
 

A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP 

GENERATOR USING DUAL COMPENSATION 

 

BY 

 

 

Daniel Gomez Garcia Alvestegui 

 

 

Submitted to the graduate degree program in Electrical Engineering 

and the Graduate Faculty of the University of Kansas 

 in partial fulfillment of the requirements for the degree of 

 Master of Science. 

 

 

 

 

___________________________ 

Chairperson: Dr. Carl Leuschen 

 

 

 

 

____________________________ 

Dr. Fernando Rodriguez-Morales 

 

 

____________________________ 

Dr. Sivaprasad Gogineni 

 

 

 

Date Defended: November 9
th

, 2011 



ii 

 

 

The Thesis Committee for Daniel Gomez Garcia Alvestegui 

certifies that this is the approved version of the following thesis: 

 

 

 

A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP 

GENERATOR USING DUAL COMPENSATION 

 

 

 

 

___________________________ 

Chairperson: Dr. Carl Leuschen 

 

 

 

 

____________________________ 

Dr. Fernando Rodriguez-Morales 

 

 

____________________________ 

Dr. Sivaprasad Gogineni 

 

 

Date approved: __________________  



iii 

ABSTRACT 

 

Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous 

Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the 

Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors 

for high resolution measurements of surface elevation and snow cover over Greenland and 

Antarctica. These radar systems are routinely operated from both surface and airborne platforms. 

Low cost implementations of UWB chirp generators are possible using an UWB Voltage 

Controlled Oscillator (VCO). VCOs possess several advantages over other competing 

technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This 

nonlinear relationship between the tuning voltage and the output frequency should be corrected 

with a linearization system to implement a linear frequency modulated (LFM) waveform, also 

known as a chirp. If the waveform is not properly linearized, undesired additional frequency 

modulation is found in the waveform. This additional frequency modulation results in undesired 

sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW 

radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected 

nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a 

FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase.  

A linearization method has been developed to linearize the output of a VCO-based chirp 

generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop 

(PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was 

treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for 

wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to 

attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as 

possible while maintaining the reference spur level below 35 dBc. Several design considerations 

were made for the large loop bandwidth design. Furthermore, the large variations in the tuning 

sensitivity of the oscillator forced a design with a large phase margin at the average tuning 

sensitivity. This design constraint degraded the tracking performance of the PLL. A second 

compensation signal, externally generated, was added to the compensation signal of the PLL. By 

adding a compensation signal, which was not affected by the frequency response effects of the 
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loop compensation, the loop tracking error is reduced. This technique enabled us to produce an 

output chirp signal that is a much closer replica of the scaled version of the reference signal. 

Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the 

type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state 

error when applying a frequency ramp to the input. The external compensation signal required to 

solve this issue was included in the second compensation signal mentioned above.  

Measurements for the PLL performance and the chirp generator performance were 

performed in the laboratory using a radar demonstrator. The experimental results show that the 

designed loop bandwidth was successfully achieved without significantly increasing the spurious 

signal level. The chirp generator measurements show a direct relationship between the 

bandwidth of the external compensation and the range resolution performance.  
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CHAPTER 1: INTRODUCTION  

 

1.1 SCIENCE BACKGROUND 
 

According to recent studies, the polar ice sheets’ contribution to sea level rise due to mass 

loss has increased by 40% in the last decade [1]. Surface elevation changes constitute an 

important indicator in estimates of mass balance changes [1][2][3]. To estimate mass balance 

changes on the ice sheet from surface elevation measurements, corrections for the variable firn 

compaction and the bedrock motion should be applied [4][5]. A wide range of measurement 

techniques have been developed in past decades to monitor surface elevation changes in Polar 

Regions. These include the use of radar and laser altimeter instruments with high-resolution 

measurement capabilities.  

 

1.1.1 Laser Altimeters 

 

Laser altimeters operating from both aircraft and satellite platforms are used for 

topographic mapping of various targets with vertical range resolution of tens of centimeters or 

less. Their principle of operation relies on measuring the round-trip propagation time of 

nanosecond pulses emitted by solid state laser sources [6]. Laser altimetry represents a valuable 

tool for precise mapping and monitoring of Polar Regions [7].  

In 2003, the National Aeronautics and Space Administration (NASA) launched the Ice, 

Cloud and Land Elevation Satellite (ICESat) carrying the Geoscience Laser Altimeter System 

(GLAS). The laser altimeter GLAS’ primary mission was to measure the elevation changes in 

the Antarctic and Greenland ice sheets. Many different methods have been developed for 

deriving surface elevation changes using ICESat data [4][5]. Moreover, ICESat’s unprecedented 

level of accuracy of elevation measurements has been used to characterize for range errors in 

satellite radar altimeters, such as the European Remote Sensing 2 Satellite (ERS-2) and the 

Environmental Satellite (Envisat) [8].   
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1.1.2 Radar Altimeters 

 

Although laser altimeters such as GLAS possess high accuracy and high precision, they 

do not operate well when fog, smoke or any precipitation is present in their line of sight [9]. In 

contrast, radar altimeters, with the exception of some frequency ranges of operation, have the 

ability to perform measurements under these conditions [10].  

An example of a system designed for altimetry measurements from a satellite platform is 

the Synthetic-Aperture-Radar Interferometric Radar Altimeter (SIRAL). SIRAL is an instrument 

on board the European Space Agency’s (ESA) Cryogenic Satellite 2 (CryoSat-2), which provides 

altimetry information with a range resolution of 40 m/pixel [11].   

Satellite radar altimeters are not devoid of shortcomings, as they are affected by both 

topography and penetration [12]. Radar altimeter signals may penetrate through snow, firn and 

ice, causing an accuracy error in the elevation measurement [12][14]. The backscatter signals for 

subsurface interfaces can be stronger than the actual surface return [14]. The CryoSat-2 altimeter 

includes a delay-Doppler technology to overcome the steep-slop error common on typical radar 

altimeters, such as the ESR-2 and Envisat [11][13].  

Ground based and airborne radar altimeters with higher accuracy can be used to 

characterize and validate data from satellite altimeter radars. Ground based altimeters have been 

developed to provide high accuracy elevation data, but they are not very practical for large 

coverage measurements as airborne altimeters. Airborne altimeters validated by ground based 

systems would provide accurate measurements of surface elevations, as long as they have the 

sufficient resolution to resolve subsurface layers and identify the actual surface return. 

 

1.2 CRESIS UWB RADARS 

 

The Center for Remote Sensing of Ice Sheets (CReSIS) has developed two Ultra-

Wideband (UWB) Microwave Radars for airborne and surface-based platforms: The Snow 

Radar, which operates over the 2-8 GHz range and the Ku-Band Radar, which operates over the 

12-18 GHz range. The Snow Radar was primarily developed for measuring the thickness of 
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snow over sea ice [16]. The Ku-band radar altimeter is used for high-accuracy surface elevation 

measurements over land and sea ice [16]. Both the Snow and Ku-Band Radars also provide high 

resolution information about the near-surface internal layers. Both systems are operated as part 

of the CReSIS instrumentation package and operate routinely on board of various airborne 

platforms, such as the NASA P-3 and DC-8 Airborne Science Laboratories, as well as a DHC-6 

Twin Otter [16][17]. Measurements on board of the NASA aircraft are conducted in the context 

of Operation IceBridge (OIB), an airborne program launched to operate on the period between 

the loss of ICESat I and the launch of ICESat II [17].  

An essential component of these radars is the UWB chirp generator, which synthesizes 

the transmit waveform at microwave frequencies. This thesis discusses the development of an 

UWB chirp generator with improved frequency linearity implemented with high-speed analog 

design techniques. The linearization scheme relies on a PLL operating in conjunction with an 

external compensation added to the loop.  

 

1.3 THESIS OUTLINE 

 

This thesis is composed of 5 Chapters: Chapter 2 provides the theoretical framework that 

has been considered for the design of the proposed chirp generator. The background concepts 

described in Chapter 2 include theory of radar systems, linear control systems, and phase lock 

loops. Chapter 3 describes the design and implementation of the chirp generator. Specifically, 

Chapter 3 explains the design and implementation considerations for the phase lock loop and the 

pre-distorted voltage generator. Chapter 4 presents the results from the performance 

characterization of system. Lastly, Chapter 5 presents the conclusions and discusses suggestions 

for future work. 
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CHAPTER 2: BACKGROUND 

 

2.1 UWB FMCW RADAR BACKGROUND 

 

2.1.1 Radar Overview 

 

2.1.1.1 Radar Basics and Impulse Radar 

 

The word RADAR is the acronym for Radio Detection And Ranging. It is the standard 

name for the technology that uses electromagnetic signals to detect distant targets and to measure 

their range. In radar terminology, a target is the object detected and the range is the distance of 

the object to the sensor. Radar sensors can detect targets beneath certain materials which would 

not be detected with optical techniques. Besides detecting objects and measuring their range, 

modern radar systems have the ability to measure other properties of the target such as radial 

speed and radar cross section [18].  

A typical impulse radar waveform is composed of a train of narrow pulses modulated by 

a sinusoidal carrier [18]. The radar system transmits the waveform as an electromagnetic signal. 

The signal propagates through the medium, gets reflected at the target and then travels back to 

the receiver. The range (R) of the target can be determined from the roundtrip signal delay (TR) 

and the speed of the signal in the propagation medium (v) using equation (2.1) [18]. 

2

RTv
R




                                                                   (2.1) 

On an impulse radar system, the roundtrip delay of the received signal is measured 

directly with respect to the transmit signal. On this type of radar, the time between pulses is 

known as the pulse repetition interval (PRI). During this interval, the radar transmits a pulse for a 

limited amount of time known as the pulse length. The radar then listens during the rest of the 
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PRI for the received signal. It can be shown that there exists range ambiguity for targets with 

roundtrip delays larger than the PRI [18].  

The carrier tone that modulates the pulse signal can be modulated further in frequency 

and amplitude. The most common technique to improve range resolution, which also improves 

the signal to noise ratio of the signal, is to frequency modulate the signal. If the waveform is 

linearly frequency modulated, it is also known as a chirp. Regardless of the shape of the signal, a 

technique known as pulse compression uses a matched filter to improve the range resolution and 

the signal to noise ration. If the waveform is a chirp, the signal to noise ratio gets improved by 

the bandwidth-pulse-length product and the range resolution becomes inversely proportional to 

the bandwidth [18].  

Impulse radar systems apply pulse compression either with a real-time processor or at a 

post-processing stage after having recorded the received data. The pulse compression can be 

applied with digital, analog or mixed signal devices [19][20][21]. However, digital post 

processing of the recorded raw data continuous being the most robust method since it allows the 

ability to reprocess the data with improved techniques. In order to apply any type of pulse 

compression by digital means, the digitizer’s sampling rate should be at least twice the signal 

bandwidth [22]. This fact poses a limitation on the bandwidth of impulse radars.  

 

2.1.1.2 Continuous Wave Radar 

 

Typical continuous wave (CW) radars or unmodulated continuous wave radars have a 

signal composed of an unmodulated single tone. CW radars make use of the Doppler Effect to 

measure radial speed of targets. The Doppler Effect is the description of the behavior of the 

frequency content of a signal when it is reflected off a moving target [18]. The frequency content 

on a signal reflected off a moving target gets shifted by the Doppler frequency (fd). The Doppler 

frequency depends on the wavelength (λ) of the carrier signal and the radial speed (v) of the 

moving target with respect to the sensor. Equation (2.2) describes this relationship. 



v
fd




2

                                                                     (2.2) 
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CW radar sensors are used when the target velocity is the main parameter to be measured. 

CW radar sensors for short range and moderate ranges are much simpler systems than pulse 

radar systems [18]. However, the transmit power of CW radar systems is limited by the amount 

of transmit leakage to the receiver that can be tolerated. Moreover, CW radars with a single 

transmit tone do not have the ability to unambiguously measure range. Multi-tone CW radars 

have the ability to measure range with accuracy and ambiguity limited by the number of tones 

selected and their frequencies [23][18].  

 

2.1.1.3 Frequency Modulated Continuous Wave RADAR  

 

Frequency Modulated Continuous Wave (FMCW) Radar, as the name implies, uses a 

frequency modulated waveform. Typically, this waveform is linearly frequency modulated, also 

known as a chirp. In contrast to the unmodulated CW radars, the frequency content of the 

received signal from FMCW radars may be used to extract both the range and the radial speed of 

the target [18]. 

The block diagram shown in Figure 2.1 represents a typical FMCW system and illustrates 

the paths which the FMCW waveform goes through. Each stage on the paths has a frequency 

dependent system response that will affect the waveform signal. The FMCW waveform goes 

through two paths: the reference path and the transmit/receive path. The transmit/receive path 

comprises the radio frequency transmit (RF TX) stage, the antenna, the roundtrip channel to and 

from the target, the target return loss and the radio frequency receive (RF RX) stage. The 

reference path includes the conditioning stage for the waveform to drive the Local Oscillator 

(LO) port on the mixer. 



7 

 

 

The output signals of both paths, the reference and the received signals, are applied to the 

mixer followed by the Intermediate Frequency (IF) stage. The output of the IF stage goes to a 

display, control or recording stage.  

The FMCW radar makes use of the ideal behavior of the mixer as a signal multiplier. The 

output of the mixer becomes the multiplication of the reference and the received signals. The IF 

stage then filters and conditions the IF signal which contains information about the range and 

radial speed of the target.  

The chirp waveform is the most common one for FMCW radars.  A plot of the frequency 

behavior over time for the reference and receive signals is shown in Figure 2.2. For simplicity, 

both amplitude and frequency modulations that may affect the shape of the frequency signals are 

neglected. The frequency of the reference signal is an identical copy of that of the FMCW 

generated waveform delayed by the reference path delay. The reference path delay is the time it 

takes the waveform to go from the waveform generator to the LO port of the mixer. Similarly, 

the frequency waveform of the received signal is also an identical copy of the generated 

waveform delayed by the transmit-receive path delay. The difference between these two delays is 

represented by τ in Figure 2.2. 

On the bottom plot of figure 2.2, the beat frequency (fb) is shown. The beat frequency is 

the difference between the reference and the received frequencies [18]. The difference between 

both delays can be extracted from the beat frequency by considering the similar triangles formed.  
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Figure 2-1: Block Diagram of FMCW Radar 
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As shown in Figure 2.3, two right-angled similar triangles are formed out of the 

frequency plots of the received and reference signals. Triangle 1 is formed by the chirp 

bandwidth (Δf) as the height cathetus and the chirp time length (T) as the base cathetus. Triangle 

2 is formed by the beat frequency (fB) as the height cathetus and the delay difference between the 

reference and received signals (τ) as the base cathetus. The beat frequency (fB) can be solved as 

shown on equation (2.3). 
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Figure 2-3: Frequency of Reference and Receive Signals for similar triangle analysis to determine the beat frequency 

Figure 2-2: a. FMCW Frequency Plots of Reference (Ref) and Received (Rx) signals for a stationary target. b. FMCW 

beat frequency (fb) resulting from the difference of the reference and receive signal frequencies 
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T

f
fB




                                                                   (2.3) 

 

On equation (2.4), τ corresponds to the delay difference between the reference and the 

received signal. The reference and received signals are delayed from the waveform generator 

output by τREF and τRX respectively. Moreover, the target range may be inferred from the delay 

difference between the delay to the transmit antenna (τTX_ANTENNA) and the delay to the receive 

antenna
 
(τRX_ANTENNA).  

REFRX                                                                     (2.4) 

ANTENNATXANTENNARXo __  
                                                   (2.5) 

Typically for analysis purposes, we may assume the following approximation: 

 o                                                                           (2.6) 

In practice, all the previously mentioned delays should be measured and a delay 

correction should be applied to the data for accurate range measurements.   

Once the actual roundtrip delay to the target is found, the target range can be calculated using 

equation (2.1). 

For the case when the target range is not stationary, either the receiver or the target 

moves with a radial speed towards or away from each other, the beat frequency will be shifted by 

the Doppler frequency (fD) [18]. The Doppler frequency is added or subtracted to the range 

component of the beat frequency depending on the sign of the chirp rate (μ). Both cases are 

illustrated on equations (2.7) and (2.8). 

DRB fff  )0(                                                        (2.7) 

DRB fff  )0(                                                        (2.8) 

On equations (2.7) and (2.8), fR corresponds to the range part of the beat frequency and 

can be extracted by averaging the beat frequency of two chirps with chirp rates equal in 

magnitude but opposite sign.   
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As mentioned earlier, FMCW radar systems use the ideal behavior of the mixer as a 

multiplier to extract range and radial speed information. To do so, it only needs to extract the 

beat frequency using the reference and receive signals. Normalizing the amplitude terms for 

simplicity and setting the reference initial phase as zero, both signals may be described by 

equations (2.9), (2.10) and (2.11) for a linear frequency modulated waveform. 
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                                      (2.9) 
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1
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1
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REFERENCERECEIVEIF SSS 
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1
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Equations (2.12) and (2.13) describe the resulting IF signal (SIF) out of the ideal mixer. 

The resulting IF signal has two components. The first component is a tone with frequency (μ ∙ τ) 

and initial phase )
2

1
( 2 of . This component signal is also known as the beat frequency 

signal. The second component is a chirp waveform with initial phase )
2

1
( 2 of , initial 

frequency )2(  of  and chirp rate )2(  . The IF stage filters this IF signal so that only the 

beat signal passes. The beat frequency then may be used to extract range and radial speed 

information.  

For FMCW radars that measure single stationary targets, the frequency modulation need 

not be linear. The range of the target can be found by the average frequency of the video signal. 

However, FMCW radar sensors for multi-target measurements need to have a linear frequency 
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modulated waveform. The importance of having a linear chirp with no additional frequency or 

amplitude modulation is explained on the next section.  

 

2.1.2 FMCW Waveform Quality 

 

On the previous section, the effects caused by the amplitude and phase response at each 

stage have been neglected to simplify the analysis. Moreover, the chirp-based FMCW signal has 

been assumed to be a perfectly linear frequency modulated waveform.  However, the amplitude 

and phase responses of each stage may affect significantly the performance of the radar. Since 

the waveform frequency is swept over a time period, the amplitude and phase responses over 

frequency gets mapped over the chirp period and then delayed for each path. In addition, the 

frequency nonlinearity and amplitude modulation at the generation point will also affect the 

radar range resolution performance.  

