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Abstract 

 
Analytical, design and simulation studies on the performance optimization of reconfigurable 

architecture of a Hybrid DDS – PLL are presented in this thesis. The original contributions 

of this thesis are aimed towards the DDS, the dithering (spur suppression) scheme and the 

PLL. A new design of Taylor series-based DDS that reduces the dynamic power and number 

of multipliers is a significant contribution of this thesis. This thesis compares dynamic power 

and SFDR achieved in the design of varieties of DDS such as Quartic, Cubic, Linear and 

LHSC.  

This thesis proposes two novel schemes namely “Hartley Image Suppression” and 

“Adaptive Sinusoidal Interference Cancellation” overcoming the low noise floor of 

traditional dithering schemes. The simulation studies on a Taylor series-based DDS reveal 

an improvement in SFDR from 74 dB to 114 dB by using Least Mean Squares -Sinusoidal 

Interference Canceller (LM-SIC) with the noise floor maintained at -200 dB.  

Analytical formulations have been developed for a second order PLL to relate the 

phase noise to settling time and Phase Margin (PM) as well as to relate jitter variance and 

PM. New expressions relating phase noise to PM and lock time to PM are derived. This 

thesis derives the analytical relationship between the roots of the characteristic equation of 

a third order PLL and its performance metrics like PM, Gardner’s stability factor, jitter 

variance, spur gain and ratio of noise power to carrier power. This thesis presents an analysis 

to relate spur gain and capacitance ratio of a third order PLL. This thesis presents an 

analytical relationship between the lock time and the roots of its characteristic equation of a 

third order PLL. Through Vieta’s circle and Vieta’s angle, the performance metrics of a third 

order PLL are related to the real roots of its characteristic equation.   
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CHAPTER 1 Introduction 
 

The special significance attributed to the introductory chapter stems from its emphasis on the 

relevance of the thesis. To be more precise, it discusses the preamble, the background, the 

relevance of the thesis’s topic in the contemporary status of research, the motivation for the 

research of the thesis, and the research questions to be addressed. Those questions lead to the 

understanding of the thesis’s objectives and its organization.   

Over the past three decades, despite all the technological advancements in multiple disciplines of 

wireless communication, bandwidth remains a factor that still determines both the efficiency of 

system performance and operational effectiveness of service providers. The term bandwidth, when 

referred to wireless communication must be viewed both from the perspectives of allocation and 

utilization of spectrum. Allocation of spectrum for commercial communication system 

applications is the prerogative of the both the national and international regulatory bodies.  In 

addition to allocation of frequency spectrum, equally important aspect in wireless communication 

is utilization or full utilization of an allocated spectrum.   A prominent research domain which 

addresses the theme of spectrum utilization is Software Defined Radio (SDR) or Cognitive Radio 

(CR). This thesis addresses the significant issues pertaining to Direct Digital Synthesis (DDS) and 

Phase Lock Loop (PLL), which constitute two important subsystems of CR.   

1.1 Introduction to SDR and CR 

 

This section is an introductory discussion on SDR and CR highlighting their relevance in meeting 

the ever-increasing demand for bandwidth of modern wireless communication systems.  

SDR is a term coined by [Mitola, 1999]. It refers to a radio transmitter and receiver whose 

modulation technique, gain, noise level, center frequency and number of carriers are all controlled 

by software.  A simple block diagram of an SDR radio is illustrated in Figure 1.1. 
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Figure 1.1 Simple Block diagram of SDR  

 

The simple block diagram in Figure 1.1 illustrates three main blocks of a SDR radio. The SDR 

radio is connected to transmit and receive antennas that can be a common antenna. It comprises a 

RF portion which performs power amplification for transmission, frequency translation for 

transmission, frequency translation for reception and power amplification for reception of RF 

signals. In a typical receiver, the RF portion comprises of software controlled analog circuits. The 

RF portion is connected to a digital baseband processing block through an Analog-to-Digital 

Conversion (ADC) block. The ADC block converts analog data from the RF block into digital 

sampled data for further processing by the baseband section (reception side). The SDR radio also 

includes a Digital to Analog Converter (DAC). The DAC converts the digital based band signal 

into an analog format for further processing by the RF portion (transmission side).   The baseband 

processing block is under software control. This block performs demodulation, carrier tracking, 

symbol tracking, error detection and correction as well as framing and de-framing.  

CR technology is an approach to achieve improved efficiency of bandwidth usage in a crowded 

radio spectrum.  CR utilizes a baseline software created for SDR. Radios design based on CR 

technology senses un-utilized slots (holes) in the spectrum and effectively frequency hop to the 

unutilized slots.  A frequency synthesizer based on DDS will allow a CR receiver to rapidly switch 

operating frequency band. Current DDS oscillators have limitations on their maximum operational 

frequency range and spectral purity. 
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1.2 Spectrum Sensing Receivers and DDS-PLL 

 

CR has been defined by its inventor [Mitola, 2000] as a radio unit that can adapt to frequencies of 

operation by sensing the unutilized licensed spectrum (termed as spectrum holes), as well as the 

modulation techniques in real time. There are four major features previously identified by the 

inventor of CR in order to determine a device that can be referred to as a CR. These features are:  

1. The ability to achieve frequency agile operation utilizing spectrum usage 

information to locate gaps or ‘holes’ in the spectrum usage in a specific location 

2. Dynamic Frequency Selection (DFS) – CRs have software and hardware support to 

search for holes in the frequency spectrum 

3. Incorporate Adaptive Modulation (AM) circuits – the Modulation techniques 

utilized by CR transmitters must feature flexible modulation methods, the specific 

chosen method being dependent on a preset Bit Error Rate (BER) for a channel and 

considering dynamic time varying channel models. The modulation technique used 

is a function of energy per bit to noise ratio (
𝐸𝑏

𝑁0
) where 𝐸𝑏 is the signal magnitude 

and 𝑁0 is the noise level 

4. Dynamic Transmit Power Control is aimed at controlling the BER, transmit power, 

channel characteristics, which are dependent on the carrier frequency and 

modulation technique. The CR transmitters utilize dynamic power control to 

achieve a prior set minimum (
𝐸𝑏

𝑁0
) to meet specified BER requirements for a channel  

The CR device switches its operational carrier frequency, channel bandwidth and modulation 

methods as per available spectrum. It continually senses Reference Signal Received Power (RSRP) 

and Received Signal Strength Indicator (RRSI). This ensures that a properly designed CR operates 

in frequency bands where no other transmitter is operating. Once a CR transmitter or receiver is 

powered or turned on, its modulation technique can be dynamically altered depending on channel 

conditions. In addition to utilizing a baseline software created for SDR, CR also adds additional 

features for smart sensing of spectrum, BER and power levels. The noise floor (𝑁𝑓𝑙𝑜𝑜𝑟) of radio 

receiver is defined as the minimum level of received signal below which transmitted signals cannot 

be detected irrespective of the method of tuning the receiver. The same unit can be operated with 

a high noise floor or a low noise floor merely by re-programming the unit. The software in a CR 
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radio defines the parameters of operation as and when the user moves from place to place. Different 

locations produce wide variations in amplitude of received signal and the CR unit can alter its own 

RF system parameters to account for wide variations in channel conditions. In the US the 

development, CR was led by the Federal Communication Commission (FCC), which has 

addressed the research on the commercial applications of CR technology. Defense Advanced 

Research Projects Agency (DARPA) has also carried out research on the military applications of 

CR. 

A CR or SDR requires a frequency source to down-convert or up-convert signals. Down 

conversion occurs when an incoming RF signal is combined with the output of local frequency 

producing source (usually termed as Local Oscillator (LO)) to produce sum or difference signal 

using a non-linear device called an RF mixer. The RF mixer must be excited at least in one port 

by source for the generation of a local frequency. In frequency domain, the random fluctuations or 

variations of phase of a signal are known as phase noise. The time domain equivalent of phase 

noise is known as jitter [Rubiola, 2007]. 

The primary focus and emphasis of the research proposed in this thesis are on the design and 

architecture of the source for generation of local frequency in a RF mixer. DDS-PLL is a type of 

frequency synthesizer that has many of the characteristic features required from a source for 

generation of local frequency or LO in CR. These features include: 

1. Ability to alter the frequency very fast – within 100 µs and even below 10µs 

2. Low frequency step size, which is especially useful in systems such as GSM as small as 

200 kHz 

3. Suppression of DDS generated spurs (spurious frequencies) and PLL generated spurs. 

Practically all communication standards benefit by operation with no spurs  

A frequency source for a SDR or CR must have the following characteristics listed in Table 1.1 

[Aktas and Ismail, 2004]. Table 1.1 illustrates the frequency bands and phase noise requirements 

for several standards. Standards such as Wi-Fi and UMTS specify the maximum allowable phase 

noise at a given frequency offset. Only Mobile Wi-Max standard provides the time domain 

specification of jitter variance. The two standards in frequency domain or time domain are 

interchangeable through the usage of the Fourier integral taken over the BW of receiver channel. 

They are also compared with respect to settling time which provides a strict upper bound for the 
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oscillator to switch frequencies. The channel width would impose a limitation on the 3 dB points 

of an oscillator.  

 

Table 1.1 Oscillator requirements for some wireless communication systems 

Standard 

Frequency 

B and 

(MHz) 

Phase Noise 

(dBc/Hz) 

Settling time 

for channel 

switching (µs) 

Channel width 

(MHz) 

GSM 
880-960 

1710-1880 

-122@600KHz 

-132@1.6MHz 

-139 @3 MHz 

577 (GSM) 

150 (GPRS) 
0.2/0.2 

UMTS 

(FDD/TDD) 

1920-2170 

1900-2025 

-132@3 MHz 

-132@10 MHz 

-144 @15 MHz 

200 5/0.2 

Bluetooth 2402-2480 

-84@1 MHz 

-114@2 MHz 

-129 @3 MHz 

150 1/1 

Mobile 

WiMAX 

802.16e 

2300-2400 

2305-2320 

2469-2690 

3300-3400 

3400-3800 

Phase Jitter 

< 1 degree rms 
<100(HFDD) 3.5-10/0.25 

Wi-Fi 

IEEE 

802.11a 

5150-5350 

5470-5825 

-102@1 MHz 

-125 @ 25 MHz 

500 20/20 

Wi-Fi 

IEEE 

802.11b 

2412-2472 225 20/5 

Wi-Fi 

IEEE 

802.11g 

2412-2472 225 20/5 
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Table 1.1 requires frequency step sizes of an oscillator to be 10-4 or better. For future requirements 

a step size of 10 -6 or better is desirable. DDS based oscillators have the promise of very small step 

size that is even below 10-6. This is accomplished by having a wider phase word size of phase 

accumulator in DDS. 

1.3 Role of Frequency Sources in RF receivers 

 

A combination of LO and RF mixer is used to enable radio receivers to down convert carrier 

frequency information into base band for further processing. On the transmitter side, up conversion 

converts baseband information into carrier frequencies. The frequency down or up conversion is 

performed by a non-linear three port device called a mixer which generates sum or difference of 

the two input frequencies. The down conversion mixer has two input ports; one connected to the 

antenna and the other energized by LO. The mixer has a single output port which provides the sum 

or difference of the two frequencies. The topic of this research is the frequency source which 

energizes the LO port of RF up-conversion or down-conversion mixer. Every frequency source 

has some level of random fluctuations in its amplitude and phase. The random phase fluctuations 

have been known to affect operation of receivers. Random phase fluctuations affect the operation 

of devices such as radio receivers, radio telescopes, spectrometers and laser power detectors.  

The mixer is a device used to perform frequency translation in a radio receiver. At the transmitter 

side, incoming signal from a DAC and power amplifier is up converted to a higher frequency. The 

corresponding device is called an up-conversion mixer. At the receiver side, a Low Noise 

Amplifier (LNA) amplifies the incoming signal from the antenna. In turn, a down-conversion 

mixer down-converts this signal to a lower frequency. 

  

1.4 Motivation for Research   

 

Spectral purity of DDS and PLL is very significant for operational efficiency and Quality of 

Service (QoS) of CR. In DDS and PLL, the spectral purity is addressed through a term called 

Spurious Free Dynamic Range (SFDR). SFDR is defined as the logarithm of ratio of amplitudes 
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of the signal at the fundamental and the maximum of all subsequent harmonics. Apart from the 

SFDR, phase noise, lock time and frequency step size, another factor that is important is Phase 

Margin (PM). PM is defined as the excess phase of the system when the forward gain is unity. 

For the analysis of SFDR performance of DDS, the DDS is treated as a polynomial with fixed 

coefficients and a quadrant of a sine wave output is divided into several segments. The analysis of 

DDS reveals that DDS architectures that utilize higher order polynomial interpolation exhibit 

significantly better SFDR that those that utilize lower order polynomial interpolation. Also, for the 

same order of polynomial of a DDS it has been postulated that greater the number of segments per 

quadrant of sine wave better(higher) the SFDR. The conventional architecture of DDS does not 

permit the change of segments in the design at will and therefore the number of segments must be 

fixed at the time of finalizing the architecture. The commonly referred nomenclature of DDS 

architecture are quadratic (Taylor Series), cubic polynomial based (third order) and quartic (fourth 

order). A significant contribution in the analysis of DDS is reported by (De Caro and Strollo, 

2005). However, their approach was valid only for cubic polynomial based DDS. It cannot be 

applied to quartic DDS (fourth-order). For a given architecture of DDS, an avenue to improve its 

SFDR is to invoke dithering or spur suppression schemes. However, with the conventional 

dithering schemes, the improvement in SFDR is associated with a raise in noise floor of the signal 

spectrum. 

Similarly, PLL can be analyzed as a system of defined order like 2nd order or 3rd order. Majority 

of the analysis of PLL is through its transfer function.  It would involve parameters of PLL such 

as the sensitivities of Voltage Control Oscillator (VCO) and PFD, time constant of loop filter and 

capacitance ratio. However, the analysis of PLL through solution of Characteristic Equation (CE) 

derived through the order of PLL can lead to relationship between performance metrics of PLL 

and the location of poles of PLL.   

The design of PLL to make it achieve to very small frequency step is also one of the important 

requirements for its utility in CR. The concept of Diophantine Frequency Synthesis (DFS), which 

involves multiple PLLs can result in an impressively small frequency step. However, the presence 

of multiple PLLs in DFS has deleterious effect of a higher level of phase noise. Reduction of phase 

noise of DFS must be addressed through schemes to reduce the phase noise of the VCO or the pre-

dividers. 
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From the discussions presented thus far, the following key points emerge as consequential and 

significant for further research. 

1. CR is an emerging and evolving technology. It has a great potential to address the 

prevalent constraint on limited bandwidth by utilizing the instantaneous unutilized 

spectrum in a given location almost in a real time; 

2. The utility and operational efficiency of CR depend upon the rapidity with which 

the CR radio can adapt to the unutilized licensed spectrum; 

3. The bandwidth efficiency of CR also can be improved by the minimum step size of 

the frequency of operation to use the unutilized spectrum so that many CR users can 

have access to the same unutilized spectrum of the same frequency band; 

4. Phase noise, spur levels and locking time are important attributes for satisfactory 

operation of CR; 

5. DDS, DAC and PLL form critical subsystems of CR; 

6. Satisfactory performance of DDS and PLL from phase noise perspective will ensure 

spectral purity at the output of PLL for CR; 

7. Individual lock time of DDS, DAC and PLL determines the effective lock time of 

CR; 

8. CR comprises a cascade of DDS, DAC and PLL implying the degradation in 

spectral purity of the preceding block affects the spectral purity of next block. 

Frequency spurs generated by the DDS should not get amplified by the PLL;  

9. Spectral purity of DDS can only be a necessary condition; 

10. Spectral purity of DDS as well as PLL is a sufficient condition; 

1.5 An Overview of Succinct Research in DDS-PLL 

 

An overview of some of the key research publications that serve as a basis on based on which the 

aim and objectives of the proposed thesis have been formulated is presented in this sub section.   

[Vankka, 2000] had designed Taylor series DDS but the limitation of his DDS design is that its 

throughput was limited due to a pipeline requiring two adders and one multiplier. The limited 

throughput and increased power dissipation are due to the presence of a multiplier. Vankka has 

not focused on the computation of SFDR for a Taylor series DDS or any other polynomial based 
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DDS. He also does not provide the results for the Maximum Absolute Error (MAE) of Taylor 

series DDS. 

 [Ashrafi, 2000] has not provided any reasoning or basis for the realized SFDR of 117 dB for the 

DDS design. His design features a critical path length of 2 multiplier delays combined with 3 adder 

delays. He has not attempted to reduce the critical path length substantially. 

[Fanucci, 2000] has proposed a Quadratic DDS. But his paper does not address the schemes either 

to reduce the dynamic power or to optimize the quadratic DDS for maximal SFDR. 

 [De Caro and Strollo, 2005] proposed a theory of cubic polynomial based DDS. They have 

provided an approach for deriving the coefficients of a DDS with a bounded number of segments. 

Their results have not been extended to Taylor series-based DDS. Their results do not cover 

Quartic DDS as well. They have not performed a comparison of MAE for various types of DDS 

such as cubic polynomial based DDS, Taylor Series DDS, Quartic DDS and Linear High Segment 

Count (LHSC) DDS.  

[Storiadis, 2003] has provided a design to perform Diophantine Frequency Synthesis (DFS). DFS 

provides very small frequency step size of 1 in 10 
5
, which conventional fractional N PLLs cannot 

achieve. However, his proposed DFS arrangement will invariably lead to high levels of phase noise 

due to two pre-dividers and two VCOs. He has not provided a means to reduce the phase noise of 

the VCO or the pre-dividers. 

[Banerjee, 2006] has provided expression for the magnitude of spurs in PLL generated by leakage 

current as well as for spurs generated by mismatches.  The limitation is that it has not related the 

spur magnitudes with poles of a 3rd order PLL. He has provided expressions for PM of a third order 

PLL but has not related the PM to values of the poles of a third-order PLL.  

[Mansuri, 2002] has provided expressions for Jitter variance of a second- and third-order PLLs. 

He has not related the PLL parameter to the poles of a third-order PLL.  

[Lam and Razavi, 2000]   provided an expression to compute the ratio of the noise power to carrier 

power of a 3rd order PLL. They have not related it to the loop bandwidth or the poles of the 3rd 

order PLL.  

[Dorf, 2005] has provided the ‘Integral of Time multiplied by Absolute Error’ (ITAE) criterion for 

optimal error of a third-order system. But he has not illustrated its application of this generic 

concept to a third-order PLL. He has also not addressed the calculation of PM of such a PLL. 
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 [Gray and Stockham, 1993] have provided two important theorems on dither addition to a 

quantizer. They have provided conditions of the Characteristic Function (CF) of added dither. 

However, there is no discussion on application of their theorems for the improvement of the SFDR 

of a DDS with added amplitude dither. They have also provided relationships between the 

quantization error and input signal. But their theorems cannot be applied easily to an amplitude 

dithered DDS. 

 [Flanagan and Zimmerman, 1995] presented a scheme to compute the Spurious to Signal power 

Ratio (SpSR) for a DDS to which a random phase dither signal has been added. Their results for 

SpSR include only the first and second order moments of quantization error.  Their paper does not 

consider higher order moments such as third order of the quantization error.  The paper does not 

provide a scheme to improve the SFDR of a DDS without adversely raising the noise floor. 

1.6 Research Questions 

 

Based on the discussions presented in the previous sections, the following questions have emerged 

when viewed with a perspective of seeking solutions or answering the important and relevant 

questions/issues pertaining to the broad domain of DDS- PLL combination. 

• What modifications in the architecture of conventional Taylor series-based DDS are 

needed for the reduction of the critical path without the degradation of its SFDR?   

• Is it possible to extend or modify the analytical formulation by (De Caro and Strollo, 2005) 

for the computation of SFDR of cubic DDS to Taylor series-based DDS and quartic DDS?  

• Is it feasible to arrive at a switchable DDS configuration to facilitate realization of a range 

of pre-selected SFDR from a single DDS architecture with a feature of higher efficiency of 

dynamic power? 

• Is it feasible to formulate a scheme for design of DDS combined with a PLL which features 

low frequency step size and low phase noise?  

• Are there low power alternatives to the conventional dithering scheme for the suppression 

of spurs of DDS without significant degradation of noise floor? 

• For a second-order PLL is it possible to relate phase noise, lock time and phase margin in 

a single analytical expression? In the same way is it possible to relate a phase noise or jitter 

to stability of the PLL?  
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• For third-order PLLs with real roots or complex roots is there a geometric way that the 

PLL can be represented and what is the relationship between the phase margin and the root 

locations? 

• Is it possible to relate performance of PLL such as Jitter and spur gain to the roots of its 

Characteristic Equation (CE)? 

• Is it possible to apply some classical control system criterion to design an ideal third-order 

PLLs? 

1.7 Objectives of Research  

 

This thesis proposes to explore solutions or answers to the aforementioned research questions with 

a perspective to facilitate original contributions to the domains of DDS, as well as Spur 

suppressions schemes applicable to DDS and PLL. The aim of this research is to design and 

demonstrate hybrid Direct Digital Synthesis-Phase Locked Loop (DDS-PLL) based reconfigurable 

oscillators featured with high spectral purity for CR.  The specific objectives of this thesis are: 

1. To develop re-configurable Direct Digital Synthesis (DDS) oscillators with greater ROM 

compression, lower power and enhanced spectral purity; 

2. To develop re-configurable dithering schemes that enhance spectral purity of the waveform 

at the input to the Digital to Analog Converter (DAC) of DDS oscillators; 

3. To design architectures for hybrid DDS-PLL based re-configurable oscillator featured with 

minimum latency, step size, maximal bandwidth and high spectral purity for cognitive 

radio; 

4. To develop the designed hybrid DDS-PLL based re-configurable oscillator and 

demonstrate their performance over the GSM to WLAN range using FPGA. 

The research attempts to provide theoretical relationships that are useful for the DDS-PLL designer 

an allow trade-off of lock time versus phase noise. The outcome of these expected results is new 

types of PLLs where the phase noise is tightly bounded for a given Lock time. Therefore, the 

proposed research title Hybrid DDS-PLL Based Reconfigurable Oscillators with High Spectral 

Purity for Cognitive Radio is justified. 
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1.8 Original Contributions 

 

Following is list of significant original contributions emerging out of the research studies presented 

in this thesis. 

• Two US patents have been granted for the architecture of the Taylor Series DDS. US patent 

numbers U.S. Patent #9100044 B2, Aug. 04,2015 U.S. Patent #8570203 B2, Oct. 29,2013 

• A Hartley spur suppressor has been proposed to improve the SFDR of a DDS with a poor 

SFDR. The resultant SFDR is improved from 74 dB to about 120 dB by using a Hartley 

spur suppressor. An adaptive notch filter based on LMS or RLS has been proposed in the 

Hartley spur suppressor. The additional power required is only 100 mW. 

• A more accurate expression for the signal to total interference ratio SPSR of a phase noise 

dithered DDS has been derived for the first time. It is a correction to the expression 

originally proposed by [Flanagan and Zimmerman, 1995] which considers higher order 

moments; 

• A new analytical expression for phase noise of a second-order PLL in terms of its PM has 

been derived for the first time; 

• A new analytical expression has been derived for the derivative of lock time with respect 

to the damping coefficient. The expression explores the dependence of lock time variance 

on the PM of a second-order PLL; 

• A differential expression is derived linking the lock time and PM of second-order PLL;  

• Phase noise of a second-order PLL has been related for the first time to its lock time and 

PM in Chapter 4. This is an important new expression derived in chapter 4; 

• New analytical expression has been derived to relate the Jitter variance of a second-order 

Type II PLL and PM. This allows the trade-off of Jitter variance with PM of the second-

order PLL. It is an important contribution of chapter 4 

• A new analytical relationship between the Jitter variance and PM of a second-order PLL 

has been derived; 

• Analytical relationship between the angle between the two complex poles and the PM of a 

second-order PLL has been derived for the first time; 

• New methods of correcting the phase shift due to DAC and due to PLL using a digital 

phase shift correction filter have been proposed in this thesis; 
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• For the case of three real poles of a third order PLL, a new equation which relates between 

the PM and Vieta’s angle has been derived for the first time; 

• A new expression for the noise power to the carrier power ratio in terms of poles and 

another one in terms of the loop BW has been derived for the first time in chapter 5; 

• A new expression for the lock time of a third-order PLL has been derived for the first time 

in this thesis using Vieta’s circle half radius and Vieta’s angle. It relates roots of CE of 

PLL to the lock time. 

1.9 List of Publications 

 

 

1. Dipayan Mazumdar and Govind R. Kadambi, “Method and Apparatus for Direct Digital 

Synthesis of Signals Using Taylor Series Expansion”, U.S. Patent #9100044 B2, Aug. 04, 

2015.  

2. Dipayan Mazumdar and Govind R. Kadambi, “Method and Apparatus for Direct Digital 

Synthesis of Signals Using Taylor Series Expansion”, U.S. Patent #8570203 B2, Oct. 29, 

2013.  

3. Dipayan Mazumdar, Govind R. Kadambi, Yuri A. Vershinin and Imran Rashid, “On the 

Usage of Hartley Image Rejection Receivers and Adaptive Sinusoidal Interference 

Cancellation in Automotive Wireless Links”, IEEE Conference on Intelligent 

Transportation Systems (ITSC), Qingdao, page(s):508-513, October 2014. 

 

1.10 Organization and Outline of the Thesis 

 

The thesis is organized into seven chapters and a brief description of the individual chapters is as 

follows.     

Chapter 2: This chapter introduces the architecture of the DDS-PLL. A discussion on basic 

parameters of DDS and PLL as well as the succinct review of relevant research publications on 

DDS and PLL are presented in this chapter.   
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Chapter 3: This chapter discusses the improvements to a Taylor series-based DDS for reduced 

dynamic power and multifold increase in throughput. These improvements provided the basis for 

the two granted US patents. The chapter analyzes new and alternate spur suppression schemes 

based on Hartley image reject architecture and LMS-based sinusoidal interference suppression 

schemes. This chapter describes the computation of the SFDR of a Taylor series DDS and LHSC 

DDS using the framework provided by [De Caro and Strollo, 2005]. This chapter also compares 

the MAE of four different DDS designs having the same number of segments per quadrant. A new 

expression for Signal to Spurious Ratio (SpSR) has been derived by considering the higher order 

moments. 

  

Chapter 4: This chapter explores analytical relationships of a second order PLL. It includes 

numerous new analytical formulations which have not been addressed in prior literature. It   

presents a formulation of the relationship between settling time of a second order PLL and its VCO 

sensitivity for a fixed PM. A new analytical expression for the cumulative phase noise at the output 

of the second-order PLL in terms of PLL parameters is derived. A closed form expression for the 

variance of lock time with respect to damping coefficient is derived as a function of loop BW and 

damping coefficient. A closed form expression for the variance of lock time with PM is derived 

for the first time. One of the important contributions of this thesis is a relationship between the 

phase noise and the PM of a second-order PLL presented in this chapter. Analytical relationships 

between jitter variance and PM are derived in this chapter for Type I and Type II second order 

PLLs. A relationship between the PM and the angle between two complex poles is derived in this 

chapter. 

Chapter 5: This chapter presents analytical results on the location of three real poles of a third 

order PLL and its relationship with PLL parameters such as VCO sensitivity, capacitance ratio, 

capacitance of loop filter and divide ratio. This chapter also discusses new analytical relationship 

between the PM and the capacitance ratio of a third-order PLL with real roots. The time domain 

response of a third-order PLL with three real and equal roots is discussed in this chapter. It includes 

a discussion on the characterization of the jitter variance with the overshoot of a third-order PLL. 

A new expression is derived to relate the ratio of the noise power and the carrier power of a third-

order PLL to VCO sensitivity, capacitance ratio and the algebraic sum of the three poles. An 

equation relating the ratio of the noise power and the carrier power to the real roots and loop BW 
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of a third-order PLL is presented in this chapter. This chapter also contributes a closed form 

expression for a relationship between the poles of a third-order PLL and its lock time. 

Chapter 6:  This chapter presents implementation of various design configurations of DDS 

proposed earlier in chapter 3 using Xilinx Virtex6 FPGA.  This chapter compares the dynamic 

power and SFDR of various design configurations of DDS. FPGA implementation as well as 

comparison of dynamic power of Hartley spur suppressor and the spur suppressor using LMS 

based adaptive notch filter are also covered in this chapter. 

Chapter 7: This chapter highlights the summary of the research presented in this thesis based 

on the arrived conclusions, as well as the inferences derived through a combination involving 

analytical formulation and simulation results. This chapter also proposes suggestions for future 

research work to further the envisaged orientation or scope of the research presented in this thesis. 
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Chapter 2: A REVIEW OF THE PRINCIPLES OF DDS-PLL MODULES 

AND ITS COMPONENTS 

 

 

This chapter deals with the background theory necessary to appreciate the functional 

principles and theoretical concepts of DDS and PLL which constitute the research topics of this 

thesis. A brief discussion on the functional block diagram of Software Defined Radio (SDR), phase 

noise and significance of quadrant symmetry in DDS is presented in this chapter. Besides, this 

chapter also covers a preliminary discussion on the performance metrics of DDS such as SFDR, 

MAE and SpSR. This chapter also highlights the functional principles and the key components of 

PLL through functional block diagram. Requisite technical details on the role of PFD, VCO, Loop 

filter and divider in PLL are described in this chapter.  The definition and significance of spurs, 

overshoot and stability criterion of PLL are also presented in Chapter 2. Chapter 2 also includes a 

succinct review of relevant and significant prior research studies on second and third-order PLLs, 

DDS and notch filters from the perspective of the research proposed in this thesis. The organization 

of this chapter is as follows:  

Section 2.1 illustrates the position and connectivity of the DDS block within the broad 

architecture of SDR. It also discusses the sub-components of DDS and PLL combined architecture, 

such as PACC, Phase to Amplitude conversion and DAC. Section 2.2 discusses the concept of 

phase noise and the rationale for its reduction in the design of DDS. Section 2.3 presents the details 

on quadrant symmetry and segmentation in the design of DDS.  

Sections 2.4 and 2.5 explain the SFDR and MAE as performance parameters of DDS. In 

turn, Section 2.6 describes another important performance parameter of DDS - namely SpSR. 

Section 2.7 discusses the concept of PLL and the stability criteria associated with PLL. Section 

2.8 presents a discussion on spurs in PLL. Section 2.9 deals with overshoot in PLL. Section 2.10 

presents a succinct review of prior research pertaining to various orders of PLL and DDS. Finally, 

a summary of chapter 2 is presented in Section 2.11.  

Chapter 2 discusses key theoretical concepts like SFDR, MAE, phase noise, cubic and quartic 

DDS and provides some insight into the prior literature and patents. 
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2.1 System level block diagram for SDR 

 

This section presents the generic functional block diagram of a SDR, as well as the associated 

digital as well as analogue functions, to be performed in a SDR It also presents the role and 

significance of DDS and PLL in a broad architecture of SDR. 

 

 

Figure 2.1 Generic block diagram of SDR. 

 

Figure 2.1 is a block diagram for a complete SDR system which performs a complex list of digital 

and analog functions. The digital functions, such as spectrum monitoring, energy sensing, 

localization, demodulation and decoding, are not relevant to this thesis. The top-level Cognitive 

Radio block diagram is following [Jondral, 2015]. For this thesis the only relevant sub-block in 

the block diagram of Figure 2.1 is the SDR radio core-Analog. Within the SDR radio core, are the 

transmit and receive chains. The receive chain is further detailed in Figure 2.2, following [Abidi, 

2007], it comprises a receive antenna which receives Radio Frequency (RF) energy. The RF signal 

is amplified by the Low-Noise Amplifier (LNA) block. The output of the LNA block is passed to 

the mixer or down-conversion mixer. The down-conversion mixer is a three-port device – it has 

an RF port, a Local oscillator port and an output port - Intermediate Frequency (IF) port. The RF 

port receives the amplified RF output of the LNA. In turn, its local oscillator port receives the 

output of a stable local frequency source called the Generic Local Oscillator. The mixer output is 
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further amplified by an IF amplifier (identified in Figure 2.1). The IF amplifier output forms the 

input to the Analogue to Digital Converter (ADC). The ADC output is further processed by a 

Baseband processor. This thesis is concerned only with the block entitled Generic Local Oscillator. 

The block in Figure 2.2 titled Generic Local Oscillator (GLO) is further expanded in Figure 2.3 

where it shows the DDS part and PLL part clearly separated.  

 

 

 

Figure 2.2: The Generic Local Oscillator is replaced by short form of the DDS-PLL block. 

 

In Figure 2.2 the GLO is illustrated further and subdivided into three sub-blocks. The first block 

is the DDS block, which produces an ideal sinusoid of pre-determined frequency and phase. Its 

output is fed to the Digital to Analogue Converter (DAC). The DAC converts the digital sinusoid 

into and analog signal. The output of the DAC is frequency multiplied by the block named “PLL 

Frequency Multiplier”. Figure 2.3 provides further details of the DDS-DAC-PLL block.  
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Figure 2.3 a     Figure 2.3b 

 

Figure 2.3 Comparative DDS-PLL blocks  

 

Figure 2.3a illustrates that the DDS block is further decomposed into three sub-blocks. The 

Frequency control word block is used to produce a frequency word which is the minimum 

frequency step. The output of the Frequency control block is fed to the Phase Accumulator (PACC) 

block. The phase accumulator uses the frequency step information and produces of digital phase 

word representing a phase angle between 0 and 2𝜋. The output of the PACC block feeds the Phase 

to Amplitude Conversion (PAC) block, which converts a digital phase word of fixed width into 

the amplitude of a sinusoid.  

The output of the DDS block is the amplitude of a sinusoid. The phase shift of sinusoid is phase 

corrected (a programmed positive phase shift is added to the DDS output) by the “Optional phase 

shift correction block”. The phase shift corrected output is fed to a DAC of sufficiently high 

sampling rate. Figure 2.3b does not have the optional Phase shift correction block. The phase shift 

correction block will not be found in previous references as its inclusion is an idea that emerged 

out of this thesis. Previous authors on DDS-PLL such as [Gentile,2006] and [Vankka,2002] do not 

include the phase shift correction block. The inclusion of phase shift block is an idea that has 

emerged out of this thesis. It was done totally as an independent idea. 
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The analog output of the DAC is fed to the input of a PLL. The PLL frequency multiplies the DAC 

output. The PLL output is a frequency multiplied version of the waveform at the DAC output and 

fed to LO port of the Mixer (Figure2.2). The same mechanism is followed whether the PLL output 

is fed to a down conversion mixer or a up conversion mixer. In this thesis the terms DDS-PLL and 

DDS-DAC-PLL are used interchangeably.  

2.2 Phase Noise and its Spectra 

 

Phase noise of an oscillator can be considered as a distribution of energy around its center 

frequency. A greater level of phase noise is said to exist when there is more energy in the spectral 

bands closest to the center frequency. If the level of phase noise at the output of the DAC-PLL is 

too high, the noise distribution can mask the presence of a desired received signal. Therefore, 

lowering the level of phase noise is a goal in design of DDS-PLL. 

The voltage of an oscillator in the presence of both random variations in amplitude and phase can 

be represented as 

𝑉(𝑡) = (𝐴 + 𝑣(𝑡))𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜙(𝑡)) (2.1) 

 

In Equation (2.1), 𝐴 is the Unperturbed amplitude of the original frequency synthesizer source. 

Random variable 𝑣(𝑡) is the Random amplitude variation of the frequency synthesizer source. 

Frequency 𝑓0is the Design frequency (Fixed) of the synthesizer source. 𝜙(𝑡) is the instantaneous 

value of phase perturbation of the frequency synthesizer. Phase noise arises because of the 

randomness of 𝜙(𝑡).  

The energy due to the phase perturbation term can be written as a square of the magnitude of 

Fourier Transform of the auto-correlation function of the phase variation. The spectral density of 

any signal is written as 

𝑆𝜙(𝑓) = |𝐹(𝜙(𝑡)|2 (2.2) 
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In Equation (2.2) 𝐹 is the Fourier Transform operator. The variable 𝜙(𝑡) is a time-domain random 

variable representing phase noise. 𝑆𝜙(𝑓) is Power Spectral Density (PSD) of phase noise units 

dBc/Hz.  

Phase noise is only expressed in terms of the PSD. PSD can be defined as the amount of energy 

dissipated in a 1-ohm resistor using filter with a Band Width (BW) of 1Hz. Variation in PSD with 

change in frequency is not uniform. PSD of phase noise is used to compute the sensitivity of radio 

receiver. Typically, PSD for a commercial oscillator is maximum around the center frequency and 

drops off at frequencies of a higher offset. A PSD spectrum for a commercial source can be divided 

into regions. Each region has a different dominant mechanism for the generation of phase noise 

and its level of PSD. An alternative way to express the PSD of phase noise is in terms of a wide 

array of band pass filters each having BW of 1 Hz. If an infinite array of band-pass filters each 

with a BW of 1Hz is attached at the output of a frequency source and then the output of each filter 

is measured for power level, the resulting array would provide a complete PSD of phase noise for 

a source. 

Single Sided PSD of phase noise has been defined formally by [He, 2007]. The single sided PSD 

(𝐿𝜙(𝑓)) is expressed a s a ratio of the noise power contained in a BW of 1 Hz to carrier power as 

𝐿𝜙(𝑓) =
10 log10(𝑃𝑛𝑜𝑖𝑠𝑒(𝑓0 + Δ𝑓, 1𝐻𝑧))

10log10(𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟)
  = 10log10 (

(𝑆𝜙(Δ𝑓))

2
)dBc/Hz (2.3) 

 

In Equation (2.3), 𝑆𝜙(Δ𝑓) is the double-sided PSD. The Single Side Band (SSD). PSD is indicated 

by the symbol 𝐿𝜙(𝑓). Single Side Band (SSB) phase noise is a measure of the level of phase noise 

of a frequency source. For the best frequency sources,  𝐿𝜙(𝑓)   should be below140dBc/Hz. 

Phase noise in frequency domain corresponds to Jitter in time domain. The two are related through 

a Fourier integral relationship, as expressed in Equation (2.4). Jitter is a definite integral of phase 

noise, which is usually expressed as a variance of a time domain quantity. 

𝑣𝑎𝑟(𝐽(𝑡)) = ∫ 𝑆𝜑(𝑓)𝑑𝑓
𝐵𝑠𝑤/2

−𝐵𝑠𝑤/2

 (2.4) 

 

In Equation (2.4) 𝐵𝑠𝑤 is the Band-width of phase noise under consideration. In turn, 𝑣𝑎𝑟(𝐽(𝑡)) is 

the variance of jitter (time-domain). The integration is performed with frequency offset (𝑓) as a 
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variable. 𝑆𝜑(𝑓) is the power spectral density of phase noise. In practice the variance of jitter can 

be measured by either one sided or two-sided integration of the area under the phase noise curve 

([Rubiola, 2005], [Mansuri, 2002]). The unit of variance is rad2. 

2.3 Quadrant Symmetry and Segmentation in DDS 

 

Quadrant symmetry technique for DDS is well described in the literature [ Goldberg, 1999] and 

implemented in DDS chips. Its advantage is to reduce the silicon die area (due to a 75% drop in 

memory size for ROM-based DDS), dynamic power and leakage power [Reed, 2000]. For ROM-

less DDS, there is elimination of additional HW elements and dynamic power reduction. In a 

sinusoidal waveform, it is possible to generate the values for all the four quadrants based on the 

waveform values of a single quadrant [Vankka, 2000]. This is known as quadrant symmetry. A 

DDS (ROM-based or ROM-less) featuring Quadrant symmetry decomposes the sinusoidal cycle 

into four quadrants, the waveform is stored or computed for a single quadrant. At appropriate 

points within the entire range of 2𝜋, the phase and amplitude are inverted in a logical way to ensure 

all four quadrants can be generated. Quadrant Symmetry minimizes dynamic power, leakage 

power and die area dues to reduced memory for a ROM-based DDS and reduced HW for a ROM-

less DDS. 

Segmentation is the process of sub-dividing a quadrant of DDS operation into segments, which is 

typically a power of two say 32 or 64. The sinusoid is approximated by a cubic or quadratic 

Polynomial on a per segment basis. Hence, coefficients are calculated for each segment separately 

to achieve the best approximation.  
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(a) Quadrant Symmetry                                                     (b) Segment Numbering 

 

Figure 2.4 Cubic Polynomial DDS 

 

Figure 2.4a depicts the four quadrants used to generate a sinusoidal waveform and the bits used to 

select each quadrant of a cubic DDS. The Most Significant Bit (MSB) and the second Most 

Significant Bit (MSB-1) are used to select the quadrant. In Figure 2.4b, each quadrant is shown to 

be further subdivided into 8 segments. The segments are numbered from 000 to 111. Figure 2.4b 

illustrates that the “SEG_SEL” (SEGment_SELection) bits used to select specific segment of a 

quadrant. These “SEG_SEL” bits are typically a string of upper bits produced by the PACC. Each 

segment number corresponds to a 3-bit decoder value. The bits that determine the segment number 

are collectively referred to as the “SEG_SEL” bits throughout this chapter.  

For a cubic, quartic polynomial based DDS, a quadrant is further sub-divided into segments 

warranting a distinct polynomial used to compute an ideal sinusoid for each segment. The block 

diagram of a Cubic polynomial DDS is described in Figure 2.5. 
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Figure 2.5 Block diagram of Cubic DDS 

 

Figure 2.5 includes the main element of a Cubic DDS including PACC (Phase Accumulator), 

Coefficient Selection Unit, Polynomial Block and DAC.  

In Figure 2.5 the first block of the proposed DDS is the P_ACC or PACC whose function is to 

generate a 14-bit wide phase word which represents the argument to the sine function, an angle 

between 0 and 2𝜋. Of the 14-bit output of the PACC, the uppermost bits (bits <13:12>)) are used 

as control bits of the two multiplexers MUX1 and MUX2. Multiplexers MUX1 and MUX2 enable 

the cubic DDS to reduce complexity by enabling quadrant symmetry.  The next most significant 

bits, that is the bits 11 through 9 of the PACC are used as Segment Selection (SS) bits by the 

Coefficient Selection Unit (CSU). The lowest 12 bits of output of PACC and their complements 

form an input to the first multiplexer (MUX1). The output of MUX1 is fed to the Polynomial Block 

(PBC)- which performs polynomial computation.  The coefficients required by the PBC are fed by 

CSU. The output of the PBC is fed to a 2’s complementer and simultaneously to a second 

multiplexer (MUX2). The output of the multiplexer MUX2 is fed to the Digital-to-Analog 

Converter (DAC) block. 

Polynomial Block (PBC): To compute each sample of the output of a cubic DDS, three 

multiplications and a total of four additions must be performed. The PBC (Figure 2.6) uses a three-
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stage pipeline to ensure the actual multiplications and additions with the appropriate coefficients 

in every clock cycle. The interconnections of the PBC comprises three multipliers, three adders 

and three registers structured in a three-stage pipeline, as shown in Figure 2.6. Including the phase 

accumulator and the final register at the DDS output the total number of stages of a cubic DDS is 

five. 

 

 

 

Figure 2.6 Block diagram of Polynomial Block (PBC) 

 

The common reference clock (REFCLK) is also used to clock the PBC in Figure 2.6.  

The Coefficient Selection Unit (CSU) block that supplies the required coefficients to the PBC for 

the cubic polynomial computation is illustrated in Figure 2.7. 

 

 

Figure 2.7 CSU with 32 coefficient registers and <32:4> Multiplexer 
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The CSU in turn comprises a register bank (R_BANK) and <32:4> multiplexer (COEFF_MUX). 

In turn, the 32:4 multiplexer is implemented by using four <8:1> multiplexer elements. The 

R_BANK comprises 32 storage registers divided into eight register banks. Each register bank 

comprising four registers. Each one of the eight register banks provide the coefficients required 

for a specific segment of the waveform (one register bank dedicated per segment in a quadrant- 

Figure 2.4b).  Bits 11 through to 9 (SEG_SEL) form a control word to select the appropriate 

coefficients from the register bank. 

2.4 SFDR of DDS as a quality measure for a frequency source 

 

Spurious Free Dynamic Range (SFDR) is defined as the logarithm of ratio of amplitudes of the 

signal at the fundamental and the maximum of all subsequent harmonics. (SFDR) is the key 

measure of performance for any DDS and can be used for comparison of various DDS designs. It 

is the ratio of the fundamental to the maximum spur when considered in the frequency domain. 

[De Caro and Strollo, 2005] have derived a procedure which allows the computation of the SFDR 

of a cubic polynomial-based DDS through a closed form expression. In the derivations of [De Caro 

and Strollo, 2005] the SFDR measures the ratio of the fundamental to the (4𝑠𝑒 + 1)th harmonic on 

a logarithmic scale. The procedure derived by [De Caro and Strollo, 2005] is based on Fourier 

expansion and the analytical prediction of the levels of the generated harmonics. Their analysis 

and optimization procedure yield an idealized SFDR as a function of the number of segments (𝑠𝑒) 

used by the DDS. The formulation by [De Caro and Strollo, 2005] for computation of SFDR is a 

very significant research contribution in the DDS theory. 

In [De Caro and Strollo, 2005], the equation of the cubic polynomial used to compute DDS output 

is represented as, 

𝑉𝑘(𝑥) = 𝑦𝑘 + 𝑚𝑘(𝑥 − 𝑥𝑘) + 𝑝𝑘(𝑥 − 𝑥𝑘)
2 + 𝑞𝑘(𝑥 − 𝑥𝑘)

3 (2.5) 

 

In Equation (2.5) 𝑘 = 1,2, … , 𝑠 . Integer 𝑠𝑒 is the number of segments within a quadrant of the 

generated output sinusoid of DDS. Coefficients 𝑦𝑘, 𝑚𝑘, 𝑝𝑘 𝑎𝑛𝑑  𝑞𝑘 are coefficients for the kth 

segment of the polynomial function 𝑉𝑘. 𝑉𝑘 represents the output waveform of kth segment of DDS. 

𝑥𝑘 is the lowest argument value of the kth segment. Equation (2.6) provides an upper limit to the 
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achievable SFDR for a given number of segments. Thus, computation of SFDR provides a 

benchmark to assess the efficacy of a new DDS design.  

The SFDR is defined as, 

𝑆𝐹𝐷𝑅 = 20 log10 (
𝑏1

max (𝑏𝑛)
)𝑛 = 2,3, …. (2.6) 

 

In Equation (2.6), 𝑏1 is the Fourier coefficient of the fundamental. In Equation (2.6)  max (𝑏𝑛) is 

the highest Fourier coefficient of any of the higher harmonics, where 𝑏𝑛 is the nth order Fourier 

coefficient. 

If an optimized cubic DDS for maximal SFDR, the SFDR [De Caro and Strollo, 2005] as a function 

of the number of segments ( 𝑠𝑒)as 

𝑆𝐹𝐷𝑅 = 20 log10 (
5 + 768𝑠𝑒

2 + 5120𝑠𝑒
4

3
) = 20𝑙𝑜𝑔10 (

𝑏1
max (𝑏𝑛)

) (2.7) 

 

In Equation (2.7) 𝑏1 is the Fourier coefficient corresponding to the fundamental. In Equation (2.7) 

bn is the Fourier coefficient corresponding to the nth -harmonic. 𝑠𝑒 is the number of segments per 

quadrant.  The maximum indicated in the denominator of Equation (2.7) is the maximum of the 

Fourier coefficients for all harmonics except the fundamental or 𝑛 = 1. Equation (2.7) provides an 

upper limit to the achievable SFDR for a given number of segments. Thus, computation of SFDR 

provides a benchmark to assess the efficacy of a new DDS design. 

Index 𝑛 is the order of the Fourier coefficient, with 𝑛 = 1 corresponding to the fundamental. For 

𝑛 = 3,5,7, …  𝑠 − 1,  the values of coefficients  𝑔(𝑛), ℎ(𝑛) , 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) are optimized to zero 

in the method by [De Caro and Strollo, 2005]. All even harmonics {𝑏(2𝑛)} vanish because of 

quadrant symmetry [De Caro and Strollo, 2005]. Details of how 𝑔(𝑛), ℎ(𝑛) , 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) are 

computed is provided in De Caro and Strollo’s paper. 

For the optimized cubic DDS (with a given number of segments ′𝑠𝑒′), the closed form expressions 

for 𝑔(1) , ℎ(1) 𝑙(1) 𝑎𝑛𝑑 𝑚(1) have been given by [De Caro and Strollo, 2005] as 

𝑔(1) = −𝐵
𝜋2(1 + 40 𝑠𝑒

2)

8𝑠𝑒2(5 + 768 𝑠𝑒2 + 5120 𝑠𝑒4)
 (2.8) 

ℎ(1) = −𝐵
𝜋2(11 + 240𝑠𝑒

2 − 2176𝑠𝑒
4)

64 𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (2.9) 
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𝑙(1) = −𝐵
𝜋3(−5 + 80𝑠𝑒

2 + 4224 𝑠𝑒
4)

128𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (2.10) 

𝑚(1) = −𝐵
𝜋4(3 − 200𝑠𝑒

2 − 128𝑠𝑒
4 + 40960 𝑠𝑒

6)

1536𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (2.11) 

 

In Equations (2.8 to 2.11), the value 𝐵 corresponds to the magnitude of the output waveform, while 

𝑠𝑒 corresponds to the number of segments in the DDS. The significance of Equations (2.8 through 

2.11) is that they relate the number of segments for an optimal cubic DDS to the coefficients 

𝑔(1), ℎ(1), 𝑙(1) 𝑎𝑛𝑑 𝑚(1) and through these coefficients, to the Fourier coefficient of the output 

waveform.   Thus, in a design of a cubic DDS optimized for maximal SFDR for a given number 

of segments, Equations (2.8 to 2.11) together with Equation (2.7) provides the mathematical 

connectivity from maximal achievable SFDR to the values to 𝑔(1), ℎ(1)𝑙(1),𝑚(1) 

2.5 Maximum Absolute Error (MAE) of DDS 

 

 

MAE of a DDS is defined as the absolute difference of DDS output versus an ideal sinusoid for 

the same phase input value. It is one of the performance parameters of a DDS. For any type of 

DDS, the MAE can be expressed as  

𝑀𝐴𝐸 = 𝑀𝑎𝑥(𝑎𝑏𝑠(DDS output for a given phase input

− ideal sinusoid for the same phase input))  
(2.12) 

 

Equation (2.12) provides a definition for MAE. The MAE is a difference between two values – 

one for the ideal sinusoid and one for the actual sinusoid at the output of DDS. The 𝑎𝑏𝑠 operator 

in Equation (2.12) refers to the absolute difference between two quantities. The absolute difference 

is measured over all the samples which constitute a quadrant. For a cubic polynomial DDS, the 

above description is written as 

𝑀𝐴𝐸 = 𝑀𝑎𝑥(𝑎𝑏𝑠 (𝐷𝐷𝑆_𝑜𝑢𝑡(𝑧𝑗) − 𝐼𝑑𝑒𝑎𝑙((𝑧𝑗))) (2.13) 

In Equation (2.13) the DDS_out is estimated by a cubic polynomial using the polynomial 

expression which can be written as 
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𝐷𝐷𝑆_𝑜𝑢𝑡(𝑧𝑗) = 𝐶4,𝑘 + 𝐶3,𝑘𝑧𝑗 + 𝐶2,𝑘𝑧𝑗
2 + 𝐶1,𝑘𝑧𝑗

3 (2.14) 

 

𝐷𝐷𝑆_𝑜𝑢𝑡 is the DDS output for a cubic DDS with the phase argument 𝑧𝑗. The index 𝑗 denotes the 

sample number. Coefficient 𝐶1,𝑘 are the third-order coefficient of the kth segment. Coefficient 𝐶2,𝑘 

are the second-order coefficient of the 𝑘th segment. Coefficient 𝐶3,𝑘 are the first-order coefficient 

of the 𝑘th segment. Coefficient 𝐶4,𝑘 are the zeroth-order coefficient of the 𝑘th segment. The ideal 

sinusoid with the same phase argument 𝑧𝑗 is represented by 

𝐼𝑑𝑒𝑎𝑙((𝑧𝑗) = sin (𝑧𝑗) (2.15) 

The range of input phase arguments for application of Equation (2.15) is 0 ≤ 𝑧𝑗 ≤ 𝜋 2⁄   

All the points within a segment and at the boundaries of a segment must be considered while 

computing the MAE of a DDS. The absolute error of any of the DDS proposed in Equation (2.13) 

depends on the segment under consideration and the specific part of the segment. This is because 

coefficients are always computed for a given DDS on a per segment basis. Therefore, the value of 

the DDS output and its accuracy (MAE) depends on how accurately the coefficients are computed. 

Comparative MAE curves which are a contribution of this thesis have been included in Chapter 3.  

 

2.6 SpSR of DDS designs 

 

Defined as Spurious power divided by Signal power. SpSR measure the ratio of powers – that is 

the cumulative power in spurious tones divided by the power delivered at the fundamental 

frequency. Unlike SFDR which focusses on the largest maximum unwanted spur, SpSR focusses 

on the squares of amplitude or power. 

2.7 PLL components and Stability criteria for PLLs  

 

The Phase locked loop concept has been well described by [Banerjee, 2005]. Here only a brief 

mention is made about the components of a PLL and their functions. This section aims at a succinct 

review of the components of a PLL and their functions. A functional block diagram of a PLL with 

its important components is shown in Figure 2.8. 
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Figure 2.8 Block diagram of PLL showing PFD, VCO and Loop filter and divider 

 

A PLL has at its input either a crystal oscillator source – whose output frequency has been divided 

by a suitable divider. The PLL is a device with a forward path and a feedback path. In the forward 

path, the first device (PLL sub-block) is the Phase-Frequency Detector (PFD). The PFD is a device 

that operates at a frequency known as the comparison frequency and produces an output current 

proportional to the phase difference between two signals. The first input signal to the PFD being 

the PLL primary input and the second input signal to the PFD being a divided version of the PLL 

primary output.  The PFD is usually comprised of two current sources one to source current and 

the other to sink current (sometimes referred to as charge pumps). When the PLL primary input is 

advanced in phase compared to a divided version of the output, the PFD sources current. If on the 

other hand, the PLL input is behind in phase compared to a divided version of the output, the PFD 

sinks current. The PFD has a constant sensitivity in the regular operating region of the PLL it is 

denoted by 𝐾𝜙/2𝜋. The constant 𝐾𝜙  is called the PFD sensitivity. This value of PFD sensitivity 

affects the transfer function, phase noise and lock time of the PLL.  

The output of the PFD is filtered by an active or passive filter. The simplest passive filter is a single 

RC filter. Such a filter gives rise to a second-order PLL transfer function. The next level of 

complexity comprises of a RC filtered combined with a second parallel capacitor. This type of 

configuration gives rise to a cubic transfer function for a PLL, and in this thesis, this type of PLL 

is considered for development of analytical formulation.  
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The filtered output of the PFD is fed to a Voltage – Controlled Oscillator (VCO). The VCO is an 

active electronic circuit that converts a control voltage input into a known frequency output. In a 

PLL design, the VCO is operated in a region where there is a linear relationship between the control 

voltage at VCO input at the frequency at the VCO output. The VCO device has a control port 

where a filtered control voltage input is applied. The output of the VCO is the final PLL output. 

The VCO sensitivity controls PLL stability, lock time and phase noise. The VCO sensitivity is 

denoted by the symbol 𝐾𝑣. The VCO transfer function is indicated as 𝐾𝑣/𝑠. 𝐾𝑣 (VCO sensitivity) 

has the units of Hz/volt. The other fundamental parameter is the Phase-Frequency Detector (PFD) 

sensitivity 𝐾𝜙 which is a ratio of the current generated by the PFD divided by a phase shift. The 

phase shift is the difference in phase between the primary input to the PLL and a divided version 

of the PLL output. 

The VCO output is connected to the PLL output. The VCO output is also fed back to the PFD 

through a frequency divider (block marked 1/N in Figure 2.8). The divider can be an integer or a 

fractional. Fractional dividers are composed of sigma-delta converters. 

The Characteristic Equation (CE) of a third-order PLL is written as, 

𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑 = 0 (2.16) 

In Equation (2.16)  𝑎, 𝑏, 𝑐 and 𝑑 are coefficients; 𝑠 is a Laplace variable 

The Routh-Hurwitz stability criterion for a third-order transfer function corresponding to a third-

order PLL can be written as 

𝑎𝑑 − 𝑏𝑐 < 0 𝑎𝑛𝑑 {𝑎, 𝑏, 𝑐, 𝑑} > 0  (2.17) 

To account for the charge pump behavior, multiple other stability criteria have been suggested. 

The oldest one being that due to [Gardner, 1980] and newer ones, to [Van Paemel, 1994] and 

[Daniels, 2006]. Equation (2.18) applies to a second-order PLL,  

𝐾𝐺2 =
1

𝜋
𝜔𝑅𝜏2

(1 +
𝜋

𝜔𝑅𝜏2
) 

 (2.18) 

 

In Equation (2.18) the variable 𝜏2 is the time constant of the loop filter (RC) of a second-order 

PLL. The constant  𝜔𝑅 is the comparison frequency of the second-order PLL.  

[Gardner, 1980] proposed for third order PLLs the stability criterion can be written as 
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𝐾𝐺3 <
4(1 + 𝑎)

2𝜋(𝑏𝑐 − 1)
𝜔𝑅𝜏2

(
2𝜋(𝑎 + 1)
𝜔𝑅𝜏2

+ 
2(1 − 𝑎)(𝑏𝑐 − 1)

𝑏𝑐
)
 

(2.19) 

 

In Equation (2.19),  𝑎 = 𝑒
−
2𝜋(𝑏𝑐)

𝜔𝑅𝜏2   is an exponential constant defined by Gardner. Constant  𝑏𝑐 =

 
𝐶2+𝐶3

𝐶3
 is the capacitance ratio of the third-order PLL. 𝜏2 is the series time constant of the third-

order PLL. The stability criteria due to [Van Paemel,1994] and [Daniels, 2006] are not used for 

further development in this thesis. Hence, it is not required to go deeper into them. 

2.8 PLL spurs 

 

PLL Spurs – Every PLL produces internally generated Spurs (Spurious Frequencies). Even if a 

pure sinewave is injected at the PLL input, the output of the PLL will still exhibit spurs. Spurs 

generated by PLL itself arise because of mismatches in the charge pump. Those spurs have been 

termed as “Mismatch spurs”.  The second source of source of spurs in a PLL is determined by 

leakage current in the phase detector. Such spurs are termed as “leakage spurs”. 

Leakage spurs are the result of leakage currents that flow in the VCO, loop filter and charge pump 

even when the PLL is locked. The charge pump is in a high impedance state when PLL is locked.  

Even within the high impedance state, alternating pulses of current flow through the charge pump. 

These pulses of leakage current alter the input to the VCO control input. Hence, the VCO control 

input value is no longer fixed. The alternation of the VCO control input generates spurs at the 

output of VCO and, therefore, at output of the PLL.  There are no realistic analytical models 

possible for the magnitude of the leakage spur.  

The spur magnitudes are usually computed by using a three-term empirical formula. The spur 

magnitude formula is provided by [Banerjee, 2005] as 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑠𝑝𝑢𝑟 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

= 𝐵𝑎𝑠𝑒 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑠𝑝𝑢𝑟 + 20 log (
𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑃ℎ𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
)

+ 𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛  

(2.20) 

Equation (2.20) is an empirical equation. The Base Leakage Spur is empirically determined to be 

16dB. The Leakage current is dependent on the Phase detector. The Spur Gain is the closed loop 
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gain of the PLL at a fixed comparison frequency. Modern PLLs have little charge pump leakage 

of the order of pico-amperes, so the amplitude of Leakage spurs keeps getting reduced with the 

advancement of process technology. 

Mismatch spurs are produced in PLLs due to transistor level mismatches. Mismatches can arise 

due to transistor switching time mismatches in the charge pump transistors. Mismatch spurs can 

arise due to mismatch of charge pump current between the source side (usually PMOS) and the 

sink side (usually NMOS). It can arise due to unequal turn-on times between the source side and 

sink side, although designers try to match both turn–on times as closely as possible. They can rise 

due to a third cause, which is the inclusion of dead zone elimination circuits in the PLL. These 

circuits are designed to switch on the charge pump when the phase detector is sitting in the dead 

zone. The dead zone is a very small range of phase shift (around zero phase shift) for which there 

is no phase detector output.  

The empirical equation for mismatch spurs has also been provided for the first time by 

[Banerjee,2006]. 

𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟 = 𝐵𝑎𝑠𝑒 𝑃𝑢𝑙𝑠𝑒 𝑆𝑝𝑢𝑟 + 𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛 + 40𝑙𝑜𝑔10 (
𝐹𝑠𝑝𝑢𝑟

1𝐻𝑧
) (2.21) 

 

In Equation (2.21), the Base Pulse Spur is an empirical constant whose magnitude is around -

300dBc. The Spur Gain is the closed loop gain of the PLL at the PLL comparison frequency. The 

𝐹𝑠𝑝𝑢𝑟 is the spur frequency under consideration. 

2.9 Overshoot and phase margin of a PLL 

 

Any underdamped system exhibits oscillatory behavior when a step input is applied. It can be a 

voltage step, a current step, a frequency step, or a phase step for electronic systems. In mechanical 

systems, it is a force step. Overshoot is a numerical measure of the maximum instantaneous 

amplitude of the output which is much higher than the steady-state output. Overshoot is expressed 

as a percentage of the absolute difference between the steady state output and the peak output 

divided by the steady-state output.  
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Figure 2.9 Example of overshoot of a PLL versus a steady state rise in output. 

 

Phase Margin (PM): PM is defined as the excess phase of the PLL when the forward gain is 

unity. Its connected with the concept of Loop gain of a PLL. The loop gain is a product of the 

forward gain (𝐺) and the feedback path gain (𝐻). If the Loop gain (𝐺𝐻) of a PLL exceeds 

unity, then the phase margin must be positive. Otherwise, the PLL will be unstable.  

 

2.10 Literature Review 

 

2.10.1 Review of Research Studies on second-order PLL 

 

[Banerjee,2005] has provided expressions for lock time, spur gain and methods to compute loop 

filter parameters. His models for leakage spurs and mismatch spurs have been directly used in 

chapter 5 of this thesis. Banerjee has provided models for phase noise and jitter as well. 

[Drucker, 2000] has discussed models of multiple noise sources. He has also provided 

methodology to compute the noise transfer function for various sources. Drucker has not provided 

a methodology to compute a composite Power Spectral Density (PSD) of Phase Noise at the output 

of PLL in closed form. 

