung on DAX2.

Figure 2.1: High Frequency Transaction Data of Münchener Rückversicherung on DAX. Source: KKMDB.

The first position consisting of 6 numbers stands for the stock trading code on German DAX.

It is followed by the date in format of YYYYMMDD (Y=year, M=month, D=day). Next entry

is the time stamp in format of HH:MM:SS.ss (H=hour, M=munite, S=second, s=second/100).

After the time stamp, price is entered into the table with 11 digits. The following digits

represent the traded volume. After the traded volume, there is the price indicator. The last

column in the table is the international trading code. DE stands for Germany. There are

essentially three time series arising from these records: trading prices, volumes and trading

times which yield inter-trade durations. It has to be emphasized that data on transactions

prices do not satisfy standard assumptions used in the theory of asset pricing since trading

2The data is from German Karlsruher Kapitalmarktdatabank (KKMDB)
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prices do not exist in continuous time but are separated by unequal (irregularly spaced) time

intervals, and for trading data, the transaction price is not unique but changeable.

Another type of high frequency data is the order book data. Figure 2.2 shows one example

of the order book data. This display ranks the bids and asks of the 39 Nasdaq market makers

and electronic communications networks that were providing quotes of Microsoft in October 5,

2001 at 11:26 Eastern time. The bids are ranked from highest to lowest, and the asks are from

lowest to highest. It reports that Microsoft stock last traded at 55.97 dollar, 0.47 dollar down

from the previous close, the market is currently 55.97 dollar bid and 55.98 dollar offered. The

two rows near the bottom present order indications (OI) that are displayed for Bridge clients.

The unit of size is one hundred shares.

Figure 2.2: Nasdaq Level II Quotation Montage for Microsoft Common Stock. Source: Harris (2003, page
15).

2.2 Information Extraction and Knowledge Discovery

Data mining is the most well-known application for information extraction and knowledge

discovery, which describes the process of searching large volumes of data for patterns that

can be considered knowledge about the data. In this section, several important concepts are

introduced based on the process of information extraction and knowledge discovery.
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2.2.1 Informative Data

Not all data can offer useful information for problem solving. Task based data mining only

extracts information that can be extracted from large datasets, i.e., solving problems based only

on mining informative data. Informative data has following features: precision, completeness,

relevance, uniqueness, and coherence.

Precision

The principal requirement for the informative data is precision. Precision means the data values

recorded conform to the real situation, i.e., the data tell nothing but the truth. Precise data

should have a correctly reported value at the reported time. False definition of variables, mis-

alignments, and data errors will significantly reduce the precision of the data and consequently

reduce the informative reliability.

False definition of variables refers to give certain data values a wrong index, i.e., given {xr}
and {ys}, representing two sequences of measurements of the variable x and y with respect to

characteristics r and s, false definition refers to illustrate the data for {xr} and {ys} with the

name of {xs} and {yr}.

Given {xk}, the sequence of measurements of the variable x, which is ordered by the strictly

increasing index sequency k, taking values from 1 to N inclusively. Misalignments means

replacing {xk} with {xk′} where {k′} with values from 1 to N is any sequence other than the

desired index sequence {k}. Pearson (2005) gives four possible types of {k′} for {k} , i.e.,

permutation, missing values with extension, duplication, and shift with duplication.

Dacorogna et al. (2000) separate the errors into two classes, i.e., human errors and system

errors. Human errors are errors directly caused by human data contributors and system errors

are caused by computer systems, their interaction, and failures. They point out that there

are unintentional errors and intentional errors caused by human data contributors. Typing

errors are the typical unintentional errors and dummy ticks produced just for technical testing

is typically intentional.

Completeness

An extremely common anomaly in large datasets is missing data, which refers to data values

that should be present in the dataset but for various reasons are absent. The common cause of

missing data is measurement system failures, which can happen in manual or automated data

collection systems. Two situations should be pointed out. One is the total system failure and
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the other is the practical system failure. Total system failure refers to the situation that all

data values that should be recorded are actually missing at given measurement times, whereas

practical system failure refers to some data values are recorded but other data values are not.

Completeness generally requires that there is no missing data in the dataset at any given

measurement time. Pearson (2005) points out the ignorable missing data and non-ignorable

missing data. The ignorable missing data corresponds to the omission of a randomly selected

subset of data values from a certain dataset. A random subset of missing data is only ignorable

for statistical analysis under the further assumption of independence. Conversely, non-ignorable

missing data corresponds to systematically missing data values from a dataset. He argues that

the variability of results computed from N data values usually decreases with increasing N ,

therefore the effect of ignorable missing data is only an increase in this variability relative to the

results obtained from a complete dataset. He also thinks that the consequence of non-ignorable

missing data often leads to significant biases into the results. The ignorable missing data

causes less negative effects when the data is sampled randomly and the number of the missing

values is a small percentage of the whole sample size. Unfortunately, the missing values for

high-frequency financial data are usually non-ignorable. Pearson (2005) provides an illustration

based on the sample autocorrelation function to support the non-ignorability for time series

data.

Relevance

Relevance is a criterion based on certain target problems. The data used for problem solving

must be relevant to that problem. The higher the level of relevance between the data and the

problem, the more efficient the solution that can be reached by data mining. It is often difficult

to find the proxy variables or instrument variables in the analysis, particularly in inference,

when the actually relevant variables cannot be obtained from the dataset. There are two main

requirements for using a proxy: (1) the proxy or instrument variable must be correlated with

the unavailable variables, and (2) the proxy or instrument must not add noise to the analysis

(i.e., the proxy should not be correlated with other variables obtained for analysis and should

not suffer from the same problem as the original predicting variable).

Uniqueness

Uniqueness requires the value for each unit for a given characteristic variable must be unique.

For example, the transaction price of Volkswagen AG in Frankfurt Exchange at 16:18:16.32 in

16 September, 2004 is 32.55 Euro, this price must be unique. Dacorogna et al. (2001) introduce

two types of data error in high-frequency data, i.e., repeated ticks and tick copying. Some data
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contributors let their computer repeat the last tick in more or less regular time intervals and

some data contributors employ computers to copy and re-send the ticks of other contributors.

Dacorogna et al. (2001) point out the harmfulness (1) if the old ticks are repeated thousands

of times with high frequency, it obstructs the validation of the few good ticks, and (2) copying

ticks can obstruct a clear identification.

Coherence

Coherence here refers to the dataset has no (1) misalignment for each observation under the

same variable, (2) misdefined variables, (3) mislabeled samples, and (3) incoherent scaling for

each variable.

Misalignments are data anomalies particularly observed in large datasets. Suppose {x1
k} and

{x2
k} stand for two sequences of measurements of the variable x ordered by a strictly increasing

index sequence k. The identity of the index series k usually has less meaning, but the fact that

x1
k and x2

k have the same subscript value k means that these two data observations represent

values of x1 and x2 under the same conditions, which means, the data values x1
k and x2

k are

two distinct measurable attributes of the same variable. When the misalignment happens,

the desired index sequence {k} will be replaced by some other sequence {k′}. Pearson (2005)

illustrates following example with many different forms of misalignment:

• (correct sequence){k} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• (permutation){k′} = {2, 7, 4, 5, 1, 9, 3, 6, 10, 8};

• (missing values with extension){k′} = {1, 2, 3, 4, 7, 8, 9, 10, 11, 12};

• (duplication){k′} = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};

• (shift with duplication){k′} = {1, 2, 3, 3, 4, 5, 6, 7, 8, 9}.

Misdefined variables are often met when analyzing large dataset whose components are

gathered from different locations at different time. Suppose {xik}, i = 1, 2, 3, . . . , N stand

for i samples with the same measurements of a series of variable xk ordered by a strictly

increasing index sequence k, that is, the identity of the index series k has meaning now and

x1, x2, . . . , xk are elements in the variable space that describe theN samples. When the variables

are misdefined, the desired index sequence {k} will be replaced by some other sequence {k′}.
The usually observed form of misdefined variable is variable interchange.

Mislabeled samples are the samples classified incorrectly. For example, the data sampled

from the New York Stock Exchange is labeled as the data from Chicago, or the return data of



31

IBM is labeled as the returns of Microsoft. This kind of data anomaly can be avoided if the data

manager takes good care of it. Incoherent scaling refers to the existence of different measures

for the same variable. For example, there are some prices recorded in the return series.

2.2.2 Data Quality

In practice, massive datasets usually contain various types of anomalous records that might

complicate the analysis problem and invalidate the results obtained with standard analysis

procedures without indicating anything wrong. Particularly, the prevalence of outliers, missing

data, and misalignments are the anomalies often encountered in information extraction and

knowledge discovery from large datasets. Pearson (2005) points out two ideas focusing on

dealing with imperfect data: data pretreatment and analytical validation. Data pretreatment

is (1) to detect the outliers of various types, (2) to form the treatment strategies once the

outliers are indicated, (3) to detect other types of data anomalies by using simple preliminary

analyses, and (4) to detect and exclude the noninformative variables when analyzing the data.

Analytical validation is to evaluate the assessment of results. The essential idea is to be utilized

as “generalized sensitivity analysis (GSA)” based on the following logic: “A ‘good’ data analysis

result should be insensitive to small changes in either the methods or the datasets on which

the analysis is based (see Pearson 2005, page 177)”. This is more or less connected with the

statistical robustness which is going to be discussed later. The question naturally proposed

here is that what is a “good” data characterization (see Pearson (2005))?

Pearson (2005) considers six alternative viewpoints from which “goodness” can be judged,

i.e., (1) predictable qualitative behavior, (2) ease of interpretation, (3) appropriateness to the

application, (4) historical acceptance, (5) availability, and (6) computational complexity. Pear-

son (2005) also points out that these criteria are often in conflict and it is important to balance

them in practice. In addition, he argues that there is rarely a unique “best” approach to mea-

sure data quality, therefore, several different approaches should be compared in order to select

a reasonable compromise to a particular task in practice.

2.2.3 Aggregation

Being a full record of transactions and their associated characteristics, intra-daily data represent

the ultimate level of frequency at which trading data are collected. The salient feature of such

data is that they are fundamentally irregularly spaced. It is necessary to distinguish intra-daily

data from high frequency data because the former are irregularly spaced while the latter are

sometimes spaced by aggregating to a finer fixed-time interval. In order to clarify the time
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interval, it is useful to refer to the data by its associated time interval. For example, if the raw

intra-daily data have been aggregated to create an equally-spaced time series, say five minutes

interval, then the return series is referred to as the “5 minutes intra-daily data”. In order to

clarify the characteristic of the interval between data points, Dacorogna et al. (2001) propose

employing a definition of homogeneous and inhomogeneous time series. The irregularly spaced

time series is called an inhomogeneous time series while the equally spaced one is called a

homogeneous time series. One can aggregate inhomogeneous time series data up to a specified

fixed time interval in order to obtain a corresponding homogeneous version. Naturally, such

aggregation will either lose information or create noise, or both. For example, if the observations

in the original data are more than that in the aggregated one, some information will be lost. If

the observations in the original data are much less than that in the aggregated one, noise will be

generated. Data interpolation is required to create aggregated time series. Obviously, different

interpolation methods lead to different results. This leads not only to the loss of information

but also the creation of noise due to introducing errors in the interpolation process. Engle and

Russel (1998) argue that in the aggregation of tick-by-tick data to some fixed time interval, if a

short time interval is selected, there will be many intervals having no new information and, as

a result, heteroskedasticity will be introduced; and if a wide interval is chosen, microstructure

features might be missing. Therefore, it is reasonable to keep the data at the ultimate frequency

level (see Aı̈t-Sahalia et al. (2005)).

Standard econometric techniques are based on homogeneous time series analysis. Applying

analytical methods of homogeneous time series to inhomogeneous time series may produce

unreliability. That is the dichotomy in intra-daily data analysis: a researcher can retain the

full information without creating noise but is challenged by the burden of technical complexity.

Sometimes, it is not always necessary to retain the ultimate frequency level. In those instances,

aggregating inhomogeneous intra-daily data to a relatively lower but still comparably higher

frequency level of a homogeneous time series is needed. Wasserfallen and Zimmermann (1995)

show two interpolation methods: linear interpolation and previous-tick interpolation. Given

an inhomogeneous time series with times ti and values ϕi = ϕ(ti), the index i identifies the

irregularly spaced sequence. The target homogeneous time series is given at times t0 + j∆t

with fixed time interval ∆t starting at t0. The index j identifies the regularly spaced sequence.

The time t0 + j∆t is bounded by tI and tI+1 as follows:

I = max( i |ti ≤ t0 + j∆t) (2.0-1)

tI ≤ t0 + j∆t > tI+1 (2.0-2)

Data will be interpolated between tI and tI+1. The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI
tI+1 − tI

(ϕI+1 − ϕI) (2.0-3)
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and previous-tick interpolation shows that

ϕ(t0 + j∆t) = ϕI (2.0-4)

Dacorogna et al. (2001) point out that linear interpolation relies on the future information

whereas previous-tick interpolation is based on the information already known. Müller et

al. (1990) suggest that linear interpolation is an appropriate method for independent and

identically distributed (i.i.d.) increments stochastic processes.

More advanced techniques have been adopted by some researchers in order to find sufficient

statistical properties of data but at the same time retaining the inhomogeniety of time series.

Zumbach and Müller (2001), for example, propose a convolution operator to transform the

original inhomogeneous time series to a new inhomogeneous time series in order to get more

sophisticated quantities. Newly developed techniques such as the wavelet method have been

adopted to analyze intra-daily data. For example, Gençay et al. (2001, 2002) employed a

wavelet multiscaling method to remove intra-daily seasonality in five-minute intra-daily data

of foreign exchange.

As mentioned in Section 2, intra-daily data exhibit daily patterns. Several methods of data

adjusting have been adopted in empirical analysis in order to remove such patterns (see, Engle

and Russell (1998), Veredas et al. (2002), Bauwens and Giot (2000, 2003), and Bauwens and

Veredas (2004)).

2.2.4 Data Cleaning

In order to improve the quality of data, data cleaning is required to detect and remove errors

and inconsistencies from the data set. Data quality problems are the result of misspelling during

data entry, missing information, and other kinds of data invalidity. There are two types of error:

human errors and computer system errors (see Dacorogna et al. (2001)). When multiple data

sources must to be integrated, for instance, pooling the data in each trading day together for

one year, the need for data cleaning increases significantly. The reason is that the sources often

contain redundant data in different representations. High quality data analysis requires access

to accurate and consistent data. Consequently, consolidating different data representations and

eliminating duplicate information become necessary.

The object of data cleaning is the time series of transaction information. Usually, the

transaction information is “quote” or “tick” information. Each quote or tick in the intra-daily

data set contains a time stamp, an identification code, and variables of the tick, such as bid/ask

price (and volume), trade price (and volume), and locations. Intra-daily data might contain
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several errors that should be specially treated. Decimal errors occur when the quoting software

uses cache memory so that it fails to change a decimal digit of the quote. Test tick errors are

caused by data managers’ testing operation of sending artificial ticks to the system to check the

sensitivity of recording. Repeated ticks are caused by data managers’ test operation of letting

the system repeat the last tick in the specified time intervals. Some errors occur when data

managers copy the data or when a scaling problem occurs, see Dacorogna et al. (2001).

Coval and Shumway (2001) illustrate the existence of occasionally incorrect identification of

the exact time. They use the data cleaning method to ensure that the time stamps on each

tick were accurate and scaled to the second level. They introduce a method of summing up

variables from 31 seconds past one minute to 30 seconds past the next minute to aggregate

the tick to the minute level. Some detailed methods used in data cleaning are discussed in

Dacorogna et al. (2001).

2.2.5 Data Snooping

Data snooping, sometimes being referred as data dredging or data fishing, is the inappropriate

search for “statistically significant” relationships in large quantities of data. It is the “dark side”

of data mining. This activity was explored as “specification searches”, “multiple comparisons”,

or “overfitting” in statistics, but that term is now in widespread use with an essentially positive

meaning, so the pejorative term data dredging is now used instead.

Conventional statistical procedure is first to formulate a research hypothesis, and collect

relevant data, then carry out a statistical significance test to check if the results could be

due to the effects of chance. Only the invariant patterns presented in the population can

be regarded as statistically significant. The major point is that every hypothesis must be

independently tested with observations that was not used in constructing the hypothesis. The

reason is that every data set must contain some variant patterns that are not be present in the

population investigated, or simply vanish when increasing the sample size sufficiently large. If

the hypothesis is not tested on a different data set sampled from the same population, it is

likely that the patterns found are not consistent patterns.

It is important to realize that significance tests do not protect against data snooping. When

testing a data set on which the hypothesis is known to be true, the data set is no longer a

representative data set but a biased sample, and any resulting significance levels are completely

spurious. Ioannidis (2004) points out several corollaries leading to false research findings. For

example, (1) the smaller the studies conducted, (2) the smaller the effect sizes, (3) the greater

the number and the lesser the selection of tested relationships, and (4) the greater the flexibility
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in designs, definitions, outcomes, and analytical modes can lead to false research findings. Lo

and MacKinlay (1990) indicate (1) tests of theory-motivated models, for which the empirical

evidence is lacking, are likely to be biased least by data snooping and (2) tests of data-driven

models, for which the theoretical motivation is lacking, are most susceptible to data snooping.

More emphasis should be placed on thinking and modeling, without blatant a priori data

dredging and so much inference. There are many cases where the post hoc results are not

misleading (not spurious) and exploration of the data is a useful thing to do. However, more

caution is needed in accepting exploratory results as if they were somewhat confirmatory (see

Lo and MacKinlay (1990)).

A variety of approaches to correct for the statistical effects of searching large model spaces

is proposed in the literature. The major remedies are including:

1. New data and cross-validation: A common approach is to obtain new data or to divide

an existing sample into two or more subsamples, using one subsample to select a small

number of models and the other subsamples to obtain unbiased scores (see, for example,

Kohavi 1995).

2. Adjustments to significance tests : To correct for the multiple comparison effects, several

mathematical adjustments have been made to statistical significance tests, for example,

Sidak and Bonferroni adjustments. These have been explored in detail for experimental

design (see, for example, Hochberg and Tamhane 1987).

3. Resampling and randomization methods : Many of the most successful approaches are

based on computationally intensive techniques such as resampling and randomization to

increase the statistical significance (see, for example, White 1997).

2.2.6 Pattern Recognition

The task of pattern recognition in high-frequency data mining is to classify data (patterns)

based on either a priori knowledge or on statistical information extracted from the patterns

(see Duda et al. (2001)). The patterns to be classified are usually groups of measurements

or observations, defining points in an appropriate multidimensional space. A complete pattern

recognition system consists of (1) a sensor that gathers the observations to be classified or de-

scribed, (2) a feature extraction process that computes numeric or symbolic information from

the observations, and (3) a classification or description scheme that does the actual job of clas-

sifying or describing observations, relying on the extracted features. Duda et al. (2001) design
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a pattern recognition system with different operation components, i.e., sensing, segmentation

and grouping, feature extraction, classification, and post-processing.

The input to a pattern recognition system is often some kind of a transducer. Duda et al.

(2001) point out that the difficulty of the problem usually depends on the characteristics and

limitations of the transducer. Sensing could be regarded as a design of the sensors that gathers

the observations for pattern recognition. The key point is the quality of the sensors, i.e., the

data quality.

The goal of segmentation and grouping is to simplify and/or change the representation of data

into something that is more meaningful and easier to analyze. Segmentation and grouping is

the process dividing a dataset into distinct subsets (segments/groups) that can be characterized

in the same way or have similar features. Because each segment/group is fairly homogeneous

in their characteristics, they are likely to react similarly to a given method for analyses.

Feature extraction involves simplifying the amount of resources required to describe a large

set of data accurately. When performing an analysis of a complex dataset, one of the major

problems is raised by the number of variables involved. Analyzing a large number of variables

generally requires a large amount of memory and computation power. In practice, it is impor-

tant to improve computation power by constructing combinations of the variables to get around

these problems while still describing the data with sufficient accuracy (see Duda et al. (2001)).

Duda et al. (2001, page 11) point out that “the traditional goal of the feature extractor is

to characterize an object to be recognized by measurements whose values are very similar for

objects in the same category, and very different for objects in different categories”, which “leads

to the idea of seeking distinguishing features that are invariant to irrelevant transformations of

the input”.

Duda et al. (2001) think that the major concern of pattern recognition is the design of a

classifier which assigns the objective to a proper category by using the feature vector provided

by a feature extractor in the stage of feature extraction. The abstraction provided by the

feature vector representation of the input data enables such classification. The difficulty of the

classification goes with the variability in the feature values for objects in the same category

relative to the difference between feature values for objects in different categories. Advanced

quantitative methods are needed for the classification process.

Post-processing is the stage in which the classification is evaluated. The simplest measure

of classifier performance is the classification error rate, i.e., the percentage of new patterns

that are assigned to the wrong category, see Duda et al. (2001). In general, a classification

with minimum classification error rate is preferred. But sometimes the minimum error rate



37

classification requires costs. It is important to balance the risk of high cost and minimum error

rate.

2.3 Computational Data Mining

The major data mining methodologies which do not necessarily require a probability model

are going to be discussed in this section. In the literature, many of these methodologies were

developed from the fields of computer science and employed in solving data mining problems

later. Because of their main origin in computer science, I agree with Giudici (2003), that calls

the methods presented in this section “computational methods for data mining”.

2.3.1 Cluster Analysis

Cluster analysis might be the most well-known descriptive data mining method. Tryon (1939)

introduced the Cluster Analysis (CA) that encompasses different algorithms and methods for

grouping objects with similarity into categories. Cluster analysis is an exploratory data analysis

tool which aims at sorting different objects into groups in a way that the degree of association

between two objects is maximal if they belong to the same group and minimal otherwise, see

Tabachnick et al. (2000).

There are n observations with p values (variables) given by the following matrix:

Cn×p =

c1 c2 · · · cp

R1

R2

...

Rn


c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
...

cn1 cn2 · · · cnp


in which, Rn stands for the n-th observation, cp for p-th variable, and cij, (i = 1, 2, · · · , n; j =

1, 2, · · · , p) is the element of i-th observation and j-th variable. The objective of cluster analysis

is to cluster the observations into internally homogeneous groups that are heterogeneous from

group to group, i.e., externally separable among groups.

Two types of methods, hierarchical and non-hierarchical methods, are usually employed.

Hierarchical methods allow us to generate a succession of groupings (also referred as partitions or

clusters) with a number of clusters from 1 to n, starting from the simplest, where all observations

are separated and belong to a unique cluster. The number of clusters is not preset and based on
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the nature of the data itself. Non-hierarchical methods allow us to separate the n units directly

into a number of previously defined clusters (see Giudici 2003 and Johnson and Wichern 2002).

Giudici (2003) and Johnson and Wichern (2002) outline the hierarchical clustering algorithm

as follows:

1. Initialization: Start with n clusters, each containing a single entity and an n×n symmetric

matrix of distances D = {dij}.

2. Selection: The two “nearest” clusters are selected, in terms of the distance initially fixed,

for example, the Euclidean distance.

3. Updating : the number of clusters is updated (to n − 1) through the union, in a unique

cluster, of the two groups selected in step 2. For example, if the two clusters selected in

step 2 are Rt and Rs, in this step, Rt and Rs are merged as Rst. Update the entries in

the distance matrix D by (1) deleting the rows and column corresponding to clusters Rt

and Rs and (2) adding a row and column giving the distance between cluster Rst and the

remaining clusters.

4. Repetition: Repeat Setps 2 and 3 a total of n − 1 times. Record the identity of clusters

that are merged and the levels (distance) at which the mergers take place.

5. End : Terminate the procedure when all the elements will be in a unique cluster.

There are some of different clustering methods applied in step 3. Some methods require only

the distance matrix D and some require the distance matrix plus the original data matrix. The

linkage methods require only the distance matrix and the method of the centroid and Ward’s

method require the data matrix as well as the distance matrix (see Giudici 2003 and Johnson

and Wichern 2002).

Single linkage

The distance between two groups (Rst and any other clusterRu) is defined as d(rs),u = min{dru, dsu}.
Here the quantities dru, dsu are the distances between the nearest neighbors of clusters Rr and

Ru and clusters Rs and Ru, respectively.

Complete linkage

The distance between two groups (Rst and any other clusterRu) is defined as d(rs),u = max{dru, dsu}.
Here the quantities dru, dsu are the distances between the most distant members of clusters Rr

and Ru and clusters Rs and Ru, respectively.
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Average linkage

The distance between two groups (Rst and any other cluster Ru) is defined as

d(rs),u = (
∑
l

∑
m

dlm)/NrsNu,

where dlm is the distance between object l in the cluster (Rrs) and object m in the cluster Ru,

and Nrs and Nu are the number of items in clusters Rrs and Ru, respectively.

Method of the centroid

The distance between two groups Rs and Rt havingNs andNt elements respectively is defined as

the distance between the respective centroids (for example, the means), µs and µt: drs = dµrµs .

The original data matrix is required in order to calculate the centroid of a group of observations.

When processing the hierarchical clustering steps as discussed above, the distances with respect

to the centroids of the two previous clusters will be replaced by the distances with respect to

the centroid of the new cluster. The centroid of the new cluster is obtained from the weighted

average, i.e., (µrNr+µsNs)/(Nr+Ns). Giudici (2003) indicates that the average linkage method

considers the average of the distance between the observations of each of the two groups, whereas

the centroid method computes the centroid of each group then measures the distance between

the centroids.

Ward’s Method

Ward’s method is to cluster the groups that have maximum internal cohesion and maximum

external separation. This method does not require the distance matrix to be calculated from

the original data matrix. The total deviance T of the p variables is divided in two parts:

the deviance within the groups W and the deviance between the groups B, so T = W + B.

Given a partition into g groups with respect to p variables, T , W , and B are defined as

follows: (1) T =
∑p
s=1

∑n
r=1(crs − cs)

2, (2) W =
∑g
k=1Wk where Wk represents the deviance

of the p variables in the kth gourp (number nk and centroid ck = [c1k, · · · , cpk]′), described

by Wk =
∑p
s=1

∑nk
r=1(crs − csk)

2, and (3) B =
∑p
s=1

∑g
k=1 nk(csk − cs)

2. Groups are joined so

that the increase in W is smaller and the increase in B is larger, which achieves the possibility

of greatest internal cohesion and external separation. Giudici (2003) indicates that Ward’s

method can be interpreted as a variant of the centroid method without considering the distance

matrix. Johnson and Wichern (2002) point out that Ward’s method expects that the clusters

of multivariate observations are to be roughly elliptically distributed.

The non-hierarchical methods of clustering obtain one partition of the n observations in g



40 CHAPTER 2. MINING HIGH-FREQUENCY FINANCIAL DATA

groups (g < n) with a previous defined number of clusters g (g also can be determined as part

of the clustering procedures). For any given value of g, based on which it is used to classify

the n observations, a non-hierarchical algorithm classifies each of the observations only on the

selection criterion (usually by means of an objective function). Since non-hierarchical methods

do not need to determine the distance matrix and the original data matrix need not to be stored

during the computer run, non-hierarchical methods can be applied to much larger data matrix

than can hierarchical methods (see Johnson and Wichern 2002). In general, a non-hierarchical

algorithm contains the following steps (see Giudici 2003):

1. Choose the number of groups g and an initial clustering of the n units in that number of

groups.

2. Evaluate the “transfer” of each observation from the initial group to another group with

the aim of maximizing the internal cohesion of the groups.

3. Repeat Step 2 until a stopping rule is satisfied.

The most well-known non-hierarchical clustering method is the k-means method (where k

is the number of groups decided in advance, same as g in this Section) proposed by MacQueen

(1967). This method is to assign each observation to the cluster having the nearest centroid

(for example, the mean). The algorithm is given as follows:

1. Partition the observations into k initial clusters.

2. Proceed through the list of observations, assigning an observation to the cluster whose

centroid is nearest3. Recompute the centroid for the cluster receiving the new observation

and for the cluster losing the observation.

3. Repeat Step 2 until no more reassignments can be done.

Another way to process the k-means method is to start with a partition of all observations into

k predefined groups in Step 1, and specify k initial centroids (so-called the “seed points” or

simply “seed”) and then proceed to Step 2. Johnson and Wichern (2002) indicate that the final

assignment of observations to clusters will be dependent on the initial partition or the initially

selected seed points. Experience shows that with the first reallocation step, most major changes

in assignment occur. Discussions of other nonhierarchical clustering methods can be referred

to Everitt (1993).

3Distance is usually computed using Euclidean distance with either standardized or unstandardized obser-
vations, see Johnson and Wichern (2002).
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Johnson and Wichern (2002) list the major drawbacks of nonhierarchical clustering proce-

dures based on the arguments of the preliminary k: (1) If two or more seed points inadvertently

lie within a single cluster, their resulting clusters will be poorly differentiated. (2) The occur-

rence of an outlier might produce at least one group with very disperse observations. (3) By

previously knowing the population consisting of k groups, the sampling method might be such

that data from the group with less possibility to observe do not appear in the sample, there-

fore, the clusters are nonsensical. As empirical solution to reduce the negative influence of such

drawbacks of the nonhierarchical clustering procedures, one can run the algorithm for several

choices before finding the specified k.

2.3.2 K-Nearest-Neighbour Method

In data mining, the k-nearest neighbor method (k-NN) is used for classifying objects based on

closest observations in the feature space. k-NN method is a type of lazy learning4 where the

function is only locally approximated and all computation is deferred until classification. It

might be used for regression analysis.

The k-nearest neighbor algorithm is to minimize the distance between the query instance

and the training samples in order to determine the K-nearest neighbors. After the K nearest

neighbors are gathered, the simple majority of these K-nearest neighbors can be taken as the

prediction of the query instance. Usually, the Euclidean distance or Mahalanobis distance are

employed. The Euclidean distance between two points P = (p1, . . . , pn) and Q = (q1, . . . , qn) is

defined as

DE(P,Q) =

√√√√ n∑
i=1

(pi − qi)2.

The Mahalanobis distance (see Mahalanobis 1936) from a group of values with mean µ =

(µ1, µ2, . . . , µp)
T and covariance matrix Σ for a multivariate vector x = (x1, x2, . . . , xp)

T is

defined as

DM(x) =
√

(x− µ)T Σ−1 (x− µ).

The Mahalanobis distance is based on correlations between variables by which different patterns

can be identified and analyzed. It is a useful way of determining similarity/dissimilarity of

4In artificial intelligence, lazy learning is a learning method in which generalization beyond the training
data is delayed until a query is made to the system. The opposed concept is eager learning that is a learning
method in which the system tries to construct a general, input independent target function during training of
the system.
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variables. It differs from Euclidean distance in that it takes into account the correlations of the

data set and is scale-invariant (i.e., not dependent on the scale of measurements). When the

correlation structure of variables is unclear, the Mahalanobis distance measure is likely to be

the most appropriate due to its scale-invariant property. If the covariance matrix is the identity

matrix, the Mahalanobis distance reduces to the Euclidean distance (see Hair et al. (2006)).

The k-nearest neighbours algorithm needs to determine the value of parameter K (i.e., the

number of nearest neighbors). The best choice of k depends solely on the data. In general,

the larger the values of k are, the less the noise effect on the classification. Unfortunately, the

larger the values of k are, the less the distinction between classes boundaries. There are various

heuristic techniques that support the selection of a good k, for example, cross-validation. In

addition, one special case where the class is predicted to be the class of the closest training

sample (i.e., k = 1) is called the nearest neighbor algorithm (see Giudici 2003).

2.3.3 Neural Networks

A neural network (NN), sometimes called an “artificial neural network” (ANN), is a quantitative

model based on biological neural networks. A neural network is an adaptive system that

allows changes of its structure based on external or internal information that flows through

the network when monitoring the data generating process. Opposed to the k-nearest neighbor

method, a neural network is a type of eager learning method. In more practical terms neural

networks are nonlinear statistical data modeling tools used to characterize highly complex

and convoluted relationships between inputs and outputs or to find correlation patterns in

financial data. In the financial markets, the NN models have been used for various tasks.

Kantardzic (2003) reveals that Daiwa Securities, NEC Corporation, Carl & Associates, LBS

Capital Management, Walkrich Investment Advisors, and O’ Sallivan Brothers Investments are

the financial companies who utilize neural network technology for data mining.

Like the linear and polynomial approximation methods, a neural network relates a set of

input variables xi, i = 1, . . . , k to a set of one or more output variables yj, j = 1, . . . , k. A

neural networks are essentially mathematical models defining a function f : X → Y . Each

type of NN model corresponds to a class of such functions (see McNelis (2005)). The difference

between a NN model and other approximation methods is that the NN take advantage of one

or more hidden layers, in which the input variables are transformed by a special function known

as a logistic or logsigmoid transformation, that is, the function f(x) is a composition of other

functions gi(x) that can further be defined as a composition of other functions. Functions
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f(x) and gi(x) are composed of a set of elementary computational units called neurons5, which

are connected together through weighted connections. These units are organized in layers so

that every neuron in a layer is exclusively connected to the neurons of the proceeding layer

and the subsequent layer. Every neuron represents an autonomous computational unit and

receives inputs as a series of signals that dictate its activation. All the input signals reach the

neuron simultaneously and the neurons can receive more than one input signal. Following the

activation coming from input signals, the neurons produce the output signals. Every input

signal is associated with a connection weight that determines the relative importance of the

input signals in generating the final impulse transmitted by the neuron.

Formally, the algorithm mentioned above can be expressed as follows:

nk,t = wk,0 +
i∗∑
i=1

wk,i xi,t (2.0-5)

Nk,t = G(nk,t) (2.0-6)

yt = γ0 +
k∗∑
k=1

γkNk,t (2.0-7)

where G(·) represents the activation function and Nk,t stands for the neurons. In these system,

there are i∗ input variables x and k∗ neurons. A linear combination of these input variables

observed at time t, i.e., xi,t, i = 1, . . . , i∗, with the coefficient vector (i.e., a set of input

weights) wk,i, i = 1, . . . , i∗, and a constant term wk,0 form the variable nk,t. This variable nk,t is

transformed by the activation function G(·) to a neuron Nk,t at time (or observation) t. The set

of k∗ neurons at time (or observation) index t are combined in a linear way with the coefficient

vector γk, k = 1, . . . , k∗ and added to a constant term γ0 to form the output value yt at time

t.

In defining a NN model, the activiation function G(·) is typically one of the elements to

specify. Giudici (2003) summarizes three commonly employed types of activiation functions:

linear, stepwise, and signoidal. A linear activation function is defined by

G(nk,t) = α + β nk,t

where α and β are real constants. When α = 0 and β = 1 a particular function called identity

function, which is usually used for the model requiring the output of a neuron to be exactly

equal to its level of activation, is defined. Giudici (2003) points out that due to the similarity

between the linear activation function and the linear regression model, a linear regression model

5Sometimes such elementary computational units are called nodes, neurodes, units, or processing elements
(PEs).
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can be regarded as a simple type of neural network. A stepwise activation function is defined

as

G(nk,t) =

 α nk,t ≥ θk

β nk,t < θk.

The activation function can assume only two values according to if or not the potential exceeds

the threshold θk. When α = 0, β = 1, and θk = 0, the activation function is the sign function

that takes value 0 if the potential is negative and value 1 if the potential is positive. A sigmoidal

(or S-shaped) activation function is the most used one in practice. It is nonlinear and easily

differentiable. It is defined by

G(nk,t) =
1

1 + e−αnk,t

where α is a positive parameter that regulates the slope of the function. This kind of activation

function produces only positive output and the domain of the function is [0, 1].

The neurons of a NN model are organized in layers. There are three types of layers: input,

output, and hidden. The input layer receives information only from the external information,

i.e., an explanatory variable xi. There is no calculation performed for the input layer. The

input layer only transmits information to the next level. The output layer only produces the

final results sent by the network to the outside of the system, i.e., response variable yj. Between

the input and output layer there can be one or more intermediate layers, called hidden layers

since they are not directly connected with the external information. Giudici (2003) points out

that the architecture of a NN model refers to the network’s organization: (1) The number

of layers. (2) The number of neurons belonging to each layer. (3) The manner in which the

neurons are connected. (4) Direction of flow for the computation.

Different information flows lead to different types of network. The NN models can by divided

into to types based on the information flow: feedforward networks and recurrent networks. In

the feedforward network, the information moves in only one direction forwardly from the input

layer through the hidden layer and to the output layer. There are no cycles or loops in such

a network. Equations (2.0-5)-(2.0-7) actually describe a feedforward network. Contrary to

feedforward networks, recurrent networks are models with bi-directional information flow. This

network allows the neurons to depend not only on the input variable xi but also on their

own lagged values nk,t−p at order p. McNelis (2005) shows that the recurrent network builds

“memory” in the evolution of the neurons. Replace Equation (2.0-5) by the following Equation

(2.0-8) and the system of a recurrent network is formed,

nk,t = wk,0 +
i∗∑
i=1

wk,i xi,t +
k∗∑
k=1

φk nk,t−p (2.0-8)
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McNelis (2005) points out that this recurrent network has an indirect feedback effect from the

lagged unsquashed neurons to the current neurons, not a direct feedback from lagged neurons

to the level of output.

The neural networks has the possibility of learning which attracts the most interest in data

mining. A NN model modifies its interconnection weights by means of a set of learning (training)

samples. The learning process leads to parameters of a network and these parameters implicitly

store knowledge extracted from the data. More general, given a specific task to solve and a

class of functions F , learning is a process of using observations (learning/training samples) to

identify f ∗ ∈ F that solves the task optimally. This requires defining a cost function C : F → <
such that, for the optimal solution f ∗, C(f ∗) ≤ C(f) ∀f ∈ F , that is the optimal solution has

the minimal cost. Since the NN models learn from data, the cost function must be a function

of the observations. (see, for example, Kantardzic 2003).

The cost function C is an important concept for measuring of how far away we are from

an optimal solution to the target problem to be solved. Learning algorithms search through

the whole solution space to identify a function minimizing the cost function. Three major

learning paradigms corresponding to a particular task are listed in the literature, i.e., supervised

learning, unsupervised learning, and reinforcement learning (see, for example Giudici 2003). In

supervised learning, a set of example pairs (x, y), x ∈ X, y ∈ Y are given to find a function f

in the feasible class of functions matcheing the examples. In other words, the mapping implied

by the data is inferred by minimizing a cost function which is related to the mismatch between

the mapping and the data and implicitly contains prior knowledge about the problem domain.

Classification (or pattern recognition) and regression are two types of supervised learning.

Unsupervised learning is a method of fitting a model to observations. It is distinguished from

supervised learning by the fact that there is no a priori output. In unsupervised learning, a

data set of input objects is collected. Unsupervised learning then typically treats inputs as

random variables. Typically, clustering, data compression, and density estimation fall within

the paradigm of unsupervised learning. In reinforcement learning, data x is usually generated

by an agent’s interactions given a certain environment. At each point in time t, the agent

performs an action yt and the environment generates an observation xt and an instantaneous

cost ct, according to certain unknown dynamics. The task is to find the rule that dominates

the selecting actions of agents that minimize the measurable long-term cost or the expected

cumulative cost. The dynamics of the environment and the long-term cost for each rule can be

estimated if they are not available.

Training a neural network model is to select one model from the set of feasible models that

minimizes the cost criterion. Numerous algorithms are available for training neural network
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models based on the straightforward application of optimization methods and statistical esti-

mation. For example, evolutionary methods, simulated annealing, expectation-maximization,

and non-parametric methods are the methods commonly used for training neural networks.

Most of the algorithms are based on the form of gradient descent. This can be done by taking

the partial derivative of the cost function with respect to the network parameters then chang-

ing those parameters in a gradient-related direction (see, Giudici 2003, Kantardzic 2003, and

McNelis 2005).

2.3.4 Wavelet Analysis

Wavelets are mathematical tools used to divide a given function into different frequency com-

ponents and study each component with a resolution that matches its scale (see Gençay et al.

(2002)). A wavelet transform is the representation of a function by wavelets. The wavelets are

scaled and translated copies (known as “child wavelets”) of a finite-length or fast-decaying oscil-

lating waveform (known as the “mother wavelet”). The wavelet transform utilizes the mother

wavelet function and translates it to capture characteristics that are local in time and local

in frequency. The resulting time-frequency partition corresponding to the wavelet transform

is (1) long in time when capturing low-frequency events, thus good frequency resolution for

such events can be obtained, and (2) long in frequency when capturing high-frequency events,

thus good time resolution for such events can be obtained. Wavelet transforms have advan-

tages over traditional Fourier transforms for representing functions that have discontinuities

and sharp peaks. They intelligently adapt themselves to capture characteristics through a wide

range of frequencies (see, for example, Gençay et al. 2002 and Percival and Walden 2000).

Compared with the Fourier transform, by which signals are represented as a sum of sinu-

soids, the wavelet transform is localized in both time and frequency whereas the standard

Fourier transform is only localized in frequency. Someone might argue that the Short-time

Fourier transform (STFT) is also time and frequency localized, but the STFT has the limita-

tion of providing uniform time resolution for all frequencies6. Using multiresolution analysis the

wavelets can reach a better signal representation. This is a very important feature of a wavelet

transform, particularly in mining high-frequency financial data. Gençay et al. (2002) states

several advantages by using wavelet methods: (1) Wavelet methods provide a natural platform

to deal with the time-varying features in most real-world financial/economic time series data,

which can avoid the stationarity assumption for a process. (2) Wavelet methods provide an

easy vehicle to study the multiresolution properties of the time series data. The wavelet trans-

6Wavelet transforms provide high time resolution and low frequency resolution for high frequencies and high
frequency resolution and low time resolution for low frequencies.
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form decomposes a process into different time horizons (scales) by differentiating seasonalities,

revealing jumps and volatility clustering, and identifying local and global dynamic properties

of the process at these time scales. (3) Wavelet methods provide a convenient way of dissolving

the correlation structure of a process across time scales.

Broadly speaking, there are two main types of wavelets. One is the continuous wavelet

transform (CWT) which can deal with the time series defined over the entire real axis, and the

other is the discrete wavelet transforms (DWT) which can deal with the time series defined over

a range of integers (see Percival and Walden 2000). The CWT is a function of two variables

W (u, s) and is obtained by projecting the function of interest x(t) into a particular wavelet ψ

via

W (u, s) =
∫ ∞

−∞
x(t)ψu,s(t) dt,

where

ψu,s(t) =
1√
s
ψ(
t− u

s
)

is the translated (by u) and dilated (by s) version of the original wavelet function. The trans-

lation of a wavelet function ψ(t − u) shifts its range u units to the right and a dilation of the

function ψ(t/s) expands its range by a multiplicative factor s. The resulting wavelet coeffi-

cients are a function of location parameters and scale parameters. The DWT is defined by the

following equation:

W (u, s) =
∑
u

∑
s

〈x, ψu,s〉ψu,s(t),

where

ψu,s(t) = a−u/2 ψ(a−ut− sb)

and a > 1, b > 0 (see Gençay et al. 2002).