The range resolution is the minimum range difference between two distinguishable 

targets. In other words, the range resolution defines the ability of a radar sensor to distinguish 

close targets. For an FMCW radar system, the target range response is described by the 

frequency spectrum of the video signal over the overlapping interval (TOL) between the reference 

and the received signals.   

 2chirpOL TT
                                                                   (2.14) 

Equation (2.14) describes the overlapping interval of the reference and the received chirp 

signals. On equation (2.14), Tchirp is the chirp time length or just chirp length and τ is the 

difference in time delay between the reference and the received signals. The value of τ will be 

approximated to the roundtrip time delay of the transmitted signal to simplify the analysis on this 

section. 

For a digitally recorded video signal over the overlapping time interval, the frequency 

spectrum of the video signal can be computed using the Fast Fourier Transform (FFT) [22]. For 

the FFT of the video signal time gated by the overlapping time interval, the FFT frequency 
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resolution equals the inverse of the overlapping time interval. This relationship is described on 

equation (2.15).   

OLT
f

1


                                                                             (2.15) 

Tv

Rf

T

f
fB








 2

                                                               (2.16) 

Equation (2.16) shows the relationship between a small difference on the beat frequency 

(δfB) and the range resolution (δR). On equation (2.16), Δf is the bandwidth of the chirp, v is the 

signal propagation speed, T is the overlapping time interval and δτ is a small difference in the 

roundtrip. 

f

v
R




2


                                                                              (2.17) 

Since the minimum frequency difference will be described by the frequency resolution of 

the FFT output, the range resolution can be solved by combining equations (2.15) and (2.16). 

The range resolution is shown on equation (2.17). 

Equation (2.17) describes the range resolution as the equivalent range difference between 

two FFT bins, known as range bins. Another way to define the range resolution performance of a 

radar system is to define the difference in range between two distinguishable peaks. Thus, by 

measuring a single target response two distinguishable peaks can be defined as the distance 

between the mainlobe and the first sidelobe. The sidelobe level dictates the dynamic range for 

close targets. As it will be seen on the next section, the sidelobe performance can be degraded by 

sidebands added by the system’s imperfections. Moreover, the sidelobes can be suppressed using 

weighting techniques on the time gated video signal at the expense of widening the range 

resolution. Therefore, a more complete description of the range resolution performance can be 

expressed by indicating the mainlobe to first sidelobe range difference, the first sidelobe level 

and the weighting being used. 

This section discusses the amplitude and frequency modulation applied by system 

imperfections to the chirp and their effects on the range resolution performance on an FMCW 

radar system. 
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2.1.2.1. Amplitude Modulation 

 

Assuming a perfectly linear chirp and ideal phase responses at each stage, only the effects 

from amplitude are considered. From communication theory, double sideband amplitude 

modulation occurs when a high frequency carrier gets multiplied by a Direct Current (DC) biased 

low frequency signal [24]. Thus, the low frequency signal appears on the envelope of the carrier. 

A chirp has amplitude modulation when its envelope magnitude varies with time.   
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Figure 2-4: Example of a Chirp Waveform with no amplitude modulation 
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Figure 2-5: Example of a Chirp Waveform with amplitude modulation 

 

Figure 2-4 and Figure 2-5 show examples of an unmodulated chirp and an amplitude 

modulated chirp, respectively.   

The chirp may contain amplitude modulation at the generation stage or it may be added at 

one of the FMCW signal paths. Each stage’s amplitude response will modulate the amplitude of 

its input waveform which may already be modulated. Then, the amplitude modulation can be 

analyzed in terms of many amplitude waveforms, where each amplitude waveform will be 

multiplied to its input signal. 
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Table 2-1: List of Amplitude Waveforms 

Source of Amplitude Modulation Amplitude Waveform Variable 

Chirp Generator amplitude waveform at the Ref. Point aCG_REF 

Chirp Generator amplitude waveform at the Rx. point aCG_Rx 

Transmit Stage and Transmit antenna amplitude response aTX 

Channel amplitude response aCH 

Target Reflection amplitude response aTR 

Receive Stage and Receive antenna amplitude response aRX 

Reference Path Amplitude Waveform aREF 

Mixer Conversion Factor amplitude response K 

IF Stage amplitude response aIF 

  

Assuming a linearly frequency modulated signal, the amplitude waveforms in Table 2-1 

correspond to the gain or attenuation that gets added (in dB) by each stage over the sweep time. 

The amplitude waveforms in Table 2-1 are related to the amplitude response over frequency that 

gets mapped for the chirp frequency sweep. To simplify the analysis, the amplitude waveforms 

take into account the delay of the chirp up to that point.  

Then the amplitude waveform of the IF stage output signal can be expressed as follows: 

)()( __ REFREFCGRXTRCHTXRXCGIFVIDEO aaaaaaakaa                     (2.18) 

As shown on equation (2.18), the amplitude waveforms corresponding to the different 

stages on the radar become a chain of potential amplitude modulation signals.  

In order to analyze the effects of a generated amplitude modulated chirp waveform on the radar 

range resolution, the following example neglects any added amplitude modulation caused by the 

amplitude response at any other stage.  

As an example, a generated amplitude modulated chirp, which has an amplitude 

waveform aCG, is mixed with its delayed version to result in the amplitude waveform of the 
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video signal (avideo). For this example, the amplitude waveform of the generated chirp is 

composed of a DC-biased tone signal with a DC offset of 1 and a tone frequency of 1 MHz. The 

amplitude modulation index that scales the tone signal has been set to a value of 0.1. The 

amplitude waveform of the chirp is described on equation (2.19). 

)2cos(1.01 tfa oCG                                                  (2.19) 

)()(  tataa CGCGVIDEO                                                  (2.20) 

]}2cos[)]2(2{cos[
2

01.0
)](2cos[1.0)2(cos1.01  ooooVIDEO ftftftfa   

(2.21) 

Equation (2.20) and (2.21) describe the resulting amplitude waveform of the video signal 

for this example.  

A computer simulation for a single target response has been completed to illustrate the 

effects of an amplitude modulated chirp to the frequency spectrum of the video signal. The 

simulation uses the amplitude modulation waveform described on the example above. The 

relevant radar parameters used for the simulation are shown in Table 2-2. The FMCW radar 

simulation assumes an ideal mixer. The computer simulation was realized using Matlab [25]. 

 

Table 2-2: Parameters for a FMCW Radar Simulation using a Chirp Waveform with Added Amplitude Modulation 

Parameter Value Units 

Start Frequency (fstart) 12 GHz 

Stop Frequency (fstop) 18 GHz 

Chirp Length (T) 5 μs 

Roundtrip Delay (τ) 44 ns 

Chirp Amplitude Modulation Index  0.1  

 

The simulation used a single target with a roundtrip delay of 44 μs, which is 4.4% the 

modulation signal wavelength. Since the roundtrip delay is much shorter than the wavelength of 

the modulation signal in this case, the amplitude waveform of the video signal may be 

approximated as shown on equation (2.22).  

])2(2cos[005.0)2(cos2.0005.1 tftfa ooVIDEO                                   (2.22) 
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Figure 2-6: Simulation Plot for the Effects on the video signal caused by amplitude modulation on the chirp waveform 
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Figure 2-7: Simulation Plot for the Effects on the video signal caused by amplitude modulation on the chirp waveform 

using a Hanning Weighting 

Figure 2-6 and Figure 2-7 show the frequency spectrum of the video signal for the radar 

parameters described in Table 2-2. The approximated frequency spectrum plots have been 

computed using the FFT. Figure 2-6 shows the FFT plot of the video signal with no weighting. 

Figure 2-7 shows the FFT of the same waveform weighted by a Hanning window for sidelobe 

suppression.  
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In Figure 2-6, the sidebands caused by the amplitude modulation are at 17 dBc as 

expected by the first modulation term on equation (2.22). In Figure 2-7, the sidelobes have been 

suppressed by the amplitude weighting. The sidelobes decreased from 13 dBc to about 32 dBc. 

However, the sidebands, caused by amplitude modulation, decreased only by about 3 dB. The 

sidelobe suppression also uncovered the sidebands caused by the second amplitude modulation 

term on equation (2.22). 

For these results, it can be seen that the amplitude modulation of the chirp waveform 

translates into amplitude modulation at the video signal. This amplitude modulation on the video 

signal forms sidebands around the target response. Since the video signal on an FMCW radar 

represents the targets response, these sidebands degrade the target response. For a multi-target 

FMCW radar, these sidebands may be erroneously interpreted as targets if they are not expected. 

If the sidebands have been measured on a single target and they are expected, they degrade the 

dynamic range for close targets. Moreover, the simulations show that the sidelobe suppression by 

weighting techniques does not significantly reduce the sidebands caused by amplitude 

modulation. 

 

2.1.2.2 Frequency Modulation 

 

Frequency modulation added at any point on the signal paths also affects the range 

performance of an FMCW radar. Like amplitude modulation, frequency modulation may get 

introduced at any stage of the radar paths. If the phase response on any of the components has a 

linear shape, the component only adds a group delay to the input signal [22]. When the phase 

response of a component is non-linear over frequency and the input corresponds to a linear chirp, 

the output signal will have some phase modulation. This phenomenon is also known as 

dispersion [18].  Since frequency is the rate of change of the phase with time, nonlinear phase 

modulation also leads to frequency modulation. Moreover, if the chirp is not a perfectly linear 

frequency modulated waveform, this could also be seen as a form of frequency modulation 

added to the linear chirp. 
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Since any stage containing a non-linear phase response will change the frequency 

linearity of the chirp, the chirp will not have a direct mapping from the frequency response to the 

sweep time. Therefore the compound effects of the frequency modulation cannot be analyzed 

with a simple multiplication or addition of frequency waveforms. The equations and analysis 

required to do so are beyond the scope of this document.   

On the other hand, the effects caused by a single source of frequency modulation will be 

analyzed. The most significant source of frequency modulation is encountered at the chirp 

generator.  

)()( tftftf mo                                                        (2.23) 

)()( tmftf cm                                                            (2.24) 

]))((2cos[)(   dttftftx mo                                           (2.25) 

On equation (2.23), )(tfm  is the frequency modulation signal, of  is the chirp start 

frequency, t is the time variable, and   is the chirp rate. The waveform )(tfm  can be further 

decomposed with the factors shown on equation (2.24). On equation (2.24), β is the frequency 

modulation index, fC is the chirp center frequency and m is the frequency modulation signal. 

Equation (2.25) corresponds to the normalized chirp with frequency modulation.  

The video signal then becomes the multiplication of the reference signal with the 

received signal. Using the analysis assumption that the delay difference at the mixer ports equals 

the target roundtrip delay, the video signal is described on equation (2.26) after being filtered at 

the IF stage. 

]})(
2

1
[2cos{)( 2






t

t

movideo dttftftx


                        (2.26) 

On equation (2.26), the last term in the cosine argument corresponds to the resultant 

phase modulation caused by the chirp frequency modulation. To analyze the effect of the 

frequency modulation on the chirp to the output video signal, the next example uses a single tone 

signal with frequency fX for the frequency modulation signal. The frequency modulation signal 

(m) is described on equation (2.27). 
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)2cos()( tftm X                                                          (2.27) 
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Equations (2.28) and (2.29) show the equivalent expression for the phase modulation on 

the video signal caused by a single tone frequency modulation on the chirp. By calculating the 

root-mean-square (RMS), the magnitude of the varying phase modulation can be measured. 
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Equation (2.30) and (2.31) show the RMS expression for the phase modulation on the 

video signal caused by the single tone frequency modulation on the chirp. This RMS is 

dependent on the roundtrip delay of the FMCW signal. From equation (2.31), it can be inferred 

that the RMS peaks at every odd multiple of half the frequency modulation tone period.  

For a 5 μs sweep time and a frequency modulation given by a single tone at 1 MHz, the 

RMS of the phase modulation as a function of the roundtrip delay is plotted and shown in Figure 

2-8. The plot in Figure 2-8 shows that the RMS increases as a function of the delay from the 

origin up to half the period. The RMS also peaks at odd multiples of 0.5 μs, which corresponds 

to half the period.  

This example shows that the phase modulation effects on the video signal are a function 

of the roundtrip delay where the RMS changes periodically for the given periodic frequency 

modulation waveform. For non-periodic frequency modulation waveforms, the RMS will 

continue to increase as the delay increases. This example shows that for applications with large 

roundtrip delay relative to the chirp time length, the effects caused by frequency modulation 

added to the chirp waveform translate on a phase modulation of a larger magnitude on the video 
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signal. This is an important concept to have in mind when designing FMCW chirp generators for 

large range applications.   
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Figure 2-8: Root Mean Squared of The Phase Modulation Function 

 

A computer simulation has been run to see the effects on the video signal caused by 

frequency modulation on the chirp at the chirp generator stage for various cases. The parameters 

shared by all cases are shown in Table 2-3. The simulations have been performed using Matlab 

[25]. 

 

Table 2-3: Radar Parameters for a FMCW Radar Simulation using a Chirp Waveform with Added Frequency 

Modulation 

Parameter Value Units 

Start Frequency (fstart) 12 GHz 

Stop Frequency (fstop) 18 GHz 

Chirp Length (T) 5 μs 

 

For all the simulated cases, the frequency modulation signal is a single tone with a carrier 

frequency of 1 MHz. For a first case, the chirp has a frequency modulation with index (β) of 



22 

5105  . This first case has been simulated with a target roundtrip delay of 250 ns, which equals 

a quarter of the period of the frequency modulation waveform. Figure 2-9 is a plot of the 

resulting video signal frequency spectrum for the first case simulation. The plot shows sidebands 

at 1 MHz apart from the mainlobe. The sidebands which correspond to the frequency modulation 

have a power of about 5.4 dBc. The example uses a delay of only a quarter of the period of the 

frequency modulation signal and an FM index of only 
5105  and the effects on the resolution 

performance of the video signal are already unsatisfactory for most multiple-target applications. 
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Figure 2-9: Video Signal Frequency Spectrum for Case 1 

For a second case, the simulation uses a roundtrip delay of 500 ns, which is equivalent to 

half the period of the modulating signal. As it has been shown, this is the delay for which the 

effects caused by the phase modulation are maximized. This second case uses the same 

modulation index as the first case. 

Figure 2-10 shows the frequency spectrum of the video signal for the second case. The 

power of the sidebands from the frequency modulation has been increased up to about 0.8 dBc. 
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Figure 2-10: Video Signal Frequency Spectrum for Case 2 

 

The frequency spectrum plot in Figure 2-10 uses no weighting in time to improve 

sidelobe performance. Figure 2-11 shows the frequency spectrum for case 2 using a Hanning 

window on the video waveform. The plot shows that windowing techniques may reduce the 

power on the sidelobes, but it has little effect on the sidebands caused by frequency modulation. 

This is an example of how the effects of the non-linear behavior of the chirp may not be 

improved with standard sidelobe reduction techniques. 
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Figure 2-11: Video Signal Frequency Spectrum for Case 2 with Windowing for Sidelobe Suppression 
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For the applications we are interested in, the delay is nowhere near half the period of the 

frequency modulation waveform. These two simulation cases are illustrated to show how the 

phase modulation effects on the video signal worsen as the roundtrip delay increases. Although 

the previous examples used fairly long relative delays, the modulation index was very small. 

A third case considers a roundtrip delay of only 50 ns which corresponds to a twentieth of 

the period. The frequency modulation index in this case is
4105  . A plot of the video signal for 

this case is shown in Figure 2-12. This example uses a fairly small relative delay and a very 

small frequency modulation index. This example shows that the video signal is very sensitive to 

the effects of frequency modulation added to the chirp at the generation point.  
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Figure 2-12: Video Signal Frequency Spectrum for Case 3 

 

From these examples it has been seen that frequency modulation added to the chirp 

waveform degrades the target range response performance. As in the amplitude modulation case, 

sidebands close to the mainlobe degrade the range resolution and dynamic range for close 

targets. Moreover, the simulations showed that standard sidelobe suppression techniques using 

amplitude weighting does not have a significant effect on these sidebands.  
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2.1.2.3 Amplitude and Frequency Modulation Treatment 

 

As explained on the previous sections, amplitude and frequency modulation added to the 

chirp waveform at any point on the signal paths can greatly degrade the range resolution 

performance of FMCW radar systems. In addition, it has been shown that the effects caused by 

the frequency modulation on the chirp increase with the roundtrip delay. Thus, the design of 

FMCW radars with nominal ranges that correspond to large roundtrip delays relative to the chirp 

length should have more severe linearity requirements on the chirp waveform. 

Amplitude modulation can be improved by using Variable Gain Amplifiers (VGAs). By 

measuring the resultant amplitude waveform at each path of the FMCW radar, the effects of 

amplitude modulation can be compensated using VGAs. By forcing an amplitude modulation 

with the inverse amplitude waveform of each path, the VGAs would compensate for the 

amplitude effects on each path.  

The frequency and amplitude modulations may also be improved with digital signal 

processing (DSP). DSP techniques can be applied both in real-time and post processing. If there 

are measuring tools available to digitize the chirp waveform for each FMCW path, both the 

resulting amplitude and frequency modulation on the video signal may be estimated at any delay. 

This information can be used to correct the frequency and amplitude on the video signal. 

Unfortunately, digitizing tools for wideband radars are expensive and may not be available. For 

this case, the video signal can be digitized and used for processing. By measuring a single target 

response at the nominal delay, both the resulting amplitude and frequency modulation on the 

video signal can be extracted for the nominal delay. Then, the amplitude and frequency 

corrections can be applied on the data. Using the video signal to correct for modulation effects is 

not optimal due to the range dependent nature of the modulations.  

Considering the drawbacks of the signal processing techniques and their limitations, the 

quality of the data of FMCW radar systems depends to a great extent on the hardware 

performance.  
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2.1.3 FMCW Waveform Generation and Frequency Synthesizers 

 

FMCW waveforms generators use some kind of frequency synthesis which may include 

digital, analog or both techniques. This section describes direct frequency synthesis methods and 

synthesis methods requiring a voltage controlled oscillator (VCO).  

