37 research outputs found

    Catch, Clean, and Release: A Survey of Obstacles and Opportunities for Network Trace Sanitization

    Get PDF
    Network researchers benefit tremendously from access to traces of production networks, and several repositories of such network traces exist. By their very nature, these traces capture sensitive business and personal activity. Furthermore, network traces contain significant operational information about the target network, such as its structure, identity of the network provider, or addresses of important servers. To protect private or proprietary information, researchers must “sanitize” a trace before sharing it. \par In this chapter, we survey the growing body of research that addresses the risks, methods, and evaluation of network trace sanitization. Research on the risks of network trace sanitization attempts to extract information from published network traces, while research on sanitization methods investigates approaches that may protect against such attacks. Although researchers have recently proposed both quantitative and qualitative methods to evaluate the effectiveness of sanitization methods, such work has several shortcomings, some of which we highlight in a discussion of open problems. Sanitizing a network trace, however challenging, remains an important method for advancing network–based research

    Co-located Collaborative Information-based Ideation through Embodied Cross-Surface Curation

    Get PDF
    We develop an embodied cross-surface curation environment to support co-located, collaborative information-based ideation. Information-based ideation (IBI) refers to tasks and activities in which people generate and develop significant new ideas while working with information. Curation is the process of gathering and assembling objects in order to express ideas. The linear media and separated screens of prior curation environments constrain expression. This research utilizes information composition of rich bookmarks as the medium of curation. Visual representation of elements and ability to combine them in a freeform, spatial manner mimics how objects appear and can be manipulated in the physical world. Metadata of rich bookmarks leverages capabilities of the WWW. We equip participants with personal IBI environments, each on a mobile device, as a base for contributing to curation on a larger, collaborative surface. We hypothesize that physical representations for the elements and assemblage of curation, layered with physical techniques of interaction, will facilitate co-located IBI. We hypothesize that consistent physical and spatial representations of information and means for manipulating rich bookmarks on and across personal and collaborative surfaces will support IBI. We hypothesize that the small size and weight of personal devices will facilitate participants shifting their attention from their own work to each other and collaboration. We evaluated the curation environment by inviting couples to participate in a home makeover design task in a living-room lab. We demonstrated that our embodied cross-surface curation environment supports creative thinking, facilitates communication, and stimulates engagement and creativity in collaborative IBI

    The Internet of Things supporting the Cultural Heritage domain: analysis, design and implementation of a smart framework enhancing the smartness of cultural spaces

    Get PDF
    Nowadays embedded systems have reached a great level of maturity and diffusion thanks to their small size, low power consumption, large connectivity and variety of application in everyday contexts. These systems, if properly structured and configured, can signifi- cantly increase the smartness of the environments where they are deployed, monitoring and continuously collecting data to be processed and elaborated. In this perspective, the Internet of Things (IoT) paradigm supports the transition from a closed world, in which an object is characterized by a descriptor, to an open world, in which objects interact with the surrounding environment, because they have become ”intelligent”. Accordingly, not only people will be connected to the internet, but objects such as cars, fridges, televisions, water management systems, buildings, monuments and so on will be connected as well. The Cultural Heritage represents a worldwide resource of inestimable value, attracting millions of visitors every year to monuments, museums and art exhi- bitions. Fundamental aspects of this resource to be investigated are its promotion and people enjoyment. Indeed, to achieve an enjoyment of a cultural space that is attractive and sustainable, it is necessary to realize ubiquitous and multimedia solutions for users’ interaction to enrich their visiting experience and improve the knowledge transmission process of a cultural site. The main target of this PhD Thesis is the study of the IoT paradigm, devoted to the design of a smart framework supporting the fruition, enjoyment and tutelage of the Cultural Heritage domain. In order to assess the proposed approach, a real case study is presented and discussed. In detail, it represents the deployment of our framework during an art exhibition, named The Beauty or the Truth within the Monumental Complex of San Domenico Maggiore, Naples (Italy). Following the Internet of Things paradigm, the proposed intelligent framework relies on the integration of a Sensor Network of Smart Objects with Wi-Fi and Bluetooth Low Energy technologies to identify, locate and support users. In this way technology can become a mediator between visitors and fruition, an instrument of connection between people, objects, and spaces to create new social, economic and cultural opportunities