[Amornthippart, 2008] describes the additive model for phase noise, thereby leading to cumulative 

phase noise of PLL. His analysis of phase noise does not cover analytical treatment of Noise 

Transfer Function (NTF) of various sources of noise and the analysis did not attempt to link the 

relationship of the phase noise with other performance metrics of DAC- PLL. 
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[He, 2007] has provided an analysis of PM of second-, third- and fourth-order PLL and the variance 

of “normalized” lock time with PM. [He, 2007] has provided the conditions for maximization of 

PM of a third-order PLL and the generalized transfer function of a third-order PLL both of these 

results are utilized in this thesis. [He, 2007] does not include the relationship between PM, rise 

time, damping coefficient and Phase noise.  

[Daniels, 2008] discusses stability issues of higher order PLLs and introduces charge 

approximation methodologies. Based on charge approximation methodologies, Daniels avoids a 

lot of mathematical limitations of earlier research. Daniels’s research supersedes earlier work due 

to Van Paemel on third-order charge pump PLLs.  However, the relationship between phase noise 

and the referred performance metrics of PLL have not been explored in [Daniels, 2008].  

[Lee, 2002] has provided an additive model for the jitter of a second-order Type II PLL. Further 

work has been done in chapter 4 by using Lee’s model and relating jitter and PLL parameters such 

as phase margin.  

[Mansuri, 2002] has provided jitter variance expressions for second-order PLLs. The derivations 

dues to Mansuri have been used to derive multiple new expressions for PLL parameters and jitter 

in Chapters 3 and 4.  

 

2.10.2 Review of prior Research on Papers relating to third and high order 

PLLs 

 

[Van Paemel, 1994] has proposed a behavioral model for the design and analysis of charge pump 

PLLs. The CP-PFD (Charge Pump-Phase Frequency detector) is a device that undergoes state 

transitions when the output state of the CP-PFD changes. This state machine behavior means it has 

three states – and UP state in which it supplies current, a DOWN state in which it sinks current 

and a “NULL” state where the current sourcing and sinking functions are off. When the Charge 

Pump-Phase Locked Loop (CP-PLL) is stable in one of these states without state transitions, the 

PLL acts like a linear system. Hence, it can be described by state equations. In [Van Paemel, 1994], 

paper there are two state variables – the pulse width of the phase detector and the loop filter 

capacitor voltage. His model attempts to compute the next phase detector pulse width as a function 

of the capacitor voltage picking one of four scenarios. The next value of capacitor voltage is 

estimated using the pulse width value.  The disadvantages of his model are the stability limits 
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computed by Van Paemel’s model, which means that it fails to capture the effect of non-linearity 

of the CP-PFD. It also suffers from the limitation of using a fixed time step. 

[ Hedayat, 1999] extended Van Paemel’s method to a variable time step. The non-uniform time 

step is certainly an advance over Van Paemel’s model. Hedayat’s model requires 6 internal states  

His model cannot be extended beyond fourth-order however his results on stability margins are 

more accurate than those of Van Paemel.  

[Herzel, 2010] has derived the NTFs for a fractional-N PLL with the sigma-delta modulator in the 

feedback path. A PLL without a sigma-delta modulator in the feedback path is the model under 

consideration of this thesis and PLL model of [Drucker, 2000] has been adopted for the analysis. 

The second clear distinction is with respect to the placement of the noise source of divider. In 

[Herzel,2010], divider noise source is placed before the feedback path of PLL.  

The ITAE criterion is a control system criterion that provides a square of error multiplied by time 

passed in an integral form as a measure of performance for a control system. For a second-order 

system, [Dorf, 2005] plotted the ITAE performance criterion as a function of the damping 

coefficient.  In this thesis, the ITAE performance criterion has been explored for a third-order PLL. 

The research in this thesis utilizes the theory of equations as applied to a third order PLL. The 

solution of a generalized cubic equation was studied by Giacomo Cardano (anglicized to Cardan) 

[Bernard and Child, 2011], and the classical solution of a cubic is known as Cardan’s solution 

since the 1550s. 

 [Nickalls, 1993] makes a fundamental contribution to applied mathematics by introducing a new 

set of parameters different from the 𝐺 and 𝐻 parameters defined by Cardan’s. Nickalls’s solution 

of a cubic equation results in three categories of nature of roots: all three roots are real and unequal; 

all three roots are real and equal; of the three roots one root is real and the other two are complex 

conjugate roots. 

Cardan’s original solution technique for third-order equations is explained in [Bernard and Child, 

2011]. In this thesis a variant of the classical technique is used to analyze third-order PLLs 

originally due to [Nickalls, 1993]. A definition of the discriminant of a third-order nonlinear 

equation is desirable, as its properties can be used to define the stability and the nature of the PLL. 

Such a definition is provided in chapter 5.  

[Abramowitz, 2002] has written an important paper on application of Lyapunov’s stability and 

Sylvester’s theorem to third order PLLs. The stability measures addressed in this chapter are 
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related to linear models.  [Abramowitz, 2002] applies non-linear (Lyapunov) system theory to the 

third order PLLs.  

[D’Amato et. al., 2017] propose a polar transmitter architecture for beam steering that utilizes a 

DDS-PLL which phase shifting.  This work has been published after this thesis was presented in 

2016 and much after the original phase shifter work was done in 2011 (by this author). Their 

application is a circuit that performs 16-PSK modulation. 

[Tonelli et. al. 2014] describes a X- band frequency oscillator comprising of a DDS, DAC and low 

phase noise and low lock time PLL. They claim a 30dB improvement in phase noise and a lock 

time of below 10us. They also claim fine frequency resolution.  

[Vishnu and Anulal, 2015] propose an algorithm to detect whether a spur generated by a DDS lies 

within the loop BW of the PLL to which the DDS output is connected. If such a spur is detected 

their algorithm reconfigures the system to filter out the spur. The algorithm alters the DDS 

frequency such that the incoming spurs are filtered by the PLL. 

2.10.3 Review of Research Studies on DDS 

 

 [De Caro, Napoli and Strollo, 2002] compares second order polynomial-based DDS versus 

CORDIC based DDS. This paper describes a featuring an SFDR of 80dBc using third-order 

polynomials and a second DDS (with an SFDR of 60dBc) using second-order polynomials and 

compares them with a CORDIC-based DDS. 

[De Caro and Strollo, 2005] provides a theoretical framework to compute the SFDR of a cubic 

polynomial DDS. Their approach allows a DDS to be designed with integer number of segments 

per quadrant. The theory described in this paper is applicable to cubic DDS, quadratic DDS, LHSC 

DDS and Taylor series-based DDS. The theory explains how to achieve a SFDR of 180dB for a 

cubic DDS using 𝑠𝑒 =  32. Its basic theory has been utilized to compute SFDR in chapter 3. It has 

also been extended to a quartic DDS in chapter 3.   
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[De Caro, Petra and Strollo, 2011] describes a DDS design which uses segments of unequal length 

with piecewise linear approximation in each segment. A conventional polynomial DDS utilizes 

fixed number of samples per segment. The authors propose a DDS deign with unequal segment 

where the segment length is adjusted to maximize SFDR. They demonstrate how to obtain the 

segment lengths for maximal SFDR. The number of segments is computed as a solution to a mixed 

integer and linear programming problem. 

[Vankka, Waltari, Kosunen and Halonen, 1997] have described a DDS design incorporating an 

on-chip DAC. The overall SFDR is 60dBc and with a small step size of .0349 Hz. The frequency 

step size is 140ns. The device described in this paper incorporates a 10-bit DAC. It has an overall 

power dissipation of 0.6W. 

 [Vankka, Lindeberg and Halonen, 2004] have proposed error feedback techniques to suppress 

phase and amplitude spurs in DDS designs. The error feedback technique proposed by [Vankka, 

Lindeberg and Halonen, 2004] extracts error signals from the DDS. The output of the phase 

accumulator is truncated. The truncated signal is fed back after a second order FIR filtering to the 

phase accumulator. A similar feedback structure is placed after the phase to amplitude converter, 

after truncation of the phase to amplitude signal one part of the amplitude output is fed back to an 

adder after being filtered by a second-order FIR filter. Hence, both phase signal from PACC and 

amplitude signal produced by the Phase to amplitude converter are subjected to error feedback 

with two tunable coefficients.  [Vankka, Lindeberg and Halonen, 2004] estimated that this 

improves SFDR by around 20dB. 

2.10.4 Review of Research Studies (2014-2017) on high-order PLLs 

 

[Golestan, Freijedo and Guerrero, 2015] present higher-order PLL design for power system 

applications. A systematic method for the design of higher-order PLLs is described. It does not 

discuss theoretical issues with the roots of a third-order PLL. 

[Golestan et. al., 2017] discusses three-phase Frequency Locked Loops [FLLs] and provides 

models and stability analysis of three-phase second-order FLLs. Three-phase frequency locked 

loops are common in power systems. This is because when power systems are imbalanced, the 

instantaneous frequencies of each phase can be slightly different. A second-order FLL is one which 
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tracks both frequency and the derivative of frequency.  This work is a bit different from the third 

-order PLL design issues addressed in this thesis. 

[Genovese and Napoli, 2013] follows up on the earlier work due to De Caro and Napoli to 

implement multiple DDS designs on FPGA.  

[Zhang et. al., 2017] have implemented a Taylor series DDS on an FPGA. They claim a SFDR of 

114dBc. Besides, they stated that their approach which uses a Taylor series calculation and a new 

way of using look-up tables, reduced HW complexity and improved SFDR. 

2.10.5 Important papers about adaptive notch filters 

 

 

[Martens et al., 2006] addressed the issue of variable amplitude and random phase power line 

interference (50-60 Hz) in ECG signals. [Martens et al., 2006] tracks the amplitude and frequency and 

phase of all interference components in an ECG signal in real time. The proposed architecture uses a 

PLL type structure to correct for harmonics with varying amplitude and phase. Hence, the weight 

vector is split into two parts corresponding to amplitude and phase observations. This paper proposes 

combining error signals corresponding to each harmonic in the ECG as a composite signal. The 

proposed approach is to make the convergence rate independent of the magnitude of the interference 

signal. This is important when the interference signal magnitude can vary from cycle to cycle. [Martens 

et.al. 2006] uses an LMS algorithm with a matrix type structure. This approach completely suppresses 

spurs at 150 Hz.  

2.11 Summary 

 

This chapter aimed to present an overview of functional principles and analytical basics of 

DDS and PLL to facilitate the better appreciation of the rationale for proposed research and its 

findings. As a preamble, this chapter is focussed on establishing the functional and performance 

connectivity of DDS and PLL in a broad architecture of SDR/CR. Chapter 2 has also dealt with 

requisite details on the performance metrics of both DDS and PLL. 

Phase noise, SFDR, MAE, SpSR and PM are among the significant parameters most 

commonly used in the evaluation of efficacy of the DDS design. Therefore, this chapter has 
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covered the basics of these performance metrics of DDS. The concept of stability criteria, spur and 

overshoot in PLL have also been addressed.  

Chapter 2 has facilitated succinct review of prior research related to DDS and PLL with 

the perspective of the research proposed in this thesis. The presented succinct review has 

highlighted the scope, novelties and limitations of the prior research. In addition, this chapter has 

aimed at the discussion on the basis, relevance and significance of some of the referred research 

studies to the research topic of the proposed thesis.   

 The concise review of various principles and techniques, analysis and description of 

various sub systems as well as pertinent prior research presented in this chapter is intended to 

facilitate better appreciation of the analysis and simulation of   DDS, PLL and DDS-PLL discussed 

in later chapters of this thesis.  
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 Chapter 3 DDS for Enhanced Spectral Purity 

Introduction 

 

This chapter focuses on dither theory, application of dither and three other spur suppression 

techniques to DDS. Dithered schemes alter the SFDR and noise floor of DDS systems. The 

objective of this chapter is to analyze new and alternate schemes to improve the DDS. Section 3.1 

pertains to a new architecture for the Taylor series DDS. This architecture reduces power while 

improving throughput. Section 3.2 is on literature review of Dither. In Section 3.2, a 

comprehensive literature review of papers pertaining to dither theory and quantization theory is 

presented. The literature review includes research publications on Hartley image reject 

architectures and on LMS based sinusoidal interference suppression schemes. Section 3.3 

describes the computation of the SFDR of a Taylor series DDS. Section 3.4 describe computation 

of SFDR of LHSC DDS using the framework provided by [De Caro and Strollo, 2005]. The 

specific derivations are original contributions. Section 3.5 compares the MAE of four different 

types of DDS designs having the same number of segments per quadrant. Section 3.6 is dedicated 

to the classification of dither. All the equations in 3.6 are original contributions described the first 

time in this thesis. Section 3.7 contains a review of prior research in dithered DDS. A new 

expression for SpSR of phase dithered DDS has been derived by considering the higher-order 

moments in Section 3.8. Section 3.9 discusses Hartley image suppression for DDS. This section 

includes underlying theory and the addition of Hartley image suppression for Taylor series DDS 

and LHSC-DDS. Section 3.10 discusses Adaptive sinusoidal interference cancellation techniques 

for DDS including theory, implementation and illustrations of SFDR improvement before and after 

application of the adaptive harmonic canceller. Section 3.11 is the chapter’s conclusion. 

3.1 A new architecture for the Taylor Series DDS 

 

This subsection proposes a low-power and high throughput DDS design using Taylor series 

expansion to generate sinusoidal waveforms.  



 
 

42 
 

Let the argument of sine function be (
𝜋

2
𝑃 )where 𝑃 is real and 𝑃 varies between 0 and 4. This 

ensures so that sine function argument covers all the four quadrants.  

The argument of sine function can be split into a sum of angles 𝑢 and (𝑃 − 𝑢) 

𝑠𝑖𝑛 (
𝜋

2
𝑃) = 𝑠𝑖𝑛 (

𝜋

2
(𝑢 + 𝑃 − 𝑢) (3.1) 

In Equation (3.1) (𝑢) is the value of the post significant bits of the argument. (𝑃 − 𝑢) is the value 

of the least significant bits of the argument. 

Using the Taylor Series expansion, the expression 𝑠𝑖𝑛 (
𝜋

2
(𝑢 + 𝑃 − 𝑢) can be written as  

𝑠𝑖𝑛 (
𝜋

2
𝑃) = 𝑠𝑖𝑛 (

𝜋

2
(𝑢))(1 −

(
𝜋
2
(𝑃 − 𝑢))

2

2
) + 𝑐𝑜𝑠 (

𝜋

2
(𝑢))

{
 

 𝜋

2
(𝑃 − 𝑢) −

(
𝜋
2
(𝑃 − 𝑢))

3

6
}
 

 
 (3.2) 

 Considering only first- and second-order term of (𝑃 − 𝑢), one can represent the Taylor series 

expansion of the function  𝑠𝑖𝑛 (
𝜋𝑃

2
) as 

𝑠𝑖𝑛 (
𝜋𝑃

2
) = 𝑠𝑖𝑛 (

𝜋𝑢

2
) + 𝑘1(𝑃 − 𝑢)𝑐𝑜𝑠 (

𝜋𝑢

2
)    −

1

2
𝑘2{(𝑃 − 𝑢)}2𝑠𝑖𝑛 (

𝜋

2
𝑢) (3.3) 

In Equation (3.3) 𝑘1 =
𝜋

2
  and 𝑘2 = (

𝜋

2
)
2

are constants estimated by interpolation. Constants 

𝑘1 𝑎𝑛𝑑 𝑘2 are required to convert radian angle arguments into normalized values so that the 

multiplication is possible. Taylor Series DDS has been designed earlier [Vankka, 2000] and 

[Goldberg, 1999].  
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Figure 3.1 Taylor Series DDS of [Vankka,2000] 

 

The Taylor series DDS in Figure 3.1 comprises of a Phase ACCumulator (PACC), three ROMs, 

one multiplier and two adders. The Taylor Series DDS shown in Figure 3.1 was proposed by 

[Vankka, 2000].  

The PACC produces a 12-bit wide address, which is further split into (𝑢) the most significant bits 

and  (𝑃 − 𝑢) the least significant bits. The final output of Vankka’s DDS which is a function of 

the outputs of ROMs M1, M2, M3 in Figure 3.1 can be written as 

𝑠𝑖𝑛 (
𝜋𝑃

2
) = 𝑠𝑖𝑛 (

𝜋𝑢

2
) + 𝑘1(𝑃 − 𝑢)𝑐𝑜𝑠 (

𝜋𝑢

2
)  −

1

2
𝑘2{(𝑃 − 𝑢)}2𝑠𝑖𝑛 (

𝜋

2
𝑢) (3.4) 

The limitation of Vankka’s architecture is that the longest path (critical path) includes 1 

multiplier(M1) and 2 adders (A1 and A2) in a cascade, thereby limiting the maximum throughput. 

The critical path of the Taylor series DDS is 𝑇𝑚 + 2𝑇𝑎(where 𝑇𝑚= multiplier delay and 𝑇𝑎 = adder 

delay) which limits the possible upper range of operating frequency. 

𝑓𝑜𝑢𝑡_𝑚𝑎𝑥 =
1

𝑇𝑚 + 2𝑇𝑎
 (3.5) 

In Equation (3.5) variable 𝑓𝑜𝑢𝑡_𝑚𝑎𝑥 is the maximum operating frequency or maximum throughput 

of the DDS. 

The Taylor Series DDS of [Vankka, 2000] requires a multiplier and two adders with three ROMS 

dissipating much higher dynamic power. To implement a better DDS that overcomes both above 

limitations one must first consider the equation implemented in a Taylor series DDS. The second 

Some materials have been removed due to 3rd party copyright. 
The unabridged version can be viewed in Lancester Library - 
Coventry University.
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term 𝑘1(𝑃 − 𝑢)𝑐𝑜𝑠 (
𝜋𝑢

2
)in RHS of Equation (3.4) can be replaced by the addition of two terms;  

1

4
𝑘1 {(𝑃 − 𝑢) + 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

 and   −
1

4
𝑘1 {(𝑃 − 𝑢) − 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

  

Thus, Equation (3.5) can be rewritten as a summation of four independent terms as 

𝑠𝑖𝑛 (
𝜋𝑃

2
) = 𝑠𝑖𝑛 (

𝜋𝑢

2
) +

1

4
𝑘1 {(𝑃 − 𝑢) + 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

−
1

4
𝑘1 {(𝑃 − 𝑢) − 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

−
1

2
𝑘2{(𝑃 − 𝑢)}2𝑠𝑖𝑛 (

𝜋

2
𝑢) 

(3.6) 

 

The transformation of Equation (3.4) to Equation (3.6) signifies, that multiplication for a real 

function can be replaced by a subtraction of two different functions if the input functions are both 

real. This transformation allowed a new type of multiplier-less architecture for Taylor series DDS. 

The arguments of sine and cosine functions described above translate to the ROM address of DDS. 

The bit string represented by 𝑢 is the most significant bits of the ROM address and the bit string 

represented by  (𝑃 − 𝑢) is least significant bits of the ROM address. In the implementation of 

Taylor Series in DDS, four ROMs (indexed as A through D) are mandatory since they are 

corresponding to the four terms on the RHS of Equation (3.6). The four ROMs belonging to the 

series (A through D) may include values, according to the Equations (3.7-3.10) so that one of the 

four ROMs includes values for each term of Equation (3.6). 

The first ROM (ROM_A) stores the first term in Equation (3.6) and stores the output value 𝑂𝐴 

given by 

𝑂𝐴 = 𝑠𝑖𝑛 (
𝜋

2
𝑢) (3.7) 

The second ROM (ROM_B) stores the output 𝑂𝐵, given by  

𝑂𝐵 = −
1

4
𝑘1 {(𝑃 − 𝑢) + 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

 (3.8) 

The third ROM (ROM_C) stores the output 𝑂𝐶 and is given by  

𝑂𝐶 = −
1

4
𝑘1 {(𝑃 − 𝑢) − 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

 (3.9) 

The stored output of fourth ROM (ROM_D) has the output (𝑂𝐷) defined by 

𝑂𝐷 = −
1

2
𝑘2{𝑃 − 𝑢}2𝑠𝑖𝑛 (

𝜋

2
𝑢) (3.10) 
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The proposed Taylor series DDS shown in Figure 3.2. The new proposed DDS requires 4 ROMs 

which store values 𝑂𝐴, 𝑂𝐵,𝑂𝐶 , 𝑂𝐷  and their outputs must be added for every sample using a four-

input adder. The four-input adder performs single cycle addition of four operands (one from each 

ROM) from a set of four ROMs. The speed of the adder, which is the time required to propagate 

through the carry chain of the adder must be lower than the access time of the slowest of the four 

ROMs. 

The proposed Taylor’s series DDS [Mazumdar and Kadambi, 2013; Mazumdar and Kadambi, 

2015] comprises six major logical blocks organized in a single six-stage data-path with four 

parallel data-path segments – each segment being possessed by a different ROM (Figure 3.2). 

Figure 3.2 Block Diagram of Proposed Taylor Series Based DDS [Mazumdar and 

Kadambi, 2013] 

 

Figure 3.2 is the composite datapath of the new type of Taylor series DDS invented by the author. 

It comprises of six separate blocks. The first block of the new DDS described is the PACC which 

Some materials have been removed due to 3rd party copyright. The unabridged version can 
be viewed in Lancester Library - Coventry University.
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receives a reference clock input (frequency 𝑓𝑐𝑙𝑘) and generates a digital phase word, thus forming 

address to the ROMs. The output of Phase Accumulator Register (PACR) output 𝑢 is a digital 

word of width greater than 16 bits representing a phase angle between 0 and 2π. The PACC is not 

part of the invention, and hence its details are excluded [Vankka, 2000]. 

The second stage of the six-stage pipeline comprises four ROM blocks whose address lines are 

driven by the PACC. The ROM blocks (A, B, C and D) generate terms in accordance with Equation 

(3.6). The output bit-width of all the 4 ROMs is the same. The address size for all the 4 ROMs is 

the same as the output bit width of the PACC. The ROM A is programmed with the first term of 

Equation (3.6). Likewise, ROM B, ROM C and ROM D are programmed with the second term, 

the third term and fourth term of Equation (3.6) respectively. The ROM depth for all the ROMs A 

through D is given by 2𝑁  where N is the output bit-width of PACC. For proper operation of the 

DDS, all the memories in Figure 3.2 must operate by utilizing a common reference clock (𝑓𝑐𝑙𝑘). 

ROM A, ROM B, ROM C and ROM D store values given by Equations (3.7, 3.8, 3.9 and 3.10) 

respectively. The final output of the DDS is the summation of the outputs of the four ROMs using 

the four-input adder in Figure 3.2. 

𝑠𝑖𝑛 (
𝜋𝑃

2
) = 𝑠𝑖𝑛 (

𝜋𝑢

2
) +

1

4
𝑘1 {(𝑃 − 𝑢) + 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

−
1

4
𝑘1 {(𝑃 − 𝑢) − 𝑐𝑜𝑠 (

𝜋

2
𝑢)}

2

 

−
1

2
𝑘2{(𝑃 − 𝑢)}2𝑠𝑖𝑛 (

𝜋

2
𝑢) 

(3.11) 

 

The net effect of adding the second term (in Equation 3.11) from ROM B and third term (in 

Equation 3.11) from ROM C is that the second multiplicative term in Equation (3.4) can be 

generated without having to perform an actual multiplication. The eliminates the need for an 

additional multiplier. The third stage of the proposed six-stage data path (in Taylor Series DDS) 

comprises 4 registers RxA, RxB, RxC and RxD which receive the outputs from ROM A, ROM B, 

ROM C and ROM D respectively. The register widths of registers RxA, RxB, RxC and RxD must 

be equal to the bit-widths of ROM output. The operating clocks of registers are the same as the 

operating clock of ROMs to ensure proper operation of the synchronous data path. There are two 

possible connective paths between the output of the register and the input of the following 

computational stage (four input adder) –one being a serial path and the other being a parallel path 

[Mazumdar and Kadambi, 2013].  
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The fourth stage of the six-stage data path (in Figure 3.2) in the Taylor Series DDS is a four-input 

adder used to summation of outputs of the four registers in the third stage namely RxA, RxB, RxC 

and RxD.  The fifth stage is the register located at the output of the four-input adder (fourth stage). 

The fifth stage register is connected to the input of the sixth and final stage, which is the DAC 

block. The DAC block synthesizes a continuous time waveform from the discrete time signal 

present at the output of the fifth stage register. The architecture of Taylor series DDS shown in 

Figure 3.2 constitutes an original contribution of this thesis. 

3.2 Quartic DDS theory and block diagram and a new integral  

 

 

The cubic polynomial DDS with 𝑠𝑒 = 32 segments can achieve an SFDR of 185dB. This paves 

the way for one to look for an alternative DDS which can achieve a higher SFDR for the same 

number of segments, say for 𝑠𝑒 = 8 where the cubic polynomial DDS achieves an SFDR of 136 

dB. In the process, one attempts to achieve a slightly better MAE. The quartic DDS shown in 

Figure 3.1 appears to have not been attempted earlier. It requires an additional coefficient for each 

segment within a quadrant and an additional stage in the pipeline. The quartic DDS requires a more 

complex Coefficient Selection Unit (CSU) and a more complex data path as compared to the cubic 

polynomial DDS in Figure 3.11. The CSU of the quartic DDS outputs five coefficients per cycle 

(Fig 3.3), as compared to four coefficients per cycle in the cubic DDS (Figure 2.5 in Chapter 2 of 

this thesis). 
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Figure 3.3 Quartic DDS block diagram 

 

 

Figure 3.3 illustrates a structure similar to the cubic polynomial DDS. Figure 3.3 is a modified 

version of the cubic polynomial DDS described in Figure 2.5. One difference between Figure 3.4 

and Figure 2.5 is that the CSU is more complex and requires an additional multiplexer because it 

must generate five coefficients for every segment versus four coefficients per segment for the cubic 

DDS. The CSU for the quartic DDS (Figure 3.3) requires more storage than the CSU for the cubic 

polynomial DDS (Figure 2.7). Specifically, it requires that additional 𝑠𝑒 registers (where 𝑠𝑒 is the 

number of segments) are necessary to store the additional coefficients required for quartic DDS. 

Figure 3.4 illustrates the additional pipeline stage that must be used for the quartic DDS.  
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Figure 3.4 Polynomial Computation Block (PCB) for quartic DDS 

 

Figure 3.4 illustrates the Polynomial Computation Block (PCB) or the polynomial computation 

pipeline for the quartic DDS. For the quartic DDS, a model by [De Caro and Strollo, 2005] can be 

extended with the following expression: 

𝑉𝑘(𝑥) = 𝑣𝑘(𝑥 − 𝑥𝑘)
4 + 𝑞𝑘(𝑥 − 𝑥𝑘 )

3 + 𝑝𝑘(𝑥 − 𝑥𝑘)
2 +𝑚𝑘(𝑥 − 𝑥𝑘) + 𝑦𝑘 for 𝑘

= 1,2, … 𝑠𝑒   
(3.12) 

 

In Equation (3.12), the symbols 𝑦𝑘, 𝑚𝑘, 𝑝𝑘, 𝑞𝑘 , 𝑣𝑘 are coefficients and each can be considered as 

a row vector 𝑠𝑒 wide where 𝑠𝑒 is the number of segments per quadrant. The additional quartic term 

has a coefficient vector 𝑣𝑘. The coefficient 𝑣𝑘 is the coefficient for the fourth power of the 

difference (the fourth order term). 

𝜈𝑘 is the quartic coefficient for 𝑘 =  1,2, … 𝑠𝑒 . The constant 𝑥𝑘is the lower limit of the 𝑘𝑡ℎ 

segment. The variable 𝑥 is an independent phase angle argument varying between 0 and 1( 0 ≤

𝑥 ≤ 1). 

The coefficient computation follows the least squares approach like the one that was performed 

for the cubic polynomial interpolation.  

𝑍 = 𝐶1𝑧
4 + 𝐶2𝑧

3 + 𝐶3𝑧
2 + 𝐶4𝑧 + 𝐶5 (3.13) 

The independent phase variable 𝑧 in Equation (3.13) varies between 0 and 
𝜋

2
. The cubic DDS 

output is the variable 𝑍. 
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Equation (3.12) utilizes a difference form whereas Equation (3.13) utilizes a simple polynomial 

approach.  Since both must produce the same result, the values of the coefficients in Equation 

(3.12) and (3.13) can be related. 

To compute the coefficients 𝜈𝑘, 𝑦𝑘, 𝑚𝑘, 𝑝𝑘, 𝑞𝑘 , one must first introduce the variable  𝑐 =
𝜋

2
 which 

is used to convert the range of the variable 𝑧 into the range of the variable 𝑥. 

To convert from the least squares form (Equation 3.13) to [DeCaro and Strollo, 2005] form as in 

Equation 3.12,   one must perform the substitution 𝑧 = 𝑐𝑥 in (3.13), so that the RHS of both 

Equation (3.12) and Equation (3.13) are in powers of 𝑥. In the next step the coefficients of the 

powers of 𝑥 are equated and this leads to 5 conversion formulae.  

Thus, by equalizing powers of 𝑥 in Equation (3.12) and a converted form of Equation (3.13), the 

coefficient computed by least squares formulation can be readily converted to the form of [DeCaro 

and Strollo, 2005]. The conversion formulae can be expressed as 

𝑣𝑘 = 𝐶1,𝑘𝑐
4 𝑤ℎ𝑒𝑟𝑒 𝑐 =

𝜋

2
  (3.14) 

 𝐶1,𝑘  is the quartic coefficient for segment 𝑘 as computed by using least squares approach. 

The cubic polynomial coefficient can be computed by the following equation, 

𝑞𝑘 = 𝐶2,𝑘𝑐
3 + 4𝜈𝑘 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑠     (3.15) 

The quadratic polynomial coefficient can be computed by the following equation: 

𝑝𝑘 = 𝐶3,𝑘𝑐
2 + 3𝑞𝑘𝑥𝑘 − 6𝑣𝑘𝑥𝑘

2 (3.16) 

The linear polynomial coefficient in [De Caro and Strollo, 2005] form can be computed using the 

following expression: 

𝑚𝑘 = 𝐶4,𝑘𝑐 + 2𝑝𝑘𝑥𝑘 − 3𝑞𝑘𝑥𝑘
2 + 4𝑣𝑘𝑥𝑘

3 (3.17) 

The constant polynomial coefficient can be computed by using the following expression: 

𝑦𝑘 = 𝐶5,𝑘 +𝑚𝑘𝑥𝑘 − 𝑝𝑘𝑥𝑘
2 + 𝑞𝑘𝑥𝑘

3 − 𝑣𝑘𝑥𝑘
4 (3.18) 

The least squares equation to estimate the polynomial coefficients for a range of 0 to 𝜋 2⁄  can be 

written as in Equation (3.3). It is noted that, compared to the 4x4 matrix computation for the cubic 

DDS, the solution of the coefficients of the quartic DDS requires solution of a 5x5 matrix equation. 

The equation or matrix size is the order of the polynomial approximation incremented by one.  

One must express the least squares coefficient computation in a matrix form (for the 𝑘𝑡ℎ segment) 

as in Equation (3.19). One must solve   𝐶1,𝑘, 𝐶2,𝑘, 𝐶3,𝑘, 𝐶4,𝑘 and 𝐶5,𝑘 for the 𝑘𝑡ℎ segment 
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∑𝑧𝑖
6
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∑𝑧𝑖
5

𝑖

∑𝑧𝑖
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𝑖

∑𝑧𝑖
5

𝑖

∑𝑧𝑖
4

𝑖

∑𝑧

𝑖

∑𝑧𝑖
4

𝑖

∑𝑧𝑖
3

𝑖

∑𝑧𝑖
2

𝑖

∑𝑧𝑖
3

𝑖

∑𝑧𝑖
2

𝑖

∑𝑧𝑖
𝑖

∑𝑧𝑖
2

𝑖

∑𝑧𝑖
𝑖

𝑁
]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐶1,𝑘
𝐶2,𝑘
𝐶3,𝑘
𝐶4,𝑘
𝐶5,𝑘]

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 ∑𝑦𝑖𝑧𝑖

4

𝑖

∑𝑦𝑖𝑧𝑖
3

𝑖

∑𝑦𝑖𝑧𝑖
2

𝑖

∑𝑦𝑖𝑧𝑖
𝑖

∑𝑦𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 
 
 

 (3.19) 

 

In Equation (3.19), 𝑧𝑖 is Input phase angle arguments for 𝑖𝑡ℎ  sample within the 𝑘𝑡ℎ segment. The 

variables 𝑦𝑖  are the output value for 𝑖𝑡ℎ sample within the 𝑘𝑡ℎ segment. The vector 

[𝐶1𝑘, 𝐶2𝑘, 𝐶3𝑘, 𝐶4𝑘, 𝐶5𝑘]  is the vector of coefficient values for the 𝑘𝑡ℎ segment. The 4X4 matrix 

in Equation (3.19) is referred to in this chapter as Matrix 𝑇𝑞 where 𝑞 refers to quartic. 

The values 𝑧𝑖 and 𝑦𝑖 are known and from Equation (3.19), only the Coefficient values must be 

computed. The coefficient vector from Equation (3.19) can simply be solved by matrix inversion 

of the matrix 𝑇,   

𝑇𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 ∑ 𝑧𝑖

8

𝑖

∑ 𝑧𝑖
7

𝑖

∑ 𝑧𝑖
6

𝑖

∑ 𝑧𝑖
5

𝑖

∑ 𝑧𝑖
4

𝑖

∑ 𝑧𝑖
7

𝑖

∑ 𝑧𝑖
6

𝑖

∑ 𝑧𝑖
5

𝑖

∑ 𝑧𝑖
4

𝑖

∑ 𝑧𝑖
3

𝑖

∑ 𝑧𝑖
6

𝑖

∑ 𝑧𝑖
5

𝑖

∑ 𝑧𝑖
4

𝑖

∑ 𝑧𝑖
5

𝑖

∑ 𝑧𝑖
4

𝑖

∑ 𝑧

𝑖

∑ 𝑧𝑖
4

𝑖

∑ 𝑧𝑖
3

𝑖

∑ 𝑧𝑖
2

𝑖

∑ 𝑧𝑖
3

𝑖

∑ 𝑧𝑖
2

𝑖

∑ 𝑧𝑖
𝑖

∑ 𝑧𝑖
2

𝑖

∑ 𝑧𝑖
𝑖

𝑁
]
 
 
 
 
 
 
 
 
 
 
 
 

 (3.20) 

Using the classical least squares solution applied to Equation (3.19),  

[𝐶1,𝑘 𝐶2,𝑘 𝐶3,𝑘 𝐶4,𝑘 𝐶5,𝑘]
𝑇
= (𝑇𝑞

′𝑇𝑞)
−1
(𝑇𝑞

′𝑏𝑞) (3.21) 

  

In Equation (3.21), 𝑇𝑞
′  is the Matrix transpose of the matrix 𝑇𝑞. Vector 𝑏𝑞 is the RHS column 

vector in Equation (3.19). Next, the computed coefficients are converted to the form, which is like 

the expressions used by [De Caro and Strollo, 2005]. 
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𝑍 = 𝑦𝑘 +𝑚𝑘(𝑥 − 𝑥𝑘) + 𝑝𝑘(𝑥 − 𝑥𝑘)
2 + 𝑞𝑘(𝑥 − 𝑥𝑘)

3 + 𝜈𝑘(𝑥 − 𝑥𝑘)
4 (3.22) 

Expanding the power of 𝑥 in Equation (3.22) one obtains: 

𝑍 = (𝑦𝑘 −𝑚𝑘𝑥𝑘 + 𝑝𝑘𝑥𝑘
2 + 𝑞𝑘𝑥𝑘

3 + 𝜈𝑘𝑥𝑘
4 + (3𝑞𝑘𝑥𝑘 − 4𝜈𝑘𝑥𝑘

2 − 2𝑝𝑘𝑥𝑘 +𝑚𝑘)𝑥 +

(−3𝑞𝑘𝑥𝑘 + 6𝜈𝑘𝑥𝑘
2 + 𝑝𝑘)𝑥

2  +(𝑞𝑘 − 4𝜈𝑘)𝑥
3 + 𝜈𝑘𝑥

4 
(3.23) 

Equating the fourth power coefficients (𝑥4, 𝑥3, 𝑥2, 𝑥) between Equations (3.22 and 3.23) one 

obtains four equations. Constant 𝐶1,𝑘, 𝐶2,𝑘, 𝐶3,𝑘, 𝐶4,𝑘 and 𝐶5,𝑘 is evaluated as 

𝐶1,𝑘𝑐
4 = 𝜈𝑘 (3.24) 

Constant 𝐶2,𝑘 is evaluated as 

𝐶2,𝑘𝑐
3 = 𝑞𝑘 − 4𝜈𝑘  ⇒ 𝑞𝑘 = 𝐶2,𝑘𝐶2𝑘𝑐

3 + 4𝜈𝑘 (3.25) 

Constant 𝐶3,𝑘 is evaluated as 

𝐶3,𝑘𝑐
2 = −3𝑞𝑘𝑥𝑘 +  6𝜈𝑘𝑥𝑘

2 + 𝑝𝑘  ⇒ 𝑝𝑘 = 𝐶3,𝑘𝑐
2 + 3𝑞𝑘𝑥𝑘 − 6𝜈𝑘𝑥𝑘

2 (3.26) 

Constant 𝐶4,𝑘 is evaluated as 

𝑚𝑘 = 𝐶4,𝑘𝑐 − 3𝑞𝑘𝑥𝑘
2     +  4𝜈𝑘𝑥𝑘

3 + 2𝑝𝑘𝑥𝑘 (3.27) 

Equating the constant term between Equations (3.22 and 3.23) one obtains an expression for 𝑦𝑘 as 

𝑦𝑘 = 𝐶5,𝑘 +𝑚𝑘𝑥𝑘 − 𝑝𝑘𝑥𝑘
2 + 𝑞𝑘𝑥𝑘

3 − 𝜈𝑘𝑥𝑘
4 (3.28) 

 

This Equation (3.24) through Equation (3.28) must be solved for all the intervals to compute the 

corresponding coefficients (𝑦𝑘, 𝑚𝑘, 𝑝𝑘. 𝑞𝑘, 𝜈𝑘) .  Of these five coefficients, only 𝜈𝑘 is new and has 

been added in this chapter.  

Since the coefficients and their equivalents in terms of coefficients defined by [De Caro and 

Strollo, 2005] are easily computable, the SFDR of such a quartic DDS can be derived as the ratio 

of the maximum to the third harmonic as explained in Equation (3.29 and (3.30). 

The Fourier coefficients of the fundamental and third harmonic are computed as 

𝑏1  =  0.99999999971; 𝑏3 = 0.00000001 (3.29) 

Hence the SFDR is computed as the ratio of the fundamental and the third harmonic, 

𝑆𝐹𝐷𝑅 =  10 ∗ 𝑙𝑜𝑔10 (
𝑏1
𝑏3
)  = 185 𝑑𝐵  (3.30) 

 One validation of this is that the computed Fourier coefficient is almost close to 1. If it is not the 

computed coefficients will be incorrect. This observation is same as in Cubic DDS.  
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3.2.1 Integrals and results on Quartic DDS 

 

This section illustrates the computation of a closed form integral required for the final computation 

of analytical SFDR of a quartic DDS. Only the integral computation and not the SFDR 

computation is claimed as an original computation.  

The Fourier coefficients for any order of interpolation have been provided by [De Caro and Strollo, 

2005] as 

𝑏𝑛 =  2∫ 𝑓(𝑥)sin (
𝑛𝜋𝑥

2

1

0

)𝑑𝑥  (3.31) 

For the quartic DDS, the output function  𝑓(𝑥) is written as 

𝑓(𝑥) = 𝑦𝑘 +𝑚𝑘(𝑥 − 𝑥𝑘) + 𝑝𝑘(𝑥 − 𝑥𝑘)
2 + 𝑞𝑘(𝑥 − 𝑥𝑘)

3 + 𝜈𝑘(𝑥 − 𝑥𝑘)
4 (3.32) 

 

In Equation (3.32), 𝑥 is the phase argument with 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1 for the 𝑘𝑡ℎ segment, where 𝑥𝑘 is 

the starting value of 𝑥 for the 𝑘𝑡ℎ segment. The range of the phase argument 𝑥  is limited between 

𝑥1 = 0 𝑎𝑛𝑑 𝑥𝑠+1 = 1. This is for alignment with the range proposed by [De Caro and Strollo, 

2005]. 

The closed form single integral (Equation 3.31) is split into a sum of five integrals for each 

segment, and the five integrals summed over 𝑠 segments. The five integrals for a Quartic DDS are 

derived like what was derived by [De Caro and Strollo, 2005].  The generic form of a Fourier 

coefficient is a sum of 𝑠𝑒 terms, each term comprising a definite integral. Four of these terms are 

common with the derivation of [DeCaro and Strollo, 2005]. It is the fifth term that is of interest in 

this chapter and the new expressions are simplified forms of the fifth term. These five integrals are 

required to derive a closed form expression for the 𝑏𝑛 Fourier coefficients for a Quartic DDS, The 

relationship between the 𝑏𝑛 and the integrals (𝐼𝑘,𝑛
′ , 𝐼𝑘,𝑛

′′ , 𝐼𝑘,𝑛
′′′ , 𝐼𝑘,𝑛

′′′′, 𝐼𝑘,𝑛
′′′′′)  are listed as 

𝑏𝑛 = ∑(𝐼𝑘,𝑛
′ + 𝐼𝑘,𝑛

′′ + 𝐼𝑘,𝑛
′′′ + 𝐼𝑘,𝑛

′′′′ + 𝐼𝑘,𝑛
′′′′′)

𝑠

𝑘=1

 (3.33) 

In Equation (3.33),  𝑏𝑛 is the  𝑛𝑡ℎ Fourier coefficient of the quartic DDS.  

The four definite integrals on the right-hand side of Equation (3.33) are expressed in closed form 

as function of the quartic polynomial coefficients as 
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𝐼𝑘,𝑛
′ = ∫ 2𝑦𝑘𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.34) 

𝐼𝑘,𝑛
′′ = ∫ 2𝑚𝑘(𝑥 − 𝑚𝑘)𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.35) 

𝐼𝑘,𝑛
′′′ = ∫ 2𝑝𝑘(𝑥 − 𝑥𝑘)

2𝑠𝑖𝑛 (
𝑛𝜋𝑥

2
)𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.36) 

  

𝐼𝑘,𝑛
′′′′ = ∫ 2𝑞𝑘(𝑥 − 𝑥𝑘)

3𝑠𝑖𝑛 (
𝑛𝜋𝑥

2
)𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.37) 

Finally, the fifth integral only for a quartic DDS is written as 

𝐼𝑘,𝑛
′′′′′ = ∫ 2𝜈𝑘(𝑥 − 𝑥𝑘)

4𝑠𝑖𝑛 (
𝑛𝜋𝑥

2
) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.38) 

The five integrals must now be evaluated and each of the limits are substituted. The closed form 

expression for the first four integrals have been expressed in [De Caro and Strollo, 2005]. The 

lower limits of the integrals are written as 

𝑥𝑘 =
(𝑘 − 1)

𝑠𝑒
 (3.39) 

The upper limits of the integrals are written as 

𝑥𝑘+1 =
(𝑘)

𝑠𝑒
 (3.40) 

The four integrals, 𝐼𝑘,𝑛
′ , 𝐼𝑘,𝑛

′′ , 𝐼𝑘,𝑛
′′′ , 𝐼𝑘,𝑛

′′′′ have been computed in [De Caro and Strollo, 2005] paper. It 

is the fifth integral (𝐼𝑘,𝑛
′′′′′)that is unique to the quartic DDS and is not part of [De Caro and Strollo, 

2005]. A closed form expression for (𝐼𝑘,𝑛
′′′′′)has been derived in this chapter.  

Incorporating the expansion of (𝑥 − 𝑥𝑘)
4, the fifth integral (Equation 3.38) is written as 

2𝜈𝑘∫(𝑥 − 𝑥𝑘)
4𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
)𝑑𝑥 =  2𝜈𝑘∫(𝑥

4 − 4𝑥3𝑥𝑘 + 6𝑥2𝑥𝑘
2 − 4𝑥𝑥𝑘

3

+ 𝑥𝑘
4)𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
)𝑑𝑥 

(3.41) 

The indefinite integral for the quartic term is written as  

∫(𝑥4 − 4𝑥3𝑥𝑘 + 6𝑥2𝑥𝑘
2 − 4𝑥𝑥𝑘

3 + 𝑥𝑘
4)𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
)𝑑𝑥 (3.42) 

 

The corresponding definite integral can be written as 
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 𝐼𝑘,𝑛
′′′′′ = ∫ (𝑥4 − 4𝑥3𝑥𝑘 + 6𝑥

2𝑥𝑘
2 − 4𝑥𝑥𝑘

3 + 𝑥𝑘
4)𝑠𝑖𝑛 (

𝑛𝜋𝑥

2
)𝑑𝑥

(𝑘)

𝑠
(𝑘−1)

𝑠

 (3.43) 

With 𝑥𝑘 =
(𝑘−1)

𝑠𝑒
 and the integral being taken between the limits 𝑥 =

(𝑘−1)

𝑠𝑒
  𝑡𝑜  𝑥 =

(𝑘)

𝑠𝑒
 , the 

resultant integral (without the final summation from 𝑘 = 1 𝑡𝑜 𝑘 = 𝑠𝑒) is written as  

𝐼𝑘,𝑛
′′′′′ =

768𝑐𝑜𝑠 (
𝜋𝑛 − 𝜋𝑘𝑛

2𝑠𝑒
) − 768𝑐𝑜𝑠 (

𝜋𝑘𝑛
2𝑠𝑒

)

𝜋5𝑛5
 

−

2𝜋4𝑛4𝑐𝑜𝑠 (
𝜋𝑘𝑛
2𝑠𝑒

) − 16𝜋3𝑛3𝑠𝑒 (𝑠𝑖𝑛 (
𝜋𝑘𝑛
2𝑠𝑒

)) − 96𝜋2𝑛2𝑠2𝑐𝑜𝑠 (
𝜋𝑘𝑛
2𝑠𝑒

) + 384𝜋𝑛𝑠3 (𝑠𝑖𝑛 (
𝜋𝑘𝑛
2𝑠𝑒

))

𝜋5𝑛5𝑠4
 

(3.44) 

 

In Equation (3.44), considering the sum of such terms from 𝑘 = 1 𝑡𝑜 𝑘 = 𝑠𝑒 one can write,  

The first sum 𝑆1 is written as  

𝑆1 =∑𝜈𝑘

(384𝜋𝑛𝑠3 − 16𝜋3𝑛3𝑠) (𝑠𝑖𝑛 (
𝜋𝑘𝑛
2𝑠 ))

𝜋5𝑛5𝑠4

𝑠

𝑘=1

=
(384𝜋𝑛𝑠3 − 16𝜋3𝑛3𝑠)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑠𝑖𝑛 (

𝜋𝑘𝑛

2𝑠
))

𝑠

𝑘=1

 

(3.45) 

 

The second sum 𝑆2 is written as 

𝑆2 =∑𝜈𝑘

(−2𝜋4𝑛4 − 96𝜋2𝑛2𝑠2 − 768𝑠4) (𝑐𝑜𝑠 (
𝜋𝑘𝑛
2𝑠 ))

𝜋5𝑛5𝑠4

𝑠

𝑘=1

=
(−2𝜋4𝑛4 − 96𝜋2𝑛2𝑠2 − 768𝑠4)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑐𝑜𝑠 (

𝜋𝑘𝑛

2𝑠
))

𝑠

𝑘=1

 

(3.46) 

 

The third term 𝑆3 is written as  

𝑆3 = ∑𝜈𝑘

768 (𝑐𝑜𝑠 (
𝜋(𝑘 − 1)𝑛

2𝑠 ))

𝜋5𝑛5𝑠4

𝑠

𝑘=1

=
(768)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑐𝑜𝑠 (

𝜋(𝑘 − 1)𝑛

2𝑠
))

𝑠

𝑘=1

 
(3.47) 
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The summation of such integrals(𝑆1, 𝑆2, 𝑆3) provides the final closed form expression for fourth 

power part of 𝑏𝑛 

∑(𝐼𝑘,𝑛
′′′′′)

𝑠

𝑘=1

= 
(768)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑐𝑜𝑠 (

𝜋(𝑘 − 1)𝑛

2𝑠
))

𝑠

𝑘=1

+
(−2𝜋4𝑛4 − 96𝜋2𝑛2𝑠2 − 768𝑠4)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑐𝑜𝑠 (

𝜋𝑘𝑛

2𝑠
))

𝑠

𝑘=1

+
(384𝜋𝑛𝑠3 − 16𝜋3𝑛3𝑠)

𝜋5𝑛5𝑠4
∑𝜈𝑘 (𝑠𝑖𝑛 (

𝜋𝑘𝑛

2𝑠
))

𝑠

𝑘=1

 

(3.48) 

 

The expression of the integral 𝐼𝑘,𝑛
′′′′′ as a summation of the definite integrals with the limits  𝑘 =

1 𝑡𝑜 𝑘 = 𝑠𝑒 is a major theoretical contribution of this section. Such an expression has not been 

discussed in the open literature. Equation (3.48) is a new contribution, not found in the open 

literature.  

Equations (3.49-3.52) summarize the exact contributions made by [De Caro and Strollo, 2005] and 

the specific additional terms (only Equation 3.53) which are derived in this chapter. 

The integral 𝐼𝑘,𝑛
′  is written in closed form as 

𝐼𝑘,𝑛
′ =

4𝑦𝑘
𝑛𝜋

[𝑐𝑜𝑠 (
(𝑘 − 1)𝑛𝜋

2𝑠
) − 𝑐𝑜𝑠 (

(𝑘)𝑛𝜋

2𝑠
)] (3.49) 

The integral 𝐼𝑘,𝑛
′′  is written in closed form as 

𝐼𝑘,𝑛
′′ = −

4𝑚𝑘

𝑛2𝜋2𝑠
[2𝑠 (𝑠𝑖𝑛 (

(𝑘 − 1)𝑛𝜋

2𝑠
) − 𝑠𝑖𝑛 (

(𝑘)𝑛𝜋

2𝑠
)) + 𝑛𝜋𝑐𝑜𝑠 (

(𝑘)𝑛𝜋

2𝑠
)] (3.50) 

The integral 𝐼𝑘,𝑛
′′′  is written in closed form as 

𝐼𝑘,𝑛
′′′ = −

4𝑝𝑘
𝑛3𝜋3𝑠2

[8𝑠2𝑐𝑜𝑠 (
(𝑘 − 1)𝑛𝜋

2𝑠
) + (𝑛2𝜋2 − 8𝑠2)𝑐𝑜𝑠 (

(𝑘)𝑛𝜋

2𝑠
)

− 4𝑛𝜋𝑠𝑖𝑛 (
(𝑘)𝑛𝜋

2𝑠
)] 

(3.51) 

The integral 𝐼𝑘,𝑛
′′′′ is written in closed form as 

 𝐼𝑘,𝑛
′′′′ = −

4𝑞𝑘

𝑛4𝜋4𝑠3
[+𝑛𝜋(𝑛2𝜋2 − 24𝑠2)𝑐𝑜𝑠 (

𝑘𝑛𝜋

2𝑠
) + 6𝑠((8𝑠2 − 𝑛2𝜋2)𝑠𝑖𝑛 (

𝑘𝑛𝜋

2𝑠
) −

8𝑠2𝑠𝑖𝑛 (
(𝑘−1)𝑛𝜋

2𝑠
)))] 

(3.52) 
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Only the 5th Integral in this list (Equation 3.51) is a contribution of this chapter. The other four 

integrals (Equation (3.48) – (3.52) have been derived by [De Caro and Strollo, 2005].  

Only the closed firm of 

𝐼𝑘,𝑛
′′′′′ = ∫ 2𝜈𝑘(𝑥 − 𝑥𝑘)

4𝑠𝑖𝑛 (
𝑛𝜋𝑥

2
) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 (3.53) 

Such a closed form integral result for a quartic DDS has not been described in open literature. The 

integral 𝐼𝑘,𝑛
′′′′   has not been derived by [De Caro and Strollo, 2005] and in any of their subsequent 

papers. 

3.3 Analytical model to compute SFDR for Taylor series DDS 

 

SFDR is the most common performance parameter of a DDS used to measure the efficacy of a 

DDS design. The other measures covered in this chapter are SNR and MAE. The SFDR of a DDS 

is a function of the ratio of the magnitude of the fundamental divided by the magnitude of the 

highest spur. The computed ratio is first computed as a logarithm to the base 10 and then multiplied 

by 10. In this section, an analytical formulation is provided for computation of SFDR for Taylor’s 

series DDS with a fixed number of segments. The objective of performing this exercise is to derive 

the SFDR for a Taylor’s series DDS when the number of segments is known. Such a formulation 

for a Taylor’s series DDS appears not to have been discussed in the open literature.  

The analytical expression for the output waveform of Taylor’s series DDS considering up to 

quadratic terms can be written as 

𝑂𝐷𝐷𝑆 = 𝑠𝑖𝑛 (
𝜋

2
𝑃) = 𝑠𝑖𝑛 (

𝜋

2
(𝑢)) − 𝑠𝑖𝑛 (

𝜋

2
(𝑢))

(
𝜋
2 (𝑃 − 𝑢))

2

2
+ 𝑐𝑜𝑠 (

𝜋

2
(𝑢)) [

𝜋

2
(𝑃 − 𝑢)] 

(3.54) 

 Equation (3.55) is obtained by substituting   𝑧 =
𝜋

2
(𝑃 − 𝑢) in Equation (3.54).  

𝑂𝐷𝐷𝑆 = 𝑠𝑖𝑛 (
𝜋

2
(𝑢)) − 𝑠𝑖𝑛 (

𝜋

2
(𝑢))

(𝑧)2

2
+ 𝑐𝑜𝑠 (

𝜋

2
(𝑢)) [𝑧] (3.55) 

 

Let the lower limit of the argument in each of k segments be written as 𝑢𝑘 , where 0 ≤ 𝑢𝑘 ≤ 1. 

The output of DDS, using [De Caro and Strollo, 2005] model, can be written as 

𝑂𝐷𝐷𝑆 = 𝑦𝑘 +𝑚𝑘(𝑢 − 𝑢𝑘) + 𝑝𝑘(𝑢 − 𝑢𝑘)
2 + 𝑞𝑘(𝑢 − 𝑢𝑘)

3 (3.56) 
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Comparing powers between the RHS of Equations (3.56) and (3.55), one obtains the following 

polynomial coefficients corresponding to [De Caro and Strollo, 2005] model. 

𝑦𝑘 = 𝑠𝑖𝑛 (
𝜋

2
(𝑢𝑘)) ;𝑚𝑘 =

𝜋

2
𝑐𝑜𝑠 (

𝜋

2
(𝑢𝑘)) ; 𝑞𝑘 = 0; 𝑝𝑘 = −

1

2
𝑠𝑖𝑛 (

𝜋

2
(𝑢𝑘)) (

𝜋

2
)
2

 (3.57) 

 

Assuming, that the quadrant is split into 8 equal intervals, the values  𝑢𝑘 can be written as 

𝑢 = [0
1

8
⋯

7

8
] (3.58) 

 

Argument (𝑃 − 𝑢)  in Equation (3.54) will vary between 0 and 1/8. 

Using the values of 𝑦𝑘,𝑚𝑘, 𝑝𝑘 and 𝑞𝑘  , one must compute 𝛼𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑘 in accordance with the 

Equations in [De Caro and Strollo, 2005]. These expressions for 𝛼𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑘 are stated in 

Appendix A. 

SFDR is defined as logarithm of the ratio of the fundamental over the largest spur (in this case the 

3rd harmonic). After performing the rest of operations detailed in Appendix A, Equations (A.24 

to A.39) the coefficient 𝑏1 and 𝑏3 are computed. The SFDR for Taylor series-based DDS is 

computed the ratio of the Fourier coefficient fundamental(𝑏1) to the highest harmonic (𝑏3).  

𝑆𝐹𝐷𝑅 = 20𝑙𝑜𝑔10 (
𝑏1
𝑏3
) = 74𝑑𝐵 (3.59) 

Hence, for a Taylor Series DDS with 8 segments the computed SFDR=74dB. 

The computed SFDR for Taylor series DDS is a function of the number of segments under 

consideration. It will increase as the number of segments is increased from 𝑠𝑒 = 8 onwards. The 

next sub-section describes a new kind of DDS which is inherently non-sinusoidal- called LHSC. 

3.4 LHSC DDS and its SFDR  

 

 

The equations due to [DeCaro and Strollo, 2005] are used to compute the SFDR of LHSC DDS. 

The need for a DDS with non-sinusoidal output is to reduce the latency and dynamic power without 

sacrificing SFDR as compared to cubic polynomial based DDS. A non-sinusoidal DDS does not 

attempt to create a perfect sinusoidal output. It attempts to generate a periodic wave with minimum 

dynamic power and minimum latency while controlling the magnitude of the harmonics.  Linear 
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High Segment Count (LHSC) DDS is an attempt to create a minimum power waveform synthesizer 

with an increased number of segments to achieve an improved SFDR. A type of non-sinusoidal 

DDS has been considered in this section. In this approach, a high segment count is used. A LHSC 

DDS divides a quadrant into a minimum of 32 smaller segments or intervals. For each such 

interval, one must compute a suitable line segment (with appropriate coefficients), to approximate 

the sinusoid. This is performed by a least squares approach.  

This approach has been attempted for 𝑠𝑒 = 32 and 𝑠𝑒 = 64. One advantage is that due to the linear 

approximation the only a three-stage pipeline is required as compared to a five-stage pipeline 

required for the cubic polynomial DDS (Figure 2.13). Lower depth of pipeline reduces dynamic 

power (Equation 3.58) and generates lower latency (number of clock cycles required to produce 

the first output sample). Dynamic power is defined as 

𝑃 = 𝑘𝐶𝑉2𝑓 (3.60) 

In Equation (3.60), 𝐶  is the overall capacitance of a network, 𝑉 is the supply voltage, and  𝑓 is the 

operating frequency of a circuit. Equation (3.58) is generic and does not pertain to a specific type 

of circuit. A representation using a line fit within a the 𝑘𝑡ℎ segment of output waveform of DDS 

can be written as 

𝑦𝑘 = 𝐶3,𝑘𝑧 + 𝐶4,𝑘 (3.61) 

 

In Equation (3.61)  𝐶3,𝑘 and 𝐶4,𝑘 are coefficients for the 𝑘𝑡ℎ segment, argument 𝑧 is the input 

argument (phase angle), and  𝑦𝑘 is the computed output. For the 𝑘𝑡ℎ segment the coefficients 𝐶3,𝑘  

and 𝐶4,𝑘 must be estimated first. 

Let the segments (corresponding to a given quadrant) be numbered from 1 to 32(𝑠 = 32). The 

Equation (2.99b) summarizes the computational procedure to compute coefficients for the 𝑘𝑡ℎ  

segment. 

That is for each segment 𝑘 = 1,2, … 32, one must compute the coefficients corresponding to that 

segment. Using the basic principles of Least Squares and Linear interpolation, the matrix form 

equation to compute the coefficients of the 𝑘𝑡ℎ segment is written as 

[
 
 
 
 ∑𝑧𝑖

2

𝑖

∑𝑧𝑖
𝑖

∑𝑧𝑖
𝑖

𝑁
]
 
 
 
 

[
𝐶3,𝑘
𝐶4,𝑘

] =

[
 
 
 
 ∑𝑧𝑖𝑦𝑖
𝑖

∑𝑦𝑖
𝑖 ]

 
 
 
 

  (3.62) 
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In Equation (3.62),𝑧𝑖 is the 𝑖𝑡ℎ instantaneous input phase varying between 
𝑘−1

𝑠
∗ (𝜋 2)⁄  and 𝑘/𝑠 ∗

(𝜋 2)⁄ ; where 𝑘 is the segment number; where 𝑦𝑖 is the 𝑖𝑡ℎ instantaneous output sample of DDS 

within the 𝑘𝑡ℎ segment; Where 𝑖 is the 𝑖𝑡ℎ sample within a given segment; where 𝑁 is the number 

of output samples per segment N; where 𝐶3𝑘 and 𝐶4𝑘  are the Coefficients for the 𝑘𝑡ℎ segment ( 

computed ) 

Once the coefficients for the 𝑘𝑡ℎ segment are computed by using Equation (3.60), they must be 

converted into the cubic coefficients form as suggested by [De Caro and Strollo, 2005]. This is to 

facilitate computation of Fourier coefficients and thereby SFDR. This is performed by expanding 

powers and comparing coefficients.  

𝑦𝑗,𝑘(𝑧𝑗,𝑘) = 𝐶4,𝑘 + 𝐶3,𝑘𝑧𝑗,𝑘 + 𝐶2,𝑘𝑧𝑗,𝑘
2 + 𝐶1,𝑘𝑧𝑗,𝑘

3  (3.63) 

 

In Equation (3.63) 𝑘 is the segment number, the index 𝑗 refers to the sample number within the 

 𝑘𝑡ℎ segment. 

The Equation (3.63) represents the general way a cubic DDS computation can be performed with  

𝑧𝑗,𝑘 =
(𝑘 − 1)

𝑠𝑒

𝜋

2
+ (𝑗 − 1)Δ𝑧𝑘 where, Δ𝑧𝑘 =

(𝑘)
𝑠𝑒

𝜋
2 −

(𝑘 − 1)
𝑠𝑒

𝜋
2

𝑁/𝑠𝑒
 

(3.64) 

To compute the SFDR, it is necessary to convert coefficients from the form in Equation (3.63) into 

the form in Equation (3.65). 

The expression for DDS output in 𝑘𝑡ℎ interval using the expression given by [De Caro and Strollo, 

2005]  

𝑦𝑘(𝑥) = 𝑞𝑘𝑥
3 + (𝑝𝑘 − 3𝑞𝑘𝑥𝑘)𝑥

2 + (𝑚𝑘 − 2𝑝𝑘𝑥𝑘 + 3𝑞𝑘𝑥𝑘
2)𝑥 + (𝑦𝑘 −𝑚𝑘𝑥𝑘 + 𝑝𝑘𝑥𝑘

2 − 𝑞𝑘𝑥𝑘
3) (3.65) 

 

The variable 𝑧𝑗,𝑘 must be scaled to the variable 𝑥 which ranges between 0 and 1. This is 

accomplished by the substitution described in Equation (3.64): 

𝑥 =
𝑧𝑗,𝑘

𝜋
2
⁄ = 𝑧𝑗,𝑘 1.57 = 𝑧𝑗,𝑘 𝑐 ⁄⁄  (3.66) 

The factor 𝑐 = 1.57 is a constant of conversion. Constant 𝑐 is a scaling factor that maps the range 

of 𝑧𝑗,𝑘 into the range of 𝑥. 
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Equating coefficients of power of 𝑧𝑗,𝑘 between Equations (3.63) and (3.65), one obtains the 

following connective relations for the coefficients. 