2.3.5 Other Methods

In this section, other methods (i.e., decision trees and decision rules, association rules, genetic

algorithms, and fuzzy inference) commonly used for computational data mining are briefly

introduced.
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Decision Trees and Decision Rules

Decision trees and decision rules are data mining methodologies applied for classification prob-

lems. In general, classification is a learning process of a function that maps a data into pre-

defined classes. Every classification based on inductive-learning is to find a classifier that can

predict the class for a given sample. For a decision tree representation, each interior node

corresponds to an attribute; an outgoing branch represents a possible value of that attribute

(node). A leaf stands for a possible value of the target variable given the values of the vari-

ables represented by the path from the root. Splitting the source set into subsets following

an attribute value test makes one learn the tree. A recursive manner is adopted in repeating

this process on each derived subset. The recursion will be stopped when splitting is either

non-feasible, or a singular classification can be applied to each element of the derived subset.

In order to improve the classification rate, a random forest classifier of a number of decision

trees is used. Trees combinate several mathematical and computing techniques in the processes

of description, categorization, and generalization of a given data set (see Kantardzic (2003)).

Association Rules

Data mining tasks usually require the analysis of data whose inherent relationship might be

obscured by the data quantity and dimension. Being an unsupervised learning method, associ-

ation rules determine relationships among a set of items in a database. Numerous applications

of association rules involve categorical data with which normal cluster analysis loses its power.

Rule-mining methods are also available for numerical data. Association rule inference involves

finding sets of items which satisfy specific criteria, and in turn are used to infer the rules them-

selves. Three basic algorithms, i.e., Apriori, sampling, and partitioning, are often discussed in

practise. More detailed discussion about association rules can be found in Kantardzic (2003)

and others.

Genetic Algorithms

When dealing with problems that involve a large number of attributes, a search space growing in

a combinatorially explosive manner will be imposed by such high dimensionality. Furthermore,

an increased number of training samples are typically required to generate reliable results. The

traditional machine learning algorithms tends to perform poorly due to the increased search

space. Genetic algorithms aim to find good solutions to large-scale optimization problems

through a unique combination of stochastic and directed search techniques. Genetic algorithms

can deal with expansive search spaces and can help to reduce the burden of dimensionality.

As stochastic optimization methods genetic algorithms have first been introduced by Holland
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(1975) starting as computer simulations of natural genetic systems. Genetic algorithms encode

each point in a solution space into a string named a chromosome and change the string during

the execution. The string structures in the chromosomes undergo operations similarly to the

natural evolution process in order to obtain increasingly optimal solutions. The quality of the

solution depends on a goodness-of-fit value that relates to the objective function of the opti-

mization problem. Genetic algorithms can be used for prediction, clustering, and association

rule inference. For each of these uses, the method assumes a starting model then iteratively

refined to find the optimal model for a given application. Holland (1975), Langdon and Poli

(2002), and Haupt (2004) provide reference in details.

2.4 Statistical Data Mining

Statistical data mining refers to the use of robust statistical methods (i.e., statistical mod-

eling and statistical inference) in data mining. It covers almost the whole area of statistical

research. In this section, a partial introduction of common methods in mining high-frequency

financial data is given focusing on statistical visualization, standard statistical models, and

nonparametric methods for density estimation.

2.4.1 Robustness

Optimality and stability are two mutually complementary characteristics of any statistical

procedure. In a parametric formulation, linearity of regression, stochastic independence, ho-

moscedasticity, non-multicollinearity, and normality of errors, which are typically assumed pro-

vide access to standard statistical tools for drawing conclusions about parameters of interest.

There are many cases, particularly in finance, where such regularity assumptions cannot be

guaranteed to be tenable. Under this situation, the behavior of many optimal decisions is not

stable to small deviations from prior assumptions. For example, some optimal procedures based

on the least squares method are unstable and perform poorly under small deviations from the

normality assumption (see Rachev and Mittnik (2000)). Therefore, plausible departures from

model-assumptions of classical statistical procedures have been paid more attention, which

leads to robust statistics.

Box (1953) first uses the term of Robustness. Box and Anderson (1955) argue that good

statistical methods should be insensitive to changes without involving the parameters to be

estimated or the hypothesis to be tested. It should be effective in being sensitive to the changes

of parameters to be estimated or the hypothesis to be tested. This idea illustrates the natural

implications of insensitivity to model departures and sensitivity to good performance under
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the model. Based on finding robust alternatives of the classical methods in practice, Tukey

(1962) points out the direction in statistical studies called exploratory or probability-free data

analysis. Roughly speaking, robustness means optimality of methods used for data analysis

and stability of statistical inference under the variations of the accepted models. For high-

frequency financial econometrics, I consider robustness based on Box (1953) and Tukey (1962)

at two levels, i.e., robustness in mining high-frequency financial data and robustness in modeling

with high-frequency financial data.

2.4.2 Visualization

Data visualization is a method of using computer graphics to present data in innovative ways by

which obscured abstract or complex information become obvious and easy to understand with

the help of images or animations. Practical application of data visualization involves selecting,

rearranging, transforming, and representing abstract data in a specific form for exploration,

particularly by means of computer graphics. Basic functions for generating complex images

from abstract data can be realized by computer graphics. A large variety of techniques are

available in data visualization. Choosing a specific technique should be determined by the type

of data and the dimension of the data to be visualized. The generally discussed issues contain

volume visualization for volumetric data, large data set visualization for finance, informative

visualization for text libraries, and statistical visualization for data analysis and understanding.

Many visualization techniques are designed to deal with multidimensional multivariate data

sets. Rao et al. (2005) provide a reference for data mining and data visualization and Giudici

(2003) discusses graphical models in statistical data mining.

2.4.3 Standard Models

The purpose of this section is to briefly discuss issues about high-frequency data modeling

without going into the details of actual model specifications7. It is generally agreed that the

nature of data and the purpose of modeling greatly affect the type of model being developed.

There are two major purposes of high-frequency data models, i.e., predicting the timing of

market transactions and predicting the volatility for hedging. Ghysels et al. (1998) define

two broad categories, i.e., (1) market transactions models and (2) financial time series mod-

els. For the tick-by-tick data, the first category includes models based on point processes,

durations and hazard models. For the intradaily equally spaced data prices (volumn) and

number of transactions, the first category includes models based on subordinated processes

7The details will be discussed in Chapter 3
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with transactions-based time deformation models and the second category contains unequally

spaced ARCH and time deformation stochastic volatility models. For the intradaily equally

spaced data prices (volumn) but no transactions information, the first category includes latent

variable models with subordinated processes and the second category includes standard ARCH

and stochastic volatility models.

Ghysels et al. (1998) argue that it is important to note the difference between market

transactions models and the broad class of volatility models (i.e., ARCH and SV models).

They state “the latter are a relatively uniform class involving the same fundamental structure

which may not necessarily lend itself easily to temporal aggregation” while market transactions

models “depending on the specific context and purpose one encounters point processes counting

transaction events, data, duration, and hazard models, continuous time jump processes, among

many others” which “clearly do not share the same parametric structure and typically little is

known about their temporal aggregation features”.

2.4.4 Nonparametric Methods

Nonparametric methods have been widely used in data mining. The main application of non-

parametric methods is for density estimation. The kernel estimator is a basic method used to

estimate density, see Silverman (1986). If the random variable X has density f(x), then

f(x) = lim
a→0

1

2a
P (x− a < X < x+ a)

By counting the proportion of sampling observations falling in the interval of (x−a, x+a), the

probability P (x− a < X < x+ a) can be estimated for any given a. Defining kernel function

K for ∫ ∞

−∞
K(x)d(x) = 1

in which, K(x) usually but not always is regarded as a symmetric probability density function,

for example, normal density. The kernel estimator is defined by

f̃(x) =
1

na

n∑
i=1

K
(
x−Xi

a

)
where a is the window width and n is sample size. The kernel estimator can be looked as a

sum of bumps placed at the observations Xi. The kernel function K(x) determines the shape

of the bumps and the window width a determines the width of the bumps.

For evaluating the quality of estimation, the mean square error (abbreviated MSE) has been

defined as:

MSEx(f̃) = E
(
f̃(x)− f(x)

)2
=
(
Ef̃(x)− f(x)

)2
+ var

(
f̃(x)

)
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Meanwhile, to measure the global closeness of fit of f̃(x) to f(x) by integrating the MSE over

x, the mean integrated square error (MISE) is defined as follows:

MISEx(f̃) = E
∫ (

f̃(x)− f(x)
)2
dx =

∫ (
Ef̃(x)− f(x)

)2
dx+

∫
var

(
f̃(x)

)
dx

Given a symmetric kernel function K,
∫
tK(t)dt = 0 and

∫
t2K(t)dt = k2 6= 0, Silverman (1986)

shows the approximation of MISE is:

1

4
a4k2

2

∫
f ′′(x)2dx +

1

na

∫
K(t)2dt

It is clear that the bias in the estimation of f(x) depends on the window width. The optimal

window width aopt can be chosen by minimizing the MISE. Silverman (1986) shows that

aopt = n−1/5 k
−2/5
2

(∫
f ′′(x)2dx

)−1/5 (∫
K(t)2dt

)1/5

,

for which the optimal solution is given by Epanechnikov kernel KE(x):

KE(x) =


3

4
√

5
(1− x2

5
) −

√
5 ≤ x ≤

√
5

0 else.

A slight drawback suffered by the kernel estimator is its inefficiency with long-tailed distribu-

tions. Since across the whole sample, the window width is fixed, a good degree of smoothing

over the center of the distribution will often leave spurious noise on the tails, see Silverman

(1986) and Dowd (2005). Silverman (1986) offers some solutions such as the nearest neighbor

method and the variable kernel method. For the nearest neighbor method, the window width

placed on an observation depends on the distance between that observation and its nearest

neighbors. For the variable kernel estimator, the density f(x) is estimated under:

f̃(x) =
1

n

n∑
i=1

1

ahi,k
K

(
x−Xi

ahi,k

)
where hi,k is the distance between Xi and the kth nearest of the other data points. The window

width of the kernel placed on Xi is proportional to hi,k, therefore flatter kernels will be placed

on more sparse data.

2.5 Evaluation of Data Mining Methods

The principle task of data mining in high-frequency financial econometrics is to build the right

model right to explore the information contained in massive data. To choose the right model and

build the model right requires some sequential procedures (forward, backward, and stepwise)

that allow such a model to be chosen through a sequence of pairwise comparisons. All this

suggests the need for a systematic study to compare and evaluate statistical models for data

mining. In this section, the most important methods that are frequently used will be reviewed.
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2.5.1 Criteria Based on Statistical Goodness-of-fit Techniques

Distance between statistical models

Letting Fs(x) denote the empirical sample distribution and F̃ (x) the estimated distribution

function, several distance measures are defined as follows:

Anderson-Darling (AD) distance

AD = sup
x∈<

|Fs(x)− F̃ (x)|√
F̃ (x)(1− F̃ (x))

.

Chi-squared (Dχ2) distance

Dχ2 =
∑
x

(
Fs(x)− F̃ (x)

)2

F̃ (x)
.

Cramer Von Mises (CVM) distance

CVM =
∫ ∞

−∞

(
Fs(x)− F̃ (x)

)2
dF̃ (x)

Entropic (E) distance

E =
∑
x

Fs(x) log
Fs(x)

F̃ (x)
.

Kolmogorov-Smirnov (KS) distance

KS = sup
x∈<

|Fs(x)− F̃ (x)|.

Kuiper (K) distance

K = sup
x∈<

(
Fs(x)− F̃ (x)

)
+ sup

x∈<

(
F̃ (x)− Fs(x)

)
.
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Discrepancy of a statistical models

Discrepancy is another statistical measure for goodness of fit. Assuming f represents the

unknown density of the population, and g = ψθ be a family of density functions (with a vector

of I parameters θ) that approximates it, the discrepancy of g and f based on the Euclidean

distance can be defined as follows:

∆(f, ψθ) =
n∑
i=1

(f(xi)− ψθ(xi))
2

This discrepancy, which is a function of parameters θ, measures the total squared error made by

replacing f by g. The discrepancy also can be calculated with the distances introduced in the

previous section. If the true population density f is known, the discrepancy simply determines

how well the f can be approximated by g. Then the discrepancy of g (due to the parametric

approximation) can be obtained as the discrepancy between the unknown probabilistic model

and the best parametric model ψ∗θ ,

∆(f, ψ∗θ) =
n∑
i=1

(f(xi)− ψ∗θ(xi))
2

Unfortunately, f is not always known, then the best parametric model cannot be identified.

But, the sample estimation, denoted as ψθ̂, for which the I parameters can be estimated from

the data, can be used to substitute f . Then the discrepancy of g (due to the estimation process)

turns to be

∆(ψθ̂, ψ
∗
θ) =

n∑
i=1

(ψθ̂(xi)− ψ∗θ(xi))
2.

It is better to choose a family of density where the model has a rich number of parame-

ters in order to get a relatively good approximation. The discrepancy due to approximation

turns out to be smaller for more complex models with a large number of parameters. But the

sample estimates obtained with a more complex model tend to overfit the data, therefore the

discrepancy due to estimation will increase (see Giudici 2003). The total discrepancy measur-

ing the discrepancy between f and ψθ̂ takes both these factors (discrepancy from parametric

approximation and discrepancy from estimation) into account. It is defined as follows,

∆(f, ψθ̂) =
n∑
i=1

(f(xi)− ψθ̂(xi))
2.

Giudici (2003) argues that the best model to approximate f will be the model ψθ̂ that

minimizes the total discrepancy, since minimization of the discrepancy from the parametric

approximation favors complex models, which are more adaptable to the data, whereas mini-

mization of the discrepancy from estimation favors the simple models, which are more stable
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when faced with variations in the observed sample. He also points out that the total discrep-

ancy cannot be calculated in practice since f is unknown, then the total expected discrepancy

obtained with respect to the sample density can be used. Then the problems turn to be finding

an appropriate estimator of the total expected discrepancy. Such an estimator is known as

minimum discrepancy estimator.

One discrepancy often used for model evaluation, particularly based on the evaluation of

information loss, is the Kullback-Leibler discrepancy (see Kullback and Leibler 1951) defined

as follows:

∆KL(f, ψθ̂) =
n∑
i=1

f(xi) log
( f(xi)

ψθ̂(xi)

)
.

The Kullback-Leibler discrepancy derives from the entropy distance rather than Eucliedean

distance. The best model under the Kullback-leibler discrepancy is the one with a minimal loss

of information from the true unknown f (see Burnham and Anderson 1998).

2.5.2 Criteria Based on Score Functions

When using the maximum likelihood estimation (MLE) methods, the sore function (or simply

score) is the partial derivative with respect to some parameter θ of the logarithm of the like-

lihood function. The expected value of the score is zero. If one wants to repeatedly sample

from some distribution, and repeatedly compute the score with the true parameter θ, the mean

value of the score will tend to zero as the repeated samples go to infinity. Two criteria based

on the score function are the Akaike information criterion (AIC) and the Schwartz information

criterion (SIC).

Akaike information criterion (AIC)

Akaike (1974) proposes a measure grounded in the concept of entropy as

AIC = −2 log `(θ̂;x1, · · · , xn) + 2q

where log `(θ̂;x1, · · · , xn) is the logarithm of the likelihood function calculated in the maximum

likelihood parameter estimation and q is the number of parameters in the model.

Schwartz information criterion (SIC)

Schwartz (1978) proposes a statistical criterion for model selection defined as

SIC = −2 log `(θ̂;x1, · · · , xn) + q log n
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where log `(θ̂;x1, · · · , xn) is the logarithm of the likelihood function calculated in the maximum

likelihood parameter estimation, q is the number of parameters in the model, and n is the

sample size.

Criteria based on score function offer a high generality of application, complete ordering,

and simple calculation. Their main disadvantage is that they do not define threshold levels to

choose one model rather than another (see Giudici 2003 and Zucchini 2000).

2.5.3 Criteria Based on Loss Functions

Since the main problem dealt with by data mining is to reduce the uncertainties in the risk

factors, which are correlated and not necessarily causal, the best model is the one that leads to

the lowest loss. The receiver characteristic (ROC) curve measures the predictive accuracy of a

model based on the cost-benefit analysis of loss, see, for example, Giudici (2003), Lasko et al.

(2005), Spackman (1989), and Zweig and Campbell (1993).

To plot the ROC curve, a two-class prediction problem (binary classification), in which the

observations of a validation data set are classified to either a positive (p) or a negative (n)

category, four possible categories are classified:

1. Observations predicted as events and effectively such (called true positive), i.e., a predic-

tion is p and the actual value is also p.

2. Observations predicted as events and effectively non-events (called false positive), i.e., a

prediction is p but the actual value is n.

3. Observations predicted as non-events and effectively events (called false negative), i.e.,

the prediction outcome is n while the actual value is p.

4. Observations predicted as non-events and effectively such (called true negative), i.e., both

the prediction outcome and the actual value are n.

To draw the ROC curve, only the true positive rate (i.e., the TPR, which determines a di-

agnostic test performance on classifying positive instances correctly among all positive samples

available) and the false positive rate (i.e., the FPR, which determines the number of incor-

rect positive results while they are actually negative among all negative samples available) are

needed. The ROC space is defined in the Cartesian plane by FPR and TPR as x and y axes

respectively. Such a space depicts relative trade-offs between benefits (true positive) and costs

(false positive). The proportion of events predicted as such is called sensitivity, and the pro-

portion of non-events predicted as such is called specificity. Then the ROC curve is sometimes
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called the sensitivity-specificity plot, since TPR is equivalent to sensitivity and FPR is equal

to 1 minus specificity. Each prediction result or one case of a confusion matrix (where the

main diagonal elements show the number of observations that have been classified correctly for

each class and the off-diagonal elements indicate the number of observations that have been

incorrectly classified) corresponds to one point in the ROC space.

The best possible prediction method yields a point at the upper left corner in the ROC space.

The point of (0, 1) in the ROC space is also called a perfect classification, corresponding to 100%

sensitivity (all true positives are found) and 100% specificity (no false positives are found). A

completely random guess would give a point along a 45◦ line (i.e., the no-discrimination line)

going through the left bottom to the top right corners. The ROC space is divided by the

45◦ line in areas of good or bad classification/diagnostic. Points lying above the diagonal line

bespeak good modeling results, while points lying below this line point out worse modeling

results. Giudici (2003) points out that the ROC curve will always lie above the 45◦ line and

the area between the curve and the line can be calculated. The larger the area, the better the

model.

2.5.4 Criteria Based on Bayesian Methods

Bayesian criteria provide coherent statistical measure by combining the deviance differences and

the scoring function. In the Bayesian derivation, each model is given a score that corresponds to

the posterior probability of the model. Then a model turns to be a discrete random variable that

takes values on the candidate models space. The Bayesian criteria provide a complete ordering

of the models and can be used to compare non-nested models and the models belonging to

different classes. The model that maximizes this posterior probability will be chosen. Bernardo

and Smith (1994) and Rachev et al. (2007) give more information about Bayesian theory and

selection criteria for Bayesian models.

There are several Bayesian approaches. One approach is through Bayes factors. The poste-

rior probability of a model (M) given data vector xi, i = 1, . . . , n, P (M |xi) is given by Bayes’

theorem:

P (M |xi) =
P (xi|M)P (M)

P (xi)

The key data-dependent term P (xi|M) is a likelihood, and is sometimes called the evidence for

model M ; evaluating it correctly is the key to Bayesian model comparison. To calculate this,

the parameters of the model must be integrated out, that is,

P (M | xi) =
∫
P (xi | θ,M)P (θ |M) dθ
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where P (θ | M) is the prior distribution of the parameters given the considered model M .

Such integration sometimes is a difficult task. Markov Chain Monte Carlo (MCMC) provides

a successful but computationally intensive way to approximate such integration problems (see

Rachev et al. (2007)).

Given a model selection problem in which two models M1 and M2 are compared on the basis

of a data vector xi. The Bayes factor K is given by

K =
P (xi |M1)

P (xi |M2)
=

∫
P (θ1 |M1)P (xi | θ1,M1) dθ1∫
P (θ2 |M2)P (xi | θ2,M2) dθ2

where P (xi | M1,2) is called the marginal likelihood for model M1,2 and the models M1,2 will

be parameterized by vectors of parameters θ1,2 respectively. The logarithm of K is called the

weight of evidence given by xi for M1 over M2. A value of K > 1 shows that the data indicate

that M1 is more strongly supported by the data under consideration than M2.

2.5.5 Criteria Based on Computational Methods

Computationally intensive model selection criteria have been introduced after using widely

spread computational methods in data mining. These criteria are generally applicable to all

the models (i.e., parametric and nonparametric models). A possible problem with these cri-

teria is that they require intensive computation, thus a long time to design and implement is

needed. In this section, two commonly used criteria, the cross-validation and bootstrapping,

are introduced.

The cross-validation criterion

Cross-validation (rotation estimation) is a statistical procedure of dividing the sample into

subsamples (usually two subsamples) such that the analysis (such as fit a model) is initially

performed on a single subsample (called training sample), while the other subsamples (called

validation or testing samples) are used for confirming and validating the initial analysis (see Ron

(1995)). Using this criterion the performance between two or more models can be compared

by evaluating an appropriate discrepancy function on the validation or testing samples.

One problem with the cross-validation criterion is how to decide the size of validation or

testing samples. Another problem is that if the validation sample is used to choose a model,

the results obtained are not real measurements of the model’s performance that can be compared

with the measurements obtained from other models since the validation sample is in fact used

to construct the model (see Giudici (2003)).



59

To solve the problem pointed out above, several common types of cross-validation have been

introduced. Holdout validation tries to avoid crossing over the data. Choosing observations

randomly from the initial sample to form the validation data, and the remaining observations

are kept as the training data. In general, less than a third of the initial sample is used for

forming validation data. For example, Giudici (2003) suggests the proportions of 75% and 25%

are used for the training and validation samples respectively. K-fold cross-validation method

suggests to divide the initial sample into K subsamples with equal size. The model is fitted

k times, leaving out one of the subsets each time for calculating a validation rate. The cross-

validation process is then repeated K times (the folds), with each of the K subsamples used

exactly once as the validation data. The final error is the arithmetic average of the errors

obtained. Leave-one-out cross-validation (i.e., the jackknife method) involves using a single

observation from the original sample as the validation data, and the remaining data as the

training sample. The disadvantage of these validation methods is that they retrain the model

several times and require intensive computation (see Duda et al. (2001), Giudici (2003), and

Ron (1995)).

The bootstrap criterion

Efron (1979) introduces the bootstrap method based on the idea of reproducing the “real” dis-

tribution of the population with a resampling of the observed data. Application of this method

stems from the assumption that the observed sample is in fact a population, for which we can

calculate the sample density. That is, the choice for an approximation of the population dis-

tribution is the empirical distribution from the observed data. It can be used for constructing

hypothesis tests, particularly, when the population distribution is unknown (see, for exam-

ple, Sun et al. (2007b)). It can be used as an alternative to inference based on parametric

assumptions when those assumptions are in doubt (see Davison and Hinkley (1997)).

The advantage of bootstrapping is its simplicity when compared with analytical methods.

The idea is straightforward to employ the bootstrap to derive estimates of standard errors and

confidence intervals for these estimators of the underlying distribution with complex parameters,

such as proportions, percentile points, correlation coefficients, and odds ratio. The disadvantage

of bootstrapping is that it has asymptotical consistence only under some conditions, it does not

guarantee consistence for general finite sample and tends to be overly optimistic. Bootstrap

method usually requires intensive computation particularly when the large number of bootstrap

samples is required.

Two situations should be taken into account in data mining. When the empirical distribu-

tion is unclear, smooth bootstrapping is used. For this situation, a small amount of (usually
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normally distributed) zero-centered random noise is added onto each resampled observation,

which is equivalent to sampling from a kernel density estimate of the data. When the empirical

distribution can be described by a parametric model (often fitting the data by the maximum

likelihood estimation), the bootstrapping samples of random numbers can be drawn from such

a parametric model.

Bootstrap methods are often used in regression analysis. The resampling of residuals is one

of the common approaches. The bootstrap procedure is:

1. Fit the model and retain the fitted values θ̂i and the residuals εi, i = 1, . . . , n.

2. For each pair, (xi, yi), in which xi is the explanatory variables, add a randomly resampled

residual, εi to the response variable yi

3. Refit the model and retain the estimated parameters.

4. Repeat steps 2 and 3 many times.

This procedure retains the information in the explanatory variables. However, a question arises

as to which residuals to resample, i.e., residuals follow a parametric model or not. Residuals

following no parametric model are one option, another is studentized residuals (in linear regres-

sion). Whilst there are arguments in favor of using studentized residuals, in practice it often

makes little difference and it is easy to run both and compare the results against each other.

Rachev et al. (2007) illustrate several applications of bootstrap methods in financical analysis.



Chapter 3

High-Frequency Financial

Econometrics

“Financial econometrics is the econometrics of financial markets. It is a quest for models that

describe financial time series such as prices, returns, interest rates, financial ratios, defaults,

and so on (see Rachev et al. 2007)”. The financial equivalent of the laws of physics, financial

econometrics represents the quantitative, mathematical laws of financial markets. Following

the above definition, I say high-frequency financial econometrics is the econometrics based on

the data gathered at the ultimate frequency level of financial markets. In the study of high-

frequency financial econometrics, the time series of prices, returns, interest rates, financial

ratios, defaults, and others are all observed at the tick-by-tick level. I also call such time se-

ries the high-frequency time series. Similarly, I describe the financial theory (especially, the

market microstructure theory) that investigates financial phenomena at intra-daily or accu-

mulated intra-daily level as the high-frequency finance. In this sense, high-frequency financial

econometrics is the quantitative, mathematical laws of tick-by-tick financial markets. Although

currently high-frequency finance is focusing on the market microstructure study due to the lim-

itation of data, high-frequency financial econometrics has a broader scope of research driven

by the increasing demand of financial decisions made at intra-daily scale. For example, day-

traders measure risk and select the optimal portfolio within one day or even within a couple

of hours, for which standard financial theories based on low-frequency data cannot provide

efficient solutions. As a growing area, high-frequency financial econometrics can offer solu-

tions with quantitative techniques developed from tick-by-tick financial data. High-frequency

financial econometrics typically touches on one or more of the following aspects of financial

markets.

61
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3.1 Mechanisms in Economic Settings

In the study of market quality, much of the debate in the literature, according to Madhavan

(2000), centers on floor versus electronic markets, and auctions versus dealer systems. Using

intra-daily data for Bund future contracts, Frank and Hess (2000) compare the electronic system

of the DTB (Deutsche Terminbörse) and the floor trading of the LIFFE (London International

Financial Futures Exchange). They find that the floor trading turns out to be more attractive in

periods of high information intensity, high volatility, high volume, and high trading frequency.

The reason they offer for this finding is that market participants infer more information from

observing actual trading behavior. Coval and Shumway (2001) confirm the claim that market

participants gather all possible information rather than only relying on easily observable data,

say, past prices, in determining their trade values. They suggest that subtle but non-transaction

signals play important roles: The electronic exchanges lose information that can be observed

in a face-to-face exchange setting. Based on the co-existence of the floor and electronic trading

system in the German stock market, Theissen (2002) argues that when employing intra-daily

data, both systems contribute to the price discovery process almost equally. Based on testing

whether the upstairs intermediation can lower adverse selection cost, Smith et al. (2001)

report that the upstairs market is complementary in supplying liquidity. Bessembinder and

Venkataraman (2004) show that the upstairs market does a good job of complementing the

electronic exchange, because the upstairs market is efficient for many large trades and block-

sized trades.

By confirming that market structure does impact the incorporation of news into market

prices, Masulis and Shivakumar (2002) compare the speed of adjustment on the NYSE and

Nasdaq. They demonstrate that there are faster price adjustments to new information on the

Nasdaq. Weston (2002) confirms that the electronic trading system has improved the liquidity

of the Nasdaq. Boehmer et al. (2005) suggest that since the electronic trading reveals more

information, market quality could be increased by exposing such information in the electronic

trading system.

Huang and Stoll (2001) point out that tick size, bid/ask spread, and market depth are not

independent from market structure. They are linked to market structure. It is necessary to take

account of tick size, bid/ask spread, and market depth when analyzing the market structure.

Numerous studies investigate how market structure impacts price discovery and trading costs in

different securities markets. Chung and Van Ness (2001) show that after introducing new order

handling rules in the Nasdaq, bid/ask spreads decreased, confirming that market structure has

a significant effect on trading costs and the price forming process.
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3.2 Formation of Market Price

How are prices determined in the financial market? As Madhavan (2000) notes, studying the

market maker is the logical starting point for any analysis of market price determination. In

market microstructure studies, inventory and asymmetric information are the factors that in-

fluence the price movement. Naik and Yadav (2003) examine whether equivalent inventories

or ordinary inventories dominate the process of trading and pricing decisions by dealer firms.

They find that ordinary inventories play the main role consistent with the decentralized nature

of market making. Bollen et al. (2004) propose a new model based on intra-daily data to un-

derstand and measure the determinants of bid/ask spreads of market makers. Using the vector

autoregressive model, Dufour and Engle (2000) find that time durations between transaction

impact the process of price formation. Engle and Lunde (2003) develop a bivariate model of

trades and quotes for NYSE traded stocks. They find that high trade arrival rates, large volume

per trade, and wide bid/ask spreads can be regarded as information flow variables that revise

prices. They suggest that if such information is flowing, prices respond to trades more quickly.

3.3 Transparency of the Market

Market transparency is the ability of market participants to observe information about the

trading process, see O’Hara (1995). Referring to the time of trade, Harris (2003) defines ex

ante (pre-trade) transparency and ex post (post trade) transparency. Comparing market trans-

parency is complicated by the lack of a criterion that can be used to judge the superiority of one

trading system over another such as floor market versus electronic market, anonymous trading

versus disclosure trading, and auction system versus dealer system. According to Madhavan

(2000), there is broad agreement of the influence of market transparency. Market transparency

does affect informative order flow and the process of price discovery. Madhavan also points out

that while partial disclosure will improve liquidity and reduce trading costs, complete disclosure

will reduce liquidity, a situation Harris (2003) refers to as the “ambivalence” from the viewpoint

of a trader’s psychology. By investigating the OpenBook1 in NYSE, Boehmer et al. (2005) find

that there is a higher cancel rate and a short time-to-cancel of limit orders in the book, sug-

gesting that traders attempt to manipulate the exposure of their trades. By confirming market

design does impact the trading strategy of investors, they support increasing pre-trade trans-

parency and suggest that market quality can be enhanced by greater transparency of the limit

order book.

1OpenBook was introduced in January 2002 allowing traders off the NYSE floor exchange to find each price
in real time for all listed securities. Before OpenBook, only best bid/ask could be observed.
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3.4 Liquidity of the Market

A topic of debate in finance is the meaning of liquidity. Some market participants refer to

liquidity as the ability to convert an asset into cash quickly, some define liquidity in terms

of low transaction cost, and some think high transaction activity is liquidity, see Easley and

O’Hara (2003) and Schwartz and Francioni (2004). Schwartz and Francioni point out that a

better approach for defining liquidity should be based on the attributes of liquidity. They define

the depth, breadth, and resiliency as the dimensions of liquidity, while Harris (2003) identifies

immediacy, width, and depth as the relevant attributes of liquidity. In the microstructure

literature, the bid/ask spread proxies for liquidity, see Easley and O’Hara (2003). Schwartz

and Francioni (2004) show that liquidity can be approximated by the trade frequency of an

asset traded in the market. The frequency can be measured by the magnitude of short-term

price fluctuation for such an asset. Chordia et al. (2002) find that order imbalances affect

liquidity and returns at the aggregate market level. They suggest using order imbalance as a

proxy for liquidity.

Using bid/ask spread as a proxy for liquidity, Chung et al. (2001) compare the bid/ask

spread on the NYSE and the Nasdaq. They find that the average NYSE specialist spreads

are significant smaller than the Nasdaq specialist spreads. Huang and Stoll (2001) report that

dealer markets have relative higher spreads than auction markets. By comparing spreads in

different markets, they found that the spreads on the London Stock Exchange are larger than

that for the same stocks listed on the NYSE and the spreads in the Nasdaq are larger than that

on stocks listed on the NYSE. By checking the growth of electronic communication networks

(ECNs) in Nasdaq, Weston (2002) confirms that the electronic trading system has the ability

to improve the liquidity on the Nasdaq. Kalay et al. (2004) report that the opening is more

liquid than the continuous trading stage. For small price changes and small quantities, there

is a less elastic supply curve than demand curve.

From the perspective of liquidity providers, researchers usually use the order book data.

Coughenour and Deil (2002) catagorize the specialist firms on the NYSE into two types: owner-

specialist firms and employee-specialist firms. By investigating the influence of these two types

of liquidity providers, they show that with similar trading costs, the owner-specialist firms

have a greater frequency of large trades and have a greater incentive to reduce adverse selection

costs. For employee-specialist firms, the stocks traded exhibit less sensitivity between change in

quoted depth and quoted spreads. Meantime, these stocks show price stability at the opening.

Peterson and Sirri (2002) investigate order submission strategies and find that limit orders

perform worse than market orders involving the trading costs. But investors still prefer limit

orders, which suggests that individual investors are less able to choose an optimal trading
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strategy.

3.5 Volatility of the Market

Volatility is one of the most important risk metrics. Harris (2003) defines it as the tendency

for prices to change unexpectedly. Volatility could be regarded as the market reaction to news

reflected by price changes . He distinguishes fundamental volatility and transitory volatility.

Fundamental volatility is caused by endogenous variables which determine the value of trading

instruments. Transitory volatility is due to the trading activity of uninformed traders.

Volatility is not constant over the trading stage, but changes over time. Transitory volatility

might occur in a very short time period before it converts to its fundamental value. The intra-

daily data reflects both fundamental volatility and transitory volatility with sufficient statistical

significance.

Engle (2000) adopts the GARCH model to the irregularly spaced ultra-high frequency data.

Letting di be the duration between two successive transactions and ri the return between

transactions i− 1 and i, then the conditional variance per transaction is:

Vi−1(ri|di) = φi (3.0-1)

and the conditional volatility per unit of time is defined as,

Vi−1(
ri√
di
|di) = σ2

i (3.0-2)

Then the connection between equations (3.0-1) and (3.0-2) can be established by φi = diσ
2
i .

The predicted variance conditional on past returns and durations is Ei−1(φi) = Ei−1(diσ
2
i ).

Using ARMA(1,1) with innovations εi, the series of return per unit of time is

ri√
di

= a
ri−1√
di−1

+ εi + b εi−1 (3.0-3)

If the current duration contains no information, the simple GARCH specification is used,

and then

σ2
i = ω + α ε2

i−1 + β σ2
i−1 (3.0-4)

If durations are informative, Engle (2000) proposes an autoregressive conditional duration

(ACD) model to define the expected durations. If the ACD model is

ψ2
i = h + mdi−1 + nψ2

i−1 (3.0-5)
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then the ultra-high frequency GARCH model is expressed as:

σ2
i = ω + α ε2

i−1 + β σ2
i−1 + γ1 d

−1
i + γ2

di
ψi

+ γ3 ξi−1 + γ4 ψ
−1
i (3.0-6)

where ξi−1 is the long-run volatility computed by exponentially smoothing r2/d with a para-

meter 0.995 such that

ψi = 0.005

(
r2
i−1

di−1

)
+ 0.995ψi−1 (3.0-7)

Alexander (2001) points out that a number of studies have shown that the aggregation

properties of GARCH models are not straightforward. The persistence in volatility seems to be

lower when it is measured using intra-day data than when measured using daily or weekly data.

For example, fitting a GARCH(1,1) to daily data would yield a sum of autoregressive parameter

and moving average parameter estimates that is greater than the sum of that estimated from

fitting the same GARCH process by using 2-day returns. In the heterogeneous ARCH (HARCH)

model proposed by Müller et al. (1997), a modified process is introduced so that the squared

returns can be taken at different frequencies. The return of rt of the HARCH(n) process is

defined as follows,

rt = ht εt (3.0-8)

h2
t = α0 +

n∑
j=1

αj (
j∑
i=1

rt−i)
2

where εt is an i.i.d. random variable with zero mean and unit variance, α0 > 0, αn > 0,

αj ≥ 0, for j = 1, 2, ..., n− 1. The equation for the variance h2
t is a linear combination of the

squares of aggregated returns. Aggregated returns may extend over some long intervals from a

time point in the distant past up to time t− 1. The HARCH process belongs to the wide ARCH

family but differs from all other ARCH-type processes in the unique property of considering the

volatilities of returns measured over different interval sizes. Dacorogna et al. (2001) generalized

the HARCH process. In equation (3.0-9), all returns considered by the variance equation are

observed over the recent interval ending at time t − 1. This strong limitation is justified by

observing it empirically, but a more general formula of the process with observation intervals

ending in the past before t− 1 can be shown as follows:

rt = ht εt (3.0-9)

h2
t = α0 +

n∑
j=1

j∑
k=1

αjk (
j∑
i=k

rt−i)
2 +

q∑
i=1

bi h
2
t−i

where

α0 > 0, αjk ≥ 0, for j = 1, 2, ..., n; k = 1, 2, ..., j; (3.0-10)

bj ≥ 0 for i = 1, 2, ..., q.
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The generalized process equation considers all returns between any pair of two time points in

the period between t−n and t−1. It covers the case of HARCH (all αjk = 0 except some αj1),

as well as that of ARCH and GARCH (all αjk = 0 except some αjj).

From historical data, realized volatility can be computed. Dacorogna et al. (2001) show the

realized volatility as:

υ(ti) =

 1

n

n∑
j=1

|r(∆t; ti−n+j)
p|

1/p

(3.0-11)

where n is the number of return observations, and r stands for the returns in the regularly

spaced time intervals. ∆t is the return interval. Taylor and Xu (1997), Andersen and Bollerslev

(1998), and Giot and Laurent (2004), among others, show that summing up intra-daily squared

returns can estimate the daily realized volatility. Given that a trading day can be divided into

n equally spaced time intervals, and if ri,t denotes the intra-daily return of the ith interval of

day t, the daily volatility for day t can be expressed as:[
n∑
i=1

ri,t

]2

=
n∑
i=1

r2
i,t + 2

n∑
i=1

n∑
j=i+1

rj,t rj−i,t (3.0-12)

Andersen et al. (2001a) show that if the returns have a zero mean and are uncorrelated,∑n
i=1 r

2
i,t is a consistent and an unbiased estimator of the daily variance. [

∑n
i=1 ri,t]

2 is called

the daily realized volatility since all squared returns on the right side of equation (16) can be

observed when intra-daily data sampled over an equally spaced time interval are available. This

is one method for modeling daily volatility using intra-daily data, and a method that has been

generalized by Andersen et al. (2001a, 2001b). Another method is to estimate the intra-daily

duration model on trade durations for a given asset. It is observed that longer durations lead

to lower volatility and shorter durations lead to higher volatility and durations are informative,

see Engle (2000) and Dufour and Engle (2000). Gerhard and Hautsch (2002) estimate daily

volatility for an intra-daily duration model at which irregularly time spaced volatility has been

used at the aggregated level.

There are several articles that provide a detailed discussion of modeling volatility, see, for

example, Andersen et al. (2005a, 2005b, 2006). Modeling and forecasting volatility based on

intra-daily data has attracted a lot of research interest. Andersen et al. (2001) improve the

inference procedures for using intra-daily data forecasts. Bollerslev and Wright (2001) pro-

pose a method to model volatility dynamics by fitting an autoregressive model to log-squared,

squared or absolute returns of intra-daily data. They show that when working with intra-daily

data, using a simple autoregressive model can provide a better prediction for forecasting future

volatility than standard GARCH or exponential GARCH (EGARCH) models. They suggest
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that intra-daily data can be easily used to generate superior daily volatility forecasts. Blair

et al. (2001) offer evidence that intra-daily returns provide much more accurate forecasts of

realized volatility than daily returns. In the context of stochastic volatility models, Barndorff-

Nielsen and Shephard (2002) investigate the statistical properties of realized volatility. Corsi

et al. (2005) study the time-varying volatility of realized volatility. Using a GARCH diffusion

process, Martens (2001) and Marten et al. (2002) point out that using intra-daily data can

improve the out-of-sample daily volatility forecasts. Bollen and Inder (2002) use the vector

autoregressive heteroskedasticity and autocorrelation (VARHAC) estimator to estimate daily

realized volatility from intra-daily data. Andersen et al. (2003) propose a modeling frame-

work for integrating intra-daily data to predict daily return volatility and return distribution.

Thomakos and Wang (2003) investigate the statistical properties of daily realized volatility of

futures contracts generated from intra-daily data. Using 5-minute intra-daily foreign exchange

data, Morana and Beltratti (2004) illustrate the existence of structural breaks and long memory

in the realized volatility process. Fleming et al. (2003) indicate that the economic value of

the realized volatility approach is substantial and deliver several economic benefits for invest-

ment decision making. Andersen et al. (2005a) summarize the parametric and non-parametric

methods used in volatility estimation and forecasting.

3.6 Pattern Recognition and Stylized Facts

The task of pattern recognition in high-frequency data mining is to classify data (patterns)

based on either a priori knowledge or on statistical information extracted from the patterns.

The patterns to be classified are usually groups of measurements or observations, defining points

in an appropriate multidimensional space. A complete pattern recognition system consists of a

sensor that gathers the observations to be classified or described; a feature extraction process

that computes numeric or symbolic information from the observations; and a classification or

description scheme that does the actual job of classifying or describing observations, relying

on the extracted features. Duda et al. (2001) designed a pattern recognition system with

different operation components, i.e., sensing, segmentation and grouping, feature extraction,

classification, and post-processing.

The input to a pattern recognition system is often some kind of a transducer. Duda et al.

