3,070 research outputs found

    Modelling activated sludge wastewater treatment plants using artificial intelligence techniques (fuzzy logic and neural networks)

    Get PDF
    Activated sludge process (ASP) is the most commonly used biological wastewater treatment system. Mathematical modelling of this process is important for improving its treatment efficiency and thus the quality of the effluent released into the receiving water body. This is because the models can help the operator to predict the performance of the plant in order to take cost-effective and timely remedial actions that would ensure consistent treatment efficiency and meeting discharge consents. However, due to the highly complex and non-linear characteristics of this biological system, traditional mathematical modelling of this treatment process has remained a challenge. This thesis presents the applications of Artificial Intelligence (AI) techniques for modelling the ASP. These include the Kohonen Self Organising Map (KSOM), backpropagation artificial neural networks (BPANN), and adaptive network based fuzzy inference system (ANFIS). A comparison between these techniques has been made and the possibility of the hybrids between them was also investigated and tested. The study demonstrated that AI techniques offer viable, flexible and effective modelling methodology alternative for the activated sludge system. The KSOM was found to be an attractive tool for data preparation because it can easily accommodate missing data and outliers and because of its power in extracting salient features from raw data. As a consequence of the latter, the KSOM offers an excellent tool for the visualisation of high dimensional data. In addition, the KSOM was used to develop a software sensor to predict biological oxygen demand. This soft-sensor represents a significant advance in real-time BOD operational control by offering a very fast estimation of this important wastewater parameter when compared to the traditional 5-days bio-essay BOD test procedure. Furthermore, hybrids of KSOM-ANN and KSOM-ANFIS were shown to result much more improved model performance than using the respective modelling paradigms on their own.Damascus Universit

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Instrumentation and control of anaerobic digestion processes: a review and some research challenges