𝐶1,𝑘 =
𝑞𝑘
𝑐3
  ⟹ 𝑞𝑘 = 𝑐3𝐶1,𝑘   (3.67) 

The coefficient is computed as 

𝐶2,𝑘 =
𝑝𝑘−3𝑥𝑘𝑞𝑘

𝑐2
  ⟹  𝑝𝑘 = 𝐶2,𝑘𝑐

2 + 3𝑥𝑘𝑞𝑘 = 𝐶2,𝑘 𝑐
2 + 3𝑥𝑘𝑐

3𝐶1,𝑘   (3.68) 

The coefficient 𝐶3,𝑘 is computed as 

𝐶3,𝑘 =
𝑚𝑘−3𝑥𝑘𝑝𝑘 + 3𝑞𝑘𝑥𝑘

2

𝑐
  

 

(3.69) 

The coefficient 𝐶4,𝑘 is computed as 

𝐶4,𝑘 = (𝑦𝑘 −𝑚𝑘𝑥𝑘 + 𝑝𝑘𝑥𝑘
2 − 𝑞𝑘𝑥𝑘

3) (3.70) 

 

The cubic equation that has been utilized to approximate the DDS output values in a given segment 

in terms of the variable 𝑧𝑗,𝑘 can be written as 

𝑦𝑗,𝑘(𝑧𝑗,𝑘) = 𝐶4,𝑘 + 𝐶3,𝑘𝑧𝑗,𝑘 + 𝐶2,𝑘𝑧𝑗,𝑘
2 + 𝐶1,𝑘𝑧𝑗,𝑘

3  (3.71) 

In LHSC, the higher power coefficients corresponding to second and third powers of 𝑧𝑗,𝑘 are 0. 

That is (𝐶1,𝑘 = 0; 𝐶2,𝑘 = 0)  because of the approximation is linear. 

Comparing Equation (3.68) with the corresponding DDS output equation given by [DeCaro and 

Strollo, 2005],  

𝑦𝑗,𝑘(𝑧𝑗,𝑘) = 𝑞𝑘𝑥
3 + (𝑝𝑘 − 3𝑞𝑘𝑥𝑘 )𝑥

2 + (𝑚𝑘 − 2𝑝𝑘𝑥𝑘 + 3𝑞𝑘𝑥𝑘
2)𝑥

+ (𝑦𝑘 −𝑚𝑘𝑥𝑘 + 𝑝𝑘𝑥𝑘
2 − 𝑞𝑘𝑥𝑘

3) 
(3.72) 

Equating coefficients of powers of 𝑥 in Equations (3.71) and (3.72), the coefficients for LHSC 

approximation can be written as 

𝑞𝑘 = 𝑐3𝐶1,𝑘 𝑖𝑓 𝐶1,𝑘 = 0 ; 𝑞𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 (3.73) 

⇒ 𝑝𝑘 = 𝑐2𝐶2,𝑘 + 3𝑥𝑐3𝐶1,𝑘  𝑖𝑓 𝐶1,𝑘, 𝐶2,𝑘 = 0 ; 𝑞𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 (3.74) 

𝑚𝑘 = 𝐶3,𝑘𝑐 + 2𝑝𝑘𝑥𝑘 − 3𝑞𝑘𝑥𝑘
2 = 𝐶3,𝑘𝑐 + 2(𝑐2𝐶2,𝑘 + 3𝑥𝑘𝑐𝐶1,𝑘)𝑥𝑘 + 3(𝑐3𝐶1,𝑘)𝑥𝑘

2 (3.75) 

𝑚𝑘 = 𝐶3,𝑘𝑐 (3.76) 

Similarly, one can write the equations for the coefficient 𝑦𝑘 as  
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𝑦𝑘 = 𝐶4,𝑘 +𝑚𝑘𝑥𝑘 − 𝑝𝑘𝑥𝑘
2 + 𝑞𝑘𝑥𝑘

3 = 𝐶4,𝑘 + 𝐶3,𝑘𝑐𝑥𝑘 (3.77) 

 

Through the derivation in Equations (3.73- 3.77), one computes the values of coefficients 𝑚𝑘 and 

𝑦𝑘. 

In this case 𝑝𝑘 = 0 and 𝑞𝑘 = 0 for all k (quadratic and cubic terms do not exist since it’s a linear 

approximation). 

From the coefficients 𝑦𝑘, 𝑚𝑘, 𝑝𝑘, 𝑞𝑘, the coefficients 𝛼𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑘 must be computed using the in- 

Appendix A (Equations (A.24-A.31)).  

The computed SFDR is the ratio of the first and third harmonic as in this case the other harmonics 

keep reducing. The computed values of 𝑏1 (the first or fundamental Fourier coefficient) and 𝑏3 

(the Fourier coefficient for the third harmonic) for LHSC-64 are written as 

𝑏1 = 0.999999991943803; 𝑏3  =  .000000000032  

The SFDR is computed by taking the logarithm of the ratio of fundamental and third-order Fourier 

coefficient as 

SFDR = 20 log (
𝑏1
𝑏3
) = 210dB (3.78) 

3.5 A comparison of MAE of Quartic, Cubic, LHSC and Taylor Series DDS 

 

MAE stands for Maximum Absolute Error. The Maximum Absolute Error (MAE) of a DDS is 

defined as the absolute difference of DDS output versus an ideal sinusoid for the same phase input 

value. It is one of the performance parameters of a DDS. For any type of DDS, the MAE can be 

expressed as 

𝑀𝐴𝐸 = 𝑀𝑎𝑥(𝑎𝑏𝑠(DDS output for a given phase input

− ideal sinusoid for the same phase input)) 
(3.79) 

For a cubic polynomial DDS Equation (3.79) can be written as 

𝑀𝐴𝐸 = 𝑀𝑎𝑥(𝑎𝑏𝑠 (𝐷𝐷𝑆_𝑜𝑢𝑡(𝑧𝑗) − 𝐼𝑑𝑒𝑎𝑙((𝑧𝑗))) (3.80) 

In Equation (3.80), 

𝐷𝐷𝑆_𝑜𝑢𝑡(𝑧𝑗) = 𝐶4,𝑘 + 𝐶3,𝑘𝑧𝑗 + 𝐶2,𝑘𝑧𝑗
2 + 𝐶1,𝑘𝑧𝑗

3 (3.81) 

𝐷𝐷𝑆_𝑜𝑢𝑡(𝑧𝑗) is the DDS output for a cubic DDS with the phase argument 𝑧𝑗 
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𝐼𝑑𝑒𝑎𝑙((𝑧𝑗) = sin (𝑧𝑗) (3.82) 

 

𝐼𝑑𝑒𝑎𝑙((𝑧𝑗) is the ideal sinusoidal output for the same phase argument 𝑧𝑗 

The range of input phase arguments for application of Equation (3.80) and (3.82) is 0 ≤ 𝑧𝑗 ≤ 𝜋 2⁄

  

For the DDS designs, the points selected to compute the MAE include all the points within a 

segment and at the boundaries of a segment. The absolute error of any of the DDS proposed in this 

section depends on the segment under consideration and the specific part of the segment. This is 

because coefficients are always computed for a given DDS on a per segment basis.  Therefore, 

MAE of a DDS design depends on the accuracy of the coefficients. To capture the MAE over an 

entire quadrant and to observe the variation of MAE, all the points for the DDS, 16384 points for 

a DDS with 𝑠𝑒 = 32 and 512 samples per segment must be included in the MAE analysis.  

Figure 3.5 is a comparative MAE curve including the cubic DDS with 𝑠𝑒 = 32 , Quartic DDS 

 ( 𝑠𝑒 = 32), LHSC DDS (𝑠𝑒 = 32) and Taylor series-based DDS (𝑠𝑒 = 32).  The importance of 

Figure 3.5 is that it illustrates the variation of the MAE as the number of segments is varied across 

4 different types of DDS.  

 

 

Figure 3.5 Comparative MAE for LHSC-32 DDS, Taylor Series DDS (𝑠𝑒 =  𝟑𝟐), cubic DDS 

(𝑠𝑒=32) and Quartic DDS (𝑠𝑒 = 𝟑𝟐) with 16384 samples/segment 
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A comparative MAE of the 4 different types of DDS (Figure 3.5) is not to be found in the open 

literature, and this plot is an original contribution. 

3.6 Definition and Classification of Dither  

 

This section deals with fundamental definitions and a broad classification of dither signal. 

Dithering is a requirement in DDS to suppress unwanted frequencies at the output of the DDS. 

Dither can be defined as a random signal with a specified Probability Density Function (PDF) and 

Characteristic Function (CF) which can be added to a deterministic signal.  The variation of a 

dither signal is not defined with respect to time, and this distinguishes it from a general periodic 

or aperiodic signal. 

Dither is a type of signal which is defined exclusively by its probability density and amplitude, it 

has no defined frequency. The CF of a random variable completely characterizes the probability 

distribution and the moments of the random variable. The CF is the Fourier transform of 

probability density function. The deterministic signal can be an input to a quantizer, ADC, DAC 

or DDS output. A quantizer is a device that performs quantization. It maps a single sample of an 

analog input signal into one of many equally spaced digital signal levels. A quantizer is a device 

converts an incoming analog signal into one of multiple levels. The process performed by a 

quantizer which maps a given analog signal into one of many levels, is known as quantization. 

Quantization error is the difference between the quantizer output and quantizer input. The 

quantization error is not uniform over a quantizer interval.  

Random variable 𝑋(𝜇) is a single-valued real function that assigns a real number called the value 

of 𝑋(𝝁) to each sample point 𝜇 of S where S is the sample space of an experiment. Random signal 

is the value of a random variable varying over time. The probability mass function of a random 

variable is formally defined as 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) (3.83) 

In Equation (3.83), 𝑋 is the Random variable and  𝑥 is one value of the random variable. Operator 

𝑃  in Equation (3.79) the probability that the value of 𝑥 is greater or equal to 𝑋. 
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The Probability Density Function (PDF) of a random variable is the derivative of its Probability 

Mass Function or PMF [Hsu, 2005]. The integral of the PDF of a continuous random variable over 

its entire range equals unity. 

 The Characteristic Function (CF) of a random variable is the Fourier transform of its PDF, the 

Fourier integral being computed over the entire range of the random variable. In case of rectangular 

(uniform) dither, the CF is expressed using the Fourier integral in Equation (3.80), 

𝑀𝑊(𝑗𝑢) = ∫
𝑒𝑗𝑢𝑥𝑑𝑥

Δ

Δ
2

−
Δ
2

=
1

Δ
2 𝑗2𝑢

{𝑒𝑗𝑢
Δ
2 − 𝑒−𝑗𝑢

Δ
2} = 𝑠𝑖𝑛𝑐 (

𝑢Δ

2
)  (3.84) 

In Equation (3.84), the range (±Δ 2⁄ ) is the range of dither. Variable 𝑢 is the argument of the 

Characteristic Function (CF), where variable 𝑊 is the uniformly distributed random variable; the 

variable 𝑀𝑊(𝑗𝑢) is the CF of the function W with an argument(𝑢),  

The other related definition is a 𝑚𝑡ℎ order moment of a random variable, which is defined as  

E(𝑥𝑚) = ∫ 𝑓(𝑥)
𝑥1

−𝑥1

𝑥𝑚𝑑𝑥 (3.85) 

In Equation (3.85), E(𝑥𝑚)is the 𝑚𝑡ℎ moment of the random variable 𝑥. To convert CF of a random 

variable to the moments of the random variable (E(𝑥𝑚)), one must compute the appropriate order 

of derivative of the CF at an argument value (𝑢 = 0). 

This is because of the fundamental expression given by [Papoulis, 2005 and Hsu, 2013]: 

E(𝑥𝑚) =
𝑑𝑚

𝑑𝑢𝑚
(𝑀𝑋(𝑗𝑢))|

𝑢=0
 (3.86) 

Equation (3.86) states that the 𝑚𝑡ℎ moment of a random variable is the 𝑚𝑡ℎ derivative of its 

characteristic function with the CF argument being set to zero. The constant 𝑗 = √−1 and variable 

𝑢 is the argument of CF.  

3.6.1 Rectangular and Triangular Dither 

 

This classification is based on the probability density of dither. Rectangular dither is uniformly 

distributed that is the probability density of the dither signal is uniform over a quantization interval. 

A representative illustration of a Rectangular dither is shown in Figure 3.6. The CF of rectangular 

dither is a 𝑠𝑖𝑛𝑐 function. 
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Figure 3.6 PDF of Rectangular Dither 

 

Following [Kollar, 2005] the CF of rectangular dither can be written as  

𝐶𝐹𝑅𝐸𝐶𝑇(𝑞, 𝑢, 𝐿) =
𝑠𝑖𝑛

𝑞𝑢
2

2𝐿sin (2−𝐿
𝑞𝑢
2 )

 (3.87) 

 

In Equation (3.87), 𝐿 is the bit length of the dither generation function, Pseudo Random Binary 

Sequence (PRBS). 𝐿 is really the number of bits used to represent a dither signal whose amplitude 

varies between  – 𝑞/2 𝑎𝑛𝑑 𝑞/2. 𝐿 = log2 (
𝑞

𝑞𝑑
) .𝑞𝑑 is defined as dither least significant bit 

(LSB)[Kollar,2005]. Equation (3.83) is originally defined by Kollar.  

A triangular dither implies the dither signal is distributed with the highest value of probability 

density at the center of the interval and drops off linearly towards the edge of the quantization 

interval (Figure 3.7), and the CF of triangular dither is a 𝑠𝑖𝑛𝑐2 function. 

 

 

Figure 3.7 PDF of Triangular Dither 

 

The quantization interval is the range of input in a mid-tread quantizer. A mid-tread quantizer is a 

device in which if and only if the magnitude of the input value equals or exceeds [𝑞/2], its output 

changes from zero to a 𝑞/2 value. Its output is equal to  𝑞/2 if and only if the input to the quantizer 
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exceeds 𝑞/2. The value 𝑞 is known as the quantization interval. The value 𝑞/2 can be directly 

related to the number of output bits of the quantizer, which corresponds to one output value.  

CFs are important tools in the analysis of dithered systems as illustrated in [Wanamaker ,1990], 

[Gray ,1993] and [Gray ,1990]. The next subsection illustrates the difference between additive and 

subtractive dither.  

 

3.6.2 Additive and subtractive dither 

 

One classification of dither is based on the nature of combining operation performed on the original 

dither signal. Additive dither (also referred to be as non-subtractive) refers to a system or procedure 

where the dither is added to a signal and never removed subsequently. [Wanamaker, 2003] and 

[Gray, 1993] refer to additive dither as non-subtractive dither. Figure3.8 is the block diagram of 

and ADC with an additive analog dither.  

 

Figure 3.8 Block diagram of ADC with additive analog dither 

 

Subtractive dither refers to a system where the dither signal is added at one stage and subtracted 

at a subsequent stage of processing, typically before and after quantization. This model of dither 

injection is known as the subtractive dither model. The subtractive dither requires perfect 

synchronization of the operations of addition and subtraction. 
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Figure 3.9 Block diagram of ADC with subtractive dither 

 

In Figure 3.9, an analog dither signal is added before the ADC (quantizer) and the same signal in 

digital form is subtracted after the ADC (quantizer). To make a subtractive dither work, the dither 

signals (before and after quantization) must be synchronized and be of the same dynamic range. 

Besides, they must possess the same CF. Subtractive dither has positive stochastic properties 

[Gray, 1993] only in case the addition and subtraction are synchronized. The added dither at the 

input of ADC is a continuous time signal but the signal subtracted at the output of the ADC is a 

discrete time signal but with same CF and dynamic range. The contributions in this chapter in 

Section 3.7 utilize additive dither. 

3.6.3 Phase, Amplitude and Phase + Amplitude dither 

 

Phase dithering refers to the addition of a dither signal before the conversion from Phase angle to 

magnitude in a DDS. Amplitude dithering refers to the addition of a dither signal after the 

conversion from Phase angle to magnitude in a DDS. 

 

 

Figure 3.10 Phase dither before phase to amplitude conversion in DDS 
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Phase dithering scheme shown in Figure 3.10 comprises a Phase Accumulator (PACC), an addition 

block where both the phase dither 𝑧(𝑛) and the phase quantization error 𝑒𝑃(𝑛) are added, A Sine-

Cosine Mapping Function (SCMF) which converts the dithered phase word into a time varying 

amplitude, and finally a DAC. The phase dither signal 𝑧(𝑛) can have a rectangular PDF or a 

triangular PDF. DDS designs can have both phase and amplitude dither added as illustrated in 

Figure 3.11.   

 

 

Figure 3.11 DDS with both amplitude and Phase dither addition 

 

Figure 3.11 illustrates a DDS where dither addition is performed both before the phase to amplitude 

conversion and after the phase to amplitude conversion. The structure illustrated in Figure 3.11 

shows a Phase Accumulator (PACC) which generates a phase word 𝜙(𝑛). Phase dither 𝑧1(𝑛) is 

added to the phase word. The phase quantization error 𝑒𝑃(𝑛) is shown to be added at the output of 

the PACC. 

The phase word undergoes phase truncation (where the lowest bits are truncated or ignored) in the 

TR block. The output of the phase truncation step is passed as an input to the SCMF (Sine-Cosine 

Mapping Function) block which converts the phase information into amplitude of a sinusoid 

amplitude. Amplitude dither signal 𝑧2(𝑛) is added at the output of the SCMF block. The amplitude 

with added dither forms the input to a DAC. The dither signal 𝑧1(𝑛) is the added phase dither and 

the signal 𝑧2(𝑛) is the added amplitude dither. The added phase and amplitude dither can be 

uniformly distributed (rectangular) or triangular. The next section summarizes prior papers on 

dither. 
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3.7 A review of prior research on Dither 

 

This section summarizes prior research studies on dither. [Schuchman, 1964] was one of the 

earliest contributors to Dither. He established that in a dithered quantizer, the CF of dither will 

attain value of zero at integer multiplies of quantization interval in order that the quantization noise 

can be statistically independent of the signal. This is known as Schuchman’s condition, and 

subsequent authors have used this condition.  DDS generates many different types of Spurs 

(Spurious Frequencies). One of the types of Spurs is the Phase Truncation Spurs [Olsen, 1985] and 

[Mehrgardt, 1990]. [Olsen, 1985] and [Mehrgardt, 1990] have computed the location and 

magnitudes of phase truncation spurs in DDS. These are some spurs one wants to mitigate using 

dithering techniques. 

[Reinhart, 1995] has illustrated the addition of a random word to the Phase accumulator output. 

This is referred to as phase dither. Reinhart has discussed Randomized DAC dither, which is termed 

amplitude dither – where a random word is added at the output of a ROM based DDS before the 

result is truncated.  

The following references in this section pertain to Hartley Image suppressor and Adaptive filtering 

for Spur suppression. 

[Chen and Huang, 2001] have described and image-reject Hartley architecture which incorporates 

a multistage Hartley image rejection receiver, which is cascaded and provides two outputs. The 

first output enhances the desired signal and the second output enhances the image signal. Multiple 

image rejection receivers are cascaded, and the final output of the cascade is driven into a final 

block, which performs digital signal rejection. Their architecture can be built using hybrid analog 

and digital components and achieves an image rejection > 60dB.  

 [Kim and Shin, 2002] have proposed a composite image rejection and spurious rejection 

architecture, which achieves an Image Rejection Ratio (IRR) > 70dB. Image rejection ratio is 

defined as the ratio of a desired signal to the image signal. 

[Iqbal, 2004] has improved the basic Hartley based image rejection circuitry by the addition of an 

analog self-calibration scheme. His proposed scheme improves the image rejection by 59 dB. 

 [Chang and Bibyk, 2005] have modified the traditional Hartley image reject architecture to add 

two sigma-delta ADCs and convert the filter outputs to digital bit streams. These digital bit streams 
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enable the usage of a digital phase shifter in the Hartley receiver which is less susceptible to 

process and temperature variations. 

[Widrow et. al., 1975] were one of the earliest to address the problem of removing unwanted power 

signals (60Hz) from ECG signals. The authors explain the theory of the adaptive notch filter and 

provides the simplified expressions for the transfer function of an adaptive notch filter. 

[Martens et al., 2006] address the issue of variable amplitude and random phase power line 

interference (50-60 Hz) in ECG signals. The architecture proposed by the authors tracks amplitude 

and frequency and phase of all interference components in an ECG signal by using a PLL type 

structure to correct for harmonics with varying amplitude and phase. The weight vector is split 

into two parts corresponding to amplitude and phase observations. This approach completely 

suppresses spurs at 150 Hz. The next section details the extension the theory of phase-dithered 

DDS. 

3.8 A new derivation of the SpSR of a phase-dithered DDS 

 

In this section an extension to the theory of phase-dithered DDS in [Flanagan and Zimmerman, 

1995] has been discussed. This section uses SpSR as a performance parameter of DDS. SpSR is 

defined as total energy dues to spurs divided by the energy in the fundamental expressed in dB as 

suggested by [Flanagan and Zimmerman, 1995]. 

 

Figure 3.12 DDS design with phase dither addition and truncation of phase word 

 

The DDS described by [Flanagan and Zimmerman, 1995] comprises four major blocks as shown 

in Figure 3.12. The first block is a phase accumulator which has a frequency control word as an 

input.  The output of the phase accumulator is synchronized with a high-frequency reference clock 
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and is fed to a dither addition block. The phase accumulator output is a phase word representing 

and angle between 0 and 2𝜋. The output of the dither addition block is truncated from B to b bits 

and is an input to the Phase to Amplitude Conversion (PAC) block, usually a ROM. The output of 

the PAC block forms an input to a DAC. [Flanagan and Zimmerman, 1995] proposed an additive 

model of the phase error, as a summation of dither 𝑧(𝑛) and phase error 𝑒(𝑛) was proposed. 

Rectangular phase dither is added to the DDS. Phase quantization occurs in DDS due to the finite 

word-length of the phase word. The phase quantization noise refers to additional noise at the output 

of the phase accumulator block before and after dither addition. The phase truncation noise is also 

referred to as phase quantization noise. The phase truncation noise is reflected in the output 

spectrum of the DDS as spurs. The first contribution of [Flanagan and Zimmerman, 1995]is the 

generation of uniformly distributed dither (without regard to word-length) using a PN sequence 

generator. The second contribution of Flanagan was the replacement of the original infinite 

resolution white dither with uniformly distributed periodic dither. 

[Flanagan and Zimmerman, 1995] computes the auto-correlation of added dither 𝑧(𝑛), which is a 

finite series of weighted exponentials and simplifies the autocorrelation expression of 𝑧(𝑛) to an 

infinite series based on expression of [Schuchman,1965] for CFs. The first assumption of 

[Flanagan and Zimmerman, 1995] is that the first moment of the total quantization noise is zero 

which is captured in Equation (3.88). 

𝐸(휀(𝑛)) = 0 (3.88) 

The second assumption of [Flanagan and Zimmerman, 1995] is that the total quantization noise is 

spectrally white. This will hold when added dither values 𝑧(𝑛) are independent of the lag 𝑚. The 

lag 𝑚 is the shift in terms of samples considered for the autocorrelation:  

𝐸(휀(𝑛)휀(𝑛 + 𝑚)) = 𝛿(𝑚) (3.89) 

Equation (3.89) shows the autocorrelation of quantization noise (휀(𝑛)) for a sample shift of 𝑚. 

The right-hand side is the delta function, 𝛿(𝑚) = 1 if 𝑚 = 0 and 𝛿(𝑚) = 0, otherwise. The 

quantity 𝑝(𝑛) is a scaled distance that determines the second order moment of the quantization 

noise 

𝐸(휀2(𝑛)) = ∆𝑃
2(𝑝(𝑛) − 𝑝2(𝑛))  ∆𝑃=

1
2𝑏⁄  (3.90) 

In Equation (3.90), ∆𝑃=
1
2𝑏⁄  where 𝑏 is the truncated bit-width of the phase accumulator 

(∆𝑃=Phase Quantizer step size) 
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The variable 𝑝(𝑛) is the difference of unquantized phase value to nearest quantized phase value 

scaled by the quantization step size. The expression for SpSR derived in [Flanagan and 

Zimmerman ,1995] is represented as 

𝑆𝑝𝑆𝑅𝐹𝑙𝑎𝑛𝑎𝑔𝑎𝑛(𝑏) = (
𝜋2ΔP

2

4
)

2

 (3.91) 

While deriving the Equation (3.91), only second moment of 휀(𝑛) was considered. In this section, 

modifications to Equation (3.91) considering higher order moments of 휀(𝑛) are also considered to 

obtain an alternative expression for signal expectation and SpSR. The output waveform expression 

given by [Flanagan and Zimmerman, 1995] is written as 

𝑥(𝑛) = cos (2𝜋𝑓𝑛 + Φ+ 휀(𝑛)) (3.92) 

 In Equation (3.92), 𝑥(𝑛)= 𝑛𝑡ℎoutput sample,  Φ is the Initial phase angle of DDS, and 휀(𝑛) is the 

𝑛𝑡ℎsample of the total quantization noise. By applying expectation operator to Equation (3.92), 

one can obtain expression for the moments. [Flanagan and Zimmerman,1995] substitutes the 

Taylor expansions of the total quantization noise, and the same approach is followed in this 

chapter. Considering Taylor’s expansion for the cosine of the total quantization noise and retaining 

only the first two terms are shown in the equation: 

 𝐸(cos(2𝜋휀(𝑛)) = 1 − 2𝜋2{𝐸(휀(𝑛))}
2
+⋯. (3.93) 

The Taylor expansion for the sine function of quantization noise can be simplified by considering 

only the first two terms as 

𝐸(sin(2𝜋휀(𝑛)) = 𝐸(2𝜋휀(𝑛)) − 𝐸 (
(2𝜋휀(𝑛))

3

3!
) +  ℎ𝑖𝑔ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 (3.94) 

Since the quantization error is a zero-mean process,𝐸(휀(𝑛)) = 0, the RHS of Equation (3.94) is 

simplified as 

𝐸(sin(2𝜋휀(𝑛)))) = 𝐸(2𝜋휀(𝑛)) −
1

3!
𝐸((2𝜋휀(𝑛))

3
) = −

8𝜋3

6
𝐸((휀(𝑛))

3
) (3.95) 

Substituting for the expected values for the sine and cosine functions of the quantization error into 

the RHS of Equation (3.92), the expression for the expectation of the output signal of DDS is 

further expanded as  

𝐸(𝑥[𝑛]) = 𝑐𝑜𝑠(2𝜋𝑓𝑛 + 𝛷)𝐸(𝑐𝑜𝑠(2𝜋휀(𝑛)) −  𝑠𝑖𝑛(2𝜋𝑓𝑛 + 𝛷)𝐸(𝑠𝑖𝑛 (2𝜋휀(𝑛))  (3.96) 

Substituting the values of cos(2𝜋휀(𝑛)) and sin(2𝜋휀(𝑛)) , Equation (3.92) is rewritten as 
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𝐸(𝑥[𝑛]) = 𝑐𝑜𝑠(2𝜋𝑓𝑛 + 𝛷) {1 − 2𝜋2{𝐸(휀(𝑛))}
2
} − 𝑠𝑖𝑛 (2𝜋𝑓𝑛 + 𝛷) {−

8𝜋3

6
𝐸 ((휀(𝑛))

3
)} (3.97) 

with the first-order moment of total quantization noise written as 

𝐸(2𝜋휀(𝑛)) = 0 (3.98) 

The second-order moment of quantization error is written as 

𝐸(ε2(n)) =
(ΔP)

2

8
 (3.99) 

The third-order moment of quantization error is written as 

𝐸(ε3(n)) = [𝑝(𝑛 )ΔP]
3(1 − 𝑝(𝑛)) + [(1 − 𝑝(𝑛 ))ΔP]

3(𝑝(𝑛)) (3.100) 

One can obtain an estimate of the worst-case amplitude of quantization noise by maximizing the 

third-order moment of 휀(𝑛). The condition for the maxima is given in Figure 3.13 which is a plot 

of the third-order moment versus the range of 𝑝. 

 

 

Figure 3.13 Scaled value of Third-order moment of quantization error, 𝑬(𝜺𝟑) scaled by 

versus probability,  𝒑 (𝒏) 

 

The X- axis of Figure 3.13 is the parameter 𝑝(𝑛), and the Y-axis is the scaled value of the third- 

order moment of quantization error (𝐸(휀3(𝑛))). The maximal value of the third-order moment of 

quantization noise occurs at 𝑝(𝑛) = 0.17. 

The maximal value of the third-order moment can be derived by setting the derivative of the third 

order moment to zero: 
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𝜕𝐸(ε3(n))

𝜕𝑝(𝑛)
= 0 (3.101) 

This implies upon taking derivative of Equation (3.101):  

𝜕

𝜕𝑝(𝑛)
{𝑝(𝑛)3 − 𝑝(𝑛)4 + (1 − 𝑝(𝑛))

3
𝑝(𝑛)} = 0 (3.102) 

Simplifying the condition expressed in Equation (3.102) with 𝑝(𝑛) = 0.17, the derivation for the 

maximal condition of the third-order moment is expressed as 

𝐸(ε3(n)) = [ΔP]
3(1 − 𝑝(𝑛))𝑝(𝑛) + 𝑝(𝑛)(1 − 𝑝(𝑛 ))[ΔP]

3 = 0.1[ΔP]
3 (3.103) 

 

Substituting the second-order and third-order moments from Equations (3.98) and Equation (3.99) 

into Equation (3.97), the RHS of Equation (3.97) is simplified further as 

𝐸(𝑥) = cos(2𝜋𝑓𝑛 + Φ) {1 − 2𝜋2𝐸(휀2)} − sin(2𝜋𝑓𝑛 + Φ) {−8 6⁄ 𝜋3𝐸(휀3)} (3.104) 

Substituting the second and third moments of 휀(𝑛), the expression for the expectation of the output 

signal of DDS is written as 

𝐸(𝑥) = cos(2𝜋𝑓𝑛 + Φ) {1 − 2𝜋2
ΔP
2

8
⁄ } + sin(2𝜋𝑓𝑛 + Φ) {8 6⁄ 𝜋30.1ΔP

3} (3.105) 

Where  ∆𝑃=
1
2𝑏⁄  where 𝑏 is the truncated bit-width. From the Equation (3.105), a new expression 

for SpSR, the ratio of spurious power to signal power at DDS output can be derived as 

𝑆𝑃𝑆𝑅 Modified =
𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝑃𝑜𝑤𝑒𝑟

𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
=

{(
𝜋2ΔP

2

4 )

2

+ (
8𝜋
6 𝜋30.1ΔP

3)
2

}

1
 

(3.106) 

 

Taking logarithms of both sides of Equation (3.106), one can write: 

𝑀𝑜_𝑆𝑃𝑆𝑅=10𝑙𝑜𝑔10(𝑆𝑃𝑆𝑅 Modified) (3.107) 

The additional term in the numerator of Equation (3.106) is because the third-order moment has 

been considered. The expression for SpSR as derived by [Flanagan and Zimmerman, 1995] is 

written as 

𝑆𝑝𝑆𝑅𝐹𝑙𝑎𝑛𝑎𝑔𝑎𝑛(𝑏) = (
𝜋2ΔP

2

4
)

2

 (3.108) 

The RHS of Equation (3.108) is a function of the truncated bit-width ‘𝑏’ as ∆𝑃=
1
2𝑏⁄  
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The RHS of Equation (3.108) is the SpSR computed in accordance with [Flanagan and 

Zimmerman, 1995]. SpSR must be expressed in dBc. Upon taking logarithms of both sides of 

Equations (3.106) and (3.108) and multiplying by 10, the relationship between the SpSR 

computation performed in this chapter and that performed by [Flanagan and Zimmerman, 1995] is 

obtained.  Modified_SpSR is used to denote the SpSR as computed in this chapter. FZ_SpSR which 

is the same as 𝑆𝑝𝑆𝑅𝐹𝑙𝑎𝑛𝑎𝑔𝑎𝑛(𝑏)  in Equation (3.104) is used to denote the SpSR as computed by 

[Flanagan and Zimmerman ,1995]. 

Equation (3.108) can be further simplified by taking logarithms and substituting ΔP = 1 2−𝑏⁄ . 

After simplification, the right-hand side of Equation (3.108) can be written as  

10𝑙𝑜𝑔10(𝐹𝑍_𝑆𝑝𝑆𝑅) = 7.845 − 12𝑏 (3.109) 

The relationship between the SpSR as derived by [Flanagan and Zimmerman, 1995] and the 

Modified_SpSR(which is the result of Equation 3.107) derived in this chapter can be written as a 

single expression: 

10𝑙𝑜𝑔10(𝑀𝑜_𝑆𝑃𝑆𝑅) = 10𝑙𝑜𝑔10(𝐹𝑍_𝑆𝑃𝑆𝑅) + 10𝑙𝑜𝑔10 (1 + 16 ∗ 0.133 ∗ 𝜋 (
1

2𝑏
)
2

) (3.110) 

Figure 3.14 illustrates the variation of SpSR computed using the Equation (3.109) (SpSR_FZ) and 

Equation (3.110) (𝑀𝑜_𝑆𝑃𝑆𝑅). The observable differences between the 𝑆𝑝𝑆𝑅_𝐹𝑍, computed using 

the Equation (3.109) and 𝑀𝑜_𝑆𝑃𝑆𝑅, computed using Equation (3.110) are at lower range of bit 

width between 2 and 6.  

 

 

Figure 3.14 Plot of SpSR vs. bit width(b) illustrating where the SPSR really differs 
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A comparison of the modified SpSR and SpSR derived through [Flanagan and Zimmerman’s, 

1995] expression is illustrated in Figure 3.14. The blue track is calculated by using the Equation 

(3.110) and the Figure 3.14 are original contributions of this thesis. The red track is computed 

using Equation (3.109). 

3.9 SFDR improvement and Spur filtering using Hartley image suppressor 

 

This section presents a review of a Hartley image reject receiver (also known as a Hartley 

suppressor or Hartley image suppressor) and its application for the reduction of the presence of 

unwanted spurs at the output of a DDS. Hartley image reject receiver is widely used in receiving 

chain of RF receivers. A block diagram of Hartley image reject receiver is shown in Figure 3.15. 

Hartley image suppressors are used in RF frequencies using analog phase shifter. In a digital 

version, the analog phase shifter must be replaced by a Hilbert Transformer.  A digital version of 

the Hartley suppressor can suppress the dominant spur of DDS occurring at a specified spur 

frequency. The spur frequency of DDS is analogous to image frequency in a conventional RF 

receiver.  The adaptation of Hartley Image suppression technique to improve the SFDR of DDS is 

a contribution of this chapter and such a recourse appears to have not been addressed in open 

literature. 

 

 

Figure 3.15 Block diagram of the Hartley suppressor [Razavi, 2005] 

 

A Hartley image rejection receiver (Figure 3.15) has two branches driven by a common input 

(DDS output in Figure 3.15), each comprising a multiplier(mixer) and a Low Pass Filter (LPF). 

The multipliers (mixer) in both branches are fed by a Quadrature Local Oscillator (LO) whose 

Some materials have been removed due to 3rd 
party copyright. The unabridged version can be 
viewed in Lancester Library - Coventry University.
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output frequency is midway between the first and third harmonic (the third harmonic acts as the 

image frequency of signal and the third harmonic must be suppressed). The preferred LO 

frequency is selected to lie midway between the fundamental and the image frequency. At node A 

of LPF1 (Figure 3.15), the output waveform can be written as 

𝜈 =
𝐴𝑓

2
sin(𝜔𝐿𝑂 − 𝜔𝑓) 𝑡 +

𝐴ℎ
2
sin(𝜔𝐿𝑂 − 𝜔ℎ) (3.111) 

 

In Equation (3.111), 𝜔𝐿𝑂 is the output frequency of the quadrature oscillator, 𝜔𝑓 is the fundamental 

frequency of the DDS output (input to Hartley Image suppressor), 𝜔ℎis the Image frequency of 

the DDS output (input to Hartley Suppressor) , 𝐴𝑓 is the Signal amplitude at the fundamental 

frequency, and  𝐴ℎ is the Signal amplitude at the image frequency 

At node B of LPF2 (Figure 3.15), the output waveform can be written as 

휂 =
𝐴𝑓

2
cos(𝜔𝐿𝑂 − 𝜔𝑓) 𝑡 +

𝐴ℎ
2
cos(𝜔𝐿𝑂 − 𝜔ℎ) 𝑡 (3.112) 

The signal ν (Equation 3.111) is phase shifted by 90o (digitally) through a Hilbert Transformer. 

The phase shifted output at node C (Figure 3.15) can be written as 

𝐾𝐶 =
𝐴𝑓

2
cos(𝜔𝑓 − 𝜔𝐿𝑂) 𝑡 −

𝐴ℎ
2
cos(𝜔𝐿𝑂 − 𝜔ℎ) (3.113) 

 

The output 𝑌 of the Hartley image suppressor, which is the phasor summation of 𝜈 and 𝐾𝐶 

comprises only the fundamental component after the cancellation of the image frequency 

component (𝐴ℎ 2⁄ ).  

A DDS system must suppress spurs at the output of DDS before the spur reaches the DAC. In a 

digital Hartley suppressor, the two LPFs in Figure 3.15 are implemented as digital LPFs with 

narrow transition band and high stop-band attenuation. The 90o phase shift must be accomplished 

through a digital Hilbert Transformer, which is a high order Finite Impulse Response (FIR) filter. 

In practice, the Hilbert Transformer’s function is accomplished by a 64th order FIR filter in 

Sysgen™ (Figure 3.16). It was established through simulations that is not possible to achieve exact 

90o phase shift by using a lower order FIR filter. To achieve any image cancellation, an exact 90o 

phase shift is necessary, and the Hilbert transformer needs to facilitate it. FDAtool™ from 

Matlab® was used to design the Hilbert Transformer.  
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In Figure 3.15 and subsequently in this section, the term spur refers to the image frequency. The 

term spur suppression wherever it is used is the same as an image suppression. 

Following [Younous, 2004] and [Joo, 2004], the Hartley image suppressor for a DDS (Figure 3.16) 

comprises a local quadrature oscillator. Notably, the quadrature oscillator must have a frequency 

twice as high as the DDS output frequency. Besides, the Hartley image suppressor features two 

LPFs, a phase shifter to provide 90o phase shift on one branch and a signal combiner(adder). The 

DDS output (which consists of fundamental and one or more spurs after conversion into analog) 

is fed directly to the input of the Hartley Image suppressor. The output is obtained at node Y 

(Figure 3.15) through the summation of the outputs of two branches. The quadrature oscillator is 

a Numerically Controlled Oscillator (NCO) whose FCW is shared with the original DDS and is 

always double the value being used by the original DDS. A change in the FCW of the original 

DDS immediately alters the FCW of the quadrature oscillator in the Hartley image suppressor. The 

Taylor series DDS generates the fundamental and the third harmonic, and the frequency of the LO 

can be centered exactly to lie between the first and third harmonics which is a feature of Hartley 

suppressor. Positioning the frequency of the quadrature oscillator frequency exactly between the 

first and third harmonic leads to better spur suppression of DDS. Digital elliptic filters are exactly 

replicated for both branches, and this ensures that mismatched LPFs do not cause phase and 

amplitude mismatches. Figure 3.16 shows the Hartley Spur suppressor implemented in Simulink™ 

in terms of discrete blocks.  

 

 

Figure 3.16 Block diagram of Hartley Spur suppression circuit with digital low pass filters 

and Digital Hilbert Transformer 
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Figure 3.16 performs a Hartley spur suppression using all discrete time filters, discrete time input 

sources, digital local oscillator and a digital Hilbert Transformer. A discrete time FIR filter 

performs the task of generating a 90-degree phase shift called a digital Hilbert Transformer [Lyon, 

2003]. The DDS output into the Hartley block is on the far left side which as a fundamental plus a 

third harmonic. These two blocks are marked in Figure 3.16 as DDS output w/ 3rd harmonic. The 

local oscillator (marked Quadrature Oscillator) produces sine and cosine version at the same input 

frequency, and the DDS output is multiplied and ‘mixed’ in two different multipliers. The outputs 

of both the multipliers are low-pass filtered and the one low pass filtered signal is phase shifted by 

90 degrees using a Hilbert Transformer. The final output of block Figure 3.16 is a single signal 

with the third harmonic suppressed. 

Table 3.1 illustrates that the LPFs must feature high stop-band suppression to achieve high SFDR. 

The usage of low-order IIR filters to implement LPF can achieve high SFDR improvement at a 

fraction of the power. A Hartley image suppressor has been implemented in a Xilinx Virtex6™ 

FPGA using LPFs with FIR (Implementation is described in chapter 6). 

 

Table 3.1 SFDR of DDS with and without Hartley image suppressor 

Type 

of DDS 

      Original 

SFDR 

without 

Hartley 

(dB) 

Final 

SFDR 

with 

Hartley 

(dB) 

Stop Band 

Attenuation  

of 

LPF (dB) 

Taylor series DDS 74dB 79dB 80dB 

Taylor series DDS 74dB 120dB 120dB 

 

 

Table 3.1 leads to the conclusion that significant improvement in SFDR is possible for Taylor 

series DDS. When IIR filters are used with 120dB stop band attenuation, the maximum possible 

improvement in SFDR is 46 dB (74 dB to 120 dB). Figures 3.17a and 3.17b illustrate the PSD at 

the output of digital Taylor series-based DDS with and without Hartley Image suppressor (f0=9.15 

MHz). 
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(a) SFDR=74dB without Hartley Suppressor  (b)SFDR=120 dB with Hartley 

Figure 3.17 Comparison of SFDR of Taylor Series DDS with and without Hartley 

Image Suppressor (Stop Band Attenuation of Filter=120 dB) 

 

The cutoff frequency for the elliptic IIR filter to generate the results of Figure 3.17 is set to 

27.5MHz. An FPGA implementation model of the Hartley supressor is provided in chapter 6. 

Table 3.2 illustrates the different components of power dissipation of a Hartley suppressor. 

 

Table 3.2 Power Dissipation of the Hartley Image suppressor with FIR filters (30th order) 

Clocks 

(mW) 

Logic 

(mW) 

Signals 

(mW) 

DSP 

(mW) 

Dynamic 

Power(mW) 

Leakage 

Power(mW) 

Total 

Power-Leakage+ Dynamic (mW) 

51 58 81 225 445 335 821 

 

 

In Table 3.2, it is observed that the dynamic power dissipation can be quite high because of the 

DSP blocks (which are signal processing elements in the FPGA) as high order (orders greater than 

30) FIR filters are used. Dynamic power is computed as the summation of power dissipation in 

clocks, logic, signals and DSP blocks. FIR filters are readily available as FPGA blocks. One 

approach to reduce the power dissipation is the usage of IIR filters. Lower order IIR filters produce 

shorter transition bands and greater stop band suppression than FIR filters of comparable order do.  

IIR filters (of much lower orders) use fewer multipliers and adders than FIR filters do for a 
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comparable transition bandwidth and stop band attenuation. The 80 dB stop band attenuation can 

be achieved by an IIR filter of 8th order. In Figure 3.16, the two low-pass FIR filters are replaced 

with lower-order IIR filters with similar stopband attenuation of 120dB. The Hilbert Transformer 

is still implemented as a FIR filter as it requires linear phase. The IIR implementation of the Hartley 

suppressor was necessitated because of the higher power dissipation in FIR-based Hartley 

receivers.  

In Table 3.3, power dissipation due to FIR implementation of a Hartley image suppressor and IIR 

implementation of a Hartley image suppressor is compared. For a given stop band attenuation (120 

dB) of filter, the order of an IIR filter(8th) is far lower than the corresponding FIR filter (30th). The 

first design of the Hartley image suppressor used two 40th order FIR filters while the final design 

used two 8th order IIR filters. An 8th order IIR filter with a transition band of 0.1𝜔𝑠 can provide 

the necessary transition band stop-band attenuation of 120dB. 

 

Table 3.3 Power dissipation for Hartley suppressor (Virtex6 FPGA) 

Design 

(Type of 

Filter) 

Clocks 

(mW) 

Logic 

(mW) 

Signals 

(mW) 

DSP 

(mW) 

Total 

(Dynamic) 

(mw) 

Leakage 

(mW) 

Total 

(mW) 

FIR (30th 

order) 
51 58 81 225 445 335 821 

IIR (8th order) 23 10 9 13 55 335 380 

 

Table 3.3 illustrates the advantages of implementing a Hartley image suppressor using IIR filters. 

Two different designs are compared one which has a Hartley compensator using FIR filters of 30th 

order and the other utilizing IIR filters of 8th order. The results of Figure 3.3 show that The Hartley 

suppressor featuring an 85% reduction in dynamic power due to usage of IIR filters instead of FIR 

filters. The results of Table 3.4 reveal that the combination of the Taylor-series DDS (with poor 

SFDR) and the Hartley image suppressor can achieve improved SFDR comparable to that of a 

cubic polynomial DDS. The combined power dissipation of a Hartley suppressor and a Taylor 

series DDS is comparable to a baseline cubic polynomial DDS with 8 segments and 16k 
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samples/cycle. A comparison of power budget of 8 segment Cubic polynomial DDS and Taylor 

series DDS combined with Hartley suppressor is summarized in Table 3.4. 

Table 3.4 Comparison of SFDR and Power dissipation of Cubic DDS & Taylor DDS + 

Hartley Spur suppressor 

 

Cubic 

polynomial 

DDS (𝑠 = 8) 

Taylor DDS + Hartley Spur Suppressor 

SFDR 136dB 120dB 

Dynamic power 114mW 

97mW total 

(Taylor DDS (42mW), Hartley suppressor(55mW) 

 

A simulation is performed to compare power dissipation of Taylor DDS combined with Hartley suppressor 

and compare its power dissipation with a cubic DDS with 𝑆 = 8. The achieved SFDR values of a Cubic 

polynomial DDS and that of a combination of Taylor series DDS and Hartley image suppressor 

are comparable. But the combination of Taylor series DDS and Hartley image suppressor 

consumes lesser dynamic power. The next section describes the usage of Adaptive notch filters for 

spur suppression. 

3.10 Adaptive Notch Filtering for Spur Suppression in DDS  

 

Adaptive notch filtering in DDS involves filtering unwanted spurs that are generated by sinusoidal 

external disturbances. An adaptive filter which can not only locate the spur but quickly adjusts its 

own parameters as the spur location changes is ideal for applications such as CR, where the output 

of DDS can change rather swiftly. This section proposes an adaptive sinusoidal interference 

canceller (Figure 3.18) as a suitable mechanism to suppress a single dominant spur as in case of 

the Taylor series DDS. The proposed name for a system as in Figure (3.18) is Least Mean Squares- 

Sinusoidal Interference Canceller (LMS-SIC). 
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Figure 3.18 Block diagram of Adaptive Sinusoidal Interference Canceller (LMS-SIC)  

 

Figure 3.18 illustrates an adaptive notch filtering scheme which comprises 2 major blocks – the 

weight update block and the output computation block (block marked scalar product block in 

Figure 3.18). The two inputs to the canceller are an 𝑀 element vector of reference input of DDS, 

which is nothing but the previous 𝑀 input samples of 𝑢 and the input samples of 𝑑(𝑛) which is 

the reference signal plus spur. The amplitude of input sample 𝑢(𝑛) is  𝐴. An error signal 𝑒(𝑛)is 

generated which is the difference between the desired output signal 𝑑(𝑛)and the output 𝑦(𝑛)of the 

filter. The weight update block updates its weight vector values 𝑤(𝑛) based on the error (𝑒(𝑛))and 

the previous value of the input vector 𝑢(𝑛). The output computation block computes (𝑤𝑇𝑢), the 

scalar product of weight vector and input vector. The rate of convergence of the LMS algorithm 

(implemented in block diagram of Figure 3.18) is controlled by the factor 𝜇 ,a step-size control 

parameter. If the step size control parameter 𝜇 is too high, the results will be divergent. If 𝜇 is too 

small, the convergence will require greater number of iterations. For the block diagram of Figure 

3.18, the explanation for various symbols is provided below.  

𝑢(𝑛) is the difference between the Reference input and magnitude of the spur. 𝐴 is the amplitude 

of the reference input, 𝑑(𝑛) is the DDS output comprising of fundamental 𝛽(𝑛)  + added 

spur(𝑏𝑐𝑜𝑠(𝜔𝑛 + 𝜙1),  𝛽(𝑛) is the Information bearing signal same as the DDS output – 

fundamental without harmonics.  𝑏𝐼 is the Amplitude of the sinusoidal interference (spur)and it 

need not be known a-priori. Angular frequency 𝜔 is the normalized angular frequency of the 

sinusoidal interference (known), 𝜙1 is the Phase of the sinusoidal interference (unknown). Finally, 

𝜙2 is the Phase of the reference input (known). 
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The adaptive interference canceller is named as Least Mean Squares –Sinusoidal Interference 

Canceller (LMS-SIC). It uses the LMS algorithm of [Widrow, 1977] to perform cancellation of 

sinusoidal interference. Equation (3.110) presents the formulation of the primary input to the LMS-

SIC. 

𝑑(𝑛) = 𝛽(𝑛) + 𝑏𝐼𝑐𝑜𝑠(𝜔𝑛 + 𝜙1) (3.114) 

In Equation (3.114), 𝛽(𝑛) is the information bearing signal. It is the DDS output – fundamental 

without harmonic spurs. The constant 𝑏𝐼 is the amplitude of the sinusoidal interference (spur). In 

turn, 𝜔 is the normalized angular frequency of the sinusoidal interference (known); where 𝜙1 is 

the phase of the sinusoidal interference (unknown). 

The working principle of the LMS-SIC is summarized as follows: 

• Signal 𝑑(𝑛)( Figure 3.18) is the primary filter input combining the fundamental output of DDS 

(first part in Equation 3.114) plus the sinusoidal interference tone (second part in Equation 

3.114).  

• The second part of the primary input in Equation (3.114) must be removed from the DDS 

output. 

The reference input to the LMS-SIC comprises only of the sinusoidal interference given by 

Equation (3.115).  

𝑢(𝑛) = 𝐴𝑐𝑜𝑠(𝜔𝑛 + 𝜙2) (3.115) 

In Equation (3.115), 𝐴 is the amplitude of the sinusoid, 𝜙2 is the initial phase of the sinusoid, and 

𝜔 is the angular frequency of the sinusoid. Output of the filter y(n) can be written as 

𝑦(𝑛) = ∑ 𝑤𝑇(𝑖)𝑢(𝑛 − 𝑖)

𝑀−1

𝑖=0

 (3.116) 

In Equation (3.116) 𝑦(𝑛) is a result of the convolution of the weight vector (𝑤(𝑖)) and the input 

vector(𝑢(𝑖)). The error signal 𝑒𝐿𝑀𝑆(𝑛) (Equation 3.117) is defined as a difference of the reference 

input  𝑑(𝑛) and the filter output 𝑦(𝑛). 

𝑒𝐿𝑀𝑆(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) (3.117) 

In Equation (3.118), the weight update vector (in weight update block of Figure 3.35) is computed 

(in each step) as 

𝑤𝐿𝑀𝑆(𝑛 + 1) = 𝑤𝐿𝑀𝑆(𝑛) + 𝜇𝑢(𝑛 − 1)𝑒𝐿𝑀𝑆(𝑛) 𝑓𝑜𝑟 𝑛 = 0,1, . . 𝑁𝐿𝑀𝑆 − 1       (3.118) 
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In Equation (3.118), 𝑛 is the Iteration number, 𝑁𝐿𝑀𝑆 is the Maximum number of iterations, 

𝑤𝐿𝑀𝑆(𝑛) is the weight vector at the 𝑛𝑡ℎ iteration, 𝑢(𝑛 − 1) is the input vector at the (𝑛 − 1)𝑡ℎ 

iteration, and  𝜇 is the convergence control factor of the weight update. Figure 3.19 explores the 

rapidity of convergence of (LMS-SIC). 

 

 

Figure 3.19 LMS error versus number of LMS iterations for LMS-SIC (the value mu refers 

to the constant 𝝁 in the LMS algorithm) 

 

Figure 3.19 compares the LMS error of three filter orders in LMS algorithm 𝑀 = 64(the 64th 

order), 𝑀 = 128( the 128th order) and 𝑀 = 192 (the 192th order). Figure 3.19 depicts the influence 

of number of iterations on the convergence of LMS.  Figure 3.19 illustrates that the highest order 

adaptive filter (𝑀 = 192) which has the lowest value of 𝜇, takes the largest number of iterations 

to converge (color green in Figure 3.19). The fastest convergence of LMS-SIC is observed when 

the value of 𝜇 is high (0.0015). The red track corresponds to 𝑀 = 128 and 𝜇=0.0005, blue track 

corresponds to 𝑀 = 64 and 𝜇=0.0015. Table 3.5 illustrates how an LMS algorithm based 

sinusoidal interference canceller could converge faster with greater 𝜇 and greater filter order (𝑀). 
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Table 3.5 Number of iterations required to converge to less than 0.1% of final error for various 

order of LMS-SIC 

Value of μ and filter size Number 

of iterations 

Value of μ and filter 

size (M=64) 

Number 

of iterations 

μ =0.0001; M=64 900 μ =0.0005; 322 

μ=0.0015; M=64 447 μ =0.0010; 400 

μ=0.0005; M=128 500 μ = 0.0015; 800 

 

It can be concluded from Table 3.5 that increasing 𝜇 by a factor of 3 reduces the number of 

iterations by 40%. Too high a value of 𝜇 can also lead to instability of the LMS-SIC. 

 

 

Figure 3.20 Error in adaptive filtering versus Number of iterations for 𝑴 = 𝟔𝟒; 𝝁 =

 𝟎. 𝟎𝟎𝟎𝟓/𝟎. 𝟎𝟎𝟏/𝟎. 𝟎𝟎𝟏𝟓 

 

Figure 3.20 illustrates that as 𝜇(convergence control factor of LMS algorithm) is increased from 

0.0005 to 0.0015, the number of iterations required to converge drops from 800 to around 320. 

The convergence of the LMS-SIC depends on the statistical characteristics of the added noise. It 

is independent of the output frequency of the DDS. The original SFDR of the Taylor Series DDS 

is 74dB (Figure 3.21a). 
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(a) Without Suppressor    (b) With Suppressor 

Figure 3.21 SFDR of Taylor Series DDS with and without Adaptive Spur Suppression(𝑴 =

𝟏𝟗𝟐;  𝝁 = 𝟎. 𝟎𝟎𝟎𝟓) 

 

Figure 3.21b SFDR of a Taylor’s series DDS can be improved to up to 114 dB by using 192th order 

FIR filter (Figure 3.21b). The curves in Figure 3.21 illustrate an SFDR of 74 dB for the Taylor’s 

series DDS alone and 114dB using a cascade of the Taylor series DDS and an LMS-SIC filter of 

192th order. The structure of LMS-SIC can be analyzed in the frequency domain.  The adaptive 

notch filter behaves as a second-order IIR filter with the transfer function given by [Widrow, 1975; 

Glover, 1977]. The transfer function is written as 

𝐻(𝑧) =
𝑧2 − 2𝑧𝑐𝑜𝑠𝜔0 + 1

𝑧2 − 2(1 −
𝜇𝑀𝐴2

2 ) (𝑧𝑐𝑜𝑠𝜔0) + (1 −
𝜇𝑀𝐴2

2 )
 

(3.119) 

 

In Equation (3.119) 𝑧 is the z-domain variable, 𝜇 is the convergence factor, and 𝐴 is the amplitude 

of input. In turn,  𝜔0 is the center frequency of the notch filter. 𝑀 is the order of the LMS-SIC 

filter.  

Figure 3.22 illustrates the difference in the attenuation of filter realized  with two different order 

of filters with , 𝜇 = 0.2, 𝐴 = 1,  M=32, and M=64 when both the notch filters are tuned to 

27.45MHz, which is the third harmonic corresponding to a 𝑓0=9.15MHz (where, 𝑓0 is  Output 

frequency of DDS).  
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Figure 3.22Notch dilter transfer function(𝑯(𝒛)) with 32 order(𝑴 = 𝟑𝟐) and 64th 

order((𝑴 = 𝟔𝟒)  filter maximum attenuation=-107dB) 

 

In Figure 3.22, it is observed that an additional spur suppression of 4dB ( -107dB vs -103dB) is 

achieved by using a 64th-order filter(green track) instead of a 32nd-order filter(blue track). Table 

3.6 compares the efficacy of dither, Hartley and adaptive notch filtering techniques of spur 

suppression. 

 

Table 3.6 Comparison of performance of dither, Hartley and adaptive notch filter 

Suppression 

scheme 

SFDR 

(dB) 

Number of 

additional 

base-band 

waveform 

generators 

HW 

resources 

Dynamic Power 

(mW) 

Noise Floor 

below 

fundamental 

Dither 

addition 
 

up to 2 

dither 

sources (for 

triangular) 

Dither 

generators 
< 10mW 

-120dB is not 

achievable 
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Hartley 

suppressor 

120 

(120dB 

elliptic)/ 

80 

(80dB 

elliptic) 

One  

quadrature 

Source 

sinusoidal 

source 

(centered to 

2𝑓0) 

2 IIR   filters 

+ 

one 64th order 

Hilbert 

Transformer 

+ 2 multipliers 

+ 1 adder 

55mW 

Power on 

account of RF 

source = 45mW 

200dB is 

achievable 

easily 

Figure 3.17 

Adaptive 

Notch filter 

93dB 

(M= 128); 

97dB 

(M=192) 

1 

sinusoidal 

source of 

fixed 

amplitude 

(centered to 

3𝑓0) 

Single 64th 

order 

FIR filter 

20mW(filters) 

45mW – NCO 

waveform 

generator 

180dB 

achievable 

Figure 3.21 

and Figure 

3.23 

 

 

Table 3.7 compares the performance and hardware resources for both the approaches of spur 

suppression after their mapping on a Xilinx Virtex-6 FPGA, and the dynamic power is compared. 

Leakage power of individual circuits cannot be estimated since the DDS circuit is a small 

component of the whole FPGA. 

 

Table 3.7 SFDR and HW complexity comparison of Hartley suppressor and LMS-SIC 

 

Suppression 

scheme 

SFDR 

(dB) 

Number of 

additional 

waveform sources 

HW 

resources 

Hartley 

suppression 

scheme 

120dB/78dB 

(filter stopband 

120dB/80dB) 

One quadrature 

NCO (2𝑓0) 

Two 8th order IIR filters+ 

one 64th order (FIR)+ 2 

multipliers+ 1 adder 

LMS-SIC 113db(M=192) 1 NCO (3𝑓0) 
One FIR filter and one 

multiplier 
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Table 3.8 compares the achieved noise floor and dynamic power (with the input clock frequency 

at 100 MHz and input voltage set to 2.5V). 

 

Table 3.8 Dynamic Power and Noise Floor Comparison of Hartley Image Suppressor and 

LMS-SIC Using Virtex-6 FPGA 

Suppression scheme Dynamic Power (mW) 
Noise Floor below 

Fundamental 

Hartley suppressor 100mW 180dB (Figure 3.17) 

Adaptive Notch filter 65mW 180dB (Figure 3.21) 

 

In Table 3.8, it is observed that the LMS adaptive notch filter consumes 35mW less power than 

the Hartley suppressor for the same level of noise floor. The LMS-SIC and the Hartley type 

suppressor require an external Numerically Controlled Oscillator (NCO) source (quadrature for 

Hartley and non-quadrature for Adaptive) which consumes 45mW at a clock frequency of 100 

MHz frequency. The proposed LMS-SIC requires a single higher-order filter in contrast to the 

three different filters and two additional multipliers required for Hartley Image suppressor.  

An attempt was made to design an adaptive sinusoidal interference canceller which uses a different 

algorithm to achieve faster convergence. The algorithm chosen is the Recursive Least Squares 

(RLS) algorithm. An adaptive notch filter based on the RLS is referred to as the Recursive Least 

Squares – Sinusoidal Interference Canceller (RLS-SIC) algorithm. The RLS algorithm has been 

discussed by [Haykin, 2005]. The convergence of the RLS algorithm is faster than LMS in 

applications like Adaptive Line Enhancement (ALE). The speed of convergence depends on the 

ratio of the maximum and minimum eigenvalues of the input covariance matrix. RLS performs 

suppression of the third-harmonic spur. 
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(a)                                                                             (b)   

Figure 3.23 SFDR of Taylor series DDS without RLS-SIC (a) and with RLS-SIC(b) 

SFDR = 74dB (without RLS)  full suppression SFDR 190dB 

 

Figures 3.23 (a) and 3.23(b) were generated by the RLS algorithm [Haykin, 2005], which was 

executed with the following initialization parameters. 

Initial weight vector = Initialized to all zeros, weight vector( 𝑤(0) ) is initialized to all 0s 

Weight vector length = 32 (a 32 TAP FIR filter).  

It is observed that RLS completely suppresses the spur at the third harmonic that is at 27.45 MHz 

frequency. The RLS equations can be written in a summary as  

Φyy(𝑛) = 𝛿𝐼 (3.120) 

In Equation (3.120), Φyy(𝑛) is the Initial value of inverse covariance matrix, the constant 𝛿 is the 

Regularization parameter (set to 0.0004), 𝜆 is the Memory factor(constant) usually set to 1. Matrix 

𝐼 is the 𝑁𝑥𝑁 unit matrix, and  𝑊(0)=zeros (𝑁).  𝑁 dimensional weight vector initialized to all 0s. 

For each iteration of the RLS algorithm, the following computation is performed. For each 

iteration, one must first calculate the intermediate vector as 

𝜋(𝑛) = 𝑃(𝑛 − 1)𝑦(𝑛) (3.121) 

In Equation (3.121), 𝑃(𝑛 − 1) is the Cross-covariance vector and 𝑦(𝑛) is the input vector. 

