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Abstract—This paper covers analytical relationships between 

phase noise, lock time and jitter variance. An expression is 

derived for Lock time in terms phase margin. Analytical 

expressions have been derived in this paper for the variation of 

Lock time with respect to Phase Margin and lock time with 

respect to its damping coefficient. Analytical expressions are 

derived for the jitter variance with respect to the phase margin 

of a second-order PLL. Analytical expressions are also derived 

for the derivative of jitter variance of a second-order PLL with 

respect to its phase margin. The jitter variance is plotted 

separately for time varying part of the jitter variance and time 

invariant part pf the jitter variance.  

Index Terms: Phase Locked Loop, Phase Margin, phase noise, Lock 

time, jitter variance, Damping Coefficient, VCO sensitivity 

I. INTRODUCTION 

 

Second-order PLLs comprise of four blocks. The first block 

is the Voltage-Controlled Oscillator (VCO) – an oscillator 

whose output frequency is a function of a control voltage 

applied at its input. Linear VCO models are used. The second 

block is a frequency divider block which is used to divide the 

VCO output frequency by a fixed quantity. Divider input is 

the VCO frequency of the PLL and divider output is the 

comparison frequency of the PLL. The third block is the 

Phase-Frequency Detector (PFD) which compares the phase 

shift between a reference frequency waveform (primary 

input) and the output of the divider. The time varying output 

of the PFD is filtered before the said output is applied to the 

VCO input. The fourth block of a second-order PLL is a RC 

filtering block to filter the PFD output. 

 

 
Figure 1. A DDS + DAC feeding a second-order PLL 

 

VCO sensitivity(𝐾𝑉) is the ratio of output frequency of a VCO 

divided by the control voltage (input) measured in Hz/volt. 

PFD sensitivity(𝐾𝜙) – Measure of PFD output (usually 

control voltage) versus phase difference at PFD input.  

Divide ratio is the ratio of PLL output frequency (𝑓2) divided 

by PLL comparison frequency ( 𝑓1).It is an integer for integer 

divider PLLs and a fraction for fractional divider PLLs. 

 
*Tim Mazumdar is with WAI , Toronto e-mail: ionchannelequation@ 

gmx.com).  

                                      𝑁 = 𝑓2 𝑓1⁄         (1) 

N is termed as the divide ratio of a PLL.  𝑓2 and 𝑓1 are the 

output and input frequency respectively. 

Phase Margin (PM)– Excess phase shift in a PLL when the 

gain is unity. It’s a measure of relative stability of the PLL. 

Damping Coefficient (DC, 𝜁) is a PLL parameter that controls 

the nature of the oscillatory response of a PLL. Lower the DC 

the more oscillatory the response of the PLL to a step input. 

Underdamped PLLs have (DC <1), overdamped PLLs have 

(DC >1). 

The natural frequency (𝜔𝑛) for a second-order PLL is defined 

as a function of VCO sensitivity, PFD sensitivity, divide ratio 

and loop filter time constant. 

Phase noise – The voltage of an oscillator in the presence of 

both random variations in amplitude and phase can be 

represented as 

             𝑉(𝑡) = (𝐴 + 𝑣(𝑡))cos (2𝜋𝑓𝑡 + 𝜙(𝑡))                  (2) 

In Equation (2), 𝐴 is the amplitude of the original frequency 

source. In turn, 𝑣(𝑡) is the random fluctuations of amplitude, 

𝑓0  is the center frequency of the frequency source, and 𝜙(𝑡) 
is the instantaneous value of random phase perturbation of the 

frequency source which gives rise to Phase noise. 

Energy due to the phase perturbation term can be written as a 

square of the magnitude of Fourier Transform of the auto-

correlation function of the phase variation. 

                                   𝑆(𝑓) = |𝐹(𝜙(𝑡))|2                      (3)                                                                                                                                        

In Equation (3) 𝐹 is the Fourier Transform operator. 𝜙(𝑡) is a 

random variable representing phase noise in time domain. 

𝑆𝜙(𝑓) is Power Spectral Density (PSD) of jitter.  
Absolute jitter is the difference between successive zero 

crossing times of a waveform after Lee, [1]  

                                      {𝑗𝑎,𝑛 = 𝑡𝑛 − 𝑛𝑇}                          (4)  
In Equation (4), 𝑡𝑛 is the time of zero crossing at the end of 

nth cycle,  𝑛𝑇 is the cycle number(n) times nominal period (𝑇), 

and  𝑗𝑎,𝑛 is the absolute jitter in the nth cycle. 

If the nominal period and zero crossing points for a time 

domain waveform are known, the period jitter can be defined 

as (Lee [1]), 

                                 {𝑗𝑛 = 𝑡𝑛+1 − 𝑡𝑛 − 𝑇}                         (5)  

In Equation (5), 𝑇 is the nominal period of a waveform, 𝑡𝑛 is 

the zero crossing at 𝑛th cycle end, and  𝑡𝑛+1 is the zero 

crossing in (𝑛 + 1)th cycle. Sequence  𝑗𝑛 is the Period jitter of 

𝑛th cycle.  