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11157-015-9382-6[EN] To enhance energy production from methane or resource recovery from digestate, anaerobic digestion processes require advanced instrumentation and control tools. Over the years, research on these topics has evolved and followed the main fields of application of anaerobic digestion processes: from municipal sewage sludge to liquid mainly industrial then municipal organic fraction of solid waste and agricultural residues. Time constants of the processes have also changed with respect to the treated waste from minutes or hours to weeks or months. Since fast closed loop control is needed for short time constant processes, human operator is now included in the loop when taking decisions to optimize anaerobic digestion plants dealing with complex solid waste over a long retention time. Control objectives have also moved from the regulation of key variables measured online to the prediction of overall process perfor- mance based on global off-line measurements to optimize the feeding of the processes. Additionally, the need for more accurate prediction of methane production and organic matter biodegradation has impacted the complexity of instrumentation and should include a more detailed characterization of the waste (e.g., biochemical fractions like proteins, lipids and carbohydrates)andtheirbioaccessibility andbiodegradability characteristics. However, even if in the literature several methodologies have been developed to determine biodegradability based on organic matter characterization, only a few papers deal with bioaccessibility assessment. In this review, we emphasize the high potential of some promising techniques, such as spectral analysis, and we discuss issues that could appear in the near future concerning control of AD processes.The authors acknowledge the financial support of INRA (the French National Institute for Agricultural Research), the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011) and ADEME for Inter-laboratory assay financial support.Jimenez, J.; Latrille, E.; Harmand, J.; Robles MartĂ­nez, Á.; Ferrer Polo, J.; Gaida, D.; Wolf, C.... (2015). Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Reviews in Environmental Science and Biotechnology. 14(4):615-648. doi:10.1007/s11157-015-9382-6S615648144Aceves-Lara CA, Latrille E, Steyer JP (2010) Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor. Int J Hydrogen Energ 35:10710–10718Aguado D, Montoya T, Ferrer J, Seco A (2006) Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal. Environ Modell Softw 21:845–851Aguilar-Garnica E, Dochain D, Alcaraz-GonzĂĄlez V, GonzĂĄlez-Álvarez V (2009) A multivariable control scheme in a two-stage anaerobic digestion system described by partial differential equations. J Process Contr 19:1324–1332Ahring BK, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25:311–318Ajeej A, Thanikal JV, Narayanan CM, Senthil Kumar R (2015) An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sustain Energy Rev 50:270–276Alcaraz-GonzĂĄlez V, GonzĂĄlez-Álvarez V (2007) Selected topics in dynamics and control of chemical and biological processes. Springer, BerlinAlcaraz-GonzĂĄlez V, Harmand J, Rapaport A, Steyer JP, GonzĂĄlez-Álvarez V, Pelayo-Ortiz C (2005a) Robust interval-based regulation for anaerobic digestion processes. Water Sci Technol 52:449–456Alcaraz-GonzĂĄlez V, Salazar-Peña R, GonzĂĄlez-Alvarez V, GouzĂ© JL, Steyer JP (2005b) A tunable multivariable nonlinear robust observer for biological systems. C R Biol 328:317–325Alferes J, Irizar I (2010) Combination of extremum-seeking algorithms with effective hydraulic handling of equalization tanks to control anaerobic digesters. Water Sci Technol 61:2825–2834Alferes J, GarcĂ­a-Heras JL, Roca E, GarcĂ­a C, Irizar I (2008) Integration of equalisation tanks within control strategies for anaerobic reactors. Validation based on ADM1 simulations. Water Sci Technol 57:747–752Alimahmoodi M, Mulligan CN (2008) Anaerobic bioconversion of carbon dioxide to biogas in an upflow anaerobic sludge blanket reactor. J Air Waste Manage Assoc 58:95–103Alvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101:1153–1158Alvarez-Ramirez J, Meraz M, Monroy O, Velasco A (2002) Feedback control design for an anaerobic digestion process. J Chem Technol Biotechnol 77:725–734Anderson GK, Yang G (1992) Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ Res 64:53–59Andrews JF, Graef SP (1971) Dynamic modelling and simulation of the AD process. Advances in chemistry series no. 105, Anaerobic Biological Treatment Processes. American Chemical Society, Washington, DC, p 126Andrews JF, Pearson EA (1965) Kinetics and characteristics of volatile acid production in anaerobic fermentation processes. Air Water Pollut 9:439–461Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropllutants. Rev Environ Sci Biotechnol 3:117–129Antila J, Tuohiniemi M, Rissanen A, KantojĂ€rvi U, Lahti M, Viherkanto K, Kaarre M, Malinen J (2014) MEMS- and MOEMS-based near-infrared spectrometers. Encycl Anal Chem 1–36. doi: 10.1002/9780470027318.a9376Antoniades CD, Christofides P (2001) Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem Eng Sci 56:4517–4535APHA (2005) American Public Health Association/American Water Works Association/Water Environmental Federation, Standard methods for the Examination of Water and Wastewater, 21st edn. Washington, DC, USAAppels L, Baeyens J, DegrĂšve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781Appels L, Lauwers J, Gins G, Degreve J, Van Impe J, Dewil R (2011) Parameter identification and modeling of the biochemical methane potential of waste activated sludge. Environ Sci Technol 45:4173–4178Aquino SF, Chernicharo CAL, Soares H, Takemoto SY, Vazoller RF (2008) Methodologies for determining the bioavailability and biodegradability of sludges. Environ Technol 29:855–862Astals S, Esteban-GutiĂ©rrez M, FernĂĄndez-ArĂ©valo T, Aymerich E, GarcĂ­a-Heras JL, Mata-Alvarez J (2013a) Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study. Water Res 47:6033–6043Astals S, Nolla-ArdĂšvol V, Mata-Alvarez J (2013b) Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. J Biotechnol 166:97–104Babary JP, Julien S, NihtilĂ€ MT et al (1999) New boundary conditions and adaptive control of fixed-bed bioreactors. Chem Eng Process Process Intensif 38:35–44Barat R, Serralta J, Ruano MV, JimĂ©nez E, Ribes J, Seco A, Ferrer J (2012) Biological nutrient removal model No 2 (BNRM2): a general model for wastewater treatment plants. Water Sci Technol 67:1481–1489Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier Science, AmsterdamBatstone DJ (2013) Modelling and control in anaerobic digestion: achievements and challenges. 