146 research outputs found

    Hybrid DDS-PLL based reconfigurable oscillators with high spectral purity for cognitive radio

    Get PDF
    Analytical, design and simulation studies on the performance optimization of reconfigurable architecture of a Hybrid DDS – PLL are presented in this thesis. The original contributions of this thesis are aimed towards the DDS, the dithering (spur suppression) scheme and the PLL. A new design of Taylor series-based DDS that reduces the dynamic power and number of multipliers is a significant contribution of this thesis. This thesis compares dynamic power and SFDR achieved in the design of varieties of DDS such as Quartic, Cubic, Linear and LHSC. This thesis proposes two novel schemes namely “Hartley Image Suppression” and “Adaptive Sinusoidal Interference Cancellation” overcoming the low noise floor of traditional dithering schemes. The simulation studies on a Taylor series-based DDS reveal an improvement in SFDR from 74 dB to 114 dB by using Least Mean Squares -Sinusoidal Interference Canceller (LM-SIC) with the noise floor maintained at -200 dB. Analytical formulations have been developed for a second order PLL to relate the phase noise to settling time and Phase Margin (PM) as well as to relate jitter variance and PM. New expressions relating phase noise to PM and lock time to PM are derived. This thesis derives the analytical relationship between the roots of the characteristic equation of a third order PLL and its performance metrics like PM, Gardner’s stability factor, jitter variance, spur gain and ratio of noise power to carrier power. This thesis presents an analysis to relate spur gain and capacitance ratio of a third order PLL. This thesis presents an analytical relationship between the lock time and the roots of its characteristic equation of a third order PLL. Through Vieta’s circle and Vieta’s angle, the performance metrics of a third order PLL are related to the real roots of its characteristic equation

    Low jitter phase-locked loop clock synthesis with wide locking range

    Get PDF
    The fast growing demand of wireless and high speed data communications has driven efforts to increase the levels of integration in many communications applications. Phase noise and timing jitter are important design considerations for these communications applications. The desire for highly complex levels of integration using low cost CMOS technologies works against the minimization of timing jitter and phase noise for communications systems which employ a phase-locked loop for frequency and clock synthesis with on-chip VCO. This dictates an integrated CMOS implementation of the VCO with very low phase noise performance. The ring oscillator VCOs based on differential delay cell chains have been used successfully in communications applications, but thermal noise induced phase noise have to be minimized in order not to limit their applicability to some applications which impose stringent timing jitter and phase noise requirements on the PLL clock synthesizer. Obtaining lower timing jitter and phase noise at the PLL output also requires the minimization of noise in critical circuit design blocks as well as the optimization of the loop bandwidth of the PLL. In this dissertation the fundamental performance limits of CMOS PLL clock synthesizers based on ring oscillator VCOs are investigated. The effect of flicker and thermal noise in MOS transistors on timing jitter and phase noise are explored, with particular emphasis on source coupled NMOS differential delay cells with symmetric load elements. Several new circuit architectures are employed for the charge pump circuit and phase-frequency detector (PFD) to minimize the timing jitter due to the finite dead zone in the PFD and the current mismatch in the charge pump circuit. The selection of the optimum PLL loop bandwidth is critical in determining the phase noise performance at the PLL output. The optimum loop bandwidth and the phase noise performance of the PLL is determined using behavioral simulations. These results are compared with transistor level simulated results and experimental results for the PLL clock synthesizer fabricated in a 0.35 µm CMOS technology with good agreement. To demonstrate the proposed concept, a fully integrated CMOS PLL clock synthesizer utilizing integer-N frequency multiplier technique to synthesize several clock signals in the range of 20-400 MHz with low phase noise was designed. Implemented in a standard 0.35-µm N-well CMOS process technology, the PLL achieves a period jitter of 6.5-ps (rms) and 38-ps (peak-to-peak) at 216 MHz with a phase noise of -120 dBc/Hz at frequency offsets above 10 KHz. The specific research contributions of this work include (1) proposing, designing, and implementing a new charge pump circuit architecture that matches current levels and therefore minimizes one source of phase noise due to fluctuations in the control voltage of the VCO, (2) an improved phase-frequency detector architecture which has improved characteristics in lock condition, (3) an improved ring oscillator VCO with excellent thermal noise induced phase noise characteristics, (4) the application of selfbiased techniques together with fixed bias to CMOS low phase noise PLL clock synthesizer for digital video communications ,and (5) an analytical model that describes the phase noise performance of the proposed VCO and PLL clock synthesizer