 

2.1.3.1 Direct Analog Synthesis 

 

A Direct Analog Synthesizer (DAS) generates a coherent wideband signal using only 

analog devices and no closed loop operations. A DAS uses a stable source such as a crystal 

oscillator and a variety of components for the application of arithmetic operations in the 

frequency domain of the source signal. A DAS may include a crystal oscillator, comb generators, 

frequency multipliers, frequency dividers, frequency mixers and filters [26].  

By applying frequency operations to the source signal, very wideband frequency 

waveforms can be obtained. However, depending performance of the filters used, the frequency 

operations may add spurious noise to the signal. Thus, the synthesizer will be limited to a 

number of operations for a given spur level requirement. Since the DAS usually requires many 

components for the frequency operations, this type of synthesizer is often costly, bulky and has 

high power requirements [26].  

 

2.1.3.2. Direct Digital Synthesis 

 

A Direct Digital Synthesizer uses digital data processing blocks to generate a frequency 

or phase tunable output signal. The DDS has a phase accumulator, which is basically a digital 

ramp generator implemented with an address counter. The digital output of the address counter 

represents the current phase. On a frequency-tunable DDS, the update rate of the counter is 

controlled by a frequency tuning word that may vary with time. The tuning word defines the 

frequency of the output signal. The output of the phase accumulator then gets fed to a phase-to-
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amplitude converter. Finally, a Digital-to-Analog converter takes the amplitude data to generate 

the analog signal [26][27].  

Since the Nyquist Theorem indicates that at least two samples per cycle are required to 

reconstruct a waveform, the sampling rate should be at least twice that of the DDS output 

bandwidth. The DDS output signal spectrum contains images of the positive and negative 

frequency components of the fundamental spaced by multiples of the sampling frequency. The 

images that correspond to the negative component of the fundamental are considered the odd 

numbered images whereas the images from the positive component of the fundamental are the 

even numbered images. Thus, the first image corresponds to the first image of the negative 

component of the fundamental. The frequency spacing between these images becomes half of the 

sampling rate or the Nyquist Bandwidth. Then, a reconstruction filter may be used to filter 

frequencies on any of the images of the fundamental. Moreover, the power amplitude of the 

spectrum harmonics follows a sinc function envelope with nulls at multiples of the sampling rate. 

The main drawback of using frequencies on one of the images is the amount of attenuation 

caused by the sinc function envelope response [27]. 

DDS synthesizers have many advantages with respect to other synthesizers. DDS systems 

allow a high frequency tuning resolution. The digital nature of a DDS makes it independent of 

aging and temperature drift, common on analog devices. However, the DDS signal output 

bandwidth is limited by the reference clock. DDS systems are considered a very good choice for 

chirp generators with bandwidth lower than half the sampling rate [27]. 

As of the October 2011, the digital to analog data converters with highest sampling rate 

available in the market are the MAX5881, the AD9739A and the DAC5670-SP with 4.3 Giga 

Samples per Second (GSPS), 2.5 GSPS and 2.4 GSPS respectively. These three products are 

manufactured by Maxim Integrated Products, Analog Devices Inc. and Texas Instruments Inc, 

respectively. Thus, the maximum bandwidth attained for a synthesizer with available data 

converters is less than 2.15 GHz. 
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2.1.3.3 Phase Lock Loops and other VCO based Frequency Synthesizers 

 

As mentioned previously, digital synthesize is mainly limited by bandwidth and direct 

analog synthesis by its spurious performance, power requirements and cost. As alternative to 

these techniques, a common indirect wideband synthesizer uses a wideband voltage controlled 

oscillator on a frequency control loop also known as a Phase Lock Loop (PLL). A PLL-based 

synthesizer uses a direct synthesizer as the reference signal. A description of the PLL system and 

its components is given in Section 2.2.  

An FMCW signal with the desired frequency waveform can be implemented by 

controlling the tuning voltage of the VCO, as will be discussed in Section 2.2.2. The tuning 

characteristic is the curve that describes the mapping between the tuning voltage and the output 

frequency.  Since this relationship is nonlinear, a ramp voltage input will not output a linear 

frequency modulated output as it is required for chirp-based FMCW radars. Then, either an open 

loop or a closed loop system should be used to control the tuning voltage to output the required 

waveform.  

Different open loop techniques have been implemented to linearize the VCO output 

depending on the resources available at the time.   

Burke P.E. implemented an open loop VCO linearization technique based on a circuit 

realization of a pre-distorted voltage [28]. The system uses a third order polynomial function 

generator based on a voltage controlled voltage ramp generator. The ramp slope, which 

corresponds to the first polynomial coefficient, is controlled both externally and by a feedback 

signal. The quadratic and cubic terms are outputted by a quadratic and a cubic generator 

respectively. These two terms are added to the ramp, where the second and third polynomial 

coefficients are given by the potentiometers used for the adder. Thus, the system works as a 

polynomial regression system that tries to generate the required non-linear tuning voltage to 

match that of the inverse function of the tuning characteristic. The system also uses a PLL 

synchronized to the chirp repetition rate to maintain a coherent output. 

Since wideband voltage controlled oscillators have tuning characteristics with several 

small variations, a polynomial fitting that matches exactly the inverse function would require 
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several coefficients. Moreover, the number of coefficients that can be implemented is limited by 

the circuit and coefficient calibration complexity.  

An example of an earlier open loop linearization technique implemented at the CReSIS is 

described on [29]. The linearization technique uses a frequency counter to measure the output 

frequency to discrete input voltages. The measured relationship between voltage and output 

frequency of the VCO is then used to find the inverse function. Lastly, the inverse function is 

directly applied to the VCO [29]. This technique has many drawbacks. First, in order to account 

for small variations in the VCO tuning curve, the measurement should be made with very small 

voltage steps. Since many measurement repetitions are taken and averaged to account for time 

variations, it would require a very long time to take all the necessary measurements. Moreover, 

this technique takes static measurements of the output frequency. However, the tuning 

characteristic of the VCO for static voltages may not be the same as that for a ramp input 

voltage. The tuning characteristic may even vary for different chirp rates.  

Closed loop techniques have also been implemented to linearize the output frequency of 

the voltage controlled oscillator. By using a phase lock loop, as explained previously, the output 

frequency of the VCO may follow a multiple of the reference frequency.  A PLL based chirp 

generator previously developed at CReSIS is described on [30].  This system uses a third order 

type 2 PLL. The type 2 nature of the PLL implemented with a differential amplifier makes it 

possible to achieve all the required voltage levels for the designed amplifier bandwidth. A 

differential amplifier is used for error compensation as well as for driving the VCO. This 

technique was demonstrated as part of a microwave altimeter operating with 1 GHz of 

bandwidth. The performance of the chirp generator using this implementation suffered from high 

range sidelobes for bandwidths larger than 1 GHz. Since not enough considerations were taken 

to improve the tracking performance of the synthesizer, the PLL designed was not able to 

compensate for the VCO nonlinearity using higher chirp bandwidths.  
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2.2 PHASE LOCK LOOP OVERVIEW 

 

This section discusses the analysis of phase lock loops using linear system techniques. It 

also describes the functionality of the main PLL components as to determine their system 

response. 

 

2.2.1 PLL Analysis as a Linear System 

 

A Phase Lock Loop (PLL) is a Frequency and Phase control system. Linear control 

system techniques can be used to analyze linear time invariant control systems. Each linear 

system is represented with a transfer function, which is the Laplace transform of the output to 

input ratio [31]. Since the VCO has a non-linear input-output relationship, as will be explained, a 

PLL system may be considered a non-linear control system. However, it can be approximated to 

be linear over a narrow bandwidth of the VCO. Also, the response of most devices will vary with 

time due to temperature and aging. These changes will not be significant and will be neglected 

for the analysis. Applying these linear approximations, the PLL may be analyzed using linear 

control system theory.   

A PLL is composed of essentially three components: the phase detector, the loop filter 

and the Voltage controlled Oscillator (VCO). Frequency synthesizers based on PLLs use a 

frequency divider in the feedback path to output a multiple of the reference frequency. Figure 2-

13 shows a linear system block diagram of a simple PLL.    
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Figure 2-13: Block Diagram of PLL Transfer Function 
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When the PLL is in the lock state, the output phase tracks the input phase. Either a 

change in the input phase or a change in the output phase is sensed by the phase detector. The 

phase detector outputs a signal which average is proportional to the phase difference between the 

input signal and the feedback signal. The phase detector gain is symbolized by KP. The 

functionality of the phase detector is further explained in Section 2.2.2.2. 

KV represents the voltage-to-frequency conversion gain of the VCO, also known as the 

frequency sensitivity of the VCO. The frequency divider block shows the division factor equal to 

N. Z(s) corresponds to the transfer function of the PLL compensator, also known as the PLL loop 

filter. The use of the letter Z for the loop filter transfer function comes from the fact that the 

typical charge pump PLLs use trans-impedance loop filters. However, the letter Z will be used 

throughout this document regardless the type of input signal of the loop filter. 

Equations (2.32) through (2.35) show the forward path A(s), feedback path B(s), open 

loop G(s) and closed loop H(s) transfer functions for the PLL described in Figure 2-13.  
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The open loop gain transfer function is the product of the forward and feedback paths 

transfer functions [31]. The closed loop transfer function is then solved to the standard negative 

feedback loop equation shown on equation (2.35) [31][32]. An effective closed loop control 

system has more poles than zeros and its frequency response resembles that of a low-pass filter 

[31][33]. By inspection of equation (2.35), the closed loop transfer function of the PLL has a 
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gain equal to the division factor (N) over its pass band. The PLL impulse response is the Laplace 

inverse transform of the closed loop transfer function. The step, ramp and parabola responses 

may also be calculated by integrating the designed closed loop transfer function. The closed loop 

transfer function may be designed to fit the transfer function of a specific function.  For instance, 

a Gaussian response is used to design a fast settling type 2 PLL on [34].  

The linear approximation used to apply linear system analysis techniques to PLLs 

assumes a constant value for the VCO sensitivity (KV). This is not the case for wideband 

applications. Therefore, the time performance of the PLL will also vary with respect to the 

output frequency. Thus, the PLL should be designed such that an acceptable time response is 

maintained for all possible values of KV. 

 

2.2.1.1 Type and Order of a PLLs 

 

The type of a transfer function refers to the number of integrators or poles at the origin. In 

the PLL terminology, the type of the PLL refers to the type of the open loop transfer function 

and not the closed loop transfer function [35].  

The order of a transfer function refers to the number of poles. Similar to the type, the 

order of the PLL is the order of the open loop transfer function. 

 

2.2.1.2 Transient Response and Stability of PLLs 

 

Instability in a control system occurs when the open loop transfer function equals 

negative 1 [31]. This means that the open loop gain equals 0 dB at -180 degrees. Even though the 

open loop does not reach this point, there are parameters that measure the degree of stability. The 

phase margin indicates the difference between the open loop phase and -180 degrees when the 

gain crosses 0 dB. Similarly, the gain margin is the gain of the open loop at -180 degrees [31]. 

The former occurs at the gain crossover frequency and the latter at the phase crossover 
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frequency. The gain crossover frequency will be referred to as only the crossover frequency on 

this document. 

Designs where the PLL open loop crosses the phase crossover frequency more than once 

are rarely found. According to the Bode stability criterion, the system is stable if the open loop 

gain is less than 0 dB over the phase crossover frequency [31]. Thus, the Bode stability criterion 

can be used to claim stability on a PLL. 

Moreover, the phase margin is related to the transient response. The phase margin 

provides an estimate of the damping of the system. For second order systems it is directly related 

to the damping factor. For other order systems, it is just an estimate. In general, a phase margin 

larger than 45 degrees indicates an over-damped system. Likewise, a phase margin smaller than 

45 indicates an under-damped system. A transient refers to a sudden change in the system input 

or within the system. An under-damped system overshoots when there is a transient creating an 

error peak on the output. An over-damped system reacts slowly to a transient causing also an 

error on the output. Moreover, a heavily under-damped system, equivalent to a small phase 

margin, may become unstable with a small change in the system open loop phase.  

The phase margin will be used throughout this document to provide a measure of stability 

and transient behavior. 

 

2.2.1.3 Steady State Errors on PLLs 

 

Consider the control system described on the block diagram in figure 2.14. The diagram 

shows the a simple control loop with a forward path system (A), a feedback path system (B), an 

input signal (X), an output signal (Y) and an error signal (E). Equations (2.36) and (2.37) describe 

the error signal Laplace Transform. 
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By the final value theorem, the steady state error can be determined from its Laplace 

transform using the relationship shown on equations (2.38) and (2.39). For this simple control 

loop, the steady state error depends on the input signal and the open loop transfer function for the 

limit of the function as the variable ‘s’ approaches zero. Thus, the number of zeros and poles at 

the origin on both the input signal and the open loop transfer function define whether the steady 

state error is a constant, zero or approaches infinity.  

Since the number of integrators on the open loop transfer function of the PLL relates to 

its type, the steady state error can be classified for PLL of different types. Likewise, the steady 

state error can be classified for different types of input signals. The steady state errors for each 

relevant case have been computed and are shown in Table 2-4. Since, the constant expressions 

depend on the expression of the loop filter, which can take many forms, it is not explicitly 

described in Table 2-4. 
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Figure 2-14: Simple Control System Block Diagram Showing Error Signal 
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Table 2-4: Steady State Error for Different Types of PLLs 

 Step Ramp Parabola 

Type 1 0 Constant Infinite 

Type 2 0 0 Constant 

Type 3 0 0 0 

 

As mentioned earlier, a PLL is a phase control system when it is on the lock state. Thus, a 

parabola in the phase input corresponds to a ramp in input frequency. This is the type of 

frequency input that this document is interested in. For this case, the analysis dictates that a type 

3 is the optimal choice for a steady state error equal to zero. However, a constant error in the 

phase will not affect the linearity of the waveform. Thus, a type 2 PLL would suffice. 

Moreover, type 1 PLLs have attractive properties when implementing wideband PLLs. 

Wideband PLLs are described on the next section. For this reasons, a control technique that 

overcomes the steady state error issue of type 1 PLL needs to be used.  

 

 

 

Figure 2-15 illustrates a block diagram of a control loop with an external signal (F) being 

added to the forward path. The forward path has been divided in two systems: A1(s) and A2(s). 

For the PLL, the first block on the forward path will contain the phase detector gain and the 

second block will contain the VCO gain. The loop filter may be found on any of the two. 

Equations (2.40) and (2.41) illustrate the Laplace transform of the error signal for the system 

depicted in Figure 2-15. 
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Figure 2-15: Control Loop with Added Signal for Type 1 Steady State Error Improvement 
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For simplicity, the frequency ramp or phase parabola signal is assumed to have initial 

phase and initial frequency equal to zero. Equation (2.42) describes the input phase parabola 

signal in the Laplace domain, where μ is the frequency ramp rate or chirp rate.  

Equation (2.43) shows the steady state error expression for this control loop in terms of 

the Laplace transfer functions using the final value theorem. Since the VCO transfer function is a 

factor in A2, both summand terms in the denominator and the numerator that contain this function 

will have at least one integrator.  

Considering a type 1 PLL with the only open loop integrator in the A2 function, equation 

(2.43) has been evaluated for different number of integrators in the external signal. From this 

analysis, it has been found that the steady state error only becomes zero when the second 

summand on the numerator equals the inverse of the first summand. Since A2 already contains an 

integrator, the external signal needs to be a ramp. The external signal ramp rate needs to be 

selected so that the term FA2B becomes a frequency ramp with exactly the same rate as the input 

frequency ramp. 

Thus, for type 1 PLLs an external signal has to be applied to compensate for the phase 

parabola term on the input phase signal. As pointed out in Table 2-4, the type 1 PLL output 

signal will approach a finite value for the phase ramp and the phase step terms on the input. 
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2.2.1.4 Narrow Loop Bandwidth and Wide Loop Bandwidth PLLs 

 

As mentioned, the frequency response of an effective PLL is that of a low pass filter. The 

loop bandwidth of the PLL is a critical parameter for its performance [33]. In fact, wide loop 

bandwidth and narrow loop bandwidth PLLs are designed for different purposes [33]. The 

narrow loop bandwidth PLLs are used when the expected value of the reference frequency does 

not change significantly or does not change at all [33]. The PLL then works as a filter that 

attenuates the high frequency noise on the reference signal. Phase locked local oscillators use 

this type of PLL.  

On the other hand, if there are high frequency fluctuations on the oscillator output, a wide 

loop bandwidth PLL is desired to quickly compensate for these. For instance, an oscillator may 

have remarkable properties that are desired for a specific design such as wideband or high power 

output, however, it may suffers from poor stability of frequency or other issues [33]. For this 

case a wide loop bandwidth PLL should be used. Thus, wide loop bandwidth PLLs have the 

ability to quickly compensate changes that would disturb the system. This kind of PLL has 

desirable capabilities when there is need to track a moving reference or compensate for 

disturbances on the loop. The tracking ability of wideband PLLs is described further in Section 

2.3. 
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2.2.2 PLL Components Overview 

 

2.2.2.1 Voltage Controlled Oscillator 

 

A voltage controlled oscillator has an output frequency that can be tuned by the input 

voltage, as the name implies.  

In simple terms, any oscillator can be constructed with a resonator in a closed loop with a 

negative resistance. Equation (2.44) shows the transfer function of a simple positive feedback 

closed loop system, where A is the forward gain and β is the feedback gain. If the product of 

both has the value of 1 at a particular frequency, the combination of the forward and feedback 

path circuits form a resonator. A lossless resonator will continually oscillate when the closed 

loop is exited at the resonant frequency. However, real devices have loss due to positive 

resistance. Then, an amplifying device should be used to maintain oscillation. Thus, the amplifier 

is said to have negative resistance at the resonant frequency [36]. 
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One type of resonator can be constructed with the combination of capacitive and 

inductive devices, where the resonant frequency is dependent of the product of both. The voltage 

controlled oscillator uses a varactor diode as part of the resonator. A varactor diode has a 

capacitance that is tunable with input voltage. This way the resonant frequency becomes tunable 

with input voltage [37]. 
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Figure 2-16 shows a typical plot of the relationship between the tuning voltage and the 

output frequency of a VCO with positive tuning voltage. The relationship between the output 

frequency and the tuning voltage is also known as the tuning characteristic or tuning curve. 