13th IWA World Congress on Anaerobic Digestion (AD 13), pp 1–6Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic digestion model No. 1. (ADM1). IWA Scientific and Technical Report No. 13. IWABatstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anaerobic digesters. Biotechnol Bioeng 102:1513–1520Batstone DJ, Amerlinck Y, Ekama G et al (2012) Towards a generalized physicochemical framework. Water Sci Technol 66:1147–1161Baumann WT, Rugh WJ (1986) Feedback control of nonlinear systems by extended linearization. IEEE Trans Automat Contr AC-31:40–46Benyahia B, Campillo F, Cherki B, Harmand J (2012) Particle filtring for the chemostat. In: MED’12, Barcelone, SpainBernard O (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389Bernard O, GouzĂ© JL (2004) Closed loop observers bundle for uncertain biotechnological models. J Process Control 14:765–774Bernard O, Hadj-Sadok Z, Dochain D et al (2001a) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438Bernard O, Polit M, Hadj-Sadok Z, Pengov M, Dochain D, Estaben M, Labat P (2001b) Advanced monitoring and control of anaerobic wastewater treatment plants: software sensors and controllers for an anaerobic digester. Water Sci Technol 43:175–182Bernard O, Chachuat B, HĂ©lias A, Rodriguez J (2005a) Can we assess the model complexity for a bioprocess? Theory and example of the anaerobic digestion process. Water Sci Technol 53:85–92Bernard O, Chachuat B, HĂ©lias A, Le Dantec B, Sialve B, Steyer JP, Lavigne JF (2005b) An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Sci Technol 52:457–464Björnsson L, Hörnsten EG, Mattiasson B (2001a) Utilization of a palladium–metal oxide semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in anaerobic digestion. Biotechnol Bioeng 73:35–43Björnsson L, Murto M, Jantsch TG, Mattiasson B (2001b) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35:2833–2840Boe K (2006) Online monitoring and control of the biogas process. Technical University of DenmarkBoe K, Batstone D, Angelidaki I (2007) An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96:712–721Boe K, Steyer JP, Angelidaki I (2008) Monitoring and control of the biogas process based on propionate concentration using online VFA measurement. Water Sci Technol 57:661–766Boe K, Batstone DJ, Steyer JP, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501BuendĂ­a IM, FernĂĄndez FJ, Villaseñor J, RodrĂ­guez L (2008) Biodegradability of meat industry wastes under anaerobic and aerobic conditions. Water Res 42:3767–3774Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–241Cao Y, Pawlowski A (2012) Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew Sust Energ Rev 16:1657–1665Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111Carlos-Hernandez S, Beteau JF, Sanchez EN (2007) Intelligent control strategy for an anaerobic fluidized bed reactor. In: Michel P (ed) Computer applications in biotechnology, vol 1. Cancun, Mexico, pp 73–78Carlos-Hernandez S, Sanchez EN, Bueno JA (2010) Neurofuzzy control strategy for an abattoir wastewater treatment process. In: Banga JR, Bogaerts P, Van Impe J, Dochain D, Smets I (eds) 11th International symposium on computer applications in biotechnology. Leuven, Belgium, pp 84–89Chandler JA, Jewell WJ, Gossett JM (1980) Predicting methane fermentation biodegradability. Biotechnol Bioeng Symp 10:93–107Chen YH (1990) Adaptive robust observers for non-linear uncertain systems. Int J Syst Sci 21:803–814Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111Cirne DG, van der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnol 7:93–105ColombiĂ© S, Latrille E, Sablayrolles JM (2007) Online estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions. J Biosci Bioeng 103:229–235Cord-Ruwisch R, Mercz TI, Hoh CY, Strong GE (1997) Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol Bioeng 56:626–634Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manage 28:381–388Cresson R, Pommier S, BĂ©line F et al (2014) Etude interlaboratoires pour l’harmonisation des protocoles de mesure du potentiel bio-mĂ©thanogĂšne des matrices solides hĂ©tĂ©rogĂšnes—Final report (in French) ADEMEDalmau J, Comas J, RodrĂ­guez-Roda I, Pagilla K, Steyer JP (2010) Model development and simulation for predicting risk of foaming in anaerobic digestion systems. Bioresour Technol 101:4306–4314Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jansen J (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage 27:406–414De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290De Baere L (2008) Partial stream digestion of residual municipal solid waste. Water Sci Technol 57:1073–1077De Gracia M, Grau P, Huete E et al (2009) New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: model building and experimental verification. Water Res 43:4626–4642De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6:414–424Delattre C, Dochain D, Winkin J (2004) Observability analysis of nonlinear tubular (bio)reactor models: a case study. J Process Control 14:661–669Di Pinto AC, Limoni N, Passino R, Rozzi