10 research outputs found

    Massive MIMO has Unlimited Capacity

    Full text link
    The capacity of cellular networks can be improved by the unprecedented array gain and spatial multiplexing offered by Massive MIMO. Since its inception, the coherent interference caused by pilot contamination has been believed to create a finite capacity limit, as the number of antennas goes to infinity. In this paper, we prove that this is incorrect and an artifact from using simplistic channel models and suboptimal precoding/combining schemes. We show that with multicell MMSE precoding/combining and a tiny amount of spatial channel correlation or large-scale fading variations over the array, the capacity increases without bound as the number of antennas increases, even under pilot contamination. More precisely, the result holds when the channel covariance matrices of the contaminating users are asymptotically linearly independent, which is generally the case. If also the diagonals of the covariance matrices are linearly independent, it is sufficient to know these diagonals (and not the full covariance matrices) to achieve an unlimited asymptotic capacity.Comment: To appear in IEEE Transactions on Wireless Communications, 17 pages, 7 figure

    Enforcing Statistical Orthogonality in Massive MIMO Systems via Covariance Shaping

    Full text link
    This paper tackles the problem of downlink transmission in massive multiple-input multiple-output(MIMO) systems where the equipments (UEs) exhibit high spatial correlation and the channel estimation is limited by strong pilot contamination. Signal subspace separation among the UEs is, in fact, rarely realized in practice and is generally beyond the control of the network designer (as it is dictated by the physical scattering environment). In this context, we propose a novel statistical beamforming technique, referred to asMIMO covariance shaping, that exploits multiple antennas at the UEs and leverages the realistic non-Kronecker structure of massive MIMO channels to target a suitable shaping of the channel statistics performed at the UE-side. To optimize the covariance shaping strategies, we propose a low-complexity block coordinate descent algorithm that is proved to converge to a limit point of the original nonconvex problem. For the two-UE case, this is shown to converge to a stationary point of the original problem. Numerical results illustrate the sum-rate performance gains of the proposed method with respect to reference scenarios employing the multiple antennas at the UE for spatial multiplexing.Comment: Submitted for journal publicatio

    Spectral and Energy Efficiency of Superimposed Pilots in Uplink Massive MIMO

    Full text link
    Next generation wireless networks aim at providing substantial improvements in spectral efficiency (SE) and energy efficiency (EE). Massive MIMO has been proved to be a viable technology to achieve these goals by spatially multiplexing several users using many base station (BS) antennas. A potential limitation of Massive MIMO in multicell systems is pilot contamination, which arises in the channel estimation process from the interference caused by reusing pilots in neighboring cells. A standard method to reduce pilot contamination, known as regular pilot (RP), is to adjust the length of pilot sequences while transmitting data and pilot symbols disjointly. An alternative method, called superimposed pilot (SP), sends a superposition of pilot and data symbols. This allows to use longer pilots which, in turn, reduces pilot contamination. We consider the uplink of a multicell Massive MIMO network using maximum ratio combining detection and compare RP and SP in terms of SE and EE. To this end, we derive rigorous closed-form achievable rates with SP under a practical random BS deployment. We prove that the reduction of pilot contamination with SP is outweighed by the additional coherent and non-coherent interference. Numerical results show that when both methods are optimized, RP achieves comparable SE and EE to SP in practical scenarios.Comment: 32 pages, 12 figures, 3 tables. Submitted in March 2017 to IEEE Transactions on Wireless Communication

    Superimposed Pilots are Superior for Mitigating Pilot Contamination in Massive MIMO