VCOs inherently have a non-linear tuning characteristic. This limits the frequency output range. 

The VCO output frequency varies with temperature and aging. This long term instability is 

usually measured in parts-per-million (ppm). In addition, there exits short term instabilities 

which make the output frequency vary randomly around the expected carrier. This type of 

instability, also known as phase noise, is measured by the average power of the signal at that 

frequency. The phase noise then is defined as the power with respect of the carrier at a frequency 

offset from the carrier in dBc/Hz. Fluctuation in the output frequency may also be caused by the 

variations in both the load coupled to the VCO and the voltage supply. These two effects are 

called frequency pulling and frequency pushing respectively [38].  

When designing a PLL the slope of the tuning curve (Kv) is used as a constant gain in the 

linear system analysis by applying a linear approximation valid for very narrow bandwidths. 

However, for wideband applications the PLL design should consider the large variations in KV. 
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Figure 2-16: Tuning Curve of a Voltage Controlled Oscillator 
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KV is also known as the tuning sensitivity. Also, the relationship between the tuning sensitivity 

and the output frequency is called the tuning sensitivity curve [35]. 

 

2.2.2.2 Phase Detector 

 

A phase detector is a device which output can be related to the difference between the 

phases of the two inputs. Phase detectors are used in phase lock loops to sense the difference in 

phase between the reference and the feedback signals [32].   

The three most typical phase detectors are the double balanced mixer, the XOR gate and 

the phase-frequency detector. The first two types of phase detectors mentioned have a limited 

lock range. Thus, they are not convenient for wideband implementations using PLLs. The 

description of these types of phase detectors can be found on [32].  

A Phase-Frequency detector, the third type of phase detector previously mentioned, is a 

device specially designed for phase lock loops where both the phase and frequency need to be 

detected and corrected for [35]. Figure 2-17 illustrates the basic functionality of a phase 

frequency detector. Both signals are connected to the clock ports of the rising edge flip-flops. A 

rising edge on any of the two signals stores a logic ‘1’ on the corresponding flip-flop. If both 

flip-flops have a logic ‘1’ stored on the output, then the AND gate outputs a logic ‘1’. The output 

of the AND gate resets the stored values on the flip flops to logic ‘0’ [35]. 

Figure 2-18.a shows the UP and DOWN output waveforms for the case when both input 

signals have equal frequency but signal 1 leads signal 2. The output waveform of UP has a duty 

cycle proportional to the phase difference, whereas the DOWN output shows a zero duty cycle. 

For the case when signal 1 lags signal 2, the output waveforms would be swapped. Figure 2.18.b 

shows the output of UP and DOWN waveforms for the case when signal 1 has higher frequency 

than signal 2. For this case the UP waveform has a duty cycle proportional to the difference in 

frequency.  The way the phase-frequency detector is implemented is by subtracting the two 

output waveforms. For the case when both signals have the same phase and frequency, a glitch 

forms for both outputs at every cycle. This glitch corresponds to the difference in the delay path 

for the two flip-flop outputs. This issue is known as the dead-zone phenomenon. A dead-zone 

elimination circuitry is added to phase-frequency detectors to solve this problem [39]. 
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Figure 2-17: Phase Frequency Detector Typical Digital Circuit 
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Figure 2-19: Charge Pump Circuits for UP and DOWN outputs 

Modern Phase-Frequency detectors have a charge pump stage coupled to the digital 

outputs of the flip-flops. Both the regular output and its complement (not shown in Figure 2-17) 

of the flip-flops are used to drive the transistors shown in Figure 2-19. The charge pump then 

converts the digital voltage signal to a current signal. Usually, there is a small capacitance 

associated to these outputs that works as an integrator on the output signal. Figure 2-20 illustrates 

this effect.  

 

 

 

 

The charge pump output may have a pull-up or pull-down resistor to convert back the 

output to a voltage output. It can also have a single ended output or a differential output.  

 

The proportionally factor that relates the phase difference to the output signal is called 

KP. Depending of the output signal type, it can have units of voltage per radians or current per 

Figure 2-20: Phase Frequency Detector Output using Integrator 
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radians. It is usually given in terms of 2π radians because the 2π factor cancels out when KV is 

given in Hertz per volt and not radians per volt [39]. 

 

The phase frequency detector has two modes of operation. If there is a difference in 

frequency between the two signals, it provides an output proportional to the difference in 

frequency. Otherwise, the detector output a signal proportional to the difference in phase. If a 

PLL is designed using a phase frequency detector, it is tracking either the frequency or the phase 

of the reference at some point. The PLL is said to be phase-locked if it is tracking the phase of 

the reference signal.  

 

2.2.2.3 Frequency Divider 

 

In PLL based frequency synthesizers, the output frequency is usually higher than the 

reference frequency. To compensate for this gain in the PLL transfer function, a frequency 

divider is used on the feedback path. A frequency divider scales down its input frequency by a 

divider factor.  

A digital frequency divider may be implemented with ripple counters. A simple divider 

consists of a J-K flip flop, where the J and K inputs are set to logic ‘1’ and the input is connected 

to the clock [32]. The output changes its state at every rising edge. Therefore, the output digital 

waveform has a frequency that is half the frequency of the input digital waveform. Frequency 

dividers with higher division factors multiples of 2 can be accomplished by cascading more than 

one of these circuits. This compound circuit is known as a ripple counter.  

In order to implement frequency dividers with odd division factors and fractional division 

factors, more advanced techniques need to be used. A description of these can be found on [32]. 
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2.2.2.4 Loop Filter 

 

The Loop Filter of the phase locked loop has two main objectives: to filter the high 

frequency spurs on the output of the phase detector and to compensate the open loop transfer 

function to achieve the given transient response requirements. Because of the first task of the 

loop filter, it is usually designed using frequency response techniques [39]. Thus, the PLL time 

response and stability performance are also achieved using frequency response design 

techniques. The compensation provided by the loop filter to the open loop transfer function 

improve the high frequency noise attenuation, may improve the steady state error and modifies 

the phase margin for a designed transient response. 

For the reasons described above, all loop filters are essentially lag compensators. On the 

magnitude response of the open loop transfer function, the lag compensator attenuates the high 

frequency magnitude compared to the low frequency magnitude. On the phase response of the 

open loop, the lag compensator lags the phase over a desired region. A simple lag compensator 

can be achieved with one pole. However, an additional zero at a higher frequency than the pole is 

added to prevent the system on becoming unstable or having a small phase margin. One or more 

poles may be added at higher frequencies than the frequency location of the zero. For this case, 

the loop filter becomes a lag-lead compensator. This compensator can be used to adjust the phase 

margin with the second pole when the zero has been already set for other purposes. For instance, 

the zero may be used to set the crossover frequency. Because the lag-lead compensator can have 

many poles beyond the zero, it has a better attenuation of high frequencies than the pole-zero lag 

compensator. This is an attractive feature for loop filter designs for attenuating high frequency 

noise and spurious signals. 

PLL loop filter transfer functions differ with the type of the PLL. The typical type 1 PLL 

loop filter is a lag compensator with no zeros. Since the type 1 PLL loop filter has no integrators, 

this kind of loop filter has the transfer function of a low pass filter with flat band pass gain. The 

main advantage of this type of loop filter is that its transient response has no overshoots. Thus, it 

adds no peak errors. Moreover, it has faster settling capability. These properties make this kind 

of PLL very desirable for fast tracking applications. The main disadvantage of this kind of loop 

filter is that it does not provide good steady state error for frequency ramp responses. However, it 
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has been shown in section 2.2.1.3 that this can be solved with control techniques. In contrast to 

this typical type 1 PLL, the type 1 PLL loop filter with zeros may have a peaking transient 

response [39]. This type of loop filter is not as fast as the typical type 1 PLL loop filter. It does 

not have an optimum transient error as the typical type 1 PLL loop filter. However, the zero 

provides an additional degree of freedom to set the crossover frequency or modify the phase 

margin [40]. Type 1 PLL loop filters can be design to achieve a performance close to that of the 

typical type 1 PLL and at the same time being able to set both the phase margin and the 

crossover frequency adequately. Type 1 PLL loop filters are known as averaging loop filters, 

because they provide the average of the output of the phase detector.  

Type 2 PLL loop filters have one integrator. This feature results in a zero steady state 

error for a frequency input step and a constant steady state error for an frequency input ramp. 

Since this kind of steady state performance can be achieved without any additional 

compensation, this type of PLL loop filter is used for many simple applications. The main 

disadvantage of this type of PLL loop filter is that it provides the PLL with higher transient 

errors and a slower transient response than the type 1 PLL. This type of loop filter is also known 

as an integrator loop filter.  

A type 3 PLL has zero phase parabola steady state error. This is beneficial when zero 

phase difference between the input and output of the PLL is desired. The loop filter required for 

this type of PLL has great complexity [33]. Moreover, type 2 and type 3 PLLs have about the 

same phase transient error for a frequency ramp input [33].    

As mentioned in section 2.2.2.2, the phase detector output may be a voltage signal or a 

current signal. If the loop filter is directly connected to the output of the phase detector, its input 

signal will be of the same type as that of the output signal of the phase detector. Assuming the 

output of the loop filter will be connected to a device that expects a voltage signal, such as a 

VCO, the loop filter transfer function describes either a voltage filter or a trans-impedance filter.  

The loop filter may be implemented using only passive devices or using a combination of 

active and passive devices. The former implementation refers to passive loop filters and the latter 

to active loop filters. Voltage passive loop filters are limited to type 1 PLL loop filters. In 

contrast, type 2 PLL trans-impedance passive loop filters can be implemented. The main 

limitation on passive loop filters is that they cannot output larger voltages than the ones provided 
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by the phase detector output. The phase detector output voltage is usually low compared to the 

VCO required voltage. Thus, an additional amplifier or level shifter may be needed to reach the 

required voltages. 

Active loop filters can be implemented either as type 1 PLL loop filters or as type 2 PLL 

loop filters and they can have either a current or a voltage input signal. Active loop filters have 

the main advantage of adding gain to the input signal regardless of the kind of signal. The high 

open loop gain at low frequencies allows the implementation of an almost ideal type 2 loop filter. 

Also, active loop filters using a differential input can be implemented to combine a phase 

detector differential output. Additionally, active loop filters can output large voltages which are 

usually required at the VCO input. On the other hand, active loop filters add noise, distortion and 

have limited small signal bandwidth. Active loop filters are typically implemented with 

operational amplifiers (opamps). These devices have a limited slew rate, which defines the 

maximum large signal bandwidth without distortion. Moreover, the small signal bandwidth of 

opamps is gain dependant. This means that a wideband active loop filter will limit the gain of the 

active loop filter. A solution for this issue is to cascade various wideband loop filters with a 

moderate gain. The main drawback of this technique is that each amplifying stage may add noise 

and distortion.  

The bode plots of a typical type 2 PLL loop filter are shown in Figure 2-21. This loop 

filter is a lag-lead compensator. The zero has been placed to set the crossover frequency and the 

second pole has been designed for a specific phase margin. The pole at the origin changes the 

type of the open loop to type 2 for an improved steady state response. Moreover, the second pole 

improves the attenuation at higher frequencies. 

Figure 2-22 shows an example of Bode plots for an uncompensated open loop transfer 

function. Figure 2-23 shows the Bode plots of the compensated open loop transfer function for 

the example loop filter described above. The phase margin has been modified to be 50 degrees 

and the crossover frequency is located at 1 MHz. 
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Figure 2-21: Example Bode Plots for a Type 2 Loop Filter Transfer Function 
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Figure 2-23: Example Bode Plots for a Compensated PLL Open Loop Transfer Function 

  

2.3 LOOP TRACKING ERROR REDUCTION TECHNIQUES 

 

Tracking on a feedback control system with unity feedback is the ability of the system to 

replicate the input. On a PLL based synthesizer with a constant divider on the feedback path, 

tracking becomes the ability of the system to output the desired multiple of the input.  

The tracking ability of a system can be analyzed in terms of the input changes and in 

terms of changes in the loop. In the absence of disturbances in the loop, the feedback tracking 

performance is defined by the steady state performance. As explained in Section 2.2.1.3, the 

number of integrators on the open loop transfer function dictates the steady state error. However, 

the number of integrators does not assure the ability of the system to compensate for 

disturbances added to the loop. 

On a PLL, a number of disturbances may be added to the loop. Although there may be a 

number of external disturbances that add to the loop, such as noised coupled to one of the loop 

signals, the main source of disturbances for a PLL based synthesizer sweeping over a wide band 
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is the VCO. The VCO has a very nonlinear tuning curve. For a PLL that sweeps over wide 

bands, this nonlinear behavior can be modeled as an added disturbance to the loop.  

As mentioned in Section 2.2.1.4, PLLs with wide loop bandwidth are the kind of PLL 

required to decrease the tracking error caused by disturbances. Figure 2-24 illustrates a block 

diagram of a closed loop control system with added disturbances at the output, similar to those 

caused by the VCO nonlinearity. 
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The transfer function of the output of the system (Y) has been solved in terms of the 

transfer functions of the input signal (X), the disturbance signal (D), the forward path (A) and the 

feedback path (B). Equation (2.45) shows the resulting expression for the output signal. For an 

open loop transfer function (AB) with a magnitude much larger than one, the output signal then 

becomes equal to the input signal scaled by the feedback path system. This ideal result is 

described on equation (2.46). This result indicates that on the condition that the open loop gain is 

much larger than one, the disturbance will be compensated. 

PLLs have generally high gain on their passband, so that they can compensate 

successfully for disturbances that fall within their loop bandwidth. Wide loop bandwidth PLLs 

are designed to compensate for wideband disturbances. The importance of the bandwidth on the 

  A(s) 

B(s) 

+ 

Y(s) X(s) 

- 

E(s) 

Σ 

D(s) 

Figure 2-24: Closed Loop System Block Diagram with Added Disturbances 
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PLL transfer function can be better understood by analyzing the closed loop transfer function. 

Equation (2.47) describes the closed loop transfer function.  
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For an open loop transfer function with a magnitude much smaller than one, the closed 

loop transfer function becomes that of the forward path. Thus, the feedback compensation 

becomes ineffective. 
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Figure 2-25: Bode Diagram of an Example Closed Loop Transfer Function for a PLL 

 

Figure 2-25 shows the Bode diagram of an example closed loop transfer function for a 

PLL. This closed loop transfer function corresponds to a second order type 2 PLL with unity 

feedback gain. The exact performance figures of this PLL are not important for this discussion, 

so they are not mentioned or pointed out on these plots. From figure 2-25, it can be seen that the 

magnitude of the closed loop transfer function at low frequencies is closed to 0 dB, which is the 

ideal value for a unity feedback PLL. Likewise, the phase is close to zero and remains somewhat 

constant over the low frequency range. This is also the desired behavior of the output of the PLL. 

However, at high frequencies the amplitude is low and the phase shifts from 0 to -90 degrees. 

Moreover, the amplitude and the phase over the transition differ slightly from those at low 

frequencies. This means that near the corner frequency the compensation is not ideal.  
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A large phase margin corresponds to a larger transition over the corner frequency region. 

For this case, the compensation of the PLL will be less effective over the passband as the 

disturbance frequency content approaches the corner frequency. As mentioned in Section 2.2, the 

PLL can be approximated as linear for small regions over the tuning sensitivity. Thus, the large 

variations on the tuning sensitivity can be thought of many small linear regions. A design using 

this approximation should assure that the PLL will remain with a desired transient response and 

stability for all the values of the tuning sensitivity. In order to achieve this, the PLL should be 

design with enough phase and gain margins. The large phase margin requirement to implement a 

wideband synthesizer corresponds to a larger transition region near the corner frequency of the 

PLL frequency response. As mentioned earlier, this degrades the tracking performance.  

Sometimes the loop disturbances are deterministic or can be measured. In this case, a 

signal that subtracts the disturbance can be added to the loop. Since this signal has not been 

affected by the loop frequency response, it will represent a more synchronized compensation 

signal. Using this compensation the resulting output will match closer to ideal output signal. 

Figure 2-26 shows a block diagram of a closed loop system with added disturbance (D) and 

added external compensation (F). On the block diagram the forward path is composed of two 

systems: A1 and A2. The feedback path system, the input signal, the error signal and the output 

signal maintain the same symbols as in the previous example. 
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Figure 2-26: Example of a Closed Loop Control System Block Diagram with Disturbance and External Compensation 
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Equation (2.48) represents the output signal in terms of the loop systems, the input signal, 

the external compensation and the disturbance signal. Consider a PLL transfer function for this 

analysis. Assuming that the loop has the bandwidth and the steady state convergence capability 

to track the input signal, the first summand term will approach the ideal output value. The second 

summand term includes two products. The second product of this summand will approach zero at 

low frequencies where the open loop gain is much greater than 1. On the other hand, at large 

frequencies where the open loop magnitude drops, this product will be significant. Moreover, if 

the expression shown on equation (2.49) holds where the PLL compensation is not effective, the 

second summand on equation (2.48) becomes zero. Thus, the output signal will approach the 

ideal output over the frequency region where equation (2.49) holds. 
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CHAPTER 3: DESIGN AND IMPLEMENTATION 

 

 

This chapter will discuss the design and implementation of a chirp generator using a 

linearization technique with dual compensation. First, the chirp generator design requirements 

are established. Then, the linearization method is explained. Lastly, a description of the design 

and implementation of both compensations systems is described. 

 

3.1 CHIRP GENERATOR DESIGN REQUIREMENTS 

 

The UWB chirp generator developed for the context of this work will be used as the 

waveform generator for high resolution airborne FMCW radar sensors.  The required bandwidth 

of the chirp generator is 6 GHz.  

The nominal airborne altitude and therefore nominal range of operation is 1500 ft. This 

range corresponds to a roundtrip signal propagation delay of about 3 μs in free space.  