Jitter variance is the time averaged variance of jitter the square 

of the amplitude of jitter- assumed to be a zero-mean process. 
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The transfer function which is the output to input ratio of the 

PLL in the ‘s’ domain of the second-order PLL with a first-

order loop filter is written as  

                   𝐻𝑃𝐿𝐿(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
=

𝑁

𝑠2
𝜏𝑁

𝐾
+𝑠

𝑁

𝐾
+1

                 (6)  

In Equation (6), 𝐺(𝑠) is the Transfer function of the forward 

path of a PLL. In turn, 𝐻𝑃𝐿𝐿(𝑠) is the Transfer function of the 

PLL, 𝐻(𝑠) is the Transfer function of the feedback path of a 

PLL, 𝐾𝑉 is the VCO sensitivity (Hz/Volt), 𝐾𝜙 is the PFD 

Sensitivity, and (𝐾 = 𝐾𝑉𝐾𝜙) is the  product of VCO 

sensitivity and PFD Sensitivity. (𝜏 = 𝑅𝐶) is the time 

Constant of Loop filter and 𝑁 is the feedback divide ratio  

Converting Equation (6) to a generic transfer function one 

obtains the transfer function of a second order Type I PLL in 

terms of its the 𝜔𝑛 and 𝜁  as, 

                        𝐻𝑃𝐿𝐿(𝑠) =
𝑁𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2                             (7)  

In Equations (6 and 7), the denominator polynomial is of the 

second order, which describes the PLL as a generic second 

order system. DC  and natural frequency  are defined for 

generic second order systems [2]. Some necessary terms that 

must be defined in this paper. 

Noise Transfer Function (NTF)- It is the transfer function 

from a noise source to the primary output of a PLL[5].  

Amornthrippart et. al. [4] has discussed computation of phase 

noise in PLLs using phase noise sources and noise transfer 

function. 

Daniels [5] has derived a piece wise linear model of a second 

order PLL. Daniels defines a new type of stability criterion 

for second order PLLs based on conservation of charge. 

Daniels [6] further extends his second order PLL work to 

third-order and fourth-order PLLs. However, the relationship 

between Phase noise and the referred performance metrics of 

PLL has not been explored in [6]. 

Drucker [7] has derived expressions for the noise transfer 

functions (NTF) of 4 different phase noise sources of arbitrary 

order PLL. Drucker[7] has discussed models of multiple noise 

sources without providing a closed form expression to 

compute the composite PSD (Phase Noise) at the output of 

PLL. Drucker [7] and He[10] did not relate the influence of 

performance metrics of DAC- PLL such as PM, settling time 

and damping coefficient on the phase noise of DAC- PLL. 
Savic, [9] considers the variation of PM with bandwidth of 

loop filter in a 3rd order PLL. 

He[10] has provided an analysis of PM of second, third and 

fourth order PLL and the variance of lock time with PM.  

Razavi[11] has described PLL transfer functions and provided 

insights into general phase noise analysis.  

[Golestan, Freijedo and Guerrero, 2015] present higher order 

PLL design for power system applications. A systematic 

method for the design of higher order PLLs is described. It 

does not discuss theoretical issues with the roots of a third 

order or fourth order PLL. 

[Golestan et. al., 2017] discusses three phase Frequency 

Locked Loops [FLLs] for power systems and provides models 

and stability analysis of three-phase second order FLLs. If 

power systems are imbalanced the instantaneous frequencies 

of each phase can be slightly different. A second order FLL 

tracks both frequency and its derivative in a imbalanced 3 

phase system. 

[Herzel and Piz, [12] has derived the NTFs for a fractional N 

PLL with the sigma-delta modulator in the feedback path. 

PLL model of Drucker [7] is easy to use to compute phase 

noise.  [Herzel, 2010] places the divider noise source is placed 

before the frequency divider, in this paper the noise source is 

placed after the frequency divider.  

Herzel and Piz, [2003] have defined a system level simulation 

model for a 3rd order PLL using the phase noise of VCO as an 

Ornstein-Uhlenbeck type of process.  
Hangmann, [13] describes a third order event driven model for a 

digital PLL. His model describes very fast event driven behavioral 

model for higher order PLLs with comparable accuracy to a SPICE 

simulation.  

Hangmann et.al., [14] describe a difference equation approach for 

the analysis of a charge pump PLL which is target to for non-linear 

phase comparators. The authors claim their model is valid over a 

wider range of phase errors as compared to a linear model.  

Gardner[15] derived two different stability criteria one for  

second order and another for third order PLLs. Which are 

called Gardner’s 𝐾.   

Van Paemel [16] proposed a behavioral model for the design 

and analysis of charge pump PLLs. The Charge Pump-Phase 

Frequency Detector (CP-PFD) is a three-state device(UP 

state, DOWN state and a “NULL” state) that undergoes state 

transitions when the output state of the CP-PFD changes. If 

CP-PFD is in one of these states, then within that state the 

PLL can be described by linear state equations. Van Paemel, 

[16] lists two state variables first being the pulse width of the 

phase detector and the second being the capacitor voltage of 

loop filter. These two state variables are used to compute the 

next pulse width of phase.  

Carlosena, [17] proposes a low-pass filter in a PLL termed as 

a Przedpelski Filter. He proposes an additional frequency 

feedback loop for accelerated locking.  

[Hedayat, 1999] extended Van Paemel’s[16] method to allow 

a variable time step enabling greater accuracy. Hedayat’s 

model requires six internal states but limited to fourth order 

PLLs.  

Wang, [20] has provided a method to suppress spurs in 

Fractional N PLLs using re-quantization methods.  

Abramowitz, [23] has provided the application of Lyapunov’s 

stability to third order PLLs. His model assumes a forward 

path with a non- linear sinusoidal phase detector.  
Monteiro, [24] has written about PLL stability and considered 

criteria for Hopf bifurcations in a 3rd order PLL. 