A, Tomei MC (1990) Instrumentation, control and automation of water and wastewater treatment and transport systems. In: Proceedings of the 5th IAWPRC workshop, pp 51–58DĂ­az I, PĂ©rez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253Dochain D (2003) State and parameter estimation in chemical and biochemical processes: a tutorial. J Process Control 13:801–818Dochain D, Tali-Maamar N, Babary JP (1997) On modelling, monitoring and control of fixed bed bioreactors. Comput Chem Eng 21:1255–1266Dochain D, Perrier M, Guay M (2011) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simulat 82:369–380Donoso-Bravo A, Garcia G, PĂ©rez-Elvira S, Fernandez-Polanco F (2011) Initial rates technique as a procedure to predict the anaerobic digester operation. Biochem Eng J 53(3):275–280Doublet J, Boulanger A, Ponthieux A, Laroche C, Poitrenaud M, Cacho Rivero JA (2013) Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresour Technol 128:252–258Dreywood R (1946) Qualitative test for carbohydrate material. Industrial & Engineering Chemistry Analytical Edition. Am Chem Soc 18:499Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Ekama GA, Sotemann SW, Wentzel MC (2007) Biodegradability of activated sludge organics under anaerobic conditions. Water Res 41:244–252Ellison WJ, Pedarros-Caubet F, Caubet R (2007) Automatic and rapid measurement of microbial suspension growth parameters: application to the evaluation of effector agents. J Rapid Meth Aut Mic 15:369–410Fang HHP (2012) Bioenergy production from waste and wastewater in China. In: Technical proceedings of the 2012 NSTI nanotechnology conference and expo, NSTI-nanotech 2012, pp 381–383Fannin KF, Chynoweth DP, Isaacson R (1987) Start-up, operation, stability, and control. Anaerob Dig Biomass 171–196Fdz-Polanco M, DĂ­az I, PĂ©rez SI, Lopes AC, Fdz-Polanco F (2009a) Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci Technol 60:3045–3050Fdz-Polanco M, PĂ©rez-Elvira SI, DĂ­az I, GarcĂ­a L, TorĂ­o R, Acevedo AF (2009b) EliminaciĂłn de H2S en digestiĂłn anaerobia de lodos por procesos microaerofĂ­licos: experiencia en planta piloto. Tecnol del Agua 29:58–64Feitkenhauer H, von Sachs J, Meyer U (2002) On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res 36:212–218FernĂĄndez YB, Soares A, Villa R, Vale P, Cartmell E (2014) Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresour Technol 159:1–7Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 99:7083–7090Francioso O, Rodriguez-Estrada MT, Montecchio D, Salomoni C, Caputo A, Palenzona D (2010) Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J Hazard Mater 175:740–746Frigon JC, Roy C, Guiot SR (2012) Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess Biosyst Eng 35:341–349Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Pathol 53:89–91FrĂžlund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758Gaida D, Wolf C, Meyer C, Stuhlsatz A, Lippel J, BĂ€ck T, Bongards M, McLoone S (2012) State estimation for anaerobic digesters using the ADM1. Water Sci Technol 66:1088–1095Ganesh R, Torrijos M, Sousbie P et al (2013) Anaerobic co-digestion of solid waste: effect of increasing organic loading rates and characterization of the solubilised organic matter. Bioresource Technol 130:559–569GarcĂ­a-DiĂ©guez C, Molina F, Roca E (2011) Multi-objective cascade controller for an anaerobic digester. Process Biochem 46:900–909GarcĂ­a-Gen (2015) Modelling, optimisation and control of anaerobic co-digestion processes (2015), Ph.D. Thesis, Universidad de Santiago de Compostela, Departamento de IngenierĂ­a QuĂ­micaGarcĂ­a-Gen S, Sousbie P, Rangaraj G et al (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104Gauthier JP, Kupka IAK (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32:975–994Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems applications to bioreactors. Autom Control IEEE Trans 37:875–880Ge H, Jensen PD, Batstone DJ (2011) Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J Hazard Mater 187:355–361Gendron S, Perrier M, Barrett J, Legault N (1993) Adaptive control of brightness: the model weighting approach. Annual meeting—technical section, Canadian Pulp and Paper Association, Preprints. Publ by Canadian Pulp & Paper AssocGhosh S, Conrad JR, Klass DL (1975) Anaerobic acidogenesis of waste activated sludge, WPCF 47Goffaux G, Van de Wouwer A (2005) Bioprocess state estimation: some classical and less classical approaches. Springer, BerlinGornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biochem Chem 177:751–766GouzĂ© JL, Rapaport A, Hadj-Sadok MZ (2000) Interval observers for uncertain biological systems. Ecol Model 133:45–56Grau P, de Gracia M, Vanrolleghem PA, Ayesa E (2007) A new plant-wide modelling methodology for WWTPs. Water Res 41:4357–4372Gregersen KH (2003) Økonomien i biogasfĂŠllesanlĂŠg, Udvikling og status medio (2002) Report no. 150. Institute of Food and Resource Economic, Rolighedsvej 25, DK 1958, Frederiksberg C, DenmarkGrepmeier M (2002) Experimentelle Untersuchungen an einer zweistufigen fuzzy-geregelten anaeroben Abwasserreinigungsanlage mit neuartigem Festbettmaterial. TU MunichGuay M, Dochain D, Perrier M (2004) Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics. Automatica 40:881–888Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98:1270–1277Gunaseelan VN (2009) Predicting ultimate methane yields of Jatropha curcus and Morus indica from their chemical composition. Bioresour Technol 100:3426–3429Guwy AJ, Hawkes FR, Wilcox SJ, Hawkes DL (1997) Neural network and on-off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester. Water Res 31:2019–2025Guwy AJ, Dinsdale RM, Kim JR et al (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542Hao OJ (2003) Sulphate-reducing bacteria. In: Mara D, Horan N (eds) Handbook of water and wastewater microbiology. Academic Press Inc, London, pp 459–468HarremoĂ«s P, Capodaglio AG, H