    Large-scale Wireless Local-area Network Measurement and Privacy Analysis

    Get PDF
    The edge of the Internet is increasingly becoming wireless. Understanding the wireless edge is therefore important for understanding the performance and security aspects of the Internet experience. This need is especially necessary for enterprise-wide wireless local-area networks (WLANs) as organizations increasingly depend on WLANs for mission- critical tasks. To study a live production WLAN, especially a large-scale network, is a difficult undertaking. Two fundamental difficulties involved are (1) building a scalable network measurement infrastructure to collect traces from a large-scale production WLAN, and (2) preserving user privacy while sharing these collected traces to the network research community. In this dissertation, we present our experience in designing and implementing one of the largest distributed WLAN measurement systems in the United States, the Dartmouth Internet Security Testbed (DIST), with a particular focus on our solutions to the challenges of efficiency, scalability, and security. We also present an extensive evaluation of the DIST system. To understand the severity of some potential trace-sharing risks for an enterprise-wide large-scale wireless network, we conduct privacy analysis on one kind of wireless network traces, a user-association log, collected from a large-scale WLAN. We introduce a machine-learning based approach that can extract and quantify sensitive information from a user-association log, even though it is sanitized. Finally, we present a case study that evaluates the tradeoff between utility and privacy on WLAN trace sanitization

    ICE-MILK: Intelligent Crowd Engineering using Machine-based Internet of Things Learning and Knowledge Building

    Get PDF
    Title from PDF of title page viewed June 1, 2022Dissertation advisor: Sejun SongVitaIncludes bibliographical references (pages 136-159)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2022The lack of proper crowd safety control and management often leads to spreading human casualties and infectious diseases (e.g., COVID-19). Many Machine Learning (ML) technologies inspired by computer vision and video surveillance systems have been developed for crowd counting and density estimation to prevent potential personal injuries and deaths at densely crowded political, entertaining, and religious events. However, existing crowd safety management systems have significant challenges and limitations on their accuracy, scalability, and capacity to identify crowd characterization among people in crowds in real-time, such as a group characterization, impact of occlusions, mobility and contact tracing, and distancing. In this dissertation, we propose an Intelligent Crowd Engineering platform using Machine-based Internet of Things Learning, and Knowledge Building approaches (ICE-MILK) to enhance the accuracy, scalability, and crowd safety management capacity in real-time. Specifically, we design an ICE-MILK structure with three critical layers: IoT-based mobility characterization, ML-based video surveillance, and semantic information-based application layers. We built an IoT-based mobility characterization system by predicting and preventing potential disasters through real-time Radio Frequency (RF) data characterization and analytics. We tackle object group identification, speed, direction detection, and density for the mobile group among the many crowd mobility characteristics. Also, we tackled an ML-based video surveillance approach for effective dense crowd counting by characterizing scattered occlusions, named CSONet. CSONet recognizes the implications of event-induced, scene-embedded, and multitudinous obstacles such as umbrellas and picket signs to achieve an accurate crowd analysis result. Finally, we developed a couple of group semantics to track and prevent crowd-caused infectious diseases. We introduce a novel COVID-19 tracing application named Crowd-based Alert and Tracing Services (CATS) and a novel face masking and social distancing monitoring system for Modeling Safety Index in Crowd (MOSAIC). CATS and MOSAIC apply privacy-aware contact tracing, social distancing, and calculate spatiotemporal Safety Index (SI) values for the individual community to provide higher privacy protection, efficient penetration of technology, greater accuracy, and effective practical policy assistance.Introduction -- Literature review -- IoT-based mobility characterization -- ML-based video/image surveillance -- Semantic knowledge information-based tracing application -- Conclusions and future directions -- Appendi

    Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project

    Get PDF
    Measuring the distribution and dynamics of the population at granular level both spatially and temporally is crucial for understanding the structure and function of the built environment. In this era of big data, there have been numerous attempts to undertake this using the preponderance of unstructured, passive and incidental digital data which are generated from day-to-day human activities. In attempts to collect, analyse and link these widely available datasets at a massive scale, it is easy to put the privacy of the study subjects at risk. This research looks at one such data source - Wi-Fi probe requests generated by mobile devices - in detail, and processes it into granular, long-term information on number of people on the retail high streets of the United Kingdom (UK). Though this is not the first study to use this data source, the thesis specifically targets and tackles the uncertainties introduced in recent years by the implementation of features designed to protect the privacy of the users of Wi-Fi enabled mobile devices. This research starts with the design and implementation of multiple experiments to examine Wi-Fi probe requests in detail, then later describes the development of a data collection methodology to collect multiple sets of probe requests at locations across London. The thesis also details the uses of these datasets, along with the massive dataset generated by the ‘Smart Street Sensor’ project, to devise novel data cleaning and processing methodologies which result in the generation of a high quality dataset which describes the volume of people on UK retail high streets with a granularity of 5 minute intervals since August 2015 across 1000 locations (approx.) in 115 towns. This thesis also describes the compilation of a bespoke ‘Medium data toolkit’ for processing Wi-Fi probe requests (or indeed any other data with a similar size and complexity). Finally, the thesis demonstrates the value and possible applications of such footfall information through a series of case studies. By successfully avoiding the use of any personally identifiable information, the research undertaken for this thesis also demonstrates that it is feasible to prioritise the privacy of users while still deriving detailed and meaningful insights from the data generated by the users

    The Sensor Network Workbench: Towards Functional Specification, Verification and Deployment of Constrained Distributed Systems

    Full text link
    As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems
    corecore