(2001) pointed out that the difficulty of the problem usually depends on the characteristics and

limitations of the transducer. Sensing could be regarded as a design of the sensors that gathers

the observations for pattern recognition. The key point is quality of the sensors, i.e., the data

quality.
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The goal of segmentation and grouping is to simplify and/or change the representation of data

into something that is more meaningful and easier to analyze. Segmentation and grouping is

the process dividing a dataset into distinct subsets (segments/groups) that can be characterized

in the same way or have similar features. Because each segment/group is fairly homogeneous

in their characteristics, they are likely to feedback similarly to a given method for analysis.

Feature extraction involves simplifying the amount of resources required to describe a large

set of data accurately. When performing analysis of complex data, one of the major problems

stems from the number of variables involved. Analysis with a large number of variables gen-

erally requires a large amount of memory and computation power. In practise, it is important

to improve computation power by constructing combinations of the variables to get around

these problems while still describing the data with sufficient accuracy. Duda et al. (2001, page

11) point out that “the traditional goal of the feature extractor is to characterize an object

to be recognized by measurements whose values are very similar for objects in the same cate-

gory, and very different for objects in different categories”, which “leads to the idea of seeking

distinguishing features that are invariant to irrelevant transformations of the input”.

Duda et al. (2001) think that the major concern of pattern recognition is the design of a

classifier which assigns the object to a proper category by using the feature vector provided

by a feature extractor in the stage of feature extraction. The abstraction provided by the

feature vector representation of the input data enables such a classification. The difficulty of

the classification goes with the variability in the feature values for objects in the same category

relative to the difference between feature values for objects in different categories. Advanced

quantitative methods are needed for the classification process.

Post-processing is the stage in which the classification is evaluated. The simplest measure

of classifier performance is the classification error rate, i.e., the percentage of new patterns

that are assigned to the wrong category, see Duda et al. (2001). In general, a classification

with minimum classification error rate is preferred. But sometimes the minimum error rate

classification requires intensive computations. It is important to balance the risk of high cost

and minimum error rate.

In financial data analysis, an important task is to identify the statistical properties of the

target data set, which shares similar task for pattern recognition. Those statistical properties

are referred to as stylized factors. Stylized factors offer building blocks for further modeling

in such a way so as to encompass these statistical properties. Being a full record of market

transactions, intra-daily data have properties that have been observed. In this section, some

stylized facts of intra-daily data will be reviewed.
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3.6.1 Random Durations

For intra-daily data, irregularly spaced time intervals between successive observations is the

salient feature compared with classical time series data (see, for example, Engle (2000) and

Ghysels (2000)). Given time points equally spaced along the time line, for intra-daily data, at

one time point, there might be no observation or several observations. In intra-day data, obser-

vations arrive at random time. This causes the duration between two successive observations

not to be constant in a trading day. For a time series, if the time space (duration) is constant

over time, it is an equally spaced time series or homogeneous time series. If the duration varies

throught time, it is an unequally spaced time series, i.e., the inhomogeneous time series, see

Dacorogna et al. (2001).

3.6.2 Distributional Properties of Returns

Many techniques in modern finance rely heavily on the assumption that the random variables

under investigation follow a Gaussian distribution. However, time series observed in finance

often deviate from the Gaussian model, in that their marginal distributions are found to possess

heavy tails and are possibly asymmetric. Bollerslev et al. (1992) mention that intra-daily data

exhibit fatter tails in the unconditional return distributions and Dacorogna et al. (2001) confirm

the exhibition of heavy tails in intra-daily return data. In such situations, the appropriateness

of the commonly adopted normal distribution assumption for returns is highly questionable

in research involving intra-daily data. It is often argued that financial asset returns are the

cumulative outcome of a vast number of pieces of information and individual decisions arriving

almost continuously in time. Hence, in the presence of heavy tails, it is natural to assume that

they are approximately governed by a non-Gaussian stable distribution, see Rachev and Mittnik

(2000), and Rachev et al. (2005). Marinelli et al. (2000) first model the heavy tailedness in

intra-daily data. Mittnik et al. (2002) point out that other leptokurtic distributions, including

Student’s t, Weibull, and hyperbolic, lack the attractive central limit property. Sun et al.

(2006a) confirm the findings of heavy tailedness in intra-daily data. Wood et al. (1985) present

evidence that stock returns are not independently and identically distributed. They find that

the distributions are different for the return series in the first 30 minutes of the trading day, at

the market close of the trading day, and during the remainder of the trading day.

3.6.3 Autocorrelation

The study by Wood et al. (1985), one of the earliest studies employing intra-daily data, finds

that the trading day return series is non-stationary and is characterized by a low-order au-
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toregressive process. For the volatility of asset returns, autocorrelation has been documented

in the literature (see among others, Engle (1982), Baillie and Bollerslev (1991), Bollerslev et

al. (1992), Hasbrouck (1996), and Bollerslev and Wright (2001)). The existence of negative

first-order autocorrelation of returns at higher frequency, which disappears once the price for-

mation is over, has been reported in both the foreign exchange market and equity market. The

explanation for the finding of negative autocorrelation of stock returns observed by researchers

is due to by what is termed the bid-ask bounce. According to the bid-ask bounce explanation,

the probability of a trade executing at the bid price and then being followed by a trade exe-

cuting at the ask price is higher than a trade at the bid price followed by another trade at the

bid price (see Alexander (2001), Dacorogna et al. (2001), and Gourieroux and Jasiak (2001)).

3.6.4 Seasonality

Many intra-daily data display seasonality. By seasonality, I mean periodic fluctuations. Daily

patterns in the trading day have been found in the markets for different types of financial assets

(see, Jain and Joh (1988), McInish and Wood (1991), Bollerslev and Domowitz (1993), Engle

and Russel (1998), Andersen and Bollerslev (1997), Bollerslev et al. (2000), and Veredas et al.

(2002)). One such trading pattern is the well-known “U-shape” pattern of daily trading (see,

Wood et al. (1985), Ghysels (2000), and Gourieroux and Jasiak (2001)). This trading pattern

refers to the observation in a trading day that trade intensity is high at the beginning and at

the end of the day, and trading durations increase and peak during lunch time. As a result,

return volatility exhibits a U-shape where the two peaks are the beginning and the end of a

trading day, with the bottom approximately during the lunch period. Hong and Wang (2000)

confirm the U-shape patterns in the mean and volatility of returns over a trading day. They find

that around the close and open there exist higher trading activity, the returns of open-to-open

being more volatile than that of close-to-close. Besides the intra-day pattern, there exists a

day-of-week pattern evidenced by both lower returns and higher volatility on Monday.

3.6.5 Clustering

Many financial time series display volatility clustering. It is observed that large returns are

followed by more large returns and small returns by more small returns. Equity, commodity,

and foreign exchange markets often exhibit volatility clustering at higher frequency. Volatility

clustering becomes pronounced in intra-daily data (see, for example, Alexander (2001), Haas

et al. (2004)). Besides volatility clustering, intra-daily data exhibit quote clustering and

duration clustering. Quote or price clustering is the preference for some quote/prices over

others. Duration clustering means that the long and short durations tend to occur in clusters
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(see, for example, Bauwens and Giot (2001), Chung and Van Ness (2004), Engle and Russell

(1998), Feng et al. (2004), Huang and Stoll (2001), and Sun et al. (2006b)).

3.6.6 Long-range Dependence

Long-range dependence or long memory (sometimes also referred to as strong dependence or

persistence) denotes the property of time series to exhibit persistent behavior. (A more precise

mathematical definition will be provided in Section 5.) It is generally believed that when the

sampling frequency increases for financial returns, long-range dependence will be more signifi-

cant. Baillie (1996) discusses long memory processes and fractional integration in econometrics.

Marinelli et al. (2000) propose subordinated modeling to capture long-range dependence and

heavy tailedness. Several researchers, focusing both on theoretical and empirical issues, discuss

long-range dependence. Doukhan et al. (2003), Robinson (2003), and Teyssiére and Kirman

(2006) provide an overview of the important contributions to this area of research. Investigating

the stocks comprising the German DAX, Sun et al. (2006a) confirm that long-range depen-

dence does exist in intra-daily return data. I provide a more detailed discussion of long-range

dependence in Chapter 4.



Chapter 4

Long Range Dependence and Fractal

Processes

Long-range dependence is the dependence structure across long time periods. As stated earlier,

it denotes the property of a time series to exhibit persistent behavior, i.e., a significant depen-

dence between very distant observations and a pole in the neighborhood of the zero frequency

of their spectrum. In the time domain, if {Xt, t ∈ T} exhibits long-range dependence, its au-

tocovariance function γ(k) has the property of
∑ |γ(k)| = ∞, where k measures the distance

between two observations, i.e., the order of lags. In the frequency domain, if {Xt, t ∈ T} ex-

hibits long-range dependence, its spectral density f(λ) (−π < λ < π) has a “pole” at frequency

zero, i.e., f(0) = 1/2π
∑∞
k=−∞ γ(k) = ∞.

4.1 Estimation and Detection of LRD in the Time Domain

4.1.1 The Rescaled Adjusted Range Approach

The rescaled adjusted range method, denoted by R/S, was proposed by Hurst (1951) and

discussed in detail in Mandelbrot and Wallis (1969), Mandelbrot (1975), Mandelbrot and Taqqu

(1979), and Beran (1994). For a time series, {Xt, t ≥ 1}, let YT =
∑T
t=1Xt and

S2(t, k) =
1

k

t+k∑
i=t+1

(Xi −X t,k)
2 (4.0-1)

where X t,k = k−1∑t+k
i=t+1Xi, then define the adjusted range

R(t, k) = max
0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
73
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− min
0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
(4.0-2)

the standardized ratio R(t, k)/S(t, k) is the rescaled adjusted range, i.e., the R/S statistic.

Hurst observed that for a large k based on the Nile River data, logE[R/S] ≈ a+H log k with

H > 0.5. To determine H by using the R/S statistic, I can do the following:

1. Divide the time series of length N into K blocks.

2. For each lag t, starting at points ti = iT/K + 1, compute R(ki, t)/S(ki, t), i = 1, 2, · · ·,
for all possible k such that ti + k ≤ N .

3. Plot its logarithm against the logarithm of k. This plot is sometimes called the pox plot

for the R/S statistic.

4. The parameter H is the estimated slope of the line in the pox plot.

The R/S method requires cutting off both the low and high end of the plot to make reliable

estimates. The low end of the plot stands for the short-range dependence in the time series and

there are too few points on the high end. In the literature it is also argued that the R/S cannot

provide the confidence intervals for the estimates and cannot discriminate slight LRD from no

LRD. Compared with other methods, the R/S approach is less efficient. When the time series

is non-stationary and departs from the normal distribution, this method is not robust, see Lo

(1991), Taqqu et al. (1995), and Taqqu and Teverovsky (1998).

Lo modifies the R/S approach and proposes a test procedure for the null hypothesis of no

LRD. In Lo’s method, he suggests using a weighted sum of autocovariance for S instead of the

sample standard deviation to normalize R. Meantime, his modification suggests not considering

multiple lags but only using the length N of the series, i.e.,

S2
q (N) =

1

N

N∑
j=1

(Xj −XN)2 (4.0-3)

+
2

N

q∑
j=1

ωj(q)
( N∑
i=j+1

(Xi −XN)(Xi−j −XN)
)

where XN denotes the sample mean of the time series, and ωj(q) := 1− j
q+1

, q < N . I can use

the following term to represent Sq(N) by adding the weighted sample autocovariances to the

sample variance, i.e.,

S2
q (N) = S2 + 2

q∑
j=1

ωj(q)γ̂j (4.0-4)
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where γ̂j are the sample autocovariances. Lo shows that the distribution of the statistic

Vq(N) :=
N−1/2R(N)

Sq(N)
(4.0-5)

is asymptotic to

W1 = max
0≤t≤1

W0(t)− min
0≤t≤1

W0(t) (4.0-6)

where W0 is the standard Brownian bridge. This fact allows the computation of a 95% confi-

dence interval forW1. Thus, Lo uses the interval [0.809, 1.862] as the asymptotic 95% acceptance

region of the null hypothesis of no LRD.

Since Lo only provides the method to test if LRD is present or not without suggesting an

estimator of H, Teverovsky et al. (1999) modified Lo’s method to get an estimator of H. They

suggest using Vq with a wide range of values of q, and then ploting the estimates as was done

for the pox plot.

4.1.2 ARFIMA Model

Conventional analysis of time series under the stationarity assumption typically relies on the

standard integrated autoregressive moving average model, i.e. ARIMA model of following form:

α(L)(1− L)dXt = β(L)εt (4.0-7)

where, εt ∼ (0, σ2), and α(L) is the autoregressive polynomials in the lag operator L such that

α(L) = 1 − α1(L)−, ...,−αp(L)p. β(L) is the moving average polynomials in the lag operator

L such that β(L) = 1 + β1(L)−, ...,−βq(L)q. All roots of α(L) and β(L) lie outside the unit

circle. Granger and Joyeux (1980) and Hosking (1981) generalize d to a non-integer value by

the fractional differencing operator defined by

(1− L)d =
∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
(4.0-8)

where Γ(·) is the gamma function. That is the Autoregressive Fractional Integrated Moving

Average (ARFIMA) model allows a non-integer value of d. The ARFIMA model has the ability

to capture significant dependence between distant observations compared with the ARIMA

model. Hosking (1981) shows that the autocorrelation function ρ(k) of an ARFIMA process

has a slower hyperbolic decay pattern, that is ρ(k) ∼ k2d−1, with d < 0.5 when k → ∞ and

the autocorrelation of ARIMA decay follows an exponential pattern, that is, ρ(k) ∼ rk, with

r ∈ (0, 1) when k →∞. The memory of the time series is captured by d, therefore the existence

of long memory can be tested based on the statistical significance of the fractional differencing

parameter d.
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For the first difference of the series Yt, Yt = (1− L)Xt, the equation

(1− L)dXt = α−1(L)β(L)εt = ut (4.0-9)

can be used to estimate d. In this case, the Hurst index is 1/2 + d.

4.1.3 Variance-Type Method

Teverovsky and Taqqu (1995), Taqqu et al. (1995), and Taqqu and Teverovsky (1996) discuss

the variance-type methods for estimating the Hurst index: the aggregated variance method and

the differenced variance method.

For the aggregated variance method, the variance of X is of order N2H−2 suggesting:

1. For an integer m between 2 and N/2, divide a given series of length N into blocks of

length m, and compute the sample mean over each k-th block.

X
(m)
k :=

1

m

km∑
t=(k−1)m+1

Xt

where k = 1, 2, · · · , [N/m].

2. For each m, compute the sample variance of X
(m)

k ,

s2
m :=

1

[N/m]− 1

[N/m]∑
k=1

(X
(m)
k −X)2.

3. Plot log s2
m against logm.

4. For large values of m, the result should be a straight line with a slope of 2H−2. Then the

slope can be estimated by fitting a least-squares line in the log-log plot. If the series has

no long-range dependence and finite variance, then H = 0.5 and the slope of the fitted

line is −1.

There are two types of non-stationarity, one is jumps in the mean and the other is slowly

declining trends. Teverovsky and Taqqu (1995) distinguish these from long-range dependence

by using the differenced variance method. They difference the variance and study the sample

variance s2
mi+1−s2

mi
, where mi are the successive values of m as defined above. Using it together

with the original aggregated variance method, the difference variance method can detect the

presence of the two types of non-stationary effects mentioned above.
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Another method involving the variance is the variance of residuals method introduced by

Peng et al. (1994). Similar to the aggregated variance method, the series is divided into blocks

with size of m. Next, the partial sums are computed within each block, i.e.,

Y (k)(m) :=
km∑

t=(k−1)m+1

Xt

where k = 1, 2, · · · , [N/m]. A regression line a + bk is fitted to the partial sums within each

block, and the sample variance of the residuals s(m) is computed. Taqqu et al. (1995) prove

that in the Gaussian case, the variance of residuals is proportional to m2H . By plotting log s(m)

against logm, the slope, i.e., 2H, can be estimated (see Taqqu and Teverovsky (1996) for more

details).

4.1.4 Absolute Moments Method

The absolute moments method is a generalization of the aggregated variance method. Using

this method

1. For an integer m between 2 and N/2, divide a given series of length N into blocks of

length m, and compute the sample mean over each k-th block.

X
(m)

k :=
1

m

km∑
t=(k−1)m+1

Xt

where k = 1, 2, · · · , [N/m].

2. For each m, compute the n-th absolute moment of X
(m)

k ,

AM (m)
n =

1

[N/m]− 1

[N/m]∑
k=1

|X(m)

k −X|n.

3. The AM (m)
n is asymptotically proportional to mn(H−1).

4. Plot logAM (m)
n against logm.

5. For large values of m, the result should be a straight line with a slope of n(H − 1). Then

the slope can be estimated by fitting a least-squares line in the log-log plot. If the series

has no long-range dependence and finite variance, then H = 0.5 and the slope of the

fitted line is −n/2.
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Similar to the absolute moments method, Higuchi (1988) suggests the fractal dimension

method, see Taqqu and Teverovsky (1998). The difference between these two methods is

that the absolute moments method (when n = 1) uses a moving window to compute the

aggregated series, while the fractal dimension method uses the non-intersecting blocks. The

fractal dimension method requires intensive computation and increases accuracy in shorter time

series. Taqqu et al. (1995), and Taqqu and Teverovsky (1998) discuss these two methods in

detail.

4.2 Estimation and Detection of LRD in the Frequency

Domain

4.2.1 Periodogram Method

Geweke and Porter-Hudak (1983) introduced a semi-nonparametric procedure to test long mem-

ory based on the slope of spectral density around the angular frequency ω = 0. For the peri-

odogram of Xt at frequency ωj, i.e., g(ω), which is defined as follows

g(ω) =
1

2πT

∣∣∣∣∣
T∑
t=1

eitω(Xt −X)

∣∣∣∣∣
2

(4.0-10)

the differencing parameter d can be consistently estimated by the regression

ln g(ω) = c− d ln(4 sin2(
ωj
2

)) + ηj, j = 1, 2, ..., n (4.0-11)

where ωj = 2πj/T, (j = 1, 2, · · · , T − 1) denotes the Fourier frequencies of the sample, T is the

sample size, and n = f(T ) << T is the number of Fourier frequencies included in the spectral

regression. As Geweke and Porter-Hudak (1983) show, the slope of the line in log-log plot is

1− 2H.

Extensions and improvements to the periodogram method, for example, the continuous

periodogram method and the averaged (cumulative) periodogram method, have been discussed

in the literature, see, for example, Robinson (1995a), Taqqu et al. (1995), Taqqu and Teverovsky

(1998), Moulines and Soulier (1999), and Hurvich and Brodski (2001).

4.2.2 Whittle-Type Methods

The Whittle estimator is the extension of the periodogram method. If the time series Xt follows

a Gaussian distribution, the Gaussian maximum likelihood estimate (MLE) might have optimal
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asymptotic statistical properties and can be used for approximation, see Whittle (1951) and

Hannan (1973). The periodogram of Xt at frequency ωj is defined as g(ω),

g(ω) =
1

2πT

∣∣∣∣∣
T∑
t=1

Xte
itω

∣∣∣∣∣
2

(4.0-12)

which is an estimator of the spectral density. It is evaluated at the Fourier frequencies ωj =

2πjT .

Beran (1994) shows that the following equation is an approximation to the Gaussian likeli-

hood in terms of the periodogram I(·),

LW (θ) = − 1

2π

[T/2]∑
j=1

log fθ(ωj) +
IN(ωj)

fθ(ωj)

and the Whittle estimator is found by minimizing it for a given parametric spectral density

fθ(ω). The Gaussian likelihood can be replaced by different approximations without affecting

first-order limit distributional characteristics. Robinson (2003) shows that the estimates which

maximize such approximations are all
√
n-consistent and of the same limit normal distribution

as the Gaussian MLE. Fox and Taqqu (1986) show the Whittle estimate Ĥ of H is asymptoti-

cally normal with rate of convergence T 1/2 and the asymptotic distribution of
√
T (Ĥ −H) is

Gaussian. Relaxing the Gaussian assumption, Giraitis and Surgailis (1990) discuss the proper-

ties of the Whittle estimate Ĥ of H.

Robinson (1995b) develops the local Whittle method and Taqqu and Teverovsky (1998) pro-

vide further discussion about it. The local Whittle method is a semi-parametric estimator. It

only specifies the parametric form of the spectral density with ω approaching zero. It assumes

that

fc,H(ω) = c ω1−2H

for frequencies ω close to the origin. One estimate minimizes
m∑
j=1

log fc,H(ωj) +
IT (ωj)

fc,H(ωj)

with respect to c and H for some m < [T/2], T being the length of the data.

Taqqu and Teverovsky (1998) introduce the aggregated Whittle method which provides a

robust Whittle estimator without considering exact parametric information about the spectral

density. It can be used for longer time series. This method suggests aggregating the data to

create a shorter series.

Xi :=
1

m

mt∑
t=m(i−1)+1

Xt
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If the aggregation level of m is high enough and long-range dependence occurs, then the new se-

ries will approach a fractional Gaussian noise. In the finite variance case, the Whittle estimator

can increase the estimation accuracy with an underlying fractional Gaussian noise assumption.

4.3 Econometric Modeling of LRD

Several econometric models have been extended to describe long-range dependence, for example,

extending the ARMA model to the ARFIMA model discussed in the previous section. In

this section, I introduce four types of extensions, the GARCH-type extension, the stochastic

volatility type extension, the unit root type extension, and the regime switching type extension.

4.3.1 GARCH-Type Extension

Robinson (1991) suggests extending the GARCH model by using fractional differences in order

to accommodate the existence of long-range dependence. The fractional differencing operator

is defined as in equation (4.0-7) by Baillie et al. (1996). The fractionally integrated GARCH

(FIGARCH) model is then

(1− L)dβ(L)(h2
t − µ) = α(L)(r2

t − µ) (4.0-13)

For a well-defined process, the parameters αj, βj, and d are constrained. Then the coefficients

θj are all nonnegative in

h2
t = µ + (1− L)−d α(L) β−1(L) r2

t (4.0-14)

= µ +
∞∑
j=0

θ(r2
t−1−j − µ)

Implied by equation (4.0-14), the parameters αj and βj are constrained as in the standard

GARCH model. This also implies that the parameter d is constrained to be positive. Breidt et

al. (1998) argue that the rt in equation (4.0-14) is not covariance stationary and the autoco-

variance function of rt is not defined. Bollerslev and Mikkelsen (1996) formulate a fractionally

integrated EGARCH model of the following form

log h2
t = µt + θ(L)φ(L)−1(1− L)−dg(εt−1) (4.0-15)

where θ(z) = 1 + θ1z+, · · · ,+θpzp for |z| ≤ 1 is an autoregressive polynomial, and φ(z) =

1 − φ1z−, · · · ,−φpzp is a moving average polynomial and φ(z) has no roots in common with

θ(z). The fractional integrated EGARCH model gives a strictly stationary and ergodic process.

Nelson (1991) shows that (log h2
t − µt) is covariance stationary and d < 0.5.



81

4.3.2 Stochastic Volatility Type Extension

A long-range dependence stochastic volatility model is discussed by Breidt et al. (1998). The

stochastic volatility model is defined by

rt = ht εt, ht = h exp (ut/2),

where ut is independent of εt, εt is independent and identically distributed (i.i.d.) with mean

zero and variance one. ut in a simple long-range dependence model can be defined as

(1− L)d ut = ηt

where ηt follows i.i.d. normal distribution with zero mean and variance σ2
η, and d ∈ (−0.5, 0.5).

For long-range dependence, ut can be expressed as an ARFIMA (p, d, q) process, defined as

(1− L)d φ(L)ut = θ(L) ηt

where ηt follows i.i.d. normal distribution with zero mean and variance σ2
η.

4.3.3 Unit Root Type Extension

Robinson (1994) considers the following model that nests a unit root model in order to grasp

the effect of long-range dependence:

φ(L) rt = εt, t ≥ 1, (4.0-16)

rt = 0, t ≤ 0, (4.0-17)

where εt is an I(0) (i.e., integrated process of order zero) with parametric autocorrelation and

φ(L) = (1− L)d1 (1 + L)d2
n∏
j=3

(1− 2 cos ωj L+ L2)dj (4.0-18)

where ωj are given distinct real numbers in (0, π), and the dj, 0 ≤ j ≤ n, are arbitrary real

numbers. This model also covers seasonal and cyclical components. Velasco and Robinson

(2000) propose the following model

(1− L)s rt = εt, t ≥ 1, (4.0-19)

rt = 0, t ≤ 0, (4.0-20)

(1− L)d−s εt = ut, t = 0,±1, · · · , (4.0-21)

where s is the integer part of d + 1/2 and ut is a parametric I(0) process. εt is a stationary

I(d−s) process. Marinucci and Robinson (1999) discuss the difference between the two models

given by equations (4.0-16)-(4.0-17) and equations (4.0-19)-(4.0-21) with respect to the two

definitions of nonstationarity I(d) processes.
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4.3.4 Regime Switching Type Extension

Diebold and Inoue (2001) show that long-range dependence models and regime switching models

are intimately related in several circumstances, including a simple mixture model, stochastic

permanent break model, and Markov-switching model. They demonstrate that with suitably

adapted time varying transition probabilities these regime switching models can generate an

autocovariance structure. This autocovariance structure is similar to the fractionally integrated

processes. Banerjee and Urga (2005) provide an overview of the recent development in the

studies of modeling regime switching and long-range dependence.

Haldrup and Nielsen (2006) propose a regime switching multiplicative seasonal ARFIMA

model that accommodates both fractional integration and regime switching simultaneously.

The model is:

Ast(L) (1 − αst L
24)(1 − L)dst (yt − µst) = εst,t, εst,t ∼ N(0, σ2

st
)

where Ast(L) is an eighth order lag polynomial capturing the within-the-day effects. The

polynomial (1 − αstL
24) stands for a daily quasi-difference filter, st = 0, 1 denotes the regime

determined by a Markov chain with transition probabilities, dst stands for the order of difference,

and µ is the mean.

4.4 Fractal Processes and Long-Range Dependence

Fractal processes (self-similar processes) are tightly connected with the analysis of long-range

dependence. Self-similar processes are invariant in distribution with respect to changes of time

and space scale. The scaling coefficient or self-similarity index is a non-negative number denoted

by H, the Hurst parameter. If {X(t+h)−X(h), t ∈ T} d
= {X(t)−X(0), t ∈ T} 1 for all h ∈ T ,

the real-valued process {X(t), t ∈ T} has stationary increments. Samorodnisky and Taqqu

(1994) provide a succinct expression of self-similarity: {X(at), t ∈ T} d
= {aHX(t), t ∈ T}.

The process {X(t), t ∈ T} is called H-sssi if it is self-similar with index H and has stationary

increments. Long-range dependence processes are asymptotically second-order self-similar (see,

Willinger et al. (1998)).

4.4.1 Specification of the Fractal Processes

Lamperti (1962) first introduced semi-stable processes (which we nowadays call self-similar

processes). Let T be either R,R+ = {t : t ≥ 0} or {t : t > 0}. Then the real-valued

1“ d=” means equality in distribution.
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process {X(t), t ∈ T} is self-similar with Hurst index H > 0 (H-ss) for any a > 0 and d ≥ 1,

t1, t2, ..., td ∈ T , satisfying:(
X(at1), X(at2), ..., X(atd)

)
d
=
(
aHX(t1), a

HX(t2), ...a
HX(td)

)
. (4.0-22)

Fractional Gaussian Noise

For a given H ∈ (0, 1) there is basically a single Gaussian H-sssi process, namely fractional

Brownian motion (fBm) that was first introduced by Kolmogorov (1940). Mandelbrot and Wal-

lis (1968) and Taqqu (2003) clarify the definition of fBm as a Gaussian H-sssi process {BH(t)}t∈R
with 0 < H < 1. Mandelbrot and van Ness (1968) defined the stochastic representation

BH(t) :=
1

Γ(H + 1
2
)

(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dB(s) (4.0-23)

+
∫ t

0
(t− s)H−

1
2dB(s)

)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx

and 0 < H < 1 is the Hurst parameter. The integrator B is the ordinary Brownian motion.

The main difference between fractional Brownian motion and ordinary Brownian motion is that

the increments in Brownian motion are independent while in fractional Brownian motion they

are dependent. As to the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define

its increments {Yj, j ∈ Z} as fractional Gaussian noise (fGn), which is, for j = 0,±1,±2, ...,

Yj = BH(j − 1)−BH(j).

Fractional Stable Noise

Fractional Brownian motion can capture the effect of long-range dependence, but has less power

to capture heavy tailedness. The existence of abrupt discontinuities in financial data, combined

with the empirical observation of sample excess kurtosis and unstable variance, confirms the

stable Paretian hypothesis first identified by Mandelbrot (1963, 1983). It is natural to intro-

duce stable Paretian distribution in self-similar processes in order to capture both long-range

dependence and heavy tailedness. Samorodinitsky and Taqqu (1994) introduce the α-stable

H-sssi processes {X(t), t ∈ R} with 0 < α < 2. If 0 < α < 1, the Hurst parameter values

are H ∈ (0, 1/α] and if 1 < α < 2, the Hurst parameter values are H ∈ (0, 1]. There are

many different extensions of fractional Brownian motion to the stable distribution. The most
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commonly used is the linear fractional stable motion (also called linear fractional Lévy motion),

{Lα,H(a, b; t), t ∈ (−∞,∞)}, which is defined by Samorodinitsky and Taqqu (1994) as follows:

Lα,H(a, b; t) :=
∫ ∞

−∞
fα,H(a, b; t, x)M(dx) (4.0-24)

where

fα,H(a, b; t, x) := a
(
(t− x)

H− 1
α

+ − (−x)H−
1
α

+

)
(4.0-25)

+b
(
(t− x)

H− 1
α

− − (−x)H−
1
α

−

)
and where x+ = max(x, 0), x− = min(x, 0), a, b are real constants, |a| + |b| > 1, 0 < α < 2,

0 < H < 1, H 6= 1/α, and M is an α-stable random measure on R with Lebesgue control

measure and skewness intensity β(x), x ∈ (−∞,∞) satisfying: β(·) = 0 if α = 1. They define

linear fractional stable noises expressed by Y (t), and Y (t) = Xt −Xt−1,

Y (t) = Lα,H(a, b; t)− Lα,H(a, b; t− 1) (4.0-26)

=
∫
R

(
a
[
(t− x)

H− 1
α

+ − (t− 1− x)
H− 1

α
+

]
+ b

[
(t− x)

H− 1
α

− − (t− 1− x)
H− 1

α
−

])
M(dx)

where Lα,H(a, b; t) is a linear fractional stable motion defined by equation (4.0-24), and M is a

stable random measure with Lebesgue control measure given 0 < α < 2. In this chapter, if there

is no special indication, the fractional stable noise (fsn) is generated from a linear fractional

stable motion.

Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968),

Maejima (1983), Maejima and Rachev (1987), Manfields et al. (2001), Rachev and Mittnik

(2000), Rachev and Samorodnitsky (2001), Samorodnitsky (1994, 1996, 1998), and Samoro-

dinitsky and Taqqu (1994).

4.4.2 Estimation of Fractal Processes

Estimating the Self-Similarity Parameter in Fractional Gaussian Noise

Beren (1994) discusses the Whittle estimation (which I discussed earlier) of the self-similarity

parameter. For fractional Gaussian noise, Yt, let f(λ;H) denote the power spectrum of Yt after

being normalized to have variance 1 and let I(λ) the periodogram of Yt, that is

I(λ) =
1

2πN

∣∣∣∣∣
N∑
t=1

Yt e
i t λ

∣∣∣∣∣
2

(4.0-27)
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The Whittle estimator of H is obtained by finding Ĥ that minimizes

g(Ĥ) =
∫ π

−π

I(λ)

f(λ; Ĥ)
dλ (4.0-28)

Estimating the Self-Similarity Parameter in FSN

Stoev et al. (2002) proposed the least-squares (LS) estimator of the Hurst index based on

the finite impulse response transformation (FIRT) and wavelet transform coefficients of the

fractional stable motion. A FIRT is a filter v = (v0, v1, ..., vp) of real numbers vt ∈ <, t =

1, 2, ..., p, and length p+ 1. It is defined for Xt by

Tn,t =
p∑
i=0

viXn(i+t) (4.0-29)

where n ≥ 1 and t ∈ N . The Tn,t are the FIRT coefficients ofXt, that is, the FIRT coefficients of

the fractional stable motion. The indices n and t can be interpreted as “scale” and “location”.

If
∑p
i=0 i

rvi = 0, for r = 0, ..., q − 1, but
∑p
i=0 i

qvi 6= 0, the filter vi can be said to have q ≥ 1

zero moments. If {Tn,t, n ≥ 1, t ∈ N} are the FIRT coefficients of fractional stable motion with

the filter vi that have at least one zero moment, Stoev et al. (2002) prove the following two

properties of Tn,t: (1) Tn,t+h
d
= Tn,t, and (2) Tn,t

d
= nHT1,t, where h, t ∈ N and n ≥ 1. I suppose

that Tn,t are available for the fixed scales nj j = 1, ...,m and locations t = 0, ...,Mj − 1 at the

scale nj, since only a finite number, say Mj, of the FIRT coefficients are available at the scale

nj.

By using these properties, I have

E log |Tnj ,0| = H log nj + E log |T1,0| (4.0-30)

The left-hand side of this equation can be approximated by

Ylog(Mj) =
1

Mj

Mj−1∑
t=0

log |Tnj ,t| (4.0-31)

Then I get

( Ylog(M1)
...

Ylog(Mm)

)
=

( log n1 1
...

...

log nm 1

)(
H

E log |T1,0|

)
(4.0-32)

+

( √
M
(
Ylog(M1)− E log |Tn1,0|

)
...√

M
(
Ylog(Mm)− E log |Tnm,0|

)
)
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In short, I can express the above equation as follows

Y = Xθ +
1√
M
ε (4.0-33)

Equation (4.0-33) shows that the self-similarity parameter H can be estimated by a standard

linear regression of the vector Y against the matrix X. Stoev et al. (2002) explain this

procedure.

Estimating the Parameters of Stable Paretian Distribution

The stable Paretian distribution requires four parameters for complete description: an index

of stability α ∈ (0, 2] (also called the tail index), a skewness parameter β ∈ [−1, 1], a scale

parameter γ > 0, and a location parameter ζ ∈ <. There is unfortunately no closed-form

expression for the density function and distribution function of a stable distribution. Rachev

and Mittnik (2000) give the definition of the stable distribution: A random variable X is said

to have a stable distribution if there are parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0 and real ζ

such that its characteristic function has the following form:

E exp(iθX) =

 exp{−γα|θ|α(1− iβ(signθ) tan πα
2

) + iζθ} if α 6= 1

exp{−γ|θ|(1 + iβ 2
π
(signθ) ln |θ|) + iζθ} if α = 1

(4.0-34)

and,

sign θ =


1 if θ > 0

0 if θ = 0

−1 if θ < 0

(4.0-35)

Stable density is not only supported for all of (−∞,+∞), but also for a half line. For

0 < α < 1 and β = 1 or β = −1, the stable density is only for a half line.

In order to estimate the parameters of the stable distribution, the maximum likelihood

estimator given in Rachev and Mittnik (2000) has been employed. Given N observations,

X = (X1, X2, · · · , XN)′ for the positive half line. The log-likelihood function is of the form

ln(α, λ;X) = N lnλ+N lnα+ (α− 1)
N∑
i=1

lnXi − λ
N∑
i=1

Xα
i (4.0-36)

which can be maximized using, for example, a Newton-Raphson algorithm. It follows from the

first-order condition,

λ = N

(
N∑
i=1

Xα
i

)−1

(4.0-37)



87

that the optimization problem can be reduced to finding the value for α which maximizes the

concentrated likelihood

ln∗(α;X) = lnα+ αν − ln

(
N∑
i=1

Xα
i

)
(4.0-38)

where ν = N−1ΣN
i=1 lnXi. The information matrix evaluated at the maximum likelihood esti-

mates, denoted by I(α̂, λ̂), is given by

I(α̂, λ̂) =

 Nα̂−2 ∑N
i=1X

α̂
i lnXi∑N

i=1X
α̂
i lnXi Nλ̂−2


It can be shown that, under fairly mild condition, the maximum likelihood estimates α̂ and

λ̂ are consistent and have asymptotically a multivariate normal distribution with mean (α, λ)′

(see Rachev and Mittnik (2000)).

Other methods for estimating the parameters of a stable distribution (i.e., the method of

moments based on the characteristic function, the regression-type method, and the fast Fourier

transform method) are discussed in Stoyanov and Racheva-Iotova (2004a, 2004b, 2004c).

4.4.3 Simulation of Fractal Processes

Simulation of Fractional Gaussian Noise

Paxson (1997) provides a method to generate the fractional Gaussian noise by using the Discrete

Fourier Transform of the spectral density. Bardet et al. (2003) describe a concrete simulation

procedure based on this method that overcomes some of the implementation issues encountered

in practice. The procedure is:

1. Choose an even integer M . Define the vector of the Fourier frequencies Ω = (θ1, ..., θM/2),

where θt = 2πt/M and compute the vector F = fH(θ1), ..., fH(θM/2), where

fH(θ) =
1

π
sin(πH)Γ(2H + 1)(1− cos θ)

∑
t∈ℵ
|2πt+ θ|−2H−1

fH(θ) is the spectral density of fGn.

2. Generate M/2 i.i.d exponential Exp(1) random variables E1, ..., EM/2 and M/2 i.i.d uni-

form U [0, 1] random variables U1, ..., UM/2.

3. Compute Zt = exp(2iπUt)
√
FtEt, for t = 1, ...,M/2.

4. Form the M -vector: Z̃ = (0, Z1, ..., Z(M/2)−1, ZM/2, Z(M/2)−1, ..., Z1).

5. Compute the inverse FFT of the complex Z to obtain the simulated sample path.
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Simulation of Fractional Stable Noise

Replacing the integral in equation (4.0-26) with a Riemann sum, Stoev and Taqqu (2004)

generate the approximation of fractional stable noise. They introduce parameters n,N ∈ ℵ,

then express the fractional stable noise Y (t) as

Yn,N(t) :=
nN∑
j=1

(
(
j

n
)
H−1/α
+ − (

j

n
− 1)

H−1/α
+

)
Lα,n(nt− j) (4.0-39)

where Lα,n(t) := Mα((j + 1)/n)−Mα(j/n), j ∈ <. The parameter n is the mesh size and the

parameter M is the cut-off of the kernel function.

Stoev and Taqqu (2003) describe an efficient approximation involving the Fast Fourier Trans-

formation (FFT) algorithm for Yn,N(t). Consider the moving average process Z(m), m ∈ ℵ,

Z(m) :=
nM∑
j=1

gH,n(j)Lα(m− j) (4.0-40)

where

gH,n(j) :=
(
(
j

n
)H−1/α
+ − (

j

n
− 1)H−1/α

+

)
n−1/α (4.0-41)

and where Lα(j) is the series of i.i.d standard stable Paretian random variables. Since Lα,n(j)
d
=

n−1/αLα(j), j ∈ <, equation (4.0-40) and (4.0-41) imply Yn,N(t)
d
= Z(nt), for t = 1, ..., T . Then,

the computing is moved to focus on the moving average series Z(m), m = 1, ..., nT . Let L̃α(j)

be the n(N+T )-periodic with L̃α(j) := Lα(j), for j = 1, ..., n(N+T ) and let g̃H,n(j) := gH,n(j),

for j = 1, ..., nN ; g̃H,n(j) := 0, for j = nN + 1, ..., n(N + T ), then

{Z(m)}nTm=1
d
=
{ n(N+T )∑

j=1

g̃H,n(j)L̃α(n− j)
}nT
m=1

(4.0-42)

because for all m = 1, ..., nT , the summation in equation (4.0-40) involves only Lα(j) with

indices j in the range −nN ≤ j ≤ nT − 1. Using a circular convolution of the two n(N + T )-

periodic series g̃H,n and L̃α computed by using their Discrete Fourier Transforms (DFT), the

variables Z(n), m = 1, ..., nT (i.e., the fractional stable noise) can be generated.

4.4.4 Implications of Fractal Processes

Fractal processes have been applied to the study of computer networks. Leland et al. (1994)

and Willinger et al. (1997) employ fractal processes in modeling Ethernet traffic. Feldmann et

al. (1998) discuss the fractal processes in the measurement of TCP/IP and ATM WAN traffic.
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Paxson and Floyd (1995), Paxson (1997), and Feldmann et al. (1998) discuss the characteristics

of self-similarity in wide-area traffic with respect to the fractal processes. Crovella and Bestavros

(1997) provide evidence of self-similarity in world-wide web traffic by means of fractal processes

modeling. An extensive bibliographical review of the research in the area of network traffic and

network performance involving the fractal processes and self-similarity is provided by Willinger

et al. (1996). Sahinoglu and Tekinay (1999) survey studies on the self-similarity phenomenon

in multimedia traffic and its implications in network performance.

Baillie (1996) provides a survey of the major econometric research on long-range dependence

processes, fractional integration, and applications in economics and finance. Bhansali and

Kokoszka (2006) review recent research on long-range dependence time series. Theoretical and

empirical research on long-range dependence in economics and finance is provided by Robinson

(2003), Rangarajan and Ding (2006), and Teyssiére and Kirman (2006).