In the second step, the Kalman gain (𝑘𝑅𝐿𝑆) is computed as 

𝑘𝑅𝐿𝑆(𝑛) =
𝜋(𝑛)

𝜆 + 𝑦𝑇(𝑛)𝜋(𝑛)
 (3.122) 

In the third step, the step error is computed as 
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𝑒𝑅𝐿𝑆(𝑛) = 𝑑(𝑛) − 𝑤ℎ(𝑛 − 1)𝑦(𝑛) (3.123) 

In Equation (3.123) the Hermitian (ℎ 𝑠𝑢𝑝𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡) reduces to the transpose for real weight vector, 

as in this case. The weight update is a function of the error (𝑒𝑅𝐿𝑆(𝑛)) at each step, the original 

weight vector (𝑤𝑅𝐿𝑆(𝑛 − 1)), and the Kalman gain (𝑘(𝑛)), the weight update step can be written 

as 

𝑤𝑅𝐿𝑆(𝑛) = 𝑤𝑅𝐿𝑆(𝑛 − 1) + 𝑘(𝑛)𝑒(𝑛) (3.124) 

In Equation (3.124), 𝑤(𝑛 − 1) is the weight vector in (𝑛 − 1)th step and 𝑤(𝑛) is updated weight 

vector in 𝑛th step. The inverse covariance matrix (Φyy(𝑛 − 1))can be updated as 

Φyy(𝑛) = 𝜆−1Φyy(𝑛 − 1) + 𝜆−1𝑘𝑅𝐿𝑆(𝑛)𝑦
𝑇(𝑛)Φyy(𝑛 − 1) (3.125) 

The explanation for Equation (3.125) is that updated inverse covariance matrix must be computed 

at each step. The values of δ and λ are chosen which are typical of the RLS algorithm following 

[Haykin, 2005]. Table 3.9 compares the performance of RLS and LMS in terms of SFDR.  

 

Table 3.9 Comparison of performance of LMS and RLS 

Algorithm 
Number of iterations and 

parameters 
SFDR (dB) 

LMS 442(𝜇 = 0.0015;𝑀 = 64) 100 

RLS 256(𝜆 = 1;𝛿 = 0.0004) 200 

3.11 Conclusion 

 

The initial approach was to achieve significant spur suppression by the addition of amplitude and 

phase dither to DDS. The initial approach in this chapter did not yield the expected results of spur 

suppression without compromising the noise floor. It was concluded that to achieve the required 

results suitable for cognitive radio, one must create alternate spur suppression techniques, which 

did not result in a poor SFDR. The three techniques namely Hartley, an adaptive sinusoidal 

interference cancellation using LMS algorithm, and a sinusoidal interference cancellation using 

RLS algorithm - have been analyzed to assess the spur suppression feature without significantly 

raising the noise floor. The proposed technique involved addition of a Hartley noise suppressor 

after the DDS. It resulted in a SFDR improvement of 45dB (maximum). The second technique 
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utilized an LMS filter to improve the SFDR, and SFDR improvement of 30dB has been realized 

using a 128-tap LMS filter. With a 192-tap LMS filter, the improvement in SFDR has been of the 

order of 39 dB. The third technique utilized an RLS filter to improve the SFDR and achieved an 

SFDR improvement of 100 dB using a 32-tap RLS filter. All the three techniques have been proved 

to ensure a final SFDR above 100 dB even with a choice of initial DDS configuration with a low 

SFDR (74dB). One can use a Taylor series DDS with 74 dB with Hartley image suppressor to still 

realize SFDR of 120dB at the DAC input. The power budget of DDS + LMS filter (65 mW) is 

considerably less than a cubic polynomial DDS (136mW) while achieving a good SFDR of around 

113dB. Hence, using an LMS filter to improve SFDR is a real alternative to using dither, and it 

does not raise the noise floor. If the power budget is not very critical and the additional silicon area 

is acceptable, the Hartley image suppressor is the best solution which can achieve an SFDR of 120 

dB. If the power budget is more critical and about 10-12 cycles of delay are acceptable to achieve 

the SFDR, then the LMS-SIC and RLS-SIC are better solutions. The RLS –SIC requires 32 tap 

filters as opposed to 128 tap filters for LMS-SIC. However, the computation per sample of output 

is more for RLS. The 100mW power budget for a Hartley suppressor (in addition to the quadrature 

oscillator) can be reduced to 20mW using an RLS type suppressor. The RLS-SIC requires an 

additional 6 cycles of sinusoidal output to minimize the spur as compared to the Hartley 

suppressor.  

An analysis has been performed with an additional term for phase dithered DDS with rectangular 

phase dither. Additional correction terms for the second- and third-order moments of error yield a 

different expression for SpSR. It has been illustrated that these corrections can be significant if the 

ROM bit-width is small – below 5 bits.  
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              Chapter 4  
 

Optimal Analytical Model of DAC &Second-Order PLL for Phase Noise, 

Lock time 

 

A PLL is a closed-loop system having the ability to track the phase and frequency of an input 

waveform if the frequency of that input waveform is within a bounded range termed as a lock 

range. A PLL can multiply the frequency of input waveform by an integer or fractional multiple. 

Cascade of Digital to Analog converter- PLL (DAC- PLL) is an important subsystem in DDS-

DAC-PLL that, in turn, is a critical sub set of Cognitive Radio. The performance metrics of DAC-

PLL are phase margin, settling time, phase noise, damping coefficient, time constant of loop filter 

as well as sensitivities of Voltage Controlled Oscillator (VCO) and Phase detector.  

4.1 Introduction  

 

This chapter describes the relationships amongst the performance metrics of DAC-PLL. The 

definitions of the parameters of DAC-PLL along with their implications are discussed in the 

appropriate sections of this chapter. Multiple analytical relationships pertaining to DAC- PLL 

parameters are derived in this chapter.  These relationships appear to have not been reported in the 

open literature. A closed-form expression relating the damping coefficient and the phase margin 

of a second-order PLL is derived. This chapter also analyses the utility of an analytical expression 

to relate the settling time of DAC- PLL to the time constant of the loop filter. An explicit 

expression relating the Phase Margin of PLL to its settling time has also been derived in this 

chapter. The derived closed-form expression forms the basis for the subsequent results required 

for phase noise performance of a second order PLL. An expression for the computation of the 

natural frequency of a DAC-PLL with its settling time and Phase Margin has also been derived to 

facilitate time response of DAC-PLL. The cumulative phase noise of DAC- PLL, which is 

expressed as a product of transfer function of reference noise sources and the summation of Noise 

Power Spectral Density for a plurality of noise sources of PLL, has also been analyzed.  

This chapter comprises multiple sections. Thus, section 4.1 provides a description of the chapter 

objectives. Besides, a listing of the various sections of the chapter is also introduced. Section 4.2 

introduces the functional block diagram and key sub-blocks of DAC-PLL. Section 4.3 presents 
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formulation and analysis of composite transfer function of the DAC-PLL. An analytical 

relationship between the phase margin and the damping coefficient of a second-order PLL is 

explored in section 4.4. Section 4.5 discusses an expression for the settling time of a DAC-PLL. 

Section 4.6 provides the analytical relationship between the settling time and Phase Margin of a 

DAC-PLL. Section 4.7 presents an introduction to phase noise and discusses the various noise 

sources in a PLL. Analytical expressions for the Noise Transfer Functions (NTFs) for noise sources 

inside a DAC-PLL are derived in Section 4.8. Section 4.9 relates lock time and Phase margin for 

a second-order PLL. Section 4.10 explores the linkage between the lock time and the phase noise 

of a second-order PLL. Section 4.11 explores the relationship between jitter and phase margin of 

a second order PLL. Section 4.12 derives a new expression for the angle between the two complex 

poles as a closed-form expression of the PLL phase margin. Section 4.13 presents an introduction 

to the phase shift due to the DAC. Section 4.13 includes analog approach to compensate the phase 

shift introduced by the DAC and PLL. Section 4.13 also presents a digital phase shift correction 

scheme and plots results of how it compensates for the phase shift introduced. Section 4.13 looks 

at the effect of the digital phase shift compensation in SFDR and Overshoot. Section 4.14 is the 

conclusion section.  

4.2 Cascade of DAC-PLL  

 

A functional block diagram of DDS-PLL with a second-order PLL is illustrated in Figure 4.1. The 

functional block comprises a cascade arrangement of a DDS, a Zero-Order Hold (ZOH) DAC, and 

a second-order PLL. The PLL segment of the functional block diagram is comprised of a first-

order low-pass loop filter, a linear phase detector, a linear VCO, and a feedback loop frequency 

divider (divide by N). The focus of the chapter is on the sub-systems comprising of only the DAC 

and the PLL.  
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Figure 4.1 Block diagram of DDS-PLL showing DAC and a second-order PLL 

 

The DDS portion (which is on the left-hand side circled section of Figure 4.1) further comprises a 

Phase accumulator block and a Phase-to-Amplitude Conversion (PAC) block, and its output 

(discrete sinusoid) is fed to the input of the Zero- Order Hold (ZOH) DAC. The dotted portion on 

the right-hand side of Figure 4.1 comprises only the DAC and the second-order PLL. The ZOH 

DAC converts the discrete time samples of the DAC input into continuous time signal at the output 

of the DAC. The PLL tracks the output of DAC and multiplies the frequency of the output of DAC 

by N, which is the divider ratio (N) in the PLL feedback path.  

4.3 Transfer function of the DAC-PLL cascade 

 

The cascaded DAC and PLL blocks (Figure 4.1) are characterized by their 𝑠-domain transfer 

functions. The cumulative transfer function is a product of the transfer functions of DAC and PLL. 

The transfer function of a ZOH DAC is given by [Dorf, 2008] and [Cleveland,1976] and is 

represented as 

𝐻𝑍𝑂𝐻 = (
1 − 𝑒−𝑠𝑇

𝑇𝑠
) (4.1) 

In Equation (4.1), 𝐻𝑍𝑂𝐻 is the transfer function of the DAC. The subscript ZOH denotes Zero-

Order Hold. The variable  𝑠 is the Laplace variable ( 𝑠 = 𝜎 + 𝑗𝜔) and  𝑇 is the sampling interval 

of the ZOH DAC. The loop filter in the forward path the PLL has a time constant 𝜏  given by RC, 
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as shown in Figure 4.1. The transfer function of the second-order PLL that has a first-order loop 

filter is given by 

𝐻𝑃𝐿𝐿(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝑁

𝑠2
𝜏𝑁
𝐾 + 𝑠

𝑁
𝐾 + 1

 (4.2) 

In Equation (4.2), 𝐺(𝑠) is the transfer function of the forward path, 𝐻𝑃𝐿𝐿(𝑠) is the transfer function 

of the PLL, and 𝐻(𝑠) is the transfer function of the feedback path. Variable (𝐾 = 𝐾𝑉𝐾𝜙) is the 

product of the VCO sensitivity and the Phase-Frequency Detector (PFD) sensitivity. Variable (𝜏 =

𝑅𝐶) is the time constant of the loop filter and 𝑁 is the feedback divide ratio. Variable 𝐾𝑉 is the 

VCO sensitivity, in turn  𝐾𝜙is the PFD sensitivity. Converting Equation (4.2) to the standard 

format of transfer function for general second-order system, one obtains the transfer function of a 

second order Type I PLL in terms of its the natural frequency and damping coefficient as 

𝐻𝑃𝐿𝐿(𝑠) =
𝑁𝜔𝑛

2

𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛2
 (4.3) 

 

In Equation (4.3), 𝑠 is the Laplace variable, 𝜔𝑛 is the Natural Frequency of second-order PLL and 

 휁  is the Damping Coefficient. In Equations (4.2 and 4.3), the denominator polynomial is of the 

second-order. The Equation (4.3) describes only the PLL as a generic second-order system. 

Together, Equations (4.2 and 4.3) allow the extraction of the natural frequency (𝜔𝑛)and damping 

coefficient (휁) in terms of the time constant (𝜏)  of loop filter and the product of sensitivities of 

VCO and PFD, K. The damping coefficient (휁) and natural frequency (𝜔𝑛) are unambiguously 

defined for second-order systems [Dorf, 2008]. Henceforth, this cascaded block comprising of a 

DAC and PLL is referred to as DAC-PLL. The combined transfer function of the DAC-PLL 

systems is the product of the DAC transfer function and the PLL transfer function and it can be 

expressed as 

𝐻𝐷𝐴𝐶𝑃𝐿𝐿(𝑠) = 𝐻𝑍𝑂𝐻𝐻𝑃𝐿𝐿(𝑠) = (
1 − 𝑒−𝑠𝑇

𝑇𝑠
)

𝑁

(𝑠2
𝜏𝑁
𝐾 + 𝑠

𝑁
𝐾 + 1)

 (4.4) 

In Equation (4.4), 𝐻𝐷𝐴𝐶𝑃𝐿𝐿(𝑠) is the composite transfer function of the system comprised of the 

ZOH DAC and the second-order PLL. 
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4.4 Phase Margin and Damping Coefficient of second-order DAC-PLL  

 

The section deals with the relationship between Phase Margin (PM), damping coefficient and PLL 

parameters. The PM is an important performance criterion for all systems. It is a measure of 

relative stability of a second-order system. PM is defined as the excess phase of the system when 

the forward gain is unity. In a second-order system, such as the PLL of the DAC- PLL with a 

feedback loop, the PM is the value of the phase shift for which the amplitude of the Bode plot 

shows a gain of 0 dB or unity gain. In a PLL, phase margin of a second order system can be 

controlled by controlling the damping coefficient, 휁 [ Dorf, 2008]. The damping coefficient 

determines how fast a second-order PLL can settle down after a unit step function has been applied 

at the input of the PLL. Underdamped systems (휁 < 1) have much faster rise times for step input, 

are oscillatory, exhibit lower PM. Overdamped systems (휁 > 1)  have longer rise time to step 

input, are non-oscillatory featuring a higher PM compared to underdamped systems. Second-order 

PLLs have a damping coefficient which is sufficiently low to guarantee smaller rise time for step 

input as well as smaller lock times.  

A derivation for PM as a function of 휁 is presented in this section. The PM of a second-order 

system is a function of the damping coefficient for a second order system. The expression relating 

these two parameters (PM and Damping coefficient) originally given by [Dorf, 2008] is written as 

𝑃𝑀 = 𝑡𝑎𝑛−1

(

 
2휁

√√4휁4 + 1 − 2휁2)

  (4.5) 

 

Equation (4.5) is a closed-form expression for the PM of the PLL in a DAC-PLL. Commercial 

PLLs are designed with PM of 45o or greater [Curtin, 1999].  

The natural frequency of a second-order system is expressed in terms of VCO sensitivity, PFD 

sensitivity and time constant: 

𝜔𝑛 = √
𝐾𝑉𝐾𝜙
𝜏

= √
𝐾

𝜏
 (4.6) 
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In Equation (4.6), 𝜔𝑛 is the natural frequency of the PLL. In Equation (4.6) 𝐾𝑉 is the Sensitivity 

of the VCO, 𝐾𝜙is the Gain of Phase Frequency detector, and 𝜏 is the loop filter time constant. The 

damping coefficient of the PLL is written as 

휁 =
𝜔𝑛
2𝐾

=
1

2√𝐾𝜏
=

1

2√𝐾𝑉𝐾𝜙𝜏
 (4.7) 

In Equation (4.7), 𝐾𝑉 is the Sensitivity of the VCO, and 𝐾𝜙  is the Gain of the PFD. 𝐾 = 𝐾𝑉𝐾𝜙 is 

the product of the sensitivity of the VCO and the sensitivity of the PFD. Figure 4.2 illustrates the 

variation of the time constant of loop filter with a change in sensitivity of the VCO for a range of 

damping coefficients (0.42 to 0.65). The results of Figure 4.2 allow the determination of a 

maximum time constant of loop filter for a given 𝐾. 

 

 

 

Figure 4.2 Time constant of Loop filter vs. sensitivity of VCO for a given 𝜻  

 

From the results of Figure 4.2, it is seen that with a given (휁), for a range of 𝐾 from 0.5x107 to 

5x107, the value of time-constant (𝜏) reduces to a low value. A smaller time constant might not be 

achievable as it requires too small a value of capacitance in an integrated circuit. In practice, the 

sensitivity of VCO (𝐾𝑉) combined with the sensitivity (𝐾𝜙) of Phase Frequency Detector 

determines the value of 𝐾. In an implementation of DAC-PLL where the sensitivity of VCO (𝐾𝑉) 

is low, results of Figure 4.2 requires a greater value of the capacitance ( 𝐶 ) of loop filter, which 

might not be realizable in an integrated circuit which limits loop filter capacitance to few nFs.  
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In Equations (4.8 and 4.9) a new relationship between the damping coefficient and the phase 

margin is derived. A contribution of this section is an explicit expression to compute the damping 

coefficient as a function of the PM. Taking tangent of the PM (𝜙) in Equation (4.5), one can write 

an expression for PM as 

tan (𝜙) =

(

 
2휁

√√4휁4 + 1 − 2휁2)

  (4.8) 

After inverting and squaring both sides of Equation (4.8) and rearranging the terms a new 

expression for the damping coefficient in terms of PM, is obtained as 

휁4 =
1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

 
(4.9) 

Equation (4.9) is not represented in open literature. The damping coefficient (휁) is positive, so 

there is no ambiguity whether positive or negative root should be chosen. The slope of damping 

coefficient with respect to PM for a second-order system is written as  

4휁3
𝑑휁

𝑑𝜙
=

𝑑

𝑑𝜙

{
 
 

 
 

1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)
}
 
 

 
 

=
64𝑐𝑜𝑡𝜙 (𝑐𝑜𝑡2𝜙 +

1
2) 𝑐𝑜𝑠𝑒𝑐

2𝜙

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

2  (4.10) 

 

Equation (4.10) provides a closed-form expression for the derivative of the damping coefficient 

with respect to the phase margin. It is useful for designers who can use it in optimization 

procedures. The slope is written as 

𝑑휁

𝑑𝜙
=  

1

4휁3
∗
64𝑐𝑜𝑡𝜙 (𝑐𝑜𝑡2𝜙 +

1
2) 𝑐𝑜𝑠𝑒𝑐

2𝜙

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

2  
(4.11) 

Equation (4.11) can be used to optimize damping coefficient. Equation (4.11) provides the 

derivative of the damping coefficient with respect to the PM of a second-order PLL. Equation 

(4.11) is not found in the open literature.  
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4.5 Settling Time of a DAC-PLL  

 

The settling time is the time taken by the composite DAC-PLL to settle to 5% of the final value of 

phase response with unit step input to the DAC [Dorf, 2008]. The faster the settling time is, the 

more rapid the response of the DAC-PLL is when it comes to settling down after the application 

of a phase step. A lower settling time for a PLL is desirable if stability is not compromised (low). 

In this section, it is assumed that the settling time of a cascade of DAC PLL is a sum of the delay 

of the DAC and the settling time of the PLL.  By following [Dorf, 2008], the settling time of a 

cascade of DAC-PLL is written as a summation of the setting time of the PLL and the sampling 

interval of DAC:  

𝑇𝑠𝐷𝐴𝐶𝑃𝐿𝐿 = 𝑇𝑠 + 𝑇𝑑    (4.12) 

 

In Equation (4.12), 𝑇𝑠𝐷𝐴𝐶𝑃𝐿𝐿is the settling time of DAC-PLL,  𝑇𝑠 is the Settling Time of PLL with 

respect to a unit step input, and 𝑇𝑑 is the sampling interval of the DAC. An expression for the 

settling time (𝑇𝑠) for a second-order PLL derived by [Dorf, 2008] is represented as 

𝑇𝑠 =
4

휁𝜔𝑛
   (4.13) 

Substituting the values of damping coefficient( 휁 ) and natural frequency (𝜔𝑛) and simplifying, 

them, one can write the settling time of the DAC+PLL cascade in the following way: 

𝑇𝑠𝐷𝐴𝐶𝑃𝐿𝐿 = 8𝜏 + 𝑇𝑑 (4.14) 

In Equation (4.14), 𝜏 is a time constant of loop filter of PLL. Equation (4.14) is a new expression 

not found in the open literature. In case of a high sampling rate DAC,  𝑇𝑑 ≪  𝜏 , and, therefore, 

Equation (4.14) can be approximated as 

𝑇𝑠𝐷𝐴𝐶𝑃𝐿𝐿 ≈ 8𝜏 = 8𝑅𝐶 (4.15) 

  

4.6 Relationship between Settling time and Phase Margin 

 

This section deals with a formulation to relate the setting time and the PM. From Equation (4.13), 

after substituting the time constant of loop filter as a function of settling time, the relationship 

between the damping coefficient and settling time can be rewritten after squaring:  
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  휁4 =
4

𝐾2𝑇𝑠
2 (4.16) 

Substituting the Equations (4.16) and (4.13) in Equation (4.8), one obtains a relationship between 

setting time and PM as  

tan(𝜙) =
2휁

√√4휁4 + 1− 2휁2

= 2(
2

√2𝐾𝑇𝑠
)

(

 
 
 
 
 

1

√   √4 (
4

𝐾2𝑇𝑠
2) + 1 −

4
𝐾𝑇𝑠

)

 
 
 
 
 

 (4.17) 

 

Equation (4.17) directly relates the PM with the settling time (𝑇𝑠), sensitivity of VCO, 𝐾𝑉, and 

sensitivity of the phase detector, 𝐾𝜙. Figure 4.3 illustrates the variation of the settling time versus 

𝐾𝑉 for various fixed values of the PM. The relationship between the PM and the settling time for 

a DAC PLL is not expressed in the open literature.  

 

 

Figure 4.3 Settling Time vs. VCO Sensitivity for a range of Phase margins 

 

For a given PM(𝜙), one can determine the settling time with 𝐾 being a variable parameter. Figure 

4.3 illustrates variation of 𝑇𝑠 with 𝐾𝑉 for a range of PM. In a practical PLL, there will be a variation 

in the fabricated capacitance. This leads to a secondary analysis of the effect of a variation of 

capacitance on the PM, 𝜙 of any designed and fabricated PLL. In practical analog CMOS 

processes [Chiu, 2014] at least a 10% variation will occur in the value of the loop filter capacitance. 
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In accordance with Equation (4.15), this leads to a variation of around 10% in the settling time 

(Δ𝑇𝑠 ≈ 8𝑅Δ𝐶). This is because if 𝑅𝐶 is the filter time constant the capacitance is slightly 

perturbed, the perturbation of the time constant can be expressed as, Δ𝜏 = 8𝑅Δ𝐶. 

 

 

Figure 4.4 Variation of the PM with   perturbation of Settling Time 

 

Figure 4.4 shows the effect of perturbations of settling time on the PM of a DAC-PLL. A range of 

perturbations in settling time (from -20% to +20% in steps of 5%) is applied to the PLL. It is 

noticed that a 20% perturbation in the settling time (correspondingly capacitance of loop filter) 

leads to a 6.5o variation in PM when PM=35o. At a PM of 750, a 20% perturbation in settling time 

results 5.47o variation in PM. This leads to the conclusion that the relative stability of DAC- PLL 

is most vulnerable to variations in settling time when the PLL is operating at a lower PM. 

4.7 Phase Noise of the DAC-PLL 

 

The two important reasons for the imposition of limits of phase noise on oscillators used in 

communication are due to its influence on BER performance and adjacent channel interference. 

Higher levels of phase noise degrade the BER performance of a digital communication system. It 

is observed that doubling of phase noise can degrade BER from 0.5x10-7 to 10-5 for BPSK 

modulated communication systems at SNR of 13dB [Tomba, 2008]. [He, 2007] has discussed the 

effect of phase noise on adjacent channels. Low phase noise oscillators (PLL or DDS) avoid the 

long tail from adjacent channels from very closely spaced channels by avoiding reciprocal mixing. 

Reciprocal mixing is defined as a condition under which the desired signal cannot be recovered 
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due to an interferer located close to a desired RF signal (in frequency domain). This is due to the 

mixing of the sideband of a PLL oscillator with the interferer. Reciprocal mixing poses a challenge 

when the adjacent channels in a communication system are closely space. Low phase noise PLLs 

can minimize reciprocal mixing. For low noise oscillators the frequency spectrum of output 

exhibits a very sharp drop-off from the center frequency.  

The principal objective of this section is to improve the mathematical model for the phase noise 

of DAC-PLL considering multiple noise sources such as reference Noise, VCO noise, Loop Filter 

noise as well as Divider noise. Analytical derivations of the transfer functions of the noise sources 

and pertinent details of computation of Power Spectral Density (PSD) of various sources of noise 

have been covered by [ Drucker, 2000] and [Amornthipparat, 2008]. [Drucker, 2000] has discussed 

models of multiple noise sources without providing a methodology to compute a composite PSD 

(Phase Noise) at the output of a PLL. Since [Drucker, 2000] addresses the analysis of the noise 

sources at secondary input points of the PLL and since the secondary input points of each of the 

noise sources vary, an expression for composite phase noise of PLL was not feasible. 

Consequently, all its expressions of phase noise of individual sources cannot be aggregated to 

arrive at a composite phase noise of the PLL. Further [Drucker, 2000] and [He,2007] did not relate 

the influence of performance metrics of DAC-PLL such as PM, settling time and damping 

coefficient, with the phase noise of the DAC- PLL. 

[He, 2007] has provided an analysis of PM of third- and fourth-order PLL and the variance of lock 

time with the PM. [Savic, 2007] considers the variation of PM with bandwidth of loop filter in a 

third-order PLL but analytical expressions for NTFs of noise sources are not derived. [Daniels, 

2008] deals with stability issues of higher order PLLs but the relationship between phase noise and 

the referred performance metrics of PLL are not explored. An analysis to derive an expression for 

cumulative phase noise of DAC-PLL has been considered in this thesis. In addition, several new 

variants of the relation between the phase noise and the referred performance metrics have been 

derived to compute the individual phase noise of the sources of noise and the cumulative phase 

noise of DAC- PLL as well. Such explicit relational expressions of DAC- PLL appear to have not 

been addressed in the open literature. As discussed in chapter 2, higher levels of phase noise at 

DAC-PLL output makes it difficult to detect desired signals of low amplitude. Therefore, lowering 

the level of phase noise is a goal in DDS-PLL design. There are, in general, two types of phase 

noise models – single-side band Noise or ℒ(𝑓𝑚)and double side band noise of 𝑆(𝑓𝑚). Of these the 
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two noise models, this chapter adopts the double side band noise model of [Drucker, 2000]. 

[Drucker, 2000] subdivides the phase noise spectrum into regions with dominant physics (Figure 

B.1 in Appendix B of this thesis). The DAC-PLL designer is more interested in the regions of 

offset frequencies, which are influenced by flicker FM, white FM and flicker phase, as the 

frequency offset is more comparable to channel spacing in RF communication.  Phase noise is 

treated as a distribution function, and hence, is more amenable to be expressed via PSD (dBc/Hz) 

of noise sources. 

 

Modeling and Analysis of the various noise sources in a PLL 

 

The representation of phase noise of a PLL has taken two known approaches in the existing 

literature. For the sake of clarity and unambiguity of the discussions to follow on phase noise, it is 

preferable to identify these two approaches and distinguish between the two different phase noise 

representations in terms of their dimensional properties and units. Table 4.1 depicts a comparison 

of the two approaches- Single Side Band Phase Noise (SSBPN) and Double Side Band Phase 

Noise (DSBPN) to measure level of phase noise in an oscillator. 

 

Table 4.1 Single Side Band Phase Noise (SSBPN)/Double Side band Phase Noise (DSBPN) 

SSBPN/DSBPN    Expression Explanation of Noise expression  

 Single Side 

Band Phase 

Noise (SSBPN) 

(unit dBc/Hz.) 

 

ℒ(𝑓𝑚) =
𝑃(𝑓𝑐+𝑓𝑐𝑚,1𝐻𝑧)

𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟
    (4.18) 

It is a ratio of the power contained within a 

BW of 1 Hz at an offset of 𝑓𝑐𝑚 (𝑃(𝑓𝑐 +

𝑓𝑐𝑚, 1𝐻𝑧) divided by the carrier power 

(𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟) at the center frequency[Cerda, 

2006] 

 Double Side 

Band Phase 

Noise (DSBPN) 

(unit 

rad2/Hz) 

𝑆𝜙(𝑓𝑚) = 2ℒ(𝑓𝑚)  

                                       (4.19) 

Demodulation of the output waveform of a 

noise source using an ideal demodulator and 

filter is performed.  Demodulator output is 

in baseband with a filter which has a 

resolution 1 Hz [Drucker, 2000]. 
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The SSBPN approach uses an ideal spectrum analyzer with a 1 Hz resolution- the bandwidth to 

measure the normalized noise power within a 1 Hz BW at an offset frequency of 𝑓𝑚. The definition 

of SSBPN can be written as follows [Cerda, 2006] (Equation 4.18). In Equation (4.18), 𝑓𝑚 is the 

offset frequency from the center frequency of the PLL. The variable 𝑓𝑐 is the Centre frequency of 

the PLL. 𝑃(𝑓𝑐 + 𝑓𝑚, 1𝐻𝑧) is the Power in a 1Hz bandwidth at a frequency of 𝑓𝑐 + 𝑓𝑐𝑚 and   𝑃𝑐𝑎𝑟𝑟𝑖𝑒𝑟 

is the level of Carrier Power. The unit of Phase Noise  ℒ(𝑓𝑚)is dBc/Hz (the symbol is referred to 

a ℒ (script L)).  

The second (Double-Side Band Phase Noise (DSBPN)) representation of the phase noise involves 

the demodulation of the output waveform of a noise source using an ideal demodulator and filter. 

Its output is now in the baseband with a filter, which has a 1 Hz resolution [Drucker 2000]. The 

DSBPN representation is followed in the analysis to follow.  

There are multiple sources of noise within the PLL, namely the VCO, the low-pass filter, the PFD, 

and the feedback divider. The additive noise model for the PSD of a noise source is given in terms 

of the offset frequency (or its inverse) and a set of coefficients. The additive phase noise model 

followed by [Drucker, 2000] is empirical. The coefficients 𝑘𝑖,𝑗 in the model (Equations 4.18-4.21) 

are based on the measurements performed by the PLL manufacturer. Typical values of these 

coefficients have been given by [Drucker, 2000]. Table 4.2 depicts the representation of the four 

sources of noise considered for the analysis with 𝑓 being the offset frequency. 

 

Table 4.2 Noise models of various sources in PLL 

Source of Noise Expression for Power Spectral Density (rad2/Hz) 

VCO 𝑆𝑉𝐶𝑂(𝑓) = (𝑘0,𝑉 +
𝑘2,𝑉

𝑓2
+

𝑘3,𝑉

𝑓3
)                                                         (4.20) 

Reference 𝑆𝑅𝐸𝐹(𝑓) = (𝑘0,𝑅𝐸𝐹 +
𝑘1,𝑅𝐸𝐹

𝑓
+

𝑘2,𝑅𝐸𝐹

𝑓2
+

𝑘3,𝑅𝐸𝐹

𝑓3
)                                 (4.21) 

Divider 𝑆𝐷𝐼𝑉𝐼𝐷𝐸𝑅(𝑓) = (𝑘0,𝑀𝐷 +
𝑘1,𝑀𝐷

𝑓
)                                                                                    (4.22) 

Filter 𝑆𝐹𝐼𝐿𝑇(𝑓) = (𝑘0,𝐹𝐼𝐿𝑇 +
𝑘1,𝐹𝐼𝐿𝑇

𝑓
)                                                                          (4.23) 

 

In Table 4.2, the symbols 𝑆𝑉𝐶𝑂(𝑓), 𝑆𝐷𝐼𝑉𝐼𝐷𝐸𝑅(𝑓),   𝑆𝑅𝐸𝐹(𝑓), 𝑆𝐹𝐼𝐿𝑇(𝑓) are the sources of phase noise 

generated by the VCO, divider, reference, and filter, respectively. For the notation of 𝑘𝑖,𝑗 parameters, 

the first index (𝑖) denotes the inverse power of the offset frequency (𝑓) and the second index(𝑗) 
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refers to the type of noise source. The coefficients 𝑘𝑖,𝑗  are curve-fitted coefficients and 𝑆 is the 

PSD of a noise source. Table 4.3 shows typical values of the 𝑘𝑖,𝑗  parameters corresponding to the 

phase noise models in Table 4.2 for a PLL described by [Drucker, 2000]. 

 

Table 4.3 Values of the 𝑘𝑖,𝑗  coefficients for the four noise sources in DAC-PLL 

Noise source 𝐾 parameters 

VCO 𝑘0,𝑉𝐶𝑂 =10-15.5; 𝑘2,𝑉𝐶𝑂 =10-3; 𝑘3,𝑉𝐶𝑂 =100.7 

Reference 𝑘0,𝑟𝑒𝑓 =10-15.8; 𝑘1,𝑟𝑒𝑓 = 10-12.7; 𝑘2,𝑟𝑒𝑓 =10-9.86; 𝑘3,𝑟𝑒𝑓 =10-7.82 

Divider 𝑘0,𝑑𝑖𝑣𝑖𝑑𝑒𝑟 = 10-15.5; 𝑘1,𝑑𝑖𝑣𝑖𝑑𝑒𝑟 = 10-12.5 

Filter 𝑘0,𝑓𝑖𝑙𝑡𝑒𝑟   = 10-15.38; 𝑘1,𝑓𝑖𝑙𝑡𝑒𝑟 = 10-16.02; 

 

The Equations (4.18 to 4.21) along with the pertinent 𝑘𝑖,𝑗  parameters of Table 4.3 are used to 

generate the results pertaining to the variation of the phase noise or PSD as a function of the offset 

frequency. Figure 4.6 illustrate the variation of PSD of various sources of noise in a PLL following 

[Drucker, 2000]. 

 

 

Figure 4.5 Phase Noise of noise sources in PLL versus frequency offset  

 

The X axis in Figure 4.5 is the offset frequency from the center frequency and the Y axis is the 

phase noise computed with the coefficient values from Table 4.3. The phase noise of the VCO is 
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much higher (-101dB/Hz) than the phase noise of both the reference and the divider (-154dB/Hz) 

at an offset frequency of 5 kHz. Figure 4.5 reflects the phase noise at the output of the PLL for all 

four sources of noise when considered separately. NTF relates the PSD of a specific noise source 

to the noise observed at the output of the PLL. If a source has low phase noise, its phase noise 

contribution will be significant at an output of the PLL if the absolute magnitude of its NTF is 

high. Expressions for NTF are derived in Section 4.8. 

4.8 Transfer Functions of the Noise Sources of DAC- PLL 

 

 

 

Figure 4.6 Phase noise model with Phase Noise Sources within the DAC-PLL 

 

Figure 4.6 illustrates the multiple noise sources inside a PLL as captured in a frequency domain 

noise model. A simple phase noise model comprising of several noise sources is appropriate for 

second- and higher- order PLLs as in [Drucker 2000] with the additional DAC. Each noise source 

is modeled using an additive model with multiple terms, each term having a fixed coefficient 

multiplied by an inverse power of the frequency offset from a central frequency. The additive noise 

model of [Drucker, 2000] and [Amornthippart, 2008] captures the cumulative PSD (phase noise) 

at the output of the PLL as a summation of the contributions of individual noise sources weighted 

with quadratic weights. Each weight being the magnitude of the respective transfer function from 

a specific noise source to the output of the PLL. None of the above cited research has dealt the 

explicit expression for NTF of various sources of noise in DAC- PLL. [Herzel, 2010] has analyzed 
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and derived the Equations for NTFs of VCO, reference source, Loop filter and divider. [Herzel, 

2010] places the divider noise source between the VCO output and the divider block. 

The phase noise model in Figure 4.6 incorporates five noise sources. VCO noise source is placed 

after the VCO in the PLL model. Divider noise source is placed after the divider. A reference noise 

source representing the noise contribution of the reference source driving the PLL. The reference 

noise source can also account for the DAC noise. Two additional noise sources are incorporated - 

one for the PFD and one for the loop filter.  

4.8.1 NTF of a Noise Source (Oscillator) 

A schematic for the computation of NTF of noise source in a DAC- PLL is depicted in Figure 4.7. 

𝑺𝑹𝑬𝑭(𝒔) in Figure 4.7 represents the PSD or phase noise of the reference source (a source outside 

the PLL itself) with 𝒔 denoting the Laplacian variable. 

 

 

Figure 4.7 Model for calculating NTF of Reference Source in DAC- PLL 

 

The NTF of reference source is the same as the standard closed-loop transfer function of the PLL.  

Substituting the transfer functions of forward and feedback paths one obtains the NTF of the 

reference source ,𝑊(𝑠) and it is written as 

𝑊(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝐾𝜙
𝐾𝑣
𝑠

1
(1 + 𝜏𝑠)

1 + 𝐾𝜙
𝐾𝑣
𝑁𝑠

1
(1 + 𝜏𝑠)

=
𝐾

𝜏(𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛2)
 (4.24) 

Equation (4.24) represents the NTF of the reference source which is the same as the transfer 

function of the PLL. In Equation (4.24), 𝜔𝑛 is the natural frequency (defined in Equation 4.6) and 
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휁 is the damping coefficient (defined in Equation 4.7).  

4.8.2 NTF of VCO 

  

A model for the determination of NTF of VCO in DAC-PLL is illustrated in Figure 4.8.  

 

Figure 4.8    Noise Model for the computation of NTF of VCO in DAC-PLL 

 

The PSD of VCO is denoted by 𝑆𝑉𝐶𝑂(𝑠) in Figure 4.8. One assumes this PSD, (𝑆𝑉𝐶𝑂(𝑠)) as an 

input to the system and computes the response at the DAC-PLL output (𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝑉𝐶𝑂(𝑠)).  A 

closed-form expression for the NTF of VCO noise source is obtained as 

𝑄(𝑠) =
𝑌𝐷𝐴𝐶𝑃𝐿𝐿𝑉𝐶𝑂

(𝑠) 

𝑆𝑉𝐶𝑂(𝑠)
=

𝑠(1 + 𝑠𝜏)

𝜏(𝑠2 + 𝑠
1
𝜏 +

𝐾
𝑁𝜏)

=
𝑊(𝑠)𝑠(1 + 𝜏𝑠)

𝐾
 (4.25) 

 

Equation (4.25) relates the NTF (𝑄(𝑠)) of VCO with NTF (𝑊(𝑠)) of the reference source.  

4.8.3 NTF of Loop Filter 

An analytical model for NTF of Loop Filter in DAC-PLL is shown in Figure 4.9. Figure 4.9 

represents the PLL with only the Loop filter noise source present with the primary input grounded. 

It can be used to compute the NTF of loop filter noise source in DAC- PLL. 
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Figure 4.9 Model for NTF of Loop Filter in DAC-PLL 

 

In Figure 4.9, the assumed PSD of Loop Filter is marked as 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠). One assumes this as the 

primary input phase noise to the system and computes the response at the output of the DAC-PLL 

(𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠)). The NTF of Loop Filter (Ψ(𝑠)), is derived as 

Ψ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠)

𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)
=

𝐾

𝐾𝜙𝜏

1

(𝑠2 +
1
𝜏 𝑠 +

𝐾
𝑛𝜏)

=
𝑊(𝑠)

𝐾𝜙
 (4.26) 

Equation (4.26) expresses the NTF of the Loop filter in terms of the NTF of the reference source. 

The detailed derivation is in Appendix B.  

4.8.4 NTF of the Divider 

 

The NTF of noise source of the divider in a DAC-PLL can be determined through the model 

illustrated in Figure 4.10. In Figure 4.10, the PLL is represented with only the divider noise source 

present and the primary input grounded. 
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Figure 4.10 Model for NTF due to Divider Noise Source in DAC- PLL 

 

In the noise source of the divider (Figure 4.10), the assumed PSD is marked as 𝑆𝑀𝐷(𝑠). One 

assumes this to be the primary input to the system and computes the response at the DAC-PLL 

output (𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)). By further simplification, the NTF for the noise source of divider, (Φ(𝑠)) 

can be written as 

Φ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)

𝑆𝑀𝐷(𝑠)
= −

𝐾

𝜏

1

(𝑠2 +
1
𝜏 𝑠 +

𝐾
𝑛𝜏)

= −𝑊(𝑠) (4.27) 

 

The square of the magnitude of NTF of the divider (Φ2(𝑠))is the same as that of an NTF of the 

reference source (𝑊2(𝑠)). Equation (4.27) allows the simplification of the cumulative PSD at the 

DAC-PLL output in Equation (4.41). The detailed derivation is in Appendix B.  

 

4.8.5 The Weiner-Khintchine Theorem 

 

The Weiner-Khintchine theorem [Herzel and Piz, 2005] determines the PSD at the output in terms 

of the PSD at the input of a given system as defined in Equation (4.28).   

𝑆𝑧𝑧(𝑗𝜔) = |Γ(𝑗𝜔|2𝑆𝑥𝑥(𝑗𝜔) (4.28) 

In Equation (4.28), the multiplier |Γ(𝑗𝜔|2  is the square of the magnitude of the transfer function 

of a noise source. 𝑆𝑥𝑥(𝑗𝜔) is the PSD of Phase noise at system input and  𝑆𝑧𝑧(𝑗𝜔) is the PSD of 

phase noise at system output. The multiplier can be written as 

Γ(𝑗𝜔) =
𝐺(𝑗𝜔)

1 + 𝐺(𝑗𝜔)𝐻(𝑗𝜔)
 (4.29) 
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In Equation (4.29),  Γ(𝑗𝜔)   is the Noise transfer function. 𝐺(𝑗𝜔) is the transfer function of the 

forward path. 𝐻(𝑗𝜔)  is the transfer Function of the feedback path. The Weiner-Khintchine 

theorem is relevant for the DAC- PLL since it provides the relationship between the PSD at the 

output of DAC- PLL and the PSD of a given noise source assumed as the input.   

In the subsections 4.8.1 to 4.8.4, the NTFs of the four types of noise sources of a DAC- PLL have 

been discussed. The NTF of reference source, 𝑊(𝑠) is expressed through Equation (4.24). 

Equation (4.25) determines the 𝑄(𝑠), the NTF of VCO. Ψ(𝑠), the NTF of Loop filter is derived in 

Equation (4.26). The NTF of the divider, Φ(𝑠) is expressed by Equation (4.27).  

In accordance with Wiener-Khintchine theorem (Equation 4.28), the composite PSD of the DAC-

PLL is given by the sum of the PSDs of individual noise sources. While deriving the PSD of an 

individual noise source, rest of all other noise sources must be set to zero. This is in accordance 

with the application of the principle of superposition.  

The combined phase noise is the sum of the contributions from all four sources is written as 

 

𝑆𝐶𝑈𝑀𝑈
𝑂𝑈𝑇 (𝑠) = 𝑆𝑅𝐸𝐹(𝑠)|𝑊(𝑠)|2+𝑆𝑉𝐶𝑂(𝑠)|𝑄(𝑠)|

2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)|Ψ(𝑠)|
2+𝑆𝑀𝐷(𝑠)|Φ(𝑠)|

2 (4.30) 

 

In Equation (4.30), 𝑆𝑂𝑈𝑇
𝐶𝑀𝑈 is the cumulative PSD at DAC-PLL output, 𝑆𝑅𝐸𝐹

𝑂𝑈𝑇(𝑠) is the PSD at output 

of PLL due to the reference source alone. Transfer function W(s) is the NTF of the reference noise 

source, 𝑆𝑀𝐷
𝑂𝑈𝑇(𝑠) is the PSD at PLL output due to the divider alone,  Φ(s) is the NTF of the Divider 

noise source, 𝑆𝑉𝐶𝑂
𝑂𝑈𝑇(𝑠)is the PSD at PLL output due to the VCO alone, Q(s)is the NTF of  the VCO,  

𝑆𝐹𝐼𝐿𝑇𝐸𝑅
𝑂𝑈𝑇 (𝑠)is the PSD at PLL output due to the loop filter alone, and Ψ(s) is the NTF of the loop 

filter. 

In a phase noise analysis of DAC-PLL, it must be assumed that the noise sources are uncorrelated 

to derive Equation (4.30). The RHS in Equation (4.30) is the summation of the output PSDs from 

Equations (4.24 to 4.27). The units of both sides of Equations (4.30) are rad2/Hz or dBrad2/Hz. 

PSD of each noise source is weighted by the square of the respective NTF for that specific noise 

source. Substituting the value of NTF of each noise source in terms of NTF 𝑊(𝑠) of reference 

source, the expression for composite PSD in Equation (4.30) gets further simplified. This step 

paves the way for subsequent application of optimization schemes for phase noise. The composite 

phase noise expression in Equation (4.30) can be written with the NTFs being expressed in terms 

of the 𝑊(𝑠), which is the NTF for the reference source as well as the transfer function of PLL. 
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The values of NTFs 𝑄(𝑠) ,Ψ(s), Φ(s) are substituted in Equation (4.30) utilizing Equations (4.26-

4.27) to yield Equation (4.31) in terms of 𝑊(𝑠) as 

𝑆𝐶𝑈𝑀𝑈
𝑂𝑈𝑇 (𝑠) = 𝑊2(𝑠)(𝑆𝑅𝐸𝐹 + 𝑆𝑀𝐷 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅 (

1

𝐾𝑝
)
2

+ 𝑆𝑉𝐶𝑂 (
𝑠(1 + 𝜏𝑠)

𝐾
)
2

) (4.31) 

 

Equation (4.31) allows further simplification by substitution of the values of 𝐾𝜙 and 𝐾 these 

simplifications can be performed to optimize phase noise. The zero in the numerator of the fourth 

term of Equation (4.31) occurs at tens of GHz which is far greater than the frequency of interest. 

The factor 𝐾 in the denominator of VCO noise term (Equation 4.31) has significant impact on 

phase noise as it reduces the 𝑄(𝑠) (magnitude of Transfer function of VCO) significantly. 

Commercial PLLs have typical 𝐾𝑉 values ranging between 10 MHz/volt to 200 MHz/volt, 

[Banerjee, 2006].  The expression for phase noise (in Equation 4.31) contains the factor of  1/𝐾𝜙
2 

for the term corresponding to the loop filter and hence the contribution of the loop filter to the 

phase noise at the output of PLL can be mitigated by using a higher sensitivity of PFD. Equation 

(4.31) predicts that the phase noise of VCO propagated to the output of PLL can be regulated by 

the control of 𝐾. Different versions of Equation (4.31) must be developed for the design of various 

classes of PLL. Equation (4.31) is useful for problems addressing optimization of phase noise. 

 

4.8.6 Comparison of Derived NTF with the NTF expression of [Herzel, 2010] 

 

The NTFs of VCO, reference, Loop filter and divider have been analyzed in [Herzel, 2010]. The 

analysis and derivation of NTFs of various noise sources in a DAC- PLL were carried out with a 

defined goal of conforming the expressions of NTF to be amenable for optimization of phase noise. 

Further, from analysis perspective to gain additional insight into the overall noise performance of 

a DAC- PLL, it is preferable and desirable to have these expressions in a form that may involve 

normalization. An attempt has been made and it has been proved to be successful in normalizing 

the NTFs of the sources of noise considered in this section with respect to the NTF of reference 

noise source. In the sections to follow, the NTF expressions derived in normalized form are utilized 

which leads to a compact closed-form expression for phase noise. An exercise of expressing the 

NTFs of noise sources of a DAC- PLL normalized with respect to NTF of any of the noise sources 

appears to have not been attempted earlier. [Herzel, 2010] has also derived the NTFs for a 
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fractional N PLL. [Herzel,2010] places the divider noise source after the feedback element leading 

to different NTFs in contrast in this chapter the divider noise source is placed before the feedback 

element.  

4.8.7 Relationship between Phase Noise, Phase Margin & Damping Coefficient 

 

 

In this section the relationship between PM, settling time and phase noise using a two-part 

procedure.  In the first part 𝐾𝜙, the sensitivity of phase detector is substituted in the cumulative 

phase noise as a function of the following independent variables - divider ratio (N), damping 

coefficient 휁, time constant (𝜏) of the loop filter, and the sensitivity (𝐾𝑉)  of  the VCO. For this one 

must start with the definition of the damping coefficient including the additional factor of divider 

ratio (N). The damping coefficient is defined in terms of𝐾, time constant (𝜏) of loop filter and 

divide ratio (N) as in Equation (4.32). Taking fourth powers of Equation (4.16), one obtains: 

1

𝐾2
=
4휁4𝜏2

𝑁2
 (4.32) 

 

Substituting the values of  𝐾 and  𝐾𝜙 into the expression of NTF (Equation 4.31), one obtains an 

expression for the total phase noise as 

𝑇1 + 𝑇2 = 𝑆𝐶𝑈𝑀𝑈
𝑂𝑈𝑇 (𝑠) = 𝑊2(𝑠)(𝑆𝑅𝐸𝐹 + 𝑆𝑀𝐷) +𝑊2(𝑠)(𝑆𝐹𝐼𝐿𝑇𝐸𝑅 (

1

𝐾∅
)

2

+ 𝑆𝑉𝐶𝑂 (
𝑠(1 + 𝜏𝑠)

𝐾
)

2

) 

 

(4.33) 

In Equation (4.33), 𝑇1 is the Phase noise of Reference noise source and divider noise source and 

𝑇2 is the Phase noise of VCO noise source and loop filter noise source in Figure 4.6.  𝑇1 is the 

sum of the PSDs of the reference source and divider times the square of the magnitude of TF 𝑊(𝑠) 

at a specific offset frequency. Simplification is possible for the term 𝑇2 of Equation (4.34), which 

involves the sources of noise in VCO and loop filter. 

𝑇2 = (𝑊(𝑠))2 {𝑆𝑉𝐶𝑂
4휁4𝜏2

𝑁2
(𝑠(1 + 𝜏𝑠))

2
+ 𝑆𝐹𝐼𝐿𝑇𝐸𝑅 (

4휁4𝜏2𝐾𝑣
2

𝑁2
)} (4.34) 
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Since the PSD of VCO is most predominant, the optimization approach must address the phase 

noise contribution at the output due to the VCO and loop filter (term 𝑇2 ). The expression for 𝑇2 

in Equation (4.34) is further simplified by the substitution of value of the time constant (𝜏) of loop 

filter and the damping coefficient 휁 in terms of phase margin. The final expression for phase noise 

including the effects of the noise sources of VCO and loop filter.  

𝑇2 = (𝑊(𝑠))2 (
4휁4𝜏2

𝑁2
) {𝑆𝑉𝐶𝑂(𝑠(1 + 𝜏𝑠))2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝐾𝑉

2)} (4.35) 

Substituting the value of time constant (𝜏) of loop filter in terms of PLL settling time 𝑇𝑠     

𝑇2 = (𝑊(𝑠))2 (
휁4𝑇𝑠2

16𝑁2
) {𝑆𝑉𝐶𝑂(𝑠(1 + 𝜏𝑠))2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝐾𝑉

2)} (4.36) 

Substituting the value of damping coefficient in terms of PM, 

𝑇2 = (𝑊(𝑠))2 (
𝑇𝑠2

16𝑁2
)

(

 
 1

(16 (𝑐𝑜𝑡𝜙 +
1
2)

2

− 4)
)

 
 
{𝑆𝑉𝐶𝑂(𝑠(1 + 𝜏𝑠))2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝐾𝑉

2)} (4.37) 

Equations (4.33-4.37) are part of new derivations and have not been discussed in open literature. 

For design and optimization of design of DAC- PLL, it is always desirable to have a set of closed-

form expression which allow usage of variational methods to optimize. 

4.9 Differential analysis of Lock time versus PM for second-order PLLs 

 

Lock time of a PLL is defined as the time required in achieving an output frequency, which is 

within a small but specified range of a desired output frequency when a frequency step of a 

bounded size is applied to the PLL. A small lock time is necessary for communication systems 

such as UMTS (less than 200usec) to less than 100usec for WIMAX 802.16e. Lock time is an 

inverse function of loop bandwidth for PLL of any order. Lower lock times can lead to additional 

phase noise and jitter variance at the output of PLL.  

A closed-form expression relating lock time and damping coefficient of a second-order Type II 

PLLs has been derived. Locking is achieved in a PLL, when the output frequency of PLL 

approaches a desired and specified frequency after the application of a frequency step. During 
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locking an absolute frequency difference between the frequency of output of the PLL and the target 

frequency must be specified.  

The frequency step applied to the PLL must be within the lock range of the PLL. The lock range 

is defined as the maximum frequency range within which the PLL can track its input frequency. 

Lock time has been defined by [Banerjee, 2006] as 

𝑇𝑙𝑜𝑐𝑘 =

−𝑙𝑛 (
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)

휁𝜔𝑛
 

(4.38) 

 

In Equation (4.38), 𝑇𝑙𝑜𝑐𝑘 is lock time of a second-order Type I PLL, time (in seconds) required for 

PLL to reach an output value which differs from the final target frequency by a deviation (specified 

in Equation (4.38) by the variable  𝑡𝑜𝑙) or less. In Equation (4.38), variable 휁 is the damping 

coefficient of the second-order PLL, 𝜔𝑛 is the natural frequency of the second-order PLL in radians 

/second, (𝑓2 − 𝑓1) is the size of frequency input step to the PLL (Hz), and 𝑡𝑜𝑙 is the final tolerance 

of frequency (Hz). The final tolerance is defined as the deviation of the PLL frequency to the final 

target frequency. 𝑅2𝐶2 is the time constant of the loop filter (in seconds). 

If the time constant of the loop filter is small  𝑇2 = 𝑅2𝐶2 ≪ 1(an approximation that is reasonable 

in practical PLLs), the expression for lock time can be further simplified as, 

𝑇𝑙𝑜𝑐𝑘 =
−𝑙𝑛 (

𝑡𝑜𝑙
(𝑓2 − 𝑓1)

√1 − 휁2)

휁𝜔𝑛
    (4.39) 

 

Equation (4.39) is valid only if  𝑇2 =  𝑅2𝐶2 is very small, that is for low time constants. An 

expression for the derivative of lock time with respect to the damping coefficient can be obtained 

by taking derivatives of both sides of Equation (4.39). 

𝜕𝑇𝑙𝑜𝑐𝑘
ð휁

= 𝑙𝑛 (
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2) (

1

휁2𝜔𝑛

) −
1

휁𝜔𝑛

(
1

𝑡𝑜𝑙
(𝑓2 − 𝑓1)

√1 − 휁2
)

𝑡𝑜𝑙

(𝑓2 − 𝑓1)

𝜕

ð휁
(√1 − 휁2) (4.40) 

 

Simplifying Equation (4.40), one obtains a further simplified expression for lock time gradient 

That is the derivative of lock time with respect to the damping coefficient as 
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𝜕𝑇𝑙𝑜𝑐𝑘
ð휁

= 𝑙𝑛(
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2)(

1

휁2𝜔𝑛
) − (

1

(1 − 휁2)𝜔
𝑛

) (4.41) 

 

The Equation (4.41) depicts the variation of the lock time with damping coefficient and comprises 

of two terms. The differential relationship of Equation (4.41) allows the computation of a locally 

optimized value of damping coefficient within a certain range to achieve a narrower range of the 

lock time. Equations (4.40) and (4.41) are not discussed in the open literature. When 휁 is small and 

for a large 𝜔𝑛, the variation in lock time is an inverse function of the frequency step size (𝑓2 −

𝑓1). Since the lock time is inversely proportional to 𝜔𝑛, higher the natural frequency, lower is the 

lock time. In the hybrid DDS -PLL, the lock time is determined by the highest possible 𝜔𝑛 and an 

optimal value of 휁 , which reduce lock time without compromising the lock range. A closed-form 

expression for the relationship between the derivative of the lock time and the loop Band Width 

(BW) has been obtained. Upon the substitution of the relation between natural frequency 𝜔𝑛 and 

loop BW, Equation (4.41) can be written as 

𝜕𝑇𝑙𝑜𝑐𝑘
𝜕휁

=
1

𝜔𝑛
{
1

휁2
𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2) +

1

(1 − 휁2)
} (4.42) 

 

Substituting the natural frequency in terms of loop BW, the final expression is obtained in terms 

of loop bandwidth (𝜔𝑐) and 휁 as 

 

𝜕𝑇𝑙𝑜𝑐𝑘
𝜕휁

=
2휁

𝜔𝑐
{
1

휁2
𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2) +

1

(1 − 휁2)
} (4.43) 

 

The difference between the Equations (4.42 and 4.43) is that a substitution has been made to 

express the loop BW in terms of natural frequency using the equation proposed by [Banerjee,2006] 

is written as 

𝜔𝑐 = 2휁𝜔𝑛 (4.44) 

Equation (4.43), demonstrates that the sensitivity of the lock time to the damping coefficient is 

inversely proportional to the loop BW (𝜔𝑐). Such an expression in a differential form relating the 

gradient of the lock time with 휁 of second-order PLL and its loop BW has not been discussed in 

open literature.  
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Figure 4.11 illustrates the variation of the lock time of a second order PLL with the change in PM 

for various values of natural frequency.  Figure 4.11 reveals that the lock time of a second-order 

PLL drops rapidly, as the PM or 휁, is increased. The second observation is that lock time is 

inversely proportional to the natural frequency (𝜔𝑛)  of PLL. 

 

 

Figure 4.11 Lock Time versus PM for Type I second-order PLL (A: 2.6MHz; B: 5.2MHz; 

C: 7.8MHz)  

 

The result of Figure 4.11 tracks generated for a frequency step size of 1 MHz (𝑓2 − 𝑓1) and a 

frequency tolerance (𝑡𝑜𝑙) of 1 kHz. Equation (16.39) of (Banerjee, 2005) provides the relationship 

between PM with the damping coefficient can be written as   

(𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙) =
1

4휁2
 (4.45) 

In Equation (4.45), 𝜙 is the phase margin and 휁 is the damping coefficient. 

Taking derivative of both sides of Equation (4.45) with respect to the damping coefficient (휁), 

(𝑠𝑒𝑐𝜙𝑡𝑎𝑛𝜙 − 𝑠𝑒𝑐2𝜙) =
1

8휁3
𝑑휁

𝑑𝜙
 (4.46) 

By using the result of Equation (4.46) and substituting in Equation (4.43), an expression relating 

the derivative of the lock time to the PM can be derived as 

𝑑𝑇𝑙𝑜𝑐𝑘
𝑑𝜙

= (
2휁

𝜔𝑐
{
1

휁2
𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2) +

1

(1 − 휁2)
}) ((𝑠𝑒𝑐𝜙𝑡𝑎𝑛𝜙 − 𝑠𝑒𝑐2𝜙)8휁3) (4.47) 
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A closed-form expression (Equation 4.47) for the derivative of lock time with respect to PM has 

not been derived in open literature. Its effectiveness is that it expresses perturbation of speed of 

response with respect to PM. A perturbation of either 𝐾𝑉 (VCO sensitivity) or capacitance of loop 

filter (𝐶) leads to a perturbation of a PM of PLL (Equation 4.32). The perturbation of the lock time 

for a nominal PM value is illustrated in Figure 4.12. 

 

 

 Figure 4.12 Perturbation of Lock Time with nominal Phase Margin(degrees)  

 

The lock time perturbation versus phase margin (Figure 4.12) was generated for an input frequency 

step size of 1 MHz and a tolerance of 1 kHz. The X –axis of Figure 4.12 is the PM before 

perturbation and the Y axis in Figure 4.12 is the perturbation of the lock time in microseconds. 

With the above specified parameters, the lock time is the time required to settle within 1 kHz of 

the final frequency. The natural frequency of the PLL is as low as 10 MHz frequency. At higher 

levels of PM (55o and above), the variation in lock time is lower for a given PM. A unique compact 

equation in the form of Equation (4.48) which relates the lock time directly to tangent of the phase 

margin, has been derived for the first time (detailed derivation is presented in Appendix B).  

𝑇𝑙𝑜𝑐𝑘 =
1

𝜔𝑛
2
√

(1 + 𝑡𝑎𝑛 (
𝜙
2))

(1 − 𝑡𝑎𝑛 (
𝜙
2))

(

 
 
ln

(

 
 
1 −

(1 + 𝑡𝑎𝑛 (
𝜙
2))

4(1 − 𝑡𝑎𝑛 (
𝜙
2))

)

 
 
− 2 ln (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
)

)

 
 

 

(4.48) 
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A third form of expression relates the 𝑇𝑙𝑜𝑐𝑘 to the loop filter time constant (𝜏). This has not been 

discussed in open literature and relates lock time to PM:  

𝑇𝑙𝑜𝑐𝑘 =  2𝜏

(

  
 
−𝑙𝑛Γ𝑡𝑜𝑙 −

1

2
𝑙𝑛

(

 
 
1 −

(1 + 𝑡𝑎𝑛 (
𝜙
2
))

4(1 − 𝑡𝑎𝑛 (
𝜙
2
))
)

 
 

)

  
 

 (4.49) 

In Equation (4.49)  Γ𝑡𝑜𝑙 = (
𝑡𝑜𝑙

(𝑓2−𝑓1)
)  

Equation (4.48) relates the PLL lock time to its filter time constant and half of its phase margin. It 

is a key contribution of this chapter.  The derivation of Equation (4.49) is provided in the last part 

of Appendix B (Equation B.20). Equation (4.49) relates the loop filter time constant with the lock 

time of the PLL - a result that has not been discussed in open literature.  

4.10 Link between the lock time and phase noise for second-order PLL 

 

In this section, a formulation that links the lock time to the phase noise of second-order PLL is 

presented. Equation (4.34) for phase noise is repeated here to describe an extension, 

𝑇2 = (𝑊(𝑠))2 (
4휁4𝜏2

𝑁2
) {𝑆𝑉𝐶𝑂(𝑠(1 + 𝜏𝑠))2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝐾𝑣

2)}  

 

(4.50) 

Now, by observing the variables 
1

𝐾2
=

4𝜁4𝜏2

𝑁2
 and relating the time constant ‘𝜏′ to the lock time 

‘𝑇𝑙𝑜𝑐𝑘′  (using Equation (4.49)) one obtains: 

4𝜏2 =
(𝑇𝑙𝑜𝑐𝑘)

2

(

  
 
−𝑙𝑛𝛿 −

1
2 𝑙𝑛

(

 
 
1 −

(1 + 𝑡𝑎𝑛 (
𝜙
2
))

4(1 − 𝑡𝑎𝑛 (
𝜙
2
))
)

 
 

)

  
 

2 

(4.51) 

The derivation for lock time (𝑇𝑙𝑜𝑐𝑘) is explained in Appendix B. The final expression for 𝑇2 can 

be derived as 
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𝑇2

= (𝑊(𝑠))2

(

 
 
 
 
 
 
 
 

1

𝑁2

{
 
 

 
 (1 + 𝑡𝑎𝑛 (

𝜙
2))

4(1 − 𝑡𝑎𝑛 (
𝜙
2))}

 
 

 
 
2

{
 
 
 
 
 

 
 
 
 
 

(𝑇𝑙𝑜𝑐𝑘)
2

(

  
 
−𝑙𝑛𝛿 −

1
2 𝑙𝑛

(

 
 
1 −

(1 + 𝑡𝑎𝑛 (
𝜙
2))

4(1 − 𝑡𝑎𝑛 (
𝜙
2))

)

 
 

)

  
 

2

}
 
 
 
 
 

 
 
 
 
 

)

 
 
 
 
 
 
 
 

{𝑆𝑉𝐶𝑂(𝑠(1

+ 𝜏𝑠))2 + 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝐾𝑉
2)} 

(4.52) 

 

This expression relates lock time, phase margin and phase noise. Equation (4.51) is unique and has 

never been derived in open literature. It is a key contribution of this chapter.  