Abdelfattah, [25] performs an analytical and comparative study on 

the design of the loop filter in (PLLs). His method allows the design 

and component selection for various loop filters. 

 De Almeida et. al. [26] proposes a new find of phase detector which 

replaces a multiplicative phase detector with a more generalized 

phase detector utilizing the q-product which demonstrates improved 

linearity and PLL pull-in. Kim et. al. [27] describe and 1.35 GHz all-

digital phase-locked loop (ADPLL) with an adaptively controlled 

loop filter. Adaptive Loop Gain Controller (ALGC) effectively 

reduces the nonlinear characteristics of the bang-bang phase-

frequency detector (BBPFD).  

Weigand et. al. [28] has created a new technique for simulating a 

PLL with nonideal charge pumps featuring dead zones, current 

source mismatches, charge pump leakage, and nonlinear VCO 



  

transfer functions. 

In a second-order system such as the PLL of the DAC- PLL, 

the PM is the value of the phase shift for which the amplitude 

gain is 0 dB or unity gain. In a PLL, PM of a second order 

system can be controlled by controlling the DC [ Dorf, [3]. 

The DC determines how fast a second-order PLL can settle 

down after a unit step function is applied at the input of the 

PLL. Underdamped systems with DC<1 have faster rise times 

for step input, are oscillatory and exhibit lower PM. 

Overdamped systems with DC> 1  are non-oscillatory with 

higher PM compared to underdamped systems. 

The expression relating these the parameters PM and DC of a 

second-order PLL is given by [Dorf, 3]. 

                         𝑃𝑀 = 𝑡𝑎𝑛−1 (
2𝜁

√√4𝜁4+1−2𝜁2
)             (8) 

Equation (8) is an expression for the PM of a second-order 

PLL. The natural frequency of a second-order PLL is 

expressed in terms of 𝐾𝑉 , 𝐾𝜙 and time constant (𝜏), 

 𝜔𝑛 = √
𝐾𝑉𝐾𝜙
𝜏

= √
𝐾

𝜏
            (9) 

In Equation (10) the DC of the PLL is written as 

 𝜁 =
𝜔𝑛

2𝐾
=

1

2√𝐾𝜏
=

1

2√𝐾𝑉𝐾𝜙𝜏
         (10) 

This paper seeks to answer whether there an analytical 

relationship between the Lock time of a second order PLL and 

its PM. The second question is there an analytical relationship 

between the derivative of the Lock time of a second order PLL 

and its PM. The third question is that what is the relationship 

between the jitter variance of a second order PLL and its PM. 

The fourth question is that what is the relationship of the 

variation of jitter variance with respect to the PM of a second 

order PLL. Now we extend the relationship between DC and 

PM. 

                                       tan(𝜙) =
2𝜁

√√4𝜁4+1−2𝜁2
                       (11)  

In Equation (11) 𝜙 is the PM of a second-order PLL and 𝜁 is 

its DC. Inverting and squaring both sides of Equation (11) a 

new expression for the DC in terms of PM is obtained as  

                               𝜁4 =
1

(16(𝑐𝑜𝑡2𝜙+
1

2
)
2
−4)

                       (12) 

II. LOCK TIME AND PHASE MARGIN 

Lock time of any PLL is defined as the time required in 

achieving an output frequency which is within a small but 

specified range of a desired output frequency when a 

frequency step of bounded size is applied to the PLL. A small 

lock time is necessary for communication systems such as 

UMTS (with switching time < 200usec. Lock time is 

inversely proportional to the PLL loop Band-Width (BW).  

A closed-form expression relating lock time and DC of a 

second-order Type II PLLs has been derived. Locking is 

achieved in a PLL when the output frequency of PLL 

approaches a specified frequency after the application of a 

frequency step to the PLL. An absolute frequency difference 

between the frequency of output of PLL and the target 

frequency, must be specified to define Lock Time.  

The frequency step applied to the PLL must be within the lock 

range of the PLL which is defined as the maximum frequency 

range within which the PLL can track its input frequency. 

Lock time has been defined by Banerjee [2] as 

                    𝑇𝑙𝑜𝑐𝑘 =

−𝑙𝑛(
𝑡𝑜𝑙

(𝑓2−𝑓1)

√1−𝜁2

(1−2𝑅2𝐶2𝜁𝜔𝑛+(𝑅2𝐶2𝜔)2)
)

𝜁𝜔𝑛
           (13) 

In Equation (13), 𝑇𝑙𝑜𝑐𝑘 is lock time of a second-order type I 

PLL. 𝑇𝑙𝑜𝑐𝑘 is the time required for PLL to reach an output 

value which differs from the final target frequency by a 

specified deviation (specified by 𝑡𝑜𝑙). The frequency step 

applied to the PLL is (𝑓2 − 𝑓1)  (Hz).   𝑇2 = 𝑅2𝐶2 is the 

time constant of the PLL loop filter (sec). If 𝑇2 ≪ 1 (an 

approximation that is reasonable in PLLs), the expression for 

lock time can be further simplified as   

                            𝑇𝑙𝑜𝑐𝑘 =
−𝑙𝑛(

𝑡𝑜𝑙

(𝑓2−𝑓1)
√1−𝜁2)

𝜁𝜔𝑛
                     (14) 

An expression for the derivative of lock time with respect to 

the DC can be written as 
𝜕𝑇𝑙𝑜𝑐𝑘

ð𝜁
= 𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2−𝑓1)
√1 − 𝜁2) (

1

𝜁2𝜔𝑛
) −

     
1

𝜁𝜔𝑛
(

1
𝑡𝑜𝑙

(𝑓2−𝑓1)
√1−𝜁2

)
𝑡𝑜𝑙

(𝑓2−𝑓1)

𝜕

ð𝜁
(√1 − 𝜁2)                    (15) 

Simplifying Equation (15), one obtains a second expression 

for the derivative of lock time with respect to the   DC, 

(16) 

Equation (16) is the derivative of the lock time has two terms. 