The UWB radars described here use a data acquisition system (DAQ) to digitize the IF 

output signal. The analog to digital converter (ADC) has a minimum sampling rate of 62.5 MHz 

with a memory buffer capable of storing 16384 points. This number of points and the minimum 

sampling rate limits the IF recording time to a maximum of 262.14 μs. A sweep time of 250 μs is 

chosen to stay within this recording time limit. 

The VCO based chirp generator should be designed with a linearization system such as 

the range resolution is minimally affected by the VCO non-linear behavior at the nominal 

roundtrip delay of about 3 μs, a chirp sweep time of 250 μs and a chirp bandwidth of about 3 μs. 

The most relevant parameters for the chirp generator are summarized in Table 3-1.  
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  Table 3-1: Chirp Generator Parameters 

Parameter Value Units 

Bandwidth 6 GHz 

Sweep Time 250 μs 

Nominal Operating Target Delay 3.048  μs 

 

 

3.2 PROPOSED LINEARIZATION TECHNIQUE 

 

The microwave chirp generator developed for this application is a VCO based linear 

frequency modulated synthesizer. An UWB VCO operating at the Ku-band is used to achieve the 

required 6 GHz of bandwidth. The importance on the linearity of the chirp for multi-range 

applications has been described on chapter 1. Moreover, the airborne platform operating at a 

nominal altitude of 1500 ft, corresponding to a free-space delay of about 3 μs, poses severe 

requirements on the linearity of the chirp. In order to achieve a high level of linearity, the chirp 

generator will be designed with a dual-compensation system.  

Figure 3-1 shows a block diagram of the linearization system. A phase-frequency closed 

loop control system or Phase Lock Loop tracks a scaled reference frequency and phase. A large 

range in the sensitivity curve of the VCO is expected due to the wide bandwidth utilized. 

Moreover, wideband variations on the sensitivity curve are also expected. The PLL will be 

designed with a high enough loop bandwidth to compensate for these wideband variations. 

However, the wide range of the tuning sensitivity will lower the loop bandwidth at some VCO 

frequencies. Moreover, the PLL should be designed with a large enough phase margin at the 

average value of KV, so that phase margin does not lower significantly. If this were to happen the 

system could becomes unstable or at least increase significantly the peaking on the transient 

response. The PLL loop filter will be designed to improve the tracking error and to filter high 

frequency noise and spurious signals.  
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Due to the severe requirements on the phase margin, the tracking error compensation 

from the PLL is not sufficient. Thus, an external pre-distorted signal will be used to improve the 

tracking error. On frequencies near the loop bandwidth, the gain and phase responses of the 

closed loop system affect the tracking ability of the PLL. The PLL compensation signal can be 

measured at the output of the loop filter. This signal can then be filtered on different frequency 

bands, amplified and phased adjusted. By applying these adjustments on the signal, a signal 

which will not be severely affected by the frequency response effects of the PLL can be 

reconstructed. This pre-distorted signal can then be used to compensate more effectively the 

VCO and reduce the PLL tracking error. 

 

3.3 UWB VCO: HMC733  

 

The UWB Voltage Controlled Oscillator chosen for this application is the HMC733 VCO 

from Hittite Microwave. The HMC733 VCO is a Wideband MMIC VCO with buffer amplifier 

that operates on the 10 to 20 GHz range. The HMC733 was primarily chosen because of the 

tuning voltage requirement at Ku-band frequencies. Figure 3-2, extracted from the HMC733 

datasheet [41], shows the typical tuning curve of the VCO. The tuning curve shows that the 

voltage range required for the VCO operation on the Ku-band goes from about 3.3 V to 13.3 V. 

All the sub-systems on the control loop should use components with high speed and high 

Figure 3-1: VCO Based Chirp Generator Dual Compensation System 
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bandwidth requirements to achieve the PLL design requirements. The adder which is in the 

forward path of the control loop is implemented with an operational amplifier (opamp). Since 

there are opamps with the required high speed and high bandwidth capabilities that can output up 

to around 14 Volts, this VCO is a viable choice for this design.  

 

Figure 3-2: Typical Tuning Curve for the HMC733 VCO [41] 

 

The tuning sensitivity (KV) of the HMC733 VCO, defined as the slope of the tuning 

curve, is plotted in Figure 3-3. An approximate tuning sensitivity curve over the range of 

frequencies of interest has been extracted using the data sheet plot points and plotted in figure 3-

4.  
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Figure 3-3: Typical Tuning Sensitivity Curve for the HMC733 VCO [41] 

 

3 4 5 6 7 8 9 10 11 12 13
400

450

500

550

600

650

700

750

800

Tuning Voltage [V]

T
u
n
in

g
 S

e
n
s
it
iv

it
y
 [

M
H

z
/V

]

 

Figure 3-4: Tuning Sensitivity Curve 

 

By integrating the tuning sensitivity plot data over the voltage range of interest, we can 

plot a more detailed tuning curve as shown in Figure 3-5. 
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Figure 3-5: Tuning Curve Generated from Sensitivity 

 

The tuning curve can be used to create a voltage signal that would output a linear 

frequency waveform as a function of time. Figure 3-6 shows a plot of the tuning voltage signal 

over the sweep time of 250 μs required to output a linear frequency modulated waveform over 

the frequency range of interest.  
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Figure 3-6: Tuning Voltage Required To Linearize the Tuning Curve given by the HMC733 Datasheet 

 

Also, a plot showing the voltage rate of change over time can be generated with previous 

plot points. Figure 3-7 shows this plot. It has a maximum rate of change of about 52.5 kV/s. This 

plot was inferred from the approximate low resolution points on the plot of the datasheet. Thus, it 
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is not an optimal indicator of the high frequency requirements, but provides useful information 

about the rate of change for large voltages. Small wideband variations on the tuning curve are 

expected. Therefore, these are expected to be compensated for at the tuning voltage to effectively 

output a linear frequency waveform. 
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Figure 3-7: Voltage Rate of Change over Time Plot 

 

From the tuning sensitivity curve and the expected tuning voltage over the sweep time to 

linearize the VCO, the tuning sensitivity over time has been plotted. These approximate 

variations on KV over the sweep time can be sampled to time intervals. Figure 3-8 is a plot of the 

approximate large variations of KV over the sweep time. Both the approximate continuous points 

and the sampled points are shown in Figure 3-8. 
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Figure 3-8: Tuning Sensitivity over the Expected Sweep Time 

 

In order to use linear control system analysis techniques, the value of KV is assumed 

constant for a small time interval. Although the PLL performance will differ at different 

intervals, the design should meet the specifications over the entire range. Since a linear 

frequency modulated signal is expected over the sweep time, the time axis in Figure 3-8 is 

linearly related to the chirp frequency. Thus, KV can be thought of having different values at 

different chirp sub-bands. This property will be exploited to measure the frequency spectrum 

performance at different frequencies.  

The compensation signal produced by the loop filter will be amplified differently by the 

KV over the different time intervals. However, the small variation in KV will occur roughly 

around an approximated constant magnitude of KV. Thus, they can be modeled as disturbances 

added to the output of the VCO, similarly to other plant disturbances that occur on control 

system outputs. A PLL block diagram including the model of the small variations on the VCO as 

disturbances added is shown in figure 3-9. 
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3.4 PLL DESIGN 

 

3.4.1 PLL Design Requirements and Considerations 

 

The requirements and considerations for the design of the PLL can be summarized as follows: 

 From the manufacturer’s data sheet, the tuning sensitivity for the chosen VCO varies 

from about 450 to 700 MHz/V over the frequency range of interest.  

 A 2-channel DDS board described on Appendix A will be used to synthesize the 

reference linear frequency waveform. The DDS operates with a quantization rate of 1 

GHz. This will limit the bandwidth and the minimum frequency of the reference signal. 

Moreover, the PLL will be designed with available programmable and fixed dividers. 

This also needs to be considered to determine the reference frequency range. 

 An available phase-frequency detector specified for the chosen reference frequency range 

needs to be selected.  

 The PLL should be design with a wide loop bandwidth to compensate for the modeled 

wideband disturbances caused by the VCO nonlinear tuning sensitivity. 

 The loop filter should be designed such that the high frequency noise and spurious signals 

are attenuated properly. 
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 The PLL should be designed with a large enough phase margin such that the large 

variations in the tuning sensitivity do not drive the system unstable and do not increase 

the transient peak errors significantly. 

 The PLL should be designed such that the steady state error for an input frequency ramp 

converges to a finite value. 

 

3.4.2 Reference Frequency and Divider Selection 

 

 The reference signal of the control loop should be a linearly frequency modulated 

waveform at a fraction of the output frequency. As mentioned earlier, a 2-Channel Direct Digital 

Synthesizer (DDS) board, developed at CReSIS, will be used to synthesize this reference signal. 

The 2-Channel DDS Board functionality is described in Appendix A.  

 The phase detector output of the Phase Lock Loop is coherent to the reference signal. 

This signal contains unwanted spurious noise. One of the tasks of the loop filter is to attenuate 

this spurs. Regardless of the filter order used, the further away these spurs are in frequency with 

respect to the loop bandwidth, the more the attenuation given by the filter. These spurs appear as 

sidebands on the output frequency spectrum of the PLL. A maximum acceptable spurious signal 

will be 35 dBc. 

 For the reasons given, the maximum possible reference signal should be utilized. In order 

to choose the start and end frequencies of the reference chirp, both the frequency divider 

availability and the DDS limitations should be considered. 

 The 1 GHz quantization rate of the DDS sets the Nyquist bandwidth to 500 MHz. As 

explained in chapter 1, the images of the fundamental are spaced by the Nyquist bandwidth. The 

odd harmonic image spaces are mirrored versions of the fundamental. 

 At the X-band (12-18 GHz) and the Ku-band (8-12 GHz) frequency ranges, most 

available dividers have division factors that are multiples of two. At frequencies less than 6.5 

GHz, programmable dividers are readily available. 
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 Taking these two limitations into consideration, a divider chain with a division factor of 

20 was chosen.  The divider chain is composed of a divider by 4 and a programmable divider set 

to 5. This division results in a reference start and stop frequencies of 600 to 900 MHz for an 

output of 12 to 18 GHz. Both frequencies are in the same DDS Nyquist image zone. A 

reconstruction filter will be needed to filter the 600 to 900 MHz band produced by the DDS in 

consideration. Also, there is a need to amplify the signal to the required level of the phase 

detector input port.  

 The dividers selected to divide by 4 and by 5 are the HMC493LP3 and the HMC705LP4. 

Both are manufactured by Hittite Microwave Inc. [42][43]. The evaluation boards manufactured 

by Hittite for both dividers were used for the implementation of the prototype system. 

 

3.4.3 Phase Frequency Detector Selection 

 

 The phase detector should function over the frequency range specified by the reference 

frequencies. It should also add minimum noise to the system and have a linear proportional gain. 

The HMC439QS16G is a phase-frequency detector developed and manufactured by Hittite 

Microwave Inc. that meets all these requirements [44]. This phase-frequency detector was 

designed for low noise phase-lock loop applications. It works over the frequency range from 10 

to 1300 MHz. The evaluation board available for this phase detector was chosen to be used for 

the prototype of the system. 

 The phase detector has a differential charge pump output of 10/2π mA/rads. The 

evaluation board contains 200 ohm pull-up resistors on both outputs. The pull-up resistors 

convert the output back to voltage for a next stage with high input impedance. For this case, each 

output is limited between 3 and 5 Volts for charge pump currents between 0 and 10 mA. The 

differential output range becomes 4 Volts for an entire 2π phase shift when connected to a high 

impedance load. For cases where the input impedance is comparable with the pull-up resistors, 

the output voltage will be scaled. Thus, the phase detector gain depends on the input impedance 

of the next stage. This will be analyzed on the next section. 
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3.4.4 Differential Amplifier Design 

 

As explained on the previous section, the phase detector contains a differential output. 

Therefore it requires to be coupled to a differential device to combine the signals. A differential 

amplifier will be used for this purpose. A unity gain amplifier will initially be used for high 

voltage amplifier bandwidth. The amplifier gain will be changed if the PLL design requires it.  

Whenever possible it is best to realize a differential amplifier using an opamp. The closed 

loop implementations of amplifiers with opamps provide a stable gain, improved input and 

output impedances, and improved distortion. From all different loop implementations for opamp 

based feedback amplifiers, the two most common circuits are the inverting and non-inverting 

configurations. Because these two configurations are linear, they can be combined with 

superposition. Figure 3-10 shows a differential amplifier implementation by combining these two 

configurations. A voltage divider has been added to the non-inverting input to balance the gains. 

Equation (2.33) shows a description of the circuit in Figure 3-10. For R4 equal to R3 and R2 equal 

to R1, the voltage gain for inverting and non-inverting inputs becomes the same. Equation (2.34) 

describes the input to output relationship for a balanced differential amplifier.  
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Figure 3-10: Schematic Circuit for a Differential Amplifier Circuit 



65 

 

If no poles are added to the amplifier circuit, the gain-bandwidth product of the op-amp 

sets the small signal bandwidth of a op-amp loop implementation for a specific gain. For low 

gains, the bandwidth may increase to the point where it gets too close to an internal pole. This 

will decrease the phase margin and may drive the circuit to an unstable state [45].  

Another, common source of oscillation for high speed op-amp circuits is related to 

capacitive loading. Capacitive loading occurs when the op amp output is coupled to a device 

with high capacitance on the input. Two main compensation techniques exist to solve this issue. 

By adding a pole at a frequency much lower than the resonant frequency, the oscillation may be 

avoided. The second technique consists of forcing a high noise gain. The noise gain is related to 

the feedback path, so changing it would not necessarily affect the loop gain. Being a factor of the 

open loop gain, increasing the noise gain improves the gain margin [46]. 

Since oscillations do not necessarily occur close to the opamp small signal bandwidth, the 

first compensation technique requires lowering substantially the loop bandwidth of the amplifier. 

This is not desired since a high PLL forward path bandwidth is required. The second technique 

cannot be accomplished without changing the balance on the differential amplifier. This is also 

not desired either. For this case, an inductive component can be added to the capacitive load in 

series. This inductor should increase the resonant frequency to a high enough value where its 

signal level has been severely attenuated.  

The bandwidth of the differential amplifier, which is on the forward path, should be much 

higher than the loop bandwidth. The THS3001 operational amplifier is a high speed device 

developed and manufactured by Texas Instruments Inc. [47]. This device has a small signal gain-

bandwidth product of 420 MHz. At a differential amplifying gain of 1, the bandwidth becomes 

420 MHz. The loop bandwidth will be set low enough to attenuate the spurious signals from the 

phase detector by at least 35 dBc. The reference spurious signals are in the 600 to 900 MHz 

range. A 420 MHz small signal bandwidth is much higher than the loop bandwidth required for 

attenuating the spurious signals. Moreover, 420 MHz is below the reference signals, so the 

amplifier high frequency attenuation will improve the spurious rejection. The THS3001 has a 

6500 V/μs slew rate, which provides a high speed limit that will not be reached by the 

compensation signal. This slew rate corresponds to a jump of about 1 V in 153 ps [47].  This is 
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much faster than the rise time for the loop bandwidth expected. Also, this slew rate corresponds 

to an opamp full power bandwidth of 32 MHz for a voltage swing of 20 V. Thus, large signals 

below this bandwidth will not be distorted by the opamp. Thus, the opamp will not pose a speed 

limitation on the forward path for a PLL bandwidth lower than 32 MHz. This property will be 

exploited to indirectly measure the time performance from frequency measurements. 

The THS3001 opamp is a current feedback amplifier (CFB). In bipolar transistors, 

currents can be switched faster than voltages [48]. For this reason CFB have high slew rates that 

correspond to large signal bandwidths similar to its small signal bandwidth [48]. Although CFB 

opamps have this clear advantage over voltage feedback amplifiers (VFB) opamps, they need to 

be implemented with a fixed feedback resistor for best performance. This value is usually given 

by the manufacturer.  Moreover, they cannot have a feedback capacitor, which limits its ability to 

design filters. The filter topology of choice for these amplifiers is Sallen Key-filters [48].   

The THS3001 datasheet suggest a feedback resistor value of 680 ohms for optimal phase margin 

performance at a gain of 1 [47].  Figure 3-11 shows a schematic of the differential amplifier 

circuit. R5 is a zero ohm resistor and will be used to add inductance to the capacitive input. The 

operational amplifier should be biased with positive and negative 15 Volts for improved 

performance, compared to a bias voltage of positive and negative 5, according to THS3001 

datasheet [47]. The supply voltage should be filtered at the input with tantalum capacitors 

ceramic capacitors. The tantalum capacitors provide good filtering of the low frequencies, but 

their low self-resonant frequency makes them inductive at high frequencies. Ceramic capacitors 

can be used to filter both middle and high frequencies, depending on the capacitor value and 

resonant frequency. Capacitors with high self-resonant frequencies should be placed closed to 

the power supply pins of the op amp integrated circuit [46][49].  
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Figure 3-11: Schematic Circuit of the Differential Amplifier 

 

Figure 3-12: Differential Amplifier Power Supply Capacitor Bank 
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For the expected maximum output voltage range of positive and negative 2 Volts and 

considering the relatively high input impedance of the loop filter, the expected variations in the 

supply current come mostly due to changes in temperature. On the datasheet of the THS3001 op 

amp, the variations of supply current with temperature are specified from 5 to 8 mA [47]. 

Equation (3.35) relates the maximum common path impedance (Zmax) and the current variations 

(ΔI) to the supply voltage noise level (Vn). Solving for the common path impedance and using 

equation (3.36) with an estimated value of the power supply wiring inductance (LPSW) , the power 

supply bandwidth (f3dB) can be computed. Finally, equation (3.37) shows how to solve for the 

bypass capacitor value (Cbypass) . Since this calculation requires knowledge of the wiring 

inductance, a standard bypass capacitance value of 1 nF has been chosen to filter high 

frequencies [49].  
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                                                                 (2.35) 
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Having decided the design of the differential amplifier, it is possible to calculate its input 

impedance to determine the phase detector gain. Both input resistors of the differential amplifier 

are connected to a virtual short. In turn, the positive pin is also connected to ground through 

another resistor used to balance the differential amplifier. Thus, the input impedance becomes 

the series combination of the input resistor with the positive pin shunt resistor. With both values 

being 680 ohms, the input resistance equals 1360 ohms. 