4.11 Relationship between jitter and phase margin – extension to [Lee, 2002] 

and [Mansuri, 2002] 

 

 This section describes the relationship between jitter and PM for a Type I and Type II second-

order PLL. Some of the derivations in this section originate with the work of [Lee, 2002] & 

[Mansuri,2002].  Type I PLL has been discussed in the previous sections. A brief discussion on 

Type II PLL in terms of its transfer function is also presented. The Type II PLL of second-order 

has an additional zero as compared to a Type I PLL of second-order. 

 

 

Figure 4.13 Type II PLL illustrating loop filter with one pole and one zero 
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The block diagram of Figure 4.13 illustrates the loop filter, VCO, divider, and PFD of a second-

order Type II PLL. The transfer function, the natural frequency and damping coefficient of a Type 

II PLL are derived for logical continuity. The transfer function of a Type II PLL can be written as 

𝐺(𝑠) =

(1 + 𝑠𝜏2)
(1 + 𝑠𝜏1)

𝐾
𝑠

1 +
(1 + 𝑠𝜏2)
𝑁(1 + 𝑠𝜏1)

𝐾
𝑠

=
𝑁(1 + 𝑠𝜏2)𝐾

𝑁𝑠 + 𝐾𝑠𝜏2 + 𝑁𝜏1𝑠2 + 𝐾
 (4.53) 

Dividing numerator and denominator of Equation (4.53) by 𝑁𝜏1, the transfer function of a Type II 

PLL can be written in a classical form as 

𝐺(𝑠) =
𝑁𝐾(1 + 𝑠𝜏2)

𝑁𝜏1𝑠2 + 𝑠(𝑁 + 𝐾𝜏2) + 𝐾
=

𝜔𝑛
2 + (

𝐾𝜏2
𝜏1
)𝑠

𝑠2 + 𝑠2휁𝜔𝑛 + 𝜔𝑛2
 

(4.54) 

For a Type II PLL the natural frequency is defined as 

𝜔𝑛 = √
𝐾

𝑁𝜏1
 (4.55) 

The damping coefficient for a Type II PLL can be written as 

휁 =
1

2𝜔𝑛
(𝑁 + 𝐾𝜏2) (4.56) 

This section discusses the relationship between jitter and phase margin of a Type I and Type II 

second-order PLL. Type I and Type II PLLs differ in the fact that Type II PLLs have a zero in 

their transfer function which is not the case in a Type I PLL. This results in different transfer 

functions for Type I and Type II PLLs as illustrated in Figure 4.14. 

 

 

Figure 4.14 Difference in TFs of Type I and Type II PLL 

 



 
 

125 
 

Jitter is defined as the variation of period of a sinusoidal output of a DDS-PLL[Cordesses,2003]. 

This section analyses Jitter in the time domain mainly through the computation of Jitter variance. 

Absolute jitter is a time varying quantity best described as the difference between successive zero 

crossing times of a waveform [Lee, 2002] which is expressed as 

{𝑗𝑎,𝑛 = 𝑡𝑛 − 𝑛𝑇} (4.57) 

  

In Equation (4.57), 𝑡𝑛 is the time of Zero crossing at the end of nth cycle, 𝑛𝑇 is the cycle number 

multiplied by the nominal period of a waveform. The discrete sequence  𝑗𝑎,𝑛 is the absolute jitter 

in the nth cycle. 𝑇 is nominal period of a waveform. 

The absolute jitter in Equation (4.57) is a sequence of values (hence it is expressed within curly 

brackets). The absolute jitter can be expressed in radians as([Lee,2002], 

{휃𝑎,𝑛 = 2𝜋𝑓0(𝑡𝑛 − 𝑛𝑇)} (4.58) 

 

In Equation (4.58), 𝑓0 is the nominal frequency of an oscillator, 𝑡𝑛 is the zero crossing at 𝑛th cycle 

end, T is the nominal period of the waveform, and  휃𝑎,𝑛 is the phase in radians. 

If the nominal period for a time domain waveform is known and the zero crossing points of the 

said time domain waveform are accurately known, then the period jitter can be defined in a way 

as proposed by ([Lee,2002]). 

{𝑗𝑛 = 𝑡𝑛+1 − 𝑡𝑛 − 𝑇} (4.59) 

In Equation (4.59), 𝑇 is the nominal period of a waveform, 𝑡𝑛 is the zero crossing at 𝑛th cycle end, 

𝑡𝑛+1 is the zero crossing at (𝑛 + 1)th cycle end, and  𝑗𝑛 is the period jitter of 𝑛th cycle. In Equation 

(4.59) period jitter is a sequence of time values. Sequence 𝑗𝑛 captures the variation of the period 

from the nominal period in a PLL. 

The period jitter variance is related to the phase noise generated by various sources of noise within 

the PLL using the following Fourier integral([Mansuri,2002]), is written as 

𝜎𝐽
2(𝑘𝑇) =

1

(𝜋𝑓0)2
∫ sin2 (𝜋𝑓𝑘𝐵𝑇)𝑆𝜃(𝑓)𝑑𝑓
𝑓0/2

−𝑓0/2

 (4.60) 

 

In Equation (4.60), 𝑆𝜃(𝑓) is the phase noise of a frequency source, 𝑓0 is frequency BW under 

consideration, 𝜎𝐽
2(𝑘𝑇) is the variance of period Jitter, 𝑘𝐵 is the Boltzmann’s constant, and 𝑇 is the 
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absolute temperature. If the phase noise of the signal is known, Equation (4.60) facilitates the 

computation of jitter variance of the same signal either through numerical integration or 

analytically, using a definite Fourier integral. Considering only the noise source of VCO, a 

relationship between Root–Mean Square (RMS) Jitter variance, damping coefficient and natural 

frequency have been given by [Lee, 2002] for a second-order Type II PLL.  

𝜎𝐴
2 =

𝑐𝑊𝑁

4휁𝜔𝑛
+
𝑐𝐹𝑁
𝜔𝑛2

𝑓(휁) (4.61) 

 

In Equation (4.61), 𝜎𝐴
2 is the variance of absolute jitter at PLL output (sec2),  𝑐𝑊𝑁 is the jitter 

coefficient for white noise (unit seconds),  𝑐𝐹𝑁  is the jitter coefficient for flicker noise 

(dimensionless),  𝜔𝑛 is the natural frequency of Type II second-order PLL, and 휁 is the damping 

coefficient of Type II second order PLL. Function 𝑓(휁) is the non-linear function relating the 

damping coefficient to the flicker noise. 

 The relationship in Equation (4.61) comprises two terms – the first term is the contribution of the 

white noise and the second term is the contribution of the flicker noise. The flicker noise coefficient 

is a function of the damping coefficient and the PM of the PLL. For an underdamped PLL, the 

flicker noise coefficient has been described by [Lee, 2002] as 

𝑓(휁) =

𝜋
2 − 𝑡𝑎𝑛−1 (

휁

√1 − 휁2
)

휁√1 − 휁2
   𝑓𝑜𝑟 ζ < 1 

(4.62) 

The corresponding expression in [Lee, 2002] for the flicker noise coefficient of an over-damped 

PLL is written as 

𝑓(휁) =

𝑅𝑒(𝑡𝑎𝑛ℎ−1 (
휁

√휁2 − 1
))

휁√휁2 − 1
   𝑓𝑜𝑟 ζ > 1 

(4.63) 

The operator 𝑅𝑒  in Equation (4.63) implies only the real part of the hyperbolic inverse is 

considered. 

The first contribution of this thesis to the theory advanced by [Lee, 2002] is an analytical one. It 

relates the PM to the closed-form jitter variance for a Type II PLL. The first step is to compute a 

simpler form of the flicker noise coefficient. By rearranging the terms in Equation (4.61), one 

obtains:   
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𝑓(휁)휁√1 − 휁2 =
𝜋

2
− tan−1 (

휁

√1 − 휁2
) (4.64) 

 

Using basic trigonometry, one simplifies the RHS of Equation (4.64) as 

𝑓(휁)휁√1 − 휁2 =
𝜋

2
− sin−1(휁) (4.65) 

The damping coefficient ′휁′ and PM ‘𝜙′ are related through Equation (4.9) which is repeated here 

for continuity: 

휁4 =
1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

 
(4.66) 

By taking the fourth root of both sides of Equation (4.66), one obtains an expression for the 

damping coefficient in terms of PM: 

휁 =
√

1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

4  
(4.67) 

By substituting the value of 휁 from Equation (4.67), the flicker noise function can be written as 

𝑓(휁) =

𝜋
2 − sin−1

(

 
 

√

1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

4

)

 
 

√

1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

4

√
1 −

√

1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

2

  (4.68) 

Equation (4.68) relates the flick noise function 𝑓(휁) in terms of PM ‘𝜙′. Substituting Equation 

(4.68) into the expression for jitter in [Lee, 2000], (Equation (4.60)) one obtains an expression for 

the jitter variance.  

𝜎𝐴
2 =

𝑐𝑊𝑁

4휁𝜔𝑛
+
𝑐𝐹𝑁
𝜔𝑛2

𝑓(휁) 

 

(4.69) 

After substituting the values of the damping coefficient in terms of PM one obtains a single 

expression for the jitter variance which is written as 
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𝜎𝐴
2 = 

𝑐𝑊𝑁 

4
√

1

(16(𝑐𝑜𝑡2𝜙 +
1
2
)
2

− 4)

4 𝜔𝑛

+
𝑐𝐹𝑁

𝜔𝑛
2

{
 
 
 
 
 

 
 
 
 
 

𝜋
2
− 𝑠𝑖𝑛−1

(

 
 

√

1

(16(𝑐𝑜𝑡2𝜙 +
1
2
)
2

− 4)

4

)

 
 

(

 
 

√

1

(16(𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

4

)

 
 

(

 
 
 

√
1−

√

1

(16(𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

2

)

 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

(4.70) 

 

The direct relationship as expressed in Equation (4.70), for an underdamped Type II PLL between 

the PM and jitter variance has not been reported in open literature. Equation (4.70) allows 

computation for the variance of absolute jitter, if the PM (𝜙) is known. 

 

Alternative Relationship Between PM and Absolute Jitter for Type II PLL 

 

The relation between PM and absolute jitter for type II PLL can be analytically derived using 

another procedure. The loop bandwidth (𝜔𝑐) of a PLL can be expressed as a function of its natural 

frequency (𝜔𝑛) [Banerjee,2005] as 

𝜔𝑐 = (2휁)𝜔𝑛 (4.71) 

The damping coefficient (휁) can be expressed in terms of PM as 

휁 =
𝜔𝑐
2𝜔𝑛

 (4.72) 

From the Equation provided by [Banerjee, 2005], one obtains:  

𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙 =
1

4휁2
 (4.73) 

Modifying Equation (4.71) by substituting the values of 𝑠𝑒𝑐𝜙 and  𝑡𝑎𝑛𝜙 one obtains: 



 
 

129 
 

휁 =
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
 (4.74) 

The expression for the variance of absolute jitter (𝜎𝐴
2) can be written as 

𝜎𝐴
2 =

𝑐𝑊𝑁

4휁𝜔𝑛
+
𝑐𝐹𝑁
𝜔𝑛2

𝜋
2 − 𝑠𝑖𝑛−1(휁)

휁√1 − 휁2
 (4.75) 

Substituting 휁 =
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
 and 휁2 =

𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
into Equation (4.75), one obtains the expression 

connecting the PM(𝜙) with the variance of absolute jitter(𝜎𝐴
2) 

𝜎𝐴
2 =

𝑐𝑊𝑁

4
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
𝜔𝑛

+
𝑐𝐹𝑁
𝜔𝑛2

𝜋
2 − 𝑠𝑖𝑛−1 (

√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
)

√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
√1 −

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

 (4.76) 

 

Equation (4.76) facilitates the determination of the absolute jitter for the under-damped Type II 

second-order PLL in terms of PM. Such an expression is not expressed in open literature. It is an 

original contribution of this chapter. 

For the over-damped Type II second-order PLL, the numerator of the jitter variance expression 

(Equation 4.62) is a hyperbolic function. In this case the variance of absolute jitter can be 

simplified by substituting the damping coefficient in terms of the PM of the PLL and it can be 

written as  

𝜎𝐴
2 =

𝑐𝑊𝑁

4휁𝜔𝑛
+
𝑐𝐹𝑁
𝜔𝑛2

𝑅𝑒(𝑡𝑎𝑛ℎ−1 (
휁

√휁2 − 1
))

휁√휁2 − 1
 

(4.77) 

 

Substituting 휁 =
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
 in Equation (4.77), one obtains 

𝜎𝐴
2 =

𝑐𝑊𝑁

4
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
𝜔𝑛

+
𝑐𝐹𝑁
𝜔𝑛2

𝑅𝑒(𝑡𝑎𝑛ℎ−1

(

 
 

√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)

√
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
− 1

)

 
 
)

(
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
)√

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

− 1

 

(4.78) 
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Equation (4.78) relates the absolute jitter for over-damped Type II second-order PLL with its PM. 

An expression such as Equation (4.78) is new and has is not been expressed in open literature. 

Figure 4.15 depicts  jitter variance versus PM for various values of  𝜔𝑛. 

 

 

Figure 4.15 Jitter Variance versus Phase Margin for Type II PLL (A: 𝜔𝑛 =3.46x 104 

rad/sec; B: 𝜔𝑛 =4.9x104 rad/sec; C: 𝜔𝑛 =6.9x104 rad/sec) 

 

Figure 4.15 illustrates that greater the PM is, lower is the jitter variance for Type II PLL is. Figure 

4.15 is computed for the values of 𝑐 = 1.67𝑥10−17𝑠𝑒𝑐; 𝑐𝐹𝑁 = 1.6𝑥 − 10−11. For the same level 

of the phase margin (for example 50o), the jitter variance is significantly reduced, as 𝜔𝑛 is 

increased. The greater the natural frequency is the lower is the jitter variance. 

[Mansuri, 2002] has derived closed-form jitter variance models for type I PLL of second-order. 

Mansuri defines a noise figure 𝜅 for the VCO noise source. The noise figure of a noise source of 

VCO which is defined as ′𝜅′ can be written as 

𝜅 = √
4𝜋2𝑁𝑉𝐶𝑂

𝜔0
2   (4.79) 

In Equation (4.79), 𝜔0 is the center frequency of VCO and 𝑁𝑉𝐶𝑂 is the phase noise of VCO, 

dBc/Hz. In Equation (4.79), the units of 𝜅 are 1/√𝐻𝑧 or √𝑠𝑒𝑐 . The VCO noise term 𝑁𝑉𝐶𝑂 is a 

product of two terms, 𝐾2𝑒𝑛
2 = 𝐻𝑧2/𝑉2 ∗ 𝑉2/𝐻𝑧 . The unit of the constant 𝐾2(gain of the clock 

source oscillator) is Hz/V and the unit of the white noise voltage 𝑒𝑛 is volts /√𝐻𝑧. Equation (4.79) 
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assumes that the VCO is a white noise source. Figure 4.18 illustrates the change in jitter variance 

with the change in PM for an under damped PLL. Jitter variance for Type I second-order under-

damped PLL([Mansuri,2002]) can be shown as 

 

𝜎Δ𝑇
2 = (

4𝜋2𝑁𝑉𝐶𝑂

𝜔0
2 ) {(

1

2휁𝜔𝑛
) + {

𝑒−Δ𝑇𝜁𝜔𝑛

2(1 − 휁2)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 휃)

𝜔𝑛
−
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

휁𝜔𝑛
)}} (4.80) 

 

In the Equation (4.80) the damped frequency (𝜔𝑑) is defined as 

𝜔𝑑 = 𝜔𝑛√1 − 휁2 (4.81) 

And an additional phase shift which is written as  

휃 = 𝑐𝑜𝑠−1√1 − 휁2 (4.82) 

Figure 4.16 illustrates the change in jitter variance with the change in PM for an under damped 

PLL. 

 

   

Figure 4.16 RMS jitter predicted by [Mansuri’s 2002] model for under-damped second-

order PLL (VCO noise)  

 

The results of Figure 4.16, the damping coefficient 휁 ranges from 0.42 to 0.9 with the figure of 

merit (𝜅) being a fixed value of 𝜅 = 5.4𝑥10−8√𝑠𝑒𝑐.    

To compute the results of Figure 4.16 one must take into consideration each value of PM that 

corresponds to a unique value of 휁. This computed value of 휁 is plugged into the time-invariant 

(not a function of part of Δ𝑇 in Equation (4.78) to compute the jitter variance. The exponential 
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term in Equation (4.78) can be safely neglected as it goes to zero when the interval Δ𝑇 goes to 

infinity.  Figure 4.16 illustrates that the RMS jitter value is reduced by 36% (from 5x10-12 sec2 to 

3.2x10-12 sec2) as the PM increases from 45o to 75o.To simplify the analysis one must first consider 

the function without the brackets in the RHS of Equation (4.78). This function represents the 

multiplicative part of jitter variance, which is independent the figure of merit parameter in 

Equation (4.78).  

Ψ(휁, 𝜔𝑛, Δ𝑇) = {
𝑒−Δ𝑇𝜁𝜔𝑛

2(1 − 휁2)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 휃)

𝜔𝑛
−
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

휁𝜔𝑛
)} (4.83) 

 

In Equation (4.83),Δ𝑇 is the time interval under consideration for jitter measurement. 𝜔𝑑 is 

defined in Equation (4.81) and angle 휃in Equation (4.82). 

Ψ(휁, 𝜔𝑛, Δ𝑇) is defined as the “Mansuri’s jitter variance function”. It is the part of jitter variance 

that depends on the time interval Δ𝑇 . The jitter variance function is the part which is dependent 

only on  Δ𝑇, 휁 𝑎𝑛𝑑 𝜔𝑛. It is the only part that can be designed in a PLL with a given noise level 

of VCO which controls (𝜅2 =
4𝜋2𝑁𝑉𝐶𝑂

𝜔0
2 ). The parameter ‘𝜅2’ cannot be altered by the PLL designer 

without using a different VCO. A trade off can be made between the jitter variance function and 

PLL performance parameters such as PM and settling time, 𝑇𝑠𝑃𝐿𝐿 =
4

𝜁𝜔𝑛
.  

Figure 4.17 shows the variation of jitter variance with Δ𝑇, the time interval for jitter variance 

estimation for various values of the PM. The Y axis of Figure 4.17 is the jitter variance divided by 

𝜅2 =
4𝜋2𝑁𝑉𝐶𝑂

𝜔0
2 .  𝜅2 is term as the figure of merit of the VCO. After an initial transient, only the 

steady state part contained in the first term of Equation (4.78) dominates, this is when Δ𝑇 is larger. 
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Figure 4.17 Jitter Variance function versus 𝛥𝑇  for 3 values of PM (for 3 values of damping 

coefficient) for second-order under-damped PLL 

 

Figure 4.17 illustrates that the component, which is a function of time interval (Δ𝑇), 𝜔𝑛 and (휁), 

damping coefficient exhibits oscillatory behavior and settles down to a final value within  ΔT = 

2x10-7. The higher the phase margin (damping coefficient, 휁)  the lower is the final value of jitter 

variance and lower is the initial high part of the jitter variance. Figure 4.17 is illustrated for 3 

values of PM (for an under damped PLL). Between a PM of 42o and that of 66o, the initial peak 

reduces by 50% (from 26x10-8 to 1.2x10-8). Figure 4.18 illustrates the jitter variance function in 

[Mansuri, 2002] versus the PM for a fixed value of ΔT.  

 

 

Figure 4.18 Jitter Variance function for fixed Δ𝑇 close to its peak 
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Figure 4.18 illustrates the relationship between PM and the jitter variance of a second-order Type 

I PLL. It is observed that the jitter variance 𝜎Δ𝑇
2  for the type I PLL is reduced as the PM is increased. 

Figure 4.19 illustrates the variation of the jitter variance function with settling time of a second-

order PLL.  

 

 

Figure 4.19 Jitter Variance function (𝚿(𝜻,𝝎𝒏, 𝚫𝑻)) versus settling time of a second-order 

Type I PLL 

 

Figure 4.19 illustrates that the jitter variance function increases with an increased settling time (a 

lower damping coefficient) and therefore, a faster settling PLL is better from a jitter standpoint.  

Lower settling times imply a larger damping coefficient and larger phase margin. From the results 

of Figure 4.19, it is observed that for under damped PLLs, higher PM results in lower settling time 

and lower jitter variance. If the settling times are high (Figure 4.19), the damping coefficients are 

lower. Hence, jitter variance is higher. Therefore, the PM is lower, and this is associated with 

higher jitter variance. The jitter variance versus the PM for the over-damped PLL is illustrated in 

Figure 4.20.  
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Figure 4.20 Variation of Jitter variance versus phase margin of a second-order PLL 

 

The results of Figure 4.20 illustrate that a higher value of PM is necessary to reduce the value of 

Jitter variance of a second-order PLL. Increase of PM reduces the Jitter variance from 4x10-20 to 

2.6x10-20 as the PM increases from 76o to 84o. It can be concluded from Figure 4.20 that the Jitter 

variance falls almost linearly as the PM is increased for over damped PLLs. Finally, an analytical 

contribution in the form of an extension to Mansuri’s models has been presented in this section.  

An analytical relationship between the PM(𝜙)and the periodic jitter of PLL is given in Equation 

(4.76).  

Substituting 휁 =
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
 in the jitter variance expression of [Mansuri, 2002] for underdamped 

PLLs in Equation (4.78), 

𝜎Δ𝑇
2 = 𝜅2{(

1

2휁𝜔𝑛
) + {

𝑒−Δ𝑇𝜁𝜔𝑛

2(1 − 휁2)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 휃)

𝜔𝑛
−
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

휁𝜔𝑛
)}} (4.84) 

 

In Equation (4.84) the constant  𝜅2 is defined in Equation (4.79).  

𝜎Δ𝑇
2 = 𝜅2{

(

 
 1

2(
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
)𝜔𝑛

)

 
 
+

{
 
 

 
 
𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

2 (1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
)

(

 
 𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 휃)

𝜔𝑛
−

𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
𝜔𝑛
)

 
 

}
 
 

 
 

}                (4.85) 

 

The damped frequency (𝜔𝑑) is defined in terms of natural frequency (𝜔𝑛) and PM as 
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𝜔𝑑 = 𝜔𝑛√1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
 (4.86) 

 

In Equation (4.86), 𝜙 is the PM of the PLL. The expression relating jitter to PM jitter in the form 

in Equation (4.85) is new and has not been discussed by [Mansuri, 2002]. A closed-form 

expression for the derivative of jitter variance with respect to the PM of a second-order PLL.  

The first term is the derivative of the first additive term of the RHS of Equation (4.85), 

𝜕

𝜕𝜙

{
 
 

 
 

𝜅2
1

2(
√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
)𝜔𝑛

}
 
 

 
 

= 𝜅2 {
1

2𝜔𝑛
∗

𝑠𝑖𝑛𝜙 − 1

 (√(1 − 𝑠𝑖𝑛𝜙))𝑐𝑜𝑠3/2𝜙
} = 𝑇𝐶 (4.87) 

 

The second term is the derivative of the exponential term of the second additive term in Equation 

(4.83), 

𝜕

𝜕𝜙

{
 
 

 
 

𝜅2
𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

2 (1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
)
}
 
 

 
 

=   

 

Equals  

𝜅2

{
 
 

 
 
√1 − 𝑠𝑖𝑛𝜙 𝑒

−Δ𝑇(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

(4(Δ𝑇𝜔𝑛)(𝑠𝑖𝑛𝜙 − 1) + (Δ𝑇𝜔)𝑐𝑜𝑠𝜙 + 4√1 − 𝑠𝑖𝑛𝜙  √𝑐𝑜𝑠𝜙

2√𝑐𝑜𝑠𝜙 (4𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙 − 4)2

}
 
 

 
 

= 𝑇𝐷 (4.88) 

The third term is the derivative of the sinusoidal term of the second additive term in Equation 

(4.83). Substituting 𝜔𝑑 = 𝜔𝑛√1 − 휁2 and the additional phase shift angle, 휃 = 𝑐𝑜𝑠−1√1 − 휁2. 

The final substitution is 휁2 =
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
 

𝑇𝐸 =
𝜕

𝜕𝜙
{(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 휃)

𝜔𝑛
)} = 

 

 

equals 
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(𝑐𝑜𝑠 (𝜔𝑛√1 − 휁2Δ𝑇 + 𝑐𝑜𝑠−1 (√1 − 휁2)) Δ𝑇)
1

√1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)

∗ (
𝑠𝑖𝑛𝜙

4√𝑐𝑜𝑠𝜙√1 − 𝑠𝑖𝑛𝜙

√𝑐𝑜𝑠𝜙

2√1 − 𝑠𝑖𝑛𝜙
−

√𝑐𝑜𝑠𝜙

2√1 − 𝑠𝑖𝑛𝜙
 

𝑐𝑜𝑠
3
2𝜙

4(1 − 𝑠𝑖𝑛𝜙)
3
2

) 

(4.89) 

 

𝜕

𝜕𝜙
{(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
)} =  

(𝑐𝑜𝑠 (𝜔𝑛√1 − 휁2Δ𝑇 + 𝑐𝑜𝑠−1(√1 − 휁2)) Δ𝑇)
1

√1−
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)

∗ (
𝑠𝑖𝑛𝜙

4√𝑐𝑜𝑠𝜙√1−𝑠𝑖𝑛𝜙

√𝑐𝑜𝑠𝜙

2√1−𝑠𝑖𝑛𝜙
−

√𝑐𝑜𝑠𝜙

2√1−𝑠𝑖𝑛𝜙
 

𝑐𝑜𝑠
3
2𝜙

4(1−𝑠𝑖𝑛𝜙)
3
2

) = 𝑇𝐸          

  (4.87) 

The fourth term, is the derivative of  
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

𝜁𝜔𝑛
 with respect to PM 𝜙 

𝑇𝐹 =
𝜕

𝜕𝜙
{(

𝑐𝑜𝑠 (𝜔𝑛Δ𝑇√1 − 휁2)

휁𝜔
𝑛

)} =  

The derivative above equals  

{
 
 

 
 
1

𝜔𝑛

(

 
 𝜔𝑛Δ𝑇 𝑠𝑖𝑛(𝜔𝑛Δ𝑇√1 −

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

√1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)

 − 

𝑐𝑜𝑠 (𝜔𝑛Δ𝑇√1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
)

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

)

 
 

}
 
 

 
 

∗  

Multiplied by a second term  

(
𝑐𝑜𝑠

3
2𝜙

4(1 − 𝑠𝑖𝑛𝜙)
3
2

 −  
𝑠𝑖𝑛𝜙

4√𝑐𝑜𝑠𝜙√1 − 𝑠𝑖𝑛𝜙
) (4.90) 

 

 

 

The composite expression for the derivative of Jitter variance with respect to phase margin is, 

Type equation here. () 

Type equation here. (4.91) 

Type equation here. () 

Type equation here. (4.92) 
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𝜕𝜎Δ𝑇
2

𝜕𝜙
= 𝑇𝐶 + () 

 

The second term is written as, 

 

(

 
 √1 − 𝑠𝑖𝑛𝜙 𝑒

−Δ𝑇(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

(4(Δ𝑇𝜔𝑛)(𝑠𝑖𝑛𝜙 − 1) + (Δ𝑇𝜔𝑛)𝑐𝑜𝑠𝜙 + 4√1 − 𝑠𝑖𝑛𝜙  √𝑐𝑜𝑠𝜙

2√𝑐𝑜𝑠𝜙 (4𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙 − 4)2

)

 
 

 () 

 

𝜕𝜎Δ𝑇
2

𝜕𝜙
= 𝑇𝐶 +

(
√1−𝑠𝑖𝑛𝜙 𝑒

−Δ𝑇(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

(4(Δ𝑇𝜔𝑛)(𝑠𝑖𝑛𝜙−1)+(Δ𝑇𝜔𝑛)𝑐𝑜𝑠𝜙+4√1−𝑠𝑖𝑛𝜙  √𝑐𝑜𝑠𝜙

2√𝑐𝑜𝑠𝜙 (4𝑠𝑖𝑛𝜙+𝑐𝑜𝑠𝜙−4)2
){

𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
−

𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

𝜁𝜔𝑛
} +

𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔

2(1−
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
)
(𝑇𝐸 + 𝑇𝐹)         

            (4.89)  

Equation (4.89) is an original contribution of this chapter. A derivative of the jitter variance with 

respect to PM is unreported in prior literature and its usefulness is towards optimization techniques 

such as Lagrange multipliers applied to a PLL.  

4.12 The relationship between PM and the angle between two complex poles of 

a second-order PLL 

 

This section presents an analysis to formulate the relationship between the PM and the two 

complex poles of a second order PLL. For a second-order PLL, there is a relationship between the 

PM of the PLL and its pole locations. For an underdamped or overdamped second-order PLL, the 

relationship between the PM (𝜙) and the damping coefficient  (휁) is expressed as in Equation 

(4.90). 휁  can be expressed directly in terms of 𝜙 as 
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휁4 =
1

(16 (𝑐𝑜𝑡2𝜙 +
1
2)

2

− 4)

 
(4.93) 

The transfer function for the second-order PLL can be written as 

𝑇𝐹(𝑠) =
𝑁𝜔𝑛

2

𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛2
 (4.94) 

In Equation (4.94), 𝜔𝑛 is the natural frequency of the second-order PLL, 휁 is the damping 

coefficient, and 𝑁 is the PLL divide ratio. For the existence of two complex poles, the discriminant 

of the quadratic equation can be written as  

4휁2𝜔𝑛
2 − 4𝜔𝑛

2 < 0      (4.95) 

This implies  |휁| < 1,  and 휁 is positive. For the underdamped PLL (휁 < 1), the two complex 

conjugate poles (𝑧1, 𝑧2) can be written as 

𝑧1, 𝑧2 =
−2휁𝜔𝑛 ± 𝑗2𝜔𝑛√1 − 휁2

2
= −휁𝜔𝑛 ± 𝑗𝜔𝑛√1 − 휁2 (4.96) 

From Equation (4.96), the angle Θ between the two complex poles 𝑧1, 𝑧2  is written as 

 Θ = 2𝑡𝑎𝑛−1 (
√1 − 휁2

휁
) (4.97) 

Substituting the value of the 휁 in terms of the PM (from Equation 4.93), the angle Θ between the 

two poles of a second-order PLL is expressed in terms of 𝜙 as after simplification. 

Θ = 2𝑡𝑎𝑛−1 {√(16 (𝑐𝑜𝑡2𝜙 +
1

2
)
2

− 4)

1/2

− 1} (4.98) 

The expression relating the angle ′Θ′ between the two complex conjugate poles and the PM ′𝜙′ for 

a second-order PLL has not been explored in open literature. Figure 4.21 depicts the variation of 

Θ as a function of PM.  
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Figure 4.21 Variation of  𝚯 versus 𝝓  for a second-order PLL 

 

As the PM is increased, the angle between the complex roots becomes smaller, implying their 

closer angular proximity. 

4.13 Phase shift correction in DDS PLL combination 

 

This section discusses phase shifts induced in DDS by DAC and proposes scheme for 

compensation of phase shift. A cubic polynomial DDS with First-Order Hold Interpolation (FOHI) 

DAC is considered for further analysis to overcome the effect of resulting static phase which can 

be attributed to the FOHI DAC. This section proposes and analyzes a phase compensating scheme 

introduced at the output of the FOHI DAC. 

4.13.1 Phase shifts of ZOH and FOHI DAC 

 

 The magnitude and phase of the (Zero-Order Hold) ZOH-DAC transfer function [Cleveland, 

1976] can be written as 

𝐴 =
2

𝜔𝑇𝑑
𝑠𝑖𝑛 (

𝜔𝑇𝑑
2
) (4.99) 

The phase shift due to a ZOH-DAC is written as 
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𝜙𝑍𝑂𝐻 = −
𝜔𝑇𝑑
2

 (4.100) 

 

In Equation (4.99), 𝑇𝑑 is the sampling interval of the ZOH DAC,  where 𝜔 is the angular frequency 

of sinusoidal input to the ZOH DAC. In turn, 𝐴 is the magnitude part of the transfer function for 

ZOH DAC. 𝜙 is the phase part of transfer function for ZOH-DAC. 

The magnitude(𝐴) and phase(𝜙𝐹𝑂𝐻𝐼) of the (First-Order Hold Integral) FOHI- DAC transfer 

function [Cleveland, 1976] can be represented as 

𝐴 =
4

𝜔2𝑇𝑑
2 𝑠𝑖𝑛

2 (
𝜔𝑇𝑑
2
) (4.101) 

The phase shift due to a FOHI DAC is written as  

𝜙𝐹𝑂𝐻𝐼 = −𝜔𝑇𝑑 (4.102) 

A comparative illustration of variation of the phase of transfer functions of the ZOH and the FOHI-

DACs with change in 𝜔𝑇𝑑 is depicted in Figures 4.22.The change in the phase shift and not the  

magnitude change, is the focus of this chapter and its range is only 6% for a range of (𝜔𝑇𝑑) from 

0.1 to 0.99. 

 

 

 

Figure 4.22 Phase of Transfer Function vs 𝝎𝑻plot for ZOH and FOHI DACs 

 

The results of Figure 4.22 indicate of relative sharp roll-off of the phase of FOHI DAC. Let 𝜙 and  

휃 be the phase of the transfer function of DAC and the initial phase of the input waveform 

respectively. The transfer function of the FOHI DAC in polar form can be expressed as 
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𝐻(𝑠) = |𝐻(𝑠)|∠𝜙 = 𝐴𝑒𝑗𝜙𝐹𝑂𝐻𝐼  (4.103) 

In Equation (4.103), the terms 𝐴 and 𝜙𝐹𝑂𝐻𝐼 are defined in Equations (4.101) and (4.102) 

respectively. With the amplitude M of the input waveform,  output the the FOHI DAC can be 

written as 

𝑉(𝜔, 𝑡, 휃) = 𝑀𝐴𝑒𝑗(𝜔𝑡+𝜃𝑠+𝜙) (4.104) 

The additional phase shift (𝜙) is determined by the sampling interval of DAC (Equation (4.102) 

and cannot be ignored for systems where a phase shift of the generated waveform is important. A 

phase compensation circuitry designed to offset the phase shift  𝜙 through the DAC is covered in 

the following sub section. Angle 휃𝑠 in Equation (4.104) is the original phase of the input (input is 

assumed to be of the form 𝐴𝑒𝑗(𝜔𝑡+𝜃𝑠). 

4.13.2 Analog Phase Compensation for phase shift of DAC 

 

 

 A schematic representation of the phase compensating network to offset the phase shift (𝜙 

introduced by FOHI DAC is depicted in Figure 4.23. In this section the angle 휃 is used to denote 

the phase shift due to the phase compensator and the angle 𝜙 is used to denote the phase shift due 

to the DAC alone.  

 

 

Figure 4.23 DDS+ FOHI DAC with analog Phase Compensator and PLL 

 

The phase compensator is analog and placed after the DAC. Following [Dorf, 2005], its transfer 

function can be written in the form following [Dorf, 2005], 
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𝐺(𝑠) =
(1 + 𝛼𝜏𝐴𝑃𝑠)

(𝛼 + 𝛼𝜏𝐴𝑃𝑠)
 (4.105) 

In Equation (4.105), time constant (𝜏𝐴𝑃) and the phase shift constant (𝛼) of the compensating 

network of Figure 4.23 can be related to circuit parameters. The relationship between phase shift 

generated by the compensator 휃 and 𝛼 [ Dorf, 2005] is expressed as 

𝑠𝑖𝑛휃 =
𝛼 − 1

𝛼 + 1
 (4.106) 

 

By relating the exact phase shift generated by the FOHI DAC (from Equation (4.102)), the 

following relationship can be written as  

𝛼 =  
1 + 𝑠𝑖𝑛𝜔𝑇𝑑
1 − 𝑠𝑖𝑛𝜔𝑇𝑑

 (4.107) 

 

Equations (4.107) facilitates to compute the phase shift parameter (𝛼) that is necessary when only 

the sampling time (𝑇𝑑) of the FOHI DAC and the input frequency 𝜔 are known. The second 

parameter of the phase compensation network is its time constant τ. The formula for the time 

constant 𝜏𝐴𝑃  [ Dorf, 2005] is 

𝜏𝐴𝑃 =
1

𝜔𝑚√𝛼
 (4.108) 

In Equation (4.108) 𝜔𝑚 is the center frequency of DDS output. In turn,  𝜏𝐴𝑃 is the time constant 

of the analog phase shifter. The maximum phase shift 𝜙 = 𝜔𝑇𝑑 to be compensated must be 

specified first. The phase shift generated by the FOHI DAC is written as 𝜙, lagging the phase shift 

induced by the compensator is written as 휃. Equations (4.107) and (4.108) will suffice to compute 

parameters of the compensating network (𝛼 and 𝜏). the transfer function of the FOHI DAC can be 

written as  

𝐺(𝑠) =
(1 − 𝑒−𝑠𝑇𝑑)2

𝑠2𝑇𝑑
 (4.109) 

By substituting the value of (𝜏) from Equation (4.108), the transfer function of phase compensation 

network can be expressed in terms of 𝛼 and 𝜔𝑚 as  
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𝐺(𝑠) =
(1 +

√𝛼
𝜔𝑚

𝑠)

(𝛼 +
√𝛼
𝜔𝑚

𝑠)

 (4.110) 

The Equation (4.110) allows the computation of the transfer function (𝐺(𝑠)) in terms of parameter 

(𝛼) and the center frequency 𝜔𝑚. The transfer function of phase compensator (Equation (4.107)) 

and the transfer function of FOHI DAC (Equations (4.109) and (4.110)) are used to simulate the 

response of the cascade of DAC and analog compensator of Figure 4.24.  

 

 

Figure 4.24 Block diagram of Cascade of DAC and Phase Compensator 

 

The intended objective of the compensating network is demonstrated by generating two Bode 

phase plots, one for the FOHI DAC alone and the other for the cascade of the DAC and the 

compensator. The phase shift frequency response of a FOHI DAC is shown Figure 4.25.  The Bode 

plot of the FOHI DAC with 𝜙𝐹𝑂𝐻𝐼 = 28. 7𝑜and Td= 8.697ns is shown in Figure 4.25. The chosen 

value of phase shift corresponds to a phase shift of 0.5 radian when the sampling frequency is 

8.697ns and input is at 9.15MHz. This is a significantly large phase shift to compensate.  
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Figure 4.25 Bode plot (Phase) for the cascade of FOHI DAC and compensator (𝒇 = 𝟗. 𝟏𝟓 

MHz) 

 

Figure 4.25 illustrates that the phase shift for a FOHI DAC can be as high as 28o at a center 

frequency of DDS (9.15 MHz) (P1). The phase shift frequency response of the cascade of a FOHI 

DAC and the phase compensator is shown Figure 3.26(P3). Figure 4.25 illustrates the performance 

effectiveness of the phase compensator to offset the phase shift introduced by FOHI DAC alone. 

The blue track in Figure 4.25 is the uncompensated phase shift and the red track is Figure 4.25 is 

the phase shift after compensation. Figure 4.25 illustrates that the phase shift due to the FOHI-

DAC has been effectively compensated from an original -28.7o to a final 0.58o. The designed phase 

compensator virtually completely offsets the phase shift induced by FOHI-DAC. The very small 

residual phase shift after the phase compensation (Figure 4.25) illustrates the efficacy of the 

discussed phase compensating network.  Figure B.1 illustrates that the phase compensating 

network designed for 9.15 MHz is used over a frequency range of 8.5 to 10.5 MHz, the residual 

error after compensation shows a variation from 2o to 3o. The pre and post compensated phase 

responses of block diagram of Figure 4.24 are depicted in Table 4.4. 
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Table 4.4 Comparison of pre and post compensated phase shift of FOHI DAC (Input 

Frequency = 9.15 MHz) 

Phase shift due to 

DAC alone (Degrees) 

Compensator 𝛼 Phase shift 

due to DAC + 

compensator 

(Degrees) 

𝜏 of 

compensator(ns) 

 

-20.00 2.0396 +0.60o 12.18 

-25.00 2.4639 +0.40o 11.08 

-28.38 2.8360 +0.50o 10.33 

-30.00 3.0000 +0.45o 10.04 

-35.00 3.6900 +0.52o 09.05 

 

 

Table 4.4 illustrates that a wide range of phase angles are readily compensated. The response of 

the cascade of FOHI DAC- Phase Compensator – PLL is also of interest to analyze the effect of 

phase shift introduced by the DAC on the performance of the PLL. The transfer function of the 

second-order Type I PLL used for simulation is written as 

𝑊(𝑠) =
𝑁𝜔𝑛

2

𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛2
 (4.111) 

 

In Equation (4.111),  휁 or damping coefficient =0.22, natural frequency  𝜔𝑛 = 14𝑥107 rad/sec, 

and (N =100) is the divider ratio   

𝑊(𝑠) =
1.9𝑥1018

𝑠2 + 6.16 𝑥107𝑠 + 1.96𝑥1016
     (4.112) 

The cumulative phase shift ∠𝜙𝐶𝑈𝑀𝑈 for the cascade of combination of FOHI, 

(∠𝜙𝐹𝑂𝐻𝐼),Compensator (∠𝜙𝐶𝑂𝑀𝑃) and PLL (∠𝜙𝑃𝐿𝐿)  in Figure 4.24 is additive and thus it can be 

written as 

∠𝜙𝐶𝑈𝑀𝑈 = −𝜔𝑇 + (𝑡𝑎𝑛−1(𝛼𝜏𝜔) − 𝑡𝑎𝑛−1(𝜏𝜔)) + 𝑡𝑎𝑛−1 (
2휁𝜔𝜔𝑛

−𝜔2 + 𝜔𝑛2
) (4.113) 

 

The parameters 𝛼 and 𝜏 are defined in Equation (4.107) and Equation (4.108) respectively. In 

Equation (4.113), the first term corresponds to the phase shift introduced by the FOHI DAC, the 
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second term represents the phase shift introduced by the compensator, and the third term (in 

Equation 4.113) represents the phase shift due to the second-order PLL. The corresponding 

cumulative magnitude (𝑀𝐶𝑈𝑀𝑈) for the cascade combination (of the DAC, the compensator, and 

the second-order PLL) in Figure 4.24 is written as 

𝑀𝐶𝑈𝑀𝑈 =
4

𝜔2𝑇𝑑
2 𝑠𝑖𝑛 (

𝜔𝑇𝑑
2
)
2

{
√1 + (𝛼𝜏𝜔)2

√(𝛼)2 + (𝛼𝜏𝜔)2
} {

𝑁𝜔𝑛
2

√(𝜔𝑛2 − 𝜔2)2 + 4휁2𝜔𝑛2𝜔2
} (4.114) 

 

Equation (4.113) and (4.114) are new contributions and have not been described in open literature. 

Over a range of 200 kHz in the DAC input frequency, the cumulative phase shift of FOHI DAC 

and PLL varies between 400 to 420. Over the same range, the phase shift induced by PLL alone is 

12.30. If the compensator is included (Figure 4.26), the resultant phase shift is much lower than 

without the compensator. In Figure 4.26 the phase shift correction is around 28o. 

 

 

Figure 4.26 Compensation of phase shift; PLL alone, FOHI-DAC+PLL, FOHI-DAC+ 

Analog Phase Compensator +PLL 

 

Figure 4.26 illustrates that phase compensation occurs over the frequency range of 9.00 MHz to 

9.20 MHz. The analog compensator succeeding the FOHI DAC) almost completely offsets the 

phase shift introduced by FOHI resulting in an ideal input to the PLL. It must be considered 

whether the compensator for FOHI degrades the temporal performance of the FOHI -PLL 

combination. Table 4.5 illustrates the overshoot and settling time of the proposed phase 

compensator over a range of phase corrections. In Table 4.5, 𝑇𝑑 is the DAC sampling time. In 
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Table 4.5 overshoot is defined as the percentage over the final value that the output reaches when 

a unit step input is applied at the input to the DAC.  

 

Table 4.5 Performance Comparison of Partial and Full Digital Compensation in FOHI 

DAC and Second order PLL 

Td 

(μs) 

Phase 

Shift 

due to 

DAC 

Phase 

shift 

Due to 

DAC+P

LL 

Overshoot 

(Fully 

Compensated

) 

(%) 

Settling 

Time (Fully 

Compensated

) 

2.00 -6.588o -18.850 110.9 187.5 

2.50 -8.230o -20.498 119.0 189.0 

2.80 -9.223o -21.485 122.5 189.5 

3.00 -9.882 o -22.144 124.2 189.8 

3.60 -11.86 o -24.120 132.8 191.5 

4.20 -13.83 o -26.097 139.9 192.5 

4.40 -14.49 o -26.756 143.4 193.0 

4.80 -15.80 o -28.073 143.6 194.0 

 

 

Full compensation refers to the case where the phase compensator corrects the phase shift due to 

both DAC and PLL. It is observed in Table 4.5 firstly that the settling time, which is a measure of 

how fast the DDS can switch (phase) increases by only 3.4% across the range of 𝑇𝑑. Secondly, the 

overshoot percentage rapidly increases by 35% across the range of 𝑇𝑑.  The introduction of the 

phase-shift compensator to offset the phaseshift induced by the FOHI DAC and PLL results in the 

degradation of overshoot, as well as settling time characteristics of  the  cascade of the FOHI-

DAC, phase compensator and PLL.The variation of overshoot of the cascade of the FOHI-DAC, 

compensator, and PLL with increase in the phase shift to be compensated is shown in Figure 4.27. 
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Figure 4.27 Percentage Overshoot (unit step) versus Compensator Phase Shift (in degrees) 

 

Figure 4.27 highlights that the overshoot rises rapidly with an increasing phase shift introduced by 

the FOHI-DAC and the PLL. In Figure 4.27, full compensation include offsetting the phaseshifts 

introduced by both FOHI DAC and PLL.The term partial compensation in Figure 4.27 implies that 

only the phase shift introduced by FOHI-DAC alone is corrected(considered). For this simulation, 

the frequency of  interest is the center frequency of DDS (9.15 MHz). The degradation in the 

settling time of the cascade of the FOHI-DAC, compensator and, PLL in lieu of the compensator 

is illustrated in Figure 4.28. 

 

 

Figure 4.28 Settling Time (unit step) versus Compensator phase shift 
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Figure 4.28 makes it possible to conclude that the settling time is marginally impacted (from 180ns 

to 194ns) when the value of phase shift is increased from 10o to 30o. Within the range of the phase 

shifts considered, the settling time increases slightly faster when the phase angle to be compensated 

exceeds 20o.  

A relationship between the PLL phase margin and the overall phase shift (∠𝜙𝐶𝑈𝑀𝑈) through the 

PLL, the FOHI-DAC, and the compensator is useful, as it allows the system designers to account 

for the effect of the phase margin. Such a relationship between PM and the overall phase shift 

expressed through Equation (4.115) appears to have not been attempted in literature. 

 

∠𝜙𝐶𝑈𝑀𝑈 = −𝜔𝑇 + (𝑡𝑎𝑛−1(𝛼𝜏𝜔) − 𝑡𝑎𝑛−1(𝜏𝐴𝑃𝜔)) + 𝑡𝑎𝑛−1

(

 
 
 
 
 
 
 
2√

(1 + 𝑡𝑎𝑛 (
𝜙
2
))

4(1 − 𝑡𝑎𝑛 (
𝜙
2))

𝜔𝜔𝑛

−𝜔2 +𝜔𝑛
2

)

 
 
 
 
 
 
 

 (4.115) 

4.13.3 Digital phase shift compensator added before the DAC  

 

 

An alternative approach to achieve phase compensation is to add a digital phase compensator 

before the DAC (Figure 4.29) rather than to add an analog phase compensator after the DAC 

(Figure 4.23). Figure 4.29 shows a ZOH-DAC. The approach is equally applicable to FOHI-DACs. 

 

 



 
 

151 
 

 

Figure 4.29 Block diagram with Digital compensator, ZOH DAC and PLL 

 

 A digital compensator has significant advantages over an analog compensator. Firstly, a digital 

compensator is easier to integrate on an FPGA or an integrated circuit with predominantly digital 

component libraries. Secondly, the parasitic capacitance of the analog compensator might make it 

difficult to implement at frequencies above 500 MHz, however, parasitic capacitances have no 

effect on the digital phase compensator. Thirdly, the phase shift parameter (α) and the phase 

compensation angle (φ) are susceptible to the tolerances of resistor and capacitor tolerances in an 

analog comparator, but not in a digital compensator. A digital phase compensator has no resistors 

or capacitors and therefore it is not susceptible to component tolerances. Lastly, the digital 

compensator can compensate over a wider range of phase shifts by just reprogramming filter 

coefficients. 

In Figure 4.30 the red track illustrates the phase shift due to a FOHI DAC. The uncompensated 

phase shift at the output of the PLL with digital phase compensator ranges from -2.5o to 2.5o over 

a frequency range of 8- 10 MHz. In Figure 4.30, the blue track illustrates the phase shift with an 

added digital compensator followed by a FOHI-DAC.  The phase shift generated by a FOHI-DAC 

alone is compared with the phase shift produced by a digital compensator followed by a FOHI 

DAC. The digital compensator imparts a phase shift which is equal and opposite to the phase shift 

imparted by the FOHI-DAC. The residual phase shift of -0.202o (at 9.15 MHz input frequency) is 

the uncompensated phase. 
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 Figure 4.30 Phase shift of Digital Compensator cascaded with FOHI DAC  

 

The digital compensator is an Infinite Impulse Response (IIR) filter with a sampling period of 

8.6831ns (corresponding to a DAC phase shift of 0.5 radian) with its transfer function written as  

𝐺𝐶𝑂𝑀𝑃(𝑧) =
0.902 − 0.6033𝑧−1

1 − 0.5054𝑧−1
 (4.116) 

In Equation (4.116), 𝑧 is the general complex number of the form 𝑧 = 𝐴𝑒𝑗𝜙 . It is used in 

generating a z-transform. The pole-zero plots of Figure 4.31 show that the compensator is 

inherently stable with its pole being inside the unit circle. A comparison of Figure 4.31(a) for phase 

shift of 28o and Figure 4.31(b) for phase shift of 18o   reveals that pole shifts towards the edge of 

the unit circle as the required phase compensation angle is lowered. As the phase compensation 

angle is lowered from 28o to 18o, the pole location for the compensator has shifted from 0.631 to 

0.852.  
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(a) Phase Compensation Angle=28o (b) Phase Compensation Angle=18o 

 Figure 4.31 Pole- Zero diagram of integrated digital phase compensator 

 

To highlight the effect of adding a digital compensator before the ZOH-DAC, Table 4.6 depicts 

the resulting temporal effects – the overshoot, effect on settling time, and maximum throughput. 

The maximum throughput is the inverse of the settling time. The digital compensator structure can 

be derived from the corresponding analog compensator by making use of analog to digital 

conversion methods in DSP albeit with a specified sampling time of 2000 ps and a FOHI DAC. In 

Table 4.6 MSPS refers to Mega-Samples Per Second. Settling time refers to the settling time of 

PLL + DAC + Compensator in nanoseconds. 

 

Table 4.6 Effect of addition of digital compensator before FOHI DAC 

Phase Shift 

of Compensator 

(degrees) 

Compensator 

phase shift 

constant(α) 

% 

Overshoot 

Settling Time 

(ns) 

 

Maximum 

Throughput(1/Ts) 

In MSPS 

10 1.42 64.8 262 3.8 

12 1.52 66 285 3.5 

14.3 1.656 74.8 290 3.4 

16 1.761 78.5 293 3.4 

18 1.8944 79 300 3.33 

 

From the tabulated results of Table 4.6, it is observed that the overshoot increases significantly 

(from 64.8 % to 79 %), and the settling time increases slightly with an increase in the required 
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phase compensation angle. Similar effects have been noticed for the analog compensators also. 

Since the minimum time required to perform a phase increment at the input of the compensator 

(DDS output) is determined by the settling time of the combination, it is better to have to have a 

compensator for smaller phase shifts than larger phase shifts.  

An additional simulation has been performed to demonstrate the utility of a multi-stage digital 

compensator that can be used for phase compensation over a much wider phase shift (even greater 

than 90 degrees). For this purpose, a PLL is chosen, which introduces a phase shift of around -720. 

The multi-stage compensator structure is a cascade of three compensators, as per the general IIR 

model of Equation (4.18). 

 

 

 

Figure 4.32 Phase Compensation with Multi Stage Compensators 

 

The frequency response performance of the three-stage phase compensator is shown in Figure 

4.32. The three-stage phase compensator has been designed for the center frequency of 9.15 MHz 

for a combined phase shift of -105o through the PLL and FOHI-DAC. Even with high phase shift 

correction requirements, the residual phase shift of below 0.25o is achievable. The time-domain 

performance parameters of the three-stage phase compensator are shown in Table 4.7. In Table 4.7 

a total phase shift of 105 degrees is compensated by three-stage fully digital IIR phase 

compensator.  
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Table 4.7 Overshoot, settling time, SFDR at compensation angle of 105 degrees 

using three-stage cascade compensation (𝑠𝑒 = 𝟑𝟐) 

Uncompensated phase shift of PLL+FOHI 105.4o 

Overshoot (%) (with full compensation) 186% 

Settling time (with full compensation) 142 ns 

Overshoot (%) (without compensation) 0% (due to high ζ of PLL) 

Settling time (without compensation) 140 ns 

SFDR (𝑠𝑒 = 8) (DDS output) (dB) 92 

SFDR(𝑠𝑒 = 8)( uncompensated PLL output) (dB) 19 

SFDR (𝑠𝑒=8) (PLL output with full compensation) 

(dB) 
19 

 

The conclusions drawn from the results of Table 4.7 are presented in this paragraph. Firstly, there 

is a small difference in the settling time with and without compensator (142 ns versus 140 ns). 

There is a significant difference in overshoot with and without a phase compensator (overshoot of 

186% versus 0 %). 

 

4.13.4 Simulation of Composite configuration of DDS, Phase Compensator, 

DAC and PLL 

 

The analytical formulations and simulations on DDS have been performed keeping in view of the 

wider context of the output of the DDS that drives the PLL. This section presents the simulation 

results derived through the configuration, which is an aggregation of DDS, FOHI DAC, phase 

compensator and PLL. It is pertinent to emphasize that the PLL model is represented through a 

second-order transfer function. 

Figure 4.33 depicts the functional block diagram of the composite assembly of DDS, FOHI DAC, 

phase compensator and PLL. The cubic polynomial-based DDS is implemented through Sysgen™ 

and forms the first block. The output of this DDS forms the input to the digital phase compensator.  
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Figure 4.33 Block diagram of the Cubic Polynomial DDS, Digital Compensator, FOHI 

DAC and second-order PLL 

 

The mathematical model of phase compensator-DAC-PLL was derived by cascading the z- domain 

transfer functions of each of the constituents. The Sysgen™ models of DDS discussed in (chapter 

6) are used to generate the output of the cubic-polynomial DDS for 𝑠𝑒 = 8, 16 and 32, 

respectively. Figure 4.34 illustrates the effects of phase compensation for an uncompensated phase 

shift between 12o and 22o. 

 

 

Figure 4.34 The phase difference between DDS output and PLL output with and without 

compensation 
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Figure 4.34 shows the absolute difference between  phase at the outputs  of cubic-polynomial DDS  

and the PLL with and without the phase compensator. In Figure 4.34, a total of 8 tracks are 

illustrated: 4 tracks with compensation (titled C Tracks) and 4 tracks without compensation (titled 

UC Tracks). The compensator is designed to correct the phase shift introduced by both the DAC 

and the PLL at 9.15 MHz. The phase shift induced by the FOHI-DAC must be corrected in addition 

to the phase shift due to the PLL of 12.36o. The phase shift introduced by the FOHI-DAC is a 

linear function of its sampling frequency, the efficacy of the compensation is traced over the range 

of sampling rates of FOHI-DAC ( from 853 ps to 2000 ps). It is observed with the phase 

compensator that the residual phase shift after the compensation is only 0.3o over a frequency 

range spanning from 8MHz to 10MHz. The phase shift reduces for lower sampling times ( higher 

sampling rates) with compensator. The term uncompensated in Figure 4.34 refers to the phase shift 

of the cascade of DDS-FOHIDAC-PLL. The term compensated in Figure 4.34 refers to the phase 

shift of the cascade of DDS-COMPENSATOR-FOHIDAC-PLL, and this refers to the case of 

phase shift compensated. 

 

4.13.5 Influence of  the phase compensator on SFDR -Compensator-DAC-PLL 

 

The study on variations in the output parameters of DDS, such as SFDR caused by the addition of 

the compensator to the cascade of FOHI DAC and the PLL is of interest. [De Caro and Strollo, 

2005] has shown that the number of segments of the DDS determines the achievable SFDR of the 

DDS. It will be of importance to analyze whether the number of segments of the DDS has any 

effect on the achievable SFDR for a cascade of the DDS-PLL with and without phase compensator. 

To assess the effect of the compensator on the SFDR when the compensator-DAC-PLL cascade 

combination is driven by an optimal cubic polynomial-based DDS, the coefficients of the optimal 

DDS are generated in accordance with the mathematical models of [De Caro and Strollo, 2005]. 

The SFDR at the output of the PLL is computed when the number of segments of the DDS is 

varied. The greater the number of segments, the better the SFDR is in accordance with [DeCaro 

and Strollo, 2005]. The reason to consider the harmonics (4𝑠𝑒 + 1) and (4𝑠𝑒 − 1) (where 𝑠𝑒 is the 

number of segments)  is that by a suitable choice of coefficients, other lower odd harmonics have 
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been eliminated[De Caro and Strollo, 2005] through optimization. Even harmonic components are 

not present since the output of cubic DDS is an odd function. 

One  approach to analyze the effects of the compensator on DAC and PLL is to excite the cascade 

using optimal Fourier coefficients, which are generated through the [DeCaro and Strollo, 2005] 

model. Such an analysis through simulation  seems to have not been discussed in the open 

literature. Such an analysis is based on the research reported in [De Caro and Strollo, 2005] to 

determine analytical expressions for the Fourier coefficients when the harmonics from 3rd order to 

(4𝑠𝑒 − 3)th order are forced to zero, and the SFDR at  the output of DDS is maximized.  According 

to [De Caro and Strollo, 2005], the expression for the fundamental component of  the DDS output 

in terms of the number of segments for the cubic polynomial interpolation can be written as  

𝑏1 =
4𝑔(1)

𝜋
−
8ℎ(1)

𝜋2
−
32𝑙(1)

𝜋3
+
192𝑚(1)

𝜋4
 (4.117) 

𝑏1 is a Fundamental Fourier component and function of 𝑠𝑒( number of segments) 

The coefficients of  RHS of  Equation (4.117) are as follows: 

𝑔(1) = −𝐵
𝜋2(1 + 40 𝑠𝑒

2)

8𝑠𝑒2(5 + 768 𝑠𝑒2 + 5120 𝑠𝑒4)
 (4.118) 

ℎ(1) = −𝐵
𝜋2(11 + 240𝑠𝑒

2 − 2176𝑠𝑒
4)

64 𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (4.119) 

𝑙(1) = −𝐵
𝜋3(−5 + 80𝑠𝑒

2 + 4224 𝑠𝑒
4)

128𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (4.120) 

𝑚(1) = −𝐵
𝜋4(3 − 200𝑠𝑒

2 − 128𝑠𝑒
4 + 40960 𝑠𝑒

6)

1536𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (4.121) 

 

In Equations (4.118) to (4.121), 𝐵 is the Amplitude of the resultant output sinusoid,  𝑠𝑒 is the 

number of segments in cubic polynomial DDS. The magnitudes of the next higher harmonics 

(4𝑠𝑒 + 1, 4𝑠𝑒 − 1) that are present at the output of the DDS can be easily determined using the 

expressions originally derived by [De-Caro and Strollo, 2005]. When the coefficients 

𝑔(1), ℎ(1),𝑚(1) 𝑎𝑛𝑑 𝑚(1) are determined for the fundamental, they can also be used to compute 

the magnitude of the Fourier coefficients for the (4𝑠𝑒 + 1)th and (4𝑠𝑒 − 1)th harmonic. 

The Fourier coefficient for the (4𝑠𝑒 + 1)𝑡ℎ harmonic is expressed as 

𝑏4𝑠𝑒+1 =
4

(4𝑠𝑒 + 1)
𝑔(1) −

8

(4𝑠𝑒 + 1)2
ℎ(1) −

32

(4𝑠𝑒 + 1)3
𝑙(1) +

192

(4𝑠𝑒 + 1)4
𝑚(1) (4.122) 
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The Fourier coefficient for the (4𝑠𝑒 − 1)𝑡ℎ harmonic is expressed as 

𝑏4𝑠𝑒−1 =
4

(4𝑠𝑒 − 1)
𝑔(1) +

8

(4𝑠𝑒 − 1)2
ℎ(1) −

32

(4𝑠𝑒 − 1)3
𝑙(1) −

192

(4𝑠𝑒 − 1)4
𝑚(1) (4.123) 

 

 In Equation (4.123),  𝑏4𝑠𝑒+1is the Fourier coefficient for the (4𝑠𝑒 + 1)th harmonic, and  𝑏4𝑠𝑒−1 is 

the Fourier coefficient for the (4𝑠𝑒 − 1)th  harmonic. 

Combining the 3 harmonics in Equations (4.117), (4.122) and (4.123), the final output for the 

optimal cubic polynomial based DDS is written in terms of its harmonic components as  

𝑂𝑈𝑇𝐷𝐷𝑆 = 𝑏1𝑠𝑖𝑛 (
𝑛𝜋

2
𝑥) + 𝑏4𝑠+1𝑠𝑖𝑛 (

(4𝑠 + 1)𝜋

2
𝑥) + 𝑏4𝑠−1𝑠𝑖𝑛 (

(4𝑠 − 1)𝜋

2
𝑥) (4.124) 

In Equation (4.124), 𝑂𝑈𝑇𝐷𝐷𝑆 is the output of the DDS; x is the phase argument to the DDS. 