The first term of the derivative is dependent on the frequency 

step size and the tolerance of frequency deviation. The second 

term in Equation (16) is a function of the DC. The relationship 

between natural frequency and loop BW in terms of DC is 

written as 

                                          𝜔𝑐 = 2𝜁𝜔𝑛                                 (17) 

By substituting Equation (17) in Equation (16) a new 

expression for the derivative of Lock time is obtained in terms 

of loop bandwidth and DC is written as   

 
𝜕𝑇𝑙𝑜𝑐𝑘

ð𝜁
= 𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2−𝑓1)
√1 − 𝜁2) (

1

𝜁2𝜔𝑛
) − (

1

(1−𝜁2)𝜔𝑛

)   (18) 

Equation (18), relates the derivative of the lock time with the 

loop BW with natural frequency and DC. Such an expression 

(Equation 18) has not been discussed in open literature.  

Figure 2 illustrates the variation of the lock time of a second 

order PLL with change in PM for different values of natural 

frequency.  It is observed that the lock time of a second order 

PLL drops rapidly as the PM is increased. The second 

observation is that Lock Time is almost inversely proportional 

to the natural frequency of the PLL. 



  

 
Figure 2 Lock Time versus PM for Type I second-order 

PLL for 3 different values of natural frequency (A: 

2.6MHz; B: 5.2MHz; C:7.8MHz)  

 

The result of Figure 2 tracks generated for a frequency step 

size of 1 MHz(𝑓2 − 𝑓1) and a frequency tolerance (𝑡𝑜𝑙) of 1 

kHz. Banerjee [2] (Equation 16.39) provides the relationship 

between PM and DC as  

                       (𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙) =
1

4𝜁2
                             (19) 

In Equation (19), 𝜙 is the PM of a second-order PLL, and 𝜁 

is the DC of a second-order PLL. Taking derivative of both 

sides of Equation (19) with respect to the PM one obtains  

               (𝑠𝑒𝑐𝜙𝑡𝑎𝑛𝜙 − 𝑠𝑒𝑐2𝜙) =
1

8𝜁3

𝑑𝜁

𝑑𝜙
                       (20) 

From Equation (20) the derivative of the Lock Time to the 

PM can be written as 
𝑑𝑇𝑙𝑜𝑐𝑘
𝑑𝜙

= (
2𝜁

𝜔𝑐
{
1

𝜁2
𝑙𝑛 (

𝑡𝑜𝑙

(𝑓2 − 𝑓1)
√1 − 𝜁2) +

1

(1 − 𝜁2)
}) ((𝑠𝑒𝑐𝜙𝑡𝑎𝑛𝜙

− 𝑠𝑒𝑐2𝜙)8𝜁3) 

(21) 

Equation(21) for the derivative of Lock Time with respect to 

PM has not been derived in open literature. A perturbation of 

either 𝐾𝑣 (VCO sensitivity) or capacitance of Loop filter (𝐶) 

leads to a perturbation of the PM. Perturbation of the Lock 

Time for a nominal PM value is illustrated in Figure 3. 

 
Figure 3 Perturbation of lock time with nominal PM  

 

Lock time perturbation versus PM (Figure 3) was generated 

for an input frequency step size of 1 MHz and a frequency 

tolerance of 1 kHz. The X –axis of Figure 3 is the initial PM 

before perturbation and the Y-axis is the perturbation of the 

lock time(microseconds). In Figure 3, the lock time is defined 

as the time required to settle within 1 kHz of the final 

frequency. The natural frequency of the PLL is fixed at 10 

MHz frequency.  At PM levels higher than 55o the variation 

in lock time is lower for a given PM. Equation (22) relating 

the lock time to tangent of the PM has been derived for the 

first time.  

𝑇𝑙𝑜𝑐𝑘 =
1

𝜔𝑛√
(1+𝑡𝑎𝑛(

𝜙
2
))

(1−𝑡𝑎𝑛(
𝜙
2
))

(ln (1 −
(1+𝑡𝑎𝑛(

𝜙

2
))

4(1−𝑡𝑎𝑛(
𝜙

2
))
) − 2 ln (

𝑡𝑜𝑙

(𝑓2−𝑓1)
))  (22) 

A third expression relates the lock time of a second order PLL 

to the loop filter time constant. This has not been discussed in 

open literature and relates lock time to PM as  

𝑇𝑙𝑜𝑐𝑘 =  2𝜏 (−𝑙𝑛 (
𝑡𝑜𝑙

𝑓2−𝑓1
) −

1

2
𝑙𝑛 (1 −

(1+𝑡𝑎𝑛(
𝜙

2
))

4(1−𝑡𝑎𝑛(
𝜙

2
))

))   (23) 

  

Equation (23) is relates the PLL Lock time to its filter time 

constant and half of PM.  

The relationship between jitter and PM for a Type I and Type 

II second-order PLL is explored in this section. The 

derivations in this section originate in [1] & [7].  Type I PLL 

has been discussed in the previous sections. A brief discussion 

on Type II PLL in terms of its transfer function is also 

presented. The Type II PLL of second-order has an additional 

zero as compared to a Type I second-order PLLs. 