Based on the modeling mechanism of fractal processes, Sun et al. (2006) empirically compare

fractional stable noise with several alternative distributional assumptions in either fractal form

or i.i.d. form (i.e., normal distribution, fractional Gaussian noise, generalized extreme value

distribution, generalized Pareto distribution, and stable distribution) for modeling returns of

major German stocks. The empirical results suggest that fractional stable noise dominates

these alternative distributional assumptions both in in-sample modeling and out-of-sample

forecasting. This finding suggests that the model built on non-Gaussian non-random walk

(fractional stable noise) performs better than those models based on either the Gaussian random

walk, the Gaussian non-random walk, or the non-Gaussian random walk.
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Chapter 5

Modeling Univariate High-Frequency

Time Series I

5.1 Introduction

Because return volatility estimates are key inputs in valuation modeling and trading strate-

gies, considerable research in the financial econometrics literature has been devoted to return

volatility modeling. The preponderance of empirical evidence from financial markets through-

out the world fails to support the hypothesis that returns follow a Gaussian random walk.1 In

addition to the empirical evidence, there are theoretical arguments that have been put forth

for rejecting both the Gaussian assumption and the random walk assumption. One of the most

compelling arguments against the Gaussian random walk assumption is that markets exhibit

a fractal structure. That is, markets exhibit a geometrical structure with self-similarity when

scaled (see, Mandelbrot (1963, 1997)). As to this point, the normal distribution assumption

and the random walk assumption cannot both be simultaneously valid for describing finan-

cial markets. It seems that the only way to explain fractal scaling is to abandon either the

Gaussian hypothesis or the random walk hypothesis. By abandoning the Gaussian hypothesis,

researchers end up with stable Paretian distributions.2 The normal distribution is a special case

with finite variance (details are discussed in Rachev and Mittnik (2000)). The implication of

rejecting the random walk hypothesis is that researchers must accept that returns in financial

1See, Fama (1963, 1965), Mandelbrot (1963, 1997), and Rachev and Mittnik (2000).
2To distinguish between a Gaussian and non-Gaussian stable distribution, the latter is usually referred to

as stable Paretian distribution or Lévy stable distribution. Referring to it as a stable Paretian distribution
highlights the fact that the tails of the non-Gaussian stable density have Pareto power-type decay; referring to
it as a Lévy stable distribution recognizes the pioneering works by Paul Lévy in characterizing the non-Gaussian
stable laws (see Rachev and Mittnik (2000)).
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markets are not independent but instead exhibit trends. Markets prone to trending have been

characterized by long-range dependence and volatility clustering. Samorodnisky and Taqqu

(1994) demonstrate that the properties of some self-similar processes can be used to model

financial markets that are characterized as being non-Gaussian and non-random walk. Such

financial markets have been stylized by long-range dependence, volatility clustering, and heavy

tailedness.

Long-range dependence or long memory denotes the property of a time series to exhibit

persistent behavior, i.e., a significant dependence between very distant observations and a pole

in the neighborhood of the zero frequency of its spectrum.3 Long-range dependence time series

typically exhibit self-similarity. The stochastic processes with self-similarity are invariant in

distribution with respect to changes of time and space scale. The scaling coefficient or self-

similarity index is a non-negative number denoted by H, the Hurst parameter. If {X(t+ h)−
X(h), t ∈ T} d

= {X(t) −X(0), t ∈ T} for all h ∈ T , the real-valued process {X(t), t ∈ T} has

stationary increments. A succinct expression of self-similarity is {X(at), t ∈ T} d
= {aHX(t), t ∈

T}. The process {X(t), t ∈ T} is called H-sssi if it is self-similar with index H and has stationary

increments (see, Samorodnisky and Taqqu (1994) and Doukhan et al. (2003)).

In modeling return volatility, long-range dependence, volatility clustering, and heavy tailed-

ness should be treated simultaneously in order to obtain more accurate predictions. Rachev

and Mittnik (2000) note that for modeling financial data, not only does model structure play

an important role, but distributional assumptions influence the modeling accuracy. A distri-

bution that is rich enough to encompass those stylized facts exhibited in return data is the

stable distribution. Fama (1963), Mittnik and Rachev (1993a, 1993b), Rachev (2003), and

Rachev et al. (2005) have demonstrated the advantages of stable distributions in financial

modeling. Moreover, Taqqu and Samorodnitsky (1994), Rachev and Mittnik (2000), Rachev

and Samorodnitsky (2001), Doukhan et al. (2003), and Racheva and Samorodnitsky (2003)

have reported that long-range dependence, self-similar processes, and stable distribution are

very closely related.

In this chapter, I empirically investigate the return distribution of 27 German DAX stocks

using intra-daily data under two separate assumptions regarding the return generation process

3Baillie (1996) provides a survey of the major econometric research on long-range dependence processes,
fractional integration, and applications in economics and finance. Doukhan et al. (2003) and Robinson (2003)
provide a comprehensive review of the studies on long-range dependence. Bhansali and Kokoszka (2006) review
recent research on long-range dependence time series. Recent theoretical and empirical research on long-range
dependence in economics and finance is provided by Rangarajan and Ding (2006) and Teyssiére and Kirman
(2006). Sun et al. (2007a) provide a review of long-range dependence research based on using intra-daily data.
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(1) it does not follow a Gaussian distribution and (2) it does not follow a random walk. In the

empirical study, I develop the ARMA-GARCH model based on these assumptions. Abandoning

the Gaussian hypothesis, I analyze the data by employing an ARMA-GARCH model with

several independent and identically distributed (i.i.d.) residuals following a normal distribution,

stable distribution, generalized extreme value distribution, and generalized Pareto distribution.

When I desert the random walk hypothesis but maintain the Gaussian hypothesis, I utilize

an ARMA-GARCH model with fractional Gaussian noise. The ARMA-GARCH model with

fractional stable noise is used when I drop the assumptions that the return distribution is

Gaussian and follows a random walk. Using several goodness of fit criteria for evaluating both

in-sample simulation and out-of-sample forecasting for a sample with 6,600 observations, I

find that the ARMA-GARCH model with fractional stable noise outperforms the other models

investigated. This finding suggests that such a model can capture the stylized facts better

without considering either the Gaussian or random walk hypotheses. In other words, this result

supports the hypotheses that return distributions in financial markets are better characterized

as fractals rather than Gaussian random walks.

The organization of this chapter is as follows. In Section 5.2, I introduce two self-similar

processes: fractional Gaussian noise and fractional stable noise. The method for estimating the

parameters in the underlying process is introduced in Section 5.3. In Section 5.4, methods for

simulating fractional Gaussian noise and fractional stable noise are explained. The empirical

results are reported in Section 5.5, where I compare the goodness of fit for both in-sample sim-

ulation and out-of-sample forecasting based on several criteria for the ARMA-GARCH model

with fractional stable noise and with other distributions. I summarize the conclusions in Section

5.6.

5.2 Specification of the self-similar processes

Lamperti (1962) first introduced the semi-stable processes (which we today refer to as self-

similar processes). Let T be either R, R+ = {t : t ≥ 0} or {t : t > 0}. The real-valued process

{X(t), t ∈ T} has stationary increments if X(t + a) − X(a) has the same finite-dimensional

distributions for all a ≥ 0 and t ≥ 0. Then the real-valued process {X(t), t ∈ T} is self-similar

with exponent of self-similarity H for any a > 0, and d ≥ 1, t1, t2, ..., td ∈ T , satisfying:

(
X(at1), X(at2), ..., X(atd)

)
d
=
(
aHX(t1), a

HX(t2), ...a
HX(td)

)
. (5.0-1)
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5.2.1 Fractional Gaussian noise

For a given H ∈ (0, 1), there is basically a single Gaussian H-sssi 4 process, namely fractional

Brownian motion (fBm), first introduced by Kolmogorov (1940). Mandelbrot and Wallis (1968)

and Taqqu (2003) define fBm as a Gaussian H-sssi process {BH(t)}t∈R with 0 < H < 1.

Mandelbrot and van Ness (1968) define the stochastic representation

BH(t) :=
1

Γ(H + 1
2
)

(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dB(s) +

∫ t

0
(t− s)H−

1
2dB(s)

)
, (5.0-2)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx,

and 0 < H < 1 is the Hurst parameter. The integrator B is ordinary Brownian motion. The

principal difference between fractional Brownian motion and ordinary Brownian motion is that

the increments in Brownian motion are independent while in fractional Brownian motion they

are dependent. For fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its

increments {Yj, j ∈ Z} as fractional Gaussian noise (fGn), which is, for j = 0,±1,±2, ...,

Yj = BH(j − 1)−BH(j).

5.2.2 Fractional stable noise

While fractional Brownian motion can capture the effect of long-range dependence, it has

less power to capture heavy tailedness. The existence of abrupt discontinuities in financial

data, combined with the empirical observation of sample excess kurtosis and unstable variance,

confirms the stable Paretian hypothesis identified by Mandelbrot (1963, 1983). It is natural

to introduce the stable Paretian distribution in self-similar processes in order to capture both

long-range dependence and heavy tailedness. Samorodinitsky and Taqqu (1994) introduce the

α-stable H-sssi processes {X(t), t ∈ R} with 0 < α < 2. If 0 < α < 1, the exponent of

self-similarity are H ∈ (0, 1/α] and if 1 < α < 2, the exponent of self-similarity are H ∈ (0, 1).

In addition, Cohen and Samorodnitsky (2006) show that with exponent H ′ = 1 +H(1/α− 1),

process {X(t), t ∈ R} is a well-defined symmetric α-stable (SαS) process. It has stationary

increments and is self-similar. They show that (1) for 0 < α < 1, a family of H ′-sssi SαS

processes with H ′ ∈ (1, 1/α) is obtained, (2) for 1 < α < 2, a family of H ′-sssi SαS processes

with H ′ ∈ (1/α, 1) is obtained, and (3) for α = 1, a family of 1-sssi SαS processes is obtained.

4The abbreviation of “sssi” means self-similar stationary increments, if the exponent of self-similarity H is
to be emphasized, then “H-sssi” is adopted.
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There are many different extensions of fractional Brownian motion to the stable distribution.

The most commonly used is linear fractional stable motion (also called linear fractional Lévy

motion), {Lα,H(a, b; t), t ∈ (−∞,∞)}, which Samorodinitsky and Taqqu (1994) define as

Lα,H(a, b; t) :=
∫ ∞

−∞
fα,H(a, b; t, x)M(dx), (5.0-3)

where

fα,H(a, b; t, x) := a
(
(t− x)

H− 1
α

+ − (−x)H−
1
α

+

)
+ b

(
(t− x)

H− 1
α

− − (−x)H−
1
α

−

)
, (5.0-4)

where x+ = max(x, 0), x− = min(x, 0), and a, b are real constants. |a| + |b| > 1, 0 < α < 2,

0 < H < 1, H 6= 1/α, and M is an α-stable random measure on R with Lebesgue control

measure and skewness intensity β(x), x ∈ (−∞,∞) satisfying: β(·) = 0 if α = 1. They define

linear fractional stable noises expressed by Y (t), and Y (t) = Xt −Xt−1,

Y (t) = Lα,H(a, b; t)− Lα,H(a, b; t− 1) (5.0-5)

=
∫
R

(
a
[
(t− x)

H− 1
α

+ − (t− 1− x)
H− 1

α
+

]
+ b

[
(t− x)

H− 1
α

− − (t− 1− x)
H− 1

α
−

])
M(dx),

where Lα,H(a, b; t) is a linear fractional stable motion defined by equation (5.0-3), and M is

a stable random measure with Lebesgue control measure given 0 < α < 2. Samorodinitsky

and Taqqu (1994) show that the kernel fα,H(a, b; t, x) is d-self-similar with d = H − 1/α when

Lα,H(a, b; t) is 1/α-self-similar. This implies H = d + 1/α (see Taqqu and Teverovsky (1998)

and Weron et al. (2005)).5 In this chapter, if there is no special indication, the fractional stable

noise (fsn) is generated from a linear fractional stable motion.

5.3 Empirical analysis

The empirical analysis involves comparing the performance of six ARMA-GARCH models with

different kinds of residuals (i.e., residuals with forms of white noise, fractional Gaussian noise,

fractional stable noise, stable distribution, generalized Pareto distribution, and generalized

extreme value distribution). The analysis is performed for in-sample simulation and out-of-

sample forecasting of the German DAX stock returns based on four goodness of fit criteria: the

Kolmogorov-Smirnov distance, the Anderson-Darling distance, the Cramer Von Mises distance,

and the Kuiper distance.

5Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968), Maejima (1983),
Maejima and Rachev (1987), Manfields et al. (2001), Rachev and Mittnik (2000), Rachev and Samorodnitsky
(2001), Racheva and Samorodnitsky (2003), Samorodnitsky (1994, 1996, 1998), Samorodinitsky and Taqqu
(1994), and Cohen and Samorodnitsky (2006).
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5.3.1 Data and Methodology

Recent research suggests that high-frequency data better reflect the market microstructure

and increase the level of statistical significance (for example, Bollerslev and Wright (2000)

and Dacorogna et at (2000)). In this study, I investigate the high-frequency data at 1-minute

frequency for 27 German DAX component stocks6 from January 7, 2002 to December 19, 2003.

I calculate the stock returns by

yi,t = log
( Pi,t
Pi,t−1

)
. (5.0-6)

I will let N (N = 220, 050) denote the length of the sample. The sub-sample series used for

the in-sample analysis are randomly selected by a moving window with length T . Replacement

is allowed in the sampling. Letting TF denote the length of the forecasting series, I perform

one-week ahead out-of-sample forecasting (1 ≤ T ≤ T + TF ≤ N). In the empirical analysis,

sub-sample length (i.e., the window length) of T = 10, 000 (approximately one month) was

chosen for the in-sample simulation and TF = 2, 250 (approximately one week) for the out-of-

sample forecasting. A total of 6,600 sub-samples (200 sub-samples for each stock index) were

randomly created.

I define the ARMA-GARCH model for the conditional mean equation as:

yt = α0 +
r∑
i=1

αi yt−i + εt +
m∑
j=1

βjεt−j. (5.0-7)

Let εt = σt ut, where the conditional variance of the innovations, σ2
t , is by definition

V art−1(yt) = Et−1 (ε2
t ) = σ2

t , (5.0-8)

and ut is i.i.d white noise. The general GARCH(p,q) process for the conditional variance of the

innovation is then

σ2
t = κ+

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε
2
t−j. (5.0-9)

In this analysis, ARMA(1,1)-GARCH(1,1) has been parameterized with different kinds of

ut, i.e. white noise, fractional Gaussian noise, fractional stable noise, stable distribution, gen-

eralized Pareto distribution, and generalized extreme value distribution.

6The data are from German Karlsruher Kapitalmarktdatabank (KKMDB). The DAX index consists of 30
stocks and the composition of the index changes every year. The database I developed included data from
January 2002 to January 2004 for stocks that remained in the index over the entire period. Only 27 stocks
satisfied that requirement and they are the ones used in this study.
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The Kolmogorov-Smirnov (KS) distance, the Anderson-Darling (AD) distance, the Kuiper

(K) distance, and the Cramer Von Mises (CVM) distance are used as the criterion for the

goodness of fit testing. Letting Fs(x) denote the empirical sample distribution and F̃ (x) the

estimated distribution function, these measures are defined as follows:

KS = sup
x∈<

|Fs(x)− F̃ (x)|, (5.0-10)

AD = sup
x∈<

|Fs(x)− F̃ (x)|√
F̃ (x)(1− F̃ (x))

, (5.0-11)

K = sup
x∈<

(
Fs(x)− F̃ (x)

)
+ sup

x∈<

(
F̃ (x)− Fs(x)

)
, (5.0-12)

and

CVM =
∫ ∞

−∞

(
Fs(x)− F̃ (x)

)2
dF̃ (x). (5.0-13)

The major disadvantage of KS statistics is that it tends to be more sensitive near the center of

the distribution than at the tails. AD statistics can overcome this. The reliability of testing the

empirical distribution increases with the help of these two statistics, with KS distance focusing

on the deviations around the median of the distribution and AD distance on the discrepancies

in the tails (see Rachev and Mittnik (2000)).

5.3.2 Preliminary Test

Table 5.1 shows the descriptive statistics of the returns of the 27 DAX stocks in this study.

From the statistics reported in this table, it can be seen that excess kurtosis exists. Figure 5.1

shows the Q-Q plot of some stock returns. Notice that a concave departure from the straight

line (exponential distribution) in the Q-Q plot is an indication of a heavy-tailed distribution

(whereas a convex departure shows a light-tailed distribution).

The Hurst index H ∈ (0, 1) is the index of self-similarity. For Gaussian processes with

stationary increments, when

1. H ∈ (0, 0.5), the increments of a process tend to have opposite signs and thus are more

zigzagging due to the negative covariance.

2. H ∈ (0.5, 1), the covariance between these two increments is positive and less zigzagging

of the process.

3. H = 0.5, the covariance between this two increments is zero.

This can be restated as following: If the Hurst index is
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1. less than 0.5, the process displays “anti-persistence” (i.e., positive excess return is more

likely to be reversed and the performance in the next period is likely to be below the

average, or in the contrary, negative excess return is more likely to be reversed and the

performance in the next period is likely to be above the average).

2. greater than 0.5, the process displays “persistence” (i.e., positive excess return or negative

excess return is more likely to be continued and the performance in the next period is

likely to be the same as that in the current period).

3. equal to 0.5, the process displays no memory (i.e., the performance in the next period

has equal probability to be below or above the performance in the current period).

For fractional stable processes, if the process has the index α (0 < α < 2), when H = 1/α

which corresponds to a process with independent increments, this process has no memory.

When H > 1/α, the process displays long-range dependence and when H < 1/α, the process

displays negative dependence. In addition, long-range dependence is only possible when α > 1,

since H ∈ (0, 1) (see, Samorodnitsky and Taqqu (1994)).

In order to check long-range dependence in stock returns, I use the methods introduced in

Sections 5.3.1 and 5.3.2 to estimate the Hurst index under the Gaussian and stable assumptions.

I employed the MLE method explained in Section 5.3.3 to estimate the stable parameter. The

results, reported in Table 5.1, indicate that the Hurst index does not have an estimated value of

0.5 if fractional Gaussian noise is assumed. This suggests the occurence of either long memory

or short memory under the Gaussian assumption 7. In Table 1, I can observe both fluctuation

and long memory under the non-Gaussian stable assumption.

Engle (1982) proposes a Lagrange-multiplier test for the ARCH phenomenon. A test statistic

for ARCH of lag order q is given by

Xq ≡ nR2
q

where R2
q is the non-centered goodness-of-fit coefficient of a qth order autoregression of the

squared residuals taken from the original regression

û2
t = ω0 + ω1û

2
t−1 + ω2û

2
t−2 + · · ·+ ωqû

2
t−q + et, (5.0-14)

where û is the residual in the original regression equation. Under the null hypothesis of the

residuals of the original model being normally i.i.d., the ARCH statistic of lag order q follows

a χ2 distribution with q degrees of freedom:

lim
n→∞

Xq ∼ χ2
q.

7There are various extensions of the self-similarity property for generalized random processes, see Dobrushin
(1979).
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I use Engle’s test to check whether the ARCH effect occurs. In Table 5.2, I report the test

statistics and the critical values to reject the null hypothesis that there is no ARCH effect at

different lag orders. It is clear from the results reported in the table that an ARCH effect is

exhibited in the return time series studied.

I use the Ljung-Box-Pierce Q-statistic based on the autocorrelation function to test serial

correlation (i.e., the memory effect). The Q-statistic is

Q :∼ χ2
m = N(N + 2)

m∑
k=1

ρ2
k

N − k
, (5.0-15)

where N denotes the sample size, m the number of autocorrelation lags included in the statistic,

and ρk the sample autocorrelation at a lag of order k which is

ρk =

∑N−k
t=1 ytyt+k∑N

t=1 y
2
t

. (5.0-16)

Ljung and Box (1978) show that the Q-statistic is following an asymptotic χ2 distribution.

The Ljung-Box-Pierce test results reported in Table 5.3 indicate that the hypothesis that

there is no serial correlation can be rejected at different lags. I find that the memory effect

occurs in the returns for each stock from a lag of 10 minutes to a lag of one month. In order to

see when the memory effect vanishes, I compare the Q-statistic with its corresponding critical

value. When the quotient of the Q-statistic and the corresponding critical value is less than 1,

I cannot reject the null hypothesis that there is no serial correlation. The results reported in

Table 5.4 show that all the stock returns exhibit serial correlation even after a half year. In 8

months, the memory effect vanishes for 8 stocks and in 10 months, the memory effect vanishes

for 19 stocks. From Table 5.4, I see that the decay of autocorrelation is slow.

5.3.3 Results

The AD, KS, CVM, and Kuiper statistics were calculated for the six candidate distributional

assumptions. The results of the descriptive statistics of the computed values for the four criteria

for the in-sample study are reported in Table 5.5. As can be seen from this table, the ARMA-

GARCH with fractional stable noise model exhibits a smaller mean value for all criteria than

the other five models. That is, for the in-sample study, the ARMA-GARCH with fractional

stable noise model has the best performance. I also perform one week ahead out-of-sample

forecasting for stock returns. The results for the descriptive statistics of the computed four

criteria, reported in Table 5.6, indicate that the ARMA-GARCH with fractional stable noise

model exhibits a smaller mean value for all criteria than the other five models. This suggests
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that the ARMA-GARCH with fractional stable noise is better at forecasting than the other

models studied.

5.4 Conclusions

There is considerable interest in the modeling of market volatility. Most models assume that

residuals are independent and identically distributed and follow the Gaussian distribution.

But the overwhelming empirical evidence does not support the hypothesis that financial asset

returns can be characterized as Gaussian random walks. There are a number of arguments

against both the Gaussian assumption and the random walk assumption. One of the most

compelling arguments against the Gaussian random walk is that there exist fractals in financal

markets. In this chapter, I empirically investigate 27 German DAX stocks sampled over two

years at one minute frequency level under three separate assumptions regarding the return

generation process (1) it does not follow a Gaussian distribution, (2) it does not follow a

random walk, and (3) it does not follow a Gaussian random walk. When I model non-Gaussian

random walk, I employ one of the self-similar processes (i.e., fractional stable noise) to capture

the fractal structure in financial markets.

In this empirical analysis, I investigate the ARMA-GARCH model with six different forms

of residuals in both fractal forms (i.e., fractional stable noise and fractional Gaussian noise)

and i.i.d. forms (i.e., stable distribution, white noise, generalized Pareto distribution, and gen-

eralized extreme value distribution) for the modeling volatility of 27 German stocks. In-sample

(one month) simulation and out-of-sample (one week) forecasting were empirically investigated.

By using parameters estimated from the empirical series, I simulate an in-sample series for each

stock return and one-step ahead forecasting series with these six modeling structures. Then I

compared the goodness of fit for the generated series to the sampled series by adopting four

criteria for the goodness of fit test (the Kolmogorov-Smirnov distance, Anderson-Darling dis-

tance, Cramer von Mises distance, and Kuiper distance). Based on a comparison of these

criteria, the empirical evidence shows that the ARMA-GARCH model with fractional stable

noise demonstrates a better performance in modeling volatility than other models. My results

also indicate that there exists a fractal structure in financial markets and the i.i.d. assumption

in modeling is inappropriate for characterizing financial asset returns.

The empirical evidence suggests that stocks exhibit three characteristics: long-range depen-

dence, heavy tailedness, and volatility clustering. Many studies have found that the stable

distribution is a better description of financial returns because it can capture heavy tailedness

and has a close relationship with long-range dependence. As a self-similar process, fractional
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stable noise can capture the reported stylized facts in financial return data. This finding should

be taken into account in modeling volatility so that a more accurate prediction might be realized

by well-defined functional models.
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Table 5.1: Statistical characteristics of stocks in the study.

mean std skewness kurtosis max min α̃ H̃FGN H̃fsn

Adidas 1.83E-07 0.0012 0.4041 94.9171 0.0670 -0.0327 0.7903 0.4791 1.3168
Allianz -3.01E-06 0.0015 -0.5477 212.8600 0.0949 -0.0905 1.4222 0.5203 0.5616
BASF 2.65E-07 0.0012 1.2349 121.8300 0.0863 -0.0341 1.2247 0.4548 0.4589

BAYER -1.29E-06 0.0015 0.8794 85.5980 0.0877 -0.0521 1.3998 0.5137 0.4947
BMW -1.27E-07 0.0012 0.1213 58.6840 0.0459 -0.0463 1.2010 0.4946 0.4873

Commerzbank -4.40E-07 0.0018 0.2352 48.3320 0.0539 -0.0577 1.1694 0.5337 0.5186
Daimler -7.83E-07 0.0013 -0.2877 56.4390 0.0469 -0.0597 1.4160 0.4628 0.4621
Dt.Bank -5.72E-07 0.0012 -0.6959 68.6110 0.0339 -0.0571 1.3938 0.5332 0.5082
Dt.Post 2.16E-07 0.0015 -0.3476 41.8600 0.0393 -0.0512 0.8724 0.4258 1.0786

Dt. Telecom -8.79E-07 0.0015 -0.8822 100.8200 0.0557 -0.0913 1.8337 0.5293 0.5190
Eon -4.01E-07 0.0011 -0.2422 26.6700 0.0234 -0.0334 1.2434 0.4214 0.4381

Fressenius -7.16E-07 0.0017 5.0585 646.8212 0.1982 -0.0447 0.8294 0.5411 1.2408
Henkel 3.64E-08 0.0011 1.9018 261.9911 0.0977 -0.0389 0.7562 0.4115 1.2339

Hypovereinsbank -1.92E-06 0.0019 -2.3888 236.3100 0.0694 -0.1475 1.2688 0.5469 0.5304
Infineon -2.36E-06 0.0020 -0.7092 145.4146 0.0707 -0.1016 1.6018 0.5351 0.5451
Linde -1.01E-07 0.0013 -0.2952 44.1141 0.0340 -0.0392 0.7968 0.4716 1.2696

Lufthansa -4.10E-07 0.0016 0.5289 79.2296 0.0821 -0.0541 1.2694 0.4647 0.4647
Man 3.80E-08 0.0016 0.3009 65.3610 0.0754 -0.0461 0.7645 0.5372 1.3134

Metro 2.66E-06 0.0015 0.1496 63.0310 0.0477 -0.0455 1.1293 0.4806 0.5084
Muechenerrueck -3.52E-06 0.0015 -0.4968 105.6100 0.07250 -0.0748 1.3203 0.5842 0.5559

RWE -9.71E-07 0.0013 -0.1861 27.6080 0.0353 -0.0355 1.2270 0.3960 0.4400
SAP 3.54E-06 0.0011 -0.1718 128.7802 0.0577 -0.0427 1.3693 0.5481 0.5485

Schering -2.45E-07 0.0012 -0.3756 64.1430 0.0299 -0.0553 1.1411 0.4299 0.4271
Siemens 2.74E-06 0.0011 0.1990 49.7927 0.0379 -0.0350 1.4426 0.5251 0.5275

ThyssenKrupp 2.18E-06 0.0015 -0.1627 34.7571 0.0373 -0.0419 1.1064 0.5019 0.5126
Tui -1.59E-06 0.0019 0.0812 145.4800 0.1253 -0.1032 0.8074 0.4965 1.1906

Volkswagen -5.18E-07 0.0013 -0.5010 60.3170 0.0502 -0.0584 1.1807 0.4908 0.5042
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Table 5.2: ARCH-test for different lags at α = 0.05.

q = 1min 2min 5min 10min 15min 20min 25min 30min 60min

Adidas 4403.1 6357.5 6530.4 6772.9 6821.2 6836.3 6894.1 6901.5 6986.5
Allianz 24.9 35.8 62.6 111.6 120.2 124.1 126.7 129.1 136.3
BASF 52.6 58.6 70.3 83.0 88.1 92.6 95.0 97.2 110.3

BAYER 2590.8 2595.1 2739.4 4511.9 4837.8 4840.4 4853.3 4881.6 5068.2
BMW 1211.3 1618.1 1780.2 1941.7 2030.9 2096.5 2129.6 2154.1 2262.1

Commerzbank 2595.7 2831.3 3693.9 4046.8 4109.8 4136.0 4181.2 4196.0 4264.1
Daimler 307.0 374.5 402.4 475.8 504.5 522.2 537.0 552.8 578.2
Dt.Bank 1172.6 1304.8 1504.4 1786.6 1911.8 1992.4 2073.5 2130.8 2325.2
Dt.Post 1552.0 3241.9 3390.5 3542.5 3601.2 3631.2 3661.7 3678.2 3702.1

Dt. Telecom 319.7 364.3 418.0 488.8 537.9 569.6 597.1 625.8 693.7
Eon 5050.6 5534.0 5896.9 6418.7 6668.7 6796.2 6940.1 7028 7251.6

Fressenius 9701.1 11503.0 12842.1 12981.0 13044.0 13083.0 13111.0 13124.0 13211.0
Henkel 131.2 139.6 148.1 185.4 194.2 196.0 197.4 198.9 211.5

Hypovereinsbank 75.9 90.2 100.9 121.6 127.9 154.2 154.6 163.1 179.7
Infineon 2477.1 2995.4 3056.6 3087.6 3101 3104.4 3113.1 3117.4 3128.6
Linde 3526.6 5312.5 5564.4 5797.4 5896.7 6048.9 6102.1 6146.3 6192.0

Lufthansa 1311.3 1605.0 3466.5 3519.5 3590.8 3626.7 3643.2 3649.3 3688.6
Man 3302.3 3890.1 4360.1 4530.6 4564.7 4572.9 4590.3 4600.9 4628.0

Metro 3654.2 4173.9 5454.1 5510.7 5551.1 5582.3 5597.6 5615.3 5652.3
Muechenerrueck 361.4 493.5 620.2 652.4 674.5 688.4 697.2 708.9 793.5

RWE 1747.6 2354.2 3049.4 3653.3 3875.2 3983.9 4042.6 4098.7 4284.3
SAP 351.0 377.9 410.2 448.5 466.4 483.8 496.7 502.7 515.4

Schering 2059.0 2335.1 2616.9 2763.7 2828.9 2865.3 2910.5 2937 2956.6
Siemens 732.8 896.3 1045.9 1178.5 1339.0 1398.2 1475.8 1513.6 1614.2

ThyssenKrupp 2237.2 3127.1 3399.1 3566.4 3671.6 3794 3824.2 3852.9 3892.2
Tui 154.4 251.8 299.5 331.4 346.1 358.9 366.9 374.6 395.7

Volkswagen 2682.0 3367.0 4020.8 4806.4 4906.4 4980.2 5020.3 5036.7 5114.0

Critical value 3.8415 5.9915 11.0705 18.307 24.996 31.4104 37.6525 43.773 67.5048
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Table 5.3: Ljung-Box-Pierce Q-test statistic for different lags at α = 0.05.

k = 10min 30min 1hr 2hr 4hr 1day 1wk 2wk 1mon

Adidas 2016.7 2083.8 2131.5 2194.1 2321.3 2579.8 4910.9 7783.8 15872.0
Allianz 309.4 371.7 421.8 514.8 694.8 987.5 3923.6 7490.2 18300.0
BASF 624.7 665.5 708.2 800.2 961.6 1319.7 4014.8 7174.5 16150.0

BAYER 572.4 650.2 745.0 865.1 1136.3 1506.8 4453.2 7758.6 17859.0
BMW 653.2 698.7 741.5 849.2 983.3 1279.4 3855.4 6854.6 15903.0

Commerzbank 1990.2 2013.7 2067.1 2166.1 2289.2 2613.1 5127.9 8440.4 17903.0
Daimler 1324.3 1376.4 1428.9 1479.6 1618.1 1895.0 4461.3 7311.3 15993.0
Dt.Bank 710.6 760.1 830.1 933.4 1080.0 1453.6 3993.9 7076.4 16047.0
Dt.Post 2030.7 2096.6 2132.0 2187.1 2310.3 2579.8 5042.4 7870.4 16261.0

Dt. Telecom 2031.5 2084.9 2170.6 2289.2 2436.1 2794.6 5652.3 9147.6 19491.0
Eon 822.6 866.2 924.4 1020.4 1147.9 1515.8 4351.1 7554.7 17160.0

Fressenius 2565.9 2640.8 2680.1 2765.3 2885.1 3154.0 5705.7 8722.2 17796.0
Henkel 1742.1 1823.5 1878.5 1959.9 2130.6 2477.5 5168.2 8111.4 16844.0

Hypovereinsbank 910.2 959.8 1046.2 1138.5 1277.7 1586.7 3931.8 6924.0 16185.0
Infineon 1454.0 1518.1 1555.4 1619.4 1789.7 2071.6 4489.3 7482.8 16435.0
Linde 1048.7 1097.6 1136.9 1203.0 1371.1 1662.1 3986.9 6690.9 14994.0

Lufthansa 2491.6 2544.4 2590.2 2659.1 2823.4 3087.4 5568.6 8543.5 17758.0
Man 1817.7 1866.1 1913.5 1991.6 2134.2 2419.6 4778.6 7874.1 16652

Metro 1339.1 1400.2 1426.3 1506.9 1692.5 1954.3 4319.2 7230.2 16405.5
Muechenerrueck 220.2 280.9 332.8 409.6 555.2 880.1 3708.7 7020.0 16338.1

RWE 942.2 989.4 1051.8 1146.8 1303.7 1626.3 4683.1 8025.7 17937.3
SAP 484.2 511.3 554.4 629.7 748.9 1060.7 3254.8 6141.3 14647.2

Schering 1421.1 1451.2 1486.2 1579.2 1746.6 2006.5 4599.5 7511.9 15945.0
Siemens 776.5 850.9 929.6 1003.3 1158.3 1481.5 4221.6 7596.7 16957.0

ThyssenKrupp 2623.9 2693.6 2733.4 2813.3 2959.5 3206.6 5407.0 8185.1 16618.0
Tui 1561.9 1599.7 1633.4 1734.4 1873.2 2166.8 4732.4 7751.7 17175.0

Volkswagen 369.7 394.97 459.9 526.6 674.9 987.9 3598.3 6671.3 15722.0

Critical value 18.3 43.8 79.1 146.6 277.1 532.1 2515.1 4962.3 12256.0
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Table 5.4: Ljung-Box-Pierce Q-test statistic compared with corresponding critical values for

different lags at α = 0.05.

k = 1day 5days 10days 1mon 2mon 4mon 6mon 8mon 10mon

Adidas 4.8487 1.9526 1.5686 1.2951 1.1898 1.0947 1.0515 1.0239 1.0299
Allianz 1.8560 1.5600 1.5094 1.4932 1.3902 1.2348 1.0749 0.9917 0.9557
BASF 2.4802 1.5963 1.4458 1.3177 1.2552 1.1445 1.0452 0.9959 0.9838

BAYER 2.8319 1.7706 1.5635 1.4572 1.3652 1.2013 1.0657 1.0012 0.9773
BMW 2.4045 1.5329 1.3813 1.2976 1.2269 1.1416 1.0524 1.0108 0.9924

Commerzbank 4.9112 2.0389 1.7009 1.4607 1.3198 1.1917 1.0869 1.0351 1.0239
Daimler 3.5616 1.7738 1.4734 1.3049 1.2272 1.1339 1.0510 1.0076 0.9989
Dt.Bank 2.7320 1.5880 1.4260 1.3094 1.2349 1.1262 1.0277 0.9864 0.9787
Dt.Post 4.8486 2.0049 1.5860 1.3268 1.2082 1.0977 1.0330 1.0174 1.0270

Dt. Telecom 5.2522 2.2474 1.8434 1.5903 1.4769 1.2730 1.1243 1.0352 0.9920
Eon 2.8489 1.7300 1.5224 1.4001 1.3238 1.1677 1.0313 0.9758 0.9704

Fressenius 5.9277 2.2686 1.7577 1.4520 1.3370 1.2179 1.1164 1.0531 1.0139
Henkel 4.6563 2.0549 1.6346 1.3743 1.2953 1.1638 1.0696 1.0328 1.0240

Hypovereinsbank 2.9821 1.5633 1.3953 1.3206 1.2731 1.1032 1.0071 0.9755 0.9655
Infineon 3.8934 1.7850 1.5079 1.3410 1.2748 1.1783 1.0882 1.0239 0.9898
Linde 3.1239 1.5852 1.3483 1.2234 1.1806 1.1272 1.0777 1.0231 0.9914

Lufthansa 5.8025 2.2141 1.7217 1.4489 1.3122 1.2106 1.1114 1.0540 1.0301
Man 4.5475 1.9000 1.5868 1.3587 1.2489 1.1460 1.0739 1.0315 1.0143

Metro 3.6729 1.7173 1.4570 1.3385 1.2598 1.1772 1.0847 1.0289 0.9925
Muechenerrueck 1.6540 1.4746 1.4147 1.3331 1.2643 1.1484 1.0282 0.9816 0.9721

RWE 3.0566 1.8620 1.6173 1.4636 1.3523 1.2060 1.0769 1.0169 0.9907
SAP 1.9935 1.2941 1.2376 1.1951 1.1414 1.0983 1.0388 1.0089 0.9942

Schering 3.7711 1.8288 1.5138 1.3010 1.2165 1.1067 1.0378 1.0153 1.0121
Siemens 2.7844 1.6785 1.5309 1.3836 1.2824 1.1324 1.0167 0.9690 0.9722

ThyssenKrupp 6.0266 2.1498 1.6495 1.3559 1.2374 1.1373 1.0737 1.0488 1.0392
Tui 4.0724 1.8816 1.5621 1.4013 1.3218 1.2191 1.1020 1.0404 0.9927

Volkswagen 1.8567 1.4307 1.3444 1.2828 1.2223 1.1262 1.0303 0.9896 0.9771
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Table 5.5: Summary of in-sample goodness of fit statistics for different models.

a. AD-statistic ADmean ADstd ADmedian ADmax ADmin ADrange

ARMA-GARCH-fGn 46.6768 54.3660 13.7335 55.8541 21.6282 34.2259
ARMA-GARCH-fsn 44.1625 53.2522 15.2382 64.6001 1.3917 63.2084
ARMA-GARCH-nor 46.7177 54.3751 13.7480 58.5747 21.0690 37.5057
ARMA-GARCH-sta 45.4108 53.5900 14.3638 95.2204 2.9886 92.2318
ARMA-GARCH-gev 46.6401 54.2656 13.7441 60.2271 21.0914 39.1357
ARMA-GARCH-gpd 51.2203 54.4755 20.2070 109.5363 3.5018 106.0244

b. KS-statistic KSmean KSstd KSmedian KSmax KSmin KSrange

ARMA-GARCH-fGn 0.4998 0.4992 0.0034 0.5285 0.4887 0.0398
ARMA-GARCH-fsn 0.4938 0.4965 0.0261 0.9725 0.2745 0.6980
ARMA-GARCH-nor 0.5003 0.4994 0.0043 0.5455 0.4893 0.0562
ARMA-GARCH-sta 0.5089 0.4974 0.0622 0.9725 0.3910 0.5815
ARMA-GARCH-gev 0.5000 0.4989 0.0057 0.5775 0.4825 0.0950
ARMA-GARCH-gpd 0.5698 0.5198 0.1335 1.0000 0.4165 0.5835

c. CVM-statistic CV Mmean CV Mstd CV Mmedian CV Mmax CV Mmin CV Mrange

ARMA-GARCH-fGn 449.5326 517.0503 203.7237 896.6917 82.9310 813.7607
ARMA-GARCH-fsn 445.2936 515.2956 202.2463 1473.6038 34.4169 1439.1868
ARMA-GARCH-nor 449.6701 517.3712 203.7739 889.0445 82.9532 806.0913
ARMA-GARCH-sta 454.7954 516.7259 230.4694 2985.6218 57.5066 2928.1152
ARMA-GARCH-gev 449.2438 517.0805 203.8510 886.1477 83.0288 803.1189
ARMA-GARCH-gpd 524.3399 521.2781 370.3320 1978.9581 52.5637 1926.3945

d. Kuiper-statistic Kuipermean Kuiperstd Kuipermedian Kuipermax Kuipermin Kuiperrange

ARMA-GARCH-fGn 0.9931 0.9937 0.0029 0.9985 0.9757 0.0227
ARMA-GARCH-fsn 0.9693 0.9862 0.0473 0.9985 0.5125 0.4860
ARMA-GARCH-nor 0.9931 0.9938 0.0029 0.9990 0.9750 0.0240
ARMA-GARCH-sta 0.9796 0.9877 0.0224 0.9990 0.6550 0.3440
ARMA-GARCH-gev 0.9913 0.9925 0.0048 0.9990 0.9570 0.0420
ARMA-GARCH-gpd 0.9696 0.9773 0.0287 1.0000 0.6505 0.3495
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Table 5.6: Goodness of fit statistics for out-of-sample one week forecasting of different models.

a. AD-statistic ADmean ADstd ADmedian ADmax ADmin ADrange

ARMA-GARCH-fGn 30.1821 22.5228 13.6283 55.2241 21.5834 33.6407
ARMA-GARCH-fsn 27.6038 22.4110 12.2880 68.1149 1.2129 66.9021
ARMA-GARCH-nor 30.1927 22.5228 13.6421 59.2046 21.1361 38.0684
ARMA-GARCH-sta 28.8034 22.3886 13.0021 101.7023 2.6941 99.0082
ARMA-GARCH-gev 30.1205 22.5005 13.5541 59.8893 20.7111 39.1782
ARMA-GARCH-gpd 32.3273 23.9319 15.3931 108.9876 4.1084 104.8792

b. KS-statistic KSmean KSstd KSmedian KSmax KSmin KSrange

ARMA-GARCH-fGn 0.5018 0.5006 0.0049 0.5375 0.4905 0.0470
ARMA-GARCH-fsn 0.4965 0.4985 0.0278 0.9555 0.2820 0.6734
ARMA-GARCH-nor 0.5020 0.5010 0.0055 0.5615 0.4880 0.0735
ARMA-GARCH-sta 0.5105 0.4990 0.0617 0.9653 0.4049 0.5603
ARMA-GARCH-gev 0.5018 0.5005 0.0064 0.5705 0.4846 0.0858
ARMA-GARCH-gpd 0.5700 0.5210 0.1333 1.0000 0.4049 0.5951

c. CVM-statistic CV Mmean CV Mstd CV Mmedian CV Mmax CV Mmin CV Mrange

ARMA-GARCH-fGn 226.5630 92.4072 245.5856 950.0136 82.5743 867.4392
ARMA-GARCH-fsn 223.6907 91.6806 244.8920 1873.2304 34.0265 1839.2039
ARMA-GARCH-nor 226.6043 92.4969 245.5955 948.5973 82.7246 865.8726
ARMA-GARCH-sta 229.7204 92.0018 264.0086 2852.7912 77.7136 2775.0774
ARMA-GARCH-gev 225.5252 92.2819 243.0575 933.6036 82.4613 851.1423
ARMA-GARCH-gpd 248.8990 94.0770 282.0017 1929.6210 55.7156 1873.9054

d. Kuiper-statistic Kuipermean Kuiperstd Kuipermedian Kuipermax Kuipermin Kuiperrange

ARMA-GARCH-fGn 0.9935 0.9940 0.0032 1.0000 0.9715 0.0285
ARMA-GARCH-fsn 0.9698 0.9870 0.0481 0.9990 0.5362 0.4627
ARMA-GARCH-nor 0.9935 0.9940 0.0032 1.0000 0.9725 0.0275
ARMA-GARCH-sta 0.9801 0.9885 0.0231 0.9995 0.6876 0.3118
ARMA-GARCH-gev 0.9918 0.9930 0.0052 0.9995 0.9592 0.0402
ARMA-GARCH-gpd 0.9703 0.9780 0.0299 1.0000 0.6425 0.3575
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Figure 5.1: Q-Q plot of the returns for the stocks in study.