Once the output of the cascade combination is determined for the harmonic excitation, the SFDR 

can be computed in accordance with 

𝑆𝐹𝐷𝑅 = −10𝑙𝑜𝑔10 (
max (𝑏4𝑠𝑒+1, 𝑏4𝑠𝑒−1

𝑏1
) (4.125) 

In Equation (4.125),  𝑏1 is the amplitude of the fundamental component at the output of the DDS, 

𝑏4𝑠𝑒+1 is the amplitude of the (4𝑠𝑒 + 1)
th harmonic, and  𝑏4𝑠𝑒−1  is the amplitude of the (4𝑠𝑒 −

1)th harmonic. The SFDR at the output of the DDS is a logarithmic measure of the ratio of the 

magnitudes of the fundamental and the maximum harmonic of interest. The SFDR is measured 

both at the input to the compensator (output of the DDS) as well as at the output of the PLL. Table 

4.8 depicts the effects of propagation of harmonics through the cascade of the combination 

comprising the compensator, DAC and PLL. 
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Table 4.8 Variation of harmonic coefficients of DDS, PLL and Cascade with 𝑠𝑒 

S b1 Abs(b(4𝑠𝑒+1))  x 10-10 Abs(b(4𝑠𝑒-1)) x10-10 

DDS PLL  

without 

Compen

sator 

PLL  

with 

Compen

sator 

DDS PLL 

without 

Compens

ator  

PLL 

with 

Compe

nsator 

DDS PLL 

without 

Compensa

tor 

PLL with 

Compensa

tor 

8 1 0.387 0.505 
6.164

60 
4.89000 0.3240 5.5000 2.130000 0.304000 

16 1 0.387 0.505 
0.367

35 
0.20900 0.2090 0.3310 0.065500 0.067400 

32 1 0.387 0.505 
0.024

00 
0.00278 0.0028 0.0212 0.000795 0.000793 

 

The variation of SFDR is illustrated in Table 4.9. 

 

Table 4.9 Variation of  SFDR at the outputs of DDS  and PLL with 𝑺 

 𝑠𝑒 

SFDR (dB) 

DDS 

 PLL 

without 

Compens

ator 

PLL with 

Compens

ator 

8   92.00  88.00 101.00 

16 104.34 102.92 103.79 

32 116.50 121.43 122.50 

 

In Table 4.9, the SFDR is computed using  the formulation of [De Caro and Strollo, 2005]. It is 

noted from the results of Table 4.9 that the compensator also affects the SFDR at the output. The 

𝑏(4𝑠𝑒 + 1)th and 𝑏(4𝑠𝑒 −  1)th coefficients are reduced in the presence of the compensator.  
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Figure 4.35 SFDR for DDS, DDS-PLL with and without compensation 

 

The simulation results shown in Figures 4.35 on the model of integrating a cubic polynomial 

DDS(𝑠𝑒 = 8) with the coefficients of [ De-Caro and Strollo, 2005] , a digital phase compensator, 

a FOHI-DAC and a second-order PLL are not available in open literature. Appendix B provides 

two additional SFDR plots at different levels of damping coefficient. Figure 4.37 illustrates that in 

order to improve SFDR( at DDS-PLL output), a higher number of DDS segments must be used 

and the DDS output must be optimised so that the PLL filters the unwanted harmonics further. 

Consequently, less harmonics are present at the PLL output when compared to the DDS output. 

The uncompensated SFDR_UC is the SFDR at the output of PLL when the compensator is absent. 

It is included as a reference. At higher numbers of segments(𝑠𝑒 = 16,32), the SFDR at the PLL 

output for the uncompensated system approaches the SFDR for the corresponding compensated 

system. A decision to have a phase compensator or not is influenced by the SFDR requirement. A 

new analytical expression relating the transfer function of the digital compensator with the PLL 

parameters has been derived in Appendix B. Such an expression is not derived in the open literature  

and is useful for future designers. 

𝐻(𝑧) =
𝑧−1(𝜔𝑚 − 2𝑓𝑠√𝛼) + (𝜔𝑚 + 2𝑓𝑠√𝛼)

𝑧−1(𝛼𝜔𝑚 − 2𝑓𝑠√𝛼) + (𝛼𝜔𝑚 + 2𝑓𝑠√𝛼)
 (4.126) 

In Equation(4.126), 𝑓𝑠 is the the sampling frequency. Constants 𝛼, 𝜔𝑚 are defined in Equation 

(4.107) and (4.108) respectively. In turn,  𝑧 is the Z-transform variable. 

4.14 Conclusion 
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This chapter explores the PLL stability of a second-order PLL, the speed of response (lock time), 

the phase noise at PLL output, the phase jitter as a function of PLL parameters, such as the damping 

coefficient and the phase margin. This chapter has presented an analysis of phase noise due to 

various noise sources of a second-order PLL. A relationship between the lock time and the phase 

margin has also been arrived at. An additional perturbation analysis has been performed for the 

phase margin as the settling time is varied. A significant contribution of this chapter is the closed-

form analytical relationship between phase noise and 𝐾𝑉 , 𝑁, and settling time of a second-order 

Type I PLL. A significant contribution is the equation relating the phase noise to the lock time of 

a second-order PLL. The cumulative phase noise of DAC- PLL which is expressed as a product of 

transfer functions of reference noise sources and the summation of noise PSD for a plurality of 

noise sources of PLL has also been analyzed. 

This chapter has also placed emphasis on the lock time, its relationship with the phase margin and 

the damping coefficient as well as the relationship between the jitter variance and other PLL 

parameters such as the phase margin and the damping coefficient.  The relationship between the 

lock time and the damping coefficient has been explored in closed-form as a new expression 

derived for the derivative of the lock time with respect to the damping coefficient. Lock time is 

characterized for a range of phase margins for different values of natural frequencies. It is 

concluded that, for lower lock time higher natural frequency, higher VCO sensitivity and higher 

phase margin values are necessary. A significant contribution is the equation relating the lock time 

to the loop filter time constant of a second-order PLL, which has been derived for the first time.  

This chapter provides a new relationship between the jitter variance and the phase margin of a 

second order type II PLL. The analytical form for jitter variance proposed by [Lee,2002] has been 

extended substantially as the relationship between jitter and PM has been analytically expressed 

and plotted. Jitter variance has been plotted for a range of natural frequencies (therefore loop BW) 

of a second-order PLL. It provides a closed-form expression, which relates the angle between the 

complex poles of a of second-order PLL to its phase margin. 

Finally, two approaches for phase shift correction – one analog and the other digital have been 

explored in detail. Multiple simulations are performed to demonstrate the efficacy of the proposed 

phase shift compensation scheme. The effect of phase compensators on the overall overshoot and 

the settling time of PLL are analyzed. This chapter has also presented the simulation results on the 

SFDR and the overshoot of cubic DDS with and without phase shift compensation.  
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Chapter 5: The roots of a third-order PLL and their relationship to PLL 

parameters 
 

 

This chapter is aimed to present analytical results, design procedures and simulations for third 

order PLLs. In many perspectives, the Chapter 5 is a continuation of Chapter 4. The focus in 

Chapter 4 is on second-order PLLs – both Type I and Type II. The performance criteria considered 

in Chapter 4 are phase margin (relative stability), jitter (in the time domain), phase noise (in the 

frequency domain). A second-order PLL has only two poles and the pole locations affect phase 

noise, phase margin and jitter. A third-order PLL has a characteristic equation of the third order. 

The CE of a third-order PLL will have three roots which correspond to three poles. Depending on 

the locations of these three poles, the third-order PLL will produce different levels of phase margin, 

phase noise and jitter. The third-order PLL has a more complex relationship between pole locations 

and performance parameters than a second-order PLL. The additional degree of freedom implies 

greater possibilities of instability and greater opportunities to minimize jitter and improve phase 

margin. Third-order PLLs are the mainstay in main cognitive radio applications. They have been 

analyzed by ([He, 2007], [Daniels, 2008]) because of their practical significance. This chapter 

presents analytical formulations to get additional insights into the relationship of location of poles 

to phase margin, stability criterion and jitter.  

 

Section 5.1 introduces the block diagram of a third-order PLL and identifies its subblocks. It 

includes a Table of terms and symbols used ion this chapter. Section 5.2 reviews some important 

papers on third-order polynomial equations. Section 5.3 provides literature provides a review of 

stability, jitter and phase noise of a third order PLL. Section 5.4 derives a transfer function of a 

third-order PLL and introduces its CE. Section 5.5 describes the parameters of a third-order PLL.  

Section 5.6 applies a geometric technique called Vieta’s Circle for the location of the three real 

roots of a third-order PLL. Section 5.7 derives a closed form equation relating the phase margin 

of a third-order PLL and Vieta’s angle for the case where the third-order PLL 3 real and unequal 

poles. Section 5.8 analyzes the case of a third-order PLL with three real and unequal roots. Section 

5.9 derives a new expression for the Spur gain of a third-order PLL with three real and unequal 
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poles. Section 5.10 analyzes the case of the third-order PLL with one real and two complex poles. 

Section 5.11 derives new expression for the ratio of noise power to carrier power of a third-order 

PLL. Section 5.12 derives new results and applies a criterion called ITAE to a third-order PLL. A 

new expression for the phase margin of a third-order PLL is derived in Section 5.12. Section 5.13 

is the conclusion section. 

5.1 Block diagram and Parameters of a Third-order PLL 

 

 

The main blocks of a third order PLL are Phase-Frequency Detector (PFD), second order loop 

filter, a Voltage Controlled Oscillator (VCO)  and a feedback frequency divider. Figure 5.1 

illustrates the block diagram for a third-order PLL. The PFD senses the difference between two 

phases at its input and produces an output signal which is function of the phase difference. The 

output of the PFD is the primary inputs to the loop filter.  The output of the loop filter constitutes 

an input to the VCO. The VCO generates a specific output frequency which is dependent on the 

control voltage at the VCO.  

 

 

Figure 5.1 Block Diagram of Third –Order PLL with second order passive loop filter  

 

The feedback frequency counter can be either an integer divider such as 𝑵(𝐚𝐧 𝐢𝐧𝐭𝐞𝐠𝐞𝐫) or a 

fractional divider (to divide the output frequency of the PLL with fractional form such as 𝑵
𝒙

𝒚
, 

where 𝑵, 𝒙, 𝒚 are integers). The output frequency of VCO is divided by either an integer plus a 
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fractional number and fed back to the PFD. The loop filter of the third-order PLL comprises a 

series RC circuit in parallel in a second capacitor. This configuration smoothens the control voltage 

applied to the VCO as compared to a second-order PLL. The shape of the control voltage applied 

to the VCO is ramp rather than a step. In practice PLLs of third-order can be built with charge 

pumps in the PFD [He, 2007] or analog multiplier-based PFDs [Gray, 2002]. A charge pump 

comprises two current sources arranged in an UP-DOWN configuration, only one of which drives 

current at a time. A second important concept is that of the charge-pump PFD.  It is a device 

comprising of a three-state phase detector, an ‘UP’ state, a ‘DOWN’ state and a neutral state – 

neither ‘UP’ or ‘DOWN’, two switches, and two current sources. There is a first current source 

termed as the ‘UP’ source and a first switch. In the ‘UP’ state a first switch is turned on, the second 

switch is off and the ‘UP’ current source drives current into the loop filter. In the ‘DOWN state, a 

second switch is turned on, the first switch is turned off and a DOWN current source allows current 

to be driven from the input port of a loop filter to ground. Since the loop filter contains a minimum 

of one or two capacitors (one capacitor for second order PLL and two capacitors for third order 

PLL), the charge pumps control the input voltage to the loop filter. The loop filter is thus driven 

in one direction in the ‘UP’ state of the PFD and in a different direction when driven by the DOWN 

state of the PFD. A PLL with a charge pump type phase detector is known as a charge pump PLL 

(CP-PLL). A CP-PLL can be of any order depending on the transfer function of the loop filter. 

Table 5.1 describes all the terms and abbreviations used in this chapter including the associated 

symbols and units. Parameters 𝐾𝑉, 𝐾𝜙, 𝑁, 휁,  𝜔𝑛 are already defined in Chapter 4 for a second-order 

PLL. They apply also to a third-order PLL.    
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Table 5.1 List of Symbols for Analysis of PLL 

Parameter Name and short definition Unit and symbol 

Loop 

gain 

𝐾 =
𝐾𝑣𝐾𝜙

𝑁
    a parameter used to simplify many PLL 

performance criterion such as spur gain 

MHz/v-mA 

Spur 

gain 

Open loop transfer function of a PLL at its comparison 

frequency – which is the frequency at the output of the 

feedback divider and controls the level of leakage spurs 

𝐺𝑠𝑝𝑢𝑟 , dB 

Absolute 

Jitter 

A sequence of time intervals which measures the actual 

zeros crossings from the ideal zero crossing for any 

oscillator multiplied by the nominal oscillator frequency 

𝜎A
2, Radians 

Period 

Jitter 

A sequence of time intervals which measures the deviation 

of periods from the nominal period. It is a first order 

difference of absolute jitter 

𝜎ΔT , sec2 

Jitter 

variance 

Variance of jitter at a time interval of ΔT, its and integral of 

the product of power spectral density with sinc squared 

function 

𝜎ΔT
2 , sec2 

𝜔𝑐 
Loop Band-width (Loop BW) is the frequency where the 

gain of loop filter drops to 0 dB 
𝜔𝑐, radians/second 

Normalized 

Lock time 

Lock time divided by standard lock time. A function of 

damping coefficient and loop bandwidth 

Dimensionless 

quantity 

CE 
Characteristic Equation (CE), The equation formed by 

equating the denominator of a transfer function to zero. 
CE 

Polynomial 

roots 
Roots of a cubic polynomial equation NA 

 

5.2 A review of the existing literature for Cubic equation solutions 

 

 

A cubic equation is generally of the form  

𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑 = 0  (5.1) 
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In Equation (5.1), the coefficients 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 are termed as the coefficients of the cubic equation 

or polynomial. The Characteristic Equation (CE) of the denominator of the transfer function of a 

third-order PLL is a cubic equation. Solution of this CE determines the poles of the PLL. The roots 

of the characteristic equation determine whether the given third-order PLL is over-damped or 

under-damped, whether it is stable or not- either through Routh’s stability criterion or Nyquist 

[Dorf, 2005]. The roots of the CE also determine performance parameters of a third-order PLL 

such as its settling time, Noise Transfer Function (NTF), phase noise or jitter variance. 

The solution of a generalized cubic equation was studied by Cardan, [Bernard and Child, 2011]. 

[Nickalls, 1993] makes a fundamental contribution to applied mathematics by introducing a new 

set of parameters different from the 𝐺 and 𝐻 parameters defined by Cardan’s. The solution 

proposed by Nickalls for a cubic equation broadly results in three categories of nature of roots; all 

three roots are real and unequal; all three roots are real and equal; of the three roots one root is real 

and the other two are complex conjugate roots. [Nickalls, 1993] relates the discriminant of Cardan 

with the new parameters (𝑦𝑁 , 𝛿, ℎ and 𝑎) for a generalized cubic equation. 

5.3 Review of Literature on Stability, Jitter and Phase noise of Third-Order 

PLL 

 

This section presents a succinct review of literature related to stability, jitter and phase noise of a 

PLL. [ Gardner,1980] provided the two stability formulae for third-order PLLs. Gardner’s stability 

criterion can be used to check whether a PLL will be stable for a given combination or R1, C1 and 

C2 in Figure 5.1.  

[De-Smedt and Geilen, 1998] have proposed a simulation approach to evaluate the phase noise 

spectrum of a PLL based on a behavioral model of the VCO. Their approach has been compared 

to actual SPICE models of the PLL and the claim of the accuracy is up to 0.25dBc/Hz. 

[Hedayat, 1999] proposed one of the early event driven models of third-order charge pump PLL 

with a non-uniform sample time. [Lam and Razavi, 2000] have proposed a formula for the ratio of 

noise power to carrier power for a linear third-order PLL. Their formula utilizes the capacitance 

values of the loop filter, sensitivity of VCO, offset frequency in radians, resistance and -

𝑘𝑇(Boltzmann’s constant (𝑘) times absolute temperature (𝑇). 
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[Mansuri and Yang, 2002] have derived a closed-from expression for jitter at the output of a third-

order PLL based on buffer noise and VCO noise sources. Their expression for the output jitter 

variance is used in this chapter. They define a “figure of merit” which is related to the center 

frequency of the VCO and its Single Side Band Phase Noise (SSBPN). 

[Abramowitz, 2002] has addressed an application of Lyapunov’s stability and Sylvester’s theorem 

to third-order PLLs. The stability measures addressed in this chapter are related to linear models.   

Abramowitz proves that the form of the Lyapunov function is amenable for obtaining stability 

conditions. His results provide stability conditions for a PLL with a sinusoidal non-linearity. 

 [Musa, 2002] and [Rategh, 2000] have provided a closed-form expression for ratio of the phase 

noise power to carrier power an extension of this has been addressed in this chapter. 

[Carlosena, 2003] proposes the introduction of a low-pass filter in a PLL termed as a Przedpelski 

filter and he proposes the inclusions of an additional frequency feedback loop for accelerated 

locking. His paper also proposes a novel type of chirp tracking PLL featured with three feedback 

paths which can be used to track an input signal of linearly varying frequency.  

[Herzel and Piz, 2003] have defined a system level simulation model for a third-order PLL using 

the phase noise of VCO as an Ornstein-Uhlenbeck type of process. [Herzel, 2003] proposes a novel 

and unique simulation model for the jitter at the output of a second-order Type II PLL. His model 

considers white Gaussian model for the reference oscillator and white Gaussian noise for the VCO.  

[Heydari, 2004] provides a detailed analysis of PLL jitter due to power ground and substrate noise. 

He proposes a stochastic model for the substrate noise. 

 [He, 2007] provides a linear model for a third-order PLL. Her thesis describes the detailed design 

of VCO and loop filter of a third-order PLL. [He, 2007] has provided several new theoretical and 

practical contributions to the theory of third-order PLLs.  The normalized lock time versus phase 

margin characterization provided in the thesis exhibits a feature of minima of normalized lock time 

for certain phase margin values. The relative frequency error is defined as the ratio of the frequency 

deviation (difference between actual PLL output frequency and ideal frequency as commanded by 

input) from a final PLL frequency divided by the final frequency (the frequency that will be finally 

attained after an input frequency step has been applied to the PLL).  
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Figure 5.2 Lock Time versus Damping coefficient for a relative frequency Error  

(ax = 10-5) and relative frequency Error (bx= 10-4) following [He, 2005] 

 

Figure 5.2 is generated for a relative frequency error of 10 -4 and 10-5. The normalized lock time 

drops to a minimum as demonstrated in Figure 5.2 and in [He,2007]. 

[Thacker et. al., 2009] describe multiple state feedback mechanisms in PLLs used in 

synchronization of inverter in power systems. Their schemes incorporate feedback of cosine of 

phase error times the sine of the phase error to a modified phase frequency detector.  

[Abdelfattah et al., 2013] have performed studies of loop filter design and selection in PLL. Their 

approach leads to loop filter design of various orders for phase noise and stability of PLL. The 

proposed approach by the above authors yields filter designs for better stability for different orders 

of PLL. 

[Hangmann, 2013] describes a third-order event driven model for a digital PLL. His model 

expresses extended event driven behavioral model for higher order PLLs which have comparable 

accuracy to a SPICE simulation. The advantage of this model is the faster time of simulations 

without loss of accuracy as compared to a SPICE model.  

[Abidi, 2003] is a classic paper on phase noise and jitter in ring oscillators. His paper establishes 

the relationship between period jitter and phase noise in a ring oscillator, through the integral 

relationship which relates the PSD of the phase noise to the variance of period jitter. 

5.4 Transfer function of a third-order PLL in terms of PLL parameters 
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Analyzing external parameters of a third-order PLL through poles relates the geometry of the pole 

locations to the parameters such as PM and jitter to the pole values. This provides great insight 

into the third-order system.  

 The following analysis explores the nature of the Characteristic Equation (CE) of a third-order 

PLL. The roots of a third-order PLL, can be real or complex conjugate and three conditions can 

occur. Each condition refers to the coefficients of the CE of a third-order PLL.  The first condition 

yields three real and equal roots. The second condition yields three real and unequal roots. The 

third condition yields a pair of complex roots and one real root. The specific condition that emerges 

can be identified without computing the values of the roots by checking the value of the 

discriminant which is a function of the coefficients of the CE. The CE is formed by considering 

the denominator of the transfer function of the PLL. The transfer function of a linear third-order 

PLL of Type I is derived from its model shown in Figure 5.1. 

A PLL with a charge pump type phase detector is known as a Charge Pump PLL (CP-PLL). A CP-

PLL can incorporate a loop filter of any order. The order of the loop filter only affects the transfer 

function of loop filter. In this chapter a linear model of the charge pump is used to facilitate simpler 

derivation. The nonlinear effects of a CP-PLL are not considered in this chapter.  

The two distinct time constants for the third-order PLL (Figure 5.1) and the sum of the capacitances 

can be written in the form of the equations as explained in this section. The series(first) time 

constant of series RC is written as 

𝜏1 = 𝑅2𝐶2 (5.1) 

The parallel(second) time constant of parallel RC filter is written as 

𝜏2 = 𝑅2(𝐶2 ∥ 𝐶3) (5.2) 

Since usually the series capacitance of the loop filter exceeds the shunt capacitance or 𝐶2 >>  𝐶3  

      𝜏2 ≈ 𝑅2𝐶3 . In the general case one can write 

𝜏2 = 𝑅2
𝐶2𝐶3

(𝐶2 + 𝐶3)
 (5.3) 

The sum of the series and capacitances occurs frequently in transfer functions. It is written as 

𝐴0 = 𝐶2 + 𝐶3 (5.4) 

The notation 𝐴0 was first expressed by [Banerjee, 2006]. 𝐴0 is the sum of the series and parallel 

capacitances in the loop-filter. The transfer functions and feedback path follow the convention 
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followed by [Banerjee, 2006] and [He, 2007]. The transfer function (𝐺(𝑠)) of the forward path for 

the third-order PLL (Figure 5.1) can be written as 

𝐺(𝑠) =
𝐾𝑉𝐾∅
𝑠

 
(1 + 𝑠𝑅2𝐶2)

𝑠((𝐶2 + 𝐶3) + 𝐶2𝐶3𝑅2𝑠)
=
𝐾𝑉𝐾∅
𝑠

 
(1 + 𝑠𝜏1)

𝑠((𝐴0) + 𝐴1𝑠)
 (5.5) 

In Equation (5.5) parameters 𝐾𝑉, 𝐾∅ have been defined in chapter 4. Constant  𝐴1 = 𝐶2𝐶3𝑅2  in 

Equation (5.5). The transfer function 𝐻(𝑠) of the feedback path can be written as  

𝐻(𝑠) =
1

𝑁
 (5.6) 

The transfer function of the third-order PLL can be written as  

𝑇𝐹(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 (5.7) 

Upon substituting the values of 𝐺(𝑠) and 𝐻(𝑠) from Equations (5.5) and (5.6) in Equation (5.7), 

the transfer function of a third-order PLL is written as  

𝑇𝐹(𝑠) = 
(
𝐾

𝑁
)𝑁(1+𝑠𝜏1)

(𝑠3𝐴1+𝑠2𝐴0+𝑠
𝐾

𝑁
𝜏1+

𝐾

𝑁
)
=

(
𝐾

𝑁
)𝑁(1+𝑠𝜏1)

𝐴1(𝑠3+𝑠2
𝐴0

𝐴1
+𝑠

𝐾

𝑁𝐴1
𝜏1+

𝐾

𝑁𝐴1
)
=

(
𝐾

𝐴1
)(1+𝑠𝜏1)

(𝑠3+𝑠2
1

𝜏2
+𝑠𝑚

1

𝜏2
𝜏1+𝑚

1

𝜏2
)
 (5.8) 

After simplification, the transfer function (𝑇𝐹(𝑠)) of the third-order PLL can be written as  

𝑇𝐹(𝑠) =
(
𝐾
𝐴1) (1 + 𝑠𝜏1)

(𝑠3 + 𝑠2
1
𝜏2
+ 𝑠𝑚

1
𝜏2
𝜏1 +𝑚

1
𝜏2
)
 (5.9) 

The CE of the third-order PLL or the denominator of 𝑇𝐹(𝑠) can be written as 

(𝑠3 + 𝑠2
1

𝜏2
+ 𝑠𝑚

1

𝜏2
𝜏1 +𝑚

1

𝜏2
) = 0 (5.10) 

The new constant 𝑚 is written as  

𝑚 = (
𝐾

𝑁𝐴0
) (5.11) 

In Equation (5.11) 𝑚 = (
𝐾

𝑁𝐴0
) is a gain factor(

𝐾

𝑁
) divided by sum of capacitances (𝐴0 = 𝐶2 +

𝐶3). The constant 𝑚 has been used throughout this chapter.  Equation (5.9) states that 𝑚, 𝜏1, 𝜏2 

control the poles of a third-order PLL.  The pole values in turn control the unit step response, lock 

time, and other performance parameters of a third-order PLL. 

This expression for the CE of a third-order PLL can be compared with the canonical CE for a third-

order system as 
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𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑 = (𝑠
3
+
1

𝜏2
𝑠2 +𝑚

𝜏1
𝜏2
𝑠 +𝑚

1

𝜏2
) = 0 (5.12) 

Equating the coefficients of the powers of 𝑠 in Equation (5.12), one obtains: 

𝑎 = 1 (5.13) 

𝑏 =
1

𝜏2
 (5.14) 

𝑐 = 𝑚
𝜏1
𝜏2

 (5.15) 

𝑑 =
𝑚

𝜏2
 (5.16) 

 

Equation (5.13-5.16) relates to the canonical coefficients of the characteristic equation of third-

order system to the PLL parameters thereby allowing stability criteria such as Routh stability to be 

applied to the PLL. This approach of equating coefficients has been used multiple times in this 

chapter. All other control theoretical techniques such as Routh and Nyquist can be applied to the 

PLL. From Routh stability standpoint two equations which determine stability of a third-order PLL 

can be added following [Dorf, 2005]. The inequalities for the coefficients following Routh-

Hurwitz criteria are written as 

𝑎𝑑 − 𝑏𝑐 > 0 𝑎𝑛𝑑 𝑎, 𝑏, 𝑐, 𝑑 > 0 (5.17) 

Using the PLL parameters by substituting Equations (5.13) to (5.16) Equation (5.17) can be written 

as  

𝑚

𝜏2
− (𝑚

𝜏1
𝜏2
)
1

𝜏2
> 0 (5.18) 

5.5 Nickalls’s Parameters for all roots 
 

To relate the roots of CE to the PLL parameters, this section makes use of Nickalls’s method 

[Nickalls, 1993] to solve for roots of CE of a third order PLL in terms of its parameters. This 

section also provides performance criteria of PLL from the roots of its CE. To solve for the roots 

the CE, the parameters in Equations (5.12-5.15) must be related to certain intermediate parameters. 

Then these intermediate parameters can be used to develop expressions for the roots.  

The subsection attempts to highlight the parameters that one needs to compute the roots of a cubic 

PLL. These parameters are used and are related to the PLL performance parameters such as phase 
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margin and jitter. This section establishes the viability of Nickalls’s approach for solution of cubic 

equation. Parameters 𝑎 , 𝑏, 𝑐, 𝑑 have been explained in Equation (5.12) to (5.15).  

First parameter as defined by [Nickalls, 1993] (𝑥𝑁), in terms of PLL parameters is expressed as 

𝑥𝑁 = −
𝑏 

3𝑎
= −

1

3𝜏2
 (5.19) 

Second parameter as defined by [Nickalls, 1993], in terms of PLL parameters is written as 

 

 𝛿2 =
𝑏2 − 3𝑐

9
=

1

(3𝜏2)2
−
𝑚𝜏1

3𝜏2
 (5.20) 

Third parameter as defined by [Nickalls, 1993], in terms of PLL parameters is written as  

𝑦𝑁 =
2𝑏3

27
−
𝑏𝑐

3
+ 𝑑 =  

2

27
(
1

𝜏2
 )
3

−
1

3
( 
1

𝜏2
 ) ( 

𝑚𝜏1

𝜏2
) + (

𝑚

𝜏2
) (5.21) 

Fourth parameter as defined by [Nickalls, 1993], in terms of PLL parameters after squaring can be 

expressed as 

ℎ2 = 4𝛿6 (5.22) 

Substituting the value of 𝛿2, the parameter ℎ is expressed in terms of coefficients  𝑏 and 𝑐 as 

ℎ2 = 4(
𝑏2 − 3𝑐

9
)

3

= 4

(

 
(
1
𝜏2
)
2

− 3
𝑚𝜏1
𝜏2

9

)

 

3

 (5.23) 

Fifth parameter defined by [Nickalls, 1993] in terms of PLL parameter is written as 

cos 3휃 =
−𝑦𝑁
ℎ

= −{

2
27
(
1
𝜏2
 )
3

−
1
3
( 
1
𝜏2
 ) ( 

𝑚𝜏1
𝜏2

) + (
𝑚
𝜏2
) 

2(
(
1
𝜏2
)
2

− 3
𝑚𝜏1
𝜏2

9 )

3/2
} 

(5.24) 

The discriminant (𝛥) of a third-order PLL (with CE) can be written following [Barnard and 

Child,2011] as 

𝛥 = 18𝑏𝑐𝑑 − 4𝑏3𝑑 + 𝑏2𝑐2 − 4𝑐3  − 27𝑑2  (5.25) 

The parameters required for computation of the Nickalls’s parameters 𝑥𝑁 ,  𝛿
2 𝑎𝑛𝑑 𝑦𝑁 [Nickalls, 

1993] are independent of whether the third-order PLL has two complex conjugate roots or all real 

roots. 
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Table 5.2 Discriminants and Cardano’s parameter for a PLL 

Parameter Expression 

Discrimin

ant  
Δ = 18(

1

𝜏1
)(𝑚

𝜏2
𝜏1
) (
𝑚

𝜏1
) − 4(

1

𝜏1
)

3

(
𝑚

𝜏1
) + (

1

𝜏1
)

2

(𝑚
𝜏2
𝜏1
)
2

−4(𝑚
𝜏2
𝜏1
)
3

− 27(
𝑚

𝜏1
)

2

 

 

                                                                                                               

                                                                                                                           (5.26) 

Setting   Δ = 0 in Equation (5.24) allows the terms with positive and negative signs 

to be separated  

18
𝑚2𝜏2

𝜏1
3 +

𝑚2𝜏2
2

𝜏1
4 = 4(

1

𝜏1
)
4

(𝑚) + 4 (
𝑚𝜏2
𝜏1

)

3

+ 27(
𝑚

𝜏1
)

2

 () 

 (5.27) 

Canceling the common factor of 𝑚 τ1
2⁄  on both sides of Equation (5.26) and 

rearranging the terms, 

ΔLHS =  18
mτ2

τ1
+

mτ2
2

τ1
2                                                                                        (5.28) 

ΔRHS =
4

τ1
2 + 4

m2τ2
3

τ1
+ 27m                                                                     (5.29)                

The inequalities for the three cases have been duly described in [Barnard and 

Child,2011] 

If Δ < 0  or equivalently ΔLHS − ΔRHS <0, the PLL has complex roots 

If Δ > 0  or equivalently ΔLHS − ΔRHS >0, the PLL has real roots 

If Δ = 0  or equivalently ΔLHS = ΔRHS , the PLL has real and equal roots 

The signs of discriminant are different from the conditions described by Nickalls’s 

Equations.  

Parameter 

𝐺 of 

Cardan 

Characteristic Equation = 𝑠3 + 𝑠2 (
1

𝜏1
) + 𝑠 (

𝑚

𝜏1
) 𝜏2 + (

𝑚

𝜏1
)                (5.30) 

To derive 𝐺 and 𝐻  parameters of Cardan [Barnard and Child, 2011], a cubic CE 

of the form must be written,  

𝑠3 + 3𝑏1𝑠
2 + 3𝑐1𝑠 + (

𝑚

𝜏1
) = 0 () 

(5.31) 
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This is a slightly different form of the CE (different from Equation (5.9)) which is 

written to maintain conformity with the original derivations of [Barnard and Child, 

2011]. 

Equating the powers of the coefficients of Equation (5.9) with the corresponding 

canonical form of CE of cubic equation  

𝑏1 = (
1

3𝜏1
)                                                                                               (5.32)  

𝑐1 = (
𝑚𝜏2

3𝜏1
)                                                                                              (5.33)                    

𝑑 =  (
𝑚

𝜏1
)                                                                                                           (5.34) 

The parameter 𝐺 of Cardan, [Barnard and Child, 2011]  can be written in terms of 

PLL parameters as, 

𝐺 = 𝑑 − 3𝑏1𝑐1 + 2(𝑏1)
3                                                                                (5.35) 

Substituting 𝑎1, 𝑏1, 𝑐1, 𝑑1 in Equation (5.34), parameter 𝐺 is written as, 

𝐺 = (
𝑚

𝜏1
) − 3 (

1

3𝜏1
) (

𝑚𝜏2

3𝜏1
) + 2 (

1

3𝜏1
)
3

                                                           (5.36) 

Parameter 

H of 

Cardan 

 𝐻 = 𝑎𝑐1 − 𝑏1
2
                                                                                       (5.37)                                              

Substituting for 𝑏1 and 𝑐1 in Equation (5.36), the parameter 𝐻 of Cardan  is written 

as 

𝐻 = (
𝑚𝜏2

𝜏1
) − (

1

3𝜏1
)
2

                                                                               (5.38) 

Relations

hip of  

𝐺 and 𝐻 

To the 

discrimina

nt 

As provided in [Bernard and Child, 2011], the discriminant for any cubic system 

has been historically described in terms of  𝐺 and 𝐻 Parameters of Cardano. 

Δ = G2 + 4H3 for a = 1                                                                                  (5.39) 

It determines the whether the roots are real or complex 

 

The description of the discriminant (Equation (5.26)), Cardano’s 𝐺 (Equation (5.35)) and 𝐻 

(Equation (5.37)) in term of PLL parameters has been done in this thesis for the first time.  
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 5.6 Application of the Vieta’s Circle for the location of the three real roots of a 

third-order PLL  

 

This section presents a complete geometrical interpretation of a PLL with three real and distinct 

roots, that is the primary equation (5.11) has three real and unequal roots. The construction of the 

Vieta’s circle is presented with greater detail than was presented in [Nickalls, 1993]. Next the 

locations of poles are related to the three Nickalls’s parameters 𝛿 , 휃 and 𝑥𝑁 . Finally, the 

parameters of PLL are expressed in terms of the geometry of the Vieta’s circle. In Figure 5.3, the 

perpendiculars, the location of the center (𝑥𝑁 , 0) or (−
1

3𝜏2
, 0)  and the values of the three roots 

are illustrated. 

 

Figure 5.3: Construction of the Vieta’s circle with center at (−
𝟏

𝟑𝝉𝟐
, 𝟎) and radius 2𝜹 

 

The original construction of the Vieta’s circle in [Nickalls, 1993] lacked a detailed description and 

it has been now added to this chapter. Smaller the time constant of the LPF (𝜏2) , the further away 

the center of the Vieta’s circle is from the origin. 

In Figure 5.3, the center of the circle (𝑥𝑁 , 0) is located following [Nickalls, 1993]. 𝑥𝑁 is the 𝑥 

coordinate of the center of Vieta’s circle and 𝑦 co-ordinate of the center of circle is 0;2𝛿 is the 
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radius of Vieta’s circle and 휃 is the rotation angle in Vieta’s circle. Since the poles  𝛼, 𝛽 and γ, the 

associated equations for the poles are written as 

𝛼 = 𝑥𝑁 + 2𝛿𝑐𝑜𝑠휃 (5.40) 

𝛽 = 𝑥𝑁 + 2𝛿 cos (휃 +
2𝜋

3
) (5.41) 

𝛾 = 𝑥𝑁 + 2𝛿 cos (휃 +
4𝜋

3
)  (5.42) 

It is necessary to describe the construction of the Vieta’s circle and the subsequent location of the 

3 poles. The first root can be located by considering the second term of Equation (5.40). To locate 

point B, one must first consider line OB along the X axis of with its length equal to the radius. 

Then the radius (OB) is rotated through an angle 휃 anti-clockwise to form line OA (same length 

as OB). Then line AB which is perpendicular to the X axis is dropped from point A to the X axis.  

From the triangle OAB, the location of the first root is written as 

𝛼 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑒 (𝑂) +  𝑂𝐴𝑐𝑜𝑠휃 (5.43) 

To locate the second root, one must first examine the second term on the RHS of Equation (5.41). 

One must rotate the phasor OA by multiplying it with 𝑒𝑗2𝜋 3⁄ (this constitutes a120o anticlockwise 

rotation). One must drop a second perpendicular from the point C down to the X axis. Thus, 

geometrically the location of the second real pole can be written as 

𝛽 = 𝑥𝑁 + 2𝛿 cos (휃 +
2𝜋

3
) = 𝑥𝑁 − 2𝛿 cos (

𝜋

3
− 휃)) (5.44) 

Finally, to compute the location of third root, one must apply the following transformation, 

considering it is in the third quadrant between 𝜋 and 
3𝜋

2
,one must rotate the phasor OA by 

multiplying it with 𝑒𝑗4𝜋 3⁄ , (2400 anticlockwise). This implies that phasor OD is obtained by 

multiplying the phasor OA with  𝑒𝑗4𝜋 3⁄ . The location of third pole (Equation 5.42) is written as 

𝛾 = 𝑥𝑁 + 2𝛿 cos (휃 +
4𝜋

3
) = 𝑥𝑁 − 2𝛿 sin (

𝜋

6
− 휃) (5.45) 

The next step is the establishment of the analytical connection between the real poles of a third-

order PLL and the Nickalls’s parameters 𝛿, 휃 and  𝑥𝑁. In a matrix form, the Equations (5.40, 5.41 

and 5.42) can be written as  

[

𝛼
𝛽
𝛾
] =

[
 
 
 
 
1 1 0

1 𝑐𝑜𝑠
2𝜋

3
−𝑠𝑖𝑛

2𝜋

3

1 𝑐𝑜𝑠
4𝜋

3
−𝑠𝑖𝑛

4𝜋

3 ]
 
 
 
 

[

𝑥𝑁
2𝛿𝑐𝑜𝑠휃
2𝛿𝑠𝑖𝑛휃

] (5.46) 
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One can compute of the radius of the Vieta’s circle if the roots of the third-order PLL are already 

known. If the roots(𝛼, 𝛽, 𝛾) are known, the parameters 𝑥𝑁 , 2𝛿𝑐𝑜𝑠휃, and 2𝛿𝑠𝑖𝑛휃   must be 

computed by inverting the 3x3 matrix in Equation (5.46). The closed-form expressions for 

𝑥𝑁 , 2𝛿𝑐𝑜𝑠휃, 2𝛿𝑠𝑖𝑛휃  can be written as  

[
𝑥𝑁

2𝛿𝑐𝑜𝑠휃
2𝛿𝑠𝑖𝑛휃

] =

[
 
 
 
 
1 1 0

1 𝑐𝑜𝑠
2𝜋

3
−𝑠𝑖𝑛

2𝜋

3

1 𝑐𝑜𝑠
4𝜋

3
−𝑠𝑖𝑛

4𝜋

3 ]
 
 
 
 
−1

[

𝛼
𝛽
𝛾
] (5.47) 

Carrying out the 3x3 matrix inversion analytically of Equation (5.44), one obtains the closed-form 

expressions for the parameters of the Vieta’s circle in terms of the three roots. 

The combined three equations can be written as  

 𝑥𝑁 =
1

3
(𝛼 + 𝛽 + 𝛾) (5.48) 

2𝛿𝑐𝑜𝑠휃 = (
2

3
𝛼 −

𝛽

3
−

𝛾

3
) (5.49) 

2𝛿𝑠𝑖𝑛휃 = (−0.5774𝛽 + 0.5774𝛾) (5.50) 

 

Equations (5.48) to (5.50) connect the roots of the third-order charge pump PLL to the parameters 

of the Vieta’s circle which are real linear combinations of the roots. Once 𝑥𝑁 , 2𝛿𝑐𝑜𝑠휃 𝑎𝑛𝑑 2𝛿𝑠𝑖𝑛휃  

are computed, they are required to compute the radius (2𝛿) of the Vieta’s circle and the Vieta’s 

angle (휃) as a function of the roots. This establishes the relationship between the parameters of the 

Vieta’s circle and the roots of a third-order PLL.  

From the Equations (5.49) and (5.50), the expression for Vieta’s angle 휃 can be written as 

𝑡𝑎𝑛휃 =
(−0.5774𝛽 + 0.5774𝛾)

(
2
3𝛼 −

𝛽
3 −

𝛾
3)

 
(5.51) 

 

Equation (5.51) relates Vieta’s angle (휃) of [Nickalls, 1993] to the values of the three real roots 

and it has not been discussed in open literature. Squaring both sides of Equations (5.49) and (5.50) 

and simplifying leads to a new expression for the square of the radius of Vieta’s circle,  

𝛿2 =
1

4
{(
2

3
𝛼 −

𝛽

3
−
𝛾

3
)
2

+ (−0.5774𝛽 + 0.5774𝛾)2} (5.52) 
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Equation (5.52) is a relationship between the roots of the CE of Third order PLL and the half- 

radius of the Vieta’s Circle (𝛿). This relationship between the half-radius of Vieta’s circle and the 

three real roots of third-order PLL constitutes a new contribution and has not been discussed in the 

open literature. Equations (5.49 and 5.50) relate the three real roots of third-order PLL to the two 

parameters 𝛿and 휃 which were originally described by [Nickalls,1993]. These expressions are not 

found in the open literature for a third-order PLL. 

Finally, an analytical derivation is performed to compute the product of the sensitivities of VCO 

and PFD when the real poles are known. This derivation relates the real poles of a third order PLL 

to the capacitance ratio. The next phase relates the coefficients of the CE to sums and products of 

its roots. The denominator of closed loop transfer function of third order PLL is written as 

(𝑠3 +
1

𝜏2
𝑠2 +𝑚

𝜏1
𝜏2
𝑠 + 𝑚

1

𝜏2
) (5.53) 

Following [Nickalls, 1993, Dickson, 1922] the product of the roots is equal to the coefficient of 

the 0th power of 𝑠 in Equation (5.53) 

𝛼𝛽𝛾 = −
𝑚

𝜏2
 (5.54) 

The negative sign on the right side of Equation (5.54) is explained by ([Barnard and Child, 2017, 

Nickalls, 1993]). Now the sum of the three roots is equal to the coefficient of the second power of 

𝑠2 (in Equation (5.53). 

(𝛼 + 𝛽 + 𝛾) = −
1

𝜏2
 (5.55) 

Substituting Equation (5.55) in Equation (5.54) and simplifying, one obtains 

𝑚 =
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
 (5.56) 

The parameter 𝑚 is directly related to the sensitivity of VCO, the sensitivity of PFD, the divide 

ratio and the time constant 𝜏1,where 𝜏1is the time constant of the series path, 𝜏1 = 𝑅2𝐶2. For a 

stable PLL with 3 real poles or 2 complex and 1 real pole both the numerator and the 

denominator of Equation (5.56) are negative.  

The divider ratio (𝑁) of feedback path is estimated as a division of the output and input 

frequencies of the PLL. 

𝑁 = (𝑓𝑜𝑢𝑡/𝑓𝑖𝑛) (5.57) 
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The ratio 𝑁 will be an integer for integer PLLs and a fractional number for fractional-N PLLs.  The 

divider ratio is related to a fixed input frequency ( 𝑓𝑖𝑛) and a fixed output frequency (𝑓𝑜𝑢𝑡) of the 

PLL. For real roots and an over-damped PLL, the approach to estimate  𝐾𝑉 , 𝐾𝜙 and 𝑁 from the 

roots of CE of PLL is rather straight forward.  

From Equation (5.56), the parameter ‘𝑚’ of a third-order PLL is determined through the expression 

𝑚 =
𝛼𝛽𝛾

(𝛼+𝛽+𝛾)
 , we also know 𝑚 =

𝐾𝑉 𝐾𝜙

𝑁𝐴0
  from [He,2007] and Equation (5.11) 

From the expression for the PLL parameter 𝑚 , (Equation 5.56) the quantities 𝑁 the VCO 

sensitivity 𝐾𝑉, the PFD detector sensitivity 𝐾𝜙 can be related to the roots as 

𝑚 =
𝐾𝑉 𝐾𝜙

𝑁𝐴0
=

𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
   (5.58) 

 

In Equation (5.58), 𝑁 is the divider ratio of the PLL and the variable( 𝐴0=𝐶2 + 𝐶3) is the sum of 

the loop filter capacitances. Equation (5.58) connects the product of sensitivities of the VCO and 

the PFD to the three poles of a third-order PLL. The function 
𝐾𝑉 𝐾𝜙

𝑁𝐴0
 has been termed to as a “loop 

gain” by [He, 2007]. 

The final parameter of the PLL that should be computable from the roots of the CE is the 

capacitance ratio 𝑏𝑐 which is expressed as 

𝑏𝑐 =
𝜏1
𝜏2
=

𝐶2

𝐶2||𝐶3
 (5.59) 

From Equation (5.20) the value of 𝛿2 is written as 

𝛿2 = 
1

(3𝜏2)2
−
𝑚𝜏1
3𝜏2

 (5.60) 

Rearranging the terms in Equation (5.60), one obtains:  

𝑚𝜏1
3𝜏2

=
1

(3𝜏2)2
− 𝛿2 (5.61) 

Substituting the value of 𝑚 from Equation (5.56) the capacitance ratio (𝑏𝑐) can be expressed as  

𝑏𝑐 =
3

𝑚
{

1

(3𝜏2)2
− 𝛿2} =

3

𝛼𝛽𝛾
(𝛼 + 𝛽 + 𝛾)

{
(𝛼 + 𝛽 + 𝛾)2

9
− 𝛿2} (5.62) 

By substituting the value of 𝛿2 from Equation (5.52) into Equation (5.62), one obtains: 
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𝑏𝑐 =
3(𝛼 + 𝛽 + 𝛾)

𝛼𝛽𝛾
{
(𝛼 + 𝛽 + 𝛾)2

9
− (

1

4
{(
2

3
𝛼 −

𝛽

3
−
𝛾

3
)
2

+ (−0.5774𝛽 + 0.5774𝛾)2})} (5.63) 

 

Equation (5.63) establishes the relationship between the three real roots (𝛼, 𝛽, 𝛾) and the 

capacitance ratio (𝑏𝑐). This new relationship has not been reported in open literature. From 𝑏𝑐 it is 

possible to estimate the second time constant (𝜏1) 

𝜏1  = 𝑏𝑐𝜏2 (5.64) 

The complete expression for the time constant (𝜏1)can be written in terms of the poles as 

𝜏1 =
3(𝛼 + 𝛽 + 𝛾)

𝛼𝛽𝛾
{
(𝛼 + 𝛽 + 𝛾)2

9
− (

1

4
{(
2

3
𝛼 −

𝛽

3
−
𝛾

3
)
2

+ (−0.5774𝛽 + 0.5774𝛾)2})} {−
1

(𝛼 + 𝛽 + 𝛾)
} (5.65) 

Once the capacitance ratio (𝑏𝑐) and sum of capacitances (𝐴0 = 𝐶2 + 𝐶3) are calculated, it is 

possible to calculate a known parameter such as Phase Margin (PM). One can calculate the PM of  

𝑃𝑀 = (𝑡𝑎𝑛−1 (
𝜔𝑐
𝜔𝑧
) − 𝑡𝑎𝑛−1 (

𝜔𝑐
𝜔𝑝2

)) (5.66) 

A derivation allows the connectivity to be established between the roots of the CE and the phase 

margin. Comparing the denominators of the closed-loop transfer functions. The first denominator 

(first form of the CE) expression is written as 

(𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1
𝜏2

+
𝑚

𝜏2
) = 0  (5.67) 

The second denominator expression (second form of the CE) is written as 

{ 𝑠3 + 𝑠2𝜔𝑝2 + 𝑠𝜔𝑝2𝜔𝑐 +𝜔𝑧𝜔𝑝2𝜔𝑐} = 0 (5.68) 

 

The second denominator expression has been given by [He,2007]. Next, the parameters of the first 

denominator((𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1

𝜏2
+

𝑚

𝜏2
)  are expressed in terms of those of the second 

denominator{ 𝑠3 + 𝑠2𝜔𝑝2 + 𝑠𝜔𝑝2𝜔𝑐 +𝜔𝑧𝜔𝑝2𝜔𝑐}. This is accomplished by taking ratios of 

coefficients in the first and second denominator expressions.   

Firstly, taking the ratio of the coefficients for 𝑠0 and 𝑠2 in the first denominator expression and 

the second denominator expressions 

𝑚
𝜏2
1
𝜏2

=
𝜔𝑧𝜔𝑝2𝜔𝑐

𝜔𝑝2
= 𝜔𝑧𝜔𝑐 (5.69) 
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By cancelling the constant terms in Equation (5.69) one can write the PLL constant 𝑚 in terms of 

its loop BW and zero as 

𝑚 = 𝜔𝑧𝜔𝑐 (5.70) 

By taking the ratio of the coefficients for 𝑠0 an 𝑠1 in the first denominator expression and the 

second denominator expressions 

𝑚
𝜏2
𝑚𝜏1
𝜏2

=
𝜔𝑧𝜔𝑝2𝜔𝑐

𝜔𝑝2𝜔𝑐
= 𝜔𝑧 (5.71) 

 

Lastly taking the ratio of the coefficients for 𝑠1 and 𝑠2 in the first and second denominator 

𝑚𝜏1
𝜏2
1
𝜏2

=
𝜔𝑝2𝜔𝑐

𝜔𝑝2
= 𝜔𝑐 𝐼𝑚𝑝𝑙𝑖𝑒𝑠 𝑚𝜏1 = 𝜔𝑐   (5.72) 

From Equation (5.67) can expression can be written for the Loop Bandwidth (𝜔𝑐) in terms of roots, 

the numerator expression in (5.72) equals the sum of the roots taken two at a time. The denominator 

is Equation (5.72) equals the sum of the roots with a negative sign. This follows [Nickalls, 1993 

and Barnard and Child, 2011]. 

𝜔𝑐 =

𝑚𝜏1
𝜏2
1
𝜏2

=
(𝛼𝛽+𝛽𝛾+ 𝛾𝛼)

−(𝛼+𝛽+ 𝛾)
 (5.73) 

 Considering the sum of the roots of the CE and equating it to the coefficient of 𝑠0 one can write   

1

𝜏2
= 𝜔𝑝2 = −( 𝛼 + 𝛽 + 𝛾) (5.74) 

One additional derived expression will help to close this by using Equations (5.69) and (5.65) and 

substituting the value of 𝑏𝑐 from Equation (5.61), 

𝜔𝑝2

𝜔𝑧
=

1
𝜏2
1
𝜏1

= 𝑏𝑐 (5.75) 

The ratios in Equations (5.68-69) should be used to compute a new expression for Phase Margin. 

The original equation for phase margin is given by [He, 2007]. Taking the tangent of both sides of 

Equation (5.63) one obtains a new equation  
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𝑡𝑎𝑛𝜙 =

𝜔𝑐𝑏𝑐
𝜔𝑝2

−
𝜔𝑐
𝜔𝑝2

1 + (
𝜔𝑐
𝜔𝑧
) (

𝜔𝑐
𝑏𝑐𝜔𝑧

)
 (5.76) 

Now applying the substitutions derived in Equations (5.68) and (5.69) one obtains an expression 

for the tangent of the PM in terms of the roots. Secondly, the ratio 
𝜔𝑐

𝜔𝑧
 is expressed in term of the 

ratio 
𝜔𝑐

𝜔𝑝2
  using Equation (5.70). Finally, the following substitutions are made 𝜔𝑐 = −

(𝛼𝛽+𝛽𝛾+𝛾𝛼)

(𝛼+𝛽+𝛾)
  

using Equation (5.73) and 𝜔𝑝2 = −(𝛼 + 𝛽 + 𝛾) using Equation (5.74), the expression for PM is 

written as   

𝑡𝑎𝑛𝜙 =

(
𝜔𝑐
𝜔𝑧
) − (

𝜔𝑐
𝜔𝑝2

)

1 + (
𝜔𝑐
𝜔𝑧
) (

𝜔𝑐
𝜔𝑝2

)
=

(
𝜔𝑐
𝜔𝑝2

) 𝑏𝑐 − (
𝜔𝑐
𝜔𝑝2

)

1 + (
𝜔𝑐
𝜔𝑝2

) 𝑏𝑐 (
𝜔𝑐
𝜔𝑝2

)
 (5.77) 

 

Substituting the values in Equation (5.77) one obtains 

𝑡𝑎𝑛𝜙 =

𝜔𝑐
𝜔𝑝2

(𝑏𝑐 − 1)

1 +
𝜔𝑐2𝑏𝑐
𝜔𝑝2
2

=

(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)
(𝛼 + 𝛽 + 𝛾)2

(𝑏𝑐 − 1)

1 +
(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)
(𝛼 + 𝛽 + 𝛾)2

𝑏𝑐
(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)
(𝛼 + 𝛽 + 𝛾)2

 (5.78) 

Equation (5.78) relates the tangent of the PM with the root values and the capacitance ratio. 

Equation (5.78) is an original contribution of this chapter and not found in the open literature.  

5.7 Relationship between Phase margin and Vieta’s angle for all 3 real poles 

 

The first equation (related to expression for  𝛿2  in [Nickalls, 1993]) relates the capacitance ratio 

with the Vieta’s circle center (𝑥𝑁) and its half radius (𝛿). The parameters 𝑏 and 𝑐 are replaced by 

PLL parameters following Equations (5.14) and (5.15), 

 𝛿2 =
𝑏2 − 3𝑐

9
=

1

(3𝜏2)2
−
𝑚𝜏1

3𝜏2
=

1

(3𝜏2)2
−
𝑚𝑏𝑐
3

 (5.79) 

In Equation (5.79) 𝑏𝑐 is the capacitance ratio. By multiplying both sides of Equation (5.79) by the 

constant 3 one can write a new equation as  
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3 𝛿2 =
1

3(𝜏2)
2
−𝑚𝑏𝑐 (5.80) 

Substituting the value of 𝑚  from Equation (5.56) one obtains: 

3 𝛿2 =
1

3(𝜏2)
2
−

𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
𝑏𝑐 =

1

3(𝜏2)
2
−
𝛼𝛽𝛾

3𝑥𝑁
𝑏𝑐 (5.81) 

Substituting the expressions for the three roots from Equations (5.46) - (5.48) in terms of 𝑥𝑁  and 

2𝛿, one the following expression for the product of the roots: 

𝛼𝛽𝛾 =  (𝑥𝑁 + 2𝛿𝑐𝑜𝑠휃) (𝑥𝑁 + 2𝛿 cos (휃 +
2𝜋

3
)) (𝑥𝑁 + 2𝛿 cos (휃 +

2𝜋

3
)) (5.82) 

 

Simplifying Equation (5.82) one obtains: 

𝛼𝛽𝛾 = 𝑥𝑁
3 −

3

4
𝑥𝑁(2𝛿)

2 +
1

4
(2𝛿)3(cos3(휃) − 3𝑐𝑜𝑠휃 + 3cos3(휃)) (5.83) 

Further simplifying Equation (5.83) one obtains: 

𝛼𝛽𝛾 = 𝑥𝑁
3 −

3

4
𝑥𝑁(2𝛿)

2 +
1

4
(2𝛿)3𝑐𝑜𝑠(3휃) = 𝑁𝜃 (5.84) 

The new intermediate variable 𝑁𝜃 is used to simplify Equation (5.84). Substituting the new 

intermediate variable 𝑁𝜃 back into Equation (5.81) 

 3𝛿2 =
1

3(𝜏2)
2
− 𝑁휃𝑏𝑐 (5.85) 

By substitution of the value of 𝜏2 =
1

(𝛼+𝛽+𝛾)
=

1

3𝑥𝑁
 into Equation (5.85) one obtains: 

(𝑁휃)𝑏𝑐 =
1

3(𝜏2)2
−  3𝛿2 = 

9𝑥𝑁
2

3
−  3𝛿2 = 3𝑥𝑁

2 −  3𝛿2 (5.86) 

Dividing both sides of Equation (5.86) by 𝑁𝜃 𝑏𝑐 =
3𝑥𝑁

2− 3𝛿2

(𝑥𝑁
3−

3

4
𝑥𝑁(2𝛿)2−

1

4
(2𝛿)3(𝑐𝑜𝑠3𝜃))

 

𝑏𝑐 =
3𝑥𝑁

2 − 3𝛿2

𝑥𝑁
3 −

3
4𝑥𝑁

(2𝛿)2 −
1
4
(2𝛿)3(𝑐𝑜𝑠3휃)

=
𝑀휃

𝑁휃
 (5.87) 

Equation (5.87) is written in a compact form as the numerator expression 3𝑥𝑁
2 − 3𝛿2 is equated to 

a new intermediate variable 𝑀𝜃 

𝑀𝜃 = 3𝑥𝑁
2 − 3𝛿2 (5.88) 

 



 
 

185 
 

The second expression relates the PLL loop BW (𝜔𝑐) and phase margin with the capacitance ratio 

(𝑏𝑐). This expression can be traced back to [He,2007] and modified with the substation 
𝜔𝑐

𝜔𝑝2
= 𝜔𝑐𝜏2 

following Equation (5.71), the tangent of the PM of a third order PLL is written as 

𝑡𝑎𝑛𝜙 =

(𝜔𝑐𝜏2) − (
𝜔𝑐𝜏2
(𝑏𝑐)

)

1 + (𝜔𝑐𝜏2) (
𝜔𝑐𝜏2
(𝑏𝑐)

)
 (5.89) 

Now let us substitute the intermediate variable 

 𝛾𝑐 = 𝜔𝑐𝜏2     (5.90) 

From the Equation (5.89) a new expression for the capacitance ratio 𝑏𝑐  is written as   

𝑏𝑐 = (
(𝛾𝑐

2𝑡𝑎𝑛𝜙 + 𝛾𝑐)

𝛾𝑐 − 𝑡𝑎𝑛𝜙
) (5.91) 

the expressions for 𝑏𝑐  in Equation (5.87) and (5.91) are equivalent. This allows us to derive a new 

relationship between Vieta’s angle and phase margin is written as 

(
(𝛾𝑐

2𝑡𝑎𝑛𝜙 + 𝛾𝑐)

𝛾𝑐 − 𝑡𝑎𝑛𝜙
) =

𝑀𝜃

𝑁𝜃
 (5.92) 

By cross multiplying both sides of (5.92) and simplifying for 𝑡𝑎𝑛𝜙 

𝑁𝜃𝛾𝑐
2𝑡𝑎𝑛𝜙 +𝑀𝜃𝑡𝑎𝑛𝜙 = 𝑀𝜃𝛾𝑐 − 𝑁𝜃𝛾𝑐 (5.93) 

From Equation (5.93) one can derive the final expression relating Vieta’s angle and the PM of a 

third-order PLL with all real roots. One must substitute the values of 𝑀𝜃, 𝑁𝜃 from Equations (5.88) 

and (5.84) respectively to obtain to the final form of Equation (5.94), 

𝑡𝑎𝑛𝜙 =
𝑀𝜃𝛾𝑐 − 𝑁𝜃
𝑁𝜃𝛾𝑐2 +𝑀𝜃

=
(3𝑥𝑁

2 − 3𝛿2)𝛾𝑐 − (𝑥𝑁
3 −

3
4𝑥𝑁

(2𝛿)2 −
1
4
(2𝛿)3(𝑐𝑜𝑠3휃))

(𝛾𝑐2 (𝑥𝑁
3 −

3
4𝑥𝑁

(2𝛿)2 −
1
4
(2𝛿)3(𝑐𝑜𝑠3휃)) + (3𝑥𝑁

2 − 3𝛿2))

 

 

(5.94) 

Equation (5.94) directly relates three times the Vieta’s angle (3휃) with the PM of a third-order 

PLL. A relationship between the Figure 5.3 which illustrates the geometry of the roots with the 

PLL phase margin has been derived for the first time. It is significant and makes a connection 

between control system stability with the geometry of Vieta’s circle none of which have been 

proposed by previous authors. 
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Figure 5.4 Tangent of phase margin versus Vieta’s angle 

 

A second expression can be derived which provides for the sensitivity of the phase margin with 

the variation of Vieta’s angle by taking derivatives of both sides in Equation 5.58. the red track 

and blue track are plotted for two different values of  
𝑥𝑁

2𝛿
= 3,4.  

5.8 Analysis of third-order PLL with three equal and real roots  

 

[Nickalls, 1993] describes the case when all three roots of a cubic equation are both equal and real. 

As well as the case when two roots of a cubic equation are equal and real. Both these cases are 

considered for the third-order PLL. The difference is the in the two equal real roots case, the radius 

of Vieta’s circle is non-zero. In the case of three equal real roots, the radius of Vieta’s circle is 

zero. In accordance with [Nickalls, 1993], the conditions for two equal roots are written as 

𝛿 = √
𝑦𝑁
2𝑎

3
 (5.95) 

 

In Equation (5.95) the parameter 𝑦𝑁 has been defined in Equation (5.21). Equation (5.95) has been 

described in Section 2.3 of [Nickalls, 1993]). In turn, parameter 𝑎 is the first coefficient of the 

Cubic (𝑎 = 1) for a third-order PLL. By substituting the numerator 𝑦𝑁 (from Equation 5.20) in 

Equation (5.95) one obtains: 
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𝛿 =
√
2
27 (

1
𝜏2
)
3

−
1
3 (

1
𝜏2
) (
𝑚𝜏1
𝜏2

) + (
𝑚
𝜏2
)

2

3

 
(5.96) 

 

In Equation (5.96) 𝛿 is the half-radius of Vieta’s circle as in Figure 5.3. The case of two equal 

roots has been defined by [Nickalls, 1993] with the roots being, {𝑥𝑁 + 𝛿, 𝑥𝑁 + 𝛿, 𝑥𝑁 − 2𝛿} as 

defined in section 2.2 of [Nickalls, 1993]. Substituting 𝑎 =1, the roots of the third-order PLL 

(when two roots are real and equal) can be written in the form a column vector as 

𝑍2 =  [

𝑥𝑁 + 𝛿
𝑥𝑁 + 𝛿
𝑥𝑁 − 2𝛿

] (5.97) 

In Equation (5.97), the vector 𝑍2 is the vector of roots of the third-order PLL written in a column 

format. 