 

Figure 4 Type II PLL illustrating loop filter with one 

pole and one zero 

 

The block diagram of Figure 4 illustrates the loop filter, VCO, 

divider and PFD of a second-order Type II PLL. Transfer 

function of a Type II PLL is written as 

                      𝐺(𝑠) =  

(1+𝑠𝜏2)𝐾
(1+𝑠𝜏1)𝑠

1+
(1+𝑠𝜏2)𝐾

𝑁(1+𝑠𝜏1)𝑠

=
𝑁(1+𝑠𝜏2)𝐾

𝑁𝑠+𝐾𝑠𝜏2+𝑁𝜏1 𝑠
2+𝐾

      (24) 

Dividing numerator and denominator of Equation (24) by 

the transfer function of a Type II PLL can be written as 

              𝐺(𝑠) =
𝑁𝐾(1+𝑠𝜏2)

𝑁𝜏1𝑠
2+𝑠(𝑁+𝐾𝜏2)+𝐾

=
𝜔𝑛
2+(

𝐾𝜏2
𝜏1
)𝑠

𝑠2+𝑠2𝜁𝜔𝑛+𝜔𝑛
2            (25)  

For a Type II PLL the natural frequency is defined as 

              (26) 
The DC for a Type II PLL can be written as 

                            𝜁 = (𝜔 2⁄ )(𝑁 𝐾⁄ + 𝜏2)                       (27) 

This section discusses the relationship between Jitter and PM 

of a Type I and Type II second-order PLL. Type II PLLs have 

a zero in their transfer function unlike Type I PLLs. Different 

transfer functions for Type I and Type II PLLs as illustrated 

in Figure 5. 

 



  

 
Figure 5 Difference in TFs of Type I and Type II PLL 

 

The period jitter variance is related to the phase noise 

generated by various sources of noise within the PLL through 

Fourier integral ([7])  

           𝜎𝐽
2(𝑘𝑇) =

1

(𝜋𝑓0)
2 ∫ sin2 (𝜋𝑓𝑘𝐵𝑇)𝑆𝜃(𝑓)𝑑𝑓

𝑓0/2

−𝑓0/2
      (28) 

In Equation (28), 𝑆𝜃(𝑓) is the phase noise of a frequency 

source, 𝑓0 is the center frequency, 𝜎𝐽
2(𝑘𝑇) is the variance of 

period Jitter, 𝑘𝐵 is the Boltzmann’s constant, and 𝑇 is the 

absolute temperature. If 𝑆𝜃(𝑓) is known, Equation (28) 

facilitates the computation of jitter variance when phase noise 

is known. Considering only the noise source of VCO, a 

relationship between Root–Mean-Square (RMS) jitter 

variance, damping coefficient and natural frequency have 

been given by Lee[1] for a second-order Type II PLL.  

                                    𝜎𝐴
2 =

𝑐

4𝜁𝜔𝑛
+

𝑐𝐹𝑁

𝜔𝑛
2 𝑓(𝜁)                 (29) 

In Equation (29), 𝜎𝐴
2 is the Variance of absolute jitter at PLL 

output (sec2), 𝑐𝑊𝑁 is the Jitter coefficient for white noise (unit 

seconds),  𝑐𝐹𝑁  is the Jitter coefficient for flicker noise 

(dimensionless) In turn, 𝜔𝑛 and 𝜁 is the Damping coefficient 

of Type II second order PLL. Function 𝑓(𝜁) is the non-linear 

Flicker noise function. Equation (29) comprises two terms – 

the first term is the contribution of the white noise and the 

second term is the contribution of the flicker noise. The flicker 

noise coefficient is a function of the damping coefficient and 

PM of the PLL. For an underdamped PLL, the flicker noise 

coefficient has been described by Lee[1] as 

                      𝑓(𝜁) =

𝜋

2
−𝑡𝑎𝑛−1(

𝜁

√1−𝜁2
)

𝜁√1−𝜁2
   𝑓𝑜𝑟 ζ < 1            (30) 

The corresponding expression in Lee, [1] for the flicker 

noise coefficient of an over-damped PLL is  

                𝑓(𝜁) =  

𝑅𝑒(𝑡𝑎𝑛ℎ−1−(
𝜁

√𝜁2−1

))

𝜁√𝜁2−1
  𝑓𝑜𝑟 𝜁 > 1            (31) 

Operator 𝑅𝑒  in Equation (31) implies only the real part of the 

hyperbolic inverse is considered. Current paper relates the PM 

to the jitter variance for a Type II PLL. Rearranging Equation 

(30) one obtains         

          𝑓(𝜁)𝜁√1 − 𝜁2 = 𝜋 2 − tan−1 (
𝜁

√1−𝜁2
)⁄                 (32) 

The RHS of Equation (32) is simplified as 

                    𝑓(𝜁)𝜁√1 − 𝜁2 = 𝜋 2 − sin−1 (𝜁)⁄              (33) 
The fourth root of both sides of Equation (12) yields an 

expression for the DC in terms of PM written as 

                   𝜁 = √1 (16(𝑐𝑜𝑡𝜙 + 1 2⁄ )2 − 4)⁄4
                 (34) 

Substituting 𝜁 from Equation (34) in Equation (30), the flicker 

noise function can be written as 

       (35) 

Equation (35) relates the 𝑓(𝜁) in terms of PM ‘𝜙′. 
Substituting Equation (35) into the expression for jitter in 

Equation (29) one obtains an expression for the jitter variance.  