Chapter 6

Modeling Univariate High-Frequency

Time Series II

6.1 Introduction

There is considerable interest in the information content and implications of the time between

consecutive financial transactions (referred to as trade duration) for trading strategies and intra-

day risk management. Market microstructure theory, supported by empirical evidence, suggests

that the spacing between trades be treated as a variable to be explained or predicted since time

carries information and closely correlates with price volatility (see, Bauwens and Veredas (2004),

Diamond and Varrecchia (1987), Engle (2000), Engle and Russell (1998), Hasbrouck (1996),

and O’Hara (1995)). Empirically it has been found that returns and volatility directly interact

with trade duration and trade order size; and, short duration moves price more than long

duration across stocks and across time (see, Manganelli (2005) and Furfine (2007)). Several

studies (for example, Bauwens and Giot (2000), Dufour and Engle (2000), Engle and Russell

(1998), and Jasiak (1998)) report that trade duration tends to exhibit long-range dependence

(i.e., trade duration tends to be persistent), heavy tailedness (i.e., extremely short or long trade

duration can be often observed), and clustering (i.e., short duration follows short duration and

long duration follows long duration).

These findings raise two questions in studying the information content of trade duration that

I address in this chapter:

1. Can single stochastic processes which capture long-range dependence and heavy tailedness

be used in modeling trade duration data ?

2. Can a relatively “powerful” distributional assumption in a relatively “simple” functional

109
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structure be used for efficient modeling of trade duration data?

It is necessary to treat long-range dependence, heavy tailedness, and clustering simultane-

ously in order to obtain more accurate predictions. Rachev and Mittnik (2000) note that for

modeling financial data, not only does model structure play an important role, but distribu-

tional assumptions influence the modeling accuracy. The stable Paretian distribution1 can be

used to capture characteristics of trade duration since it is rich enough to encompass those

stylized facts in such data, such as non-Guassian, heavy tails, long-range dependence, and

clustering. Other researchers have shown the advantages of stable distributions in financial

modeling (see, Fama (1963), Mittnik and Rachev (1993), Rachev and Mittnik (2000), and Sun

et al. (2007b)). Meanwhile several studies have reported that long-range dependence, self-

similar processes, and stable distribution are very closely related (see, Doukhan et al. (2003),

Rachev and Mittnik (2000), Rachev and Samorodnitsky (2001), Samorodnitsky and Taqqu

(1994), and Sun et al. (2007b)).

The Hurst index is also used to model long-range dependence, see Hurst (1951, 1955). It

quantifies the degree of long-range dependence and measures the self-similarity scaling. For-

tunately, one type of self-similar process can possess the Hurst index and stable distribution

together (i.e., can capture both long-range dependence and heavy tailedness). This kind of

stochastic process is a fractional stable noise generated from fractional stable motion (see,

Samorodnitsky and Taqqu (1994)). Therefore, single stochastic processes can capture long-

range dependence and heavy tailedness, answering the first question posed above. Based on

estimating intensity of point processes, an autoregressive conditional duration (ACD) model is

proposed by Engle and Russell (1998) for modeling trade duration with intertemporal correla-

tion. The ACD model is a joint approach combining transition analysis and Engle’s autoregres-

sive conditional heteroscedasticity (ARCH) model. The motivation behind the ACD and the

ARCH models is that in financial market events tend to occur in clusters. If fractional stable

noise can be subordinated into the functional structure of the ACD model, then the second

question can be answered.

In order to answer the two questions posed above, this chapter introduces fractional stable

noise as the single stochastic processes to model trade duration. In the empirical analysis of

this chapter, fractional stable noise is subordinated to the ACD model to model trade duration.

1To distinguish between Gaussian and non-Gaussian stable distribution, the latter is usually named stable
Paretian distribution or Lévy stable distribution. Referring to it as a stable Paretian distribution highlights
the fact that the tails of the non-Gaussian stable density have Pareto power-type decay and Lévy stable is the
recognition of pioneering works done by Paul Lévy to the characterization of non-Gaussian stable laws (see
Rachev and Mittnik (2000)).
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As to self-similar processes, other single stochastic processes, such as fractional Gaussian noise

which captures long-range dependence, are also introduced as an alternative. Since the stable

distribution itself can capture heavy tailedness and long-range dependence, I propose it as an

alternative distribution that can better explain trade duration. In the empirical analysis, stable

distribution is also subordinated to the ACD model. Some other distributions that are often

used in modeling trade duration, such as lognormal distribution, exponential distribution and

Weibull distribution, have been selected as alternative distributional assumptions in order to

compare goodness of fit with the stable distribution and fractional stable noise. Utilizing two

test statistics usually used to evaluate model performance under heavy-tailed assumptions, I

examine trade duration for a sample of stocks to compare which distributional assumption fits

better. By applying a newly developed test procedure that I formulate, based on a bootstrap

method, I obtain empirical results that suggest the fractional stable noise and stable distribution

dominate these alternative assumptions with high statistical significance. Comparing goodness

of fit in the modeling of trade duration data for stable distribution and fractional stable noise,

the empirical results indicate that the ACD model with stable distribution fits better than

other combinations, while fractional stable noise itself fits better for the time series of trade

duration.

The contributions of this chapter to the microstructure finance literature are threefold. The

first, and the major contribution, is that I am the first to employ fractal models in the study

of roughness2 of trade duration. I present new applications of fractal processes to model trade

duration movements with a large sample. this study confirms the advantages of fractal models

in analyzing roughness of trade duration compared to other models, since “the proper language

of the theory of roughness in nature and culture is fractal geometry” (see Mandelbrot (2005,

p.193)). Second, I extend the ACD model with fractal models and find results that are con-

sistent with other studies that have shown that trade duration is informative and correlated

with market volatility. Fractal processes have been shown to be superior to other models in

modeling equity market intra-daily return dynamics (see Sun et al. (2007a)). The stock returns

and their durations exhibit similar movement captured by fractal models, implying a certain

inter-relationship between market volatility and information contained in trade duration. This

is partially explained by the use of the ACD-GARCH model in the study of ultra-high-frequency

data (see Ghysels and Jasiak (1998)). Third, trade durations of different stocks exhibit depen-

dence and such dependence is possibly caused by new information revealed from trade intensity

2Roughness refers to an intricate, highly irregular appearance on all resolutions. It could be thought of as
the synonym of irregularity, see Mandelbrot (1997). Davies and Hall (1999) discuss the surface roughness and
point out that fractal methods partition the characteristics of surface roughness into two parts, “one of them
scale invariant and the other governed by propeties of scale” (see Davies and Hall (1999, p.5)).
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(see Simonsen (2007)). In this study, I provide some evidence to support the dependence ex-

hibited in trade durations because of the distributional similarity observed from this data with

the help of fractal processes.

This chapter is organized as follows. A brief review of point processes and several trade

duration models based on estimating intensity of such processes is provided in Section 6.2.

In Section 6.3, I introduce the empirical method based on trade duration data for 18 of the

component stocks of the Dow Jones. I report the empirical results in Section 6.4. In this

section, I compare the goodness of fit of models used in the empirical study with help of the

procedure of bootstrap methods I developed. I summarize the conclusions in Section 6.5.

6.2 Point processes in modeling durations

Given a probability space (Ω,A,P), a family of random variables (Xt)t∈T on Ω with values in

some set M , (i.e., for all t ∈ T and T is some index set), Xt : (Ω,A) → (M,B) is defined

as a stochastic process with index set T and state space M . A sequence (Tn)n∈N of positive

real random variables is a point process if Tn(ω) < Tn+1(ω) for all ω ∈ Ω and all n ∈ N ; and

limn→∞ Tn(ω) = ∞, for all ω ∈ Ω. Tn is called the nth arrival time and Tn =
∑n
i=1 τi; and

τn = Tn−Tn−1 (where τ1 = T1) is called the nth waiting time (duration) for the point process.

A stochastic process (Nt)t∈[0,∞) is a counting process if: Nt : (Ω,A) → (N0,P(N0)) for all

t ≥ 0, N0 ≡ 0; Ns(ω) ≤ Nt(ω), for all 0 ≤ s < t and all ω ∈ Ω; lims→t,s<tNs(ω) = Nt(ω), for

all t ≥ 0 and all ω ∈ Ω; Nt(ω) − lims→t,s<tNs(ω) ∈ (0, 1), for all t > 0 and all ω ∈ Ω; and

limt→∞Nt(ω) = ∞, for all ω ∈ Ω. A point process (Tn)n∈N corresponds to a counting process

(Nt)t∈[0,∞) and vice versa, i.e.,

Nt(ω) = |{n ∈ N : Tn(ω) ≤ t}|

for all ω ∈ Ω and all t ≥ 0. For all ω ∈ Ω and all n ∈ N ,

Tn(ω) = min{t ≥ 0 : Nt(ω) = n}

The mean value function of the counting process is m(t) = E(Nt), for t ≥ 0, and m : [0,∞) →
[0,∞),m(0) = 0. m is an increasing and a right continuous function with limt→∞m(t) = ∞.

If the mean value function is differentiable at t > 0, then the first-order derivative is called the

intensity of the counting process. Defining λ(t) = dm(t)/dt ,

lim
∆t→0,∆t6=0

1

|∆t|
P (|Nt+∆t −Nt| = 1) = λ(t)
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and

lim
∆t→0,∆t6=0

1

|∆t|
P (|Nt+∆t −Nt| ≥ 2) = 0

From the viewpoint of the point processes literature (for example, Daley and Vere-Jones

(2003)), ultra-high frequency financial data can be described as marked point processes; that

is, the state space M is a product space of R2⊗M where M is the mark space. The ultra-high

frequency transaction data contain two types of processes: time of transactions and events

observed at the time of the transaction (see Engle (2000) and Engle and Lunde (2003)). Those

events can be identified or described by marks, such as trade prices, posted bid and ask price,

and volume. The amount of time between events is the duration. The intensity is used to

characterize the point processes and is defined as the expected number of events per time

increment considered as a function of time. In survival analysis, the intensity equals the hazard

rate. For n durations, d1, d2, ..., dn, which are sampled from a population with density function

f and corresponding cumulative distribution function F , the survival function S(t) is:

S(t) = P [di > t] = 1− F (t)

and the intensity or hazard rate λ(t) is:

λ(t) = lim
∆t→0

P [t < di ≤ t+ ∆t | di > t]

∆t

The survival function and the density function can be obtained from the intensity,

λ(t) =
f(t)

S(t)
=
−d log(S (t))

dt

Several models have been proposed to model durations by estimating the intensity3. The

favored models in the literature are the autoregressive conditional duration (ACD) model

proposed by Engle and Russell (1998), the stochastic conditional duration (SCD) model by

Bauwens and Veredas (2004), and the stochastic volatility duration (SVD) model by Ghysels

et al. (2004). The ACD model expresses the conditional expectation of duration as a linear

function of past durations and past conditional expectation. The disturbance is specified as

an exponential distribution and as an extension of the Weibull distribution. The SCD model

assumes that a latent variable drives the movement of durations. Then the expected durations

in the SCD model are treated as the observed durations driven by a latent variable. The SVD

model tries to capture the mean and variance of durations. The SCD and SVD models are

3See recent reviews of Bauwens and Hautsch (2007) and Sun et al. (2007c).
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mixed distributions models. The SCD model combines Weibull and gamma distributions while

in the SVD model the durations are expressed as independently and exponentially distributed

with a gamma heterogeneity. Extensions to these models have been suggested in the litera-

ture. Jasiak (1998) offers the fractional integrated ACD model, Gramming and Maurer (1999)

replace the Weibull distribution by the Burr distribution, Bauwens and Giot (2000) propose

the logarithmic ACD model, and Zhang et al. (2001) introduce the threshold ACD model.

Bauwens and Giot (2003) propose an asymmetric ACD model; Feng et al. (2004) propose

a linear non-Gaussian state-space version of the SCD model to capture the leverage effect of

the expected durations. Simonsen (2007) extends the ACD model to examine the dependence

between durations. Table 6.2 summarizes these studies.

The ACD(m,n) model specified in Engle and Russell (1998) is

di = ψi εi

ψi = ω +
m∑
j=0

αj di−j +
n∑
j=0

βj ψi−j

where εi are the i.i.d. innovations.

Bauwens and Giot (2000) give the logarithmic version of the ACD model as follows

di = eψi εi

Two possible specifications of conditional durations are

ψi = ω +
m∑
j=0

αj log di−j +
n∑
j=0

βj ψi−j

and

ψi = ω +
m∑
j=0

αj log εi−j +
n∑
j=0

βj ψi−j

Zhang et al. (2001) extend the conditional duration to a switching-regime version. Defining

Lq = [lq−1, lq), and q = 1, 2, ..., Q for a positive integer Q, where −∞ = l0 < l1 < ... < lq = +∞
are the threshold values, di follows a q-regime threshold ACD (TACD(m,n)) model; that is:

ψi = ω(q) +
m∑
j=0

α
(q)
j di−j +

n∑
j=0

β
(q)
j ψi−j

For example, if there is a threshold value lh and 0 < h < q, the TACD(1,1) model can be

expressed as following:

ψi =

 ω1 + α1 di−1 + β1 ψi−1 if 0 < di−1 ≤ lh

ω2 + α2 di−1 + β2 ψi−1 if lh < di−1 <∞
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The threshold lh determines the regime boundaries. Fernandes and Gramming (2005) propose

nonparametric tests for ACD models and suggested practical application for estimation of

intraday volatility patterns.

The SCD model given by Bauwens and Veredas (2004) takes the following form:

di = Ψi εi

where

Ψi = eψi

ψi = ω + β ψi−1 + ui

in which |β| < 1, and ui is independently normally distributed with zero mean and variance σ2.

Denoting Ii−1 the information set before di, ui|Ii−1 ∼ N(0, σ2), εi|Ii−1 follows some distribution

with positive support, and ui is independent of εj|Ii−1 for any i and j.

Ghysels et al. (2004) proposed a SVD model by assuming that durations are independently

and exponentially distributed with gamma heterogeneity. More explicitly, the model can be

expressed as:

di =
Ui
cVi

where Ui and Vi are two independent variables with distributions Γ(1,1) (i.e. exponential) and

Γ(a, a) respectively. Then this expression can be transferred with suitable nonlinear transfor-

mations to the expression with Gaussian factors:

di =
Ψ(1,Φ(F1))

cΨ(a,Φ(F2))
=

H(1, F1)

cH(1, F2)

where F1 and F2 are i.i.d standard normal variables, Φ is the cdf of the standard normal

distribution, and Ψ(a, .) is the quantile function of the Γ(a, a) distribution.

6.3 Empirical study

In this section, I report the empirical tests that investigate the goodness of fit of several can-

didate distribution assumptions in modeling roughness of trade duration.
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6.3.1 The data

Ultra-high frequency data of 18 Dow Jones index component stocks based on NYSE trading

for year 2003 are examined.4 The companies in the sample are listed in Table 6.1. The sample

is considerably larger than other studies that have investigated trade duration. Table 6.2 lists

those studies and the stocks included in each one. Note that for the studies that include U.S.

stocks, IBM is included in 7 of 11 studies and because the sample size is small, IBM constitutes

a major part of those studies. IBM is included in this study also.

The trade durations were calculated for regular trading hours (i.e., overnight trading was

not considered). Consistent with Engle and Russell (1998) and Ghysels et al. (2004), open

trades are deleted in order to avoid effects induced by the opening auction. Therefore trade

durations are considered only from 10:00 to 16:00. In the dataset, I observe many consecutive

zero durations, which imply the existence of multiple transactions within a second. I aggregate

these intra-second transactions within a second (see Engle and Russell (1998)).

The panels in Figure 6.1 illustrate several sampled trade duration series. These plots show

data characteristics that are consistent with the data patterns reported in the literature. For the

trade durations of each stock in the study, sample period runs were performed from January 4,

2003 to December 31, 2003. I will let N denote the length of the sample, sub-sample series that

have been randomly selected by a moving window with length T (1 ≤ T ≤ N). Replacement

is allowed in the sampling. Stoev and Taqqu (2004) suggest that 214 − 6, 000 = 10, 384 is the

optimal length for a fractional stable noise series to be simulated efficiently. Therefore, in the

empirical analysis, sub-sample length (i.e., the window length) of T = 10, 384 was chosen. A

total of 684 sub-samples were randomly created.

6.3.2 The methodology of finding the best model

In the empirical study, I simulate a series for each distributional assumption with and without

subordinating them into the ACD(1,1) structure. Then I compare the goodness of fit of the

simulated together with the originial trade duration series.

The ACD model can be defined as follows:

di = ψi ui,

4The data from were provided by The Securities Industry Research Center of Asia-Pacific in Australia. The
Dow Jones index consists of 30 stocks. The whole database I developed included data from 1996 to 2003 for
stocks that remained in the index over the entire period. Only 18 stocks satisfied that requirement and I use
the data of 2003 in this study.
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and

ψ2
i = κ+

p∑
t=1

γi di−t +
q∑
j=1

θj ψ
2
i−j,

where di are the durations and ui are i.i.d innovations that can be calculated from di/ψi. I

define

ũi =
di

ψ̂i
,

where ψ̂i is the estimation of ψi. In the empirical analysis, an ACD(1,1) model structure is

adopted. The objective is to check the statistical characteristics exhibited by trade duration di

and the error term ũi in ACD(1,1) structure. I simulate di and ũi with the ACD(1,1) structure

based on the parameters estimated from the empirical series. Then I test the goodness of fit

between the empirical series and the simulated series. Six candidate distributional assumptions

— lognormal distribution, stable distribution, exponential distribution, Weibull distribution,

fractional Gaussian noise, and fractional stable noise5 — are analyzed for estimation, simulation,

and testing. Trade durations are positive numbers, therefore the stable distribution, fractional

Gaussian noise, and fractional stable noise are defined on positive supports correspondingly.

6.4 Results

6.4.1 Preliminary Tests

The descriptive statistics of the trade duration data in this study are presented in Table 6.1.

The second column shows the number of observations for each stock in this study. The mean,

maximum, and minimum of trade duration for each stock are shown in Table 6.1. In this

dataset, General Electric and IBM are the most frequently traded stocks. It can be seen that

trade durations exhibit diurnal patterns, especially, long duration can be observed at lunch

time (see Engle (2000)). The maximum value of trade duration is reported in the fifth column

in Table 6.1. In this dataset, I removed the overnight durations.

Engle (1982) proposes a Lagrange-multiplier test for the ARCH phenomenon. A test statistic

of lag order q is given by

Xq ≡ nR2
q ,

5The specifications of stable distribution and fractal processes are shown in the Appendix. Further infor-
mation about stable distribution and fractal processes can be found in Rachev and Mittnik (2000), Sun et al.
(2007a) and references therein.
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where R2
q is the non-centered goodness-of-fit coefficient of a qth order autoregression of the

squared residuals taken from the original regression

û2
i = ω0 + ω1û

2
i−1 + ω2û

2
i−2 + · · ·+ ωqû

2
i−q + ei,

where û is the residual in the original regression equation. Under the null hypothesis of the

residuals of the original model being normally i.i.d., the ARCH statistic of lag order q follows

a χ2 distribution with q degrees of freedom:

lim
n→∞

Xq ∼ χ2
q.

The test statistics and critical values of Engle-test are presented in Table 6.3, in which I can

reject the null hypothesis that there is no ARCH effect at different lag levels for the duration

increments. It is clear that an ARCH effect is exhibited in these data. This implies that large

durations are followed by large duration and small duration are followed by small duration. This

result reveals the phenomenon that when there is information in the market, speed of trading

is faster and fast trades are close together. Since trade duration can reflect the information

flows in the market, I can explain this result as follows. When there is information, typically

there exists a higher proportion of information traders. These traders trade with higher speed

and fast trades cluster together. In contrast, when there is less information, the speed of trades

slows down till the new information is captured. (The empirical evidence can be found in

Dufour and Engle (2000), Engle and Russell (1998), and Engle (2000)).

The Hurst index H ∈ (0, 1) usually serves as the measure of the tendency of a process

and stands for the self-similarity index in Gaussian stochastic processes. It can be somewhat

explained by considering the covariance of two consecutive increments. When H ∈ (0, 0.5), the

increments of a process tend to have opposite signs and thus are more zigzagging due to the

negative covariance; when H ∈ (0.5, 1), the covariance between these two increments is positive

and less zigzagging of the process; when H = 0.5, the covariance between this two increments

is zero. It can be stated as follows: If the Hurst index is less than 0.5, the process displays

“anti-persistence” which means that the positive excess return is more likely to be reversed

and the performance in the next period is likely to be below the average, or on the contrary,

the negative excess return is more likely to be reversed and the performance in the next period

is likely to be above the average. If the Hurst index is greater than 0.5, the process displays

“persistence” which means that the positive excess return or the negative excess return is more

likely to be continued and the performance in the next period is likely to be the same as that

in the current period. If the Hurst index is equal to 0.5, the process displays no memory, which

means the performance in the next period has equal probability to be below and above the

performance in the current period. From Table 6.1, I find that the Hurst index has no value of

0.5, which indicates that the memory effect occurs in my samples.
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The Hurst index for non-Gaussian stable processes has different bounds for “persistence”

and “anti-persistence”. For tail index α ∈ (0, 2), when H ∈ (0, 1/α), the processes exhibit

“anti-persistence”, and when H ∈ (1/α, 1), the processes exhibit “persistence”. There is no

long-range dependence when α ∈ (0, 1] because the Hurst index is bounded in the interval

(0, 1). When H = 1/α, depending on the value of α the processes exhibit either no memory

or long-range dependence.6 From Table 6.1, I find that the Hurst index has no value of 1/α.

Therefore, I find that long-range dependence occurs in my samples.

My results indicate that the Hurst index has no value of 0.5 or 1/α. As described by

Mandelbrot (2005), such patterns are the “wild” forms of roughness which require considering

fractal models. The results reported in Table 1 confirm Mandelbrot’s statement that “the

proper language of the theory of roughness in nature and culture is fractal geometry” (see

Mandelbrot (2005, p.193)).

I use the Ljung-Box-Pierce Q-statistic based on the autocorrelation function to test the serial

correlation (i.e., the memory effect). The Q-statistic is given as follows:

Q :∼ χ2
m = N(N + 2)

m∑
k=1

ρ2
k

N − k
,

where, N denotes the sample size, m the number of autocorrelation lags included in the statistic,

and ρk the sample autocorrelation at lag order k which is

ρk =

∑N−k
t=1 di di+k∑N

t=1 d
2
i

.

The Q-statistic follows an asymptotic χ2 distribution with m degrees of freedom.

The null hypothesis that there is no serial correlation can be rejected at different lags based

on the results reported in Table 6.4. These results are similar to the empirical results in

Simonsen (2007). This table implies that the memory effect occurs in each duration series. In

order to see when the memory effect vanishes, I compare the Q-statistic with its corresponding

critical value. When the quotation of the Q-statistic and the corresponding critical value are

less than 1, I cannot reject the null hypothesis that there is no serial correlation. I also shows

such quotations in Table 6.4. From this table, all the trade durations exhibit serial correlation.

After 500 lags, the memory effect vanishes for 7 stocks and after 1500 lags, the memory effect

vanishes for 13 stocks. From the ratios in Table 6.4, I find that the speed of autocorrelation

decay is declining, which confirms the effect of long-range dependence.

6A detailed discussion see Samorodnitsky and Taqqu (1994) and Cohen and Samorodnitsky (2006).
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6.4.2 Goodness of fit test

The Kolmogorov-Smirnov distance (KS) and the Anderson-Darling distance (AD) proposed by

Rachev and Mittnik (2000) are used as the criterion for the goodness of fit testing. They are

defined as following:

KS = sup
x∈<

|Fs(x)− F̃ (x)|,

and

AD = sup
x∈<

|Fs(x)− F̃ (x)|√
F̃ (x)(1− F̃ (x))

,

where Fs(x) denotes the empirical sample distribution and F̃ (x) is the estimated distribution

function. The major disadvantage of the KS is that it tends to be more sensitive near the

center of the distribution than at the tails. But AD statistic can overcome this. The reliability

of testing the empirical distribution will be increased with the help of these two statistics, with

the KS distance focusing on the deviations around the median of the distribution and the AD

distance on the discrepancies in the tails.

The AD and KS statistics are calculated for the six candidate distributional assumptions.

Table 6.5 reports the descriptive statistics of the computed AD and KS statistics. From Table

6.5, fractional stable noise and stable distribution exhibit a smaller mean value for the AD and

KS statistics in comparison with the other four distributions. Figure 6.2 shows the boxplot of

AD statistics of ũt for the six alternative distributional assumptions investigated. Figure 6.3

shows the boxplot of AD statistics for dt. Figure 6.4 shows the boxplot of KS statistics of ũt

for the six alternative distributional assumptions. Figure 6.5 shows the boxplot of KS statistics

of dt. These figures show that fractional stable noise and stable distribution have a small value

of AD and KS statistics, confirming the results reported in Table 6.5. These results indicate

that with or without an ACD(1,1) model structure, the fractional stable noise and the stable

distribution perform better than the other four tested distributional assumptions based on the

criterion for goodness of fit testing.

From Figures 6.2 to 6.5, I can see that the fractional stable noise and the stable distribution

fit ũt and dt better than other distributional assumptions. In order to empirically examine my

conjecture, I formulate a statistical test procedure. Because I know that smaller AD and KS

statistics mean better goodness of fit, in my test I am going to statistically test how significantly

“smaller” AD and KS statistics are. The hypothesis test is:

H0 : µcriterion1 − µcriterion2 ≥ 0

H1 : µcriterion1 − µcriterion2 < 0
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where µcriterion is the mean value of AD or KS statistics of the candidate distributional assump-

tions investigated. The distributions of AD and KS values are unknown. All AD or KS values

are expressed as i.i.d. random variables X1, X2, ..., Xn, each with distribution function FX(·|θ).
A 100(1−α)% upper confidence bound (UCB) is defined as U(X1, X2, ..., Xn) for a function of

h(θ) if for every θ,

Pθ (h(θ) ≤ U(X1, X2, ..., Xn)) ≥ 1− α

and (−∞, U(X1, X2, ..., Xn)] is the 100(1 − α)% upper confidence interval for h(θ). Similarly,

L(X1, X2, ..., Xn) is a 100(1 − α)% lower confidence bound (LCB) for the function h(θ) for

every θ

Pθ (h(θ) ≥ L(X1, X2, ..., Xn)) ≥ 1− α

and [L(X1, X2, ..., Xn),+∞) is the 100(1− α)% lower confidence interval for h(θ).

As hypothesis testing and confidence intervals are dual concepts, the hypothesis testing is in

fact evaluated by following test rules; that is, (1) if UCB is less than zero, H0 can be rejected,

(2) if LCB is greater than zero, H0 cannot be rejected, and (3) if H0 is greater than LCB but

at the same time less than UCB, there is no statistically significant conclusion. Employing

the bootstrap method introduced in DiCiccio and Efron (1996), the 99% bootstrap confidence

intervals are reported in Table 6.6. From this table, at a high confidence level, fractional stable

noise and stable distribution are more suitable to modeling trade duration data with or without

support of an ACD(1,1) structure.

In comparing the fractional stable noise and stable distribution, it is unclear as to whether

the fractional stable noise is better than the stable distribution or vice versa. I compare the

supporting cases for the fractional stable noise and stable distribution. I present my comparison

result in Table 6.7.

The fractional stable noise has a slightly better support than stable distribution as a sin-

gle process in modeling trade durations. Since the fractional stable noise belongs to fractal

processes, this result confirms the superiority of fractal processes in modeling roughness exhib-

ited in trade duration (see Mandelbrot (2005) and references therein). The stable distribution

has a greater number of supporting cases in comparison to the fractional stable noise in mod-

eling duration data with an ACD(1,1) structure. The stable distribution has advantages in

capturing heavy-tailedness in observations. As I mentioned above, trade durations reflect the

information flows in the market. When there is information in the market, a higher proportion

of information traders trade in the market with a higher speed of trading. Similarly, when

there is less or no information in the market, a higher proportion of traders trade in the market
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with a lower speed of trading. Therefore, extreme events (i.e., very short durations and very

long durations) are often observed in the market, causing the distribution of durations to have

heavy-tails. The ACD model with a stable distribution captures simultaneously both extreme

events and clusters of extreme events driven by information in the market.

Several researchers find evidence that fractal processes or the stable distribution are better

in modeling market volatility (see, Rachev and Mittnik (2000) and Sun et al. (2007a)). As

we know, price adjustments are closely connected with information revealed from the market.

When there is information, the proportion of information traders tends to be higher and the

speed of price adjustment tends to be faster. Extreme events can be observed both from trade

durations and price adjustment. In my study, I show that the fractional stable noise and stable

distribution can capture the trade duration movements well. This result explains why fractional

stable noise and stable distribution exhibit superiority in modeling price adjustments because of

the tight relationship between the speed of price adjustment and information revealed in trade

duration. My models capture the situation of fast price adjustments and trade in clusters.

In addition, by analyzing a large sample as I have done in my study, I can detect evidence

that some trade durations of different stocks exhibit similar movements, see Figure 6.1. For

example, the panels of Eastman Kodak Co. and Merck & Co. and the panels of General

Electric and IBM exihibit similar co-movement patterns. The findings of Simonsen (2007)

reveal that there is a certain dependence in trade durations of stocks. The empirical results

partially support that finding. In this study, most cases provide support that the ACD model

with stable distribution is preferred. In this study, the trade duration dynamics exhibit a

movement/co-movement which can be captured by the same model. This might lead us to find

further evidence of the dependence in my sample with relatively robust tests.

6.5 Conclusions

The empirical research with very few stocks have demonstrated that trade duration data exhibit

three characteristics: long-range dependence, heavy tailedness, and clustering. In this chapter,

I investigate the presence of these characteristics using a larger number of stocks and investigate

whether for modeling trade duration data: (1) a single stochastic process capturing long-range

dependence and heavy tailedness and; (2) a relatively powerful distributional assumption in a

relatively simple functional structure can be used.

To examine these issues, I introduce fractional stable noise and fractional Gaussian noise

to capture long-range dependence and heavy tailedness in modeling the trade duration. In
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the empirical analysis, I investigate six distributional assumptions (fractional stable noise, frac-

tional Gaussian noise, stable distribution, lognormal distribution, exponential distribution, and

Weibull distribution) for modeling the trade duration for 18 Dow Jones index component stocks.

By using parameters estimated from the empirical series, I simulate a series for each distrib-

utional assumption with and without subordinating them into an ACD(1,1) structure. Then

I compare the goodness of fit for these generated series to the empirical series by adopting

two test criteria for testing heavy-tailed distributions, the Kolmogorov-Smirnov and Anderson-

Darling statistics. A test procedure is formulated based on a bootstrap method, and it is used

in order to obtain empirical results.

The above test procedure yields empirical evidence which shows that the stable distribution

and fractional stable noise are better in modeling trade duration than the exponential distrib-

ution, lognormal distribution, Weibull distribution, and fractional Gaussian noise. The results

indicate that residuals from the ACD(1,1) model are more likely to be described by a stable

distribution and trade durations exhibit the features of fractional stable noise. That is, stable

distribution subordinated with an ACD(1,1) structure and fractional stable noise, demonstrate

superior performance in the modeling of trade duration.

My results are consistent with the general findings in the literature on trade duration: in-

formative and short trade durations move prices more than long trade duration. Based on

the models I employ, my findings also explain the relationship between price adjustment and

information revealed in trade duration. In addition, my results confirm the advantage of fractal

models in the study of roughness in trade duration and partially provide evidence for duration

dependence.

I argue that it is critical that the findings reported in this chapter be taken into account

in modeling trade duration. Many studies have found that stable distribution is a better

description of financial data because it can capture heavy tailedness and has a close relationship

with long-range dependence. As a self-similar process, fractional stable noise can capture almost

all reported stylized facts in financial return data, such as heavy tailedness, long memory, non-

Gaussian characters, and clustering. Therefore, if fractional stable noise and stable distribution

can be properly employed in financial modeling, more accurate prediction might be realized by

well-defined functional models.



124 CHAPTER 6. MODELING UNIVARIATE HIGH-FREQUENCY TIME SERIES II

T
ab

le
6.1:

S
tatistical

ch
aracteristics

of
trad

e
d
u
ration

in
2003

for
18

sto
ck

s

S
to

ck
size

m
ea
n

M
in

M
a
x

H
u
rst

ũ
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Table 6.3: Engle-test for different lags of increments series generated from trade duration data.

Test statistic and critical value are presented.

Stock lag1 lag2 lag3 lag5 lag10 lag15 lag25 lag50

Alcoa Inc. 25020 33327 37483 41644 45423 46829 48008 48894
American Express 24976 33297 37441 41573 45281 46619 47668 48292

Caterpillar 24977 33322 37467 41629 45410 46814 47993 48880
E.I.DuPont de Nemours 24995 33329 37484 41647 45436 46851 48046 48970

Walt Disney 24999 33332 37490 41654 45439 46853 48045 48965
Eastman Kodak Co. 24967 33315 37466 41632 45417 46826 48012 48911

General Electric 24990 33328 37488 41653 45435 46848 48036 48945
General Motors 24987 33316 37463 41616 45377 46765 47909 48717

IBM 24967 33290 37430 41559 45256 46583 47614 48204
Int. Paper Company 24985 33325 37480 41645 45429 46841 48029 48936

Coca-Cola Co. 24981 33322 37480 41647 45430 46843 48036 48956
McDonalds 24978 33319 37479 41643 45426 46835 48019 48916

3M Co. 25138 33485 37667 41858 45667 47087 48284 49206
Altria Group 24990 33326 37484 41647 45429 46840 48026 48929
Merck & Co. 24988 33325 37481 41648 45437 46852 48049 48978

Procter & Gamble 25015 33332 37479 41639 45421 46833 48023 48937
AT&T Inc. 24975 33320 37475 41642 45430 46843 48035 48953

United Technologies 24973 33318 37473 41639 45427 46839 48031 48950

Critical Value 3.8415 5.9915 7.8147 11.0700 18.3070 24.9960 37.6520 67.5050
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Table 6.4: Ljung-Box-Pierce Q-test statistic for different lags at α=0.05. The italic numbers

show the ratios of Q-test statistics compared with corresponding critical values.

stock lag10 lag20 lag50 lag100 lag200 lag500 lag1000 lag1500

Alcoa Inc. 760.3 931.7 1379.5 2041.0 3224.5 5912.9 9897.8 13327.0
41.5 29.7 20.4 16.4 13.8 10.7 9.2 8.4

American Express 330.5 336.2 344.5 352.8 372.8 405.6 596.7 691.3
18.1 10.7 5.1 2.8 1.6 0.7 0.6 0.4

Caterpillar 413.9 446.1 516.6 623.5 814.5 1329.9 2093.9 2899.9
22.6 14.2 7.6 5.0 3.4 2.4 1.9 1.8

E.I.DuPont de Nemours 371.6 401.4 455.6 527.1 644.4 840.9 1184.5 1376.5
20.3 12.7 6.7 4.2 2.7 1.5 1.1 0.8

Walt Disney 294.5 319.2 374.8 452.1 606.5 936.2 1475.7 1620.3
16.1 10.1 5.5 3.6 2.5 1.6 1.3 1.0

Eastman Kodak Co. 157.9 177.6 204.4 257.0 351.2 654.6 1078.8 1530.8
8.6 5.6 3.0 2.0 1.5 1.1 1.1 0.9

General Electric 386.8 391.1 393.1 394.8 397.4 406.6 601.1 627.5
21.1 12.4 5.8 3.1 1.6 0.7 0.5 0.3

General Motors 350.8 356.2 365.7 373.3 396.8 513.5 584.7 832.1
19.1 11.3 5.4 3.0 1.6 0.9 0.5 0.5

IBM 159.9 165.7 169.7 174.0 181.2 195.7 357.1 418.0
8.7 5.2 2.5 1.3 0.7 0.3 0.3 0.2

Int. Paper Company 344.3 400.2 519.7 698.0 986.6 1424.1 1846.4 2299.0
18.8 12.7 7.6 5.6 4.2 2.5 1.7 1.4

Coca-Cola Co. 244.2 253.4 266.0 293.4 318.8 366.1 620.3 758.9
13.3 8.0 3.9 2.3 1.3 0.6 0.5 0.4

McDonalds 233.2 256.1 292.2 346.9 442.6 899.3 1016.4 1343.8
12.7 8.1 4.3 2.7 1.8 1.6 0.9 0.8

3M Co. 515.3 528.2 551.2 579.0 631.5 750.7 1044.4 1340.2
28.1 16.8 8.1 4.6 2.6 1.3 0.9 0.8

Altria Group 279.1 284.2 292.6 299.0 319.1 357.7 556.0 617.1
15.2 9.0 4.3 2.4 1.3 0.6 0.5 0.3

Merck & Co. 262.9 268.0 276.1 280.0 285.9 303.0 461.6 535.6
14.3 8.5 4.0 2.2 1.2 0.5 0.4 0.3

Procter & Gamble 517.6 522.9 533.5 541.1 553.0 580.6 774.7 824.3
28.2 16.6 7.9 4.3 2.3 1.1 0.7 0.5

AT&T Inc. 280.2 319.1 398.1 517.9 691.1 990.2 1370.2 1709.4
15.3 10.1 5.8 4.1 2.9 1.7 1.2 1.1

United Technologies 327.1 356.2 417.2 491.2 621.1 834.9 1130.4 1389.9
17.8 11.3 6.1 3.9 2.6 1.5 1.1 0.8

Critical Value 18.3 31.4 67.5 124.3 233.9 553.1 1074.7 1591.2
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Table 6.7: Supporting cases comparison of goodness of fit for fractional stable noise and stable

distribution based on AD and KS statistics. Symbol “ * ” indicates the test for dt, otherwise

the test is for ũt. Symbol “ �” means being preferred and “∼” means indifference. Numbers

shows the supporting cases to the statement in the first column and the number in parentheses

give the proportion of supporting cases in the whole sample.

AD AD∗ KS KS∗

fsn � stable 327 345 327 362
( 47.81%) ( 50.44%) ( 47.81%) ( 52.93%)

stable � fsn 344 328 351 318
( 50.29%) ( 47.95%) (51.32 %) ( 46.49%)

fsn ∼ stable 13 11 6 4
( 1.90%) (1.61 %) (0.87%) ( 0.58%)
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Figure 6.1: Plot of trade duration for several stocks.
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Figure 6.2: Boxplot of AD statistics for ũt in alterna-
tive distributional assumptions.

Figure 6.3: Boxplot of AD* statistics for dt in alter-
native distributional assumptions.

Figure 6.4: Boxplot of KS statistics for ũt in alterna-
tive distributional assumptions.

Figure 6.5: Boxplot of KS* statistics for dt in alter-
native distributional assumptions.



Chapter 7

Modeling Multivariate High-Frequency

Time Series I

7.1 Introduction

The co-movement of world equity markets is often used as a barometer of economic globalization

and financial integration. Analyzing such co-movements is important for risk diversification of

an international portfolio. The source of co-movement of international equity markets is the

volatility-in-correlation effects found by Andersen et al. (2001) in individual stock returns and

by Solnik et al. (1996) in international equity index returns. In fact, volatility-in-correlation

effect could be explained by the tail dependence of the underlying assets, which shows extreme

events happening simultaneously. Co-movement, volatility-in-correlation, and tail dependence

in a sense are interrelated when analyzing the dependence structure of international equity

markets. It is also found that correlations between consecutive returns decay slowly, that is,

long-range dependence in returns is exhibited. Co-movement reflects intercorrelation between

underlying asset returns (or returns in different markets) and long-range dependence exhibits

autocorrelation within a single asset return (or return of a single market). Therefore, when

analyzing international equity markets, I face two dependence structures: the correlation within

a single market and the correlation between several markets.

When dealing with the dependence (i.e. long-range dependence) of a single market, I should

take other stylized factors into account such as volatility clustering and distributional heavy-

tails. It is necessary to treat long-range dependence, volatility clustering, and heavy-tailedness

simultaneously in order to obtain more accurate predictions of market volatility. Rachev and

Mittnik (2000) note that for modeling financial data, not only does model structure play an im-

portant role, but distributional assumptions influence modeling accuracy. The stable Paretian

133
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distribution can be used to capture characteristics of financial data since it is rich enough to

encompass those stylized facts. Other researchers have shown the advantages of stable distri-

butions in financial modeling (see, Fama (1963), Mittnik and Rachev (1993), Rachev (2003),

and Rachev et al. (2005)). Several studies have reported that long-range dependence, self-

similar processes, and stable distribution are very closely related (see, Taqqu and Samorodnit-

sky (1994), Rachev and Mittnik (2000), Rachev and Samorodnitsky (2001), Doukhan et al..

(2003), and Racheva and Samorodnitsky (2003)). Long-range dependence processes are as-

ymptotically second-order self-similar (see Willinger et al. (1998)). Second-order self-similarity

describes the property that the correlation structure of a process is preserved irrespective of

time scaling. Although self-similarity and long-range dependence are different concepts, in

the case of second-order self-similarity, long-range dependence implies self-similarity and vice

versa. As to this point, it is natural to employ specified self-similar processes in the study of the

within-market dependence together with capturing volatility clustering and heavy-tailedness.

When dealing with the dependent structure between several markets, the usual linear cor-

relation is often applied. But the usual linear correlation is not a satisfactory measure of the

dependence among global equity markets for several reasons (see Embrechts et al. (2003),

Rachev et al. (2005), and Sun et al. (2007d)). First, when the variance of returns in those

markets turns out to be infinite, that is, extreme events are frequently observed, the linear

correlation between these markets is undefined. Second, linear correlation assumes that both

marginal and joint distributions of returns in these markets are elliptical. In real-world markets,

this assumption is unwarranted. Third, the linear correlation is not invariant under nonlinear

strictly increasing transformations, implying that the return might be uncorrelated whereas

the prices are correlated or vice versa. Fourth, linear correlation only measures the degree

of dependence but does not clearly discover the structure of dependence. It has been widely

observed that market crashes or financial crises often occur in different countries at about the

same time period even when the correlation among those markets is fairly low. The structure

of dependence also influences the diversification benefit gained based on a linear correlation

measure. Embrechts et al. (2003) and Rachev et al. (2005) illustrate the drawbacks of using

linear correlation to analyze dependency. A more prevalent approach which overcomes the

disadvantages of linear correlation is to model dependency by using copulas. With the copula

method, the nature of dependence that can be modeled is more general and the dependence of

extreme events can be considered.