An equivalent circuit of one of the phase detector outputs coupled to an input impedance 

of the differential amplifier is shown in Figure 3-13. The 200 ohms is the pull-up resistor 

connecting the charge pump output to a 5 Volt supply. The charge pump current can have a value 

between 0 and 10 mA.  
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Figure 3-13: Equivalent Phase Detector Output and Differential Amplifier Input Impedance 

 

Applying circuit analysis, the output voltage of a single phase detector differential output 

varies from 2.6154 Volts to 4.3590 Volts. The magnitude of the voltage range for an entire cycle 

becomes twice this magnitude of this range or 3.4872 V.  

The output impedance (Zout) of the differential amplifier becomes a fraction of the output 

impedance of the op amp (Zout_opamp) due to the feedback effect, as shown on equation (3.38). In 

this equation, Aol is the op amp open loop gain equal to 60 dB and B is the feedback gain equal to 

0.5. This closed loop effect on the output impedance isolates the current to the next stage: the 

loop filter. Thus, the loop filter becomes a voltage only device. 
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                                                                (3.38) 

Under these conditions, the phase detector gain becomes 3.4872 Volts per 2π radians.  

 

3.4.5 Adder Design 

 

In order to combine the loop compensation voltage with the external pre-distorted 

voltage, an adder circuit is needed. An adder can be realized with operational amplifiers. As 

mentioned on the differential amplifier design section, the loop configurations of operational 

amplifiers have a linear response. By using superposition, two input signals can be combined to 
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the same inverting input of the inverting amplifier configuration as shown in Figure 3-14. The 

resultant inverting adder circuit output voltage is described by equation (3.39). 
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Since the adder goes on the forward path of the PLL, it is expected to have the same high 

speed and high bandwidth requirements as the differential amplifier. Moreover, the output 

voltage range of the adder is determined by the VCO tuning curve. As seen on the VCO tuning 

plots [41], the required maximum tuning voltage is about 13.3 V. The THS3001 operational 

amplifier has the capabilities to provide this output range and satisfy the high bandwidth 

requirements [48]. For these reasons, the THS3001 will be utilized to implement the adder 

circuit.  
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Figure 3-14: Basic Circuit Schematic for an Inverting Adder Amplifier 

 

Additionally, the VCO should be protected against negative input voltages. For this 

reason, a general purpose diode should be shunted at the output of the adder with the anode 

connected to ground.  

The circuit will have the same capacitor bank and bypass capacitors that were used for 

the differential amplifier discussed earlier. A schematic of the circuit is shown in Figure 3-15. 
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Figure 3-15: Circuit Schematic of the Adder 

 

3.4.6 Loop Filter Design 

 

The loop filter features include filtering the spurious signals of the phase detector output 

as well as compensating the loop response for given response requirements. Equation (3.40) 

describes the uncompensated open loop transfer function (GUC) of the PLL.  

The simulated Bode plots for the uncompensated open loop transfer function are shown 

in Figure 3-16. 

From all the components analyzed so far, the average PLL component gains are listed in 

Table 3-2. Since both the adder and the differential amplifier have a gain of 1, they are not 

mentioned on the table. 
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Table 3-2: Average PLL Component Gains 

Parameter Value Units 

KV 600 MHz/V 

KP 3.4872 V/(2π rads) 

N 20  
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Figure 3-16: Simulated Uncompensated Open Loop Transfer Function 
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Figure 3-17: Simulated Bode Plots for the Closed Loop Transfer Function of the Uncompensated PLL 

 

Figure 3-17 shows the bode diagram for the compensated closed loop transfer function. 

The magnitude plot has the shape of a high-pass filter. This phase plot shows close to 90 degree 

phase offset at low frequencies and close to zero phase offset at high frequencies. Since a low 

phase offset and a high gain is required at low frequencies for an effective tracking performance, 

this uncompensated system will not have a good performance for tracking the reference. 

Moreover the high frequency noise and spurious signals will pass to the output. 

In order to have the best possible PLL tracking performance with the given reference 

signal, it has been noted that the PLL needs to be designed with loop bandwidth as wide as 

possible. This way, the output of the PLL will track the input and compensate for wideband 

disturbances added to the loop. The crossover frequency of the open loop can be increased by a 

wideband passband on the loop filter which increases the gain of the low frequencies with 

respect to the high frequencies. Moreover, the loop filter bandwidth needs to be low enough so 

that the reference spurs get attenuated sufficiently. In order to have the best of both requirements, 

a high order loop filter should be selected.  

It has been mentioned on chapter 2 that the type of PLL that has the best transient 

performance is the typical type 1 PLL. This type of PLL does cause transient errors due to 
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peaking. The transient performance of a PLL designed with a type 1 PLL loop filter with zeros is 

not as good as that of the typical type 1 PLL. However, both the phase margin and the loop 

bandwidth can be designed more conveniently on this type of PLL. 

Active loop filters have small signal gain and bandwidth constraints. They also add 

distortion and noise.  

For all these considerations, a passive type 1 PLL loop filter with zeros has been selected.  

The passive type 1 PLL loop filter will be designed as a voltage filter. The differential 

amplifier has low output impedance, so that its output is a voltage signal. Thus, no additional 

current to voltage converts are needed. 

The order of loop filters are limited by both the small value of the capacitors and the 

complexity of the circuit needed to realized it. On [39] a forth order PLL is suggested to provide 

an adequate trade-off between high order and the limitations mentioned.  

R2
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Port_2
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Figure 3-18: Circuit Schematic of the Proposed 4th Order Loop Filter 

 

A suggested circuit realization of a fourth order voltage passive loop filter is shown in 

Figure 3-18. An approximate transfer function (Z(s)) of the loop filter is given by equation (3.41). 

The approximation is made on the third and forth poles as simple first order RC filters appended 

to the filter. This approximation holds valid for time constants much smaller than that of the first 

pole. 
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The loop filter transfer function can be written in terms of the time constants as shown in 

equation (3.42) below. 
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In equation (3.42), TZ is the time constant for the zero. T2 through T4 are the time 

constants that correspond to the poles for frequencies higher than the loop bandwidth. T1 is the 

time constant for the first pole on the low or medium frequencies. T1 defines the amplitude level 

of the loop filter transfer function at the crossover frequency. By setting the magnitude of the 

open loop transfer function to 1 and evaluating it at the crossover angular frequency (ωO) using 

the loop bandwidth defined, the value of T1 can be solved for. The solution of T1 to set the open 

loop magnitude to 0 dB at the designed loop bandwidth is shown on equation (3.43). 
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The phase margin (φ) specified can be set at the crossover frequency by setting the time 

constant of the second pole to the expression on equation (3.44), which derivation is shown on 

[39].  
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It is desired for most cases to have the phase peak at the phase margin. Equation (3.47) 

shows how to set the zero time constant for this purpose. The derivation of this equation is also 

given on [39]. 
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A loop filter was designed using these criteria for a loop bandwidth of 12 MHz and a 75 

degree phase margin at a tuning sensitivity (KV) of 600 MHz/V, which is at the midpoint on the 

VCO tuning sensitivity curve. Even though a large phase margin such as 75 degrees causes large 

damping, this design parameter is required to maintain stability and low overshoot. As the value 

of the tuning sensitivity changes, the crossover frequency will change as well. This will cause the 

phase margin to drop. The Bode plots for the designed loop filter are shown in Figure 3-19. The 

amplitude response shows an attenuation of 14.8 dB at 600 MHz, which is the lowest reference 

frequency. 
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Figure 3-19: Simulated Bode Plots for the Designed Loop Filter 



77 

Figure 3-20 shows the Bode plots for the compensated open loop transfer functions. The 

design has successfully made a phase peak at the designed phase margin. Moreover, the 

crossover frequency is at the designed loop bandwidth.  

Figure 3-21 shows a simulation for the Bode plots of the closed loop transfer function for 

the compensated PLL. The plots show the specified loop bandwidth. The pass band, which 

corresponds to the region where the PLL compensation is effective, has a flat amplitude and 

phase response. These two characteristics will provide a more effective PLL compensation to the 

variations on the VCO.  
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Figure 3-20: Bode Plots for the Compensated Open Loop Transfer Function 
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Figure 3-21: Bode Plots for Compensated Closed Loop Transfer Function 

 

Even though the previously mentioned design had a good compensation response, the 

amount of attenuation on the spurious signals was not sufficient. Therefore, the designed circuit 

had to be tuned to improve the attenuation level without severely affecting the bandwidth of the 

PLL.  

After various design iterations, the phase margin and loop bandwidth of the PLL for 

optimal performance became 73 degrees and 14.64 MHz at a KV of 600 MHz, respectively. In 

addition, the phase peak near the phase margin on the final design is shifted for an improved 

attenuation with the high frequency poles. The Bode plots for the final design of the loop filter 

are shown in Figure 3-22. Figure 3-22 shows an attenuation of 25.2 dB at 600 MHz. The rest of 

the reference spur signals will be attenuated even further.  
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Figure 3-22: Simulated Bode Plots for the Final Design of the Loop Filter Transfer Function 

 

Figure 3-23 shows the Bode plots for the compensated open loop transfer function using 

the final loop filter design. The crossover frequency is at 14.64 MHz and the phase margin is 73 

degrees. The plots in Figure 3-23 correspond to the open loop transfer function for the final 

design evaluated at a KV value of 600 MHz/V. To see the effects on the open loop frequency 

response for the large variation on KV, figures 3-24 and 3-25 show the Bode plots at values of KV 

equal to 450 and 750 MHz/V respectively. For the first case, at KV equal to 450 MHz/V, the loop 

bandwidth drops to 11.1 MHz and the phase margin increases to 77 degrees. On the second case, 

where the value of KV is 750 MHz/V, the loop bandwidth increases to 17.82 MHz and the phase 

margin drops to 69 degrees. The phase margin values may seem too high and therefore not 

optimum. However, decreasing the phase margin would require lowering the frequency of the 

first pole. This in turn would decrease the amplitude at higher frequencies and the path would 

require amplification from one of the active devices to maintain the high crossover frequency. 

However, increasing the gain would decrease the bandwidth of the active devices and the loop 

bandwidth would drop anyway.   

 



80 

-100

-50

0

50

100

150

200

M
a
g
n
itu

d
e
 (

d
B

)
System: G

Frequency (rad/sec): 9.2e+007

Magnitude (dB): -0.0297

10
0

10
2

10
4

10
6

10
8

10
10

-315

-270

-225

-180

-135

-90

System: G

Frequency (rad/sec): 9.2e+007

Phase (deg): -107

P
h
a
s
e
 (

d
e
g
)

Open Loop Bode Plot

Frequency  (rad/sec)  

Figure 3-23: Simulated Bode Plots for Compensated Open Loop Transfer Function for Final Loop Filter Design 

(KV=600MHz/V) 
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Figure 3-24: Simulated Bode Plots for Compensated Open Loop Transfer Function for Final Loop Filter Design 

(KV=450MHz/V) 
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Figure 3-25: Simulated Bode Plots for Compensated Open Loop Transfer Function for Final Loop Filter Design 

(KV=750MHz/V) 
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Figure 3-26: Simulated Bode Plots for Compensated Closed Loop Transfer Function for Final Loop Filter Design 

(KV=600MHz/V) 
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Figure 3-26 shows the simulated Bode plots for the Compensated Closed Loop Transfer 

Function. This plot shows a flat amplitude and phase response at low frequencies. This means 

that the loop filter has effectively compensated both for an improved tracking error at low 

frequencies. However, the plot shows that starting at about 237 kHz, the phase starts decreasing 

rapidly. This will cause some dispersion for compensation of broadband signals higher than this 

frequency.  This is caused by the required large phase margin. 

Table 3-3 lists the loop filter transfer function frequencies for the poles and the zero on the final 

design. The values for the resistors and capacitors of the final loop filter design are shown in 

Table 3-4. 

 

Table 3-3: Solved Time Constants, Zero and Poles of the Final Loop Filter Design 

Parameter Value Units 

ωp1 65.758 kHz 

ωp2 53.058 MHz 

ωp3 723.42 MHz 

ωp4 723.43 MHz 

ωz 72.3 kHz 

 

 

Table 3-4: Solved Lumped Component Values of the Final Loop Filter Design 

Parameter Value Units 

R1 100 Ω 

R2 1000 Ω 

R3 10 Ω 

R4 10 Ω 

C1 33 pF 

C2 2200 pF 

C3 22 pF 

C3 22 pF 
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Figure 3-27: Circuit Schematic for the Final Design of the Loop Filter 

 

 

3.4.7 PLL Circuit Implementation 

 

Prototypes for the differential amplifier, adder and loop filter designs have been 

implemented on three separate printed circuit boards. This simplified the troubleshooting of each 

device and the entire forward path. The circuit boards have Sub-Miniature version A (SMA) 

connectors so that they can be connected with each other as well as with the rest of the 

evaluation boards using coaxial cables with SMA connectors. The three printed circuit boards 

(PCBs) have been fabricated on two layer FR4 substrate. 

Because of the importance of high bandwidth and high frequency signals on the phase 

locked loop, some high frequency considerations have been taken in the implementation of the 

circuits. High speed operational amplifiers are sensitive to capacitive load, as mentioned in 

Chapter 1. Even though the circuit schematic has already been designed to minimize this issue, 

the PCB layout should also be considered to avoid this problem. If the output trace is sufficiently 

thick, a parasitic capacitance will result in a decrease on the amplifier phase margin. Capacitance 

at the input pins may also decrease the phase margin and even drive the amplifier unstable. For 

these reasons, the traces at the input and output pins are made very thin. A trace thickness of 10 
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mils was used for traces at the input and output pins. In addition, the copper from the ground 

plane has been removed below the input pin pads. This technique is highly suggested in the 

literature for high speed op amp applications [46].  

The capacitors to filter the low frequency noise have been placed near the power supply 

connectors, whereas the high frequency bypass capacitors are placed as close to the bias voltage 

pins as possible. The PCB layouts for the differential amplifier, adder and loop filter are shown 

in Figures 3-28 through 3-32. The bottom layer of the loop filter is not shown, since no milling 

was required on the ground plane. 

 

 

Figure 3-28: Adder Printed Circuit Board Layout 
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Figure 3-29: Bottom Layer of Adder Printed Circuit Board Layout 

 

 

Figure 3-30: Differential Amplifier Printed Circuit Board Layout 
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Figure 3-31: Bottom Layer of Adder Printed Circuit Board Layout 

 

Figure 3-32: Loop Filter Printed Circuit Board Layout 
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3.5 PRE-DISTORTED VOLTAGE  

 

3.5.1 Pre-Distorted Waveform  

 

A PLL has been designed on the previous section to compensate for the wideband 

disturbances caused by small variations in the VCO tuning sensitivity. However, the loop filter 

has been designed with a phase margin of 73 degrees at an average tuning sensitivity of 600 

MHz/V. This mean phase margin assures that the transient response will not cause peaking issue 

during the large variations of the tuning sensitivity. Moreover, the large variations of the tuning 

sensitivity will lower the loop bandwidth. For all these reasons, the wide loop bandwidth 

designed for the PLL may not be sufficient to compensate for all the significant disturbances 

caused by the small wideband variations on the VCO tuning sensitivity. 

As mentioned in Chapter 2, the tracking performance can be improved by adding a signal 

with a fraction of the frequency content of the full compensation. This happens essentially 

because the externally compensation signal added to the loop has not been affected by the 

amplitude and phase variations of the control system response over frequency. 

Moreover, the PLL designed is a type 1 PLL and the input signal that will be applied to 

the reference is a frequency ramp. As has been analyzed on Chapter 2, type 1 PLLs have finite 

phase steady state errors for ramp and step inputs only. It has also been shown that an external 

signal can be used to compensate for the phase parabola input (frequency ramp input). Then, the 

type 1 PLL compensates for the residual phase step and phase ramp signals at the input. 
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Figure 3-33 is a block diagram that describes the control loop with added compensation 

and added disturbance. For consistency, this block-diagram uses the same system symbols and 

signal symbols that have been used earlier for examples. Likewise, the signals and systems are 

represented by their Laplace transform, as the rest of the linear system block-diagrams on this 

document. Equation (3.48) describes the output signal of the proposed control system. The input 

of the system is a frequency ramp or phase parabola with initial phase and initial frequency 

components. The input signal is described in equations (3.49), (3.50) and (3.51).  The 

equivalence between the block diagram system symbols and the PLL symbols is described in 
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Figure 3-33: Proposed Dual Compensation Control System Block Diagram 
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equations (3.52), (3.53) and (3.54). The first summand on equation (3.48) is related to the phase 

step and phase ramp inputs being compensated by the PLL. The second summand is related to 

the frequency ramp input compensated by the first external compensation signal (F1). The third 

summand is related to the disturbance being compensated by both the PLL and the second 

external compensation signal (F2). In order to make the phase steady state error a finite value, the 

external compensation F1 needs to have the expression found in equation (3.55). This means that 

F1 is a voltage ramp with a voltage rate equal to the mean voltage rate of the required VCO 

tuning voltage.  

2

2

2
1

1

sK

N

BA

X
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

                                                        (3.55) 

The third summand has two products. The second product of the third summand will 

approach zero over the frequencies in the passband of the PLL. Thus, the third summand will 

approach zero as well and the disturbances will not affect the output. The first product on the 

third summand will become zero when equation (3.56) is satisfied. This way the second external 

signal compensates for the disturbances over some frequency range.   

2

2
A

D
F 

                                                              (3.56) 

In order to find the right external compensation signal which is described by the ideal 

expressions in equations (3.55) and (3.56), the PLL compensation signal C1 can be measured. 

This compensation signal has suffered the frequency response effects of the PLL loop and it is 

not a perfect compensation. However, it has the information to improve the compensation. This 

signal can be measured and equalized to obtain a better compensation signal.  

The type 1 PLL cannot achieve a finite steady state response for a ramp frequency input 

and cannot obtain the required voltage level to drive the VCO without external compensation. 