    OPERATION AND PROCESS CONTROL DEVELOPMENT FOR A PILOT-SCALE LEACHING AND SOLVENT EXTRACTION CIRCUIT RECOVERING RARE EARTH ELEMENTS FROM COAL-BASED SOURCES

    Get PDF
    The US Department of Energy in 2010 has identified several rare earth elements as critical materials to enable clean technologies. As part of ongoing research in REEs (rare earth elements) recovery from coal sources, the University of Kentucky has designed, developed and is demonstrating a Πton/hour pilot-scale processing plant to produce high-grade REEs from coal sources. Due to the need to control critical variables (e.g. pH, tank level, etc.), process control is required. To ensure adequate process control, a study was conducted on leaching and solvent extraction control to evaluate the potential of achieving low-cost REE recovery in addition to developing a process control PLC system. The overall operational design and utilization of Six Sigma methodologies is discussed. Further, the application of the controls design, both procedural and electronic for the control of process variables such as pH is discussed. Variations in output parameters were quantified as a function of time. Data trends show that the mean process variable was maintained within prescribed limits. Future work for the utilization of data analysis and integration for data-based decision-making will be discussed

    Biological investigation and predictive modelling of foaming in anaerobic digester

    Get PDF
    Anaerobic digestion (AD) of waste has been identified as a leading technology for greener renewable energy generation as an alternative to fossil fuel. AD will reduce waste through biochemical processes, converting it to biogas which could be used as a source of renewable energy and the residue bio-solids utilised in enriching the soil. A problem with AD though is with its foaming and the associated biogas loss. Tackling this problem effectively requires identifying and effectively controlling factors that trigger and promote foaming. In this research, laboratory experiments were initially carried out to differentiate foaming causal and exacerbating factors. Then the impact of the identified causal factors (organic loading rate-OLR and volatile fatty acid-VFA) on foaming occurrence were monitored and recorded. Further analysis of foaming and nonfoaming sludge samples by metabolomics techniques confirmed that the OLR and VFA are the prime causes of foaming occurrence in AD. In addition, the metagenomics analysis showed that the phylum bacteroidetes and proteobacteria were found to be predominant with a higher relative abundance of 30% and 29% respectively while the phylum actinobacteria representing the most prominent filamentous foam causing bacteria such as Norcadia amarae and Microthrix Parvicella had a very low and consistent relative abundance of 0.9% indicating that the foaming occurrence in the AD studied was not triggered by the presence of filamentous bacteria. Consequently, data driven models to predict foam formation were developed based on experimental data with inputs (OLR and VFA in the feed) and output (foaming occurrence). The models were extensively validated and assessed based on the mean squared error (MSE), root mean squared error (RMSE), R2 and mean absolute error (MAE). Levenberg Marquadt neural network model proved to be the best model for foaming prediction in AD, with RMSE = 5.49, MSE = 30.19 and R2 = 0.9435. The significance of this study is the development of a parsimonious and effective modelling tool that enable AD operators to proactively avert foaming occurrence, as the two model input variables (OLR and VFA) can be easily adjustable through simple programmable logic controller