 

 
                                (36) 
Equation (36) for an underdamped Type II PLL relates the 

PM and Jitter variance for the first time in open literature.  

 

Alternative Relationship Between PM and Absolute 

Jitter for Type II PLL 

 

The relation between PM and absolute jitter for type II PLL 

can be analytically derived using another procedure. The loop 

bandwidth (𝜔𝑐)can be expressed as a function of natural 

frequency (𝜔𝑛) Banerjee,[2]as  

                                     𝜔𝑐 = 2𝜁𝜔𝑛                                 (37) 

Damping coefficient (𝜁) can be expressed as a ratio of loop 

BW and natural frequency. From the Equation due to 

Banerjee, [2]  

               (𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙) = (1 4𝜁2)⁄                               (38) 
Modifying Equation (38) by taking a square root one obtains 

                           𝜁 = √𝑐𝑜𝑠𝜙 (2√1 − 𝑠𝑖𝑛𝜙⁄  )                (39) 
An expression for the variance of absolute jitter is written as 

                           𝜎𝐴
2 =

𝑐

4𝜁𝜔𝑛
+

𝑐𝐹𝑁

𝜔𝑛
2 𝑓(𝜁)                          (40)  

Substituting Equation (39) into Equation (40) a new 

expression relating the variance of the Jitter with the PM is 

written as 

 
                      (41) 

Equation (41) facilitates the determination of the absolute 

jitter for the under-damped Type II second-order PLL in terms 

of PM. Such an expression is not expressed in open literature. 

For the over-damped Type II second-order PLL, the jitter 

variance expression (Equation 43) includes a hyperbolic term.  

                  𝜎𝐴
2 =

𝑐

4𝜁𝜔𝑛
+

𝑐𝐹𝑁

𝜔𝑛
2

𝑅𝑒(𝑡𝑎𝑛ℎ−1(
𝜁

√𝜁2−1

))

𝜁√𝜁2−1
             (42) 

Substituting  DC from Equation (40) in Equation (42), the 

jitter variance is written in terms of the PM as 



  

𝜎𝐴
2 =

𝑐

4
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
𝜔𝑛

+
𝑐𝐹𝑁

𝜔𝑛
2

𝑅𝑒(𝑡𝑎𝑛ℎ−1

(

 

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)

√
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
−1
)

 )

(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)√

𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
−1

 (43) 

 

Equation (44) relates the absolute jitter for over-damped Type 

II second-order PLL in terms of PM. Such an expression is 

not expressed in open literature. Figure 6 depicts  jitter 

variance versus PM for various values of  𝜔𝑛 .  

 
Figure 6 Jitter Variance versus Phase Margin for Type II 

PLL (A: 𝜔𝑛 =3.46x 104 rad/sec; B: 𝜔𝑛 =4.9x104 rad/sec; 

C: 𝜔𝑛 =6.9x104 rad/sec) 

 

Figure 6 illustrates that greater the PM, lower is the jitter 

variance for Type II PLL. Figure 6 is computed for the values 

of 𝑐 = 1.67𝑥10−17𝑠𝑒𝑐; 𝑐𝐹𝑁 = 1.6𝑥 − 10
−11

. For the same 

PM (e.g. 50o), the jitter variance is significantly reduced as 

𝜔𝑛 is increased. In paper [7] closed-form jitter variance 

models for type I PLL of second-order PLLs are derived. A 

noise figure 𝜅 for the VCO noise source(white) is defined as. 

                                   𝜅 = √
4𝜋𝑁𝑉𝐶𝑂

𝜔0
2                                   (44)  

Parameter ‘𝜅2’ is the figure of merit of the VCO. In Equation 

(44), 𝜔0 is the center-frequency of VCO, and 𝑁𝑉𝐶𝑂 is the 

Phase noise of the VCO, dBc/Hz. In Equation (44), the units 

of 𝜅 are 1/√𝐻𝑧. The VCO noise term 𝑁𝑉𝐶𝑂 is a product of 

two terms, 𝐾2𝑒𝑛
2 = 𝐻𝑧2/𝑉2 ∗ 𝑉2/𝐻𝑧 . The unit of the 

constant 𝐾2(gain of the clock source oscillator) is Hz/V and 

the unit of the white noise voltage 𝑒𝑛 is volts/√𝐻𝑧. Figure 7 

illustrates the change in jitter variance with the change in PM 

for an under damped PLL. Jitter variance for Type I second-

order under-damped PLL[7],             

                       (45) 
The damped frequency (𝜔𝑑) is defined as 

                           𝜔𝑑 = 𝜔𝑛√1 − 𝜁
2                           (46) 

In turn, the additional phase shift is defined as  

                (47) 

Figure 7 illustrates the change in jitter variance with the 

change in PM for an under damped PLL. 

 
Figure 7 RMS jitter predicted by [Mansuri’s 2002] 

model for under-damped second-order PLL (VCO noise) 

 

In Figure 7, the DC ranges from 0.42 to 0.9 with figure of 

merit (𝜅 = 5.4𝑥10−8√𝑠𝑒𝑐). In Figure 7 each value of PM 

corresponds to a unique value of DC.  This value of DC  is 

substituted into the time-invariant (not a function of part of 

Δ𝑇 in Equation (47) to compute the Jitter variance. 

Exponential term in Equation (47) goes to zero when interval 

Δ𝑇 goes to infinity.  Figure 7 illustrates that the RMS jitter 

value is reduced from 5x10-12 sec2 to 3.2x10-12 sec2 as the PM 

increases from 45o to 75o.To simplify one must consider the 

function within the brackets in Equation (46) which is the 

multiplicative part of jitter variance and independent of 𝜅.  