Therefore, a type 2 PLL active loop filter should be used for the first measurement of the PLL 

compensation signal. Equation (3.57) shows the expression for the PLL compensation signal for 

this first measurement. This signal will approach the expression shown in (3.58) over the 

passband of the PLL. The expression on equation (3.58) resembles that of the required total 

external compensation (F). Thus, this signal can be used to generate an external compensation 
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signal. By applying this first generated compensation signal, the PLL compensation signal can be 

measured again using the designed type 1 PLL loop filter.  
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Since the new measured C1 corresponds to the residual disturbance signal, which the 

external compensation is not already correcting for, it can be used to improve the external 

compensation even further. This signal can be equalized in phase and amplitude and added to the 

current external compensation signal. The total external compensation signal applied to the PLL 

is a voltage signal and will be referred as the pre-distorted voltage. 

The designed PLL contains a high speed unity gain inverting adder amplifier on the 

forward path. One of the inputs of the adder is connected to the output of the loop filter. The 

other input will be used to insert the pre-distorted waveform into the loop.  

The DC coupled channel of the 2-Channel DDS described on Appendix A can output a 

DC waveform between 200 and 2200 mV when coupled to a load with 50 ohms of impedance. 

Moreover, the AD9910 DDS has a 1024x32 bit of random access memory (RAM) that can be 

used to modulate the amplitude of the DC coupled channel over a specified time interval. This 

means that the amplitude of the pre-distorted signal can be sampled with 1024 points at each 

chirp repetition interval. By sampling 1000 points over the required chirp sweep time of 250 μs, 

the sampling rate becomes 4 MHz. Thus, a reconstruction filter should be implemented to reject 

frequencies above 2 MHz.  

The VCO tuning voltage range required for the system is between about 3.3 to 13.3 

Volts. Thus, a circuit is required to convert the output of the DC-coupled channel to the signal 

expected by the input of the adder. The circuit should also be able to filter the signal for proper 

reconstruction. 
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3.5.2 Level Shifter Amplifier Design and Implementation 

 

A level shifter amplifier is designed to convert the voltage output of the DDS board DC 

couple channel to an inverted signal of the required tuning voltage. The output of the level shifter 

amplifier will be connected to the adder with a 1360-ohm input impedance. The DC coupled 

channel requires a 50-ohm load impedance for proper functionality. Thus, the level shifter 

amplifier should have a 50-ohm input impedance and output impedance much lower than 1360 

ohm.  

The level shifter amplifier will be realized with an adder amplifier similar to the one used 

on the PLL. One of the inputs of the adder will connect to the DDS DC coupled channel, 

whereas the other input will be connected to a fixed voltage that will set the voltage offset. For 

an inverting amplifier, the ratio of the feedback resistance to the resistance connected to the 

inverting pin sets the gain for each input. The equation that relates the two inputs to the output of 

the adder with different gains is presented in Equation (3.59), where the variables associated with 

subscript 1 correspond to the offset signal and the variables associated with subscript 2 

correspond to the input of the level shifter amplifier.  
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A regulated voltage of negative 5 Volts will be used as the input offset signal. For an 

output voltage range of 3.3 to 13.3 Volts and the input voltage range selected of 662.5 V to 

1.9125 Volts, the required gains and resistance values are shown in Table 3-5. 

 

Table 3-5: Solved Gains and Resistor Values for Level Shifter Amplifier Circuit 

Parameter Value 

G1 0.4 

G2 8 

Rf 2 kΩ 

R1 5 kΩ 

R2 250 Ω 

 



92 

A two pole filter can be realized on the level shifter amplifier without modifying its 

original function by adding a feedback capacitor and a low loss RC output filter. A feedback 

capacitor of 82 pF combined with the 2000 Ω feedback resistor form a pole at 970.5 kHz. An RC 

filter formed by a 1 ohm resistor and a 100 nF capacitor form a pole at 1.59 MHz. Figure 3-34 

shows the Bode plots for the level shifter amplifier from the DC coupled input to the output. The 

plot shows an attenuation of 15 dB to the first harmonic at 4 MHz.  

The input of the amplifier has been terminated with a 50 ohm resistance in shunt. 

Because of the high impedance of the adder amplifier, the equivalent input impedance of the 

level shifter amplifier becomes 48.91 Ω. The level shifter amplifier uses a THS4031 operational 

amplifier [54]. It has a full power bandwidth of 4.6 MHz for a voltage swing of 10 V. This is 

sufficient for this implementation. Figure 3-35 shows the circuit schematic.  
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Figure 3-34: Simulated Bode Plots for the Level Shifter Amplifier 
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Figure 3-35: Circuit Schematic of the Level Shifter Amplifier 

The level shifter amplifier PCB layout is shown in Figure 3-36.  The PCB was milled on 

a two layered copper board with an FR4 substrate. The circuit has bypass capacitors to filter the 

bias voltages. The input and output have SMA connectors to connect the circuit to the DDS 

board and the adder amplifier on the PLL. 
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Figure 3-36: Printed Circuit Board Layout for Level Shifter Amplifier 

 

3.5.3 Start up Loop Filter Design and Implementation 

 

As explained in Section 3.5.1, the first measurement of the PLL compensation signal 

cannot be performed using the designed type 1 PLL loop filter. This is because it cannot output 

the required voltage level to drive the VCO. Moreover, it is a type 1 PLL loop filter for which 

the PLL will not achieve a finite steady state error to a frequency ramp input. Thus, an active 

type 2 loop filter has been selected to be used for the first measurement.  

As it has been already explained in Chapter 2, active loop filters are not the optimal choice for 

high loop bandwidth PLL designs. However, the start-up active loop filter need not have high 

bandwidth or be designed for a high loop bandwidth PLL.  

The start-up active filter is a second order filter designed for the type 2 PLL. The relevant PLL 

parameters used for the design are listed in Table 3-6. 
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Table 3-6: PLL Parameters for Start-Up Active Loop Filter 

Parameter Value Units 

VCO Tuning Sensitivity, KV 600 MHz 

Phase Detector Gain, KP  4 V/2π rads 

Division Quotient, N 20  

Loop Bandwidth, Fo 1 MHz 

Phase Margin, φ 50 Degrees 

-60

-40

-20

0

20

M
a
g
n
itu

d
e
 (

d
B

)

10
5

10
6

10
7

10
8

10
9

-90

-60

-30

P
h
a
s
e
 (

d
e
g
)

Active Loop Filter

Frequency  (rad/sec)  

Figure 3-37: Bode Plots for Start-up Active Loop Filter Transfer Function 

 

Since the active loop filter will be directly connected to the output of the phase detector 

evaluation board, there will be no buffering stage to isolate the current output. Thus, the active 

loop filter has been designed to have high input impedance. Having high input impedance, the 

phase detector 10 mA current causes a drop of 2 volts on each of the 200 ohm pull up resistors. 

This results in a differential phase detector gain of 4 Volts per cycle, as listed in Table 3-6. 

Figure 3-37 shows the Bode plots of the start-up active loop filter. The plot shows the 

typical response of a type 1 loop filter for a type 2 PLL. It has a pole at the origin, a medium 

frequency zero for phase margin correction and a high frequency pole for high frequency 

attenuation. 
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The Bode plots for the compensated open loop transfer function are shown in Figure 3-

38. The frequency response shows a crossover frequency at 1 MHz and a phase margin of 50 

degrees. The simulation agrees with the design parameters. The solved lumped component 

values are shown on the schematic. 
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Figure 3-38: Bode Plots for the Open Loop Compensated with the Start-up Loop Filter 

The active loop filter has been implemented using the same guidelines used for the 

differential amplifier for optimal performance. The schematic and layout are shown in Figures 3-

39 and 3-40. It has been fabricated using a two-layered copper board with FR4 substrate. 
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Figure 3-39: Start-up Active Loop Filter Schematic 

 

Figure 3-40: Start-up Active Loop Filter Layout 
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3.5.4 Pre-Distorted Signal Generation Procedure 

 

As explained in Section 3.5.1, the required total external compensation signal can be 

derived from the PLL compensation signal.  This is the signal at the output of the loop filter and 

the input of the adder.  

Figure 3-41 shows a system level block diagram that describes the measurement 

procedure of the PLL compensation signal (C1), the processing given to this signal, and the 

application of the generated pre-distorted voltage (F). The block diagram shows that the PLL 

compensation signal is measured at the output of the loop filter. This signal is first digitized by 

an ADC. The output signal of the ADC goes through a digital low pass filter (H). Subsequently, 

the output signal of the filter is applied to an advance system (z
n
) that compensates for the delay 

introduced by the filter, as well as any other delays caused by the PLL. Similarly, the digital 

signal then goes through an amplifier with gain KM to compensate for any attenuation given the 

inherent frequency response of the PLL compensation signal. This amplified signal goes through 

another gain stage (KW) that maps the digital signal magnitude to a digital value accepted by the 

DAC. This final digital value, which is applied to the input of the level shifter amplifier, should 

correspond to the desired voltage level at the output of the Level Shifter Amplifier (LSA).  
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Figure 3-41: System Level Block Diagram for the Pre-Distorted Voltage Generation 
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In order to realize this measurement, an SMA T-connector has been inserted between the 

loop filter and the adder. The third end of the T-connector is connected to one of the high 

impedance channels of a 4 Channel 1 GSPS Tektronix DP02014 Oscilloscope. The extended 

pulse repetition interval (EPRI) signal provided by the 2 Channel DDS board also connects to 

one channel of the oscilloscope. The EPRI provides the trigger signal for the oscilloscope; it is 

also used as a reference point for the measurements. The loop filter output and the trigger signal 

are recorded by the oscilloscope using a Universal Serial Bus (USB) flash memory drive. Then, a 

computer is used to read the data and process it. The processed digital points are used to program 

the DDS DC coupled channel output. The output signal of the DDS DC coupled channel is 

applied to the level shifter amplifier designed to achieve the required voltage level. A high level 

block diagram of the measurement setup is shown in Figure 3-42. 

 

 

 In order to improve the compensation given by the PLL, the measured compensation 

signal needs to be equalized. For this reason a digital low pass filter is used. The digital filter 

used is a Finite Impulse Response (FIR) filter which has been implemented using Matlab [25]. 

The filter coefficients have been computed by using the FIR1 function provided by Matlab. The 

filter was then applied using the FILTER function, also provided by Matlab. 
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Figure 3-42: PLL Compensation Signal Measurement Setup 
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 The measurements have been realized in a series of steps. For the first step, the start-up 

filter was used to measure the PLL compensation without any external compensation. The 

measured signal was processed to generate the first pre-distorted voltage signal. Then, the loop 

filter was changed to the type 1 PLL loop filter designed. Then, the PLL compensation signal 

was measured. This time the pre-distorted voltage was applied. The measured signal on this case 

corresponded to the residual disturbance. In order to reconstruct an improved version of this 

signal, the signal had to be divided in frequency regions. To this end, the compensation signal 

has been measured and processed in many steps, where the low pass filter bandwidth has been 

increased for every step. For every step, the filtered signal delay and amplitude has been 

adjusted. This has been done with trial and error by looking at the PLL compensation signal on 

the oscilloscope.   
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CHAPTER 4: MEASUREMENTS AND RESULTS 

 

4.1 PHASE LOCK LOOP PERFORMANCE MEASUREMENTS 

 

The PLL time response performance can be indirectly measured from the frequency 

spectrum performance as long as there are no limitations other than bandwidth. The only 

possible limitation other than bandwidth for the time response is the slew rate of the operational 

amplifiers used on the forward path of the loop.  

Given the designed loop bandwidth of 14.64 MHz for the system at a KV of 600 MHz/V, 

the time constant for a single pole system would be 10.87 ns. A rough estimate of the settling 

time is about 5 times the time constant, which corresponds to 54.35 ns. Figure 4-1 shows a 

simulation of the step response of the designed closed loop system at a KV of 600 MHz/V. The 

simulated step response shows a settling time of 51.6 ns.  

A slew rate of 1 V per 153 ps would not be a lower limitation than the bandwidth. The 

slew rate for the THS3001 opamp being used corresponds to a full power bandwidth of 32 MHz 

for a voltage swing of 20 V. This limitation is beyond the crossover frequency. Thus, the opamps 

will not cause distortion to a signal on the forward path of the PLL.  

Moreover, a settling time measurement can only be performed effectively at the free 

running frequency of the VCO, which is around 10 GHz. This is because the type 1 PLL has a 

limited pull in range defined by the output voltage of the phase detector. The reference frequency 

required would be around 500 MHz and the VCO tuning sensitivity would be too high for the 

designed PLL and could cause high overshoots. Also, the loop filter will not be able to attenuate 

significantly the 500 MHz reference spurs. Thus, a settling time at the free running frequency 

would not provide useful information about the time response of the PLL. Thus, the PLL 

frequency spectrum at discrete frequencies with a tone at the reference port will be used to 

indirectly measure the response of the PLL. 
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Figure 4-1: Simulated Step Response for PLL with a KV of 600 MHz/V 

The loop bandwidth of the PLL is equal to the noise bandwidth on a single tone output of 

the PLL [39]. The noise bandwidth, along with the noise and spur level, can be measured using 

the frequency spectrum. Figure 4-2 is a representation of a typical spectral plot for a tone output. 

The plot shows how to identify the relevant parameters mentioned. 
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Figure 4-2: Typical Phase Noise Spectral Plot for a PLL 
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Figure 4-3: PLL Spectral Measurement at 15 GHz 

 

The frequency spectrum measurements were performed on an Agilent E4446A Spectrum 

Analyzer. Figure 4-3 shows a screenshot of the PLL spectral measurement at 15 GHz on the 

spectrum analyzer. The screenshots for the all other frequencies measured can be found in 

Appendix B. Table 4-1 summarizes the PLL performance measurements. 
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Table 4-1: PLL Spectral Performance Measurements 

PLL Frequency [GHz] Loop Bandwidth [MHz] Spur Level [dBc] 

12 13.67 39 

13 15.03 45 

14 14.33 48 

15 14.22 40 

16 15.91 45 

17 15.26 45 

17.5 13.95 38 

18 3 <36.8 

 

The loop bandwidth varies at different PLL output frequencies as expected mainly due to 

the variations on the VCO tuning sensitivity. The loop bandwidth values are close to the ones 

expected by design. The loop bandwidth designed for an average tuning sensitivity of 600 

MHz/V is 14.64 MHz and the measured loop bandwidth at the center frequency (15 GHz) is 

14.22 MHz. The KV values used in the design were inferred from the VCO manufacturer’s 

datasheet. Each manufactured VCO, however, has a slightly different tuning curve. This could 

have affected the loop bandwidth slightly.  

 

4.2 PRE-DISTORTED SIGNAL MEASUREMENTS 

 

The measurement procedure was described in Section 3.5.4. Initially, the DC coupled 

channel output of the DDS has been characterized using a programmed digital ramp input to 

produce a voltage ramp. This measurement was done over the entire tuning range and used as a 

reference to map the programming digital words to the output voltage. The related measurements 

are not shown since they are not related to the performance of the pre-distorted voltage. 

As mentioned in Section 3.5.4, a series of steps was performed to generate the pre-

distorted voltage. At each step the bandwidth of the digital low pass filter was modified. As has 

already been mentioned, the sampling rate of the waveform generator is 4 MHz, which 

corresponds to a Nyquist bandwidth of 2 MHz. For this reason, the digital low pass filter 

bandwidth was linearly increased at each step up to 2 MHz. At each step, the PLL compensation 

signal has been amplified and advanced and the amount of amplification and time advancement 



105 

was decided by trial and error. At each step, the processes signal, which corresponds to the 

residual disturbance, was added to the external compensation signal. The sampling rate of the 

Oscilloscope used was 250 MHz. The measured data was sampled again at 80 MHz. The low 

pass filters have been designed with the FIR1 function of Matlab using to the sampling 

frequency and the required bandwidth. 

Moreover, there was an issue during the measurements that affected the measurement 

procedure. The measured compensation voltage at the oscilloscope had an increasing voltage 

step. This voltage step changed with time and was related to the amount of time that the DC 

couple channel was turned on. To compensate for this issue, the digital low pass filter bandwidth 

was lowered to 250 kHz, which helped correct for the step without adding unnecessary high 

frequency content. 

Table 4-2 summarizes the digital low pass filter bandwidths used at each step. Figure 4-4 

shows the PLL compensation signal measured using the start-up active loop filter. For this case, 

this voltage is the tuning voltage applied by active loop filter. Figures 4-5 through 4-12 show the 

processed PLL compensation signal for each step using the type 1 PLL loop filter.  

 

Table 4-2: Digital Low Pass Filter Bandwidth List 

Step # Bandwidth Units 

1 160 kHz 

2 160 kHz 

3 528 kHz 

4 896 kHz 

5 1.26 MHz 

6 250 kHz 

7 1.63 MHz 

8 2 MHz 
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Figure 4-4: Active Loop Filter Tuning Voltage 

 

 

Figure 4-5: Processed Compensation Signal Measurement Step 2 
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Figure 4-6: Processed Compensation Signal Measurement Step 3 

 

Figure 4-7: Processed Compensation Signal Measurement Step 4 
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Figure 4-8: Processed Compensation Signal Measurement Step 5 

 

 

 

Figure 4-9: Processed Compensation Signal Measurement Step 6 
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Figure 4-10: Processed Compensation Signal Measurement Step 7 

 

Figure 4-11: Processed Compensation Signal Measurement Step 8 
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Figure 4-12: Zoomed in Version of Processed Compensation Signal Measurement Step 8 

 

Figures 4-5 through 4-12 show how the PLL compensation voltage was reduced at low 

frequencies with the pre-distorted signal added to the loop. As has been already mentioned, the 

largest issue encountered was a voltage step, which added low frequency noise to the 

compensation signal. As mentioned, this voltage step was related to the amount of time that the 

DC coupled port was turned on. The fact that a digital low pass filter was used instead of 

bandpass filters helped to improve this issue by correcting for low frequency deviations at each 

step. However, low frequency errors will continue to occur and the system will have to rely on 

the ability of the PLL to compensate for them. 

Figure 4-12 shows a zoomed-in version of the last 150 μs of step 8, which corresponds to 

the upper region of the voltage step. The figure shows that the compensation voltage has a peak-

to-peak amplitude of about 4 mV.  