Substituting the values of 𝑎 = 1 and  𝑥𝑁 = −
1

3𝜏2
 and the value of 𝛿  in Equation (5.97), the three 

real roots of a third-order PLL can be written as 

𝑍2 = [

𝛼
𝛽
𝛾
] =

[
 
 
 
 
 
 
 
 
 
 
 
 

−
1

3𝜏2
+
√
2
27
(
1
𝜏2
)
3

−
1
3
(
1
𝜏2
) (
𝑚𝜏1
𝜏2
) + (

𝑚
𝜏2
)

2

3

−
1

3𝜏2
+
√
2
27
(
1
𝜏2
)
3

−
1
3
(
1
𝜏2
) (
𝑚𝜏1
𝜏2
) + (

𝑚
𝜏2
)

2

3

−
1

3𝜏2
− 2(

√
2
27
(
1
𝜏2
)
3

−
1
3
(
1
𝜏2
) (
𝑚𝜏1
𝜏2
) + (

𝑚
𝜏2
)

2

3

)
]
 
 
 
 
 
 
 
 
 
 
 
 

 (5.98) 

An expression of the form of Equation (5.98) appears to have not been derived for a third- order 

PLL in open literature. Equation (5.98) establishes the analytical connectivity between the PLL 

parameters 𝑚, 𝜏1, 𝜏2 and the three real roots of the CE of PLL in the case where two of the three 

roots are real and equal. In this section case of all the three real and equal roots case of a third-

order PLL has also been considered. The condition for this as explained in Section 2.2 of [Nickalls, 

1993] as 

𝑦𝑁
2 = ℎ2 (5.99) 
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Variable 𝑦𝑁 is defined in Equation (5.21). Variable ℎ is defined in Equation (5.19). This 

corresponds to the discriminant (∆= 0 being equal to 0. The discriminant Δ has been defined in 

Equation (5.25). The three equal roots case has been defined by [Nickalls, 1993] as  

𝑦𝑁
2 = 0 (5.100) 

The parameter 𝛿  is expressed as 

𝛿2 = 0 (5.101) 

In this case the Vieta’s circle (Figure 5.3) reduces to a point and computing either the diameter of 

Vieta’s circle or 𝑐𝑜𝑠3휃 may not be meaningful. It must be remarked the three equal roots are at 

𝑠 = 𝑥𝑁 =
1

3𝜏2   
[Nickalls, 1993].  

The time domain response of a third-order PLL when the three roots are equal is studied through 

its transfer function. The transfer function with generic poles for a third-order PLL multiplied by 

Laplace transform of a unit step is written as 

𝐺(𝑠) =
1

𝑠

(
𝐾
𝐴1) (1 + 𝑠𝜏 1)

(𝑠3 + 𝑠2
1
𝜏2
+ 𝑠𝑚

1
𝜏2
𝜏1 +𝑚

1
𝜏2
)
= (

𝐾

𝐴1
)

(1 + 𝑠𝜏1)

𝑠(𝑠 + 𝛼)(𝑠 + 𝛽)(𝑠 + 𝛾)
 (5.102) 

For the equal real poles case, the poles 𝛼, 𝛽, 𝛾 are equal. To relate a time constant ( 𝜏2)related to a 

single pole (𝛼) an expression can be written as 

𝛼 = 𝑥𝑁 =
1

3𝜏2
 (5.103) 

The transfer function of a PLL with 3 real and equal roots can be considered. The step response in 

time domain for a third-order PLL with 3 equal roots is written as  

𝑊(𝑡) =  𝐿−1

(

 
 
(
𝐾

𝐴1
)

(1 + 𝑠𝜏1)

𝑠 (𝑠 +
1
𝜏𝑎
) (𝑠 +

1
𝜏𝑎
) (𝑠 +

1
𝜏𝑎
)

)

 
 
    (5.104) 

In Equation (5.104),  
1

𝜏𝑎
=

1

3𝜏2
 is the real and repeated pole, and the operator 𝐿−1 denotes the inverse 

Laplace transform. After performing the inverse Laplace transform the time domain response of 

the PLL with all three real and equal roots is written as 

𝑊(𝑡) = (
𝐾

𝐴1
){𝜏𝑎

3 − 𝜏𝑎
3𝑒

−
𝑡
𝜏𝑎 − 𝑡𝜏𝑎

2𝑒
−
𝑡
𝜏𝑎 +

𝑡2(𝜏2𝜏𝑎
3 − 𝜏𝑎

4)

2𝜏𝑎
3 𝑒

−
𝑡
𝜏𝑎} (5.105) 
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The time domain step response 𝑊(𝑡)of a third-order PLL with equal poles has not been discussed 

in the open literature. The next step is to derive an expression for 𝑚, 𝜏1, 𝜏2 in terms of the time 

constants and the capacitance ratio 𝑏𝑐 . The idea is to derive a closed-form expression for the PM 

of a third-order PLL is terms of its single zero and its three equal poles. Such an expression has 

not been provided in open literature. For a generic third-order PLL, from Equation (5.56), when 

all the roots are equal (𝛼 = 𝛽 = 𝛾) 

𝑚 =
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
=
𝛼2

3
 (5.106) 

For the consistent root values the ratios of the coefficients of the first of the characteristic equation 

((𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1

𝜏2
+

𝑚

𝜏2
) = 0  will be the same as the second form of the characteristic equation. 

{ 𝑠3 + 𝑠2𝜔𝑝2 + 𝑠𝜔𝑝2𝜔𝑐 +𝜔𝑧𝜔𝑝2𝜔𝑐 = 0}. This term by term comparison allows new relationships 

to be established between the ratios involving 𝑚, 𝜏1, 𝜏2 and those involving 𝜔𝑧,𝜔𝑝2, 𝜔𝑐 to be related 

in Equations (5.92) and (5.93). 

Substituting, 𝛼 =
1

3𝜏1
, one can relate the parameter 𝑚 to the time constant 𝜏1 for the 3 equal poles. 

By comparing the coefficient  of 𝑠0 between (𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1

𝜏2
+

𝑚

𝜏2
) = 0   and 𝑠3 + 𝑠2𝜔𝑝2 +

𝑠𝜔𝑝2𝜔𝑐 +𝜔𝑧𝜔𝑝2𝜔𝑐 = 0 one obtains 

𝑚
𝜏2
𝑚𝜏1
𝜏2

=
𝜔𝑧𝜔𝑝2𝜔𝑐

𝜔𝑝2𝜔𝑐
= 𝜔𝑧 (5.107) 

By further simplifying Equation (5.107) one obtains: 

 

𝜔𝑧 =
1

𝜏1
 (5.108) 

 

 

By comparing the coefficient  of 𝑠1 between (𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1

𝜏2
+

𝑚

𝜏2
) = 0   and 𝑠3 + 𝑠2𝜔𝑝2 +

𝑠𝜔𝑝2𝜔𝑐 +𝜔𝑧𝜔𝑝2𝜔𝑐 = 0 one obtains: 

𝑚𝜏1
𝜏2
1
𝜏2

=
𝜔𝑝2𝜔𝑐

𝜔𝑝2
= 𝜔𝑐 (5.109) 

Simplifying Equation (5.109) one obtains: 
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𝑚𝜏1
𝜏2
1
𝜏2

=
𝜔𝑝2𝜔𝑐

𝜔𝑝2
= 𝜔𝑐 (5.110) 

In Equation (5.110) after cancelling common terms, an expression can be written as 

𝑚𝜏1 = 𝜔𝑐  ⇒ 𝑚 = 𝜔𝑐 𝜏1⁄ = 𝜔𝑐𝜔𝑧 (5.111) 

Finally by comparing the coefficients of 𝑠2 between (𝑠3 + 𝑠2
1

𝜏2
+ 𝑠

𝑚𝜏1

𝜏2
+

𝑚

𝜏2
) = 0   and 𝑠3 +

𝑠2𝜔𝑝2 + 𝑠𝜔𝑝2𝜔𝑐 + 𝜔𝑧𝜔𝑝2𝜔𝑐 = 0 , one can write a relationship between the higher pole and the 

time constant as 

1

𝜏2
= 𝜔𝑝2 (5.112) 

Now by considering only the sum of roots (coefficient of 𝑠2) for three real and equal roots 𝛼 

one can write an expression for the higher pole as 

𝜔𝑝2 = −3𝛼 =
1

𝜏2
 (5.113) 

Equation (5.113) implies by using the fact 𝜔𝑝2 = 𝑏𝑐𝜔𝑧  a new equation can be written 

𝜔𝑧 =
3𝛼

−𝑏𝑐
 (5.114) 

Now by using the capacitance ratio and substituting the value of 𝜏2 from Equation (5.103) 

𝜏1 = 𝑏𝑐𝜏2 = −𝑏𝑐 (
1

3𝛼
) (5.115) 

Next one needs to express the loop-bandwidth in terms of the real root. The first step to do this is 

to use the Equation (5.111) and write: 

𝑚 = 𝜔𝑧𝜔𝑐 (5.116) 

Hence from Equation (5.116) one can write: 

𝜔𝑐 =
𝑚

𝜔𝑧
 (5.117) 

The second step is to use Equation (5.108) and write and expression for the zero (𝜔𝑧) as 

𝜔𝑧 =
1

𝜏1
 (5.118) 

Substituting (5.118) into Equation (5.117) one obtains for the three equal roots case 

𝜔𝑐 = 𝑚𝜏1 = (
𝛼2

3
)−𝑏𝑐 (

1

3𝛼
) =  

−𝑏𝑐𝛼

9
 (5.119) 
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Substituting the value of 𝜔𝑧( equal roots case) from Equation (5.114) and 𝜔𝑐 from Equation 

(5.119) one obtains: 

𝜔𝑐
𝜔𝑧

=

−𝑏𝑐𝛼
9
3𝛼
−𝑏𝑐

=
(𝑏𝑐)

2

27
 (5.120) 

Substituting Equation (5.120) into the expression for the tangent of the Phase Margin in [He, 2007] 

𝑡𝑎𝑛 𝜙 =

(
𝜔𝑐
𝜔𝑧
) − (

𝜔𝑐
𝜔𝑝2

)

1 + (
𝜔𝑐
𝜔𝑧
) (

𝜔𝑐
𝜔𝑝2

)
=
(
𝜔𝑐
𝜔𝑧
) (1 − 

1
𝑏𝑐
)

1 + (
𝜔𝑐
𝜔𝑧
)
2 1
𝑏𝑐

=
(
(𝑏𝑐)

2

27 ) (1 − 
1
𝑏𝑐
)

1 + (
𝑏𝑐
2

27
)
2
1
𝑏𝑐

 (5.121) 

 

Equation (5.121) directly relates phase margin to poles for the equal roots case of a third-order 

PLL. Such an expression relating the phase margin to the single equal root and capacitance ratio 

(𝑏𝑐) has not been discussed in open literature. It is significant that in this case the phase margin is 

only a function of 𝑏𝑐. Since for a stable pole the roots are on the left half of complex plane, 𝛼 < 0, 

for stable third-order PLLs and the argument of the inverse tangent function is always positive. 

For all equal roots, the phase margin is low. Table 5.10 describes the variation in phase margin 

with change in capacitance ratio. Equations (5.105) and (5.121) are the two final contributions for 

this section.  

 

Table 5.3 Phase margin for various values of capacitance ratio for the equal roots case 

At 𝝎 = 𝝎𝒄 

Capacitance 

Ratio (𝑏𝑐) 
2 4 6 8 10 12 14 16 

Phase 

Margin 

(degrees) 

4.19 22.22 40.60 50.62 54.56 55.41 54.74 53.32 

 

5.9 Relationship between PM and Spur Gain for a third-order PLL 
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This section aims to present to formulation to establish the relationship between the PM and the 

spur gain of a third order PLL. The term Spur stands for spurious frequencies. Spurs stands for 

spurious frequencies. The spectrum at the output of a DDS-PLL will contain spurs generated by 

the DDS which get propagated by the PLL. The final spectrum of a DDS-PLL combination will 

contain spurs generated by the DDS and additional Spurs which are generated by the PLL. Spurs 

produced by the DDS-PLL can readily propagate to a RF down conversion mixer and undermine 

the detection of an incoming RF signal by creating multiple spurious down-converted signals. In 

this section an alternative expression for Spur Gain (SG) of a third-order PLL is derived. SG can 

be defined as the closed-loop gain of a third-order PLL at the comparison frequency of a PLL. 

There is significance of the SG if the computed SG is considered for a given band and its adjacent 

bands. A high spur gain can cause a spur generated by a PLL to propagate to an adjacent band 

around the output frequency affecting other transmitters and receivers. It is important to identify 

the underlying causes of spur gains and optimize the PLL to control them. 

Spurs arise in a PLL due to leakage currents and charge pump mismatches. [Banerjee, 2006] 

explains how spurs arise within the PLL. He also addresses the causes that largely determine the 

amplitude of spur. Spurs generated by the PLL make it difficult to detect a received signal due to 

their nearness to the received signal.  

Banerjee’s spur model is an empirical model arrived at after measuring and analyzing spur levels 

for a very large number of PLLs [Banerjee, 2006]. A type of spur is called a reference spur in 

[Banerjee, 2006]. Reference spurs (Spurious frequencies) are a consequence of the un-symmetric 

nature of the PLL charge pump which is part of the PFD (Figure 5.1). Reference spurs arise in the 

output spectrum of a PLL in adjacent bands and their levels can be high enough to affect the output 

of down conversion mixer in RF receivers. GSM application has a channel BW of 5 MHz and 

requires that the reference spurs are below -65dB in the adjacent bands [Shu and Sanchez-Sinencio, 

2005].  

Spurs can be classified based on their origin. Their origins are due to leakage currents or dues to 

the un-symmetric nature of PLL charge pump which leads to current mismatch. Leakage originated 

spurs are described in [Banerjee, 2006] and [He, 2007]. Leakage spurs originate due to leakage 

currents in charge pump, VCO and loop filter capacitors. On the other hand, mismatch spurs arise 

due to mismatches in the transistors of the charge pump. Spur gain is the amplitude of the closed-

loop transfer function which controls the level of output spur. Spur gain is the same as the close 
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loop gain of the PLL if the frequency band under consideration is within the loop BW of the PLL. 

It is expressed as the logarithm of square of the amplitude of the closed-loop gain if the input 

frequency is below the loop BW times 10. Outside the loop BW, Spur gain is defined as the open 

loop gain in [Banerjee, 2006].  

The Banerjee spur model is a function of comparison frequency, sensitivity of VCO, leakage 

current, and impedance of loop filter. The closed-form expression for SG was first given by 

[Banerjee, 2006]. [Banerjee, 2006] has provided an empirical expression for leakage spur model 

which determines the level of the leakage spur and is written as  

𝑆𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝐿𝐵𝑎𝑠𝑒 + 20𝑙𝑜𝑔 (|
𝐼𝑐𝑝𝑛

𝐾𝜙
|) + 𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛 (5.122) 

 

In Equation (5.122), 𝑆𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is the amplitude of leakage spur. 𝐿𝑏𝑎𝑠𝑒 is an empirical constant 

determined by measurement to be 16dB. [Banerjee, 2006], 𝐼𝑐𝑝𝑛 is the charge pump leakage current 

(usually in nA), 𝐾𝜙 is the sensitivity of PFD, and 𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛 is the spur gain (dB). Equation 

(5.122) is an empirical model applicable only to leakage spurs. 

Figure 5.4 illustrates the variation of spur gain as a function of leakage current. The spur gain is 

also affected by the 𝐾𝑉 and sensitivity of PFD (𝐾𝜙 = 𝐼𝑐𝑝 2𝜋⁄ ). For a given maximum level of 

leakage spur, as the leakage current in the phase detector increases the spur gain (third term in 

Equation (5.109). 

 

 

Figure 5.4 Spur gain versus leakage current ([Banerjee, 2006] leakage model) 

 

Some materials have been removed due to 3rd party copyright. 
The unabridged version can be viewed in Lancester Library - 
Coventry University.
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Figure 5.4 plots the leakage Spur gain as a function of the leakage current for thre different values 

of PFD sensitivity.  

The spur gain is defined as the closed-loop gain at the comparison frequency or 𝑓𝑐. [Banerjee, 

2006] refers to this as. If the loop BW is large enough, VCO sensitivity (𝐾𝑣) is high and the RHS 

of Equation (5.109) is quite high. The resultant increased spur gain will allow propagation of spurs 

from the charge pump mixed with spurs in the output of DAC to propagate to the output of DDS-

PLL which affects the operation of adjacent close-spaced channels. 

Mismatch spurs arise due to mismatches in transistor speed, turn on and turn off times of transistors 

in the charge pump being. [Banerjee, 2006] has provided a second empirical model applicable to 

mismatch spurs model, which can be written as 

𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟(𝑑𝐵) = 𝐵𝑎𝑠𝑒 𝑃𝑢𝑙𝑠𝑒 𝑆𝑝𝑢𝑟 + 𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛 + 40𝑙𝑜𝑔 (
𝐹𝑠𝑝𝑢𝑟

1𝐻𝑧
) (5.123) 

 

In Equation (5.123), the Spur Gain (dB) is computed at the given comparison frequency of the 

PFD. The first empirical constant in Equation (5.123) is 𝐵𝑎𝑠𝑒 𝑃𝑢𝑙𝑠𝑒 𝑆𝑝𝑢𝑟 =  −300𝑑𝐵 ( defined 

first by ([Banerjee, 2006]). 𝐹𝑠𝑝𝑢𝑟 is the input frequency under consideration, usually integer 

multiples of comparison frequency. In simple terms it is the input frequency to third-order PLL (at 

PFD) 𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟(𝑑𝐵) is the mismatch spur magnitude in dB. Equation (5.123) is an empirical 

equation and it is unknown whether it holds for smaller process nodes especially below 40nm. 

Banerjee provides an approximate analytical expression for spur gain as 

𝐺𝑠𝑝𝑢𝑟 = 20log (
𝐾𝑣𝐾𝜙

4𝜋2𝐶2𝑓𝑐2
)  (5.124) 

The closed-loop gain in Equation (5.124) is measured at an input frequency of 𝑓𝑐. Equation (5.124) 

follows equation (11.13) in [Banerjee,2006]. 

𝐺𝑆𝑝𝑢𝑟is the open loop gain at (𝑓 = 𝑓𝑐) . An expression for 𝐺𝑆𝑝𝑢𝑟 Following [He, 2007]  can be 

written as 

𝐺𝑆𝑝𝑢𝑟 =
1

𝑁

𝐾

𝐴0

(1 + 𝑠𝜏1)

𝑠2(1 + 𝑠𝜏2)
= 𝑚

(1 + 𝑠𝜏1)

𝑠2(1 + 𝑠𝜏2)
 (5.125) 

The magnitude of spur gain can be expressed in terms of the roots of a third-order PLL as the 

constant term can be derived from 𝑚 and 𝑚 is related to the roots by an established closed-form 

expression (Equation (5.56)). 
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A procedure to compute the spur gain given the pole values or roots of CE of third-order PLL is 

as follows. First the parameter 𝑚 is related to the three poles of the third-order PLL. 

𝑚 =
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
 (5.126) 

The time constant (𝜏2) for the third-order PLL is written in terms of the PLL roots as 

𝜏2 = −
1

(𝛼 + 𝛽 + 𝛾)
 (5.127) 

The expression for the capacitance ratio 𝑏𝑐  , substituting the value of  𝜏2  from Equation (5.127) 

and the value of 𝑚 from Equation (5.126) can be expressed as       

𝑏𝑐 =
3

𝑚
{

1

(3𝜏2)2
− 𝛿2} =

3

𝛼𝛽𝛾
(𝛼 + 𝛽 + 𝛾)

{
(𝛼 + 𝛽 + 𝛾)2 

9
− 𝛿2} 

(5.128) 

 

 

Substituting the value of 𝛿 one obtains a new expression for the capacitance ratio(𝑏𝑐) 

 

𝑏𝑐 =
3(𝛼 + 𝛽 + 𝛾)

𝛼𝛽𝛾
{
(𝛼 + 𝛽 + 𝛾)2

9
− (

1

4
{(
2

3
𝛼 −

𝛽

3
−
𝛾

3
)
2

+ (−0.5774𝛽 + 0.5774𝛾)2})} (5.129) 

 

 

In the case of 3 real poles, the spur gain Equation (5.74) can be written in terms of the PLL 

parameters 𝑚, 𝜏2, 𝑎𝑛𝑑 𝑏𝑐 as 

𝐺𝑆𝑝𝑢𝑟 =  𝑚
(1 + 𝑠𝜏2𝑏𝑐)

𝑠2(1 + 𝑠𝜏2)
 (5.130) 

Substituting Equation (5.76) for 𝜏2 in Equation (5.130), the 𝐺𝑆𝑝𝑢𝑟 can be simplified as 

𝐺𝑆𝑝𝑢𝑟 = 𝑚
(1 − 𝑠

𝑏𝑐
(𝛼 + 𝛽 + 𝛾)

)

𝑠2 (1 − 𝑠
1

(𝛼 + 𝛽 + 𝛾)
)
 (5.131) 

Substituting Equation (5.126) for  𝑚 and Equation (5.129) for the capacitance ratio 𝑏𝑐,  

in Equation (5.131), spur gain (𝐺𝑆𝑝𝑢𝑟) in closed-form is written as 
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𝐺𝑆𝑝𝑢𝑟

=
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)

∗ (

 
 
1 − 𝑠

3(𝛼 + 𝛽 + 𝛾)
𝛼𝛽𝛾

{
(𝛼 + 𝛽 + 𝛾)2

9 −
1
4 {(

2
3𝛼 −

𝛽
3 −

𝛾
3)

2

+ (−0.5774𝛽 + 0.5774𝛾)2}   }

(𝛼 + 𝛽 + 𝛾)

)

 
 

𝑠2 (1 − 𝑠
1

(𝛼 + 𝛽 + 𝛾)
)

 

 

(5.132) 

In Equation (5.132) 𝐺𝑆𝑝𝑢𝑟 is the Spur gain expressed as a non-linear function of the three roots. 

The actual spur gain is computed by taking using the following equation due to [Banerjee, 2005]. 

𝑆𝑝𝑢𝑟 𝐺𝑎𝑖𝑛 = 20𝑙𝑜𝑔10 (𝐺𝑆𝑝𝑢𝑟) (5.133) 

The closed-form expression relating spur gain to the poles as in Equation (5.118) is an original 

contribution. Table 5.4 illustrates the close correlation of the results on Spur gain obtained through 

the approach of roots of CE of third-order PLL (Equation (5.118) and that through the parameters 

of PLL (Equation (5.112). and a close agreement is evident between the results of two approaches. 

Table 5.4 Spur gain computed from roots versus from PLL parameters 

Frequency shift(kHz) 4 5.99 7.99 10 11.98 13.98 

Spur Gain 

(Computed through 

Equation 5.112) (dB) 

-20.62 -24.148 -26.647 -28.58 -30.169 -31.5 

Spur Gain 

(Computed through 

Equation 5.123) (dB) 

-20.73 -24.221 -26.64 -28.64 -30.0182 -31.53 

 

 

The results of Table 5.4 illustrate that Spur gain is altered as the frequency shift is changed. For 

the simulation of results of Table 5.4,  𝑚=1.34x1015; 𝜏1 = 4.4x10-9; 𝜔𝑐 = 5.9x106. The poles are,  

𝛼 = -32x106 rad/sec; 𝛽=-96x106 rad/sec; 𝛾=-99.2x106 rad/sec.  
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5.10 Case of two complex roots and one real root of CE of a third-order PLL 

 

 

In the previous sections, the case of a third-order PLL with all real poles or all real and equal poles 

has been analyzed with details and discussions. As an extension of that case, it is necessary to 

analyze the third order PLL with two complex poles and one real pole. The three roots are written 

following [Nickalls, 1993] but the root expressions are connected to PLL parameters.  

The expression for the real root of a third-order PLL is written as (following, [Nickalls, 1993]) 

𝛼 = 𝑥𝑁 + √
1

2𝑎
(−𝑦𝑁 +√𝑦𝑁

2 − ℎ2) 
3

+ √
1

2𝑎
(−𝑦𝑁 −√𝑦𝑁

2 − ℎ2)
3

 (5.134) 

 

The hyperbolic form for the real root of a cubic equation was first given by [Holmes, 2002]. The 

expression can be written as 

𝛼 = 𝑥𝑁 − 2𝛿cosh (
1

3
arccosh (

𝑦𝑁
ℎ
)) (5.135) 

The advantage of the Equation (5.135) is that its more compact than the complex cubic form in 

Equation (5.134). Corresponding to the real root (𝛼), the corresponding complex conjugate roots 

of the CE are written as functions of 𝛼, 𝛿. Equation (5.136) is derived in [Nickalls, 1993] paper 

(section 2.2) as  

𝛽, 𝛾 = −
𝛼

2
± 𝑗

√3

2
√𝛼2 − 4𝛿2 (5.136) 

The hyperbolic formulation for the real root is written as in terms of parameter that have been 

defined earlier 𝑥𝑁(defined in Equation (5.19)), 𝛿 – defined in Equation (5.20), 𝑦𝑁- defined in 

Equation (5.21) and ℎ – defined in Equation (5.21). The hyperbolic form expression for the real 

root is written as 

𝛼 = 𝑥𝑁 − 2𝛿cosh (
1

3
arccosh (

𝑦𝑁
ℎ
)) (5.137) 

The first contribution is the relationship between the angle between the root versus PLL parameters 

𝑚, 𝜏1 𝑎𝑛𝑑 𝜏2. The amplitude of the complex roots(𝛽 𝑎𝑛𝑑 𝛾)  is computed by taking the 

expressions for the real part(−
𝛼

2
) and imaginary part(

√3

2
√𝛼2 − 4𝛿2 )  from Equation (5.136) then 
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computing the squares  of the real part and imaginary part, summing the squares and generating 

square root of the sum. The amplitude of the complex root is written as  

|𝛽| = √(
𝛼

2
 )
2

+ (
√3

2
√𝛼2 − 4𝛿2)

2

 (5.138) 

Simplifying the above and substituting the value of 𝛿2 from Equation (5.19) one can write the final 

expression as  

|𝛽| =
√
𝛼2 − (

1
𝜏2
2 −

3𝑚𝜏1
𝜏2

3
) 

(5.139) 

The closed-form expression of Equation (5.139) provides a means of connecting the magnitude of 

the complex roots to the real root |𝛽| and PLL parameters 𝑚, 𝜏1 and 𝜏2 

The second closed-form expression of Equation (5.140) relates the phase angle between the two 

complex roots (∠𝛽) with the real root and PLL parameters 𝑚, 𝜏1 and 𝜏2. It is written as 

∠𝛽 = 𝑡𝑎𝑛−1

{
 
 

 
 

√3
√
1 −

4
9 (

1
𝜏2
2 −

3𝑚𝜏1
𝜏2

)

𝛼2

}
 
 

 
 

 (5.140) 

If the third-order PLL has distinct maxima and minima ([Nickalls, 1993]), the real root can be 

written in a hyperbolic form following [Holmes, 2002] 

𝛼 = 𝑥𝑁 − 2𝛿cosh (
1

3
arccosh (

𝑦𝑁
ℎ
)) (5.141) 

The complex conjugate roots can be expressed in terms of [Nickalls, 1993] parameters 

𝛽, 𝛾 =
1

2
(𝑥𝑁 − 2𝛿(cosh (

1

3
arccosh (

𝑦𝑁
ℎ
) ± 𝑗√3 sinh (

1

3
arccosh (

𝑦𝑁
ℎ
)))) (5.142) 

From Equation (5.126) the value of 𝑚 can be expressed as 

𝑚 =
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
=
𝛼𝛽𝛾

3𝑥𝑁
 (5.143) 

The denominator of (5.143) can be simplified as because the imaginary parts of  (𝛼 + 𝛽 + 𝛾) 

cancel out. The numerator term 𝛼𝛽𝛾 of Equation (5.143) must be simplified further in terms of the 

Nickalls’s parameter. Substituting the values of 𝛽, 𝛾 from Equation (5.136) into the numerator 

term of Equation (5.143) one obtains: 
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𝛼𝛽𝛾 =  (𝛼)(𝛽𝛾)  

= (𝑥𝑁 − 2𝛿 cosh (
1

3
arccosh (

𝑦𝑁
ℎ
))) (−

𝛼

2
+ 𝑗

√3

2
√𝛼2 − 4𝛿2)(−

𝛼

2

− 𝑗
√3

2
√𝛼2 − 4𝛿2) 

 

= (𝑥𝑁 − 2𝛿 cosh(
1

3
arccosh (

𝑦𝑁
ℎ
)))((

𝛼

2
)
2

+
3

4
(𝛼2 − 4𝛿2)) (5.144) 

 

Simplification of Equation (5.144) allows the product of three roots to be expressed as 

 

𝛼𝛽𝛾 = (𝑥𝑁 − 2𝛿 cosh (
1

3
arccosh (

𝑦𝑁

ℎ
))) (

3

4
𝛼2 +

1

4
𝛼2 − 3𝛿2) = (𝑥𝑁 −

2𝛿 cosh (
1

3
arccosh (

𝑦𝑁

ℎ
))) (𝛼2 − 3𝛿2)                

(5.145) 

To compute the capacitance ratio (𝑏𝑐) one must consider the sum of roots of a third-order PLL 

taken two at a time, this is because of the expression. One must form a simplified expression for 

the sum of roots taken two at a time is written as 

𝑚𝑏𝑐 = 𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 (5.146) 

Simplifying the sum of roots two at a time is written as 

𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 = 𝛼(𝛽 + 𝛾) + 𝛽𝛾 = 𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 = 𝛼 (2 ∗ (−
𝛼

2
)) + 𝛽𝛾

= −𝛼2 + (𝛽𝛾) 

(5.147) 

Substituting values of the two complex conjugate roots 𝛽, 𝛾 one obtains: 

𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 = −𝛼2 + (−
𝛼

2
+ 𝑗

√3

2
√𝛼2 − 4𝛿2)(−

𝛼

2
− 𝑗

√3

2
√𝛼2 − 4𝛿2) (5.148) 

Further simplifying Equation (5.148) an expression for the sum of the roots taken two at a time 

can be written as 

𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 = −𝛼2 + (𝛼2 − 3𝛿2) = −3𝛿2 (5.149) 

From [Nickalls, 1993] as well as Equation (5.46) the sum of three roots can be written as 

(𝛼 + 𝛽 + 𝛾) =  3𝑥𝑁 (5.150) 
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Hence the ratio from Equations (5.131 and 5.134) can be expressed in simpler format. To shorten 

the composite expressions let us define 𝜑 =
1

3
arccosh (

𝑦𝑁

ℎ
). After this substitution the variable 𝑚 

can be expressed as 

𝑚 =
𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)
=
(𝑥𝑁 − 2𝛿 cosh (

1
3 arccosh (

𝑦𝑁
ℎ
))) (𝛼2 − 3𝛿2)

3𝑥𝑁

=
(𝑥𝑁 − 2𝛿 cosh𝜑)(𝛼2 − 3𝛿2)

3𝑥𝑁
 

(5.151) 

The expression for 𝑚 in terms of hyperbolic terms is unique has never been derived by any other 

authors. It is an original contribution of this chapter. A final additional derivation relates the 

capacitance ratio 𝑏𝑐 to the terms 𝑥𝑁 , 𝛿 𝑎𝑛𝑑 𝜑 . Equation (5.146) can be rewritten as 

𝑏𝑐 = 
𝑚

(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)
=
(𝑥𝑁 − 2𝛿cosh(𝜑)) (𝛼

2 − 3𝛿2)

3𝑥𝑁
.

1

(𝛼(𝛽 + 𝛾) + 𝛽𝛾)
 (5.152) 

Substituting the values of roots 𝛽, 𝛾 in Equation (5.152) 

 

𝑏𝑐 =
(𝑥𝑁 − 2𝛿cosh(𝜑)) (𝛼

2 − 3𝛿2)

3𝑥𝑁
.

1

(𝛼 (−2 ∗
𝛼
2) + 𝛽𝛾)

  

𝑏𝑐 =
(𝑥𝑁 − 2𝛿cosh(𝜑)) (𝛼

2 − 3𝛿2)

3𝑥𝑁
.

1

(𝛼 (−2 ∗
𝛼
2) + 𝛽𝛾)

  

=
(𝑥𝑁 − 2𝛿 cosh(𝜑))(𝛼2 − 3𝛿2)

3𝑥𝑁
.

1

(−𝛼2 + 𝛽𝛾)
 (5.153) 

 

The sum of roots taken two at a time is expressed as 

(𝛼(𝛽 + 𝛾) + 𝛽𝛾) = −𝛼2 + 𝛽𝛾

= −𝛼2 + (−
𝛼

2
+ 𝑗

√3

2
√𝛼2 − 4𝛿2)(−

𝛼

2
− 𝑗

√3

2
√𝛼2 − 4𝛿2) 

(5.154) 

 

Hence, substituting the value of 𝑚 from Equation (5.135) and value of the (𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾) from 

Equation (5.137) one can write the expression for the capacitance ratio in a simplified form:  
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𝑏𝑐 = 
𝑚

(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)
=
(𝑥𝑁 − 2𝛿cosh(𝜑)) (𝛼

2 − 3𝛿2)

3𝑥𝑁

1

(𝛼(𝛽 + 𝛾) + 𝛽𝛾)

=
(𝑥𝑁 − 2𝛿 cosh(𝜑)) (𝛼

2 − 3𝛿2)

3𝑥𝑁
.
1

3𝛿2
 

(5.155) 

The time constant (𝜏2) can be computed as 

𝜏2 = −
1

(𝛼 + 𝛽 + 𝛾)
= −

1

(𝛼 + 2𝑅𝑒(𝛽))
= −

1

3𝑥𝑁
 (5.156) 

In Equation (5.156) 𝑅𝑒(𝛽) refers to the real part of the two complex roots of a third-order PLL. 

The Equation (5.155) relates the capacitance ratio  𝑏𝑐with the three parameters defined originally 

in [Nickalls, 1993]. Such an expression has not been described earlier in open literature. The 

Equations (5.155) and (5.156) are significant contributions of this chapter. The hyperbolic form 

makes it easier than the original form proposed in [Nickalls, 1993]. 

5.11 New expressions for the ratio of Noise power to Carrier power  

 

The phase noise and various sources of noise have been addressed in a detailed manner in chapter 

4. The phase noise to carrier power ratio has been established by [Rategh, 2000], [Savic, 2002] 

and [Musa, 2002]. The phase noise must be measured and analyzed at a given offset frequency. If 

the Phase noise to carrier power ratio is too high, alternate values of sensitivity of VCO (𝐾𝑉) and 

capacitance ratio (𝑏𝑐) must be chosen to reduce the level of phase noise. That is one might need 

to use a VCO with a lower level of sensitivity to achieve a target ratio of noise power to carrier 

power. The ratio of noise power to carrier power based on [ Lam and Razavi, 2000] can be written 

as  

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔10 {(

𝐶2

𝐶2 + 𝐶3
)
2

(
𝐾𝑉
2Δω

)
2

(
2𝑘𝐵𝑇𝑅2

1 + (𝑅2
𝐶3𝐶2
𝐶2 + 𝐶3Δ𝜔)

2
)} (5.157) 

In Equation (5.157) (
𝑃𝑛

𝑃𝑐
) is the noise power to carrier power ratio (dB), 𝐾𝑉 is the VCO sensitivity, 

𝑘𝐵 is the Boltzmann’s constant(1.38064852 × 10-23 m2 kg s-2 K-1), 𝑇 is the absolute temperature in 

Kelvin, 𝑅2 is the series resistance of loop filter,  𝐶2 is the series capacitance of loop filter, 𝐶3 is 

the parallel capacitance of loop filter, and Δ𝜔 is the frequency offset from the carrier frequency. 
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Replacing the capacitance ratio 𝑏𝑐  =
𝐶2
𝐶2𝐶3

(𝐶2+𝐶3)

 and the time constant, 𝜏2 = 𝑅2
𝐶2𝐶3

(𝐶2+𝐶3)
. Equation 

(5.157) can be rewritten as 

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔10 {(

𝑏𝑐 − 1

𝑏𝑐
)
2

(
𝐾𝑉

2Δω
)2 (

2𝑘𝐵𝑇𝑅2

1 + (𝜏2Δ𝜔)2
)} (5.158) 

 

In Equation (5.158) 𝜏2  is the time constant of value 𝑅2 ∗ ( 
𝐶2𝐶3

(𝐶2+𝐶3)
). Equation (5.158) is in a form 

that facilitates the identification of the operative factors which can reduce noise. The first operative 

factor is(𝑏𝑐), a capacitance ratio will very marginally reduce the noise power to carrier power ratio 

only if the capacitance ratio is low. The second operative factor is the loop BW contained in the 

last term (in Equation 5.158). The third operative factor is the resistance of loop filter. 
𝑃𝑛

𝑃𝑐
 is reduced 

as the resistance of loop filter (𝑅2) is reduced. The noise level rises as loop BW is increased. Lower 

value of VCO sensitivity (𝐾𝑉) (and hence longer lock time) will reduce 
𝑃𝑛

𝑃𝑐
. The (

𝑃𝑛

𝑃𝑐
)  ratio drops 

rapidly as the offset frequency (Δ𝜔) rises. Figures 5.5 depict the variation of the (
𝑃𝑛

𝑃𝑐
)  ratio with 

change in offset frequency for fixed 𝐾𝑉  and(𝑏𝑐). 

 

 

Figure 5.5 Noise power/Carrier power (
𝑃𝑛

𝑃𝑐
)versus offset frequency for range of capacitance 

ratios and VCO sensitivity (Wider range of Offset frequencies) 

 

Figure 5.5 is generated for a range of offset frequencies, from DC to 80kHz. It is generated for a 

VCO sensitivity of 100Hz/volt and 50 Hz/Volt. It is observed from Figure 5.5 that for a given 
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offset frequency, lower values of (𝐾𝑉 ), leads to lower (
𝑃𝑛

𝑃𝑐
). For a given offset frequency, greater 

the capacitance ratio(𝑏𝑐 =
𝐶2

𝐶3
+ 1), slightly lower will be the ratio (

𝑃𝑛

𝑃𝑐
). Hence even though the 

response of the PLL will be slower to step change in frequency and phase step, to achieve lower 

noise level one needs to use a lower value of 𝐾𝑉. Additional detailed observations on the results 

of Figures 5.5 include that the ratio (𝑃𝑛 𝑃𝑐⁄ ) is reduced by around 2dB as the capacitance ratio 

𝑏𝑐 is doubled (from 8 to 16). For a given value of 𝑏𝑐,  (𝑃𝑛 𝑃𝑐⁄ )  is raised by less than 6 dB as (𝐾𝑉 ) 

is increased from 50MHz/V to 100 MHz/V.  

Three conclusions can be drawn through the results of Figure 5.5. Firstly, as the VCO sensitivity 

is reduced the ratio 𝑃𝑛 𝑃𝑐⁄  can be reduced for a given value of 𝑏𝑐. Secondly, for a given offset 

frequency and 𝑏𝑐 the ratio 𝑃𝑛 𝑃𝑐⁄  decreases rapidly as the offset frequency is altered. Analytical 

formulation to derive the relationship between the real poles and (𝑃𝑛 𝑃𝑐⁄ ) and a simple 

characterization will be the focus of the discussion to follow. 

A new derivation to link directly the loop BW of the PLL to (
𝑃𝑛

𝑃𝑐
) is presented in this section in  

The problem of estimating the 𝑃𝑛/𝑃𝑐 value when the roots are known by expressing 𝜏2 in terms 

of roots, 𝛼, 𝛽, 𝛾 is addressed. Since the time constant 𝜏2 can be written in terms of the roots 

as(following Equation (5.114), 

𝜏2 = 𝑅2
𝐶3𝐶2

𝐶2 + 𝐶3
= −

1

(𝛼 + 𝛽 + 𝛾)
 (5.159) 

Hence Equation (5.158) can be written as  

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔1 0

{
 

 

(
𝑏𝑐 − 1

𝑏𝑐
)
2

(
𝐾𝑉 

2Δω
)
2

(

 
2𝑘𝐵𝑇𝑅2

1 + (− 
1

(𝛼 + 𝛽 + 𝛾)
Δ𝜔)

2

)

 

}
 

 

 (5.160) 

 

Equation (5.160) relates the sum of the 3 real roots (𝛼, 𝛽, 𝛾) or complex roots to (
𝑃𝑛

𝑃𝑐
) . The form 

of the expression in Equation (5.160) as not been discussed in open literature. It is worth exploring 

if the VCO sensitivity (𝐾𝑉)  can be replaced with a closed-form expression involving only the 

roots of the CE. The middle term in Equation (5.160) is a direct function of 𝑚 and the VCO 

sensitivity is related to 𝑚  (following Equation (5.10) through the equation: 
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 𝑚 =
𝐾𝑉𝐾𝜙

𝑁(𝐶2 + 𝐶3)
 (5.161) 

Simplifying the expression for 𝐾𝑉   one obtains, and replacing the value of 𝑚 as a function of only 

the roots (following Equation 5.54),  

𝑚 = 
𝛼𝛽𝛾

(𝛼+𝛽+𝛾)
 (5.162) 

It has been shown earlier in this chapter 𝜏2 = −
1

(𝛼+𝛽+𝛾) 
 and    𝑚

𝜏1

𝜏2
= (𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾), this 

implies one can write an expression for the time constant as 

𝜏1 = (𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)
𝜏2
𝑚

 (5.163) 

Substituting, the product of the three roots and the constant term 
𝑚

𝜏2
= −(𝛼𝛽𝛾), one obtains:  

𝜏1 = −(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)
1

𝛼𝛽𝛾
 (5.164) 

Now 𝑏𝑐 =
𝐶2
𝐶2𝐶3

(𝐶2+𝐶3)

 is the capacitance ratio of the PLL loop filter. The VCO sensitivity (𝐾𝑉) can be 

derived from the value of 𝑚 using Equation (5.10), 

𝐾𝑉 =
𝑚𝑁(𝐶2 + 𝐶3)

𝐾𝜙
=
𝑚𝑁𝑅2(𝐶2 + 𝐶3)

𝐾𝜙𝑅2
=
𝑚𝑁𝑅2𝐶2(1 +

𝐶3
𝐶2)

𝐾𝜙𝑅2
 (5.165) 

Substituting 𝑚 = 
𝛼𝛽𝛾

(𝛼+𝛽+𝛾)
 in Equation (5.165) a new expression for 𝐾𝑉 is written as 

𝐾𝑉 = 
𝑚𝑁𝜏1

𝐾𝜙𝑅2
=

𝛼𝛽𝛾

(𝛼 + 𝛽 + 𝛾)

𝑁𝜏1

𝐾𝜙𝑅2
 (5.166) 

By substituting 𝑏𝑐 , 𝐾𝑉  and 𝑚 one has a way to express (𝑃𝑛 𝑃𝑐⁄ ) ratio in terms of all roots as 

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔10

{
 
 

 
 

(
𝑏𝑐 − 1

𝑏𝑐
)
2

(

𝛼𝛽𝛾
(𝛼 + 𝛽 + 𝛾)

𝑁𝜏1
𝐾𝜙𝑅2

2Δω
)

2

1

(𝛼 + 𝛽 + 𝛾)2
(
𝑏𝑐
𝑏𝑐−1

)
2

(

 
2𝑘𝐵𝑇𝑅2

1 + (− 
1

(𝛼 + 𝛽 + 𝛾)
Δ𝜔)

2

)

 

}
 
 

 
 

 (5.167) 

Cancelling common terms in Equation (5.167) one obtains: 

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔10

{
 
 

 
 

(

𝛼𝛽𝛾
(𝛼 + 𝛽 + 𝛾)

𝑁𝜏1
𝐾𝜙𝑅2

2Δω
)

2

1

(𝛼 + 𝛽 + 𝛾)2

(

 
2𝑘𝐵𝑇𝑅2

1 + (− 
1

(𝛼 + 𝛽 + 𝛾)
Δ𝜔)

2

)

 

}
 
 

 
 

 (5.168) 

Equation (5.168) is obtained after cancelling (
𝑏𝑐−1

𝑏𝑐
) terms one obtains the final form for 

𝑃𝑛

𝑃𝑐
. 

In Equation (5.168) the roots of the CE have been related to 𝑃𝑛/𝑃𝑐. The ratio (𝑃𝑛 𝑃𝑐⁄ )  has been 

computed by two approaches. The first approach uses the roots of CE of PLL only. The second 
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approach uses the circuit parameters of PLL. A noise power to carrier power relationship with real 

roots is not available in open literature. Its uniqueness lies in the logical connectivity between the 

among the three roots of CE of PLL and the 𝑃𝑛/𝑃𝑐 ratio. Figures 5.5 depicts the correlation of the 

results of noise power to carrier power ratio based on the approaches using parameters of PLL and 

the roots of CE of third-order PLL.  

 

Figure 5.5 Correlation of Ratio of Noise power to Carrier power using roots of CE and   

parameters of PLL 

 

There is a satisfactory agreement between the results based on conventional PLL parameters 

(Equation 5.157)) and the roots of CE of third-order PLL substantiating the validity of Equation 

(5.168). The second equation that must be considered the- relationship between the loop BW, time 

constant and the capacitance ratio. Equation (5.169) was first provided by [He,2007] (Equation 

(3.16)) 

𝜔𝑐 =
√𝑏𝑐
𝜏2

 (5.169) 

In Equation (5.169) 𝜔𝑐 is the loop band-width substituting value of the time constant in terms of 

loop BW, 𝜏2 is the time constant of the third-order PLL(𝑅2𝐶2) and 𝑏𝑐 is the capacitance ratio of 

third-order PLL from Equation (5.169) an expression is written as 

𝑏𝑐 = (𝜔𝑐𝜏2)
2 = (𝜔𝑐

1

(𝛼 + 𝛽 + 𝛾)
)
2

 (5.170) 

In addition, the capacitance ratio can be expressed as 
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𝑏𝑐 =
𝑚

(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)
= (𝜔𝑐

1

(𝛼 + 𝛽 + 𝛾)
)
2

  (5.171) 

This implies the PLL parameter 𝑚 can be expressed in terms of poles as 

𝑚 = (𝜔𝑐
1

(𝛼 + 𝛽 + 𝛾)
)
2

(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾) (5.172) 

 

The original equation (5.157) is written again as 

𝑃𝑛
𝑃𝑐
= 10𝑙𝑜𝑔1 0

{
 
 

 
 

(
𝑏𝑐−1
𝑏𝑐

)

2

(
𝐾𝑣 
2Δω

)

2

(

  
 2𝑘𝐵𝑇𝑅2

1+ ( 1
(𝛼+𝛽+𝛾)

Δ𝜔)
2

)

  
 

}
 
 

 
 

 (5.173) 

 

Substituting the values of 𝑏𝑐  in terms of loop BW into Equation (5.173), the alternative 

expression is written as,  

𝑃𝑛
𝑃𝑐

= 10𝑙𝑜𝑔10

{
  
 

  
 

(

 
(𝜔𝑐

1
(𝛼 + 𝛽 + 𝛾)

)
2

− 1

(𝜔𝑐
1

(𝛼 + 𝛽 + 𝛾)
)
2

)

 

2

(

 
 
 
 
(𝜔𝑐

1
(𝛼 + 𝛽 + 𝛾)

)
2

(𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾)𝑁

𝐾𝜙𝑅2

2Δω

)

 
 
 
 

2

(

 
2𝑘𝐵𝑇𝑅2

1 + ( 
1

(𝛼 + 𝛽 + 𝛾)
Δ𝜔)

2

)

 

}
  
 

  
 

 

(5.174) 

 

An expression such as Equation (5.174) relating the noise power to carrier power ratio to the roots 

and the loop band-width (𝜔𝑐) , and roots  has not been expressed in open literature. The loop BW 

(𝜔𝑐) is related to the time constant of the series path (𝜏1 = 𝑅2𝐶2) and capacitance ratio (𝑏𝑐)[Lam 

and Razavi, 2002]. 

5.12 Application of the ITAE criterion for third-order PLLs 

 

The term ‘Integral of Time multiplied by Absolute Error’ (ITAE) is a performance measure for a 

control system of any order and has been proposed by [Dorf, 2005]. who provided the analytical 

definition for the ITAE criterion for third-order systems (Chapter 5 of [Dorf,2005]). This section 

is an attempt to analyze the potentially optimal third-order PLL based on control theoretic criteria. 

The ITAE is expressed in the form of an integral as 
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𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
𝑇

0

 (5.175) 

In Equation (5.175), 𝑡 is the time variable ranging from 0 to 𝑇 and 𝑇 is the finite integration 

interval. The term  |𝑒(𝑡)| is the absolute value of error at input to PLL (error being the difference 

of the primary input to the PLL and the feedback path signal). For a second-order system the ITAE 

performance criterion has been plotted versus 휁 by [Dorf, 2005]. For a second-order system the 

minimum ITAE occurs at 휁=0.6. [Dorf, 2005] has provided optimum coefficients for (minimum 

ITAE) the CE of a third-order system (Chapter 5, Table 5.6, pp. 259). Since the coefficients 𝑏, 𝑐, 𝑑  

of Third order PLL are known, it is worthwhile to explore how the third-order PLL meets the ITAE 

criterion. The CE for third-order PLL is written as 

𝑠3 +
1

𝜏2
𝑠2 +

𝑚𝜏1
𝜏2

𝑠 +
𝑚

𝜏2
= 0 (5.176) 

The canonical expression for the CE of a third order system is written as  

𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑 = 0 (5.177) 

In Equation (5.177) 𝑎 is the third-order coefficient, constant 𝑏 is the second-order coefficient, 

constant 𝑐 is the first-order coefficient, and constant 𝑑 is the zeroth-order coefficient. 

The optimal third-order 𝑇(𝑠) (Denominator of Transfer Function) suggested by [Dorf, 2005] 

follows Equation (5.178). This means if a third-order system has a denominator of the form in 

Equation (5.178) the value of the integral in Equation (5.175) will be minimal. In this case optimal 

refers to the fact that ITAE is locally minimal for the suggested set of coefficients of the third-

order system. The denominator of the Transfer Function of the third-order PLL is written as (𝑎𝑠3 +

𝑏𝑠2 + 𝑐𝑠 + 𝑑)  with 𝑎 = 1. The expression 𝑇(𝑠) is the left-hand side of the CE. Equation (5.178) 

is written for optimal ITAE in a third-order system 𝑇(𝑠) is the denominator of the transfer function 

of the third-order PLL.  

𝑇(𝑠) = 𝑠3 + 1.75𝜔𝑛𝑠
2 + 2.15𝜔𝑛

2𝑠 + 𝜔𝑛
3 (5.178) 

 

Equation (5.178) is given in [Dorf, 2005], it expresses the CE of a third order system which is 

optimal in ITAE. By Equating the coefficients of Equations (5.176 and 5.178) and relating   𝑏, 𝑐, 𝑑 

to 𝑚, 𝜏2one can write the final expression relating the natural frequency and loop BW as   

𝜔𝑛 = 𝜔𝑐    (5.179) 

The smaller time constant (𝜏2) is written as 
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𝜏2 =
1

1.75𝜔𝑛
 (5.180) 

The variable 𝑚 is written in terms of the natural frequency (𝜔𝑛) as 

𝑚 = 𝜔𝑛
3𝜏2 =

𝜔𝑛
2

1.75
 (5.181) 

The larger time constant (𝜏1) is written as 

𝜏1 =
2.15

𝜔𝑛
 (5.182) 

Next, we attempt to derive a value or an expression for the PM of a third-order PLL. From [He, 

2007], the expression for PM is written as 

𝑃𝑀 = (
180

𝜋
) ∗ {tan−1(𝜔𝑐𝑇2) − tan−1 (𝜔𝑐𝑇1)} (5.183) 

To proceed further one must consider the transfer function of a third-order PLL, 𝐻(𝑠). If a form 

of the transfer function of a third-order PLL according to [He, 2007], 

𝐻(𝑠) =  𝑁
(1 + 𝑠 𝜔𝑧)⁄

(1 + 𝑠 𝜔𝑧 + 𝑠2 (𝜔𝑧𝜔𝑐)⁄ + 𝑠3 (𝜔𝑧𝜔𝑐𝜔𝑝2)⁄ )⁄
 (5.184) 

In Equation (5.184)  𝜔𝑧is the zero of third-order PLL,  𝜔𝑐 is the loop BW of third-order PLL, and 

𝜔𝑝2 is the higher order pole of third-order PLL. Equation (5.184) is first stated by [He,2007] (as 

Equation (3.19) in He’s thesis).  From Equation (5.178), the denominator of the transfer function 

of optimal third-order PLL is   

𝑠3 + 1.75𝜔𝑛𝑠
2 + 2.15𝜔𝑛

2𝑠 + 𝜔𝑛
3 (5.185) 

The corresponding denominator of a third order PLL as expressed by [He, 2007] is written as 

( 𝑠3 +𝜔𝑝2𝑠
2 + 𝜔𝑝2𝜔𝑐𝑠 +  𝜔𝑝2𝜔𝑐𝜔𝑧 )  (5.186) 

Phase margin can be calculated using the Equation (5.166) which is from [He,2007] thesis. 

PM =  tan−1 (
𝜔𝑐
𝜔𝑧
) − tan−1 (

𝜔𝑐
𝜔𝑝2

)  (5.187) 

The second pole is expressed as 

𝜔𝑝2 = 1.75𝜔𝑛   (5.188) 

The loop BW is expressed in terms of natural frequency as 

𝜔𝑐 =
2.15𝜔𝑛
1.75

= 1.228𝜔𝑛  (5.189) 

The zero (𝜔𝑧) is expressed in terms of natural frequency (𝜔𝑛) as 
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𝜔𝑧 =
𝜔𝑛
2.15

= 0.4𝜔𝑛 (5.190) 

Simplifying and substituting the values of 𝜔𝑝2, 𝜔𝑐, 𝜔𝑧  the into equation (5.187) the PM (radians) 

is written as 

PM =  tan−1(
(2.15 1.75⁄ )𝜔𝑛

𝜔𝑛
2.15

) − tan−1 (
(2.15 1.75⁄ )𝜔𝑛

1.75𝜔𝑛
) = 0.5968 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (5.191) 

Equation (5.191) computes the PM as 0.5968 radians. Converting the PM value into degrees, 

PM = (
180

π
) ∗ {tan−1(

(2.15 1.75⁄ )𝜔𝑛
𝜔𝑛
2.15

) − tan−1 (
(2.15 1.75⁄ )𝜔𝑛

1.75𝜔𝑛
)} = 34𝑜 (5.192) 

Hence, PM = 34𝑜 for a third-order PLL which is optimal according to ITAE. The other 

conclusions is that for a third-order PLL. The first conclusion is that the third pole is as 1.75 times 

the natural frequency (Equation 5.188). The second conclusion is that the loop BW (𝜔𝑐) is 1.228 

times the natural frequency (Equation 5.189). The third conclusion is the value of the frequency 

of the zero (𝜔𝑧) is 0.4 times the natural frequency (Equation 5.190). These three conclusions or 

the PM value for optimal ITAE have not been discussed in open literature. Equation (5.191) reveals 

that for ITAE optimal third-order PLL, the phase margin is independent of the loop bandwidth. 

This observation is a contribution of this section not covered either in [Dorf, 2005] or other 

previous authors. 

5.13 Conclusion 

 

 

This chapter has a list of significant original analytical contributions. The start of the chapter lists 

the application of [Nickalls, 1993] method to the three roots of the third-order PLL.  

The third-order PLL is considered under three scenarios – all three real poles, all three real and 

equal poles and two complex conjugate poles and a single real pole.  

One major original contribution for the three real roots case is the relationship between the Vieta’s 

angle and the phase margin of the PLL which has been derived here for the first time in a closed-

form.  
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This chapter also discussed the new analytical solutions that relate the phase margin as well as the 

capacitance ratio of a third-order PLL to the locations of the three real poles of the PLL. Other 

derived expressions proposed in this chapter relate the time constant of the loop filter to the 

geometrical positions of the poles. The above cited closed-form analytical solutions appear to have 

been addressed only by this thesis.  

For the case of a third-order PLL with three real and equal poles, an expression has been derived 

for the step response. A new expression to capture the unit step response of a third-order PLL with 

three real and equal poles has been derived. It is illustrated that the parameter 𝜏𝑎 controls the nature 

of the response. The phase margin of the PLL under three real and equal poles case also been 

derived and it is illustrated that the PM is only a function of the capacitance ratio (𝑏𝑐). 

The quality of the output waveform of DDS- PLL combination is determined by both the spurs 

generated by the PLL as well as the phase noise or jitter. The spur gain is approximately the 

magnitude of open loop transfer function of the PLL if its divide ratio is high. This chapter has 

discussed a detailed procedure for the derivation of closed-form expression for the spur gain in 

terms of the three poles of a third-order PLL. Such a derivation appears to have not been attempted 

earlier in open literature.  

This chapter compares the transfer function of a third-order PLL to an ideal third-order system 

whose response is optimal according to the ITAE criterion. An expression and a final value for the 

phase margin for a third-order PLL which meets the ITAE criterion has been derived for the first 

time.  

This chapter has presented considerable analysis pertaining to ratio of noise power to carrier power 

in a PLL. This chapter has derived equation that relates the noise power to carrier power ratio to 

the three roots and the loop band-width (𝜔𝑐) of third order PLL. A new derivation to link directly 

the loop BW of the PLL to (
𝑃𝑛

𝑃𝑐
) is also presented in this chapter.  
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  Chapter 6 FPGA implementation of DDS and Hartley 
 

 

Chapter 6 describes the FPGA implementation of the Cubic DDS, Quartic DDS, LHSC DDS and 

Taylor-series DDS. It compares power dissipation and FPGA resource requirements for these DDS 

designs. To create a proper benchmark all designs described in this chapter are implemented using 

the same 1.0 V core power supply, common IO voltage (2.5V), common auxiliary voltage (2.5V) 

and the common clock frequency of 100 MHz.  All the designs are implemented on a common 

FPGA platform Virtex-6™ xc6Vlx110t™ by means of the common base-board from Xilinx. The 

specific type of FPGA is characteristic for all designs. This ensures that for a given DDS design 

the common FPGA libraries are used with the similar supply voltages and frequencies. This 

chapter is focused on dynamic power dissipation of DDS designs and their usage of FPGA HW 

resources. 

The relevant dynamic power is the summation of the clock power, signal power, logic power and 

DSP related power which is an example of a power dissipation. Dynamic power is a function of 

the primary clock frequency and supply voltage and the gate and wiring capacitances driven in a 

DDS design. Dynamic power is the power consumed by the internal circuity of a design. IO power 

is the power dissipated in the IO pads (Input-Output Pads) when the designed circuit is performing 

a DDS waveform generation at normal IO voltage. IO voltage is different and greater than core 

voltage and frequency. The IO power is also enhanced owing to the much larger capacitance in IO 

pads compared to the core circuitry. Including the IO power value in the dynamic power would be 

inappropriate as IO power dissipation would not have occurred if the DDS output fed a radio circuit 

which was also implemented on the same FPGA. The IO power dissipation is exhibited due the 

fact that the DDS design drives the external IO instead of driving internal circuitry in the FPGA. 

The IO power is a function of the output sample rate and IO load capacitance. It is not included in 

the Dynamic power curves. The FPGA resources are generated in Xilinx ISE (Version13.1) only 

after complete placement and routing has been performed.  

This chapter incorporates six sections. Section 6.1 presents a design of architecture of a cubic 

polynomial featured with a previously specified number of switchable segments. The analysis of 

SFDR and dynamic power of LHSC DDS is covered in section 6.2. The implementation of the 

quartic DDS in FPGA is covered in section 6.3.  The comparison of dynamic power and SFDR for 

cubic, LHSC and Taylor Series DDS is presented in section 6.4. The FPGA implementation for 
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the Hartley Image suppressor is discussed in section 6.5. Section 6.6 summarizes the key points 

highlighted in the chapter.  

6.1 Cubic DDS with segment switching  

 

 

This section presents an architecture for cubic DDS  featured with variable number of segments. 

Figure 6.1 is the block diagram of a cubic polynomial DDS with the ability to switch to varying  

number of segments, thereby producing variable SFDR. 

 

 

Figure 6.1 Block Diagram of cubic Polynomial DDS with a provision to select the number 

of segments 

 

Figure 6.1 illustrates a modified form of the cubic DDS described in Chapter 2 (in Figure 2.5). 

Original blocks of Cubic DDS are included. Besides, it includes two additional CSUs each 

corresponding to a different number of segments instead of a single CSU, a single CSU design 

would be applicable if the number of segements is fixed. The selection circuitry allows the design 

to be operated with a variable number of segments ( 𝑠 =  8 / 16 /32). The switchable DDS design 

of Figure 6.1 achieves an SFDR of 136dB for 𝑠 = 8, and SFDR of 160dB for s=16, and the highest 
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SFDR of 180dB for 𝑠 = 32. . The segment selector switch which sets the allowable various pre- 

designed segment numbers and the associated different CSU blocks earmarked for a chosen 

number of segments is shown in Figure 6.1. The phase accumulator in Figure 6.1 is split into three 

parts. The overall PACC word width is 14 bits. The top two bits (MSB, MSB-1) of the phase 

accumulator output select the quadrant.  Only two bits of Phase accumulator output will suffice, 

as the selection is made for one of the four quadrants. The bit-width dedicated for segment 

selection ( 3 bits for 𝑠 = 8, 4 bits for 𝑠 = 16 and 5 bits for 𝑠 = 32) is dedicated to the selection of 

the number of segments. Since the overall bit width its fixed, having greater number of bits for 

segment selection will reduce the number of  available bits for a sample selection. The least 

significant bits, namely 9 bits for 𝑠 = 8, 8 bits for 𝑠 = 16 and 7 bits for 𝑠 = 32, are dedicated for 

generation of a sample within a given segment. The coefficients are calculated in accordance with 

the technique discussed in [DeCaro and Strollo, 2005]. The design has three separate CSU units, 

which supply coefficients to the computational block called the Polynomial Computation 

Block(PCB). The disabling logic included in Figure 6.1 turns off the clocks of CSU-2 and CSU-3 

if only CSU-1 is used(𝑠 = 8). This ensures that unnecessary logic circuits are not kept active when 

they not required. If 𝑠 = 16, the disabling logic turns off the clocks to CSU-1 and CSU-3. On the 

other hand, for 𝑠 = 32, the disabling logic turns off the clocks to CSU-1 and CSU-2. The selection 

circuitry and disabling logic for a FPGA implemented Cubic polynomial DDS have been 

implemented for the first time to the best of the authors knowledge. 