 Ψ(𝜁, 𝜔𝑛 , Δ𝑇) = {
𝑒−Δ𝑇𝜁𝜔

2(1−𝜁2)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
−

𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

𝜁𝜔𝑛
)}       (48) 

In Equation(48),Δ𝑇 is the Time interval under consideration 

for Jitter measurement.  Ψ(𝜁, 𝜔𝑛, Δ𝑇)  is the jitter variance 

function which is dependent only on  Δ𝑇, 𝜁 𝑎𝑛𝑑 𝜔𝑛.  

Settling time of a second order PLL is written as 

                                    𝑇𝑠𝑃𝐿𝐿 =
4

𝜁𝜔𝑛
                                  (49) 

Figure 8 shows the variation of Jitter variance with Δ𝑇, the 

time interval for jitter variance estimation for various values 

of PM. The Y axis of Figure 8 is the Jitter variance divided by 

𝜅2 =
4𝜋2𝑁𝑉𝐶𝑂

𝜔0
2 , figure of merit of the VCO. After an initial 

transient, only the steady state part contained in the first term 

of Equation (45) dominates, this is when Δ𝑇 is larger. 

 
Figure 8 Jitter Variance function versus 𝛥𝑇  for 3 values 

of PM for second-order under damped PLL 

 

Figure 8 illustrates that the component which is a function of 

time interval (Δ𝑇), 𝜔𝑛 and (𝜁) damping coefficient exhibits 

oscillatory behavior and settles down to a final value within  



  

ΔT = 2x10-7. Higher the PM lower is the final value of jitter 

variance and lower the initial high part of the jitter variance. 

Figure 8 is illustrated for 3 values of PM for and under-

damped PLL. When PM is varied between 42o and 66o, the 

initial peak reduces from 26x10-8 to 1.2x10-8. Figure 9 

illustrates the jitter variance function in [7] versus PM for a 

fixed value of ΔT for second-order Type I PLL 

 
Figure 9 Jitter Variance function for fixed Δ𝑇 vs. PM 

 

Figure 9 illustrates that Jitter variance 𝜎Δ𝑇
2  for the PLL is 

reduced as the PM is increased. Figure 10 illustrates the 

variation of the Jitter variance function with settling time of a 

second-order PLL.  

 

Figure 10 Jitter Variance function (𝚿(𝜻,𝝎𝒏, 𝚫𝑻)) versus 

Settling Time of a second-order Type I PLL 

 

Figure 10 illustrates that the jitter variance function increases 

with increased settling time (lower DC).  

A plot of the jitter variance versus PM for the over-damped 

PLL is illustrated in Figure 11.  

 

 
Figure 11 Jitter variance versus Phase margin 

Figure 11 illustrates that the higher value of PM reduces the 

value of jitter variance of a second-order overdamped PLL.  

III. JITTER VARIANCE VERSUS PM OF A II-ORDER 

PLL 

 

An analytical contribution in the form of an extension to 

models described in [8] has been presented in this section.  

Analytical relationship between the PM(𝜙)and the periodic 

jitter of PLL is given in Equation (51).  

                                          𝜁 =
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
                                (50) 

Substituting DC in the jitter variance expression of [7] for 

under damped PLLs in Equation (51), 

𝜎Δ𝑇
2 = (

1

2𝜁𝜔𝑛
) {𝜅2 {

𝑒−Δ𝑇𝜁𝜔

2(1−𝜁2)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
−

𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

𝜁𝜔𝑛
)}}    (51) 

                       
Excluding the figure-of-merit 𝜅2 the variance can be written 

as     

𝜎Δ𝑇
2

𝜅2
= {(

1

(
√𝑐𝑜𝑠𝜙

√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

) + {
𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔

2(1−
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
)
(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
−

     
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
𝜔𝑛

)}}                                                        (52) 

Damped frequency is defined in terms of (𝜔𝑛) and PM as 

                     𝜔𝑑 = 𝜔𝑛√1 −
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
                         (53) 

Equation(53) is new and relating jitter to PM . An expression 

for the derivative of jitter variance with respect to the PM of 

a second-order PLL is derived here. The first term is the 

derivative of the first additive term of the RHS of Equation 

(52), 

𝜕

𝜕𝜙
{𝜅2

1

2(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

} =  𝜅2 {
1

2𝜔𝑛
∗

𝑠𝑖𝑛𝜙−1

 (√(1−𝑠𝑖𝑛𝜙))𝑐𝑜𝑠3/2𝜙
} = 𝑇𝐶   (54) 

The second term is the derivative of the exponential term of 

the second additive term in Equation (52) excluding the 

common factor 𝜅2 , 



  

𝑇𝐷 =
𝜕

𝜕𝜙

{
 
 

 
 
𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

2 (1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
)
}
 
 

 
 

 

Equals 𝑇𝐷 = 

{
 
 

 
 
√1 − 𝑠𝑖𝑛𝜙 𝑒

−Δ𝑇(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

(4(Δ𝑇𝜔𝑛)(𝑠𝑖𝑛𝜙 − 1) +⋯

2√𝑐𝑜𝑠𝜙 (4𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙 − 4)2

}
 
 

 
 

 

 

… (Δ𝑇𝜔)𝑐𝑜𝑠𝜙 + 4√1 − 𝑠𝑖𝑛𝜙  √𝑐𝑜𝑠𝜙 }         (55) 