A clear limitation of this system is the small sampling rate, which is related to the 

memory capacity of the DDS. Using a waveform generator with a larger sampling rate could 

improve further the output signal and thus minimize the PLL compensation level. 



111 

4.3 CHIRP GENERATOR MEASUREMENTS 

 

The chirp generator performance was measured with a test FMCW front end RF system 

and a synthetic target. The synthetic target used is composed of a 2.8167 μs optical delay line 

and an electro-optical transceiver. The delay of the synthetic target is sufficiently close to the 

nominal operating delay of 3 μs.  

 

 

A block diagram of the set-up for the measurements of the chirp generator performance is 

illustrated in Figure 4-13.  For simplicity, the attenuators and filters are not shown on the block 

diagram. A reconstruction filter is needed for the reference signal generated by the DDS. Ku-

band filters are required at each input port of the mixer. An anti-aliasing filter is required at the 

output of the mixer. Attenuators have been placed at both ports of the mixer before the amplifiers 

to adjust the gain at these points and avoid saturation of the amplifiers. An attenuator is also used 

at the output of the reference signal for the same reasons. 

DDS DAQ 

CLK Computer 

PLL 
 

OPTICAL 

DELAY 

LINE 
Level Shifter 

Amplifier 

Reference Signal 

Amplifier 

DC-Coupled Signal 

Reference Signal 

Serial Comm. for 

DDS Programming  

Directional Coupler  

Microwave Mixer 

Amplifier for Local 

Oscillator Port 

Amplifier 

Delayed Signal 

Amplifier 

EPRI/PRF/Timing 

Signals 

Digital Video Signal 

Figure 4-13: Block Diagram of the Set-up for the Measurements of the Chirp Generator Performance 
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For this measurement, the output signal of the PLL is power divided by a 10 dB 

directional coupler. The through output of the coupler is connected to the input of the delay line. 

The coupled output of the coupler gets amplified by a microwave amplifier able to operate at the 

Ku-band. This amplification is needed to reach the power level required by the local oscillator 

(LO) port of the mixer. The output of the delay line is amplified by a microwave amplifier and 

then fed to the radio frequency (RF) port of the mixer. The intermediate frequency (IF) port of 

the mixer outputs the mixed signal. After going through the required anti-aliasing filter, the IF 

signal is applied to the input of the DAQ.  The DAQ samples the data at a sampling rate of 62.5 

MHz. The DAQ performs a coherent integration using four samples.  

The DAQ then outputs the coherent integrated digital video signal to a computer. The 

computer is used for interfacing the DDS, the DAQ, as well as recording and processing the 

digitized video signal. 

For the microwave amplification required, the ZX60-183-S wideband amplifier was used. 

This amplifier is manufactured by Mini-Circuits [50]. The ZX60-183-S has a gain of 24 dB, a 

maximum power of 18 dBm, and operates over the frequency range of 6-18 GHz. The ZLF-

1000H+ amplifier was used for the reference signal amplification. The ZLF-1000H+ amplifier is 

also manufactured by Mini-Circuits [51]. This amplifier has a gain of 28 dB, a maximum power 

of 20 dBm and operates over the frequency range of 10-1000 MHz. The directional coupler used 

at the output of the PLL is the MC0618-10 directional coupler. This is a 10 dB coupler 

manufactured by Fairview Microwave Inc., which operates over the frequency range of 2-18 

GHz [52].  The mixer used is a doubled balanced ultra broadband mixer with model 

DB0218LA1-R. This mixer is manufactured by Miteq Inc. [53]. It has 6.5 conversion loss and 

requires a 7 dBm minimum power at the LO port. The mixer’s RF and LO ports operate over the 

frequency range of 2-18 GHz and the IF port operates over the frequency range of DC-750 MHz. 

The DAQ utilized was implemented at CReSIS and uses an ADC with model AD9640. The 

AD9640 is manufactured by Analog Devices Inc.     

The optical delay line, which is used to simulate the roundtrip delay of a target, has a 

delay of 2.8167 μs. This delay of 2.8167 μs, the chirp bandwidth of 6 GHz, and the sweep time 

of 250 μs correspond to a video signal composed of a tone signal with a frequency mean of 67.6 

MHz.   
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The digitized video signal provided by the DAQ to the computer has been recorded to a 

hard disk drive. In order to measure the performance of the chirp generator, the digitized video 

signal has been converted to the frequency domain using the FFT algorithm. The FFT function 

provided by Matlab has been used for this purpose. Since the DAQ sampling rate is 62.5 MHz, 

its Nyquist bandwidth equals 31.25 MHz. Therefore, the third Nyquist zone corresponds to the 

frequency range of interest. Assuming that the anti-aliasing filter provides sufficient attenuation 

outside the third Nyquist zone of the DAQ, the output of the FFT output corresponds to the 

frequency range between 62.5 MHz and 93.75 MHz. 

The chirp generator video signal has been measured for most steps of the pre-distorted 

voltage generation process to track the improvements made. For all cases, a Hanning weighting 

has been applied to the time-domain waveform of the video signal. Figures 4-14 through 4-19 

show the power magnitude in dB over the frequency spectrum for the recorded video signal at 

some steps of the pre-distorted voltage generation process. The plots shown in Figures 4-14 to 4-

19 only show the frequency range between 66.5 MHz to 68.5 MHz. 
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Figure 4-14: Measured Video Signal Recorded at Step 1 
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Figure 4-15: Measured Video Signal Recorded at Step 2 
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Figure 4-16: Measured Video Signal Recorded at Step 3 

 



115 

66.5 67 67.5 68 68.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Freq [MHz]

N
o
rm

a
liz

e
d
 P

o
w

e
r 

[d
B

]

Beat Frequency Frequency Spectrum

 

Figure 4-17: Measured Video Signal Recorded at Step 4 
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Figure 4-18: Measured Video Signal Recorded at Step 5 
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Figure 4-19: Measured Video Signal Recorded at Step 8 

 

Figures 4-14 to 4-19 shows a clear relationship between the external compensation 

process and the video signal improvement. Further steps would not show any significant 

improvement since the DC coupled signal bandwidth limit has been reached. 

In Section 2.1.2, the range resolution calculation was discussed. In addition, a measure 

was suggested to determine the range resolution performance in terms of the dynamic range of 

close targets. The suggested measure is the difference in range between the mainlobe and the 

first sidelobe for a single target response. The magnitude difference at this point, which is 

equivalent to the first sidelobe level, provides the dynamic range for close targets. The 

relationship between the range and the video signal has also been point out in section 2.1.2. The 

overlapping sweep time interval was defined as the time interval where the reference signal and 

the received signal overlap, for an FMCW radar system. The chirp modulation frequency, 

equivalent to the inverse of the overlapping sweep time interval, will equal the frequency 

resolution of the discrete frequency spectrum. This assertion assumes that the video signal has 

been time gated over the overlapping time interval. The modulation frequency (fm) and the 

overlapping time interval (Tvideo) for the measurements are described on equations (4.1) and 
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(4.2). In equation (4.1), τ is the roundtrip delay of the synthetic target and Tchirp is the total chirp 

sweep time.  

sTT chirpvideo  37.2442 
                                                     (4.1) 

kHz
T

f
video

m 0922.4
1



                                                             (4.2) 

kHz
T

f
video

ml 23.10
1

5.2                                                              (4.3) 

The modulation frequency described in equation (4.2) will be equal to the frequency 

difference between the frequency of the mainlobe and the frequency of the null on the measured 

video signal, given that no time-domain weighting has been applied. The difference in frequency 

between the mainlobe and the first sidelobe equals 1.5 times the modulation frequency, given 

that no weighting has been applied. A Hanning window can be applied to weight the time-

domain signal. This window will improve the sidelobe level at the expense of increasing the 

frequency distance between the mainlobe frequency and the first sidelobe frequency. The 

Hanning window increases this difference to 2.5 times the modulation frequency.  Equation (4.3) 

shows the frequency difference between the mainlobe and the first sidelobe (Δfml) for a tone 

using a Hanning window. Figure 4-20 is a matlab simulation made of an ideal tone at 67.6 MHz 

weighted with a Hanning window. The frequency distance between the mainlobe and the first 

sidelobe in Figure 4-20 agrees with the result of equation (4.3).  
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Figure 4-20: Ideal Sidelobe Performance with Hanning Weighting 
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Figure 4-21: Video Signal Sidelobe Performance 

 

 Figure 4.21 shows the measured sidelobe performance of the Chirp Generator using 6 

GHz of bandwidth. This bandwidth corresponds to an ideal mainlobe to first null range 
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resolution at free space of 2.5 cm. Equation (4.4) shows the parameters used to determine the 

range resolution. In equation (4.4), c corresponds to the speed of light, which is the 

approximation given in this case to the signal propagation speed. Additionally, Δf corresponds to 

the chirp bandwidth. 

][5.2
][6

]/[10322 8

cm
GHz

sm

f

c
R 







                                                (4.4) 

 This mainlobe-to-first-null resolution corresponds to a mainlobe-to-first sidelobe 

resolution of 6.25 cm. Thus, an FMCW using the chirp generator designed would have a 

mainlobe-to-first sidelobe range resolution of 6.25 cm at 18 dB. 

The dynamic range of 18 dB at the range resolution is greatly caused by the nonlinearity 

of the chirp. Some of this nonlinearity comes from the higher frequency components that are not 

compensated effectively by the PLL or the external compensation.  

As was explained in Chapter 2, the video signal becomes more sensitive to the nonlinear 

behavior of the chirp as the round trip delay of the target increases. For comparison purposes, the 

chirp generator performance was tested with a 35.8 ns copper delay line. Figure 4-22 shows the 

video signal for this delay line. This figure also shows a superior sidelobe performance, but 

about a 30 dB noise level.  
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Figure 4-22: Video Signal at 35.8 ns of roundtrip delay 

 

The frequency spectrum of the chirp generator output signal has been measured using an 

Agilent E4446A spectrum analyzer. The measured frequency spectrum of the chirp shows the 6 

GHz of bandwidth from 12 to 18 GHz. This is the expected frequency range for the chirp 

generator designed. The power level is less than 0 dBm. This power level agrees with the VCO 

manufacturer’s datasheet. This power is not sufficient to drive the LO port of most mixers. Thus, 

an FMCW radar system using this chirp generator requires an LO amplifier in the reference 

signal path of the FMCW front end system. 
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Figure 4-23: Chirp Frequency Spectrum 

 

The results of the chirp generator performance show that the linearization technique 

proposed successfully compensates for nonlinearities on the tuning curve VCO. The correction 

applied to the nonlinearities on the implemented chirp generator did not achieve the ideal 

performance. As mentioned, the sampling rate of the DC-coupled channel waveform generator, 

which is limited by its RAM capacity, restricted the bandwidth of the external compensation 

signal. This limitation could be one of the main reasons for not achieving the ideal performance. 

Similarly, the synthesizer available to generate the reference signal was limited to a bandwidth of 

less than 500 MHz. For a larger reference bandwidth, a PLL with a wider loop bandwidth could 

be designed. A PLL with a wider loop bandwidth would compensate better for wideband 

disturbances as well as provide more information about the disturbances. This information could 

then be used to improve the compensation with a pre-distorted voltage. 

Although the chirp generator did not reach an ideal performance for the required radar 

parameters, it has a superior performance than the previous chirp generators reported for the 

application of interest without the use of frequency multipliers.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

 Ultra-Wideband radar sensors are developed for high accuracy and high resolution 

measurements. At the Center for Remote Sensing of Ice Sheets, UWB FMCW radars are utilized 

for measuring surface elevation and snow thickness over Greenland and Antarctica. The 

resolution of FMCW radar sensors depends on the bandwidth and the quality of the transmitted 

waveform. The nonlinear behavior of VCOs degrades the range resolution performance of 

FMCW radar sensors developed with VCO-based chirp generators. The range performance of 

these radars becomes more sensitive to the VCO nonlinear behavior as the target roundtrip delay 

increases. A linearization technique for VCO-based chirp generators was presented in this 

investigation. The linearization technique uses a closed loop control system for real time 

compensation of the VCO with a type 1 Phase Locked Loop along with an added pre-distorted 

compensation signal generated offline.  

 Wide loop bandwidth PLLs have a superior tracking performance compared to narrow 

loop bandwidth PLLs. They have the ability to compensate for wideband disturbances in the 

loop. Since the VCO nonlinear behavior can be modeled as disturbances added to the loop, a 

wide loop bandwidth PLL can be utilized to linearize a VCO. On the other hand, the PLL loop 

filter should be able to significantly attenuate the reference spurs. Type 1 PLLs have a faster 

transient response than type 2 PLLs. Additionally, unlike type 2 PLLs, type 1 PLLs do not have 

the high peaking behavior during transients. Thus, the transient errors caused by type 1 PLLs are 

less significant than those caused by type 2 PLLs. For all these reasons, a wide loop bandwidth 

type 1 PLL with a loop filter that significantly attenuates the reference spurs has been chosen for 

the closed loop control system. 

 Type 1 PLLs suffer from infinite steady state error for phase parabola inputs. However, 

external compensation can be applied to the loop to solve this problem. Additionally, the PLL 

controls an ultra-wideband VCO with a tuning sensitivity that varies significantly. The PLL 

design should consider these large variations such that both stability and low transient errors are 

maintained. For this reason, the PLL should be designed with a sufficiently large phase margin. 

Both the large phase margin and the large variations on the tuning sensitivity of the VCO 
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degrade the tracking performance of the PLL. The PLL compensation signal produced at the 

output of the loop filter has a magnitude and phase that are dependent on frequency, as is any 

other signal in the control loop. The tracking performance can be improved by measuring the 

PLL compensation signal, equalizing it and applying it back into the loop. Since the type 1 PLL 

already requires an external compensation to achieve a finite phase steady state error for a 

frequency ramp input, both previously-mentioned external compensation signals can be applied 

at the same point. 

 In this investigation, the type 1 PLL was designed with the largest possible loop 

bandwidth, keeping the spur level below 35 dBc. As expected, the measured loop bandwidth 

varied over the entire band due to variations in the tuning sensitivity of the VCO.  The loop 

bandwidth of the designed PLL was 14.64 MHz for an average tuning sensitivity of 600 MHz/V. 

The measured loop bandwidth is 14.22 MHz at 15 GHz and the average measured loop 

bandwidth is 13.17 MHz. The measured spur level did not increase above 35 dBc, as designed. 

Therefore, the PLL performs very closely to the design specifications.   

 The external compensation signal was generated using a DC-coupled channel of a DDS 

board developed at CReSIS. The PLL compensation signal was digitized by an oscilloscope. The 

digitized PLL compensation signal has been processed to compensate for the frequency response 

in a series of steps. The resulting signal was then added to the PLL for improved compensation. 

The chirp generator performance measurements show a direct relationship between the 

bandwidth of the external compensation, which was changed for each step, and the quality of the 

target response. The limited effective sampling rate of the DC-coupled channel of the DDS 

board, dependent on the DDS memory capacity, limited the bandwidth of the external 

compensation signal. In the future, this technique can be applied using an arbitrary waveform 

generator with a larger sampling rate. Moreover, the PLL loop bandwidth may be increased if 

larger reference frequencies are utilized.  

 The prototype chirp generator built for this investigation constitutes the basis of the 

FMCW radar that will be used for surface elevation measurements in the CReSIS 2011-2012 

field campaign in Antarctica. Data collected with an FMCW radar sensor using this chirp 

generator will contain measurements with higher accuracy and finer resolution than that of 

previous sensors.  
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 Chirp generators with larger bandwidth will continue to be attractive instruments for fine 

resolution measurements. In the future, we will investigate the implementation of chirp 

generators with a hybrid combination of digital direct synthesis techniques and direct analog 

synthesis techniques. Furthermore, an analysis will be made balancing the advantages and 

disadvantages of both chirp generator designs. The chosen design will be miniaturized for a more 

convenient integration with the radar.  
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APPENDIX A: 2-CHANNEL DDS BOARD 

 

An Eight Channel Waveform Generator was developed at CReSIS as a general purpose 

waveform generator. The waveform generator uses 8 AD9910 integrated circuits (ICs), which 

are 1 GSPS DDS chips from Analog Devices. As a subset of this waveform generator, a 2 

channel DDS board has also been implemented [53].  

The DDS board features a Field Programmable Gate Array (FPGA), which is used to 

acquire the settings and to transfer the waveform parameters to the DDS ICs. The AD9910 chip 

has many different data source types that can be used to modulate the phase, frequency and 

amplitude of the output waveform. The user communicates via a serial port using a defined 

communication protocol. The user can configure each channel by setting the registers and the 

random access memory (RAM) of the DDS accordingly.  

The differential output of the DDS IC is coupled to a balun for regular AC operation. The 

differential output can also be coupled to an op-amp based differential amplifier with a voltage 

gain of 2. These two possible configurations are the AC and DC coupled operating modes of the 

board.  

On the current default configuration of the 2 channel DDS board, one of the channels is 

AC coupled and the other one is DC coupled. The AC coupled channel on the default 

configuration uses the digital ramp generator for tuning the frequency on the internal DDS and 

uses the RAM loaded by the user to modulate the amplitude of the waveform.  An IDL source 

code was written by CReSIS faculty to easily load the digital ramp parameters and define the 

amplitude waveform.  

The DC coupled channel output circuitry is designed for a 50-ohm impedance. This way 

the DC-coupled channel of the DDS board can be used as an arbitrary waveform generator, 

where the number of data source points per waveform is given by the DDS RAM. The DDS 

RAM has 1024 memory locations and 32 bit words. Only 14 bits may be used for amplitude 

modulation.  
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APPENDIX B: PLL SPECTRAL MEASUREMENTS 

 

Figure B-1: Measured PLL Spectrum at 12 GHz 

 

Figure B-2: Measured PLL Spectrum at 13 GHz 
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Figure B-3: Measured PLL Spectrum at 14 GHz 

 

 

Figure B-4: Measured PLL Spectrum at 15 GHz 
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Figure B-5: Measured PLL Spectrum at 16 GHz 

 

 

Figure B-6: Measured PLL Spectrum at 17 GHz 



134 

 

Figure B-7: Measured PLL Spectrum at 17.5 GHz 

 

 

Figure B-8: Measured PLL Spectrum at 18 GHz 