Based on a copula-ARMA-GARCH modeling structure for stock market indexes from nine

different countries, in this chapter I compare several candidate specifications using simulation

methods. In my modeling structure, the marginal distribution captures the long-range depen-
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dence, heavy tails, and volatility clustering simultaneously in order to obtain more accurate

predictions, and these marginal distributions are connected by a specified copula. The em-

pirical results indicate that the Student’s t copula and ARMA-GARCH model with fractional

Gaussian noise dominate the alternative models tested in this study.

I organized this chapter as follows: A brief introduction of copula considering tail dependence

is provided in Section 7.2. The data and empirical methodology I used in my study are described

in Section 7.3. In Section 7.4, I specify two self-similar processes: fractional Gaussian noise

and fractional stable noise. Methods for estimating the parameters of underlying self-similar

processes are introduced. In Section 7.5, the simulation methods applied in my empirical study

are introduced. The empirical results based on high-frequency data at 1-minute level for nine

international stock market indexes are reported in Section 7.6. In that section, I compare

the goodness of fit for both the marginal distribution and joint distribution. I summarize my

conclusions in Section 7.7.

7.2 Unconditional copulas and tail dependence

In this Section, I show the definition of unconditional copulas and tail dependence. The test

for tail dependence applied in this chapter is also introduced.

7.2.1 Definition of unconditional copulas and tail dependence

Copulas enable the dependence structure to be extracted from both the joint distribution

function and the marginal distribution functions. From a mathematical viewpoint, a copula

function C is a probability distribution function on the n-dimensional hypercube. Sklar (1959)

has shown that any multivariate probability distribution function FY of some random vector

Y = (Y1, ..., Yn) can be represented with the help of a copula function C of the following form:

FY (y1, ..., yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)

= C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn))

= C(FY1(y1), . . . , FYn(yn)) (7.0-1)

where FYi
, i = 1, . . . , n denote the marginal distribution functions of the random variables, Yi,

i = 1, . . . , n.

When the variables are continuous, the density c associated with the copula is given by:

c(FY1(y1), . . . , FYn(yn)) =
∂nC(FY1(y1), . . . , FYn(yn))

∂FY1(y1), . . . , ∂FYn(yn)
. (7.0-2)



136 CHAPTER 7. MODELING MULTIVARIATE HIGH-FREQUENCY TIME SERIES I

The density function fY corresponding to the n-variate distribution function FY is

fY (y1, ..., yn) = c(FY1(y1), . . . , FYn(yn))
n∏
i=n

fYi
(yi), (7.0-3)

where fYi
, i = 1, . . . , n is the density function of FYi

, i = 1, . . . , n (see, Joe (1997), Cherubini

et al. (2004), and Nelsen (2006)).

Two commonly used unconditional copulas are the unconditional Gaussian copula and un-

conditional Student’s t copula. The unconditional Gaussian copula and unconditional Student’s

t copula are specified in this section. The multivariate version of these two copulas are given as

follows. Let ρ be the correlation matrix which is a symmetric, positive definite matrix with unit

diagonal, and Φρ the standardized multivariate normal distribution with correlation matrix ρ.

The unconditional multivariate Gaussian copula is then

C(u1, . . . , un; ρ) = Φρ

(
Φ−1(u1), . . . ,Φ

−1(un)
)
,

and the corresponding density is

c(u1, . . . , un; ρ) =
1

|ρ|1/2
exp

(
−1

2
λT (ρ−1 − I)λ

)
,

where λ = (Φ−1(u1), . . . ,Φ
−1(un))

T and ui, i = 1, 2, . . . , n are the margins.

The unconditional (standardized) multivariate Student’s t copula Tρ,ν can be expressed as

Tρ,ν(u1, . . . , un; ρ) = tρ,ν
(
t−1
ν (u1), . . . , t

−1
ν (un)

)
,

where tρ,ν is the standardized multivariate Student’s t distribution with correlation matrix ρ

and ν degrees of freedom and t−1
ν is the inverse of the univariate cumulative density function

(c.d.f) of Student’s t with ν degrees of freedom. The density of the unconditional multivariate

Student’s t copula is

cρ,ν(u1, . . . , un; ρ) =
Γ(ν+n

2
)

Γ(ν
2
)|ρ|1/2

( Γ(ν
2
)

Γ(ν+1
2

)

)n((1 + 1
ν
λTρ−1λ

)− ν+n
2

∏n
j=1

(
1 +

λ2
j

ν

)− ν+1
2

)
,

where λj = t−1
ν (uj) and uj, j = 1, 2, . . . , n are the margins.

In financial data, we can observe that extreme events happen simultaneously for different

assets. In a time interval, several assets might exhibit extreme values. Tail dependence reflects

the dependence structure between extreme events. It turns out that tail dependence is a

copula property. Letting (Y1, Y2)
T be a vector of continuous random variables with marginal

distribution functions F1, F2, then the coefficient of the upper tail dependence of (Y1, Y2)
T is

λU = lim
u→1

P
(
Y2 > F−1

2 (u)|Y1 > F−1
1 (u)

)
, (7.0-4)
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and the coefficient of the lower tail dependence of (Y1, Y2)
T is

λL = lim
u→0

P
(
Y2 < F−1

2 (u)|Y1 < F−1
1 (u)

)
. (7.0-5)

If λU > 0, there exists upper tail dependence and the positive extreme values can be observed

simultaneously. If λL > 0, there exists lower tail dependence and the negative extreme values

can be observed simultaneously. Embrechts et al. (2003) introduce some coefficients of tail

dependence of different copulas.

Empirical studies have failed to support the assumption that return data follow a Gaussian

distribution. Instead, return data often exhibit excess kurtosis and heavy tails. Nor is the

multivariate Gaussian distribution warranted either when studying multi-dimensional return

data because of tail dependence among them. The Student’s t copula and Clayton copulas

can characterize tail dependence in multi-dimensional return data but the Gaussian copula can

not. In Clayton copulas, only Joe-Clayton copula can capture both the lower and upper tail

dependence and the Joe-Clayton copula allows for asymmetric tail dependence. Unfortunately,

the Joe-Clayton copula cannot be implemented for multi-dimensional return data because of

computational difficulties, while the Student’s t copula can be implemented to capture tail

dependence in multi-dimensional return data (see, Embrechts et al. (2003), Patton (2005), and

Nelsen (2006)).

7.2.2 Test of tail dependence

Asymmetric correlations have been observed by several studies (see for example, Ang and Chen

(2002), Login and Solnik (2001), Hu (2006), and Hong et al. (2006)) that show stocks tend

to have greater correlations with market when the market goes down than it goes up. If the

symmetry of stock returns is rejected by certain tests, then the data cannot be modelled by

any symmetric distribution and correspondingly the symmetric copulas are not significantly

reliable for the multivariate correlation modeling.

Following Ang and Chen (2002) and Login and Solnik (2000), based on tail dependence

defined by equation (7.0-4) and (7.0-5), Hong et al. (2006) propose a test procedure for ex-

ceedance correlation. I adopt this procedure in this chapter to test exceedance correlation. Let

X1t, X2t be the returns of two returns in period t, and q the exceedance level. Then define

ρ+(q) = corr(X1t, X2t|X1t > q,X2t > q)

and

ρ−(q) = corr(X1t, X2t|X1t < −q,X2t < −q).
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The null hypothesis of a symmetric correlation is H0 : ρ+(q) = ρ−(q) for all q > 0. As Hong et

al. (2003) point out if the null hypothsis is true, the following m× 1 difference vector

ρ̂+ − ρ̂− = [ρ̂+(q1)− ρ̂−(q1), ..., ρ̂
+(qm)− ρ̂−(qm)]′

must be close to zero, where q1, q2, ..., qm are m chosen exceedance levels. Hong et al. (2006)

show that under the null hypothesis of symmetry and certain regularity conditions, the vector

ρ̂+− ρ̂− has an asymptotic normal distribution with zero mean and a positive definite variance-

covariance matrix Ω. In order to estimate Ω to obtain a feasible test statistic, the sample means

and variances of the two conditional series are computed:

µ̂+
1 (q) =

1

T+
q

T∑
t=1

X1t1(X1t > q,X2t > q)

µ̂+
2 (q) =

1

T+
q

T∑
t=1

X1t1(X1t > q,X2t > q)

σ̂+
1 (q)2 =

1

T+
q − 1

T∑
t=1

[X1t − µ̂+
1 (q)]2 1(X1t > q,X2t > q)

σ̂+
2 (q)2 =

1

T+
q − 1

T∑
t=1

[X2t − µ̂+
2 (q)]2 1(X1t > q,X2t > q)

where T+
q is the number of the observations for both X1t and X2t are larger than q and 1(·) is

the indicator function. The conditional correlation ρ̂+(q) is then

ρ̂+(q) =
1

T+
q − 1

T∑
t=1

[Y1t(q)Y2t(q)] 1(X1t > q,X2t > q)

where

Y1t(q) =
X1t − µ̂+

1 (q)

σ̂+
1 (q)

Y2t(q) =
X2t − µ̂+

2 (q)

σ̂+
2 (q)

and similarly the conditional correlation ρ̂−(q) can be derived.

Hong et al. (2006) show that under general conditions, a consistent estimator of Ω is:

Ω̂ =
T−1∑
l=1−T

k(l/p)γ̂l

where γ̂l is an N ×N with (i, j)-th element

γ̂l(qi, qj) =
1

T

T∑
t=|l|+1

δt(qi)δt−l(qj)
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δt(q) =
T

T+
q

[Y +
1t (q)Y

+
2t (q)]1(X1t > q,X2t > q)

− T

T−q
[Y −

1t (q)Y
−
2t (q)]1(X1t < −q,X2t < −q)

k(·) is a kernel function assigning weights to each lag of order l, and p is the smoothing

parameter. Then the test statistic for the null hypothesis of symmetry is

Jρ = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−).

With choosing a suitable smoothing parameter p, Hong et al. (2006) provide that the symmetry

test has a simple asymptotic χ2 distribution with m degrees of freedom.

7.3 Data and empirical methodology

7.3.1 Data

In previous studies of the co-movement of international equity markets, low-frequency data

have been examined. Because stock indexes change their composition quite often over time, it

is difficult to find the impact of these changes in composition when analyzing the return history

of stock indexes using low-frequency data. Dacorogna et al. (2001) calls this phenomenon

the “breakdown of the permanence hypothesis”. In order to overcome this problem, I use

high-frequency data in this study.

Employing high-frequency data has several advantages compared with low-frequency data.

First, with a very large amount of observations, high-frequency data offers a higher level of

statistical significance. Second, high-frequency data are gathered at a low level of aggregation,

thereby capturing the heterogeneity of players in financial markets. These players should be

properly modeled in order to make valid inferences about market movements. Low-frequency

data, say daily or weekly data, aggregate the heterogeneity in a smoothing way. As a result,

many of the movements in the same direction are strengthened and those in the opposite di-

rection cancelled in the process of aggregation. The aggregated series generally show smoother

behavior than their components. The relationships between the observations in these aggre-

gated series often exhibit greater smoothness than their components. For example, a curve

exhibiting a one-week market movement based on daily return data might be a line with a

couple of nodes. The smooth line segment veils the intra-daily fluctuation of the market. But

high-frequency data can reflect such intra-daily fluctuations and the intra-daily co-movement

can be taken into account. Third, using high-frequency data in analyzing the co-movement of
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international equity markets can consider both microstructure effects and macroeconomic fac-

tors. This is because information contained in high-frequency data can be resolved into a higher

frequency part (i.e., the intra-daily fluctuation) and a lower frequency part (i.e., low-frequency

smoothness). The information provided by the higher frequency part mirrors the microstruc-

ture effect of the equity markets and the information in the lower frequency part shows the

smoothed trend that is usually influenced by macroeconomic factors in these markets.

Standard econometric techniques are based on homogeneous time series analysis. If a re-

searcher uses analytic methods of homogeneous time series for inhomogeneous time series, the

reliability of the results will be doubtful. Aggregating inhomogeneous tick-by-tick data to the

equally spaced (homogeneous) time series is needed. Engle and Russell (1998) argue that for

aggregating tick-by-tick data to a fixed time interval, if a short time interval is chosen, there

will be many intervals in which there is no new information, and if choosing a wide interval,

micro-structure features might be missing. Aı̈t-Sahalia (2005) suggests keeping the data at

the ultimate frequency level. In my empirical study, intra-daily data, which I refer to as the

high-frequency data in this chapter, at 1-minute level were aggregated from tick-by-tick data

to investigate the co-movement of international equity markets.

The high-frequency data of the nine international stock indexes listed in Table 1 from January

8, 2002 to December 31, 2003 were aggregated to the 1-minute frequency level. The aggregation

algorithm is based on the linear interpolation introduced by Wasserfallen and Zimmermann

(1995). That is, given an inhomogeneous series with times ti and values ϕi = ϕ(ti), the index

i identifies the irregularly spaced sequence. The target homogeneous time series is given at

times t0 + j∆t with fixed time interval ∆t starting at t0. The index j identifies the regularly

spaced sequence. The time t0 + j∆t is bounded by two times ti of the irregularly spaced series,

I = max( i |ti ≤ t0 + j∆t) and tI ≤ t0 + j∆t > tI+1. Data are interpolated between tI and tI+1.

The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI
tI+1 − tI

(ϕI+1 − ϕI). (7.0-6)

Dacorogna et al. (2001) pointed out that linear interpolation relies on the future of time and

Müller et al. (1990) suggests that linear interpolation is an appropriate method for stochastic

processes with independent and identically distributed (i.i.d.) increments.

Empirical evidence has shown seasonality in high-frequency data. In order to remove such

disturbances, several methods of data adjusting have been adopted in modeling. Engle and

Russell (1998) and other researchers adopt several methods to adjust the seasonal effect in the

data. In my study, seasonality is treated as one type of self-similarity. Consequently, it is not

necessary to adjust for the seasonal effect in the data.



141

7.3.2 Empirical methodology

To investigate the co-movement of international stock markets, I use the market index for each

country as the proxy for the market movement and propose the copula ARMA-GARCH model.

This model is implemented with an ARMA-GARCH model for the marginal distributions and

a copula for the joint distribution. Six GARCH models with different kinds of residuals (i.e.,

residuals with forms of white noise, fractional Gaussian noise, fractional stable noise, stable

distribution, generalized Pareto distribution, and generalized extreme value distribution) for

the marginal distributions are simulated. After goodness of fit testing, I use the best goodness

of fit model for the marginal distributions with Gaussian copula and Student’s t copula for the

joint distribution to simulate the returns on the equity indexes. Then, the models will be tested

with several goodness of fit test methods for a large dataset.

I define the ARMA-GARCH model for the conditional mean equation as:

yt = α0 +
r∑
i=1

αi yt−i + εt +
m∑
j=1

βjεt−j. (7.0-7)

Let εt = σt ut, where the conditional variance of the innovations, σ2
t , is by definition

V art−1(yt) = Et−1 (ε2
t ) = σ2

t . (7.0-8)

The general GARCH(p,q) processes for the conditional variance of the innovation is then

σ2
t = κ+

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε
2
t−j. (7.0-9)

Since εt = σt ut, ut could be calculated from εt/σt. Defining

ũt =
εst
σ̂t
, (7.0-10)

where εst is estimated from the sample and σ̂t is the estimation of σt. In my study, ARMA(1,1)-

GARCH(1,1) are parameterized as marginal distributions with different kinds of ut (i.e., normal

distribution, fractional Gaussian noise, fractional stable noise, stable distribution, generalized

Pareto distribution, and generalized extreme value distribution).

From the goodness of fit testing for marginal distributions, I find the best fit model. Then

taking the best fit model as marginal distributions for each stock index return, I simulate a

multivariate Gaussian copula and Student’s t copula for the dependence structure of the nine

stock index returns. The simulation method adopted is introduced in Section 7.4.

Correlations reported in several studies (see for example, Ang and Chen (2002), Login and

Solnik (2001), and Hong et al. (2006)) show that stocks tend to have greater correlations during
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periods when the market goes down than during periods of rising prices. If symmetry of stock

returns is rejected by certain tests, then the data cannot be modelled by any symmetric distrib-

ution and correspondingly the symmetric copulas are not significantly reliable for multivariate

correlation modeling. I compute the Jρ statistic (that follows the asymptotic χ2 distribution)

proposed by Hong et al. (2006) to test the null hypothesis of symmetric correlation in my

dataset.

The Kolmogorov-Smirnov distance (KS) and the Anderson-Darling distance (AD) suggested

by Rachev and Mittnik (2000) and the Cramer Von Mises distance (CVM)1 are used as the

criterion for the goodness of fit testing.

7.4 Analysis of the marginal distribution

As mentioned in the previous section, I apply ARMA(1,1)-GARCH(1,1) with alternative dis-

tributions for residuals ut in my empirical study to model the marginal distribution of each

equity market return. The reason I only consider ARMA-GARCH at lag order 1 is to make

my analysis satisfy the stationary conditions for the processes I adopted for the marginal dis-

tribution (see Mittnik et al. (2001)). In addition, I use 1-minute level of high frequency data:

higher lag order contains less information because of the long memory effect (see Sun et al.

(2007b)). The key point of the marginal distributions is to empower the residuals ut to capture

the stylized factors, such as, long-range dependence and heavy-tailedness. One of the powerful

forms of ut is the self-similar process. Two specified self-similar processes applied in the em-

pirical study are the fractional Gaussian noise and the fractional stable noise. The reason why

such self-similar processes are powerful is that they impose an index on quantifying the degree

of long-range dependence and measuring self-similarity. In this section, based on the residuals

ut in ARMA(1,1)-GARCH(1,1) model, I introduce how to estimate the parameters of the two

1Specifically, these criterion are defined as follows:

KS = sup
x∈<

∣∣Fs(x)− F̃ (x)
∣∣,

AD = sup
x∈<

∣∣Fs(x)− F̃ (x)
∣∣√

F̃ (x)(1− F̃ (x))
,

and

CV M =
∫ ∞

−∞

(
Fs(x)− F̃ (x)

)2

dF̃ (x),

where Fs(x) denotes the empirical sample distribution and F̃ (x) is the estimated distribution function.
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specified self-similar processes for ut.

7.4.1 The self-similarity parameter

Self-similarity is defined by Samorodnitsky and Taqqu (1994) as follows. Let T be either

R,R+ = {t : t ≥ 0} or {t : t > 0}. The real-valued process {X(t), t ∈ T} is self-similar with

Hurst index H > 0, if for any a > 0 and d ≥ 1, t1, t2, ..., td ∈ T , satisfying:(
X(at1), X(at2), ..., X(atd)

)
d
=
(
aHX(t1), a

HX(t2), ...a
HX(td)

)
. (7.0-11)

The Hurst index H plays a key role in such processes to capture long-range dependence.

Let φ(k) denote the kth-order autocovariance function of {X(t), t ∈ T}, for 0 < H < 1,

and H 6= 0.5, φ(k) ∼ H(2H − 1)k2(H−1) holds. {X(t), t ∈ T} is called long-range dependence

if
∑∞
k=1 φ(k) = +∞. {X(t), t ∈ T} is called short-range dependence if

∑∞
k=1 φ(k) < +∞. If

0 < H < 0.5, then
∑∞
k=1 φ(k) ∼ ∑∞

k=1H(2H−1)k2(H−1). Note that in this case, 2(H−1) < −1,∑∞
k=1 k

2(H−1) < +∞. Thus X(t) exhibits short-range dependence. If 0.5 < H < 1, then

2(H − 1) > −1, thus
∑∞
k=1 k

2(H−1) = +∞, X(t) shows long-range dependence. For all k ≥ 1,

if H = 0.5, the autocovariance is zero and X(t) is a random walk; if H = 1, then φ(k) = 1

and I have the degenerate situation which shows no memory effect and the process is not

autocorrelated at any lag; and if H > 1, then φ(k) > 1 and that is impossible.

Several methods for estimating the Hurst index have been proposed (see, Beran (1994)).

Applying the method of calculating the R/S statistic proposed by Hurst (1951), I estimated

the Hurst index of the nine international equity index returns and show the results in Table

7.1.

7.4.2 Specification of the self-similar processses

In this section, specification of two self-similar processes used in my empirical study, fractional

Gaussian noise and fractional stable noise, are introduced. Samorodnitsky and Taqqu (1994)

clarified the definition of FBM as a Gaussian process having self-similarity index H and sta-

tionary increments (see also Mandelbrot and Wallis (1968)). Mandelbrot and van Ness (1968)

defined the stochastic representation

BH(t) :=
1

Γ(H + 1
2
)

(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dB(s) +

∫ t

0
(t− s)H−

1
2dB(s)

)
, (7.0-12)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx,
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and 0 < H < 1 is the Hurst parameter. The integrator B is ordinary Brownian motion. The

main difference between fractional Brownian motion and ordinary Brownian motion is that the

increments in Brownian motion are independent while in fractional Brownian motion they are

dependent. As for the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define

its increments {Yj, j ∈ Z} as fractional Gaussian noise (FGN), which is for j = 0,±1,±2, ...,

Yj = BH(j − 1)−BH(j).

Fractional Brownian motion can capture the effect of long-range dependence, but with less

power to capture the heavy tailedness. The existence of abrupt discontinuities in return data,

combined with the empirical observation of sample excess kurtosis and unstable variance, sug-

gests that the return series can best be described by a stable Paretian distribution (see, Man-

delbrot (1963, 1983)). It is natural to introduce the stable Paretian distribution in self-similar

processes in order to capture both long-range dependence and heavy tailedness. Samorodinit-

sky and Taqqu (1994) introduce the α-stable H-sssi processes {X(t), t ∈ R} with 0 < α < 2. If

0 < α < 1, the values of the Hurst index are H ∈ (0, 1/α] and if 1 < α < 2, the values of the

Hurst index are H ∈ (0, 1]. There are several extensions of fractional Brownian motion to the

stable distribution. The most commonly used is the linear fractional stable motion (also called

linear fractional Lévy motion), which is defined by Samorodinitsky and Taqqu (1994).2 In this

chapter, if there is no special indication, fractional stable noise (fsn) is generated from linear

fractional stable motion.

7.4.3 Estimation of the self-similarity parameter

Beran (1994) discusses the approximate maximum likelihood estimator (MLE)3 of the self-

similarity parameter. For fractional Gaussian noise, Yt, let f(λ;H) denote the power spectrum

of Y after being normalized to have variance 1 and let I(λ) denote the periodogram of Yt; that

is,

I(λ) =
1

2πN

∣∣∣∣∣
N∑
t=1

Yt e
i t λ

∣∣∣∣∣
2

. (7.0-13)

The MLE of H is to find Ĥ that minimizes

g(Ĥ) =
∫ π

−π

I(λ)

f(λ; Ĥ)
dλ. (7.0-14)

2Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968), Maejima
and Rachev (1987), Manfields et al.. (2001), Rachev and Mittnik (2000), Rachev and Samorodnitsky (2001),
Samorodnitsky (1994), and Samorodinitsky and Taqqu (1994).

3It is also called the Whittle estimator.
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Stoev et al. (2002) proposed the least-squares (LS) estimator for the Hurst index based

on the finite impulse response transformation (FIRT) and wavelet transform coefficients of the

fractional stable motion. FIRT is a filter v = (v0, v1, ..., vp) of real numbers vt ∈ <, t = 1, ..., p,

and length p+ 1. It is defined for Xt by

Tn,t =
p∑
i=0

viXn(i+t), (7.0-15)

where n ≥ 1 and t ∈ N . The Tn,t are the FIRT coefficients of Xt (i.e., the FIRT coefficients of

the fractional stable motion). The indices n and t can be explained as “scale” and “location”.

If
∑p
i=0 i

rvi = 0, for r = 0, ..., q−1, but
∑p
i=0 i

qvi 6= 0, the filter vi can be said to have q ≥ 1 zero

moments. If {Tn,t, n ≥ 1, t ∈ N} is the FIRT coefficients of fractional stable motion with the

filter vi that has at least one zero moment, Stoev et al. (2002) prove the following properties

of Tn,t: (1) Tn,t+h
d
= Tn,t, and (2) Tn,t

d
= nHT1,t, where h, t ∈ N , n ≥ 1. I assume that Tn,t are

available for the fixed scales nj j = 1, ...,m and locations t = 0, ...,Mj − 1 at the scale nj, since

only a finite number, say Mj, of the FIRT coefficients are available at the scale nj. By using

these two properties, I have

E log |Tnj ,0| = H log nj + E log |T1,0|. (7.0-16)

The left-hand side of this equation can be approximated by

Ylog(Mj) =
1

Mj

Mj−1∑
t=0

log |Tnj ,t|. (7.0-17)

Then I obtain

( Ylog(M1)
...

Ylog(Mm)

)
=

( log n1 1
...

...

log nm 1

)(
H

E log |T1,0|

)
+

( √
M
(
Ylog(M1)− E log |Tn1,0|

)
...√

M
(
Ylog(Mm)− E log |Tnm,0|

)
)
. (7.0-18)

I can express equation (7.0-18) as follows

Y = Xθ +
1√
M
ε, (7.0-19)

where ε is the vector showing the difference between
√
MYlog(Mm) and

√
ME(log |Tnm,0|).

Equation (7.0-19) shows that the self-similarity parameter H can be estimated by a standard

linear regression of the vector Y against the matrix X. Stoev et al. (2002) provide the details

for implementing such a procedure.
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7.4.4 The parameters of a stable Non-Gaussian distribution

A stable distribution requires four parameters for complete description: an index of stability

α ∈ (0, 2] also called the tail index, a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0,

and a location parameter ζ ∈ <. There is unfortunately no closed-form expression for the

density function and distribution function of a stable distribution. Rachev and Mittnik (2000)

give the definition for the stable distribution: A random variable X is said to have a stable

distribution if there are parameters 0 < α ≤ 2, −1 ≤ α ≤ 1, γ ≥ 0 and ζ real such that its

characteristic function has the following form:

E exp(iθX) =

 exp{−γα|θ|α(1− iβ(signθ) tan πα
2

) + iζθ}, if α 6= 1

exp{−γ|θ|(1 + iβ 2
π
(signθ) ln |θ|) + iζθ}, if α = 1

(7.0-20)

and,

signθ =


1, if θ > 0

0, if θ = 0

−1, if θ < 0

(7.0-21)

For 0 < α < 1 and β = 1 or β = −1, the stable density is only for a half line.

In order to estimate the parameters of a stable distribution, I use the ML method given in

Rachev and Mittnik (2000). Given N observations, X = (X1, X2, · · · , XN)′ for the positive half

line, the log-likelihood function is of the form

ln(α, λ;X) = N lnλ+N lnα+ (α− 1)
N∑
i=1

lnXi − λ
N∑
i=1

Xα
i , (7.0-22)

which can be maximized using, for example, a Newton-Raphson algorithm. It follows from the

first-order condition,

λ = N

(
N∑
i=1

Xα
i

)−1

(7.0-23)

that the optimization problem can be reduced to finding the value for α which maximizes the

concentrated likelihood

ln∗(α;X) = lnα+ αν − ln

(
N∑
i=1

Xα
i

)
, (7.0-24)

where ν = N−1ΣN
i=1 lnXi.

The information matrix evaluated at the maximum likelihood estimates, denoted by I(α̂, λ̂),

is given by
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I(α̂, λ̂) =

 Nα̂−2 ∑N
i=1X

α̂
i lnXi∑N

i=1X
α̂
i lnXi Nλ̂−2

 .
It can be shown that under fairly mild conditions, the maximum likelihood estimates α̂ and λ̂

are consistent and have asymptotically a multivariate normal distribution with mean (α, λ)′(see

Rachev and Mittnik (2000)).4

7.5 Simulating the co-movement of international equity

markets

7.5.1 Simulation of the marginal distribution

Paxson (1997) gives a method to generate the fractional Gaussian noise by using the Discrete

Fourier Transform of the spectral density. Bardet et al. (2003) give a concrete simulation

procedure based on this method with respect to alleviating some of the problems faced in

practice. The procedure is:

1. Choose an even integer M . Define the vector of the Fourier frequencies Ω = (θ1, ..., θM/2),

where θt = 2πt/M and compute the vector F = fH(θ1), ..., fH(θM/2), where

fH(θ) =
1

π
sin(πH)Γ(2H + 1)(1− cos θ)

∑
t∈ℵ
|2πt+ θ|−2H−1

fH(θ) is the spectral density of FGN.

2. Generate M/2 i.i.d exponential Exp(1) random variables E1, ..., EM/2 and M/2 i.i.d uni-

form U [0, 1] random variables U1, ..., UM/2.

3. Compute Zt = exp(2iπUt)
√
FtEt, for t = 1, ...,M/2.

4. Form the M -vector: Z̃ = (0, Z1, ...Z(M/2)−1, ZM/2, Z(M/2)−1, ..., Z1).

5. Compute the inverse fast Fourier transform of the complex Z to obtain the simulated

sample path.

4Other methods for estimating the parameters of a stable distribution (i.e., the method of moments based on
the characteristic function, the regression-type method, and the fast Fourier transform method) are discussed
in Stoyanov and Racheva-Iotova (2004).
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Stoev and Taqqu (2004) generate the approximation of fractional stable noise. They intro-

duce parameters n,N ∈ ℵ, and let the fractional stable noise Y (t) be expressed as

Yn,N(t) :=
nN∑
j=1

(
(
j

n
)
H−1/α
+ − (

j

n
− 1)

H−1/α
+

)
Lα,n(nt− j), (7.0-25)

where Lα,n(t) := Mα((j + 1)/n)−Mα(j/n), j ∈ <. The parameter n is the mesh size and the

parameter M is the cut-off of the kernel function. Stoev and Taqqu (2004) describe an efficient

approximation involving the fast Fourier transform algorithm for Yn,N(t). Consider the moving

average process Z(m), m ∈ ℵ,

Z(m) :=
nM∑
j=1

gH,n(j)Lα(m− j), (7.0-26)

where

gH,n(j) :=
(
(
j

n
)H−1/α
+ − (

j

n
− 1)H−1/α

+

)
n−1/α, (7.0-27)

and where Lα(j) is the series of i.i.d standard stable Paretian random variables. Since Lα,n(j)
d
=

n−1/αLα(j), j ∈ <, equations (7.0-25) and (7.0-26) imply Yn,N(t)
d
= Z(nt), for t = 1, ..., T .

Then, the computing of Yn,N(t) is transferred to focus on the moving average series Z(m),

m = 1, ..., nT . Let L̃α(j) be the n(N +T )-periodic with L̃α(j) := Lα(j), for j = 1, ..., n(N +T )

and let g̃H,n(j) := gH,n(j), for j = 1, ..., nN ; g̃H,n(j) := 0, for j = nN + 1, ..., n(N + T ). Then

{Z(m)}nTm=1
d
=
{ n(N+T )∑

j=1

g̃H,n(j)L̃α(n− j)
}nT
m=1

, (7.0-28)

because for all m = 1, ..., nT , the summation in equation (7.0-26) involves only Lα(j) with

indices j in the range −nN ≤ j ≤ nT − 1. Using a circular convolution of the two n(N + T )-

periodic series g̃H,n and L̃α computed by using the Stoev-Taqqu discrete Fourier transform, the

variables Z(n), m = 1, ..., nT (i.e., the fractional stable noise), can be generated.

7.5.2 Simulation of the multi-dimensional copulas

Embrechts et al. (2003) suggest a simulation method for the n-dimension Gaussian copula and

Student’s t copula. For the Gaussian copula, the algorithm is:

1. Find the Cholesky decomposition A of the correlation matrix ρ.

2. Simulate n independent random variates y1, . . . , yn from N (0, 1).

3. Set z = Ay.
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4. Set ui = Φ(zi) for i = 1, . . . , n.

5. (u1, . . . , un)
T ∼ CN

ρ .

For the Student’s t copula, the algorithm is:

1. Find the Cholesky decomposition A of the correlation matrix ρ.

2. Simulate n independent random variates y1, . . . , yn from N (0, 1).

3. Simulate a random variate α from χ2
ν independent of y1, . . . , yn.

4. Set z = Ay.

5. Set x =
√
ν√
α
y.

6. Set ui = tν(xi) for i = 1, . . . , n.

7. (u1, . . . , un)
T ∼ Ct

ν,ρ.

These algorithms have been adopted in Section 6 for the empirical research in this chapter.

7.6 Empirical results

Table 7.1 shows the descriptive statistics for the nine international stock indexes in my study.

All returns for the indexes used in this study are calculated as

yi,t = 100× log
( Pi,t
Pi,t−1

)
.

From the statistics reported in this table, it can be seen that excess kurtosis exists. Figure

7.1 shows the movement of the nine stock indexes. From this figure, the co-movement can be

observed.

For the return of each stock index in my study, I denote N as the sample length, sub-sample

series that have been randomly selected by a moving window with length T (1 ≤ T ≤ N).

Replacement is allowed in the sampling. In the empirical analysis, sub-sample length (i.e., the

window length) of T = 1 month was chosen. A total of 1,800 (200 sub-samples for each stock

index) sub-samples were randomly created.

Engle (1982) proposes a Lagrange-multiplier test for the ARCH phenomenon. Table 7.2

shows the test statistics and the critical values to reject the null hypothesis that there is no
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ARCH effect at different lag levels. It is clear from the results reported in the table that an

ARCH effect is exhibited in these return series.

I use the Ljung-Box-Pierce Q-statistic based on the autocorrelation function to test for serial

correlation (i.e., the memory effect). Table 7.3 shows that the null hypothesis that there is no

serial correlation can be rejected at different lags. The table shows that the memory effect

occurs for each index return series. In order to see when the memory effect vanishes, I compare

the Q-statistic with its corresponding critical value. When the quotient of the Q-statistic

and the corresponding critical value are less than 1, I cannot reject the null hypothesis that

there is no serial correlation. From Table 7.3, I find that the quotient of the Q-statistic to its

corresponding critical value exceeds unity. I can therefore reject the null hypothesis that there

is no serial correlation and can say that long-range dependence is exhibited by my dataset.

Table 7.4 reports the parameters estimated from the ARMA(1,1)-GARCH(1,1) assuming

that residuals are identically and independently normally distributed with zero mean and unit

variance. Based on equation (7.0-9), I generate the empirical residuals. The descriptive statistic

of the empirical residuals ũt is shown in Table 7.5. The results reported in the table make it

clear that excess kurtosis still exists and the residuals do not follow i.i.d. N (0,1) distribution.

Table 7.6 shows the parameters estimated for empirical residuals ũt based on the methods

introduced in Section 7.4. As I mentioned in that section, the Hurst index for non-Gaussian

stable processes has different bounds for “persistence” and “anti-persistence”. For tail index

α ∈ (0, 2), when H ∈ (0, 1/α), the processes exhibit “anti-persistence”, and when H ∈ (1/α, 1),

the processes exhibit “persistence”. There is no long-range dependence when α ∈ (0, 1] because

the Hurst index is bounded in the interval (0, 1). When H = 1/α, depending on the value of

α, the processes exhibit either no memory or long-range dependence. From Tables 7.1 and 7.6,

I find that the Hurst index has no value that is equal to 1/α. Therefore, I find that long-range

dependence occurs in my dataset.

The AD and KS statistics were calculated for the six candidate distributional assumptions.

Table 7.7 reports the descriptive statistics of the computed AD, KS, and CVM statistics. As can

be seen in the table, ARMA-GARCH with a fractional Gaussian noise model exhibits a smaller

mean value for the AD, KS, and CVM statistics than the other five models. Figure 7.2 shows the

boxplot of AD statistics for the six alternative ARMA-GARCH models investigated. Figure

7.3 shows the boxplot of KS statistics and Figure 7.4 shows the boxplot of CVM statistics.

ARMA-GARCH with fractional Gaussian noise model exhibits smaller mean and less outliers,

demonstrating the advantage of this model.

I applied the exceedance correlation test of Hong et al. (2006). The test statistic Jρ and
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corresponding p value for rejecting the null hypothesis of symmetric correlation are illustrated

in Table 8 and Table 7.9. For the test result reported in Table 7.8, I chose q (i.e., the ex-

ceedance level) at 0.8 quantile while Table 7.9 reports the test result at exceedance level of 0.95

quantile. At the exceedance level of 0.7 quantile, two pairs of correlation are not symmetric

(i.e., DAX/STOXX with a p value of 0.0458 and FCHI/HSI with a p value of 0.0323) if I set

the confidence level at α = 0.05. However, at the same confidence level, the tests at exceedance

level of 0.95 quantile do not reject the null hypothesis of symmetric correlation for all pairs

tested. This test implies that in my sample, tail dependence exists in a symmetric way for the

nine indexes from international equity markets. Therefore, the copulas based on the symmetric

correlation assumption are still valid.

As can be seen from Table 1, the index returns clearly do not follow the Gaussian distribution.

Stable parameters in this table also exhibit the non-Gaussian characteristic since the stable

parameter is equal to 2 for the Gaussian case. The heavy tailedness can be easily observed

in the data. Accordingly it seems that the application of heavy-tailed distributions should

perform better than the Gaussian distribution or fractional Gaussian noise. The empirical

result found by simulating the marginal distribution indicates that the fractional Gaussian

noise subordinated in the ARMA-GARCH model fits better than other alternatives. I believe

that there are two reasons for this. First, the heavy tailendness of index returns stems from

the heavy tailedness of each index component stock. The equity market indexes aggregate

those stocks that exhibit heavy tailedness. The aggregation of heavy-tailed distributions is

asymptotically self-similar, and the fractional Gaussian noise is a typical stochastic process

with self-similarity. The heavy-tailedness effect is considered in the self-similarity. Second,

after the aggregation, although equity market indexes exhibit heavy tailedness, the influence of

such effect (non-Gaussian and heavy tailedness) in the movement of the market index is weak

compared to long-range dependence and volatility clustering.

From the goodness of fit testing for marginal distributions, I find the best fit model is

ARMA-GARCH with a fractional Gaussian noise model. Then taking ARMA-GARCH with a

fractional Gaussian noise model as marginal distributions for each stock index return, I simulate

multivariate Gaussian copula (in this empirical study, 9 dimensions for the data) and Student’s t

copula for the dependence structure of these nine index returns. Table 7.8 shows the descriptive

statistics of the computed AD, KS, and CVM statistics for 200 sub-sample matrices with nine

marginal distributions as the column vectors. In this table, the Student’s t copula exhibits

smaller mean values for the computed AD, KS, and CVM statistics than the Gaussian copula,

indicating the better performance. My results agree with those of Marshal and Zeevi (2002)

who investigated the extreme co-movements in equity markets and found that the Gaussian
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copula is not sufficient to model equity return dependence while the student t copula performs

better.

7.7 Conclusion

There is considerable interest in the co-movement of international equity markets. The linear

correlation measure is not satisfactory to discover the dependence structure between equity

markets. With several advantages, copulas are regarded as the ideal measure to model both

the degree and structure of dependence. Some works are based on the bivariate co-movement. In

this chapter, I use the copula ARMA-GARCH model to capture the multivariate co-movement

among the international equity markets in this study.

In this empirical analysis, I investigate a ARMA-GARCH model with six forms for the

residuals (fractional stable noise, fractional Gaussian noise, stable distribution, white noise,

generalized Pareto distribution, and generalized extreme value distribution) for modeling the

marginal distribution for the nine international equity market indexes. By using parameters

estimated from the empirical series, I simulate a series for each index returns with these six dif-

ferent modeling structures. Then I compare the goodness of fit for these generated series to the

empirical series by adopting three criteria for the goodness of fit test: the Kolmogorov-Smirnov

distance, the Anderson-Darling distance, and the Cramer von Mises distance. Based on a com-

parison of these criteria, the empirical evidence shows that the ARMA-GARCH model with

fractional Gaussian noise demonstrates better performance in modeling marginal distributions.

Using an ARMA-GARCH model with fractional Gaussian noise, I simultaneously simulate

the nine index returns with both the Gaussian copula and Student’s t copula. By using the same

criteria of goodness of fit test in comparing marginal distributions, I find that the Student’s t

copula is better than the Gaussian copula when modeling the multivariate co-movement of these

nine equity markets. The reason is that Student’s t copula can capture the tail dependence

among these index returns for both positive and negative extreme values, while the Gaussian

copula cannot.

The findings reported in this chapter should be taken into account in modeling the co-

movement of global equity markets for several reasons. First, using multi-dimensional copulas

rather than bivariate copulas can reveal the simultaneous co-movement of several markets.

Second, when modeling the marginal distribution of each market’s returns, my model can

capture long-range dependence, heavy tails, and volatility clustering simultaneously. Third,
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using high-frequency data, the impact of both macroeconomic factors and microstructure effects

on each market can be considered. The model reveals that similar factors impact the co-

movement of international markets and that investors’ behaviors in each market are similar,

especially their reactions in each market to world news are similar. With this model, more

accurate prediction is possible for the simultaneous co-movement of several equity markets.
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Figure 7.1: Plot of Index Movements
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Table 7.2: Result of the ARCH-test for different lags at α = 0.05.

lag1 lag2 lag5 lag10 lag15 lag20 lag25 lag30

AORD 37152 37669 39206 39257 39265 39346 39356 39355
DAX 3910 4103 4565 6678 6745 6898 6914 6932
FCHI 10 12 19 23 29 60 69 75
FTSE 12854 12913 14395 14465 14512 15008 15472 15483
HSI 21 28 37 41 44 47 48 49

KS200 8 21 38 39 39 39 39 39
N225 66 73 633 642 644 646 647 647
SPX 7 11 16 17 17 17 17 18

STOXX 2342 3763 4831 4961 5005 5035 5060 5087

Critical Value 3.8415 5.9915 11.0700 18.3070 24.9960 31.4100 37.6520 43.7730
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Table 7.4: Estimated parameters of the AMAR(1,1)-GARCH(1,1) model with residuals follow-

ing normal distribution with zero mean and unit variance. Numbers in parentheses are the

standard errors. These parameters are used in the empirical simulation.