 
 

214 
 

 

 

Figure 6.2 Sysgen Implementation of Cubic DDS with s=8/16/32 showing switching logic 

 

The Sysgen™ model of a cubic polynomial based DDS with a segment selector switch allowing 

to select one of three possible number of segments (𝑠 = 8, 16, 32) with 𝑁 = 512 is illustrated in 

Figure 6.2. In Figure 6.2, the Sysgen implementation includes a multipliexer with 8, 16 and 32 

inputs. The different coefficient units (CSUs), as implemented on the FPGA are highlighted.The 

switching unit, which allows the combined DDS to operate with three different number of 
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segements, is highlghted as 𝑠𝑒 = 8/16/32.  The difference between the current research and 

results on hardware reported by [DeCaro and Strollo, 2005] is that neither dynamic power nor 

FPGA resources were mentioned in DeCaro and Strollo’s  paper. Besides, their paper also never 

made a comparison between LHSC, Taylor, quartic and cubic DDS. 

6.2 LHSC DDS and its verification 

 

Linear High Segment Count (LHSC) DDS generates sinusoids using large number of segments 

using a linear approximation function (the coefficient computation uses large number of points. 

within the segment) and a highly accurate approximation. Figure 6.3 illustrates the FPGA 

implementation of the LHSC DDS. 
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Figure 6.3 LHSC DDS with s=64 and N=512  

 

The LHSC DDS design uses a two-stage pipeline, which is illustrated in Figure 6.3 with N=512 

(512 samples per segment) and 64 segments per quadrant. The LHSC DDS uses a three-stage 

pipeline instead of a five-stage pipeline used in the Cubic DDS. The LHSC DDS block diagram 

would be same as that in Figure 6.1, except the CSU produces 2 coefficients per segment instead 

of 4 coefficients per segment. Two LHSC DDS designs with s=32 and 64 segments per quadrant 

have been implemented on Virtex™ FPGA with the same number of samples per segment. Figure 
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6.3 illustrates the Sysgen™ model of LHSC DDS with 𝑠 = 64 and 𝑁 =  512 samples/segment. 

The dynamic power is reduced from 122mW for cubic DDS (𝑠 = 32) to 23mW for LHSC DDS 

( 𝑠 = 32). The LHSC DDS design has been implemented with a three-stage pipeline on a Xilinx 

Virtex-6 FPGA at a clock frequency of 100MHz.The LHSC-64(𝑠 = 64) design utilizes 64 input 

multiplexers. Comparing the Figures 6.2 (Cubic polynomial DDS), in Figure 6.3 (LHSC DDS with 

𝑠 = 64), one can see that the data path for LHSC DDS only two stages deep as compared to five-

stages deep for Cubic DDS. This difference in the number of stages is because of LHSC requires 

only one multiply-accumulate per sample versus three multiply-accumulates per sample for Cubic 

DDS. The dynamic power for the LHSC DDS design with 𝑠 = 64 is 22% higher than the 

corresponding LHSC DDS with 𝑠 = 32. Figure 6.3 illustrates the difference in dynamic power 

consumption between the Cubic polynomial DDS with 𝑠 = 32 and the LHSC DDS with 𝑠 = 32 

and 𝑠 = 64. 

The SFDR of  the cubic polynomial DDS(𝑠 = 32) is 185 dB while that of LHSC DDS with 𝑠 =

32 is 201 dB. The LHSC DDS with 𝑠 = 64 exhibits a SFDR of 210 dB- Figure 6.4.The LHSC 

DDS features only one multiplier and one adder. The cubic polynomial DDS includes 3 multipliers 

and 3 adders. This difference means LHSC DDS has 25% of the power dissipation of a cubic 

polynomial DDS. The additional power dissipation of the cubic DDS is due to the additional two 

multipliers and two adders. It is sufficient to offset the power dissipation due to the larger muxes 

in LHSC DDS designs with 𝑠 = 32 and 𝑠 = 64. The LHSC DDS design with 𝑠 = 64 has been 

programmed onto Virtex-6™ FPGA. A comparison of the dynamic power and resource utilization 

has been presented in Figure 6.5 and Figure 6.8. 

6.3 Implementation of quartic DDS in FPGA 
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Figure 6.4 Sysgen™ model for quartic DDS with 𝒔 = 𝟖 and 𝑵 = 𝟏𝟎𝟐𝟒 samples/segment 

 

A Sysgen™ model of a quartic DDS (Figure 3.3/Chapter 3) with 𝑠 = 8 and 𝑁 = 512 

samples/quadrant is illustrated in Figure 6.4. The Sysgen™ model depicted in Figure 6.4 illustrates 

both the datapath and the multiplexer selection (CSU) for quartic DDS. The datapath of quartic 

DDS requires an additional multiplier and adder, as compared to the cubic polynomial DDS single 

a quartic DDS requires four multiply-accumulates per output sample as opposed to three multiply-

accumulates for a cubic DDS. It requires five multiplexers for coefficients vis-a-vis four 
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multiplexers in cubic polynomial DDS (Figure 6.4 versus Figure 6.2). The quartic DDS has a six-

stage pipeline, as opposed to the three-stage pipeline for a LHSC DDS or the five-stage pipeline 

for the Cubic DDS. Figure 6.5 is a summary of the HW resources such as look -up tables, DSP 

resources, flip -flops used by different DDS designs.  

 

 

Figure 6.5 FPGA resources for different Cubic Quartic and LHSC DDS designs  

 

In Figure 6.5 number of slice registers, number of slice-LUTs (Look-Up Tables), number of LUTs 

used for Logic; number of LUTs used for memory, number of LUT-Flip -flop pairs used, number 

of IO buffers used, and number of DSP-48E elements used for multipliers and adders. 

The FPGA resource requirements for a Quartic DDS are shown in Figure 6.5, the dynamic power 

is shown in Figure 6.6. Comparing the power curves in Figure 6.6, it is observed that the dynamic 

power dissipation is increased by 150 % from 114mW (for cubic polynomial DDS, 𝒔𝒆 = 8) to 

285mW (for Quartic DDS for 𝒔𝒆 = 8). For 𝒔𝒆 = 8, the additional 40 dB increase (from 136 dB to 

176 dB) in SFDR of a quartic DDS over a cubic-polynomial DDS must be weighed against the 

higher power dissipation. Comparing the power requirements depicted in Tables 3.1a and 3.5a, it 

is observed that power requirement of quartic design increases by 100% because of the additional 

usage of the DSP48-E elements (which includes an additional multiplier and adder as compared 

to the cubic DDS). For quartic DDS (𝒔𝒆 = 8), there is a six-fold increase in the number of DSP48E 

elements required (from 58 to 378) compared to a Cubic DDS (𝒔𝒆 = 8), thereby contributing to 
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the additional power dissipation. Each column header is the power dissipated. The power values 

in the rows are in watts. The Xilinx compilation report automatically generates the raw information 

required to compile Table 6.1. The power is split up into six categories- clock, logic signals, DSP-

48E (a multiplier-accumulator macro) and IO (input-output buffers). The leakage power is due to 

the whole FPGA not just the DDS design implemented in the FPGA hence it’s a lot higher. The 

total Dynamic power in Table 6.1 is the sum of the power due to clocks, logic signals and DSP-

48E.  

 

Table 6.1 comparison of Dynamic power of Quartic DDS and Cubic DDS with 𝒔𝒆 = 𝟖 

 

Clocks Logic Signals 
DSP-

48E 

IO ( 

Input/output 

buffers) 

Leakage 
Total Dynamic 

Power(W) 

Cubic 

DDS 

(s=8) 

.024 .021 .032 .037 .400 4.3 .112 

Quartic 

DDS 

(s=8) 

.042 .064 .114 .065 .74 4.3 .285 

 

 

In Table 6.1 both designs were implemented on the same base FPGA at common voltage and 

master clock frequency. The difference between the 285mW power dissipation(quartic) and the 

112mW dissipation in cubic is because of an additional multiplier-accumulator and more 

multiplexers for a more complex CSU. 

Three different Taylor series DDS designs were implemented using Virtex™ FPGA. The 

simulations were run at a frequency of 100MHz and supply voltage of 1.0V. All Taylor DDS 

designs had 32 segments per quadrant. However, the number of samples per cycle had to be 

reduced, as FPGAs could not accommodate very large memories. Simulations were performed for 

three different number of samples/cycle (N=1024 samples/cycle; N= 2048 samples/cycle and N= 

4096 samples/cycle). One cannot have the huge number of samples per cycle for a Taylor series 
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DDS as compared to cubic DDS, owing to a lack of RAM in the FPGA. The FPGA resources for 

these three designs as compared to a cubic DDS with 𝒔𝒆 = 32 are illustrated in Figure 6.6. 

 

 

Figure 6.6 FPGA resources consumed by Taylor series DDS (N=1024/2048/4096 and 𝒔𝒆=32) 

6.4 Dynamic power comparison for Cubic, LHSC, Taylor Series DDS 

 

A comprehensive summary of power dissipation of various DDS designs discussed so far in this 

chapter is presented in Figure 6.7.  

 

Figure 6.7 Comparison of Dynamic Power Dissipation of various DDS designs   
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Likewise, SFDR performance of various DDS designs is presented in Figure 6.8. 

 

 

Figure 6.8 Comparison of SFDR of various DDS designs 

 

From the results of Figures 6.7 and 6.8, it can be concluded that the LHSC DDS design with 𝑠 =

64 offers the highest achievable SFDR (240dB) with a power budget that is about 25% that of 

cubic polynomial based DDS with 𝑠 = 32. An additional observation is that the switchable cubic 

polynomial based DDS with 𝑁 = 512 samples/segment offers the additional flexibility to achieve 

a variable SFDR without having to have three separate DDS designs- one for each value of SFDR 

and an additional power budget. Taylor Series DDS has a low SFDR of 74dB.  

6.5 FPGA implementation for the Hartley suppressor  

 

 

The Sysgen™ model of the Hartley image suppressor (using Virtex-6 FPGA) using only FIR filters 

for LPF portion is shown in Figure 6.9. In Figure 6.9 the 90-degree phase shifter has been 

implemented using a FIR compiler block, which is available from the Sysgen™ toolset. Figure 6.9 

includes Sysgen™ model of the Hilbert phase shifter, which has been implemented both using 

eighth-order IIR filters and thirtieth-order FIR filters.  But, the IIR filter implementation tends to 

consume much less power for comparable SFDR. The difference in power dissipation has been 
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explained in Chapter 3. The usage of IIR filters reduces the power dissipation from 445mW to 

55mW due to reduction in order from 30th order FIR to 8th order IIR for the low-pass filters.  

 

Figure 6.9 FPGA implementation of a Hartley suppressor using only FIR filters 

 

This concludes the FPGA implementation section. The comparative power between a FIR and IIR 

implementation has already been presented in Table 3.3 of Chapter 3. 
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6.6 Summary of Chapter   

 

This chapter has presented the FPGA implementation of the cubic DDS, quartic DDS, LHSC DDS 

and Taylor-series DDS. The dynamic power and FPGA resource requirements for various DDS 

designs have been discussed as well. The switchable cubic DDS design exhibits a SFDR of 136 

dB for 8 segments. When the number of segments ‘𝑠𝑒’ is increased to 16, SFDR of the the cubic 

DDS is 160 dB. The cubic DDS design features a SFDR of 160 dB for 𝒔𝒆=16 and it shows the 

highest SFDR of 180 dB for 𝒔𝒆 = 32. 

The LHSC DDS design proposed in this thesis uses a three-stage pipeline instead of a five-stage 

pipeline used in cubic DDS. For LHSC DDS with 𝒔𝒆 = 32 with 512 samples/segment, the dynamic 

power is reduced from 122 mW for the cubic DDS to 23mW for the LHSC DDS.  SFDR of cubic 

polynomial DDS (𝒔𝒆 = 32) is 185 dB while that of LHSC DDS with (𝒔𝒆 = 32) is 201 dB. The 

LHSC DDS with 𝒔𝒆 = 64 exhibits a SFDR of  210 dB.  The dynamic power for LHSC DDS design 

with 𝒔𝒆 = 64 is 22% higher than the corresponding LHSC DDS with 𝒔𝒆 = 32. It is observed that 

the dynamic power dissipation is increased by 150 % from 114 mW (for cubic polynomial DDS 

with 𝒔𝒆 = 8) to 287 mW (for Quartic DDS with 𝒔𝒆 = 8). The additional observation is that the 

switchable cubic polynomial based DDS with 𝑁 = 512 samples/segment offers the additional 

flexibility to achieve variable SFDR without having to have three separate DDS designs one for 

each value of SFDR and additional power budget. For  𝒔𝒆 = 8, the additional 40 dB increase in 

SFDR (from 136 dB to 176 dB) of a quartic DDS over a cubic polynomial DDS must be weighed 

against the higher power dissipation. An additional observation is that the switchable cubic 

polynomial based DDS with 𝑁 = 512 samples/segment offers an additional flexibility to achieve 

a variable SFDR without having to create three separate DDS designs for each value of SFDR and 

an additional power budget. The Taylor Series DDS with 𝒔𝒆 =8 has a low SFDR of 74 dB. 
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Chapter 7: Conclusions and Suggestions for Future Research 

This chapter aims at a summary of the research presented in this thesis, the arrived conclusions, 

and the inferences derived through a combination involving an analytical formulation and 

simulation results. This chapter also proposes suggestions for future research work to further the 

envisaged orientation or scope of the research presented in this thesis. 

 

7.1 Conclusions  

 

A detailed explanation on the inferences and conclusions derived through the analytical studies 

and the results of simulation pertaining to DDS, dithering and PLL are presented in this section. 

 

7.1.1 Direct Digital Synthesis 

 

This thesis introduces the basic block structure of the DDS and introduces the concepts behind 

Taylor series-based DDS, cubic polynomial based DDS, LHSC DDS and quartic DDS. It also 

defines the common performance specifications for a DDS such as MAE, SFDR, SNR, latency 

and throughput. In addition, a discussion on the existing and proposed DDS structures is also 

presented in the thesis.  

A new configuration of Taylor series-based DDS has been proposed in this thesis and patented. 

The new configuration replaces three ROMs, as well as a multiplier and adder with four ROMs 

and one four-input adder. The proposed architecture improves the throughput and reduces the 

dynamic power by eliminating multipliers through the usage of additional stages to a pipeline.  
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A DDS design called LHSC DDS has been proposed with either 32 or 64  segments per quadrant. 

LHSC DDS computes the sinusoid value using a linear interpolation. The key advantage of LHSC 

DDS over a cubic polynomial DDS is that it requires a single multiplier instead of three multipliers 

(less than 1/3 the power) and a pipeline depth of three stages instead of a five-stage deep pipeline 

for a cubic polynomial DDS. It produces comparable SFDR for a fraction of power and it features 

lower latency than the cubic DDS. The simulations confirm that the LHSC DDS with 32 segments 

produces a SFDR of 185 dB with a relative reduction of 80% of the dynamic power as compared 

to a traditional cubic polynomial based DDS with 32 segments, which has a maximum SFDR of 

185 dB. 

The quartic DDS proposed in this thesis has an additional stage to generate a six-stage pipeline, 

which is one stage more than the cubic polynomial based DDS has, and it has a low MAE of 9x10-

6. An analytical formulation to derive closed form expressions for these integrals, which are used 

to compute the SFDR of quartic DDS, has been presented in this thesis, and such a closed-form 

representation appears to have not been reported in the literature. 

Two schemes for phase shift compensation in a DDS-DAC-PLL have been explored to compensate 

this phase shift. The first scheme is an analog RC filter phase compensator placed immediately 

next to the output of the DAC block. The second scheme features a digital phase compensator. 

which receives a discrete input from the DDS, compensates the phase shift both due to the DAC 

and the PLL.  

With the analog phase compensator, a phase compensation of up to 28o has been demonstrated. 

The proposed analog compensator produces an overshoot of 143% in response to a unit step input.  

A three-stage digital phase compensator, which comprises three cascaded IIR filters (placed before 

the DAC), has been proposed. This can compensate the phase shift introduced by both the DAC 

and second order PLL. Phase shift up to -105o and a settling time of 142 ns have been considered. 

For a three-stage compensator, it is observed that a step input produces a large overshoot of 186%.  

 

7.1.2 Hartley Spur Suppressor and Dithering Scheme 

 

Conventional dithering schemes facilitate the realization of spur suppression (improvement 

in SFDR) at the undesirable feature of rise in noise floor of the dithered output. The focus of this 

thesis is on approaches, which would improve SFDR without raising the noise floor around the 
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fundamental or center frequency of operation of the DDS. An alternative spur suppression scheme 

using a Hartley suppressor has been explored.  

A Hartley spur suppressor has been proposed for the DDS to improve SFDR without degrading 

the noise floor. The SFDR of Taylor Series based DDS is improved by 45 dB with Hartley spur 

suppression scheme characterized by a power dissipation of 55 mW.  

A spur suppressor scheme using LMS filters (LMS-SIC) has also proposed in this thesis. The 

LMS-SIC improves SFDR from 74dB to 120 dB. The RLS based spur suppression (RLS-SIC) has 

been proposed as an improvement over the LMS-SIC. The RLS based compensator featuring a 

weight vector of length 32 improves the SFDR of a Taylor Series DDS from 74 dB to almost 190 

dB. 

  

7.1.3 Phase Lock Loop 

 

This thesis has adequately addressed the design, analysis and simulation of PLL. The primary 

focus of the thesis is on the DDS-PLL combination. The DDS - PLL combination has a DDS 

cascaded with a DAC and a PLL, which can be of any order. This thesis has presented the analytical 

formulations and simulation results on second-order PLL, leading to multiple new results. The 

stability of PLL as measured by its phase margin is addressed in this thesis. The speed of response 

as measured by lock time is another measure of performance addressed in this thesis. Phase noise 

at the output of PLL is due to a combination of four noise sources is yet another measure of PLL 

performance. A lower phase noise is a critical requirement for a DDS-PLL system as explained in 

chapters 1 and 2.  

Based on the numerous analytical formulations presented in the thesis, it is concluded that to 

achieve a lower lock time, there is a need for higher natural frequency, higher sensitivity of VCO 

and greater PM. A closed form expression has been derived for the derivative of the lock time with 

respect to the damping coefficient.  

New analytical expressions relating the jitter variance in term of PM for a second-order PLL have 

been derived. This thesis presents simulation results on jitter variance versus PM for a range of 

natural frequencies (therefore loop BW) of a second order PLL. 
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A new closed from expression relating the angle between the two complex poles to its PM of a 

second-order PLL has been derived. It is observed that the angle between the two complex poles 

reduces rapidly as the PM is increased beyond 60o.  

This thesis presents an analysis on the characteristic properties of the roots of a third order PLL 

featuring a charge pump. In a combined system featuring both DDS and PLL, the PLL is usually 

designed to multiply the frequency of the DDS. It is desirable that the combined DDS-PLL 

combination exhibits the features of low power, a small frequency step size and a high spectral 

purity in the waveform at the output of the PLL. 

Expressions have been derived to relate the three real poles of a third order PLL to the half radius 

and center of Vieta’s circle. These expressions relate the geometry of circle to the PLL parameters. 

Such expressions have not been reported in the open literature.  

This thesis presents analytical formulations that relate the PM of a third order PLL with the values 

of the three real poles of the PLL. The derived formulation expresses the capacitance ratio as a 

function of the poles. Other formulation presented in the thesis relate the time constant of the loop 

filter to the location of the poles. Such expressions are not available in the open literature.  

An analysis of third order PLL with two real poles or three real poles have been dealt with an 

analytical formulation linking its performance to the location of the poles. For a case where a third 

order PLL has three real and equal poles, a new expression has been derived for the step response. 

Such an expression has not been described in open literature.  

There are two requirements to have a better waveform generated by a DDS-PLL combination. The 

first requirement is the spurs generated by the PLL itself must be of very low magnitude. If the 

spurs are very small in magnitude a high SFDR is achieved at the PLL output. The second 

requirement being a lower phase noise or equivalently low Jitter variance at the output of PLL. A 

higher spur gain must be avoided for the two common types of spur, namely leakage spur and 

mismatch spur in a PLL. An analytical formulation has been presented in the thesis to relate the 

spur gain to the locations of the three poles of a third-order PLL. 

This thesis presents the derivation of new expressions to relate the jitter variance at the output of 

a third-order PLL with the three roots of its CE. Such expressions appear to have not been 

previously addressed in the open literature.  

This thesis also presents an analysis for the derivation of closed form expressions to relate the one 

real and two complex poles of a third-order PLL to the parameters of PLL, such as capacitance 
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ratio and the time constant (𝜏1) of the loop filter. These expressions, which appear not to have 

been addressed in open literature, can be utilized in future work to derive closed form expressions 

for parameters of PLL, such as lock time and phase noise in term of the poles.  

This thesis presents new expressions for the (𝑃𝑛/𝑃𝑐)  (the ratio of the noise power (𝑃𝑛) to the carrier 

power(𝑃𝑐)) in terms of the loop bandwidth of the third-order PLL, loop bandwidth (𝜔𝑐), time 

constant 𝜏2 of the loop filter, the capacitance ratio of the loop filter (𝑏𝑐) and the VCO sensitivity 

VCO (𝐾𝑣). Through these four parameters the ratio (𝑃𝑛/𝑃𝑐)  has been related to the three roots of 

a third-order PLL. 

It has been proven in the thesis that for an ITAE optimal third-order PLL, the loop bandwidth has 

been related to the natural frequency of the PLL. The resultant PM for a third-order PLL which 

meets the ITAE optimal criteria, has been derived for the first time. 

 

7.2 Original Contributions of the Thesis 

 

The original contributions of the proposed thesis, which emphasized the research on DDS, Spur 

suppression schemes and PLL for CR applications are listed in this section. 

• A characterization of the variation of PM with the perturbation of settling time of a second-

order PLL has been performed for the first time. An important new derivation relates the 

output phase noise of a second-order PLL with its settling time and the cotangent of its 

phase margin. 

• A new expression for the derivative of the lock time of a second-order PLL with respect to 

its damping coefficient as a function of its natural frequency or loop bandwidth is derived. 

A closed form expression is formulated relating the derivative of the lock Time of a second-

order PLL with respect to its PM has been presented. 

• An equation relating the lock time of a second-order PLL with respect to its loop filter time 

constant and the PM has been derived for the first time. 

• An expression and a curve relating the jitter variance and PM of a Type II second-order 

PLL has been presented for the first time 

• Another expression for the variation of Jitter variance with respect to the PM of a second-

order Type I PLL is derived. This expression is accompanied with a second expression that 
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establishes the relationship for the first time between a derivative of the Jitter variance with 

respect to PM of a second order PLL 

• A derivation for the Nickalls’s parameters in terms of the three real poles of a third-order 

PLL has been derived for the first time. A derivation of the relationship between Vieta’s 

angle and the PM of the third-order PLL has been derived for the first time in a closed-

form.  This is valid for a third-order PLL with three real roots  

• A closed form expression for Spur Gain in terms of three real roots has been derived for 

the first time. An entirely new expression for the capacitance ratio of a third-order PLL has 

been derived in terms of Vieta’s parameters. An entirely new derivation is formulated to 

characterize Jitter variance versus overshoot of a third order PLL  

• New analytical solutions that relate the PM and the capacitance ratio of a third-order PLL 

to the locations of the three real poles of the PLL are proposed in this thesis. Derivation of 

a value for the PM of a third-order PLL, which meets the ITAE criterion, has been derived 

for the first time  

• The ratio of noise power to carrier power of a third-order PLL has been related to the roots 

of CE of the PLL. Furthermore, the ratio of noise power to carrier power is related to the 

three real roots and the loop BW. A new expression has been derived for the lock time of 

third-order PLL in terms of the three real poles.  

 

7.3 Suggestions for Future Research  

 

Based on the research presented in the earlier chapters of the thesis, this section presents a potential 

scope for further additional research on DDS and PLL. 

 

7.3.1 Direct Digital Synthesis 

 

The analysis of chapter 3 of this thesis can be extended for quartic DDS so that a closed form 

expression can be derived for the SFDR of a quartic DDS in terms of the number of segments.  

The results on quartic DDS which have been derived in Chapter 3, can be further extended to a 

quantic DDS (fifth-order polynomial DDS).  
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One important direction for future work would be to explore a HW implementation of a 32-

segment cubic or quartic polynomial DDS cascaded with an IIR filter-based phase shift 

compensator. The IIR phase compensator will be able to compensate the phase shift due to the 

DAC and the PLL.  

Another aspect of future research potential would be to combine error feedback of DDS [Vankka, 

2000] with a phase shift correction circuit after the DDS. An adaptive phase compensation scheme 

would be worthy of exploration.   

 

7.3.2 Dithering Scheme and Hartley Spur Suppressor 

 

The Hartley spur suppression circuit described in Chapter 4 of the thesis improves SFDR of Taylor 

series-based DDS by suppressing a single spur without degrading the noise floor. An avenue for 

future research can be a provision for extensions of Hartley spur suppression, which suppress more 

than one significant spur without increasing dynamic power or latency.  

An extension of the conventional Hartley spur suppressor can be formulated combining the error 

feedback of DDS proposed in [Vankka, 2000] with a Hartley spur suppressor. 

 

7.3.3 Phase Lock Loop  

 

From the research perspective, it will be worthwhile to explore the extension of the analysis 

presented in Chapter 5 of the thesis to derive a closed form expression for the SFDR of a cubic 

polynomial DDS driving a ZOH DAC followed by a second order PLL. When spurs are generated 

within the second order PLL, one must have a means of trading of spur levels with PM of PLL. 

PLLs have been proposed to filter the spurs of DDS.  

An expression for spur values has been provided by [He, 2007]. One can possibly consider it a 

worthwhile research exercise to extend the analysis presented in this thesis to directly relate the 

theoretical spur magnitude as derived by [He, 2007] to the locations of one real and 2 complex 

poles of a third-order PLL.  

Jitter variance of a third-order PLL in terms of VCO parameters has been expressed by [Mansuri, 

2 002]. It would be a good research contribution to analytically arrive at the expression of the Jitter 
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variance and facilitate their computation in terms of the parameters of Vieta’s circle for real poles. 

It would be highly useful to relate the hyperbolic expressions for 𝑚 , 𝑏𝑐 and 𝜏2 derived in chapter 

5 to the practical parameters such as jitter variance, lock time and spur gain, as derived in 

[Banerjee, 2006] or alternatively in [He, 2007]. The practical significance of this suggestion would 

facilitate the designers’ efforts to relate the small perturbations in the values of a real and complex 

poles to actual changes of PLL parameters such a spur gain, lock time and step response.  

Further analytical work can be attempted to extend the formulations of this thesis to derive 

expressions for SFDR and SNR of the output waveform of a third-order PLL in terms of locations 

of three real poles.  

A study on phase noise optimized VCO design combined with optimized pole placement of PLL 

will be of great utility so that the resulting PLL has the desirable features of low lock time 

combined with low phase noise of VCO.  
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Appendix A 
 

Appendix A is divided into two parts. Part A.1 illustrates the steps necessary to compute the 

polynomial coefficients of any DDS (using the model dues to [De Caro and Strollo, 2005]) when 

the SFDR is known and the maximal SFDR is achieved. The first part comprises equation (A.1) 

to (A.23) where given a value of SFDR the corresponding coefficients of an optimal Cubic DDS 

are computed.  

The second part (A.2) (comprising of Equations (A.24) to (A.39)) illustrates the reverse 

computation the Fourier coefficients (𝑏(𝑛)) and (𝑏(1))  are computed when the set of coefficients 

𝑦()… are known.   

There are two classes of problems where one can use the analysis proposed by [De Caro and 

Strollo, 2005]. The first class of problems (described in part A.1) deals with the computation of 

the coefficients of polynomial to meet a specified SFDR. The second class of problem is for the 

computation of SFDR from the given coefficients of an interpolating polynomial (described in part 

A.2). In either case the intermediate coefficients 𝛼𝑘, 𝛽𝑘 , 𝛾𝑘, 𝛿𝑘   must be computed. Also, the values 

𝑔(𝑛), ℎ(𝑛), 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) must be computed. 

A.1 Computation of the coefficients when the SFDR is known  

SFDR can be written in terms of the number of segments as 

𝑆𝐹𝐷𝑅 = 20 log10 (
5 + 768𝑠𝑒

2 + 5120𝑠𝑒
4

3
) = 20𝑙𝑜𝑔10 (

𝑏1
max (𝑏𝑛)

) (A.1) 

 

In Equation (A.1) 𝑏1 is the fundamental Fourier coefficient max (𝑏𝑛) is the maximum of all 

harmonic produced by the DDS. 𝑠𝑒  is the number of segments per quadrant. Equation A.1 

computes the ratio of the fundamental to the highest harmonic when the number of segments per 

quadrant (𝑠𝑒) is known. 

𝑔(1) = −𝐵
𝜋2(1 + 40 𝑠𝑒

2)

8𝑠𝑒2(5 + 768 𝑠𝑒2 + 5120 𝑠𝑒4)
 (A.2) 

ℎ(1) = −𝐵
𝜋2(11 + 240𝑠𝑒

2 − 2176𝑠𝑒
4)

64 𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (A.3) 
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𝑙(1) = −𝐵
𝜋3(−5 + 80𝑠𝑒

2 + 4224 𝑠𝑒
4)

128𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (A.4) 

𝑚(1) = −𝐵
𝜋4(3 − 200𝑠𝑒

2 − 128𝑠𝑒
4 + 40960 𝑠𝑒

6)

1536𝑠𝑒2(5 + 768𝑠𝑒2 + 5120𝑠𝑒4)
 (A.5) 

 

In Equations (A.2 to A.5), the value 𝐵 corresponds to the magnitude of the output waveform of 

the DDS. The periodicity of the coefficients has been covered in [De Caro and Strollo, 2005], the 

periodicity is expressed in Equations (A.6) to (A.9) 

𝑔(1) = 𝑔(4𝑠𝑒 − 1) (A.6) 

ℎ(1) = −ℎ(4𝑠𝑒 − 1) (A.7) 

𝑙(1) = 𝑙(4𝑠𝑒 − 1) (A.8) 

𝑚(1) = −𝑚(4𝑠𝑒 − 1) (A.9) 

 

Let us define two square matrices 𝑇1 and 𝑇2 are of size 𝑠𝑒X𝑠𝑒 [De Caro and Strollo, 2005]. One 

matrix (𝑇1) is constructed using cosine functions and the other matrix (𝑇2)  is constructed using 

sine functions. Matrix 𝑇1 is used to compute the coefficients α and γ and matrix 𝑇2 is used to 

compute the coefficients β and δ. Matrix 𝑇1 is expressed in Equation (A.10) as  

 

[𝑇1] =

[
 
 
 
 
 
 
 𝑐𝑜𝑠 (

0𝜋

2𝑠𝑒
) 𝑐𝑜𝑠 (

𝜋

2𝑠𝑒
) ⋯ 𝑐𝑜𝑠 (

(𝑠𝑒 − 1)𝜋

2𝑠𝑒
)

𝑐𝑜𝑠 (
0

2𝑠𝑒
) 𝑐𝑜𝑠 (

3𝜋

2𝑠𝑒
) ⋯ 𝑐𝑜𝑠 (

3(𝑠𝑒 − 1)𝜋

2𝑠𝑒
)

⋮

𝑐𝑜𝑠 (
0

2𝑠𝑒
)

⋮

𝑐𝑜𝑠 (
(2𝑠𝑒 − 1)𝜋

2𝑠𝑒
)

⋮ ⋮

⋯ 𝑐𝑜𝑠 (
(𝑠𝑒 − 1)(2𝑠𝑒 − 1)𝜋

2𝑠𝑒
)
]
 
 
 
 
 
 
 

 

 

(A.10) 

Matrix 𝑇2 is expressed in Equation (A.11) as  
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[𝑇2] =

[
 
 
 
 
 
 
 𝑠𝑖𝑛 (

𝜋

2𝑠𝑒
) 𝑠𝑖𝑛 (

2𝜋

2𝑠𝑒
) ⋯ 𝑠𝑖𝑛 (

𝑠𝑒𝜋

2𝑠𝑒
)

𝑠𝑖𝑛 (
3𝜋

2𝑠𝑒
) 𝑠𝑖𝑛 (

6𝜋

2𝑠𝑒
) ⋯ 𝑠𝑖𝑛 (

3𝑠𝑒𝜋

2𝑠𝑒
)

⋮

𝑠𝑖𝑛 (
(2𝑠𝑒 − 1)𝜋

2𝑠𝑒
)

⋮

𝑠𝑖𝑛 (
2(2𝑠𝑒 − 1)𝜋

2𝑠𝑒
)

⋮ ⋮

⋯ 𝑠𝑖𝑛 (
𝑠𝑒(2𝑠𝑒 − 1)𝜋

2𝑠𝑒
)
]
 
 
 
 
 
 
 

 

 

(A.11) 

 

Since the coefficients 𝑔(𝑛), ℎ(𝑛), 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) vanish for 𝑛 greater than 1 up to 𝑛 =  2𝑠𝑒 −

1[De Caro and Strollo, 2005],  it is easy to form a vector for 𝑔(), ℎ(), 𝑙() 𝑎𝑛𝑑 𝑚() by only 

substituting the value of the first element of the respective vector and leaving the rest as 0. 

Since the coefficients 𝑔(1), ℎ(1), 𝑙(1) and 𝑚(1) are directly connected to the SFDR through the 

Equations (A.2 and A.5).  The Equations (A.12 to A.17) complete the second part of the 

computations and allow the computation of the   intermediate coefficient vectors 𝛼(),  𝛽(), 𝛾() and 

𝛿()  to the SFDR.  

Once the coefficients 𝑔(1), ℎ(1), 𝑙(1) and 𝑚(1) are known one can construct a corresponding 

vector of length 𝑠𝑒 which has the coefficient(one of 𝑔(1), ℎ(1), 𝑙(1) and 𝑚(1) ) as the first 

element and the rest of the rows are zero.  Once the coefficients vectors 𝑔(. ), ℎ(. ), 𝑙(. ) 𝑎𝑛𝑑 𝑚(. ) 

are computed the intermediate vectors 𝛼() can be expressed [De Caro and Strollo, 2005] in the 

form of a matrix inversion as 

[
 
 
 
 
𝛼1
𝛼2
𝛼3
⋮
𝛼𝑠𝑒]

 
 
 
 

=[𝑇1]
−1

[
 
 
 
 
𝑔(1)
0
0
⋮
0 ]

 
 
 
 

 

 

(A.12) 

The 𝛽  coefficients are computed in a vector form by the following equation,  

 

[
 
 
 
 
𝛽1
𝛽2
𝛽3
⋮
𝛽𝑠𝑒]
 
 
 
 

=[𝑇2]
−1

[
 
 
 
 
ℎ(1)
0
0
⋮
0 ]
 
 
 
 

 (A.13) 

 
Now the intermediate vector 𝛾 can be computed as 
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[
 
 
 
 
𝛾1
𝛾2
𝛾3
⋮
𝛾𝑠𝑒]
 
 
 
 

=[𝑇1]
−1

[
 
 
 
 
𝑙(1)
0
0
⋮
0 ]
 
 
 
 

 (A.14) 

 

The intermediate vectors 𝛿 are computed by the following operation 

[
 
 
 
 
𝛿1
𝛿2
𝛿3
⋮
𝛿𝑠𝑒]
 
 
 
 

=[𝑇2]
−1

[
 
 
 
 
𝑚(1)
0
0
⋮
0 ]

 
 
 
 

 (A.15) 

 
Equations (A.12, A.13, A.14 and A.15) form a group of four equations which constitute the second 

step of the derivations by [De Caro and Strollo, 2005] which relate the optimal values of 

𝑔(1), ℎ(1), 𝑙(1) and 𝑚(1) to the intermediate vectors 𝛼(),  𝛽(), 𝛾() and 𝛿() through the two 

matrices 𝑇1 and 𝑇2.       

In the third and final step one must utilize the coefficients 𝛼𝑘, 𝛽𝑘, 𝛾𝑘 𝑎𝑛𝑑 𝛿𝑘 to compute the 

coefficients of the cubic polynomial 𝑦𝑘, 𝑚𝑘, 𝑝𝑘 𝑎𝑛𝑑 𝑞𝑘 . These coeffcients are part of the 

polynomial function 𝑉𝑘(𝑥) defined through Equation (A.1). The coefficients  

𝑦𝑘, 𝑚𝑘, 𝑝𝑘 𝑎𝑛𝑑 𝑞𝑘 are determined as described in Equations (A.16) and (A.23). The coefficients 

are computed in a sequential manner.  

The first step the coefficients that must be computed are 𝑞𝑘,    

𝑞𝑠 = 𝛾𝑘  𝑓𝑜𝑟 𝑘 = 𝑠𝑒                        (A.16) 

𝑞𝑘 = −𝛾𝑘 + 𝑞𝑘+1 𝑓𝑜𝑟  𝑘 = 𝑠𝑒 − 1, 𝑠𝑒 − 2,… ,1                                                                          (A.17) 

In the second step the quadratic coefficient 𝑝𝑘 must be computed 

𝑝1 = 𝛾𝑘   𝑓𝑜𝑟 𝑘 = 0                                                                                                                                          (A.18) 

𝑝𝑘+1 = 𝛾𝑘 + 𝑝𝑘 +
3𝑞𝑘

𝑠𝑒
𝑓𝑜𝑟 𝑘 = 1,2,… , 𝑠𝑒 − 1                                                                                          (A.19) 

In the third step the linear coefficients of the power of 𝑥  𝑚𝑘 must be computed.   

𝑚𝑠 = 𝛽𝑠 +
𝑝𝑘

𝑠𝑒
+

𝑤𝑘

𝑠𝑒
2  𝑓𝑜𝑟 𝑘 = 𝑠𝑒                                                                                           (A.20) 

𝑚𝑘+1 = 𝛽𝑘     +  𝑚𝑘 +
2𝑝𝑘

𝑠𝑒
+

3𝑞𝑘

𝑠𝑒
2  𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑠𝑒 − 1                         (A.21) 

Finally, in the fourth step the constant coefficients 𝑦𝑘 must be computed.  

𝑦1 = 𝛼𝑘       𝑓𝑜𝑟 𝑘 = 0                                        (A.22) 
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𝑦𝑘+1 = 𝛼𝑘       + 𝑦𝑘 +
𝑚𝑘

𝑠𝑒
+

𝑝𝑘

𝑠𝑒
2 +

𝑞𝑘

𝑠𝑒
3   𝑠𝑒

2 𝑠𝑒
3𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑠𝑒 − 1                        (A.23) 

The significance of the procedure outlined from Equations (A.1 to A.23) must be highlighted. 

Given a specified SFDR value, using (A.2 to A.5) the corresponding polynomial coefficients 

(𝑔(𝑛), ℎ(𝑛), 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛)) are calculated.  Equations (A.12 to A.15) form the second link in the 

chain to compute intermediate vectors 𝛼(),  𝛽(), 𝛾() and 𝛿().  Equations (A.16 to A.23) are 

significant as they complete the third link in the chain connecting the intermediate coefficient 

vectors 𝛼(),  𝛽(), 𝛾() and 𝛿() which are function of the targeted SFDR and the number of segments 

to actual polynomial coefficients which are computed per segment. The first, second and third 

links allow the computation of the polynomial coefficients for a maximal SFDR DDS with a given 

specified SFDR value. That serves the necessity of describing the complete [De Caro and Strollo, 

2005] procedure in this section.  

 

A.2 Computation of the Fourier coefficients when the polynomial coefficients 

are known 
 

This is the second flow of computations in this thesis. In this flow the SFDR is not it must be 

calculated when the polynomial coefficients are known. Its subdivided into three parts -Parts I 

through III. 

A2.1 Producing the coefficients  𝒚𝒌, 𝒎𝒌, 𝒑𝒌, 𝒒𝒌 

In the first step the coefficients 𝑦𝑘, 𝑚𝑘, 𝑝𝑘, 𝑞𝑘 are input. They form the input to the rest of the 

computation. For a Taylor Series DDS, the coefficients are computed in Equation (3. 55) and 

(3.56). For a LHSC DDS the coefficients are computed using Equations (3.72) through (3.74). For 

LHSC DDS only the coefficients 𝑦𝑘, 𝑚𝑘 are nonzero so the computation is simplified. 

𝑦𝑘= constant coefficient for segment 𝑘 (power of 𝑧𝑗,𝑘
0 ) 

𝑚𝑘= Linear coefficient for segment 𝑘 (power of 𝑧𝑗,𝑘
1 ) 

𝑝𝑘= Quadratic coefficient for segment 𝑘 (power of 𝑧𝑗,𝑘
2 ) 

𝑞𝑘= cubic coefficient for segment 𝑘 (power of 𝑧𝑗,𝑘
3 ) 
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A2.2 Computation of intermediate coefficients 𝜶𝒌, 𝜷𝒌, 𝜸𝒌, 𝜹𝒌 
 

Now since the coefficients of the DDS polynomial have been calculated one must compute. The 

intermediate coefficients 𝛼𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑘 are computed using Equations (2.77a and 2.77b)(A.24 to 

A.31) to Equations (2.80a to 2.80b)(A.xx to A.yy) 

𝛾𝑘 = 𝑝𝑘+1 − 𝑝𝑘 −
3𝑞

𝑠𝑒
           𝑘 = 1,2, … , 𝑠𝑒 − 1 (A.24) 

𝛾𝑘 = 𝑝1          𝑘 = 0 (A.25) 

𝛿𝑘 = 𝑞𝑘+1 − 𝑞𝑘 𝑘 = 1,2, … , 𝑠𝑒 − 1 (A.26) 

𝛿𝑘 = −𝑞𝑠𝑒  𝑘 = 𝑠𝑒 (A.27) 

 

The next two coefficients can be written as, 

𝛼𝑘 = 𝑦𝑘+1 − 𝑦𝑘 −
𝑚𝑘

𝑠𝑒
−
𝑝𝑘
𝑠𝑒2
−
𝑞𝑘

𝑠𝑒
3   𝑘 = 1,2, , … , 𝑠𝑒 − 1  (A.28) 

𝛼0 = 𝑦1    𝑘 = 0 (A.29) 

𝛽𝑘 = 𝑚𝑘+1 −𝑚𝑘 −
2𝑝𝑘
𝑠𝑒

−
𝑞𝑘
𝑠𝑒2
   𝑘 = 1,2, , … , 𝑠𝑒 − 1  (A.30) 

𝛽𝑠 = −𝑚𝑠𝑒 −
2𝑝𝑠𝑒
𝑠𝑒

−
𝑞𝑠𝑒
𝑠𝑒
2
  𝑘 = 𝑠𝑒 (A.31) 

 

Equations (A.24 to A.31) are used to compute the intermediate coefficients 𝛼(. ), 𝛽(. ), 𝛾(. ), 𝛿(. ). 

In the final part (A2.3), the coefficients g(n), h(n), l(n) and m(n) are computed by matrix-vector 

multiplications. 

A2.3 Computation of Intermediate coefficients 𝒉(𝒏), 𝒈(𝒏), 𝒍(𝒏)𝐚𝐧𝐝 𝒎(𝒏) 

In the third part the coefficients computed in Part I are used to form four vectors �̂�, 𝛽,̂ 𝛾, 𝛿 using a 

matrix multiplication as expressed in Equations (A.32) to (A.35).  

𝑀1[sin (𝑘, 𝑠𝑒)]�̂� = ℎ(𝑛) (A.32) 

𝑀2[cos (𝑘, 𝑠𝑒)]�̂� = 𝑔(𝑛) (A.33) 

𝑀2[cos (𝑘, 𝑠𝑒)]𝛾 = 𝑙(𝑛) (A.34) 

𝑀1[sin (𝑘, 𝑠𝑒)]�̂� = 𝑚(𝑛) (A.35) 
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The matrix 𝑀[cos(𝑘, 𝑠𝑒)]  can be expressed as  

𝑀2[cos(𝑘, 𝑠𝑒)] =

[
 
 
 
 
 
 
 𝑐𝑜𝑠(

(0)1𝜋

2𝑠𝑒
) 𝑐𝑜𝑠(

(1)1𝜋

2𝑠𝑒
) ⋯ 𝑐𝑜𝑠(

(𝑠𝑒 − 1)1𝜋

2𝑠𝑒
)

𝑐𝑜𝑠(
(0)2𝜋

2𝑠𝑒
) 𝑐𝑜𝑠(

(1)2𝜋

2𝑠𝑒
) ⋯ 𝑐𝑜𝑠(

(𝑠𝑒 − 1)2𝜋

2𝑠𝑒
)

⋮

𝑐𝑜𝑠(
(0)2𝜋

2𝑠𝑒
)

⋮

𝑐𝑜𝑠(
(1)𝑠𝜋

2𝑠𝑒
)

⋮

⋯

⋮

𝑐𝑜𝑠(
(𝑠𝑒 − 1)(𝑠𝑒)2𝜋

2𝑠𝑒
)
]
 
 
 
 
 
 
 

 (A.36) 

 

Similarly, the matrix 𝑀1[𝑠𝑖𝑛(𝑘, 𝑠𝑒)] can be expressed as 

𝑀1[sin(𝑘, 𝑠𝑒)] =

[
 
 
 
 
 
 
 𝑠𝑖𝑛 (

(1)1𝜋

2𝑠𝑒
) 𝑠𝑖𝑛 (

(2)1𝜋

2𝑠𝑒
) ⋯ 𝑠𝑖𝑛 (

(𝑠𝑒)1𝜋

2𝑠𝑒
)

𝑠𝑖𝑛 (
(1)2𝜋

2𝑠𝑒
) 𝑠𝑖𝑛 (

(2)2𝜋

2𝑠𝑒
) ⋯ 𝑠𝑖𝑛 (

(𝑠𝑒)2𝜋

2𝑠𝑒
)

⋮

𝑠𝑖𝑛 (
(1)2𝜋

2𝑠𝑒
)

⋮

𝑠𝑖𝑛 (
(2)𝑠𝑒𝜋

2𝑠𝑒
)

⋮
⋯

⋮

𝑠𝑖𝑛 (
(𝑠𝑒)(𝑠𝑒)2𝜋

2𝑠𝑒
)
]
 
 
 
 
 
 
 

 (A.37) 

 

In the first step all the coefficients are computed. In the second step the corresponding 

𝑔(𝑛), ℎ(𝑛), 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) are computed for 𝑛 = 1 and 𝑛 = 4𝑠𝑒 + 1. 

 

A2.4 Computation of SFDR from  ℎ(𝑛), 𝑔(𝑛), 𝑙(𝑛)and 𝑚(𝑛) 

  

The SFDR (in dB) is computed as a ratio of the Fourier coefficients for 𝑛 = 1 (fundamental) and 

𝑛 = 4𝑠𝑒 + 1 (highest harmonic). The Fourier coefficients for 𝑛 = 1 and 𝑛 = 4𝑠𝑒 + 1 are 

computed through Equation (A.38). 

The Fourier coefficients for the cubic DDS with (𝑠 = 8), 𝑏(𝑛) are related to the intermediate 

coefficients  𝑔(𝑛), ℎ(𝑛), 𝑙(𝑛) 𝑎𝑛𝑑 𝑚(𝑛) (computed by A.32 through A.35) by the following 

equation. 

𝑏(𝑛) =
4𝑔(𝑛)

𝑛𝜋
−
8ℎ(𝑛)

𝑛2𝜋2
−
32𝑙(𝑛)

𝑛3𝜋3
+
192𝑚(𝑛)

𝑛4𝜋4
 (A.38) 

In Equation (A.38) 𝑛 is the order of the Fourier coefficient, with 𝑛 = 1 being the fundamental. 

The unwanted spur with highest magnitude is obtained for 𝑛 = 4𝑠𝑒 + 1. The fundamental 𝑏1 is 
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computed by substituting 𝑛 = 1 in Equation A.38, the highest spur (𝑏4𝑠𝑒+1) is computed by 

substituting 𝑛 = 4𝑠𝑒 + 1 

𝑆𝐹𝐷𝑅 = 20𝑙𝑜𝑔10 (
𝑏1

𝑏4𝑠𝑒+1
) (A.39) 
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APPENDIX B 
 

Figure B.1 Regions of Phase Noise following [Drucker, 2000] 

 

 

Figure B.1 illustrates the different regions of an oscillator in [Drucker, 2000] model. The plot is 

the PSD of phase noise with respect to the logarithm of the offset frequency. In each region, a 

different physics of phase noise becomes dominant. Since phase noise models are created with 

(1/offset frequency model) the figure illustrates what the specific region is named such as random 

walk, flicker FM, white FM… The power of 1/f shows the dominant behavior of phase noise PSD 

in a specific region. 

B.1 Noise Transfer Function (NTF) of noise source of Reference  
 

One must use the Figure 4.7 in Chapter 4 for reference. The NTF of reference source is the same 

as the standard closed loop transfer function of the PLL. The forward path transfer function of PLL 

(𝐺(𝑠))  is the product of the transfer functions of PFD, VCO and loop filter and can be written as, 

𝐺(𝑠) = 𝐾𝜙
𝐾𝑣
𝑠

1

(1 + 𝜏𝑠)
 (B.1) 

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.
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The function 𝐺(𝑠)is the cascaded Transfer function of the VCO (
𝐾𝑣

𝑠
), PFD (𝐾𝜙) and Loop filter 

(
1

(1+𝜏𝑠)
). 

The feedback path transfer function can be written as 

𝐻 =
1

𝑁
 (B.2) 

 

In Equation (B.2) 𝑁 is the PLL divider ratio in Figure 4.7. 

Substituting the transfer functions of forward and feedback paths from Equations (5.22 and 5.23), 

one obtains the NTF of the reference source ,𝑊(𝑠)  and is written as  

𝑊(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝐾

𝜏(𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛2)
 (B.3) 

                     

In Equation (B.3), the natural frequency 𝜔𝑛and damping coefficient 휁 have the same meanings as 

in Equation (5.3).  Equation (B.3) represents   the NTF corresponding to the reference source. It is 

the same as the transfer function of the PLL. From Equation (B.3), the natural frequency 𝜔𝑛and 

damping coefficient 휁 are written in terms of the time constant (𝜏) of the LPF, the divider ratio 

𝑁 and 𝐾, the product of sensitivities of VCO and phase detector. 

The natural frequency of the PLL can be written as 

𝜔𝑛 = √
𝐾

𝜏𝑁
 (B.4) 

 

The damping coefficient can be written in terms of K, time constant and divide ratio as 

 

휁 =
√𝑁

2√𝐾𝜏
 (B.5) 

                                     

Equation (B.4) expresses the relationship between the natural frequency (𝜔𝑛), sensitivity (𝐾) of 

forward path and the feedback path divider N. The relationship between the damping coefficient, 

the sensitivity (𝐾) of forward path, time constant (𝜏) of the loop filter and the feedback path divider 

𝑁 is expressed equation (B.5). 
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B.2 Noise Transfer Function (NTF) of the noise source of VCO 
 

 One must use Figure 4.8 as a reference to compute the NTF. (𝑆𝑉𝐶𝑂(𝑠))  is the noise PSD of the 

noise source of the VCO acts as an input to the system (Figure (4.8)). The response at the DAC-

PLL output (𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝑉𝐶𝑂(𝑠)) is written in terms of the input as 

𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝑉𝐶𝑂(𝑠)

𝑆𝑉𝐶𝑂(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 (B.6) 

In Equation (B.6), 𝐺(𝑠) = 1  is the transfer function of forward path 

𝐻(𝑠) =
𝐾

𝑠𝑁(1 + 𝜏𝑠)
 (B.7) 

 𝐻(𝑠) is the Transfer Function of the Feedback path.  𝑄(𝑠) = NTF of noise source of VCO 

(illustrated with the small dotted arrow in Figure 4.8). Substituting the values of  𝐺(𝑠) and 𝐻(𝑠) 

in Equation (B.6), a closed form expression for NTF is obtained as 

𝑄(𝑠) =
𝑠(1 + 𝑠𝜏)

𝜏(𝑠2 + 𝑠
1
𝜏 +

𝐾
𝑁𝜏)

 (B.8) 

Substituting the PLL transfer function (𝑊(𝑠)) the NTF of the noise source in the VCO can be 

written in compact form as 

𝑄(𝑠) =
𝑊(𝑠)𝑠(1 + 𝜏𝑠)

𝐾
 (B.9) 

 

  B.3 Noise Transfer Function (NTF) of noise source of the Loop filter 

One must use Figure 4.9 as a reference to compute the NTF. In Figure 4.9, the assumed PSD of 

Loop Filter is marked as 𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠). One assumes this as the primary input to the system and 

computes the response at the output of DAC-PLL (𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠)). The output can be written in 

terms of the input as 

𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠) =
𝐾𝑣
𝑠
𝐻(𝑠)𝐸(𝑠) +

𝐾𝑣
𝑠
𝐻(𝑠)𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠) (B.10) 

 

In Equation (B.10) 𝐸(𝑠) is the error signal in the PLL ( at the output of  Phase detector ) 

After further substitution of 𝐻(𝑠) in Equation (B.9) and further simplification, the NTF of Loop 

Filter, (Ψ(𝑠))  is defined as              
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Ψ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠)

𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)
=

𝐾

𝐾𝜙𝜏

1

(𝑠2 +
1
𝜏 𝑠 +

𝐾
𝑛𝜏)

 (B.11) 

Substituting the transfer function (𝑊(𝑠)), the NTF of the VCO noise source can be written in 

compact form as 

Ψ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐹𝐼𝐿𝑇(𝑠)

𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)
=
𝑊(𝑠)

𝐾𝜙
 (B.12) 

 

  B.4 Noise Transfer Function (NTF) of source of Divider noise  
 

One must use Figure 4.10 as a reference to compute the NTF. In the noise source of the divider 

(Figure 4.10), the assumed PSD is marked as 𝑆𝑀𝐷(𝑠). One assumes this to be the primary input to 

the system and computes the response at the DAC-PLL output (𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)). The output of the 

PLL can be written in terms of the input as 

𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠) = −(𝑆𝑀𝐷(𝑓) +
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)

𝑁
)(𝐾𝑝

𝐾𝑣
𝑠
𝐻(𝑠)) (B.13) 

 

In Equation (B.13)  𝐻(𝑠) is the Loop filter Transfer Function. 𝑆𝑀𝐷(𝑓) is the power spectral density 

of the source of the divider noise. By further simplification, the NTF for the divider, (Φ(𝑠)) can be 

written as 

Φ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)

𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)
= −

𝐾

𝜏

1

(𝑠2 +
1
𝜏
𝑠 +

𝐾
𝑛𝜏
)
 (B.14) 

 

Inserting the expression with the PLL transfer function in Equation (B.3) into Equation (B.14) one 

can write an expression for the NTF of the source of the Divider noise as 

Φ(𝑠) =
𝑌𝐷𝐴𝐶_𝑃𝐿𝐿_𝐷𝐼𝑉(𝑠)

𝑆𝐹𝐼𝐿𝑇𝐸𝑅(𝑠)
= −𝑊(𝑠) (B.15) 

 

                    

B.5 Lock time directly to tangent of the Phase margin (page 24)  
 



 
 

245 
 

Starting with the Equation for Lock Time the equation B.16 can be derived. 

𝑇𝑙𝑜𝑐𝑘 =

−𝑙𝑛 (
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)

휁𝜔𝑛
 

(B.16) 

The numerator in Equation (B.16) can be split into two separate logarithmic terms as 

𝑇𝑙𝑜𝑐𝑘 = 
1

휁𝜔𝑛
(−𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
) − ln (

√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)) (B.17) 

By using Equation (4.45) the damping coefficient   휁 is expressed in terms of the PM (𝜙) as 

(𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙) =
1

4휁2
 (B.18) 

In Equation (B.18) the terms 𝑠𝑒𝑐𝜙, 𝑡𝑎𝑛𝜙 are replaced by equivalent expressions using  𝑡𝑎𝑛
𝜙

2
. By 

further simplifying one obtains an expression for 휁 in terms of half the PM,  

1

4휁2
=
1 − 𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜙
=

1 −
2 𝑡𝑎𝑛

𝜙
2

1 + 𝑡𝑎𝑛2
𝜙
2

1 − 𝑡𝑎𝑛2
𝜙
2

1 + 𝑡𝑎𝑛2
𝜙
2

=
(1 − 𝑡𝑎𝑛

𝜙
2)

2

(1 − 𝑡𝑎𝑛2
𝜙
2)

=
(1 − 𝑡𝑎𝑛

𝜙
2)

(1 + 𝑡𝑎𝑛
𝜙
2)

 

 

(B.19) 

Hence the damping coefficient can be written as 

4휁2 =
(1 + 𝑡𝑎𝑛

𝜙
2)

(1 − 𝑡𝑎𝑛
𝜙
2)

 (B.17) 

Taking square root of Equation (B.17) and retaining only the positive root one obtains 

휁 =
1

2

√
  
  
  
  
 
(1 + 𝑡𝑎𝑛 (

𝜙
2))

(1 − 𝑡𝑎𝑛 (
𝜙
2))

 (B.18) 

 

Substituting the damping coefficient in Equation (B.17) into Equation (B.15) one obtains 
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𝑇𝑙𝑜𝑐𝑘 =
1

𝜔𝑛
2
√

(1 + 𝑡𝑎𝑛 (
𝜙
2))

(1 − 𝑡𝑎𝑛 (
𝜙
2))

(

 
 
ln

(

 
 
1 −

(1 + 𝑡𝑎𝑛 (
𝜙
2))

4(1 − 𝑡𝑎𝑛 (
𝜙
2))

)

 
 
− 2 ln (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
)

)

 
 

 

(B.19) 

Finally, the expression 
1

𝜁𝜔𝑛
 can be easily expressed in terms of the time constant of a second order 

PLL by substituting the Equations (4.6) and (4.7) respectively. From Equation (4.6) 

𝜔𝑛 = √
𝐾𝑉𝐾𝜙
𝜏

= √
𝐾

𝜏
 = √

𝐾

𝜏𝑁
 (B20) 

From Equation (4.7) the damping coefficient is written as 

휁 =
√𝑁

2√𝐾𝜏
 (B.21) 

    

Substituting the results for 휁, 𝜔𝑛 in Equation (B.16) the lock time is written as 

𝑇𝑙𝑜𝑐𝑘 = 
1

휁𝜔𝑛
(−𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
) − ln (

√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)) 

 

 

 

𝑇𝑙𝑜𝑐𝑘 =
1

√𝑁

2√𝐾𝜏
√ 𝐾
𝜏𝑁

(−𝑙𝑛 (
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
) − ln (

√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)) 

 

 

= 2𝜏

(

 −𝑙𝑛(
𝑡𝑜𝑙

(𝑓2 − 𝑓1)
)− ln (

√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)

  (B.20) 

= 2𝜏

(

 −𝑙𝑛(Γ)− ln (
√1 − 휁2

(1 − 2𝑅2𝐶2휁𝜔𝑛 + (𝑅2𝐶2𝜔)2)
)

  (B.21) 
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B.6 Two additional SFDR plots at different levels of damping coefficient – page 

55 of chapter 4 
 

Figure B.2 compares the SFDR at three places firstly at the output the DDS, secondly at the output 

of the PLL with the Phase Compensator and thirdly at te output of the PLL without and without 

the Phase compensator.      

 

 

Figure B.2  Variation in SFDR with change in  Damping coefficient of PLL 

휁 =0.22(A = DDS; B = DDS-DAC-PLL_compensated ; C = DDS-DAC-

PLL_Uncompensated 

 

 

 

Figure B.3   Variation in SFDR with change in  Damping coefficient of PLL 

휁 =0.45(A = DDS; B = DDS-DAC-PLL_compensated ; C = DDS-DAC-

PLL_Uncompensated 
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Figure B.2 illustrates the variation of SFDR for a low value of damping coefficient.  Figure B.3 

illustrates the variation of SFDR for a medium level of damping coefficient. It illustrates that the 

inclusion of PLL improves the SFDR of a DDS-PLL system at low number of segments s=8,16. 

At higher numbers of segments the SFDR does not change much.  

B.7 Derivation of new equation for phase shifter – page 56 of chapter 4 
 

Writing out the analog transfer function of the phase shift compensator in terms of its two 

parameters( 𝛼) and (𝜔𝑚) following Equation (4.xx) 

𝐺(𝑠) =
(1 +

√𝛼
𝜔𝑚

𝑠)

(𝛼 +
√𝛼
𝜔𝑚

𝑠)

 (B.21) 

The relationship between sampling time (𝑇𝑠) and sampling frequency (𝑓𝑠) is written as 

𝑇𝑠 =  1/𝑓𝑠 (B.22) 

Substituting the Bi-linear transform to convert from 𝑠 domain to 𝑧 domain one obtains 

𝑠 =
2

𝑇𝑠

(1 − 𝑧−1)

(1 + 𝑧−1)
= 2𝑓𝑠

(1 − 𝑧−1)

(1 + 𝑧−1)
 (B.23) 

The final transfer function is written as 

𝐺(𝑠) =

(1 +
√𝛼
𝜔𝑚

𝑠)

(𝛼 +
√𝛼
𝜔𝑚

𝑠)

=

(1 +
√𝛼
𝜔𝑚

2𝑓𝑠
(1 − 𝑧−1)
(1 + 𝑧−1)

)

(𝛼 +
√𝛼
𝜔𝑚

2𝑓𝑠
(1 − 𝑧−1)
(1 + 𝑧−1)

)

=
𝜔𝑚(1 + 𝑧−1) + 2√𝛼 𝑓𝑠(1 − 𝑧−1)

𝛼𝜔𝑚(1 + 𝑧−1) + 2√𝛼𝑓𝑠(1 − 𝑧−1)
 (B.24) 

Collecting the 𝑧−1 terms and 𝑧0terms from Equation (B.24). The corresponding equivalent transfer 

function in discrete domain is written as 

𝐻(𝑧) =
𝑧−1(𝜔𝑚 − 2𝑓𝑠√𝛼) + (𝜔𝑚 + 2𝑓𝑠√𝛼)

𝑧−1(𝛼𝜔𝑚 − 2𝑓𝑠√𝛼) + (𝛼𝜔𝑚 + 2𝑓𝑠√𝛼)
 (B.25) 
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