    Implementation of a global P-recovery system in urban wastewater treatment plants

    Full text link
    [EN] Current wastewater treatment plants (WWTPs) paradigm is moving towards the so-called water resource recovery facilities in which sewage is considered a source of valuable resources. In particular, urban WWTPs are crucial systems to enhance phosphorus (P) recycling. This paper evaluates the implementation of a P-recovery system in Calahorra WWTP combining the operation of a new sludge line configuration coupled to a struvite crystallisation reactor at demonstration-scale. This new configuration consisted in the elutriation in the gravity thickener of the mixed sludge contained in the mixing chamber in order to reduce the phosphate load to the anaerobic digestion. The results indicated that the P available in the primary sludge overflow was nearly five times more than the obtained for the conventional configuration (1.88 vs. 0.39 gP/kg sludge treated), and the uncontrolled P precipitation inside the anaerobic digester was reduced by 43%. Regarding the total P entering the WWTP, 19% of the total P could be recovered with the new configuration proposed in comparison with 9% in the previous conventional configuration. The average recovery efficiency in the crystallisation plant was 86.9 0.4%, yielding a struvite recovery of 8.0 +/- 0.6 kg/d (0.67 +/- 0.04 kg/m(3) fed to the crystalliser). The potential struvite production with the new configuration would be around 41 kg/d (15 t/y) crystallising the thickener supernatant which could be increased up to around 103 kg/d (38 t/y) treating all the P enriched streams (thickener supernatant and centrate streams). The paper demonstrates that WWTPs can contribute to reduce P scarcity, resulting in environmental and economic benefits. (C) 2019 Elsevier Ltd. All rights reserved.This work was co-financed by the European Financial Instrument for the Environment (LIFE +) as part of the PHORWater Project (LIFE12 ENV/ES/000441). The authors also like to acknowledge the support received from Consorcio de Aguas y Residuos de La Rioja and from EDAR del Cidacos (Calahorra).Bouzas Blanco, A.; Martí Ortega, N.; Grau, S.; Barat, R.; Mangin, D.; Pastor Alcañiz, L. (2019). Implementation of a global P-recovery system in urban wastewater treatment plants. Journal of Cleaner Production. 227:130-140. https://doi.org/10.1016/j.jclepro.2019.04.126S13014022

    Developing magnetic functionalized multi-walled carbon nanotubes-based buckypaper for the removal of Furazolid

    Get PDF
    Magnetic f-MWCNTs-based BP/PVA membrane was fabricated and utilized for the elimination of furazolidone (FZD) from aqueous solution. Characterisation and adsorption studies were performed to evaluate the performance and adsorptive efficiency, respectively of the membrane. Furthermore, statistical and machine learning technique were also applied to predict the removal efficiency of FZD on the membrane. The results revealed that magnetic f-MWCNTs-based BP/PVA membrane has the potential to be used as an efficient membrane for practical applications

    Comparison of different classification algorithms for fault detection and fault isolation in complex systems

    Get PDF
    Due to the lack of sufficient results seen in literature, feature extraction and classification methods of hydraulic systems appears to be somewhat challenging. This paper compares the performance of three classifiers (namely linear support vector machine (SVM), distance-weighted k-nearest neighbor (WKNN), and decision tree (DT) using data from optimized and non-optimized sensor set solutions. The algorithms are trained with known data and then tested with unknown data for different scenarios characterizing faults with different degrees of severity. This investigation is based solely on a data-driven approach and relies on data sets that are taken from experiments on the fuel system. The system that is used throughout this study is a typical fuel delivery system consisting of standard components such as a filter, pump, valve, nozzle, pipes, and two tanks. Running representative tests on a fuel system are problematic because of the time, cost, and reproduction constraints involved in capturing any significant degradation. Simulating significant degradation requires running over a considerable period; this cannot be reproduced quickly and is costly
    • 

    corecore