α0 α1 β1 κ γ1 θ1

AORD 3.9724E-07 -0.1952 0.1136 4.6260E-009 0.6486 0.3438
(9.5130E-08 ) (1.1634E-11 ) ( 1.1618E-11 ) ( 3.3215E-12 ) (1.2023E-12 ) (1.6527E-11 )

DAX -1.9424E-07 0.5559 -0.3766 1.3826E-008 0.6558 0.3442
(3.5419E-08 ) (1.1621E-12 ) ( 1.3573E-12 ) ( 1.7137E-12 ) (3.4729E-12 ) (2.2729E-12 )

FCHI -9.5146E-08 0.5869 -0.4720 2.7586E-08 0.8135 0.1227
(1.4999E-07 ) (1.0717E-06 ) ( 1.2618E-6 ) ( 8.4707E-12 ) (2.7037E-05 ) (2.1210E-05 )

FTSE -1.2392E-07 0.8232 -0.7568 6.5616E-09 0.5987 0.2812
(3.3959E-08 ) (3.0773E-13 ) ( 2.3373E-13 ) ( 3.7753E-12 ) (1.2205E-12 ) (1.2504E-13 )

HSI -9.8445E-10 0.5154 -0.6893 2.8409E-08 0.6931 0.2610
(5.5655E-08 ) (2.5658E-04 ) ( 3.3054E-04 ) ( 4.7913E-11 ) (3.3037E-04 ) (3.2846E-04 )

KS200 4.3005E-06 0.0075 -0.2692 1.9238E-08 0.6582 0.3418
(2.4262E-08 ) (8.6562E-06 ) ( 9.6637E-06 ) ( 3.0034E-12 ) (2.5391E-05 ) (2.1966E-05 )

N225 -4.8124E-06 0.4782 -0.2905 6.6660E-08 0.6170 0.3766
(4.5034E-07 ) (8.2554E-04 ) ( 7.5777E-04 ) ( 2.5256E-10 ) (8.2544E-04 ) (8.0406E-04 )

SPX 2.5689E-07 0.5548 -0.0262 2.4089E-09 0.8386 0.0619
(3.1323E-08 ) (3.1166E-12 ) ( 2.4869E-15 ) ( 4.4352E-14 ) (2.7531E-11 ) (5.2184E-11 )

STOXX 1.3438E-07 0.6101 -0.3995 5.8155E-09 0.6677 0.2631
(7.3838E-08 ) (2.9345E-12 ) ( 1.3513E-12 ) ( 1.3865E-13 ) (2.2687E-11 ) (2.4868E-11 )

Table 7.5: Summary of the empirical ũt.

mean variance kurtosis skewness

AORD -0.0027 0.9085 326.1807 2.5378
DAX 0.0017 0.9384 1034.6394 -2.2134
FCHI -3.6688E-05 0.9196 1032.1787 2.0182
FTSE 0.0038 0.9337 84.3404 -0.5075
HSI 0.0023 0.9522 147.8326 0.7201

KS200 -0.0170 1.0982 1379.5626 6.9291
N225 0.0103 1.0463 74.6847 0.6791
SPX -0.0026 1.0008 14390.3118 -40.7157

STOXX -0.0011 0.9487 6051.9163 -6.9826
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Table 7.6: Parameters estimated from the empirical ũt.

HurstFGN Hurstfsn α β γ ζ

AORD 0.5366 0.5791 1.8777 -0.2610 0.4765 0.0063
DAX 0.5619 0.5492 1.3976 -0.0103 0.3765 -0.0026
FCHI 0.5476 0.5107 1.4688 -0.0153 0.3508 -0.0039
FTSE 0.5544 0.5112 1.3538 -0.0126 0.4032 0.0014
HSI 0.4588 0.6376 1.0914 -0.0016 0.2550 -9.8442E-04

KS200 0.5168 0.5594 1.4387 0.0147 0.3869 -0.0195
N225 0.5554 0.5260 1.3326 -0.0234 0.3629 0.0021
SPX 0.5278 0.5149 1.3533 -0.0113 0.3535 -0.0073

STOXX 0.5787 0.5604 1.3847 -5.3461E-04 0.3852 -0.0019
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Table 7.7: Summary of the AD, KS and CVM statistics for alternative models for marginal

distribution. Mean, median, standard deviation (“std”), maximum value (“max”), minimum

value (“min”) and range of the AD, KS and CVM statistics are presented in this table. “FGN”

stands for fractional Gaussian noise, “fsn” for fractional stable noise, “normal” for white noise,

“stable” for stable distribution, “gev” for generalized extreme value distribution, and “gpd” for

generalized Pareto distribution.

ADmean ADmedian ADstd ADmax ADmin ADrange

ARMA−GARCHFGN 54.8381 54.8220 0.3222 56.2561 53.5083 2.7482
ARMA−GARCHfsn 54.8459 54.7861 0.7213 63.4861 51.7917 11.6952

ARMA−GARCHnormal 55.0686 54.9050 0.8139 66.1060 53.9640 12.1425
ARMA−GARCHstable 55.7993 55.1920 2.2074 77.7650 52.8670 24.9051
ARMA−GARCHgev 55.4836 55.2240 1.2978 73.6110 53.4447 20.1677
ARMA−GARCHgpd 76.7643 70.2010 18.1530 109.5412 45.5832 63.9523

KSmean KSmedian KSstd KSmax KSmin KSrange

ARMA−GARCHFGN 0.5017 0.5012 0.0025 0.5136 0.4966 0.0170
ARMA−GARCHfsn 0.5032 0.5016 0.0058 0.5855 0.4945 0.0910

ARMA−GARCHnormal 0.5039 0.5020 0.0075 0.6035 0.4965 0.1070
ARMA−GARCHstable 0.5116 0.5053 0.0202 0.7103 0.4948 0.2155
ARMA−GARCHgev 0.5079 0.5052 0.0121 0.6721 0.4967 0.1754
ARMA−GARCHgpd 0.7059 0.6476 0.1646 1.0000 0.4309 0.5691

CV Mmean CV Mmedian CV Mstd CV Mmax CV Mmin CV Mrange

ARMA−GARCHFGN 502.4011 500.1612 5.4108 535.6220 498.5100 37.1120
ARMA−GARCHfsn 502.4176 500.2272 5.6007 545.4330 497.8300 47.6120

ARMA−GARCHnormal 502.9730 500.3900 6.3452 568.2810 498.6210 69.6620
ARMA−GARCHstable 505.6970 500.9900 16.8300 773.8670 497.6620 276.1900
ARMA−GARCHgev 503.8650 500.8452 10.4230 684.7800 498.2801 186.4900
ARMA−GARCHgpd 910.7413 627.1045 551.4111 1999.7110 388.6400 1611.1001
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Table 7.8: Jρ statistic of testing exceedence correlation at quantile=0.8. p values of rejecting

the null hypothesis of symmetric correlation are reported in parentheses.

DAX FCHI FTSE HSI KS200 N225 SPX STOXX

AORD 1.0058 1.2757 2.3229 0.0894 0.7097 0.0610 0.5043 0.4164
(0.3158) (0.2586) (0.1274) (0.7649) (0.3995) (0.8048) (0.4775) (0.5187)

DAX 0.001 2.9011 2.161 0.7393 0.8153 0.0376 3.9866
(0.9743) (0.0885) (0.1415) (0.3898) (0.3665) (0.8461) (0.0458)

FCHI 0.343 4.5819 3.1019 1.6173 0.1942 0.9737
(0.5580) (0.0323) (0.0781) (0.2034) (0.6594) (0.3237)

FTSE 0.1115 2.2976 0.2142 0.0644 0.1000
(0.7384) (0.1295) (0.6434) (0.7995) (0.7517)

HSI 0.6317 0.6457 0.495 0.1771
(0.4267) (0.4216) (0.4816) (0.6738)

KS200 0.5464 0.0819 0.3178
(0.4597) (0.7746) (0.5728)

N225 8.13E-05 0.242
(0.9928) (0.6226)

SPX 0.1221
(0.7266)
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Table 7.9: Jρ statistic of testing exceedence correlation at quantile=0.95. p values of rejecting

the null hypothesis of symmetric correlation are reported in parentheses.

DAX FCHI FTSE HSI KS200 N225 SPX STOXX

AORD 2.5350 1.2649 0.4065 0.9127 1.4148 0.3300 0.0256 0.7522
(0.1113) (0.2607) (0.5237) (0.3393) (0.2342) (0.5656) (0.8726) (0.3857)

DAX 0.5586 0.3197 0.3560 0.7390 0.0086 0.1135 1.5363
(0.4548) (0.5717) (0.5506) (0.3899) (0.9258) (0.7360) (0.2151)

FCHI 1.8125 0.7246 0.0236 1.3454 0.6177 3.3126
(0.1782) (0.3946) (0.8778) (0.2460) (0.4318) (0.0680)

FTSE 0.9908 1.2734 1.1343 0.919 0.7235
(0.3195) (0.2591) (0.2868) (0.3377) (0.3949)

HSI 1.2354 2.2382 0.4741 0.3233
(0.2663) (0.1346) (0.4910) (0.5695)

KS200 3.4007 1.6541 0.0108
(0.0651) (0.1983) (0.9170)

N225 0.5622 0.0927
(0.4533) (0.7606)

SPX 0.5598
(0.4543)

Table 7.10: Summary of the AD, KS and CVM statistics for alternative models for joint

distribution. Mean, median, standard deviation (“std”), maximum value (“max”), minimum

value (“min”) and range of the AD, KS and CVM statistics are presented in this table.

ADmean ADmedian ADstd ADmax ADmin ADrange

Gaussian copula 0.9241 0.9374 0.0338 0.9718 0.8370 0.1348
Student’s t copula 0.9237 0.9362 0.0340 0.9716 0.8382 0.1334

KSmean KSmedian KSstd KSmax KSmin KSrange

Gaussian copula 48.4519 55.5841 16.3230 67.9456 9.6306 58.3150
Student’s t copula 48.4470 55.5060 16.3190 67.9740 9.9158 58.0580

CV Mmean CV Mmedian CV Mstd CV Mmax CV Mmin CV Mrange

Gaussian copula 785.6190 798.7101 24.5134 817.5083 729.5811 87.9272
Student’s t copula 785.2964 798.1155 24.6323 817.9235 728.6673 89.2562
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Figure 7.2: Boxplot of AD statistics of modeling mar-
ginal distribution with alternative residual distributions.

Figure 7.3: Boxplot of KS statistics of modeling mar-
ginal distribution with alternative residual distributions.

Figure 7.4: Boxplot of CVM statistics of modeling
marginal distribution with alternative residual distribu-
tions.
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Chapter 8

Modeling Multivariate High-Frequency

Time Series II

8.1 Introduction

Correlation is a measure of dependence between random variables that is commonly used in

finance, particularly for measuring risk diversification potential in portfolio management. Sun

et al. (2007b) points out that when analyzing an equity market, two dependence structures

are encountered: the correlation within a single asset and the correlation between several

assets. However the term “correlation” is very often incorrectly used to mean any notion of

dependence. Actually correlation is one particular measure of dependence among many. In

a world of spherical and elliptical distributions, it is the accepted measure. Because financial

theories and risk management analysis rely crucially on the dependence structure of assets,

the limitations of correlation as a measure of the dependence among random variables requires

that we seek a more reliable measure of dependence. Copulas are alternative measures that

can overcome the limitations of correlation.

When dealing with the dependence structure between several assets, the usual linear cor-

relation is often applied. But the usual linear correlation is not a satisfactory measure of the

dependence among several assets in the equity market. First, when the variance of returns in

those assets turns out to be infinite, that is, extreme events are frequently observed, the linear

correlation between these assets is undefined. Second, linear correlation assumes that both

marginal and joint distributions of returns in these assets are elliptical. In real-world markets,

this assumption is unwarranted. Third, the linear correlation is not invariant under nonlinear

strictly increasing transformations, implying that the return might be uncorrelated whereas

the prices are correlated or vice versa. Fourth, linear correlation only measures the degree
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of dependence but does not clearly discover the structure of dependence. It has been widely

observed that the price of several assets drops at about the same time period even when the

correlation among those assets is fairly low. In real-world markets this is due to the problem of

liquidity in markets and the difficulty of financing positions in the repo (repurchase agreements)

market. The structure of dependence also influences the diversification benefit gained based on

a linear correlation measure. Embrechts et al. (2003) and Rachev et al. (2005) illustrate the

drawbacks of using linear correlation to analyze dependency. A more prevalent approach which

overcomes the disadvantages of linear correlation is to model dependency by using copulas.

With the copula method, the nature of dependence that can be modeled is more general and

the dependence of extreme events can be considered.

Two commonly used unconditional copulas are the unconditional Gaussian copula and un-

conditional Student’s t copula1. Empirical studies have failed to support the assumption that

return data follow a Gaussian distribution2. Instead, return data often exhibit excess kurtosis

and heavy tails. Nor is the multivariate Gaussian distribution warranted either when study-

ing multi-dimensional return data because of tail dependence among them. The Student’s t

copula and Clayton copulas can characterize tail dependence in multi-dimensional return data

but the Gaussian copula cannot. In Clayton copulas, only the Joe-Clayton copula can capture

both the lower and upper tail dependence and allows for asymmetric tail dependence. Unfor-

tunately, due to computational difficulties, the Joe-Clayton copula cannot be implemented for

multi-dimensional return data; however, the Student’s t copula can be implemented to cap-

ture tail dependence in multi-dimensional return data (see, Embrechts et al. (2003), Patton

(2005), and Nelsen (2006)). Although the Student’s t copula can capture the tail dependence

in multi-dimensional return data, it is only good for modeling symmetric correlations or tail

dependence. Several studies point out that stocks tend to have greater correlations in a bearish

market than in a bullish market (see, for example, Ang and Chen 2002, Login and Solnik 2001,

and Hong et al. 2006). The Joe-Clayton copula is a traditional tool to cope with asymmetric

dependence structure but it possesses the major deficiency mentioned above. In order to model

the asymmetric tail dependence, I employ the skewed Student’s t copula (also see Demarta and

McNeil 2005) in this study.

When dealing with the dependence (i.e., long-range dependence) of a single asset, we should

take other stylized factors into account such as volatility clustering and distributional heavy

tails. It is necessary to treat long-range dependence, volatility clustering, and heavy tailedness

simultaneously in order to obtain more accurate predictions of market volatility. Rachev and

1Specification of these two copulas is given in the Appendix.
2For a summary of the empirical evidence, see Rachev et al. (2005).
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Mittnik (2000) note that for modeling financial data, not only does model structure play an

important role, but distribution assumptions influence modeling accuracy. Historically, the

normal distribution has been used despite the mounting evidence that the returns of financial

assets do not follow the normal law. Empirically asset returns have been found to be skewed

and characterized by kurtosis exceeding that of the normal distribution. Consequently, a flex-

ible distribution is needed to deal with such stylized facts. Moreover, in order to model the

dynamic behavior of financial returns through time, not only is a more flexible static distribu-

tion needed, but also more flexible stochastic processes. Such processes must have independent

and stationary increments based on a more general distribution than the normal distribution.

To ensure independent and stationary increments, the required distribution has to be infinitely

divisible (see Rachev and Mittnik 2000 and Schoutens 2003).

Lévy distributions/processes provide an ideal solution for replacing the normal distribution

with sophisticated infinitely divisibility. For example, the Lévy stable distribution can be used

to capture characteristics of financial data since it is rich enough to encompass the stylized

facts noted earlier. Other researchers have shown the advantages of Lévy stable distribu-

tions in financial modeling (see, Fama (1963), Mittnik and Rachev (1993), Rachev (2003), and

Rachev et al. (2005)). Several other examples are reported in the literature, such as the Lévy

process with Variance Gamma distributed increments proposed by Madan and Seneta (1990)

and the NIG Lévy process proposed by Barndorff-Nielsen (1998). Sun et al. (2007a) report the

Lévy fractional stable process has advantages in modeling ultra-high-frequency data because

this process has self-similarity which describes the property that the correlation structure of

a process is preserved irrespective of time scaling (also see Taqqu and Samorodnitsky 1994,

Rachev and Mittnik 2000, Rachev and Samorodnitsky 2001, Doukhan et al. 2003, and Will-

inger et al. (1998)). Therefore, it is natural to employ specific Lévy processes in the study of

the within-asset dependence together with capturing volatility clustering and heavy-tailedness.

Based on a copula-ARMA-GARCH modeling structure for six indexes in the German equity

market, I compare several candidate specifications using simulation methods. In the model-

ing structure, the marginal distribution captures the long-range dependence, heavy tails, and

volatility clustering simultaneously in order to obtain more accurate predictions (for example,

utilizing Lévy processes in the marginals), and these marginal distributions are connected by a

specified copula. The empirical results indicate that the skewed Student’s t copula and ARMA-

GARCH model with Lévy fractional stable noise dominate the alternative models tested in this

study.

I organized this chapter as follows. A brief introduction of skewed Student’s t copula is

provided in Section 8.2. In Section 8.3, I specify three Lévy family models investigated in my
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study (i.e., Lévy stable distribution, fractional Gaussian noise, and Lévy fractional stable noise)

utilized in modeling the marginal distribution for each index. The study’s data and empirical

methodology are described in Section 8.4 and the empirical results based on high-frequency

data at 1-minute level for six German equity market indexes are reported. In that section,

I report the comparison of the goodness of fit for both the marginal distribution and joint

distribution. I summarize my conclusions in Section 8.5.

8.2 Skewed Student’s t Copula

Copulas enable the dependence structure to be extracted from both the joint distribution

function and the marginal distribution functions. From a mathematical viewpoint, a copula

function C is a probability distribution function on the n-dimensional hypercube. Sklar (1959)

has shown that any multivariate probability distribution function FY of some random vector

Y = (Y1, ..., Yn) can be represented with the help of a copula function C of the following form:

FY (y1, ..., yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)

= C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn))

= C(FY1(y1), . . . , FYn(yn))

where FYi
, i = 1, . . . , n denote the marginal distribution functions of the random variables, Yi,

i = 1, . . . , n.

When the variables are continuous, the density c associated with the copula is given by:

c(FY1(y1), . . . , FYn(yn)) =
∂nC(FY1(y1), . . . , FYn(yn))

∂FY1(y1), . . . , ∂FYn(yn)
.

The density function fY corresponding to the n-variate distribution function FY is

fY (y1, ..., yn) = c(FY1(y1), . . . , FYn(yn))
n∏
i=n

fYi
(yi),

where fYi
, i = 1, . . . , n is the density function of FYi

, i = 1, . . . , n (see, Joe (1997), Cherubini

et al. (2004), and Nelsen (2006)).

8.2.1 Multivariate skewed Student’s t distribution

The form of the multivariate skewed Student’s t distribution I am using is defined through the

following stochastic representation3:

3For more information, see Section 12.7 in Rachev and Mittnik (2000) and Demarta and McNeil (2005).
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X := µ+ γW + Z
√
W (8.0-1)

where W ∈ IG(ν/2, ν/2) and Z ∈ N(0,Σ), Z is independent of W , γ = (γ1, . . . , γn) is a n-

dimensional vector accounting for the skewness, µ = (µ1, . . . , µn) is a n-dimensional location pa-

rameter vector, and ν is the degrees of freedom. I denote this distribution by X ∈ tn(ν, µ,Σ, γ).
The notation IG(ν/2, ν/2) stands for the inverse gamma distribution with parameters ν/2.

Thus, W is a one-dimensional random variable and Z is a random vector having a zero-mean

multivariate normal distribution with covariance matrix

Σ =


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn

 .

The multivariate skewed Student’s t distribution allows for the closed-form expression of its

density.

fX(x) =
aK(ν+n)/2

(√
(ν + (x− µ)′Σ−1(x− µ))γ′Σ−1γ

)
exp((x− µ)′Σ−1γ)

(ν + (x− µ)′Σ−1(x− µ))γ′Σ−1γ)−
ν+n

4

(
1 + (x−µ)′Σ−1(x−µ)

ν

) ν+n
n

where x ∈ Rn, K is the modified Bessel function of the third kind, and

a =
2

2−ν−n
2

Γ(ν/2)(πν)n/2
√
|Σ|

.

The skewed Student’s t copula is defined as the copula of the multivariate distribution of X.

Therefore, the copula function is

C(u1, . . . , un) = FX(F−1
1 (u1), . . . , F

−1
n (un))

where FX is the multivariate distribution function of X and F−1
k (uk), k = 1, n is the inverse

c.d.f of the k-th marginal of X. That is, FX(x) has the density fX(x) defined above and the

density function fk(x) of each marginal is

fk(x) =

aK(ν+1)/2

(√(
ν + (x−µk)2

σkk

)
γ2

k

σkk

)
exp

(
(x− µk)

γk

σkk

)
((
ν + (x−µk)2

σkk

)
γ2

k

σkk

)− ν+1
4 (

1 + (x−µk)2

νσkk

)ν+1
, x ∈ R (8.0-2)
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where σkk is the k-th diagonal element in the matrix Σ.

In the sequel, I assume that there are n risk variables with historical dataXT×n = (X1, . . . , Xn).

The algorithm for estimating the parameters and generating the scenarios are given in the next

section. I describe not only the generation of simulations from the fitted copula but also how

it is combined with one-dimensional assumptions for the marginals.

8.2.2 Simulation Algorithm

The simulation algorithm of the multivariate skewed Student’s t distribution involves the fol-

lowing steps:

1. I first use the maximum likelihood estimation (MLE) method to obtain the estimated

parameters (ν, µ̂i, σ̂i, γ̂i) for i = 1, n. No flexibility is lost by fixing the degrees of freedom;

the symmetric case appears when γ̂ = 0. Estimate the matrix Σ of the multivariate

skewed Student’s t distribution by the following formula

Σ̂ =

(
cov(X)− 2ν2

(ν − 2)2(ν − 4)
γ̂γ̂′

)
ν − 2

2

where ν is the degree of freedom and γ̂ = (γ̂1, . . . , γ̂n).

2. Draw N independent n-dimensional vectors from the multivariate skewed Student’s t

distribution using the stochastic representation (1) with the already fitted parameters

(ν, µ̂, Σ̂, γ̂). The result from that step is a N -by-n matrix S = {Sij} with simulations.

(a) Draw N independent n-dimensional vectors from the multivariate normal distribu-

tion N(0, Σ̂).

(b) Draw N independent random numbers from the inverse gamma distribution with

parameters IG(ν/2, ν/2).

(c) Obtain final simulations by formula (8.0-1) using the estimated parameter values.

3. Transform simulations S to uniform simulations U using the sample distribution function

of the marginals. Denote by F̂k(x) the sample c.d.f. of the k-th marginal,

F̂k(x) =
1

N

N∑
j=1

I{Sjk ≤ x}

where I{A} stands for the indicator function of the set A. Then

Ujk = F̂k(Sjk), j = 1, N k = 1, n (8.0-3)
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Ideally, instead of using the sample c.d.f., one could use the c.d.f.

Fk(x) =
∫ x

−∞
fX(t)dt

where the density fX(t) is given in (8.0-2). While this approach is more accurate, it is

not analytically tractable.

In order to combine the copula with different one-dimensional marginals, two more steps are

needed:

1. Fit marginal distribution parameters (depends on corresponding one-dimensional model)

for all risk variables. In effect, I have a set of parameters for each variable.

2. Once I have obtained the uniform scenarios U = {Ujk} in (8.0-3), I transform them by

the inverse of the fitted one-dimensional distribution functions,

Rjk = G−1
k (Ujk), j = 1, N k = 1, n

If no closed-form expressions are available, one can resort to the inverse of the sample

c.d.f.

8.3 Lévy Processes with Specifications

Lévy processes have become increasingly popular in mathematical finance because they can

describe the observed reality of financial markets in a more accurate way. They capture jumps,

heavy-tails, and skewness observed from “real” asset price processes. Meanwhile, Lévy processes

provide us the appropriate option pricing framework to model implied volatilities across strike

and across maturities with respect to the “risk-neutral” assumption. In this section, I intro-

duce the definition of Lévy processes as well as one specific form (the Lévy fractional stable

motion) and two extensions of infinitely divisible distributions (the Lévy stable distribution

and fractional Brownian motion) that I apply in this study.

8.3.1 Lévy processses

Suppose φ(u) is the characteristic function of a distribution. If for every positive interger n,

φ(u) is also the n-th power of a characteristic function, this distribution is said to be infinitely

divisible. A stochastic process X = (Xt)t≥0 can be defined for every such an infinitely divisible

distribution. For this stochastic process X = (Xt)t≥0 on (Ω,F ,P) to be called a Lévy process,

the following five conditions (see Sato (1999)) have to be satisfied:
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1. X0=0 almost surely.

2. X has independent increments: given 0 < t1 < t2 < · · · < tn, the random variables

Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1 are independent.

3. X has stationary increment: for t ≥ 0, the distribution of Xt+s −Xs does not depend on

s ≥ 0.

4. X is stochastically continuous: ∀ t ≥ 0 and ε > 0, lims→t P [(Xs −Xt) > ε] = 0.

5. X is right continuous and has left limits (càdlàg).

The cumulative characteristic function ψ(u) = log φ(u) must satisfy the Lévy-Khintchine

formula given as follows:

ψ(u) = iγu− σ2

2
u2 +

∫ +∞

−∞

(
exp(iux)− 1− iux1{|x|<1}

)
v(dx)

where γ ∈ R, σ2 ≥ 0 and v is a measure on R\{0} with∫ +∞

−∞
inf{1, x2}v(dx) =

∫ +∞

−∞
(1 ∧ x2)v(dx) <∞.

As to this case, the infinitely divisible distribution has a Lévy triplet [γ, σ2, v(dx)] and v is

called the Lévy measure of X (see Sato 1999 for more general reference).

8.3.2 Lévy Stable Distribution

The Lévy stable distribution (sometimes referred to as α-stable distribution) has four para-

meters for complete description: an index of stability α ∈ (0, 2] (also called the tail index), a

skewness parameter β ∈ [−1, 1], a scale parameter γ > 0, and a location parameter ζ ∈ <.

There is unfortunately no closed-form expression for the density function and distribution func-

tion of a Lévy stable distribution. Rachev and Mittnik (2000) give the definition for the Lévy

stable distribution: A random variable X is said to have a Lévy stable distribution if there are

parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0 and ζ real such that its characteristic function has

the following form:

E exp(iθX) =

 exp{−γα|θ|α(1− iβ(signθ) tan πα
2

) + iζθ}, if α 6= 1

exp{−γ|θ|(1 + iβ 2
π
(signθ) ln |θ|) + iζθ}, if α = 1

(8.0-4)

and,

signθ =


1, if θ > 0

0, if θ = 0

−1, if θ < 0

(8.0-5)

For 0 < α < 1 and β = 1 or β = −1, the stable density is only for a half line.
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8.3.3 Fractional Brownian Motion

For a given H ∈ (0, 1), there is basically a single Gaussian H-sssi 4 process, namely fractional

Brownian motion (fBm), first introduced by Kolmogorov (1940). Mandelbrot and Wallis (1968)

and Taqqu (2003) define fBm as a Gaussian H-sssi process {BH(t)}t∈R with 0 < H < 1.

Mandelbrot and van Ness (1968) define the stochastic representation

BH(t) :=
1

Γ(H + 1
2
)

(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dB(s) +

∫ t

0
(t− s)H−

1
2dB(s)

)
, (8.0-6)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx,

and 0 < H < 1 is the Hurst parameter. The integrator B is ordinary Brownian motion. The

principal difference between fractional Brownian motion and ordinary Brownian motion is that

the increments in Brownian motion are independent while in fractional Brownian motion they

are dependent. For fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its

increments {Yj, j ∈ Z} as fractional Gaussian noise (fGn), which is, for j = 0,±1,±2, ...,

Yj = BH(j − 1)−BH(j).

8.3.4 Lévy Stable Motion

While fractional Brownian motion can capture the effect of long-range dependence, it has

less power to capture heavy tailedness. The existence of abrupt discontinuities in financial

data, combined with the empirical observation of sample excess kurtosis and unstable variance,

confirms the stable Paretian hypothesis identified by Mandelbrot (1963, 1983). It is natural

to introduce the stable Paretian distribution in self-similar processes in order to capture both

long-range dependence and heavy tailedness. Samorodinitsky and Taqqu (1994) discuss the

α-stable H-sssi processes {X(t), t ∈ R} with 0 < α < 2. If 0 < α < 1, the exponent of self-

similarity is H ∈ (0, 1/α] and if 1 < α < 2, the exponent of self-similarity is H ∈ (0, 1). In

addition, Cohen and Samorodnitsky (2006) show that with exponent H ′ = 1+H(1/α− 1), the

process {X(t), t ∈ R} is a well-defined symmetric α-stable (SαS) process. It has stationary

4The abbreviation of “sssi” means self-similar stationary increments, if the exponent of self-similarity H is
to be emphasized, then “H-sssi” is adopted. Lamperti (1962) first introduced the semi-stable processes (which
we today refer to as self-similar processes). Let T be either R, R+ = {t : t ≥ 0} or {t : t > 0}. The real-
valued process {X(t), t ∈ T} has stationary increments if X(t + a) − X(a) has the same finite-dimensional
distrituions for all a ≥ 0 and t ≥ 0. Then the real-valued process {X(t), t ∈ T} is self-similar with exponent
of self-similarity H for any a > 0, and d ≥ 1, t1, t2, ..., td ∈ T , satisfying: (X(at1), X(at2), ..., X(atd))

d=
(aHX(t1), aHX(t2), ...aHX(td)).
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increments and is self-similar. They show that (1) for 0 < α < 1, a family of H ′-sssi SαS

processes with H ′ ∈ (1, 1/α) is obtained, (2) for 1 < α < 2, a family of H ′-sssi SαS processes

with H ′ ∈ (1/α, 1) is obtained, and (3) for α = 1, a family of 1-sssi SαS processes is obtained.

There are many extensions of fractional Brownian motion to the Lévy stable distribution.

The most commonly used is linear fractional Lévy motion (also called linear fractional stable

motion), {Lα,H(a, b; t), t ∈ (−∞,∞)}, which Samorodinitsky and Taqqu (1994) define as

Lα,H(a, b; t) :=
∫ ∞

−∞
fα,H(a, b; t, x)M(dx), (8.0-7)

where

fα,H(a, b; t, x) := a
(
(t− x)

H− 1
α

+ − (−x)H−
1
α

+

)
+ b

(
(t− x)

H− 1
α

− − (−x)H−
1
α

−

)
, (8.0-8)

where x+ = max(x, 0), x− = min(x, 0) and a, b are real constants. |a| + |b| > 1, 0 < α < 2,

0 < H < 1, H 6= 1/α, and M is an α-stable random measure on R with Lebesgue control

measure and skewness intensity β(x), x ∈ (−∞,∞) satisfying: β(·) = 0 if α = 1. They define

linear fractional stable noises expressed by Y (t), and Y (t) = Xt −Xt−1,

Y (t) = Lα,H(a, b; t)− Lα,H(a, b; t− 1) (8.0-9)

=
∫
R

(
a
[
(t− x)

H− 1
α

+ − (t− 1− x)
H− 1

α
+

]
+ b

[
(t− x)

H− 1
α

− − (t− 1− x)
H− 1

α
−

])
M(dx),

where Lα,H(a, b; t) is a linear fractional stable motion defined by equation (8.0-8), and M is

a stable random measure with Lebesgue control measure given 0 < α < 2. Samorodinitsky

and Taqqu (1994) show that the kernel fα,H(a, b; t, x) is d-self-similar with d = H − 1/α when

Lα,H(a, b; t) is 1/α-self-similar. This implies H = d + 1/α (see Taqqu and Teverovsky (1998)

and Weron et al. (2005)).5 In this chapter, if there is no special indication, the fractional stable

noise (fsn) is generated from a linear fractional Lévy motion.

5Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968), Maejima (1983),
Maejima and Rachev (1987), Manfields et al. (2001), Rachev and Mittnik (2000), Rachev and Samorodnitsky
(2001), Racheva and Samorodnitsky (2003), Samorodnitsky (1994, 1996, 1998), Samorodinitsky and Taqqu
(1994), and Cohen and Samorodnitsky (2006).
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8.4 Data and empirical methodology

8.4.1 Data

In my study, I consider six German equity market indexes: DAX, HDAX, MDAX, Midcaps,

SDAX, and TecDAX). DAX is the most commonly cited stock index for companies listed on

the Frankfurt Stock Exchange. The composition of the DAX is the 30 largest and most liquid

stocks traded on that exchange. The HDAX includes 110 companies and represents a broader

index covering all sectors and the shares of the largest companies listed in Prime Standard6.

The MDAX includes the 50 companies from classic sectors that rank immediately below the

companies included in the DAX index. The company’s size is based on the order book volume

and market capitalization. The SDAX is the small caps index for 50 smaller companies in

Germany, which in terms of order book volume and market capitalization rank directly below

the MDAX shares. Midcaps is the short name of Midcap Market Index which consists of

80 German companies trading on the Frankfurt Stock Exchange. The TecDAX stock index

tracks the performance of the 30 largest German companies from the technology sector. The

companies rank in terms of order book turnover and market capitalization below those included

in the DAX. 7

In previous studies of the co-movement in equity markets, low-frequency data are usually

examined. Because stock indexes change their composition quite often over time, it is difficult

to find the impact of these changes in composition when analyzing the return history of stock

indexes using low-frequency data. Dacorogna et al. (2001) calls this phenomenon the “break-

down of the permanence hypothesis”. In order to overcome this problem, I use high-frequency

data in my study.

The high-frequency data of the six indexes in the German equity markets listed in Table

8.1 from January 2 to September 30, 2006 were aggregated to the 1-minute frequency level8.

The aggregation algorithm is based on the linear interpolation introduced by Wasserfallen

and Zimmermann (1995). That is, given an inhomogeneous series with times ti and values

ϕi = ϕ(ti), the index i identifies the irregularly spaced sequence. The target homogeneous time

6Prime Standard is a market segment of the German Stock Exchange that lists German companies which
comply with international transparency standards including quarterly reporting in German and English, ap-
plication of international accounting standards (IFRS/IAS or US-GAAP), publication of a financial calendar,
staging of at least one analyst conference a year, and ad-hoc disclosure also in English. All companies listed in
the DAX, MDAX, TecDAX, and SDAX have to belong to Prime Standard.

7More detailed information is available from www.deutsche-boerse.com.
8Starting in 2006, DAX indexes are calculated at every second. In my original dataset, DAX, MDAX, and

TecDAX are sampled at one-second level.
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series is given at times t0 + j∆t with fixed time interval ∆t starting at t0. The index j identifies

the regularly spaced sequence. The time t0 + j∆t is bounded by two times ti of the irregularly

spaced series, I = max( i |ti ≤ t0 + j∆t) and tI ≤ t0 + j∆t > tI+1. Data are interpolated

between tI and tI+1. The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI
tI+1 − tI

(ϕI+1 − ϕI). (8.0-10)

Dacorogna et al. (2001) pointed out that linear interpolation relies on the future of time and

Müller et al. (1990) suggests that linear interpolation is an appropriate method for stochastic

processes with independent and identically distributed (i.i.d.) increments. Empirical evidence

has shown the seasonality in high-frequency data. In order to remove such disturbance, several

methods of data adjusting have been adopted in modeling. Engle and Russell (1998) and

other researchers adopt several methods to adjust the seasonal effect in data. In my study,

seasonality is treated as one type of self-similarity. Consequently, it is not necessary to adjust

for the seasonal effect in the data.

8.4.2 Empirical methodology

To investigate the co-movement of different indexes in German equity markets, I propose the

copula ARMA-GARCH model. This model is implemented with an ARMA-GARCH model

for the marginal distributions and one copula for the joint distribution. Six GARCH models

with different kinds of residuals (i.e., residuals with forms of white noise, fractional Gaussian

noise, Lévy fractional stable noise, Lévy stable distribution, generalized Pareto distribution,

and generalized extreme value distribution) for the marginal distributions are estimated. After

goodness of fit testing, I use the best goodness of fit model for the marginal distributions with

multi-dimesional Gaussian copula, Student’s t copula, and skewed Student’s t copula for the

joint distribution to simulate the returns on the equity indexes. Then, the models will be tested

with several goodness of fit test methods for a large dataset.

I define the ARMA-GARCH model for the conditional mean equation as:

yt = α0 +
r∑
i=1

αi yt−i + εt +
m∑
j=1

βjεt−j.

Let εt = σt ut, where the conditional variance of the innovations, σ2
t , is by definition

V art−1(yt) = Et−1 (ε2
t ) = σ2

t .

The general GARCH(p,q) processes for the conditional variance of the innovation is then

σ2
t = κ+

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε
2
t−j.



177

Since εt = σt ut, ut could be calculated from εt/σt. Defining

ũt =
εst
σ̂t
, (8.0-11)

where εst is estimated from the sample and σ̂t is the estimation of σt. In my study, ARMA(1,1)-

GARCH(1,1) are parameterized as marginal distributions with different kinds of ut (i.e., normal

distribution, fractional Gaussian noise, fractional stable noise, Lévy stable distribution, gener-

alized Pareto distribution, and generalized extreme value distribution).

I will let N (N = 98, 999) denote the length of the sample. The sub-sample series used for

the in-sample analysis are randomly selected by a moving window with length T (1 ≤ T ≤ N).

Replacement is allowed in the sampling. Letting TF denote the length of the forecasting series,

I perform one-week ahead out-of-sample forecasting (1 ≤ T ≤ T + TF ≤ N). In the empirical

analysis, sub-sample length (i.e., the window length) of T = 10, 000 (approximately one month)

was chosen for the in-sample simulation and TF = 2, 250 (approximately one week) for the out-

of-sample forecasting. A total of 300 sub-samples (50 sub-samples for each stock index) were

randomly created.

From the goodness of fit testing for marginal distributions, I find the best fit model. Then

taking the best fit model as marginal distributions for each stock index return, I simulate

a multivariate Gaussian copula, Student’s t copula, and skewed Student’s t copula for the

dependence structure of the nine stock index returns. The simulation method adopted was

explained in Section 8.2.

The Kolmogorov-Smirnov distance (KS), the Anderson-Darling distance (AD), the Cramer

Von Mises distance (CVM), and the Kuiper distance (K) are used as the criterion for the

goodness of fit testing. Specifically, these criterion are defined as follows:

KS = sup
x∈<

|Fs(x)− F̃ (x)|,

AD = sup
x∈<

|Fs(x)− F̃ (x)|√
F̃ (x)(1− F̃ (x))

,

CVM =
∫ ∞

−∞

(
Fs(x)− F̃ (x)

)2
dF̃ (x),

and

K = sup
x∈<

(
Fs(x)− F̃ (x)

)
+ sup

x∈<

(
F̃ (x)− Fs(x)

)
.
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where Fs(x) denotes the empirical sample distribution and F̃ (x) is the estimated distribution

function.

8.4.3 Empirical results

Table 8.1 reports the descriptive statistics for the six German equity market indexes in my

study. All returns for the indexes used in this study are calculated as

yi,t = 100× log
( Pi,t
Pi,t−1

)
.

From the statistics reported in this table, it can be seen that excess kurtosis exists. Figure 8.1

shows the movement of the six stock indexes at its own level. From this figure, the co-movement

of indexes at different levels can be observed. Figure 8.2 shows the return plots for each index;

from the figure I can observe that although each index has a different magnitude of return, the

extreme values occur almost at same time.

Engle (1982) proposes a Lagrange-multiplier test for the ARCH phenomenon. A test statistic

for ARCH of lag order q is given by

Xq ≡ nR2
q ,

where R2
q is the non-centered goodness-of-fit coefficient of a qth-order autoregression of the

squared residuals taken from the original regression

û2
t = ω0 + ω1û

2
t−1 + ω2û

2
t−2 + · · ·+ ωqû

2
t−q + et,

The û in the above equation is the residual in the original regression equation. Under the null

hypothesis of the residuals of the original model being normally i.i.d., the ARCH statistic of

lag order q follows a χ2 distribution with q degree of freedom:

lim
n→∞

Xq ∼ χ2
q.

Table 8.2 shows the test statistics and the critical values to reject the null hypothesis that

there is no ARCH effect at different lag levels for index returns. It is clear from the results

reported in this table that an ARCH effect is exhibited in these return series.

I use the Ljung-Box-Pierce Q-statistic based on the autocorrelation function to test for serial

correlation (i.e., the memory effect). The Q-statistic is given as follows:

Q :∼ χ2
m = N(N + 2)

m∑
k=1

ρ2
k

N − k
,
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where N denotes the sample size, m the number of autocorrelation lags included in the statistic,

and ρk the sample autocorrelation at lag order k which is

ρk =

∑N−k
t=1 ytyt+k∑N

t=1 y
2
t

.

Ljung and Box (1978) show that the Q-statistic follows an asymptotic χ2 distribution.

The results reported in Table 8.3 show that the null hypothesis that there is no serial

correlation can be rejected at different lags for index returns. The table shows that the memory

effect occurs for each index return series. In order to see when the memory effect vanishes, I

compare the Q-statistic with its corresponding critical value. When the quotient of the Q-

statistic and the corresponding critical value are less than 1, I cannot reject the null hypothesis

that there is no serial correlation. From Table 8.3, I find that the quotient of the Q-statistic

to its corresponding critical value exceeds unity. I can therefore reject the null hypothesis that

there is no serial correlation and can say that long-range dependence is exhibited by my dataset.

Table 8.1 also shows the parameters estimated for index returns based on the methods

introduced in Section 8.4. The Hurst index H ∈ (0, 1) is the index of self-similarity. For

Gaussian processes with stationary increments, when

1. H ∈ (0, 0.5), the increments of a process tend to have opposite signs and thus are more

zigzagging due to the negative covariance.

2. H ∈ (0.5, 1), the covariance between these two increments is positive and less zigzagging

of the process.

3. H = 0.5, the covariance between this two increments is zero.

This can be restated as following: If the Hurst index is

1. less than 0.5, the process displays “anti-persistence” (i.e., positive excess return is more

likely to be reversed and the performance in the next period is likely to be below the

average, or in the contrary, negative excess return is more likely to be reversed and the

performance in the next period is likely to be above the average).

2. greater than 0.5, the process displays “persistence” (i.e., positive excess return or negative

excess return is more likely to be continued and the performance in the next period is

likely to be the same as that in the current period).
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3. equal to 0.5, the process displays no memory (i.e., the performance in the next period

has equal probability to be below and above the performance in the current period).