 

𝜕

𝜕𝜙

{
 
 

 
 

(

 
 𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

√𝑐𝑜𝑠𝜙

2√(1− 𝑠𝑖𝑛𝜙)
𝜔𝑛
)

 
 

}
 
 

 
 

=
𝜕

𝜕𝜙

{
 
 

 
 

(

 
 
𝑐𝑜𝑠 (𝜔𝑛Δ𝑇√1 −

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙))

√𝑐𝑜𝑠𝜙

2√(1 − 𝑠𝑖𝑛𝜙)
𝜔𝑛

)

 
 

}
 
 

 
 

 

Which is expanded to 

=
1

𝜔𝑛

{
 
 

 
 (

𝑐𝑜𝑠2𝜙
(1− 𝑠𝑖𝑛𝜙)2

−
𝑠𝑖𝑛𝜙

(1 − 𝑠𝑖𝑛𝜙)
 ) 𝑐𝑜𝑠 (𝜔𝑛Δ𝑇√1 −

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

 )

(
𝑐𝑜𝑠𝜙

(1 − 𝑠𝑖𝑛𝜙)
)
3/2

−

𝜔𝑛Δ𝑇 (
𝑠𝑖𝑛𝜙

(1 − 𝑠𝑖𝑛𝜙)
− 

𝑐𝑜𝑠2𝜙
4(1 − 𝑠𝑖𝑛𝜙)2

) 𝑠𝑖𝑛 (𝜔𝑛Δ𝑇√1 −
𝑐𝑜𝑠𝜙

4(1 − 𝑠𝑖𝑛𝜙)
 )

√
𝑐𝑜𝑠𝜙

(1 − 𝑠𝑖𝑛𝜙)
√1 −

𝑐𝑜𝑠𝜙
4(1 − 𝑠𝑖𝑛𝜙)

 
}
 
 

 
 

 

(56) 
The third term is the derivative of the sinusoidal term of the 

second additive term in Equation (54). Substituting. 𝜔𝑑 =

𝜔𝑛√1 − 𝜁
2 and the additional phase shift angle, .  

. 

The final substitution is 𝜁2 = 𝑐𝑜𝑠𝜙 (4(1 − 𝑠𝑖𝑛𝜙))⁄     

𝜕

𝜕𝜙
{(
𝑠𝑖𝑛(𝜔𝑑Δ𝑇 + 𝜃)

𝜔𝑛
)} = 

(𝑐𝑜𝑠 (𝜔𝑛√1 − 𝜁
2Δ𝑇 + 𝑐𝑜𝑠−1 (√1 − 𝜁2)) Δ𝑇) ∗ 

1

√1−
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)

(
𝑠𝑖𝑛𝜙

4√𝑐𝑜𝑠𝜙√1−𝑠𝑖𝑛𝜙

√𝑐𝑜𝑠𝜙

2√1−𝑠𝑖𝑛𝜙
−

√𝑐𝑜𝑠𝜙

2√1−𝑠𝑖𝑛𝜙
 

𝑐𝑜𝑠
3
2𝜙

4(1−𝑠𝑖𝑛𝜙)
3
2

)             

                                                                                        (57) 
              

The combined expression for the derivative of Jitter variance 

with respect to phase margin is written as 
𝜕𝜎Δ𝑇

2

𝜕𝜙
= 𝑇𝐶

+

(

 
 √1− 𝑠𝑖𝑛𝜙 𝑒

−Δ𝑇(
√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔𝑛

(4(Δ𝑇𝜔𝑛)(𝑠𝑖𝑛𝜙 − 1) +  

2√𝑐𝑜𝑠𝜙 (4𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙 − 4)2

)

 
 

 

… . (Δ𝑇𝜔𝑛)𝑐𝑜𝑠𝜙 + 4√1 − 𝑠𝑖𝑛𝜙  √𝑐𝑜𝑠𝜙 

{
𝑠𝑖𝑛(𝜔𝑑Δ𝑇+𝜃)

𝜔𝑛
−
𝑐𝑜𝑠(𝜔𝑑Δ𝑇)

𝜁𝜔𝑛
} +

𝑒
−Δ𝑇(

√𝑐𝑜𝑠𝜙

2√(1−𝑠𝑖𝑛𝜙)
)𝜔

2(1−
𝑐𝑜𝑠𝜙

4(1−𝑠𝑖𝑛𝜙)
)
(𝑇𝐸 +

𝑇𝐹)                                                                                  (58) 

Equation (58) is an original contribution of this paper. A derivative 

of the Jitter variance with respect to PM is not reported in open 

literature. It is useful for optimization techniques such as Lagrange 

multipliers applied to a PLL.  

IV. CONCLUSION 

New equations have been derived for the variation of Lock time 

with PM. Lock time and perturbation of Lock time versus PM has 

been characterized for the first time in a detailed way. Lock time has 

been related to half of phase margin for the first time in a closed form 

expression.  

New equations have been derived for jitter variance in terms of 

PM and DC based on Lee’s [1] model for Type II PLLs [1]. Using 

Lee [1] closed for equations, Jitter variance has been characterized 

in closed form for both underdamped and overdamped PLLs.  

 For the first time equations relating Jitter variance with PM for the 

closed for expressions due to Mansuri [8] have been derived. 

Mansuris [8] equations have been extended to cover jitter variance 

as a function of PM.  New curves have been published for Jitter 

variance versus time interval for the first time. New equations have 

been derivd for the variation of DC with PM. 
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