    52-GHz Millimetre-Wave PLL Synthesizer

    Get PDF

    A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    Get PDF
    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors for high resolution measurements of surface elevation and snow cover over Greenland and Antarctica. These radar systems are routinely operated from both surface and airborne platforms. Low cost implementations of UWB chirp generators are possible using an UWB Voltage Controlled Oscillator (VCO). VCOs possess several advantages over other competing technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This nonlinear relationship between the tuning voltage and the output frequency should be corrected with a linearization system to implement a linear frequency modulated (LFM) waveform, also known as a chirp. If the waveform is not properly linearized, undesired additional frequency modulation is found in the waveform. This additional frequency modulation results in undesired sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase. A linearization method has been developed to linearize the output of a VCO-based chirp generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop (PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as possible while maintaining the reference spur level below 35 dBc. Several design considerations were made for the large loop bandwidth design. Furthermore, the large variations in the tuning sensitivity of the oscillator forced a design with a large phase margin at the average tuning sensitivity. This design constraint degraded the tracking performance of the PLL. A second compensation signal, externally generated, was added to the compensation signal of the PLL. By adding a compensation signal, which was not affected by the frequency response effects of the loop compensation, the loop tracking error is reduced. This technique enabled us to produce an output chirp signal that is a much closer replica of the scaled version of the reference signal. Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state error when applying a frequency ramp to the input. The external compensation signal required to solve this issue was included in the second compensation signal mentioned above. Measurements for the PLL performance and the chirp generator performance were performed in the laboratory using a radar demonstrator. The experimental results show that the designed loop bandwidth was successfully achieved without significantly increasing the spurious signal level. The chirp generator measurements show a direct relationship between the bandwidth of the external compensation and the range resolution performance

    Design of Digital FMCW Chirp Synthesizer PLLs Using Continuous-Time Delta-Sigma Time-to-Digital Converters

    Full text link
    Radar applications for driver assistance systems and autonomous vehicles have spurred the development of frequency-modulated continuous-wave (FMCW) radar. Continuous signal transmission and high operation frequencies in the K- and W-bands enable radar systems with low power consumption and small form factors. The radar performance depends on high-quality signal sources for chirp generation to ensure accurate and reliable target detection, requiring chirp synthesizers that offer fast frequency settling and low phase noise. Fractional-N phase locked loops (PLLs) are an effective tool for synthesis of FMCW waveform profiles, and advances in CMOS technology have enabled high-performance single-chip CMOS synthesizers for FMCW radar. Design approaches for FMCW chirp synthesizer PLLs need to address the conflicting requirements of fast settling and low close-in phase noise. While integrated PLLs can be implemented as analog or digital PLLs, analog PLLs still dominate for high frequencies. Digital PLLs offer greater programmability and area efficiency than their analog counterparts, but rely on high-resolution time-to-digital converters (TDCs) for low close-in phase noise. Performance limitations of conventional TDCs remain a roadblock for achieving low phase noise with high-frequency digital PLLs. This shortcoming of digital PLLs becomes even more pronounced with wide loop bandwidths as required for FMCW radar. To address this problem, this work presents digital FMCW chirp synthesizer PLLs using continuous-time delta-sigma TDCs. After a discussion of the requirements for PLL-based FMCW chirp synthesizers, this dissertation focuses on digital fractional-N PLL designs based on noise-shaping TDCs that leverage state-of-the-art delta-sigma modulator techniques to achieve low close-in phase noise in wide-bandwidth digital PLLs. First, an analysis of the PLL bandwidth and chirp linearity studies the design requirements for chirp synthesizer PLLs. Based on a model of a complete radar system, the analysis examines the impact of the PLL bandwidth on the radar performance. The modeling approach allows for a straightforward study of the radar accuracy and reliability as functions of the chirp parameters and the PLL configuration. Next, an 18-to-22GHz chirp synthesizer PLL that produces a 25-segment chirp for a 240GHz FMCW radar application is described. This synthesizer design adapts an existing third-order noise-shaping TDC design. A 65nm CMOS prototype achieves a measured close-in phase noise of -88dBc/Hz at 100kHz offset for wide PLL bandwidths and consumes 39.6mW. The prototype drives a radar testbed to demonstrate the effectiveness of the synthesizer design in a complete radar system. Finally, a second-order noise-shaping TDC based on a fourth-order bandpass delta-sigma modulator is introduced. This bandpass delta-sigma TDC leverages the high resolution of a bandpass delta-sigma modulator by sampling a sinusoidal PLL reference and applies digital down-conversion to achieve low TDC noise in the frequency band of interest. Based on the bandpass delta-sigma TDC, a 38GHz digital FMCW chirp synthesizer PLL is designed. The feedback divider applies phase interpolation with a phase rotation scheme to ensure the effectiveness of the low TDC noise. A prototype PLL, fabricated in 40nm CMOS, achieves a measured close-in phase noise of -85dBc/Hz at 100kHz offset for wide loop bandwidths >1MHz and consumes 68mW. It effectively generates fast (500MHz/55us) and precise (824kHz rms frequency error) triangular chirps for FMCW radar. The bandpass delta-sigma TDC achieves a measured integrated rms noise of 325fs in a 1MHz bandwidth.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147732/1/dweyer_1.pdfDescription of dweyer_1.pdf : Restricted to UM users only

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers
    • …
    corecore