For Lévy fractional stable process, if the process has the index α (0 < α < 2) when H = 1/α

which corresponds to a process with independent increments, then I say this process has no

memory. When H > 1/α, the process displays long-range dependence and when H < 1/α,

the process displays negative dependence. In addition, long-range dependence is only possible

when α > 1, since H ∈ (0, 1) (see, Samorodnitsky and Taqqu (1994)).

In order to check long-range dependence in stock returns, I use the methods introduced by

Sun et al. (2007a) to estimate the Hurst index under the Gaussian and stable assumptions.

I employed the MLE method explained by Rachev and Mittnik (2000) to estimate the stable

parameter. The results, reported in Table 1, indicate that the Hurst index does not have an

estimated value of 0.5 if fractional Gaussian noise is assumed. This suggests the occurence of

either long memory or short memory under the Gaussian assumption 9. In Table 8.1, I can

observe both fluctuation and long memory under the non-Gaussian stable assumption.

Table 8.4 reports the parameters estimated from the ARMA(1,1)-GARCH(1,1) assuming

that residuals are identically and independently normally distributed with zero mean and unit

variance. Based on equation (11), I generate the empirical residuals. The descriptive statistic

of the empirical residuals ũt is shown in Table 8.5. The results reported in the table make it

clear that excess kurtosis still exists and the residuals do not follow i.i.d. N (0,1) distribution.

Table 8.5 reports the descriptive statistics for ũt. I could expect that ũt follows an i.i.d.

standard normal distribution. Unfortunately, in my study, ũt is not i.i.d. standard normal

residuals. They have excess kurtosis, which means heavy tails still exist. Meantime, I could

also observe long-range dependence in ũt by simply checking the value of Hurst index and α. I

use the Ljung-Box-Pierce Q-test again for testing long-range dependence. Table 8.6 reports the

result. This table shows that the memory effect occurs for each ũt series (although for DAX

and HDAX, the memory effect vanishes after a 1 hour lag). The results in Table 8.6 confirm the

information offered by the value of the Hurst index and α in Table 8.5. From Table 8.7, I can

see that there is no ARCH effect in ũt. From Tables 8.5 and 8.6, I can confirm the assumption

of long-range dependence and heavy tailedness in ũt. Therefore using fractional processes (i.e.,

fractional stable noise and fractional Gaussian noise) and heavy-tailed distribution (i.e., Lévy

stable distribution, generalized Pareto distribution, and generalized extreme value distribution)

in the simulation of ũt is reasonable.

9There are various extensions of the self-similarity property for generalized random processes, see Dobrushin
(1979).
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The AD, KS, CVM, and K statistics were calculated for the six candidate distributional

assumptions in ARMA(1,1)-GARCH(1,1) model. Table 8 reports the mean value of each good-

ness of fit statistic. As can be seen in the table, ARMA-GARCH with a fractional stable

noise model exhibits a smaller mean value both in the in-sample simulation and out-of-sample

forecasting for all goodness of fit statistics I used than the other five models.

I use the Gaussian copula, Student t copula, and skewed Student t copula for the joint dis-

tribution of six equity indexes. I employ each of the six candidate models once as marginal

distribution with the Gaussian copula or t copula for in-sample simulation and out-of-sample

forecasting. The mean value of each goodness of fit statistics for each marginal and joint dis-

tribution are reported. Table 8 reports the results of the Gaussian copula with these candidate

models, Table 8.9 reports the results of the Student t copula as a joint distribution, and Table

8.10 reports the results of the skewed Student t copula as a joint distribution.

The smaller the value of the four criterion distances, the better the performance of the

model. I can find that in both in-sample and out-of-sample studies, the ARMA-GARCH model

with Lévy fractional stable noice has minimal values of criterion distances for all three joint

distributions. This coincides with the result reported in Sun et al. (2007a). I report the

summary statistics of my total sample by groups of each criteria with respect to different

models in Table 8.11. I can see that for the criteria values of each model with the Gaussian

copula, the in-sample study is smaller than that of the Student’s t coupla, which means the

Gaussian copula is better than the Student’s t copula for in-sample study. But for the out-of-

sample forecasting, the Student’s t copula is a little better. For the skewed Student’s t copula,

all of the four criteria values significantly decrece compared with the Gaussian and Student’s t

copula. This implies that the six German indexes exhibit asymmetric correlations, confirming

the intuition that volatility is higher in downside markets than in upside markets observed in

Figures 8.1 and 8.2.

In order to confirm this conclusion implied from Table 11, I use Mahalanobis distance (see

Mahalanobis (1936)) to check if the skewed Student’s t copula is significantly better than other

two copulas. The Mahalanobis distance from a group of values with mean µ = (µ1, µ2, . . . , µp)
T

and covariance matrix Σ for a multivariate vector x = (x1, x2, . . . , xp)
T is defined as as

DM(x) =
√

(x− µ)T Σ−1 (x− µ).

It is based on correlations between variables by which different patterns can be identified and

analyzed. It is a useful way of determining similarity/dissimilarity of variables. It differs from

Euclidean distance in that it takes into account the correlations of the data set and is scale-

invariant (i.e., not dependent on the scale of measurements). When the correlation structure of
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variables is unclear, the Mahalanobis distance measure is likely to be the most appropriate due

to its scale-invariant property. If the covariance matrix is the identity matrix, the Mahalanobis

distance reduces to the Euclidean distance.

I report the results in Table 8.12. The Mahalanobis distance tells us that the level of goodness

of fit for the Gaussian copula and Student’s t copula is lower than that of the skewed Student’s

t copula in both in-sample and out-of-sample studies. For the in-sample case, the Mahalanobis

distance shows that the skewed Student’s t copula is better than the Gaussian coupla and the

Student’s t copula (because of 4.3623 < 4.7630 and 4.3802 < 4.7630). Similar results can be

found in the out-of-sample forecasting that the skewed Student’s t copula dominates other two

copulas (because 4.3098 < 4.5399 and 4.4174 < 4.5399). The Mahalanobis distance confirms

the conclusion drawn directly from Table 8 to Table 12: The six German markets comove at

intra-daily level with asymmetric correlations. These results agree with the results reported in

previous studies, for example, Ang and Chen (2002) and Login and Solnik (2001).

8.5 Conclusions

There is considerable interest in the co-movement of assets in equity markets. The linear

correlation measure is not a satisfactory measure for discovering the dependence structure

between equity assets. With several advantages, copulas are regarded as the ideal measure to

model both the degree and structure of dependence. While some papers (for example, Hong et

al. (2006)) are based on the bivariate co-movement, in this chapter I adopt the copula ARMA-

GARCH model using intra-daily data to capture the multi-dimensional co-movement among

six indexes in the German equity markets.

In my empirical analysis, I investigate an ARMA-GARCH model with six forms for the

residuals (Lévy fractional stable noise, fractional Gaussian noise, Lévy stable distribution,

white noise, generalized Pareto distribution, and generalized extreme value distribution) for

modeling the marginal distribution for six German equity market indexes. By using parameters

estimated from the empirical return series, I simulate a return series for each index with these

six different modeling structures. Then I compare the goodness of fit for these generated series

to the empirical series by utilizing three criteria for the goodness of fit test: the Kolmogorov-

Smirnov distance, the Anderson-Darling distance, the Cramer von Mises distance, and the

Kuiper distance. Based on a comparison of these criteria, the empirical evidence shows that

the ARMA-GARCH model with fractional stable noise demonstrates better performance in

modeling marginal distributions.



183

Using an ARMA-GARCH model with six candidate residuals, I simultaneously simulate

the six index returns with the Gaussian copula, Student’s t copula, and skewed Student’s t

copula. By using the same goodness of fit tests in comparing marginal distributions, I find that

the skewed Student’s t copula with Lévy fractional stable ARMA-GARCH model is the best

one when modeling the multivariate co-movement of the six German equity market indexes

investigated. The reason is that the skewed Student’s t copula can capture the tail dependence

among these index returns for both positive and negative extreme values, especially when the

returns are asymmetric. With my model, I find that the comovement of equity markets studied

is asymmetric at the intra-daily level. This finding is consistent with those reported in other

studies.

The findings reported in this chapter should be taken into account in modeling the co-

movement of assets in an equity market for several reasons. First, using multi-dimensional

copulas rather than bivariate copulas can reveal the simultaneous co-movement of several assets.

Second, when modeling the marginal distribution of each market return, my model can capture

long-range dependence, heavy tails, and volatility clustering simultaneously. Third, using high-

frequency data, the impact of both macroeconomic factors and microstructure effects on asset

return can be considered. The model reveals that similar macroeconomic factors impact the

co-movement of different sectors in German equity markets and the feedback from the markets

are also similar.
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Table 8.1: Summary of the statistical characteristics of six index returns.

mean variance kurtosis skewness minimum maximum α HFGN Hfsn

DAX 0.0103 0.0017 129.1500 -1.0195 -1.6531 1.3618 1.2750 0.4999 0.7843
HDAX 0.0105 0.0015 235.5500 -0.5942 -1.7048 1.3866 1.2639 0.5103 0.8014
MDAX 0.0155 0.0010 847.3900 -5.3287 -2.2902 1.8328 1.5078 0.5289 0.6922
Midcap 0.2636 1.0723 838.5400 -4.7981 -81.8860 48.8030 1.6419 0.53158 0.6406
SDAX 0.0145 0.0008 118.4800 0.1410 -1.0037 1.2468 1.4187 0.6270 0.8319
TDAX 0.0100 0.0023 265.6300 -0.5213 -2.2653 2.5694 1.4595 0.5875 0.7727

Table 8.2: Result of the ARCH-test of returns for different lags at α = 0.05.

lag 1min 5min 10min 2hours 1day 1week 2weeks 1month

DAX 273.7 457.6 484.6 491.0 497.9 509.4 521.2 552.0
HDAX 20.2 79.4 94.2 95.8 97.6 102.26 105.8 119.5
MDAX 4.9 128.6 132.9 134.1 134.7 135.8 136.29 137.9
Midcap 20.0 948.8 956.6 957.5 957.8 958.9 959.4 961.1
SDAX 168.5 595.9 680.3 696.6 718.4 734.8 745.0 769.9
TDAX 63.5 630.3 688.4 696.7 706.2 712.4 713.3 727.5

Critical Value 3.8 11.0 18.3 24.9 31.4 37.6 43.7 79.0
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Table 8.3: Result of the Ljung-Box-Pierce Q-test of returns for different lags at α = 0.05.

lag 10min 30min 1hour 2hours 1day 1week 2weeks 1month

DAX 221.4 265.2 304.4 405.9 793.1 3228.1 6273.6 12294.0
HDAX 157.0 207.7 245.4 329.7 748.4 3388.3 7277.0 13452.0
MDAX 2247.7 2511.3 2670.2 2774.9 3190.6 6513.9 11190.0 19164.0
Midcap 3466.8 3887.9 4098.9 4200.0 4631.1 7994.1 12982 20160.0
SDAX 205.6 354.2 497.5 653.4 1042.1 3298.5 6370.5 12448.0
TDAX 696.5 837.8 900.7 968.1 1298.6 3722.1 6750.4 12626.0

Critical Value 18.3 43.7 79.0 146.5 532.0 2515.1 4962.3 9829.0

Figure 8.1: Plot of index movements



186 CHAPTER 8. MODELING MULTIVARIATE HIGH-FREQUENCY TIME SERIES II

Table 8.4: Estimated parameters of the AMAR(1,1)-GARCH(1,1) model with residuals follow-

ing normal distribution with zero mean and unit variance. Numbers in parentheses are the

standard errors. These parameters are used in the empirical simulation.

α0 α1 β1 κ γ1 θ1

DAX 9.01E-05 0.2768 -0.2543 7.39E-06 0.9727 0.0272
(5.93E-05 ) (0.1146 ) ( 0.1146 ) (2.92E-08 ) (8.82E-05 ) (1.37E-04 )

HDAX 1.94E-04 -0.9001 0.8991 6.70E-06 0.9755 0.0244
(1.35E-04 ) (5.67E-04 ) (5.65E-04 ) (2.21E-08 ) ( 6.64E-05 ) (9.45E-05 )

MDAX 6.02E-06 0.9701 -0.9397 9.89E-06 0.9602 0.0397
(3.51E-06 ) (0.0020 ) (0.0027 ) (2.98E-08 ) (5.63E-05 ) (7.92E-05 )

Midcap 3.28E-06 0.9772 -0.9437 1.02E-05 0.9582 0.0417
(3.01E-06 ) (0.0013 ) (0.0014 ) ( 2.63E-08 ) ( 7.46E-05 ) (1.00E-04 )

SDAX 9.44E-06 0.5972 -0.6292 5.71E-06 0.9634 0.0340
(2.54E-05 ) (0.0465 ) (0.0450 ) (5.16E-08 ) (1.60E-04 ) (1.99E-04 )

TDAX 2.07E-05 0.3745 -0.4041 3.06E-05 0.9589 0.0335
( 6.75E-05 ) (0.0597 ) (0.0589 ) (1.44E-07 ) ( 1.38E-04 ) (1.49E-04 )

Table 8.5: Summary of the statistical characteristics of ũt for six index returns.

mean variance kurtosis skewness minimum maximum α HFGN Hfsn

DAX 0.0002 1.0128 239.2300 -2.1231 -57.7260 37.2870 1.4247 0.5004 0.7022
HDAX 0.0019 1.0408 275.4600 -0.6858 -51.0230 40.6071 1.4021 0.5296 0.7429
MDAX 0.0013 1.0724 1151.9000 -6.9930 -84.2930 63.9842 1.6287 0.5010 0.6150
Midcap 0.0026 1.0723 838.5400 -4.7981 -81.8860 48.8033 1.6419 0.5319 0.6406
SDAX 0.0077 1.0000 117.1100 0.5478 -42.3140 41.4521 1.4461 0.6493 0.8408
TDAX 0.0016 1.0000 493.6200 0.3715 -58.7710 66.6430 1.5464 0.6261 0.7728

Table 8.6: Result of the ARCH-test of ũt for different lags at α = 0.05.

lag 1min 5min 10min 2hours 1day 1week 2weeks 1month

DAX 0.0589 0.4059 0.9996 1.9868 2.6270 3.0881 3.4956 5.8496
HDAX 0.0025 0.4342 1.9824 3.3537 4.0287 4.5703 5.1865 7.9064
MDAX 0.01489 0.0720 0.2269 0.3361 0.3685 0.3996 0.4382 0.7116
Midcap 0.0426 0.2289 0.9114 1.1740 1.2205 1.2641 1.3359 1.9323
SDAX 0.03849 0.9951 9.3913 12.1210 12.5150 12.7620 13.2190 15.9760
TDAX 0.0002 0.8199 1.0287 1.3896 1.4333 1.4926 1.5703 2.0892

Critical Value 3.8415 11.07 18.307 24.996 31.41 37.652 43.773 79.082
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Table 8.7: The Ljung-Box-Pierce Q-test statistic of ũt for different lags at α = 0.05.

lag 10min 30min 1hour 2hours 1day 1week 2weeks 1month

DAX 18.4 44.2 66.7 109.0 405.2 2366.8 4785.2 9665.7
HDAX 43.1 67.0 83.6 127.6 451.0 2312.5 4988.6 9677.1
MDAX 53.9 94.1 110.6 151.8 471.3 2894.6 6058.8 12091.0
Midcap 56.5 110.3 131.3 178.6 488.9 2377.5 6177.3 11862.0
SDAX 18.6 54.1 108.0 197.2 571.3 2507.2 5042 10180.0
TDAX 62.0 142.5 221.9 268.6 569.4 2521.4 5086.7 10606.0

Critical Value 18.3 43.7 79.1 146.6 532.1 2515.1 4962.3 9829.0

Figure 8.2: Plot of index return.
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Table 8.11: Summary statistics by groups of each creteria with respect to different models.

In-sample FGN FSN Normal Stable GEV GPD

Gaussian copula 52.9620 52.9217 52.9628 53.1717 53.0300 155.2125

Student t copula 52.9364 52.9347 52.9635 53.2405 53.0378 155.2822

Skewed t copula 52.5054 52.2350 52.5037 52.5352 52.4759 148.3996

Out-of-sample FGN FSN Normal Stable GEV GPD

Gaussian copula 29.8779 29.8716 29.8938 30.0290 29.9083 85.2602

Student t copula 29.8877 29.8611 29.8799 30.0851 29.9480 85.2583

Skewed t copula 29.6312 29.4941 29.6635 29.6914 29.6591 81.6776

Table 8.12: The matrix of Mahalanobis distances between each pair of group means of four

creteria for in-sample and out-of-sample analysis. The numbers in parenthesis are the values

of out-of-sample analysis.

Gaussian copula Student t copula Skewed t copula

Gaussian copula 0 4.3098 (4.3623) 4.5399 (4.7630)

Student t copula 4.3098 (4.3623) 0 4.4174 (4.3802)

Skewed t copula 4.5399 (4.7630) 4.4174 (4.3802) 0
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Chapter 9

Empirical Studies in High-Frequency

Financial Econometrics

In this chapter, three empirical studies are shown based on the tasks of high-frequency financial

econometrics. The first empirical study is forecasting of market volatility using Neural Network

method introduced in chapter 2. The second empirical study is computing Value at Risk based

on the ARMA(1,1)-GARCH(1,1) with different types of residuals (i.e., standard normal, stable

distribution, fractional Gaussian noise, and fractional stable noise). The third empirical study

is selecting a portfolio with respect to short-term trading based on high-frequency data.

9.1 Volatility Prediction

Here I apply the feedforward network regression to the intra-daily DAX index in 2006. The

training set has a size of 40,000 observations and prediction set has a size of 10,000. The

feedforward network model has 10 inputs and 10 hidden units for the price, i.e.,

pt = f(pt−1, pt−2, . . . , pt−10, θ) + εt

where εt is distributed with zero mean and variance σ2. The feedforward network for the returns

are

rt = f(rt−1, rt−2, . . . , rt−10, θ) + εt

where rt = log(pt)− log(pt−1), εt is distributed with zero mean and variance σ2. The function

f(·) can be explicitly written as follows:

yt = f(xt, θ) + εt (9.0-1)

= s
(
β0 +

q∑
j=1

βi g(αi0 +
n∑
j=1

αijxj,t)
)

+ ε.
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where s(·) and g(·) are known activation functions, and q = 10, n = 10 in this study.

Given the above network structure and the chosen funcional form of s(·) and g(·), a major

empirical issue is then to estimate the unknown parameters θ with a sample of the dataset. A

recursive estimation methodology called backpropogation is applied. In backpropogation, the

starting point is a random weight θ vector that is updated according to

θ̂t+1 = θ̂t + γ∇f(xt, θ̂t)
(
yt − f(xt, θ̂t)

)
(9.0-2)

where ∇f(xt, θ̂t) is the column gradient vector of f(·) with respect to θ̂t, and γ is the parameter

controlling the learning rate. White (1989) derived the statistical properties for this estimator

by imposing appropriate conditions on the learning rate and definition of s(·) and g(·). For large

samples and real-time applications, a recursive Newton algorithm is applied since it allows for

adaptive estimation (see Kuan and White (1994)). The form of this recursive Newton algorithm

is

θ̂t+1 = θ̂t + γtψ̂
−1
t ∇f(xt, θ̂t)

(
yt − f(xt, θ̂t)

)
(9.0-3)

ψ̂t+1 = ψ̂t + γt
(
∇f(xt, θ̂t)∇f(xt, θ̂t)

T − ψ̂t
)
,

where ψ̂t is an estimated, approximate Newton direction matrix and γt is a sequence of learning

rates of order 1/t. The estimation of the feedforward network regression is carried out by

nonlinear least squares as follows

min
θ
L(θ) =

N∑
t=1

(
yt − f(xt, θ)

)2
.

The price predictions are presented in Figure 9.1 and return predictions in Figure 9.2. In

both training sets 40,000 observations are used and in the prediction, totally 10,000 one-step-

ahead predictions are computed. The minimal mean squared prediction errors are 0,0024 and

0.0144 for Figure 9.1 and 9.2 respectively. It shows that this feedforward neural network can

reach a relatively good prediction.

9.2 Computation of Value at Risk

Value at risk (VaR) is a risk measure popularly used in risk management. Given α ∈ (0, 1], R

is the random gain and loss of an investment in a certain period, VaR of a random variable R

at level of α is the absolute value of the worst loss not to be exceeded with a probability of at
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least α, more formally, if the α-quantile of R is qα(R) = inf{r ∈ < : P [R ≤ r] ≥ α}, the VaR

at confidence level α of R is V aRα(R) = qα(−R), see Dowd (2005).

The parametric approach of VaR estimation is based on the assumption that the financial

returns Rt is a function of two components µt and εt. That is Rt = f(µt, εt). Rt can be regarded

as a function of εt conditional on a given µt, typically this function takes a simple linear form

Rt = µt + εt = µt + σtut. Usually µt is called the location component and σt is called the scale

component. ut is a i.i.d random variables which follows the probability density function fu.

The VaR based on information up to time t is

˜V aRt := qα(Rt) = −µ̃t + σ̃ qα(u) (9.0-4)

where qα(u) is the α-quantile implied by fu.

Unconditional parametric approaches set µt and σt as constants, therefore the returns Rt are

i.i.d random variables with density σ−1fu(σ
−1(Rt−µ)). Conditional parametric approaches set

location component and scale component as functions not constants. A typical time-varying

conditional location setting is the ARMA(r,m) processes, i.e., the conditional mean equation

is:

µt = α0 +
r∑
i=1

αiRt−i +
m∑
j=1

βjεt−j (9.0-5)

and typical time-varying conditional variance setting is GARCH(p,q) processes, that is,

σ2
t = κ+

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε
2
t−j (9.0-6)

Backtesting is the usual method to evaluate the VaR estimators and its forecasting quality.

It can be performed for in-sample estimation evaluation and for out-of-sample interval fore-

casting evaluation. The backtesting is based on the indicator function It which is defined as

It(α) = I(rt < −V aRt(α)). The indicator function shows violations of the quantiles of the loss

distribution. Then the process {It}t∈T is a process of i.i.d Bernoulli variables with violation

probability 1 − α. Christoffersen (1998) shows that evaluating the accuracy of VaR can be

reduced to checking whether the number of violations is correct on average and the pattern of

violations is consistent with i.i.d processes. In another word, an accurate VaR measure should

satisfy both the unconditional coverage property and independent property. The unconditional

coverage property means that the probability of realization of a loss in excess of the estimated

V aRt(α) must be exactly α%, that is, P (It(α) = 1) = α. The independent property means

that previous VaR violations do not presage a future VaR violations.

In this study, I use high frequency DAX index data sampled at the 1-minute level in 2004 and

2005. The residuals in the parametric ARMA(1,1)-GARCH(1,1) are normal distribution, stable
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distribution, fractional stable noise, and fraction Gaussian noise. Table 9.1 shows the result

of VaR computed by the above mentioned models for the in-sample estimation. The empirical

VaR is computed by a nonparametric kernel estimator. Table 9.2 shows the difference of

parametric ARMA(1,1)-GARCH(1,1) with different residuals (i.e., normal distribution, stable

distribution, fractional stable noise, and fraction Gaussian noise) comparing with the empirical

VaR value. From Table 9.2, the results show for the 95% VaR, that ARMA(1,1)-GARCH(1,1)

model with fractional stable noise has minimal absolute distance to the empirical value. But

the ARMA(1,1)-GARCH(1,1) model with standard normal residuals performs better when

computing 99% VaR than other alternatives.

In order to test the prediction power of the computed VaR value. I test six different predic-

tions with different size of training and prediction sets:

1. training period is 6 months (236160 data points) and one-step-ahead forecast for 6 months,

3 months, 1 month, 1 week, 1 day and 1 hour;

2. training period is 3 months (124800 data points) and one-step-ahead forecast for 3 months,

1 month, 1 week, 1 day and 1 hour;

3. training period is 1 month (40320 data points) and one-step-ahead forecast for 1 month,

1 week, 1 day and 1 hour;

4. training period is 1 week (9600 data points) and one-step-ahead forecast for 1 week, 1

day and 1 hour;

5. training period is 1 day (1920 data points) and one-step-ahead forecast for 1 day and 1

hour;

6. training period is 1 hour(240 data points) and one-step-ahead forecast for 1 hour.

Table 9.3 and 9.4 report the results for computing 95% VaR and 99% respectively. For the

prediction of 95% VaR, ARMA(1,1)-GARCH(1,1) with fractional stable noise performs better

than the other alternatives, but for the prediction of 99% VaR, although all values computed

seem conservative, the ARMA(1,1)-GARCH(1,1) with standard normal distribution has better

performance among others.

9.3 Portfolio Management

Jegadeesh and Titman (1993) report that equity returns exhibit short-term continuation. In

their study, a momentum strategy that sorting firms by their previous returns over the past
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3-12 months then holding the stocks with the best prior performance and short selling those

with worst prior performance, has the possibility of generating an excess return of about one

percent per month for US stocks. Following their findings, numerous researchers have been

motivated to study momentum in other markets and other sample periods, such as Jegadeesh

and Titman (1993, 2001), Grundy and Martin (2001), Lewellen (2002). Meanwhile, literature

document that equity returns are negatively autocorrelated and their prices tend to revert to

their trend line over long time horizon, see De Bondt and Thaler (1985, 1987) and others. As

most important study, De Bondt and Thaler (1985) show an overreact effect that investors are

overly optimistic about recent winners and overly pessimistic about recent losers. The research

they did is based on the time horizon of 36 months of two portfolio returns of 35 New York

Stock Exchange common stocks, for which two portfolios have been formed, one consists of

past extreme winners over the prior three years and another consists of past extreme losers

during the same time period. They show that a contrarian investment strategy that buying

worst performance stocks and short selling best performance shocks over three to five years can

also generate excess returns over the next three to five years. Their result of loser’s portfolio

outperforming and winner’s portfolio under-performing has attracted other researchers to test

mean reversion and to investigate profitability of contrarian strategies such as Chopra et al.

(1992), Lakonishok et al. (1994), and Balvers et al. (2004).

Balvers et al. (2004) point out that most previous researchers study momentum and mean

reversion separately, and the reason may be that a process of continuation leads to profitable

momentum investment strategies and a process of mean reversion leads to profitable contrarian

investment strategies. There is no direct contradiction in the profitability of both momentum

and contrarian investment strategies since momentum strategies work for a sorting period

ranging from 1 month (or more commonly 3 months) to 12 months and similar 1 (or 3) to

12 months holding period, while contrarian strategies typically work for a sorting and holding

period from 3 to 5 years. The result shows the connection between return continuation for a

time period up to 12 months and mean reversion for a time period about 3 to 5 years. The

overreact hypothesis of De Bondt and Thaler (1985, 1987) and the behavioral finance theories of

Barberis et al. (1998) and Hong and Stein (1999) imply the observed pattern of momentum in a

short time period and mean reversion in a long time period. Balvers et al. (2004) demonstrate

that momentum and mean reversion can simultaneously occur to the same set of assets. By

using data for equity market indices for 18 mature markets, they illustrate that momentum

and mean reversion are negatively correlated.

Jegadeesh (1990) found profitability of contrarian strategies for a very short time period:

from one week to one month. Lee and Swaminathan (2000) referred an intermediate period of
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momentum from about one month up to one year. It is not clear for the definition of the exact

time horizon of momentum and mean-reversion. The reason of the existing non-unified defini-

tion of time horizon scaling might be that in different literature different frequency data have

been employed. Therefore, the observations are exhibited differently. In the past long time, the

opinion has been held that short-term price fluctuation could be regarded as irrelevant noise

and not worthwhile to collect and investigate, while recent discoveries in finance demonstrate

that short-term observations or high frequency data has high information density and indicates

long-term trends. With the development of modern computer techniques, analyzing high fre-

quency data is possible. More and more researchers believe that high frequency data can reflect

the changing of financial market more accurately than low frequency data can. Sahalia et al.

(2005) confirm to use the sampled data as highest frequency as possible.

Biglova et al. (2004) and Rachev et al. (2007) show that momentum profitability can be

significantly generated by using suitable criteria to select the component stocks for winner’s

and loser’s portfolio. Martin et al. (2003) proposed conditional value at risk measures (STARR

ratio and R-ratio) with respect to the stable distributed loss function. Empirical studies showed

that these ratios perform better than other generally used ratios, see Biglova et al. (2004) and

Rachev et al. (2005a).

Selecting rules

Basically, momentum strategies attempt to generate profit by selling stocks or portfolio with

lowest past returns and buying stocks or portfolio with highest past returns. As it has been

mentioned in the literature, momentum effect and mean reversion are connecting, that means

past stocks with highest returns have the possibility to be worse performing in the future while

stocks with lowest returns have the possibility to be better performing. Since stock return is

tightly connected with its risk, past cumulative returns as the selecting rule for momentum

strategy is not adequate since it neglected the risk imposed in the returns. It is necessary

to consider the risk or component with risk measures as rules of selecting stocks to form the

momentum portfolios. Biglova et al. (2004) and Rachev et al. (2007) show that momentum

profitability can be significantly generated by using suitable criteria to select the component

stocks for winner’s and loser’s portfolio. I propose two different types of selecting rules to

rank stock returns, one is the univariate dimension rule which is based on a single reward-

risk measure, such as, the Sharpe ratio, the Rachev ratios, and the STARR ratio. Another is

multivariate dimension rule that combines several different reward-risk measures to install a

multivariate risk measure structure to clarify the stock returns’ performance.

There are several selecting rules based on single reward risk ratio. If rj is the return series,
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then the cumulative return is just the summation. The Sharpe ratio is,

γ(rj) =
E(rj − rf )

σrj−rf
(9.0-7)

where rf stands for risk free rate of asset return. Leland (1999) states that when the distribution

of asset returns is not normal, Sharpe ratio is not completely reliable.

Besides standard deviation, value at risk (VaR) is another risk measure. Given α ∈ (0, 1], R

is random gain and loss of an investment in certain period, VaR of a random variable R at level

of α is the absolute value of the worst loss not to be exceeded with a probability of at least α,

more formally, if α-quantile of R is qα(R) = inf{r ∈ < : P [R ≤ r] ≥ α}, the VaR at confidence

level α of R is V aRα(R) = qα(−R). Arztner et al (1999) proposed the concept of a coherent

risk measure. A risk measure is called coherent if it is monotonous, positively homogeneous,

translation invariant and sub additive. As to this point standard deviation and VaR are not

coherent risk measures. But Rockafellar and Uryasev (2002) show the conditional VaR or

expected tail loss (ETL) is coherent and can be expressed as CV aRα(−R) = E(−R| − R >

V aRα(R)). That is, for a loss −R with E(| − R|) < ∞ and distribution function F−R, the

conditional value at risk at confidence level α ∈ (0, 1) is defined as

CV aRα(−R) =
1

1− α

∫ 1

α
qu(F−R)du =

1

1− α

∫ 1

α
V aRu(F−R)du (9.0-8)

where qu(F−R) is the quantile function of F−R.

The STARR ratio proposed by Martin et al. (2003) is the ratio of the expected excess return

and its conditional value at risk or expected tail loss for stable loss function:

γ(rj) =
E(rj − rj)

E(−rj| − rj > V aRα100%(rj − rf )
(9.0-9)

The Rachev ratio, R-ratio(α, β) is,

γ(rj) =
E(−rj| − rj > V aR(1−α)100%(rf − rj)

E(−rj| − rj > V aR(1−β)100%(rj − rf )
(9.0-10)

where α ∈ [0, 1] and β ∈ [0, 1] and the the loss function is stable distributed.

I propose a selecting rule based on clustering different R-ratios as the multivariate dimension

rule. After clustering R-ratios, the clusters are ranked from low to high. Portfolio formation

is done based on the rank of R-ratio clusters. Buying winner’s portfolio and selling loser’s

portfolio will generate the profits.
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The trading strategy

Three assumptions are made for employing trading strategies tested in this empirical study,

i.e.,

1. The market is sufficiently liquid. One can buy and sell stocks immediately after one makes

the decision.

2. There is no transaction costs.

3. The execution of an order for selling or buying can be finished within 1 minute.

Setting ∆t as the time unit for trading, for instance, in this study, ∆t equals one week. t0 is

the starting time of holding period. Defining t0−m∆t is the ranking period, during this period,

each DAX component stock is ranked by certain criterion. The five highest return stocks based

on the criterion are named as top five, and the five lowest return stocks are named as bottom

five. The equally weighted portfolio of top five is named as winner’s portfolio and equally

weighted portfolio of bottom five is the loser’s portfolio. t0 + n∆t is the holding period after

t0. Momentum strategies are going to exploit the continuation in stock returns. Jegadeesh and

Titman (1993) gave the trading strategy of buying the winner’s portfolio of highest past returns

and selling loser’s portfolio of lowest past returns. This study adopts this strategy but only

to buy the winner’s portfolio. Three different timing strategies have been used for the ranking

and holding period, i.e., equal ranking and holding period (m = n), longer ranking period with

short holding period (m > n) and short ranking period with longer holding period (m < n). In

this study, the ranking and holding periods goes from 1 week to 5 weeks. By using the selecting

rule based on the clustering of R-ratios, hierarchical and non-hierarchical clustering methods

are both considered. In the hierarchical clustering, the winner’s portfolio and loser’s portfolio

both contain five stocks, but for the non-hierarchical clustering, the number of stocks contained

in the winner’s and the loser’s portfolio is solely depending on the partitioning of the returns.

Results

Table 9.5 reports the performance of trading based on portfolios selected by single measures.

Generally, the R-ratio has a better performance. This result coincides with previous studies.

Table 9.6 reports the performance of trading based on the portfolio selected by clustering R-

ratios. Silhouette values evaluate the quality of clustering, that is, the higher the value is, the

better the performance given by the clusters. The cluster of type 5 has the highest silhouette

value and performance of the trading based on portfolios selected by this type of clusters is the



199

best (0.8417) in this study. It shows that, given a correct clustering of R-ratios, the highest

feasible profit can be reached.
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Figure 9.1: The intra-daily DAX 2006 predictions with a single-layer feedforward network model. The
feedforward network model has 10 hidden units and 10 past prices.
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Figure 9.2: The intra-daily DAX 2006 predictions with a single-layer feedforward network model. The
feedforward network model has 10 hidden units and 10 past returns.
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Table 9.1: VaR values calculated by Kernel estimator (empirical) and ARMA(1,1)-GARCH(1,1) with different
residuals (i.e., normal, stable, fractional stable noise, and fractional Gaussian noise).

95% 99%

Empirical Normal stable FSN FGN Empirical Normal stable FSN FGN

6 M 1.4018 1.8682 1.3874 1.3929 1.8727 2.6607 2.6382 3.7350 3.6972 2.6419
3 M 1.5218 2.0601 1.5090 1.4778 2.0544 2.8501 2.9267 3.9461 3.8371 2.9178
1 M 1.5402 2.3234 1.5562 1.6189 2.3158 2.9148 3.2939 4.3943 4.0179 3.2580
1 W 1.4901 1.8864 1.3882 1.4224 1.9109 2.8036 2.6445 4.4273 3.5853 2.6159
1 D 1.3861 1.7735 1.5159 1.4412 1.8549 2.4768 2.6127 4.5385 4.4081 2.8099
1 H 1.6819 1.5163 1.5085 1.7600 1.9079 2.7741 2.6503 5.6604 6.4754 2.9549

Table 9.2: Difference between VaR values calculated by Kernel estimator (empirical) and ARMA(1,1)-
GARCH(1,1) with different residuals (i.e., normal, stable, fractional stable noise, and fractional Gaussian noise).

95% 99%

Normal stable FSN FGN Normal stable FSN FGN

6 M -0.4044 0.0144 0.0089 -0.4709 0.0225 -1.0743 -1.0365 0.0188
3 M -0.5383 0.0128 0.0440 -0.5326 -0.0766 -1.0960 -0.9870 -0.0677
1 M -0.7832 -0.0160 -0.0787 -0.7756 -0.3791 -1.4795 -1.1031 -0.3432
1 W -0.3963 0.1019 0.0677 -0.4208 0.1591 -1.6237 -0.7817 0.1877
1 D -0.3874 -0.1298 -0.0551 -0.4688 -0.1359 -2.0617 -1.9313 -0.3331
1 H 0.1656 0.1734 -0.0781 -0.2260 0.1238 -2.8863 -3.7013 -0.1808

|
∑
| 2.6752 0.4483 0.3325 2.8947 0.8970 10.2215 9.5409 1.1313
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Chapter 10

Conclusion

In this dissertation, I point out several aspects of studies for high-frequency financial econo-

metrics. I proposed several models with respect to univariate and multivariate high-frequency

financial time series data. These models show the advantages of using self-similar processes

and copulas. Recently, we have experienced an explosion in the number of financial studies

based on high-frequency data, but the existing literature left several problems unsolved. Using

self-similar processes and copulas can fill up some topics missing in the literature. However,

based on the viewpoint of data mining for high-frequency financial econometrics, several fu-

ture investigations need to be done while in this dissertation they are only briefly mentioned.

The empirical studies proposed in Chapter 9 indeed highlight three major directions for future

investigation, that is, (1) improving the prediction method based on more robust statistical

models, (2) finding models for risk management, and (3) proposing short-term or day trading

models based on more realistic situations.

The models proposed in this dissertation can be used to identify arbitrage opportunities.

Someone argues that “Indeed, the arbitrage opportunities found in empirical studies have be-

come smaller and smaller, due to constant progress in speeds of both communication devices

and computers.” This statement has been discussed in different occasions. For example, in be-

havioral finance, people believe that the arbitrage opportunities can be captured from market

anomalies. But after such arbitrage opportunities have been pointed out by academia, no one

can duplicate it in the real market. The conclusions are1 (1), once the arbitrage opportuni-

ties have been pointed out, everyone tries to duplicate it, then it cannot be used any more,

and, (2) the techniques used to find these arbitrage opportunities by academia are not robust.

At the high-frequency level, the market is heterogenous, which means that certain arbitrage

1see Chapters 15, 17, and 18 in Handbook of the economics of finance II, edited by George M. Constantinides,
Milton Harris, and Rene M. Stulz, Elsevier, 2003.
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opportunities might be hedged out due to the heterogenity.

It can be accepted (as I believe) that certain arbitrage opportunities pointed out by academia

might be realized to generate profit, if and only if the following conditions are satisfied:

• No one else in the market is using same strategy to take advantage of arbitrage opportu-

nities as you do.

• The techniques used for finding arbitrage opportunities are robust enough.

• If such techniques are not robust enough, you might have the possibility to take advantage

of the arbitrage opportunities only if the market satisfies your assumptions with which

you applied the techniques to find such arbitrage opportunities.

It is also important to keep in mind that the following three variables i.e., model, algorithm,

and data, dominate the quality of an econometric study.

There is an ongoing methodological debate about model specification. Kennedy (2003)

points out that “Until about the mid-1970s, econometricians were too busy doing econometrics

to worry about the principles that were or should be guiding empirical research”. He thinks

that the econometric profession began to examine model specification problems with a critical

eye after people found failure of large-scale econometric model and gaps between how econo-

metrics was taught and how it was applied by practitioners. Pagan (1987, 1995) stylizes three

main approaches to the specification problem with respect to considerable risk of oversimpli-

fication, i.e., average economic regression (AER), Test-Test-Test (TTT), and fragility analysis

(FA). AER refers to the researcher begins with a specification from assumed-known theories,

which is characterized as proceedings from a simple model and “testing up” to specify a more

general model. Comparing with AER, TTT is the other way that can be characterized as

“testing down” from a general model to a more specific model. FA considers a range of “key”

variables and undertakes an “extreme bounds analysis” after identifying a general family of

models in which the coefficients of the key variables are estimated using all feasable combina-

tions of included/excluded “doubtful” variables. Lütkepohl (2007) discusses general-to-specific

(gets) modeling and specific-to-general (spec) modeling based on the empirical work related to

cointegrated systems. Most researchers might agree with that all models are imperfect repre-

sentations of the phenomenon of being models, due to the essence of simplification by filtering

many aspects of the “real world”, and occasionally, these neglected aspects may turn out to

be important. Although such controversy has never been resolved, some principles have been

generally accepted to guide model specification (see, for example, Kennedy (2003)). These

principles are summarized as follows: (1) Economic theory should be the foundation of and
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guiding force in model specification; (2) Tests should be applied for misspecifications; and (3)

Models can be used either for policy evaluation or forecasting.

With the help of large computer systems, econometric/statistical inference and forecasting

can be realized expectedly. Unfortunately, numerical methods required for solving problems

involved in inference and forecasting are limited. Such algorithmic limitation reduces the ac-

curacy of computation. Approximation and simulation methods are not merely sought out by

financial economists but also by researchers from mathematics and computer science. Given a

“good” and sophisticated model, a limited algorithm applied to get the perspective result will

weaken the power of this model.

In Chapter 2, I have mentioned several aspects for using high-frequency financial data. Good

data quality will positively support the analysis. Mining data with appropriate technologies

is the process of discovering hidden, actionable, and meaningful patterns, profiles, and trends.

Only informative data can provide a solid foundation of analysis.

All econometric/statistical analysis (with respect to model, algorithm, and data) rely ex-

plicitly or implicitly on a number of assumptions, which generally aim at formalizing what has

been known about the model and data, and at the same time aim at making the resulting

model manageable from the theoretical and computational viewpoints. There have been at-

tempts to justify such assumptions, although such attempts are easily proven inadequate. For

example, normal (Gaussian) distribution, is the case I just mentioned. Therefore, robustness

is considered ultimately in econometric/statistical analysis. The robust approach to statistical

modeling and data analysis aims at deriving methodologies that produce reliable and accu-

rate sought out solutions by considering less unrealistic assumptions. High-frequency financial

econometrics is based on the analysis of high frequency financial data that is possessed of a

higher level of uncertainty than that of low frequency data. In order to reduce risk caused by

the uncertainties, robust methods should be applied in future investigations.
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Boston.

[214] Taqqu, M., V. Teverovsky, W. Willinger (1995) Estimators for long-range dependence: an em-
pirical study. Fractals 3(4): 785-798.

[215] Taylor, S., X. Xu (1997) The incremental volatility information in one million foreign exchange
quotations. Journal of Empirical Finance 4(4): 317-340.

[216] Teverovsky, V., M. Taqqu (1995) Testing for long-range dependence in the presence of shifting
means or a slowly declining trend using a variance-type estimator. Preprint.

[217] Teverovsky, V., M. Taqqu, W. Willinger (1999) A critical look at Lo’s modified R/S statistic.
Journal of Statistical Planning and Inference 80(1-2): 211-227.
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