    Get PDF
    In this paper, superimposed pilots are introduced as an alternative to time-multiplexed pilot and data symbols for mitigating pilot contamination in massive multiple-input multiple-output (MIMO) systems. We propose a non-iterative scheme for uplink channel estimation based on superimposed pilots and derive an expression for the uplink signal-to-interference-plus-noise ratio (SINR) at the output of a matched filter employing this channel estimate. Based on this expression, we observe that power control is essential when superimposed pilots are employed. Moreover, the quality of the channel estimate can be improved by reducing the interference that results from transmitting data alongside the pilots, and an intuitive iterative data-aided scheme that reduces this component of interference is also proposed. Approximate expressions for the uplink SINR are provided for the iterative data-aided method as well. In addition, we show that a hybrid system with users utilizing both time-multiplexed and superimposed pilots is superior to an optimally designed system that employs only time-multiplexed pilots, even when the non-iterative channel estimate is used to build the detector and precoder. We also describe a simple approach to implement this hybrid system by minimizing the overall inter and intra-cell interference. Numerical simulations demonstrating the performance of the proposed channel estimation schemes and the superiority of the hybrid system are also provided

    Channel Estimation and Symbol Detection In Massive MIMO Systems Using Expectation Propagation

    Get PDF
    The advantages envisioned from using large antenna arrays have made massive multiple- input multiple-output systems (also known as massive MIMO) a promising technology for future wireless standards. Despite the advantages that massive MIMO systems provide, increasing the number of antennas introduces new technical challenges that need to be resolved. In particular, symbol detection is one of the key challenges in massive MIMO. Obtaining accurate channel state information (CSI) for the extremely large number of chan- nels involved is a difficult task and consumes significant resources. Therefore for Massive MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More importantly, non-coherent schemes which do not rely on CSI for symbol detection become very attractive. Expectation propagation (EP) has been recently proposed as a low complexity algo- rithm for symbol detection in massive MIMO systems , where its performance is evaluated on the premise that perfect channel state information (CSI) is available at the receiver. However, in practical systems, exact CSI is not available due to a variety of reasons in- cluding channel estimation errors, quantization errors and aging. In this work we study the performance of EP in the presence of imperfect CSI due to channel estimation er- rors and show that in this case the EP detector experiences significant performance loss. Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the high signal-to-noise ratio (SNR) regions where the rate of its performance improvement decreases. We investigate this behavior of the EP detector and propose a Modified EP detector for colored noise which utilizes the correlation matrix of the channel estimation error. Simulation results verify that the modified algorithm is robust against imperfect CSI and its performance is significantly improved over the EP algorithm, particularly in the higher SNR regions, and that for the modified detector, the slope of the symbol error rate (SER) vs. SNR plots are similar to the case of perfect CSI. Next, an algorithm based on expectation propagation is proposed for noncoherent symbol detection in large-scale SIMO systems. It is verified through simulation that in terms of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for blocks as small as two symbols. This makes the proposed detector suitable for fast fading channels with very short coherence times. In addition, the SER performance of this detec- tor converges to that of the optimum ML receiver when the size of the blocks increases. Finally it is shown that for Rician fading channels, knowledge of the fading parameters is not required for achieving the SER gains. A channel estimation method was recently proposed for multi-cell massive MIMO sys- tems based on the eigenvalue decomposition of the correlation matrix of the received vectors (EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well as the number of samples used in the evaluation of the correlation matrix. As the final work in this dissertation, we present a noncoherent channel estimation and symbol de- tection scheme for multi-cell massive MIMO systems based on expectation propagation. The proposed algorithm is initialized with the channel estimation result from the EVD- based method. Simulation results show that after a few iterations, the EP-based algorithm significantly outperforms the EVD-based method in both channel estimation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the inaccuracies of sample correlation matrix

    On the separability of signal and interference-plus-noise subspaces in blind pilot decontamination

    No full text
    Consider a multicell multiuser MIMO (multiple-input multiple-output) system with a very large number of antennas at each base station (BS). The number of users in each cell is assumed to be fixed as the number of BS antennas grows large. Under certain conditions on the powers of the transmitting users, the signal eigenvalue spectrum is asymptotically separated from the interference-plus-noise spectrum as the number of BS antennas grows large. As it was observed in [1], this phenomenon allows to mitigate the pilot contamination problem. We provide the power limits for each user in the cell of interest above which such a separation occurs asymptotically. Unlike the approximative methods used in [1], we obtain these power limits by making use of the exact asymptotic characterizations of the interference-plus-noise spectrum. The results are based on the theory of small rank perturbations of large dimensional random matrices

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore