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Abstract

The edge of the Internet is increasingly becoming wireless. Understanding the wireless

edge is therefore important for understanding the performance and security aspects of the

Internet experience. This need is especially necessary for enterprise-wide wireless local-

area networks (WLANs) as organizations increasingly depend on WLANs for mission-

critical tasks. To study a live production WLAN, especially a large-scale network, is a

difficult undertaking. Two fundamental difficulties involved are (1) building a scalable net-

work measurement infrastructure to collect traces from a large-scale production WLAN,

and (2) preserving user privacy while sharing these collected traces to the network research

community. In this dissertation, we present our experience in designing and implement-

ing one of the largest distributed WLAN measurement systems in the United States, the

Dartmouth Internet Security Testbed (DIST), with a particular focus on our solutions to the

challenges of efficiency, scalability, and security. We also present an extensive evaluation

of the DIST system. To understand the severity of some potential trace-sharing risks for

an enterprise-wide large-scale wireless network, we conduct privacy analysis on one kind

of wireless network traces, a user-association log, collected from a large-scale WLAN. We

introduce a machine-learning based approach that can extract and quantify sensitive infor-

mation from a user-association log, even though it is sanitized. Finally, we present a case

study that evaluates the tradeoff between utility and privacy on WLAN trace sanitization.
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Chapter 1

Introduction

The edge of the Internet is increasingly becoming wireless. Therefore, understanding the

wireless edge is important for understanding the performance and security aspects of the

Internet experience. This understanding is necessary for enterprise-wide wireless local-

area networks (WLANs) as organizations increasingly depend on WLANs for mission-

critical tasks. To study a live production WLAN, especially a large-scale one, is a difficult

undertaking. Two fundamental difficulties involved are (1) building a scalable network

measurement infrastructure to collect traces from a large-scale production WLAN, and

(2) preserving the network users’ privacy while sharing these collected traces to the network

research community.

For the past decade, our research team at Dartmouth College has continuously devoted

effort to developing new technologies, software tools and systems to measure large-scale

WLANs, and some of our collected traces have been extensively studied by the network

research community. We were among the first to explore the feasibility of using distributed

arrays of Air Monitors (AMs) to passively monitor WLANs. Since then, via passive mon-

itoring, many WLAN traces have been collected in conference events, an office building
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floor and even a whole office building. In this dissertation, we present our experience in de-

signing and implementing one of the largest distributed WLAN measurement systems, the

Dartmouth Internet Security Testbed (DIST), with a particular focus on our solutions to the

challenges of efficiency, scalability, and security. We also present an extensive evaluation

of the DIST system.

Creating and operating such a large-scale network measurement infrastructure is a

daunting task. The extensive investment of time and effort restricts the ability to capture

meaningful amounts of WLAN traces to larger or well-funded organizations. In such an en-

vironment, sharing becomes an essential feature of wireless-network research. To preserve

network users’ privacy, a trace publisher must sanitize the network traces before sharing

them with the public. Privacy analysis on wired network traces has been widely studied, to

understand the severity of some potential trace-sharing risks [16, 28, 89]. However, a sim-

ilar understanding is scarce for enterprise-wide, large-scale wireless networks [68, 116].

According to our survey of researchers [127], a lack of understanding about the privacy

issues in wireless-network traces is the top concern that prevents researchers from sharing

their traces. In this dissertation, we conduct privacy analysis on one of our own wireless

network traces, a user-association log, collected from the Dartmouth wireless network. We

introduce a machine-learning based approach that can extract and quantify sensitive infor-

mation from a user association log, even though it is sanitized. Finally, we present a case

study that evaluates the tradeoff between utility and privacy on WLAN trace sanitization.

In the rest of this chapter, we introduce our wireless-network measurement system and the

challenges of network trace sharing, and summarize our contributions in this dissertation.

2



1.1 Wireless network measurement

Wireless-network measurement techniques can be classified into two categories: either

measuring the wired side of a wireless network, or measuring the wireless side directly.

Earlier Dartmouth research [50,62] and many other WLAN measurement studies [2,8]

have monitored the “wired side” of Access Points (APs) in infrastructure WLANs using

SNMP, syslog and packet sniffing. These techniques monitor the traffic that has been

bridged from the wireless side to the wired side of a network. One advantage of such

techniques is that they are easy to implement, and they provide good coverage about some

information at a low cost, such as when and where a user has connected to the wireless

network. Usually such techniques do not require any device especially designed for wire-

less networks, and the procedures for collecting network traces are similar to that on wired

networks. However, the disadvantage is that the views offered by such techniques are often

incomplete because much lower-level information is missing. The collected traces only

characterize how the monitored WLAN and its users behave, and have provided little in-

sight about why the network and its users behave in such a manner [21].

Deploying dedicated wireless measurement devices, Air Monitors (AMs),1 to passively

monitor the wireless network directly is the second category of wireless measurement ap-

proaches. Measuring the “wireless side” of APs enables one to capture more refined infor-

mation about the wireless network, such as the control and management frames in IEEE

802.11 protocols, and some physical-layer information, such as signal strength. Aside from

the capability to capture more information, wireless measurement techniques are flexible

1We adopt the term “Air Monitor” introduced by Aruba Networks [5].
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and non-intrusive. No assistance from the network provider is needed to tap into the wired

network, and the AMs can be deployed to any place that is of interest.

Due to the limited propagation range of Wi-Fi radio waves,2 each AM is only able to

monitor the wireless network traffic within its nearby area. Thus, a common solution is to

deploy an array of AMs to provide an extended measurement area. The cost to purchase and

deploy such distributed arrays of AMs is, however, much higher than that of only tapping

the wired side of a wireless network. We were among the first to explore the feasibility of

using distributed arrays of AMs to passively monitor the IEEE 802.11 link layer and higher

layers [107, 128]. As far as we know, our DIST system is the first large-scale WLAN

measurement system that covers a large fraction of an enterprise campus.

In summary, both the indirect (wired-side) and direct (wireless-side) measurements

have their own advantages and disadvantages, and they are complementary to each other.

At Dartmouth College, we use both techniques to monitor the campus-wide production

wireless network.

1.2 Network trace sharing

The sharing of network trace data provides important benefits to both network researchers

and administrators. Sharing traces helps scientists and network engineers compare and

reproduce results and the behavior of network tools. The practice of sharing such informa-

tion, however, faces a number of obstacles.
2Here we imply that both the sender and the receiver use off-the-shelf commercial Wi-Fi products. By

using specially designed equipments, the propagation range of Wi-Fi radio waves may increase to over 100
miles [123].
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Network traces contain significant amounts of sensitive information about the network

structure and its users. Thus, researchers wishing to share traces must “sanitize” them

to protect this information. We distinguish the terms “anonymization” and “sanitization”:

“anonymization” attempts to protect the privacy of network users, and “sanitization” at-

tempts to protect the privacy of network users and the secrecy of operational network infor-

mation. In this sense, “sanitization” is a superset of “anonymization”. In some applications

when we only care about protecting the privacy of network users, we may use these two

terms interchangeably. In contrast, freely sharing full-capture traces happens rarely and

usually requires either close, pre-established personal relationships between researchers

or extensive legal agreements (as in the PREDICT repository [96]). Furthermore, most

real-world traces contain a large volume of information with features along many different

dimensions, making the problem of identifying and masking sensitive data non-trivial. It

remains difficult to precisely specify a policy regarding the type and structure of informa-

tion that should be sanitized, let alone provide a reliable method that ensures the conclusive

suppression of such information in the shared trace. Thus, two main categories of concerns

arise: (1) legal and ethical obstacles to capturing information derived from human interac-

tion for research purposes and (2) operational difficulties arising from a lack of effective

tools and techniques for suppressing sensitive information. In this dissertation, we are in-

terested in the second category of concerns, and Chapter 3 presents a detailed survey of

state-of-the-art research in the network trace sharing community.

5



1.3 Contributions

In this dissertation we make three major contributions:

1. We designed and implemented a distributed large-scale WLAN measurement system,

DIST. We improved processing speed more than 5 times over the previous imple-

mentation and reduced the network bandwidth requirement by more than 70%. A

two-month long-term evaluation not only proved the stability of the DIST system but

also provided us much insight about the monitored large-scale WLAN. We designed

and implemented an Active Protection System based on the DIST infrastructure.

2. We carried out an extensive privacy analysis on one kind of wireless network traces,

a user-association log [117]. By simulating an adversary’s role, we propose a novel

type of correlation attack in which the adversary uses the anonymized association

log to build signatures against each user, and when combined with auxiliary infor-

mation, such signatures can help to identify users within the anonymized log. Using a

log that contains more than four thousand users and millions of association records,

we demonstrate that this attack technique, under certain circumstances, is able to

pinpoint the victim’s identity exactly with a probability as high as 70%, or narrow

it down to a set of 20 candidates with a probability close to 100%. We present this

work in Chapter 4.

3. We present a case study evaluating the tradeoff between utility and privacy on WLAN

trace sanitization. We observe that the trace sanitization would not only affect the

research utility of a trace, but also in an extreme case, the researcher may draw a

6



different conclusion on the sanitized trace than it would draw from an un-sanitized

trace. We discuss the cause of such changes. We present this work in Chapter 5.

Certain parts of this dissertation have been published: part of Chapter 2 in WiN-

Mee’10 [115], Chapter 3 as a book chapter [118], and Chapter 4 in INFOCOM’11 [117].

The remainder of this dissertation is organized as follows. Chapter 2 discusses the

design, implementation and evaluation of our DIST system. After we present a survey on

the obstacles and opportunities for network trace sanitization in Chapter 3, we introduce

our privacy analysis on user-association logs in Chapter 4. Chapter 5 presents a case study

that evaluates the tradeoff between utility and privacy on user-association logs. Finally, we

summarize and conclude in Chapter 6.
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Chapter 2

Building a large-scale WLAN
measurement system

As enterprises increasingly depend on WLANs for mission-critical applications, it is

important to monitor such networks to recognize usage patterns, diagnose malfunctions,

and detect any abnormal behaviors that would disrupt or degrade the network operation.

To support these activities, we built a campus-wide, distributed WLAN monitoring system,

the Dartmouth Internet Security Testbed (DIST) [15], at Dartmouth College.

This chapter describes our experience gained during the design, implementation and

operation of a distributed large-scale WLAN monitoring system, the Dartmouth Internet

Security Testbed (DIST). As one of the largest WLAN monitoring systems in the United

States, DIST is equipped with 420 radio interfaces on 210 AMs, and covers more than

10 buildings and more than 5,000 users. In the MAP project [107], the predecessor of

the DIST project, we implemented a building-wide WLAN monitoring system. However,

when an attempt was made to scale the deployment from a building to a campus, the MAP

system could no longer meet the required levels of efficiency, scalability, security and man-

ageability. Our new monitoring system, DIST, was designed to address these challenges.

8



We have made three major contributions in designing and building DIST:

Saluki: a high-performance Wi-Fi sniffing system [115]. Compared to our previous im-

plementation and to other available sniffing programs, Saluki has the following advantages:

(1) its small memory and computation footprint makes it suitable for a resource-constrained

Linux platform, such as those in commercial Wi-Fi access points; (2) all traffic between the

sniffer and the back-end server is secured using 128-bit encryption; (3) the frame-capture

rate has increased more than three-fold with minimal frame loss; and (4) under the same

frame-capture rate, the traffic load on the backbone network is reduced to only 30% of that

in our previous implementation.

DISTSANI: an online network trace sanitization and distribution program. It receives

the network trace captured by Saluki, sanitizes several fields in the frame/packet headers,

and distributes the sanitized network trace to different destinations simultaneously. The

online sanitization process is highly efficient, processing up to three million addresses per

second in our implementation.

MAPmaker: a tool for configuring, launching, monitoring, and terminating an ex-

periment. A running experiment consists of interacting processes distributed across many

hosts, including both servers and AMs. MAPmaker pushes master executables for these

processes to the hosts that need them, remotely starts them, and keeps track of their pro-

cess id numbers (pids) both for monitoring purposes and so that the experiment can be shut

down in an orderly fashion. MAPmaker runs multiple independent experiments concur-

rently without interference among them.

9



Because my individual contribution mainly lies in Saluki and DISTSANI, this chapter

only describes these two subsystems.

2.1 Background

This section first introduces the MAP project (the predecessor of DIST) and then presents

some basic information about the WLAN at Dartmouth; this WLAN is the target network

that DIST is designed to monitor.

2.1.1 MAP

MAP [107] aimed to build a security-focused WLAN monitoring system while DIST has

broader goals. The architecture of the MAP system is shown in Figure 2.1. During 2005

and 2007, we deployed 20 Aruba AP70s [5] flashed with OpenWrt Linux [87] in the com-

puter science department building at Dartmouth College. These Aruba AP70s have been

used as Air Monitors (AMs) to capture wireless frames, extract and forward the desired

frame features to the merger process, which creates a unified stream on a coherent time-

line. The analysis engine includes plug-in detectors that analyze the traffic, producing alerts

to the protection system and feedback to the measurement system.

MAP includes several advanced features for WLAN measurement: AM feature ex-

traction, AM channel sampling and refocusing, and multi-source trace merging. AM fea-

ture extraction is designed to reduce the volume of forwarded traffic. It works as a user-

configurable filter that extracts user-requested information from each captured frame/packet,
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and only forwards the extracted information to the server in a frame format called AMEX.

AM channel sampling and refocusing are two complementary strategies to deal with the

multi-channel-monitoring problem in WLANs. Because the unlicensed bands used for

IEEE 802.11 networks have multiple channels, a single-radio AM can only listen to one

channel at any time. One could attach multiple radios to one device, or place multiple

single-radio devices at one location. Either way, the hardware required is bulky or pro-

hibitively expensive. The AMs in MAP monitor multiple channels by periodically assign-

ing the radio to each channel. This technique is named channel sampling, as it collects only

a sample of the frames passing through all the channels [33,34]. AM channel sampling will

inevitably lose information because the AM only visits each channel for a limited time. To

compensate for this loss, MAP allows the analysis components to dynamically “refocus”

the measurement system after observing some user-defined suspicious behaviors, by gath-

ering more frames from a client, AP, or region, or by extending the set of features collected

about the traffic of interest [35]. In the event of an ongoing network attack, the higher-

fidelity stream of frames may allow MAP to confirm the attack or locate the attacker. We

refer interested readers to our previous work [107] for more thorough information about

MAP and its comparison to Jigsaw [21], DAIR [7], DOMINO [101], and Wit [78].

2.1.2 WLAN at Dartmouth College

Dartmouth College was among the first universities in the world to provide campus-wide

WLAN coverage. In 2001, more than 500 Cisco 350 APs were installed, to provide
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Table 2.1: Deployment scale comparison of MAP, Jigsaw and DIST
MAP Jigsaw DIST

Deployed AMs 20 96 210
Radio interfaces 40 192 420

Covered buildings 1 1 11
Covered users ≈ 100 ≥ 1000 ≥ 5000

campus-wide IEEE 802.11b service. In 2006, this WLAN migrated to an Aruba Networks

solution that provides IEEE 802.11a/b/g services simultaneously. More than 1300 Aruba

AP70 access points have been installed to cover 1.8 square miles of campus populated by

over 6,000 students and 2,500 faculty.

2.2 Challenges

We faced many challenges when designing and implementing DIST: performance, scala-

bility, security, and privacy. We address each group in turn.

2.2.1 Performance and scalability

Table 2.1 compares the scale of MAP and Jigsaw [21] to DIST. It can be seen that DIST’s

scale is much larger than that of either MAP or Jigsaw. Compared to MAP, the number

of deployed AMs and the number of covered buildings have increased more than 10-fold.

Based on our measurements, more than 500 gigabytes of traffic headers1 will be captured

by the 210 AMs every day.

1Here, the traffic headers include IEEE 802.11 MAC layer header, IP header, and UDP or TCP header.
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We use the Aruba AP70 [5] flashed with OpenWrt Linux [87] as our AM’s hardware

platform. The advantage of the Aruba AP70 is that it fully complies with IEEE 802.3af

standard for Power over Ethernet (simplifying installation), provides diverse interfaces

(USB, serial, and Ethernet), and has a compatible appearance to other devices in our de-

ployment environment. Because the Aruba AP70 was originally designed to be a com-

mercial AP (Access Point) instead of a wireless AM, its processing capability is limited;

indeed, just to put it in context, even smart cellphones have more memory and CPU power,

as shown in Table 2.2. In our previous MAP project, my colleagues developed a sniffing

system called dingo [34, 35]; it supports several advanced features, such as channel sam-

pling, data aggregation, dynamic filtering, and refocusing. However, dingo’s performance

deteriorates quickly when dealing with high-volume traffic. The significantly increased de-

ployment scale and dingo’s limited performance compelled us to design and implement a

new high-performance Wi-Fi sniffing program for DIST.

Because DIST is distributed across campus, the whole system works in a client/server

mode: the sniffing programs run on the remote AMs, capturing and forwarding traffic to

our servers via the campus backbone network. The expected high volume of captured data

also drove us to consider its impact on the backbone network. DIST servers are located in

the computer science department. Since these servers share a 1Gbps link with more than

200 other machines in the department, more than 500 gigabytes per day through this link

will negatively affect other machines’ network performance. To efficiently use the available

bandwidth, and to alleviate the pressure on the shared medium, effective data aggregation

and compression are features essential to DIST.
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Table 2.2: Comparison of Aruba AP70 to other platforms
Aruba AP70 Linksys WRT54GL iPhone 4

CPU 266MHz MIPS 4Kc 200MHz MIPS 1GHz Apple A4
Memory (RAM) 28MB 16MB 512MB
Storage 8MB 4MB 16 or 32GB

2.2.2 Security and privacy

Since DIST is monitoring Dartmouth’s production WLAN, used daily by thousands of stu-

dents and staff, the collected traces contain sensitive information related to human activity,

the identifiers like MAC/IP addresses may identify individuals, and TCP/UDP payloads

may expose personal information. To maximally ensure system security and protect user

privacy, we carried out a comprehensive security and privacy analysis of the whole DIST

system, hardened the operating systems on all AMs and servers (such as minimizing run-

ning services and configuring strict firewall rules), and adhered to a strict guideline when

transferring and storing captured data: if it is not encrypted, then it must be sanitized.

We concluded an extensive security analysis and built detailed threat models of the

DIST system in our previous work [15]. In this chapter, we focus on two kinds of threats

that may jeopardize the data flow transmitted inside the DIST system. First, an adversary

may intercept the traffic between the AM and server. Second, an adversary may have access

to the server that stores captured traces. To protect against the first threat, we require all

data exchanged between AMs and the servers, including both captured traces and control

messages, be encrypted to ensure data confidentiality. As a further step, we implemented

an HMAC (Hash-based Message Authentication Code) to ensure both the data integrity and

15



AM AM

ControllerSanitizer

Disk
Data 

subscriber 1
Data 

subscriber 2

AM

Encrypted data

Sanitized data

Encrypted 
control message

Figure 2.2: DIST information flows.

the authenticity of all data exchanged between AMs and the servers. To protect against the

second threat, we require all received data be sanitized before being written to persistent

storage (such as hard drives) or sent to data subscribers (including the merger and users’

analysis components, except for real-time attack detection). Figure 2.2 shows the types of

information flows inside DIST.

2.3 Approach

As described above, performance, scalability, security, and privacy are the fundamental

challenges we faced in designing and implementing DIST.

In this section we provide more details of our methods for addressing these challenges

using the Saluki and DISTSANI subsystem. Saluki is a high-performance Wi-Fi sniffing

system; DISTSANI is an online network trace sanitization and distribution system.
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Table 2.3: Comparison of passive network sniffing programs

tcpdump Wireshark Kismet dingo Jigdump Saluki

Features

wired/wireless
network

Both Both Wireless Wireless Wireless Both

client/server mode No No Yes Yes Yes Yes
data aggregation No No No Yes Yes Yes
data compression No No No No Yes Yes
data encryption No No No Yes No Yes
data authenticity No No No No No Yes
data integrity No No No No No Yes
Wi-Fi channel
sampling

No No Yes Yes No Yes

2.3.1 Saluki

While Saluki [115] shares many of the same features as other passive network sniffing soft-

ware tools, its design has been driven by our past experience and by the special needs of the

DIST project (performance, scalability, security, and privacy). Table 2.3 provides a detailed

comparison between Saluki and other well-known passive network sniffing programs, such

as tcpdump [119], wireshark [124], Kismet [60], dingo [107], and Jigdump [21]. In this

table, only Saluki provides the complete feature set to address DIST’s efficiency, scalability

and security challenges. It is worth noting that Jigdump is also a highly efficient sniffing

program but, because of its dependence on Atheros chipset and a specific old version of

MadWifi driver [77], it lacks the portability of other sniffing programs.

Capture interface

We use a raw socket with PACKET MMAP enabled as the capture interface. The raw

socket lets us bypass the protocol stacks (the link layer and above) inside the Linux kernel,
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and the memory mapping provides for efficient communication between the kernel space

and user space. This interface avoids inefficiencies introduced by abstractions in the libpcap

library.

In the Linux kernel, PACKET MMAP is specifically designed to facilitate the network

traffic capturing task. Without this socket interface, capturing each network packet requires

a system call. PACKET MMAP implements a configurable circular buffer between the user

and the kernel space – capturing a packet in the user space becomes a simple read operation

on the shared circular buffer [91]. This interface proved highly efficient on the AP70s. In

one test (simply capturing frames and counting, nothing else), this interface was able to

capture 7,063 frames per second (fps) with 25%-35% CPU usage and 3.3% frame loss. As

a comparison, running tcpdump with libpcap 0.9.8 under the same traffic load, froze the

AMs.

Data aggregation

Saluki uses UDP packets to forward the captured traffic back to our central servers. We

observed that if we pack only one frame in each UDP packet, the 100Mbps Ethernet con-

nection on the Aruba AP70 could not keep up when there was a high volume of wireless

traffic. We measured the maximum throughput under different UDP datagram sizes as

shown in Table 2.4. We can see that small UDP packets degrade the Ethernet throughput

greatly. Given that small frames, like a 14-byte ACK frame, are widely used in the IEEE

802.11 MAC layer, it is much more efficient to aggregate multiple frames and then send

them as a “combo” frame. A DIST combo frame has two sections: the header section and

18



Table 2.4: UDP throughput for different datagram size
Datagram size (bytes) Throughput (KBps)

10 44.8
50 222.9

100 443.9
200 879.8

1000 4155.6
1500 5326.7
2500 7443.3
3000 7875.5

the data section. The header section contains meta information about this combo frame

as listed in Table 2.5, and the data section holds multiple captured frames. When a new

frame is captured, Saluki appends the frame size and the frame content to the DIST combo

frame’s data section.

It is worth noting that there is a trade-off between the size of the combo frame and

the frame-receipt delay at the server side. While a bigger combo frame will use the Eth-

ernet connection more efficiently, bigger is not always better, especially for time-critical

applications, like wireless-network intrusion detection. For this reason, we defined two

adjustable criteria to decide when a combo frame should be sent: when the payload size

of a combo frame exceeds a size threshold, or when the time difference between the first

enclosed IEEE 802.11 frames and the current system clock exceeds a time threshold. In our

current implementation we set these two parameters to 14KB and 1 second, respectively.

Data compression

The DIST combo frame increases Saluki’s network efficiency, but we need to do better to

more efficiently use the shared 1 Gbps backbone Ethernet bandwidth, so we compress a
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Table 2.5: DIST combo frame header definition
Size Meaning

ver 16 bits combo frame format version number
amid 16 bits which AM sent out this combo frame
seqn 16 bits combo frame sequence number
frn 16 bits number of frames inside this combo frame
dsz 32 bits size of uncompressed data in bytes
mac 32 bytes message authentication code (optional)

combo frame before sending it. Given the Aruba AP70’s limited processing power, instead

of pursuing the maximum compression ratio, we aimed to find a lossless compressor that

has a good balance between processing speed and compression ratio.

After some background study, we focused on two variants of the Lempel-Ziv (LZ)

compression method [122]: QuickLZ [97] and FastLZ [43]. Compared to the standard LZ

compressor, these two variants trade compression ratio in favor of speed. It is important to

note that a compressor’s performance (compression ratio and speed) may vary when dealing

with different data. We chose QuickLZ because it had a more consistent performance on

our captured network data. In our experiments, a 14KB combo frame was compressed to

2.8-3.6KB by QuickLZ. The use of compressed combo frames saved more than 70% of

the load on the backbone network, compared with sending individual uncompressed frame

headers in each UDP packet.

Data encryption

As a basic security measure to protect the privacy of the network users whose traffic we

capture, we encrypted all traffic between each AM and the central servers.

Encryption ciphers can be classified into two categories based on their operation mode:
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block ciphers and stream ciphers. A block cipher operates on data blocks, usually of fixed

size, and a stream cipher operates on a continuous stream of data. We chose a stream cipher

over a block cipher for two reasons: speed and security. First, a stream cipher generally

will be much faster than a block cipher. Second, when using the same encryption key,

there is a strict one-to-one mapping between the plaintext and the ciphertext for a block

cipher, whereas there is no such one-to-one mapping for a stream cipher [56]. For DIST,

this property of block ciphers could be a potential security flaw, because all possible values

in many fields of Radiotap header and IEEE 802.11 header can be easily enumerated, and

thus a block cipher may facilitate attacks by providing a much smaller search space than a

stream cipher.

We evaluated all stream ciphers from the eSTREAM project [102] and the SNOW 2.0

cipher [40]. The best two ciphers were Rabbit and SNOW 2.0, which have been accepted as

ISO standard stream ciphers (ISO/IEC 18033-4). Both of them support 128-bit encryption

and are much faster than RC4 and AES in counter mode [102] .

We evaluated an assembly-language implementation of the Rabbit cipher optimized for

the MIPS 4Kc processor, whereas SNOW 2.0 is implemented in the C language and was

not specifically optimized for this processor. Since our goal was to transmit the protected

data most efficiently, we tried the ciphers both without compression and in combination

with compression. We observed the following.

1. For stream ciphers, Rabbit emerged as a winner on the Aruba AP70, surpassing

SNOW 2.0. When executing 5,000 loops on 14KB data, Rabbit took 5.33–5.55 seconds,

whereas SNOW 2.0 took 7.42–7.73 seconds.

21



2. Adding compression decreases the total processing time, because there were fewer

bytes to encrypt. In effect, compression was computationally “free”.

Securely transmitting 5000 14KB combo frames (each combo frame may contain tens

to hundreds of captured Radiotap and IEEE 802.11 frames) to a DIST server took 6.2–6.4

seconds, which encompassed two operations: encryption and UDP forwarding. The load

on the network averaged 14KB per combo frame. If we compressed these combo frames

first, however, handling them took less time, namely 5.3–5.4 seconds for three operations:

compression + encryption + UDP forwarding. The required network bandwidth was also

reduced by more than 70% (from 14KB per combo frame to 2.8-3.4KB per combo frame).

This result illustrates that an efficient compression not only saves network bandwidth, but

also reduces CPU time needed for encryption and UDP forwarding. If needed, we could

set the size of the uncompressed DIST combo frame to be larger than 14KB. Although

this change may improve the network throughput (Table 2.4), it comes at the expense of

increased delay at the server side.

Data authenticity and integrity

Encryption provides data confidentiality but does not ensure data authenticity and integrity.

To achieve a higher level of security, we integrated an optional HMAC-SHA256 component

into Saluki to ensure both authenticity and integrity of the data exchanged between Saluki

and servers.

HMAC-SHA256 is one type of HMAC (Hash-based Message Authentication Code)

that uses a SHA-256 cryptographic hash function [6, 47]. The input to HMAC has two
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parts: the data to be processed, and a secret key. HMAC’s strength depends on the size

of secret key. Currently we use a 128-bit secret key, but this key can be extended to a

longer length, such as 256 bits, to improve HMAC’s security against a brute-force attack.

The output of HMAC-SHA256 is a 256-bit MAC (Message Authentication Code). For the

collected network traces transmitted from AMs to servers, this 256-bit MAC is generated

by Saluki running on AMs and verified by the receiver program, DISTSANI, running on

servers.

To accurately quantify HMAC-SHA256’s performance impact, we developed a bench-

mark program derived from Olivier Gay’s HMAC-SHA2 implementation [47]; Figure 2.3

shows the evaluation results. The x axis in Figure 2.3 is the size of data block processed

by HMAC-SHA256 ranging from 1,000 bytes to 5,000 bytes, and the y axis is the time

used by HMAC-SHA256 to process such a data block. The experiment was executed for

50,000 loops at each data-block size, and we plotted the error bars for 5 different block

sizes. At most locations, the upper and lower bar were cluttered together. We can see that

with a constant overhead, HMAC-SHA256 has a linear performance on input data. Using

the information in this figure, we can estimate that when the frame capture rate is 5,500

fps, capture length is 192 bytes for each frame, and an uncompressed DIST combo frame

is 14,000 bytes, HMAC-SHA256’s CPU usage on AP70 will be 5.24%, 7.53%, and 9.82%

for 2,000, 3,000, and 4,000 bytes of compressed DIST combo frames respectively.
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Figure 2.3: HMAC-SHA256’s processing speed on AP70.

Multithreading

So far we have introduced four core components of the Saluki sniffing program: cap-

ture interface, data aggregation, compression, and encryption. The final important task

is to assemble them efficiently. Each of these components is relatively self-contained and

can work independently from other components. For example, capturing frames from the

Wi-Fi interface and forwarding DIST combo frames via Ethernet are I/O-intensive opera-

tions, while data compression and encryption are CPU-intensive operations. This observa-

tion inspired us to fit these components into a multithreading pipeline. We experimented

with several combinations of component and thread placement, and Figure 2.4 shows our

final and optimal configuration.

From Figure 2.4, we see that Saluki has three threads. Thread 1 and Thread 2 under-
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take data capturing, processing, and forwarding. Thread 3 is the control thread, managing

scheduling and channel-hopping tasks (as in dingo [34, 35]). Two ring buffers are used

in this program. The top ring buffer is responsible for mapping the captured frames from

kernel space to user space and is emptied by Thread 1. The second ring buffer connects

Thread 1 with Thread 2. From the perspective of multithreaded programming, the com-

munication through these two ring buffers follows the classic writer/reader programming

model.

Instead of putting compression, encryption and UDP forwarding all in Thread 2, we

had planned to divide them between two threads: compression and optional HMAC com-

putation in one thread; encryption and UDP forwarding in another. In the test run, however,

we observed that Thread 1 was the bottleneck here: its CPU usage was about 1.5 – 2 times
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of Thread 2 even when HMAC is turned on in Thread 2. Due to this observation, we did

not split Thread 2 further.

Figure 2.5 shows the data flow inside Saluki when all the features (data aggregation,

encryption, compression and the optional HMAC computation) are turned on.

2.3.2 DISTSANI

As noted in Section 2.2.2, we take the position that if our captured data are not encrypted

then they must be sanitized. In DIST, the transformation from the encrypted data to the

sanitized data happens inside DISTSANI. Depicted as the “sanitizer” in Figure 2.2, DIST-

SANI is in charge of parsing the received DIST combo frames, sanitizing each individual

802.11 frame, and distributing sanitized 802.11 frames to their correct destinations. These

three functionalities are implemented as three components in DISTSANI.

Parsing and Distributing Components

The parsing component receives the DIST combo frames sent by Saluki and mirrors the

operation of Saluki: decrypt a DIST combo frame using the Rabbit algorithm, verify the
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HMAC (if any), decompress it using the QuickLZ algorithm, and split this combo frame

into individual 802.11 frames. The distributing component packs the processed 802.11

frames using pcap format and outputs them to different destinations, according to user

specifications – either to a trace file on local hard drives or to a live UDP stream forwarded

to data subscribers. For the same input traffic, different users may receive different outputs

from DISTSANI because they can choose different ways to sanitize the same captured data.

Sanitizing Component

DIST requires that all data available to data subscribers (except for real-time attack detec-

tion) or stored to persistent storage must be sanitized. This dictates that the DIST sanitiza-

tion process must be online and be fast enough to keep up with the data capturing speed,

otherwise much captured data will be lost. Although many sanitization algorithms have

been proposed, few of them have an online version [118]. DISTSANI uses a network trace

sanitization library, libdistsanitize, developed by Chris McDonald. Of note, our sanitiza-

tion scheme only sanitizes MAC and SSID addresses [15], and not any other addresses or

identifiers that appear in frame payloads, such IP addresses, TCP ports, or email addresses.

The primary reason for this limitation is that DIST only captures and stores MAC layer

headers together with physical-layer interface details, such as channel frequency and signal

strength. Moreover, most contemporary wireless networks encrypt everything above the

MAC layer, making payload sanitization both impossible and unnecessary.

27



2.4 Evaluation

We undertook two classes of experiments to evaluate DIST: first, a controlled-environment

evaluation, in which we evaluated Saluki’s extreme performance; second, a real-world in-

production evaluation, in which we ran the complete DIST system to monitor Dartmouth’s

production WLAN.

2.4.1 Controlled environment evaluation

In this section, we evaluate Saluki in terms of memory usage, CPU usage, frame-capture

rate, and frame-loss ratio. Because tcpdump, Kismet and dingo are all built on libpcap, and

tcpdump is the simplest (and should also be the fastest) among them, we used tcpdump as

the baseline for comparison. To release tcpdump’s maximum potential [74], we directed its

output to /dev/null instead of the screen or a file.2 We set the capture size for tcpdump

and Saluki to 192 bytes.

We set up two laptops (each a Thinkpad T42 with 1.6GHz Pentium M CPU and 1.5GB

RAM) to act as the IEEE 802.11g Access Point and the client respectively. These two

laptops were placed about 2 meters (6 feet) from each other, and one Aruba AP70 sniffer

was placed halfway between them. We used Iperf [54] as the traffic generator running on

two laptops.

We used the Linux command “top” to query memory usage. During execution, Saluki

occupied 660KB RAM, and tcpdump used 740KB RAM. Note that, since tcpdump is

2That is, tcpdump -i ath0 -n -s 192 -w /dev/null
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dynamically linked with libpcap, its actual memory usage would be larger than 740KB

if the memory used by libpcap were counted. Of the 660KB RAM consumed by Saluki,

much of it was allocated to various buffers for better performance. For example, the size

of the second ring buffer (connecting Thread 1 and Thread 2) was about 90KB, and the

sizes of the compression and encryption buffers were about 30KB each. If needed, one can

reduce Saluki’s memory usage by shrinking these buffers.

Figures 2.6–2.8 show the performance in terms of frame-capture rate, frame-loss ratio

and CPU usage. The frame-capture rate measures the speed that a sniffing program captures

frames in frames per second (fps). The frame-loss ratio is the ratio of the number of lost

frames reported by the OS kernel to the sum of the number of captured frames and lost

frames. Since Saluki is a multithreaded program, its CPU usage in Figure 2.8 is the sum of

all its threads’ usage.

We used Iperf to generate constant-bit-rate (CBR) UDP traffic with 500B (500-byte)

and 1000B (1000-byte) datagrams under five UDP bandwidth settings: 10 Mbps, 15 Mbps,

20 Mbps, 25 Mbps and 30 Mbps. Each experiment ran for 200 seconds. Two things

are worth noting. First, these five bandwidth settings are the parameters given to Iperf;

however, in reality, the actual bandwidth could be a bit lower than the setting. Second, for

a given bandwidth setting, Iperf must generate many more small-size packets than large

ones to achieve that bandwidth. Due to the limited CPU power on the laptop, we could not

generate sufficient 500B UDP packets to reach 30Mbps. Thus we do not provide a result

for that setting.

Figure 2.6 shows that Saluki captured frames much faster than tcpdump under all set-
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tings even though Saluki needed to complete much more work (data compression, data

encryption, and UDP forwarding) than tcpdump. Saluki’s advantage became more obvi-

ous when dealing with high-speed traffic. When Saluki captured 5,488 fps, tcpdump only

captured 1,802 fps. In this case, Saluki captured more than three times as many frames as

tcpdump did.

Figure 2.7 demonstrates that Saluki’s frame-loss ratio was significantly lower than tcp-

dump’s. For UDP traffic with 1000B datagrams, Saluki’s frame-loss ratio was nearly al-

ways zero (except for 0.028% under 30Mbps), while tcpdump could lose around 40% of

frames. For UDP traffic with 500B datagrams, the disparity was more obvious (8.6% vs.

67.4% in the worst case).

We make the following interesting observation: by comparing “tcpdump, 1000B data-

gram” to “tcpdump, 500B datagram” in Figure 2.6, we can see that tcpdump usually cap-
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tured 500B frames at a lower rate than it captured 1000B frames, even though Iperf sent

them at a higher rate. In Figure 2.7 one can see that tcpdump lost a much higher fraction

of 500B frames. Our hypothesis is that tcpdump dropped many “half-processed” frames

when new frames arrived so quickly.

Figure 2.8 summarizes Saluki and tcpdump’s CPU usage. When there was not too much

traffic, their CPU usages were comparable. When traffic volume was high, Saluki’s CPU

usage was higher than tcpdump’s. Considering Saluki captured more than three times as

many frames and included other work, this amount of increased CPU usage, however, is

reasonable.

It is worth noting that the above evaluation results were achieved when the optional

HMAC computation was turned off. When this feature was turned on, no noticeable per-

formance changes (frame-capture rate, frame-loss ratio) were observed except that Saluki’s

CPU usage was increased by about 7% (from around 80% to around 87%) under the busiest

evaluation condition (25 Mbps UDP, 500B datagram).

2.4.2 In-production evaluation

To evaluate the performance of DIST, we continuously monitored Dartmouth’s production

wireless network for 62 days (from January 4, 2011 to March 6, 2011); 206 out of 210 AMs

were used for this evaluation (the remaining 4 AMs were reserved for debugging purposes).

We ran Saluki on both radio interfaces of each AM, in total providing 412 Saluki instances

on 412 radio interfaces. During the time span of this experiment, Dartmouth’s wireless
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Table 2.6: In-production experiment configuration
Start time 00:00, Jan 4, 2011
Duration 62 days
Radio interfaces 412
AMs 206
Channel sampling equal-time sampling
Sampling interval 0.2 seconds
Channels monitored 11 802.11b/g channels
Collected trace file size 3.7 terabytes (gzip compressed)

network only worked in IEEE 802.11b/g mode. To cover eleven IEEE 802.11b/g channels

ranging from 1 to 11, we configured Saluki to use equal-time channel sampling. Saluki

would jump to a new channel after dwelling on one channel for 0.2 seconds, and thus one

iteration took 2.4 seconds. To minimize the capturing overlap between two radio interfaces

on the same AM, the two Saluki instances running on them were set to listen to different

channels at any given time, leaving a channel distance of six between the radios. While our

software may easily be extended to cover the many additional channels provided by IEEE

802.11n, we have not yet had opportunity to extend and test DIST in an updated network.

Table 2.6 summarizes the experiment configuration.

We ran a single instance of DISTSANI on a server to receive and process all traffic cap-

tured from 412 Saluki instances. This server has two 3.0GHz Intel Xeon CPUs and 4GB

RAM. DISTSANI wrote the processed network traces in pcap file format to a 6-terabyte

RAID attached to this server. It is worth noting that, for privacy reasons, Dartmouth only

allows us to save IEEE 802.11 frame headers (no IP, TCP/UDP headers) to persistent stor-

age [15]. In total, 3.7 terabytes of compressed pcap trace files were generated in this 62-

day experiment (in uncompressed form, these trace files would occupy about 24 terabytes).
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DISTSANI’s CPU usage was between 14% to 25% during the entire experiment. With the

HMAC-SHA256 turned on, an extra 2.40% – 4.49% CPU usage would be added to the

above numbers. Such low CPU usage validates DISTANI’s online processing capability in

a production environment.

Figure 2.9 gives an overall picture about the frames processed by the DIST system.

The top subplot shows the frame rate of DIST combo frames received by DISTSANI.

Since each DIST combo frame may carry hundreds of IEEE 802.11 frames, the bottom

subplot of Figure 2.9 shows the frame rate of the IEEE 802.11 frames encapsulated in

the received DIST combo frames. In Figure 2.9 and subsequent similar figures, we use a

“boxplot” style to project all measurement results in this 62-day experiment onto a typ-

ical 24-hour-calendar-day axis. Each box in a boxplot depicts 5-number summaries for

each non-overlapping 15-minute time window: the upper quartile (the top edge of a blue

rectangle), the lower quartile (the bottom edge of a blue rectangle), the median (the red

line between the top and bottom edges), the maximum (the top point of the black-dotted

whisker line), and the minimum (the bottom point of the black-dotted whisker line). Here

we set the maximum whisker length to 1.5, and thus the red crosses lying outside of any

box are outliers which imply that they are out of 99.3% coverage if the data are normally

distributed.

In Figure 2.9, the frame rate of DIST combo frames was relatively stable over time.

It mainly varied between 410 fps (frames per second) and 440 fps. Since there were 412

Saluki instances, we observed that each Saluki instance transmitted about one DIST combo

frame per second, corresponding well to the 1-second frame-holding threshold we set in
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Figure 2.9: Captured 802.11 frames and received DIST combo frames.
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Saluki (Section 2.3.1). The stability of DIST combo frames implied that most of the time

our DIST system worked in a light-load condition in which most Saluki instances were

not busy and forwarded DIST combo frames to servers triggered by the 1-second timer

instead of a full combo frame. This proved our DIST system’s efficiency and scalability in

a practical network monitoring environment.

The frame rate of IEEE 802.11 frames varied more. The maximum frame rate (42,727

fps) was 1.73 times the minimum (24,699 fps). Moreover, the distance between the upper

and lower quartiles, that is, the height of the blue rectangles, varied more than that of DIST

combo frames. It reflected the dynamics of the monitored network and generally followed

a diurnal pattern: fewer frames in the early morning and more frames during daytime.

An interesting observation from this plot is that several red-cross outliers between 1AM

and 7AM corresponded well with some special dates at Dartmouth, for example, midterm

exams. Around those days students may have stayed up later than usual, so the network had

above-normal usage. Figure 2.10 is a further IEEE 802.11 frames breakdown according to

their types: management frames (including beacons), control frames, and data frames.

Figure 2.11 examines the number of live and active APs and the number of active users

over the same period. Each box summarizes the distribution of average values computed

over non-overlapping 15-minute windows. An live AP is considered to be one distinct

wireless interface (identified by a distinct MAC address) transmitting beacon frames, and

an active AP is an live AP that is transmitting or receiving data frames. Because one

physical AP can generate multiple virtual APs and each virtual AP has a distinct MAC

address, the number of live and active APs summarized in Figure 2.11 may be bigger than
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Figure 2.10: IEEE 802.11 frames breakdown.
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Figure 2.11: Live/active APs and active users.
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the number of physical APs installed on our campus. An active user is a wireless card

that is exchanging data frames with an AP. It is possible that a wireless card may have

been used in multiple devices, a device has been used by multiple people, or a person

may have multiple wireless devices, but we equate “active card” with “active user” for

the simplicity of expression. Two interesting observations can be drawn from Figure 2.11.

First, the variation of active users shown in Figure 2.11 followed a diurnal pattern as seen in

Figure 2.9. Second, the ratio between the active APs and the live APs was low. Even at the

peak time, only about 60% of APs were actively used. This result implies that Dartmouth’s

production wireless network has substantial redundancy for coverage reasons, and in the

future it may be possible to employ some energy-saving management strategies without

jeopardizing the user experience.

2.5 DIST Active Protection System

As discussed in Section 2.3.1 and Section 2.4.1, Saluki reduces the CPU demands on each

AM. Each AM can now collect a more faithful network trace under high traffic loads,

or undertake additional tasks providing more fine-grained monitoring or protection of the

wireless network. Moreover, as our Aruba AP70 monitors have two radio cards, we can

collect traffic with one while transmitting protective or interrogative frame sequences with

the other.

In this section we detail one representative application of DIST: an Active Protection

System (APS). While many techniques have been developed to detect potential security
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threats on a wireless network, there are few, if any, techniques to protect normal users

against these threats. For a wired network, a network administrator can block a station’s

access to the network by port blocking, but this is not possible for a wireless network due to

the open medium. An adversary can send whatever he wants over the air; even if a wireless

IDS can detect the malicious behavior, it cannot stop it. The goal of the DIST APS is

to provide the wireless network administrator with a tool to mitigate the ongoing security

threats.

2.5.1 Implementation

In its first version, our APS focuses on the the unauthorized Access Point (AP) threat. Due

to security concerns, an enterprise WLAN administrator often requires the users to connect

only to an enterprise-controlled AP. However, an unauthorized AP (either a rogue AP or

an impersonation of an AP [4]) can easily breach this security policy. Our APS uses sev-

eral denial-of-service (DoS) attacks in a “benign” way that prevents users from connecting

to an unauthorized AP, or forces them to break an existing connection. The APS has two

components: a back-end controller and a front-end agent. The APS controller running

on a backbone server monitors the alerts generated by DIST detectors, each of which is

monitoring the stream of frames captured by AMs, looking for evidence of unauthorized

APs. After an alert is received, the APS controller takes two steps: (1) it compares the

target MAC address to the whitelist of known-but-not-ours APs. If the target MAC address

is in the whitelist, the APS assumes this is a legitimate AP and does not take subsequent
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steps. Otherwise, APS will proceed to the next step: (2) it determines the actions (accord-

ing to predefined rules) and the set of AMs that should participate. Then it composes and

sends commands to the APS front-end agent running on each involved AM. An APS com-

mand includes at least the following four fields: target MAC address, channel, action, and

duration (such a command is protected by the Rabbit cipher and HMAC-SHA256 (Sec-

tion 2.3.1) to ensure data confidentiality, authenticity, and integrity). The APS agent parses

the command, prepares the interface and launches the attack against the specified target. It

is worth noting that, even though an adversary can move to other channels or other places

when he discovers the APS, it is difficult to bypass the system entirely because of the full-

spectrum coverage and broad deployment of DIST. Currently the APS agents are running

on DIST AMs, but technically it is possible to integrate them into production APs to save

cost.

2.5.2 Evaluation

We evaluated the DIST APS using the metrics of response time and protection effective-

ness.

Response time. A quick reaction is important to protect users from unauthorized APs.

The response time is the time between the moment when the APS controller receives an

alert and the moment when the APS agent transmits its first attack frame. Because our AMs

are remotely deployed around Dartmouth campus, the response time is the sum of (1) the

APS controller’s processing time, (2) the network delay, and (3) the APS agent’s processing
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time. The measured average network delay is 0.372 milliseconds, and the average process-

ing time for APS controller and agent are 0.025 milliseconds and 350.347 milliseconds

respectively. The average DIST APS response time was thus about 351 milliseconds.

Protection effectiveness. We employed two DoS attacks to interrupt the operation of an

unauthorized AP: a Queensland DoS attack [1] and a De-authentication attack [10]. A

Queensland DoS attack is a blind-jamming attack that can disable all Wi-Fi activity on

the given channel in the immediate vicinity. In our lab environment, we observed that its

effective radius reached at least 50 feet. Compared to the Queensland DoS attack, the De-

authentication attack is more “intelligent” because it will only be effective on the target

device and will not interfere with other devices on the same channel.

Figure 2.12 shows how the De-authentication attack affects both UDP and TCP traffic

under different attack intensities. The purpose of this experiment is not only to evaluate

the effectiveness with which the De-authentication attack disconnects users from unautho-

rized APs, but more importantly it is to estimate the cost for APS to successfully launch

such an attack. To simulate a busy channel, we tried to transmit as much UDP and TCP

traffic as possible. Obviously, UDP traffic was much more robust than TCP traffic against

DoS attack. The attack was launched between t = 10 and t = 20 in this plot. In Fig-

ure 2.12, a 200-fps De-authentication attack completely blocked the TCP traffic while, for

UDP, it required 400 fps to do so. We also observed that UDP recovered much quicker

than TCP from the attack: 1 second vs. 4–5 seconds. From the cost perspective, because

one De-authentication frame is only 58 bytes, one APS agent only occupies 185.6 KBps
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During attack

Figure 2.12: Evaluation of De-authentication DoS attack.

(≈1.5 Mbps) bandwidth when sending 400 De-authentication frames per second. At a con-

stant cost, such an attack can protect all nearby clients from the unauthorized AP, no matter

how many clients.

2.6 Summary

As an important edge of the Internet, enterprise-wide WLANs are increasingly used for

many mission-critical tasks. Monitoring such WLANs is important to understanding the

performance and security aspects of the Internet experience. However, monitoring a large-

scale WLAN is a difficult undertaking. In this chapter we introduce the design, implemen-

tation and evaluation of DIST, a large-scale general-purpose WLAN monitoring system.
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As the successor of MAP, DIST has faced many challenges related to efficiency, scalabil-

ity, security, and privacy. Saluki and DISTSANI are our solutions to these challenges. The

combined strength of these subsystems make DIST an efficient and scalable WLAN mon-

itoring system, which has been validated by both controlled and real-world evaluations.

Although Saluki and DISTSANI have been designed to fit the special needs of DIST, they

are also applicable to general WLAN measurement tasks with variable scales.

DIST provides us a unique platform to study a large-scale WLAN and its users at both

macro and micro levels. DIST’s wide coverage facilitates community-oriented network

research, such as how a large body of users use the network and how the users interact with

each other. Currently we are building a system that uses the high-resolution data captured

by DIST to help the computing service at Dartmouth to diagnose malfunctions, and detect

any abnormal behaviors that would disrupt or degrade the network operation.

It is a daunting task to build and operate a large-scale network measurement infrastruc-

ture like DIST. The prohibitive investment of time and effort restricts the ability to capture

meaningful amounts of WLAN traces to larger or well-funded organizations. In such an

environment, sharing the collected network traces is essential to promote wireless network

research. In the following chapters, we will discuss the challenges, state-of-art techniques,

and our contributions in promoting network trace sharing.
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Chapter 3

Obstacles and opportunities for network
trace sanitization

Network researchers benefit tremendously from access to traces of production net-

works, and several repositories of such network traces exist. By their very nature, these

traces capture sensitive business processes and personal activity. Furthermore, traces con-

tain operational information about the target network, such as its structure, identity of the

network provider, or addresses of important servers. To protect private or proprietary in-

formation, researchers must “sanitize” a trace before sharing it.

In this chapter, we survey the growing body of research that addresses the risks, meth-

ods, and evaluation of network trace sanitization. We distinguish the terms “anonymiza-

tion” and “sanitization”: “anonymization” attempts to protect the privacy of network users,

and “sanitization” attempts to protect the privacy of network users and the secrecy of oper-

ational network information. In this sense, “sanitization” is a superset of “anonymization”.

In some applications when we only care about protecting the privacy of network users, we

may use these two terms interchangeably. Research on the risks of network trace sanitiza-

tion attempts to extract information from published network traces, while research on san-
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itization methods investigates approaches that may protect against such attacks. Although

researchers have recently proposed both quantitative and qualitative methods to evaluate the

effectiveness of sanitization methods, such work has several shortcomings, some of which

we highlight in a discussion of open problems. Sanitizing and sharing network traces,

however challenging, remains an important method for advancing network-based research.

This survey is a joint work with Jihwang Yeo and Michael E. Locasto. I am grateful for

their contributions, particularly in Section 3.1.4, Section 3.1.5, and Section 3.4.

3.1 Background

This section introduces some background information about: challenges for trace collection

and sharing, real-world network trace sharing efforts, terminology used in this chapter, and

database sanitization and privacy-preserving data ming.

3.1.1 Challenges for trace collection and sharing

The daunting challenge of creating and maintaining a network monitoring infrastructure

involves obtaining legal and administrative approval, reaching out to the campus or cor-

porate community, implementing extensive security and control measures, maintaining in-

ternal records and documentation, and (sometimes) undergoing external security audits.

This investment of time and effort can restrict the ability to capture meaningful amounts

of network data to larger or well-funded organizations. In such an environment, sharing

becomes an essential feature of networking research. Yet, the legal, ethical, and privacy
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issues of capturing and sharing production network traces threatens to chill such sharing

and to eliminate this form of applied research.1

Many of the relevant laws are unclear about the legality of capturing and releasing

network traces [109]. Even if such laws were amended to include specific exceptions for

research use of network traces, as some advocate [19], individual privacy would still need

protection and organizations would still wish to protect operational details. For example,

network administrators may wish to share data for operational, not research purposes, but

privacy concerns remain. Moreover, the network operator may wish to protect other in-

formation of proprietary or operational significance, such as the structure of the network,

the identity of important servers, or how the network itself responds to particular types of

threats.

We recognize the inherent trade-off between privacy and usefulness. Sanitization

methods intentionally degrade the quality of a network trace to protect against trace users

who actively seek to extract sensitive information from the trace, and inevitably reduce

the type and content of features useful for non-malicious research. It is difficult to simul-

taneously achieve privacy and usefulness. A relationship exists between the amount of

information shared and the level of risk an organization or individual assumes in sharing

that information. Methods of sanitization or anonymization seek to bound the level of risk

as information sharing increases, but they can also bound the utility of the resulting data.

1Some point out that simulation provides an alternative to using real traffic data. For certain types of
research,(e.g., anomaly-based intrusion detection) simulation is unlikely to prove useful, as the details of a
real data sample are important, not just those properties derived from aggregate statistics [108].
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3.1.2 Real-world network trace sharing efforts

Although they may seem abstract, privacy concerns are far from theoretical, and recent

incidents involving real data sets have increased such concerns. The release of and sub-

sequent de-anonymization attacks against the AOL data set [48], the release of the Enron

email archive [41], and the de-anonymization attack on the Netflix competition data set [85]

show how easily simple methods of content anonymization can be broken and highlight the

risk posed by data once considered “private” or confidential.

Yet, the utility of sharing traces is so compelling that several efforts exist to share vary-

ing amounts and types of network trace data, including CAIDA, CRAWDAD, and PRE-

DICT.

CAIDA (Cooperative Association for Internet Data Analysis) [20] collects several dif-

ferent types of network data (including topology, security, traffic characteristics, routing,

real time monitors, and performance related data) at geographically and topologically di-

verse locations. CAIDA makes this data available to the research community while pre-

serving the data donors’ privacy. Currently its data repository has more than 230,000 data

files. DatCat [31] is a CAIDA project providing the Internet Measurement Data Catalog

(IMDC), a searchable registry of information about network measurement datasets. It aims

to provide a searchable index of available network datasets and to enhance the documenta-

tion of the dataset via a public annotation system.

CRAWDAD (Community Resource for Archiving Wireless Data At Dartmouth) [29]

provides a collection of trace data from wireless-network and mobile-computing researchers
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around the world. As of July 2011, CRAWDAD.org has over 3,151 users from 77 coun-

tries. It now makes 70 data sets and 23 tool sets available through the archive, with several

more in the pipeline. Over 300 papers have been published with or about CRAWDAD

data sets. In addition, a Dartmouth-wide wireless monitoring infrastructure has contributed

to the CRAWDAD repository since 2001.

PREDICT (Protected Repository for the Defense of Infrastructure Against Cyber Threats) [96]

is sponsored by the Department of Homeland Security (DHS) Science and Technology

(S&T) directorate. The datasets in this repository, which include security-relevant network

traces and host logs, are only available to qualified cyber defense researchers and only in

the United States.

The DSHIELD [38] repository of firewall logs is one of the earliest examples of sharing

intrusion alert information. Newer sharing efforts like OpenPacket.org tend to have a more

limited number of datasets.

3.1.3 Terminology

Since this chapter assumes a focus on network traces, rather than other types of data collec-

tions (notably databases), our terminology reflects this bias by referring to packets, headers,

and other network-related terms. Within the world of network traces, however, many spe-

cific types exist (such as SNMP logs, IP packet dumps, or Netflow traces), each with their

own organization, data types, and information peculiarities. The content of a network trace

includes not only the information from a network protocol (such as IP and MAC addresses,

49



or port numbers), but also other metadata such as timestamps, session duration, or a wire-

less device’s geographical coordinates. Such diversity of network traces makes it difficult

or impossible to construct a universal algorithm for sanitizing all types of network traces.

Moreover, due to a lack of understanding of (or documentation about) what information a

trace might contain, trace sanitization can be much more challenging than it might initially

appear.

We assume a general model for a network trace that holds a series of records. Each

record contains a tuple of several fields. Each component represents a specific feature, such

as source and destination MAC address, source and destination IP address, and timestamp.

Sanitization techniques can be applied independently to specific fields or sets of fields,

and can include intra-record methods (hiding correlations between fields of a single record),

inter-record methods (hiding correlations between multiple records in a trace), and inter-

trace methods (hiding correlations between traces captured from different devices or at

different times). Section 3.2 gives a detailed review of the sanitization techniques, es-

pecially IP-address anonymization techniques, and introduces several state-of-art network

trace sanitization tools.

De-sanitization techniques extract sensitive information from the sanitized network

traces. These techniques can be classified into two categories: direct de-sanitization attacks

and indirect de-sanitization attacks. While a direct de-sanitization attack exploits the flaws

and limitations of some sanitization techniques, an indirect attack often leverages implicit

information from the sanitized trace or auxiliary information from other sources. As an in-

teresting example of the indirect attack, a CRAWDAD user suggested that the characteristic
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scanning behavior of a well-known Internet worm could be used to reverse the anonymiza-

tion of IP addresses in some traces. Section 3.3 introduces current de-sanitization tech-

niques and demonstrates several sucessful de-sanitization practices.

3.1.4 Database sanitization and privacy-preserving data mining

A large body of research has been also conducted from the database and data mining com-

munity on sanitization metrics (and techniques) and privacy-preserving data mining [3].

Anonymity is widely used as a key measure of privacy in sanitized databases [94]. One

specific anonymity metric is “k-anonymity” [104], which in the database setting is defined

such that a system provides k-anonymity protection if each record in the database cannot be

distinguished from at least k−1 other records, with respect to every set of quasi-identifiable

non-sensitive attributes. Machanavajjhala et al. demonstrate some severe problems with

k-anonymity, however, especially when the attacker uses background knowledge, and pro-

pose “l-diversity” as a more powerful privacy definition than k-anonymity [76]. Li et al.

show some limitations of l-diversity, in that it is neither necessary nor sufficient to prevent

attribute disclosure, and propose a privacy notion called “t-closeness” that protects against

attribute disclosure [72].

Although from these metrics we may gain some insights for network trace sanitization,

they have made some assumptions that are specific to the database setting. For example,

each of these metrics assumes that the set of “sensitive” attributes are known a priori,

which is difficult to assume for network traces [26, 27]. Moreover, the metrics are purely
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static and syntactic in that they only consider the distribution of attribute values in the san-

itized database and do not aim to capture the dynamic change of the adversary’s semantic

knowledge [17].

Instead, Shannon’s entropy is often used as a simple indicator of anonymity and a mea-

sure of the adversary’s knowledge gain in a network trace. Many information-theoretic

metrics have been proposed [23, 26, 36, 106], including the degree of anonymity [26, 36]

and the measure of the adversary’s knowledge gain [26].

Producing sanitized data that have “good” utility for various data mining tasks is an

important research goal in privacy-preserving data mining [17]. There are two approaches

for measuring utility: a workload-independent measure, i.e., a utility measure that can be

used for any data mining tasks, and a workload-dependent measure. Although workload-

independent measures of utility are ideal for broader uses of published data sets, they in-

evitably use “workload-independent” or “syntactic” properties, such as the amount of gen-

eralization and suppression [22], average size of quasi-identifier equivalence class [76],

or preservation of marginals [58]. Such “syntactic” measures, however, are of little use

for some specific data-mining tasks (such as classification algorithms) and therefore sev-

eral workload-dependent utility measures such as accuracy of data-mining algorithms have

been also studied [17, 55, 71, 121].

We believe that both workload-independent (syntactic) and workload-dependent (se-

mantic) approaches are applicable to usefulness metrics for network trace sanitization. For

specific applications like network security analysis, some approaches define and exploit a

workload-dependent usefulness metric [132, for example]. However, there is limited re-
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search on workload-independent metrics for the usefulness of a trace for network analysis.

We discuss more details about the usefulness metric for network sanitization in Section 3.4

and 3.5.

3.1.5 Chapter organization

As network and security researchers, we have faced many obstacles, challenges, and prob-

lems in our efforts to share network trace information with others, be it wireless frames or

intrusion alerts. The success of CRAWDAD has shown us the promise of trace sharing.

Similarly, our experience building the DIST [37] system informs our opinion about the

cost to create such systems and their utility as a shared infrastructure for a wider commu-

nity. Our experience led us to want a deeper understanding of the issues involved in safely

sharing network traces.

We organize the rest of this chapter to reflect the structure of our own foray into this

topic: a progression we hope will ease the reader’s journey. We start by identifying other

overviews of sanitization techniques and selecting those we believe provide a novel per-

spective. In particular, the work of Ohm et al. highlights the legal issues surrounding net-

work monitoring for research [109]. That paper serves as a wake-up call for the wider

networking community, because collecting and sharing network data has several subtle pit-

falls that tend to get overlooked simply because computer scientists are rarely trained as

social-science researchers or legal experts.

Gattani et al. define a comprehensive reference model that can capture anonymization
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problems [46]. They introduce the notion of universal information, which is the complete

truth regarding the users and the network where the trace was recorded. They show that

the raw trace is only a subset of the universal information and as such cannot contain the

universal information in its entirety. They propose a new entity set consisting of collector,

auditor, analyst, and adversary, where the auditor was missing in the traditional entity

set. They define the auditor to be an entity internal to the organization, who works with

the collector to guarantee the privacy, accuracy and usability of a sanitized trace. As the

only entity that can access the universal information, the auditor emulates the role of an

adversary, as demonstrated by Coull [26]. Their reference model is reasonable, and they

demonstrate its utility by applying it to Coull’s work; the comprehensiveness of the model

has not been verified with enough examples, however. Therefore, we do not use their model

in describing and comparing a variety of problems and methods in this chapter.

Kelly et al. survey the state of the art in metrics for precisely quantifying the informa-

tion leakage from anonymized network data [57]. They offer a comprehensive summary

of existing anonymity metrics and compare them in terms of applicability (whether a met-

ric is useful for data privacy or communication privacy), complexity (whether the method

requires substantial computation), and practicality (reflecting the trade-off between practi-

cality and mathematical rigor). In this chapter, we not only address the issues and problems

of anonymity metrics but also on research of usefulness metrics that quantify how useful

the sanitized trace is for the researchers to analyze the trace.

Porras et al. propose nine risks and challenges [95]. They group these challenges into

three categories: network sensors that generate data, repositories that collect data and make
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them available for analysis, and the network infrastructure that delivers the data from the

sensors to the repository. Similarly, Bishop et al. pay special attention to the interactions

between the multiple actors (collector, analyst, and adversary) involved in a sanitization

problem [12, 30]. Coull et al. suggest that the research on anonymizing census micro-

data may also provide several useful insights on how to effectively anonymize network

traces [27].

These surveys served as a starting point to explore various themes in the field. We orga-

nize this chapter into three main sections bracketed by this background introduction and an

argument about three critical open problems for trace sanitization (Section 3.5). The main

sections consider, in turn, sanitization techniques (Section 3.2), methods of attacking these

techniques (Section 3.3), and current proposals for evaluating the strength of sanitization

and sanitization effects on datasets (Section 3.4). We seek to highlight the coevolution be-

tween ways to perform sanitization [13,16,28,42,49,63,73,75,81,89,93,100,110,125,129,

133,134], de-sanitization techniques [16,26,28,64,93], and methods of measuring [26,132]

the success of both such efforts.

Finally, we close with a consideration of various “gaps” in the space of sanitization and

sanitization techniques. We posit that the largest such gap is the difference between the type

of information sanitization tools operate on (and thus report on) and the type of information

meaningful to a human operator to help them assess the quality of a particular sanitization

pass over a specific dataset. Although several researchers [12, 95] note that network data

sanitization requires methods that simultaneously protect sensitive or private information

and preserve information useful for analysis, there has been only limited development of
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usable quantitative metrics for measuring privacy protection for network data (e.g., the

degree of anonymity [26]).

3.2 Sanitization

To share network traces while preserving privacy, the trace publishers draft sanitization

policies according to their specific privacy concerns [93]. These policies explicitly or im-

plicitly determine which sanitization methods to apply and how.

In this section, we review current research on sanitization, with a focus on techniques

and tools. Here, “techniques” refer to specific methods or algorithms that solve a specific

sanitization problem. Because different fields in the network trace possess different char-

acteristics, they require different sanitization techniques; other techniques are needed to

sanitize some inferable and implicit information, such as network topology. A sanitization

“tool,” on the other hand, provides a systematic solution for a range of applications. A san-

itization tool usually implements a set of sanitization techniques and provides a convenient

interface to its user.

3.2.1 Sanitization techniques

General techniques to sanitize specific network trace fields can be classified into a few

categories [28, 110]: destruction, fixed transformation, variable transformation, and typed

transformation. Destruction removes part of, or all, the information from a field, for ex-
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ample, complete removal of the TCP payload, or the removal of the least significant bits of

the IP address. Fixed transformation uses a single pseudonym value to substitute all values

appearing in a field, e.g., to replace the field with zero. Intrinsically this is same as de-

struction. Variable transformation provides more flexibility by using different pseudonym

values according to the context of the field. One example is to substitute an original IP

address with different pseudonym values according to the type of upper-layer protocols,

such as HTTP or SMTP. Typed transformation, also called permutation in the most gen-

eral sense, is a one-to-one mapping between a pseudonym value and a distinct value of the

original field. “Prefix-preserving” address anonymization, a common technique, belongs

to this category.

Among all the fields in the network trace, the IP address has received most research

attention. There are several types of IP-address anonymization techniques based on dif-

ferent design considerations [110, 133]. IP-address partial destruction removes the low-

order IP-address bits, which identify an individual host on a subnet. Prefix-preserving

anonymization (pseudonymization) is a special case of permutation that preserves the hi-

erarchical nature of IP addresses and is often preferred to random permutations. There are

two general classes of prefix-preserving IP address anonymization techniques: the strict

bitwise-preserving approach [42,81,125], and Pang’s “divide-and-conquer” approach [93].

In the strict bitwise-preserving approach, two anonymized IP addresses will have a

common n-bit prefix if and only if the un-anonymized IP addresses have a common n-

bit prefix. Minshall implemented one approach to such prefix-preserving anonymization

in TCPdpriv with the “A50” option [81]. Xu and Fan showed that such prefix-preserving
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anonymization functions all follow a canonical form. They proposed a cryptography-based,

prefix-preserving anonymization technique, which is implemented in Crypto-PAn, without

the need for a prefix table [42, 125]. A geometric interpretation of this prefix-preserving

anonymization technique can be described as follows [49]. The collection of all possible IP

addresses can be represented by a complete binary tree (see Figure 3.1). For IPv4 addresses

the height of the tree is 32, and for IPv6 it is 128. Each leaf node of the tree represents a

distinct IP address, and each non-leaf node corresponds to a bit position, indicated by the

height of the node, and a bit value, indicated by the branch direction from its parent node.

The set of distinct addresses present in the unanonymized trace can be represented by a

subtree of this complete binary tree. This subtree is called the original address tree. A

prefix-preserving anonymization function can be viewed as specifying a binary variable

for each non-leaf node of the original address tree. This variable determines whether the

anonymization function “flips” this bit or not. Applying this anonymization function to

the original address tree results in an anonymized address tree. Based on Xu and Fan’s

work, Harvan [49] extended this algorithm to preserve SNMP’s lexicographical-ordering

property. Zhang and Li [134] observed that a trace is often used by different research

groups at the same time. Since each group has a distinct trustworthy level, one network

trace needs to be anonymized separately to fulfill each group’s requirement. Thus, if there

are n research groups, there will be n copies of anonymized trace from one original trace.

They proposed a scheme that only generates one copy of an anonymized trace, but the users

with different knowledge (secret keys) may recover different traces from this single copy.

Ramaswamy [100] presented an online prefix-preserving anonymization algorithm– top-
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hash subtree-replicated anonymization– with low processing requirements and small space

complexity.

Figure 3.1 presents the geometric interpretation of prefix-preserving anonymization

function: (a) represents nine addresses from a 4-bit address space as a binary tree; (b) shows

a randomly chosen anonymization function, that is, a set of nodes in the tree are flipped to

generate anonymized addresses; (c) shows the anonymized 4-bit addresses produced by

applying the anonymization function from (b).

Unlike the above bitwise-preserving approaches, Pang’s approach [93] remaps the IP

addresses differently based on the type of addresses, either external addresses or inter-

nal addresses. All external addresses– the IP addresses that do not belong to the trace

publishing organization– are remapped using the IP address anonymization algorithm in

Crypto-PAn. All internal addresses– the IP addresses that belong to the trace publishing

organization– are divided into the subnet portion and host portion. These two portions

are remapped independently and preserve only whether two addresses belong to the same

subnet. This means that all hosts in a given subnet in the original trace will also appear

in the same subnet in the anonymized trace. Note that this mapping does not preserve the

relationship between subnets. For example, two 24-bit subnet numbers that share a 20-bit

prefix in the original trace will not necessarily also have a 20-bit common prefix in the

anonymized trace. Pang suggested that this anonymization approach can also be applied to

the MAC address.

However, several researchers have criticized current prefix-preserving techniques. Ylo-

nen demonstrates that the prefix-preserving anonymization in TCPdpriv with the “A50”
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Figure 3.1: Geometric interpretation of prefix-preserving anonymization function.
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option is not necessarily good enough to keep a well-informed adversary from determin-

ing where the data were collected [129]. In Crypto-PAn’s prefix-preserving anonymiza-

tion, any given bit of the anonymized address is dependent on all previous bits of the

unanonymized addresses; Coull et al. argue that this kind of dependence causes a single

de-anonymization to affect all anonymized addresses that share a common prefix with the

true unanonymized addresses [28]. Moreover, Brekne et al. present a set of attacks employ-

ing active packet injection and frequency analysis to systematically compromise individual

IP addresses protected by the anonymization techniques implemented in TCPdpriv and

Crypto-PAn [16, 89]. They propose transaction-specific anonymization schemes that use

stream ciphers to encrypt each bit of an IP address and do not preserve the one-to-one map-

ping between the original and the anonymized IP addresses at all. By individually perform-

ing pseudo-random permutation on the subnet and host portions of internal IP addresses,

Pang’s approach reduces linkability among anonymized addresses more than Crypto-PAn’s

approach and is more robust against Coull’s attack [28]. However, Coull shows that some

sensitive information, such as network topology and network servers, can still be inferred

from traces anonymized by Pang’s approach [28].

3.2.2 Sanitization tools

Many network trace sanitization techniques have been proposed; some of these techniques

are also implemented as software tools. As mentioned above, Crypto-PAn implements

the cryptography-based prefix-preserving anonymization technique proposed by Fan and
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Xu [42, 125]. It uses the Rijndael cipher (AES algorithm) as its underlying pseudorandom

function and has the following properties: a one-to-one mapping from unanonymized to

anonymized IP addresses, a prefix-preserving mapping, and consistent address mapping

across traces. TCPurify [13] is a packet-capture program with sanitization capabilities. Af-

ter recognizing the Ethernet or IP header, it removes all data payload before storing the

packet (except for certain protocols), and does a reversible randomization on IP addresses

without preserving network prefix information. TCPdpriv [81] also anonymizes packet

traces, with several options to process IP address and TCP/UDP port numbers. TCPdpriv

provides prefix-preserving anonymization of IP addresses using a prefix table on a per-trace

basis, and thus may not provide a consistent mapping: a particular address will likely be

anonymized to different pseudonym addresses in different traces. CANINE (Converter and

ANonymizer for Investigating Netflow Events) provides multiple format conversion utili-

ties and integrates several sanitization methods, such as IP anonymization and timestamp

sanitization, on NetFlow logs [73, 75]. AnonTool, an open-source implementation of a set

of anonymization APIs, aims to build an anonymization assembly line, up to the applica-

tion level, by expressing the anonymization policy as several sets of sequential function

calls [63].

Compared to the sanitization tools above, tcpmkpub [93] and FLAIM [110] provide a

more comprehensive and flexible solution. Both of them implement a generic framework

for sanitizing network traces. These two frameworks have several common characteristics:

(1) User-defined sanitization policies are described by a set of explicit rules using a ded-

icated language. Figure 3.2 gives an example of PCAP header sanitization rule used in
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Figure 3.2: PCAP header sanitization rules used in FLAIM [110].

tcpmkpub. The XML-based language used by FLAIM is called the Module Schema Lan-

guage. A snippet of this language is shown in Figure 3.3. (2) The framework follows a

modular design and is extensible. Many sanitization primitives and common algorithms,

such as truncation and prefix preserving, are implemented and integrated into the frame-

work. Users can also develop their new sanitization techniques as modules and plug these

new modules into the framework. (3) tcpmkpub supports sanitization for multiple layers:

link layer, network layer and transport layer. FLAIM supports sanitization for several types

of logs. For each type of log, FLAIM implements a parser module respectively.

It is important to mention that all available sanitization tools can only do a “one-way

job”. That is, they can only sanitize a network trace, but they can not provide the user

any feedback about the quality of sanitization, such as how much privacy information has

been removed or kept in the trace. The goal of sanitization is to pursue a balance between

63



Figure 3.3: TCP sanitization rules used in tcpmkpub [93].

protecting privacy and preserving trace’s utility. Since no perfect sanitization techniques

exist, choosing and tuning these techniques affects the final sanitization result greatly. As

noted by many researchers [26,93,110,125], exploring the relationship between the strength

and utility of sanitization is an important task for future research. Our own NetSANI [44]

project aims to develop a toolkit for exploring such tradeoffs.

3.3 De-sanitization

“Worst-case analysis” is a term widely used in the security research community that as-

sumes an adversary has almost unlimited resources and knowledge to launch an attack on

the examined target. Due to the intrinsic complexity of network trace sanitization, we must

admit that there are few, if any, available network-trace sanitization schemes that can pro-

vide a water-tight guarantee under the worst-case analysis. That we hold this opinion is

not to degrade the value of sanitization research presented in Section 3.2 but rather to em-

phasize that current de-sanitization research has been remarkably creative and successful.

According to the attack strategies employed by an adversary, we classify current de-
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sanitization research into two categories: direct attacks that exploit the limitations of an

anonymization algorithm [16,28,89], and indirect attacks that use implicit information con-

tained in the trace [9,28,45,69,92], auxiliary information obtained from other sources [28,

69,92], and new techniques from other research fields, such as machine learning and pattern

recognition [9, 14, 25, 92], to uncover sensitive information from the anonymized network

trace.

One example of a direct attack exploits a flaw in Crypto-PAn [125]. As mentioned in

Section 3.2, Crypto-PAn implements a strict bitwise-prefix-preserving anonymization algo-

rithm, and any given bit of the address anonymized by Crypto-PAn depends on all previous

bits of the anonymized addresses. This dependence enables a de-anonymization on one

address to affect all anonymized addresses that share a common prefix with the true ad-

dress [28]. For instance, if an anonymized address a = a1a2 . . . an−1an is deanonymized to

reveal its true address t = t1t2 . . . tn−1tn, then the adversary also learns that the anonymized

address of another true address t∗ = t1t2 . . . tn−1t
∗
n. should be a∗ = a1a2 . . . an−1a

∗
n. Be-

cause t and t∗ have a common prefix of n − 1 bits, their anonymized addresses a and a∗

must also have the same (n − 1)-bit prefix. Based on this idea, Brekne et al. proposed an

attack against Crypto-PAn that uses packet injection and frequency analysis to compromise

individual addresses in multilinear time [16, 89]. Pang’s “divide-and-conquer” approach is

regarded as an improvement over Crypto-PAn by processing the subnet and host portions

of internal IP address respectively, and thus it decreases the linkability among anonymized

addresses [93].

From a trace publisher’s view, an indirect attack is probably more dangerous and much
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harder to defend than a direct attack. Although Pang’s tcpmkpub [93] is regarded as one

of the most state-of-art and comprehensive sanitization solutions, Coull’s work [28] shows

that this solution is far from enough to provide a “water-proof” protection for a lot of

sensitive information. For instance, a “dominant state analysis” characterizes the behavior

of each host and then classifies these hosts into logical groups, such as a possible server

or an ordinary client, based on their behavior profiles. The subnet clustering algorithm

takes advantage of the prefix-preserving anonymization to extract information about the

underlying network topology. By associating the above information extracted from the

anonymized trace with other auxiliary information, such as DNS records, SMTP traffic,

ARP traffic and publicly available website information, their experiment shows that they

can not only completely deanonymize some public hosts but also depict detailed traffic

properties at some observation points.

Moreover, recent research has extended such indirect de-sanitization attacks to the

wireless-network domain. Many researchers have shown that an IEEE 802.11 wireless

device’s chipset, the firmware or the driver can be identified by either passive fingerprint-

ing [9, 45] (in which the adversary simply observes network traffic) or active fingerprint-

ing [14] (in which the adversary sends out probes and observes the responses). Whether

passive or active, these techniques work by building a database of the unique variations in

protocol behaviors, as seen across different vendors or implementations, and later discern-

ing the make and model of an unknown Wi-Fi network interface by observing this behavior

in network traffic. Knowledge of the brand used by a Wi-Fi user may, when combined with

other external information, allow an adversary to de-anonymize that user’s traffic within a

66



trace. Using auxiliary location information, Kumar’s work shows the possibility to cate-

gorize Wi-Fi users based on their gender [69]. As a further step, Pang et al. demonstrate

that by using so-called “implicit identifiers”, such as network destinations, SSID probes,

broadcast packet size and IEEE 802.11 MAC protocol fields, an adversary can accurately

pin down user identities in some circumstances [92].

The above de-sanitization research shows that there is no one sanitization technique

that can handle all situations. Any flaw in an anonymization algorithm can lead to dis-

astrous privacy leakage. Beyond the robustness of the anonymization algorithm applied,

a desirable outcome depends on the properties of the original unanonymized trace, such

as the type and volume of implicit information contained in the trace. To maximally de-

fend against an indirect attack, the trace publisher should have a comprehensive view of

the anonymization problem. This means that when sanitizing a trace, the trace publisher

should not only focus on the trace itself but also take all auxiliary information into consid-

eration. As shown above, the combination of auxiliary information plays a vital role in a

de-sanitization. We regard the progress in network trace de-sanitization as a valuable and

indispensable complement to anonymization research.

3.4 Evaluation of Sanitization

Methods to evaluate the efficacy of sanitization methods seem somewhat underdeveloped

compared to the wide variety of actual suppression techniques and attacks. Most evalua-

tion papers naturally focus on both quantitative and qualitative measures [18, 26, 132], but
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some consider the aspects of traces that can be exploited in the sanitization process. For

example, the remote and local port features reveal more distinguishing information than the

timestamp feature, and therefore re-examining the anonymization policy on these features

may improve the efficacy of sanitization [26]. Settling on a particular metric of sanitization

effectiveness is difficult, in part due to the variety of features in network traces. It is not

immediately clear, for example, how one might meaningfully compare the sanitization of

IP addresses with the anonymization of user browsing profiles.

There seem to be two broad types of metric. First, sanitization metrics measure how

well the sanitization method has fulfilled predefined requirements. In view of the definition

of sanitization, the predefined requirements may be those for privacy or secrecy. Second,

usefulness metrics measure how well the sanitized traces remain useful to the researchers

for the purpose of trace analysis.

Coull et al. [26] evaluate two well-known anonymization methods, CryptoPAn [125]

and Pang [93], in terms of the privacy requirement. For the evaluation, they de-anonymize

the sanitized data on a few selected fields to quantify the anonymity of the data. They

defined the anonymity of each object (e.g., each host) with respect to a feature (e.g., port

number) by calculating the entropy of the “similarity” distribution. For an object A, the

similarity distribution consists of the probability PF (A, i) overN objects. This probability

expresses how similar the object A is to an unanonymized object i with respect to the

feature F . If the anonymity of the object A (in this case, the entropy of the object A)

is close to its minimum value (zero), then there probably exists an unanonymized object

that is similar to A with respect to the feature F . Otherwise, if the anonymity of the
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object A is close to its maximum value, logN , then the object is not more similar to any

one unanonymized object than any other unanonymized object.

Yurcik et al. compare a variety of sanitization methods in terms of how they trade-off

anonymity and usefulness [132]. They use the SCRUB-tcpdump network packet anonymiza-

tion tool [131] to perform various anonymization methods on all fields of the data. The

anonymization methods include replacing values with a predefined constant (black marker),

mapping values to any valid permutation (pure randomization), hashing values with a small

key (keyed randomization), and classifying values into groups (grouping). They examine,

as the usefulness metric, the difference in the number of alarms from the Snort IDS, an

intrusion-detection system [103], before and after a trace is anonymized.

They showed that some fields (Transport Protocol Number and Total Packet Length)

have a zero-sum tradeoff, meaning that “the more network data is anonymized for privacy-

protection, the less valuable the network data may be for security analysis” [132]. However,

most of the other fields have a more complex tradeoff (not zero sum), suggesting that both

privacy and usefulness can be achieved in certain cases.

More recently, Burkhart et al. investigated the tradeoff between data utility for anomaly

detection and the risk of host identification for IP address truncation [18]. They evaluated

the risk of de-anonymizing individual IP addresses using a metric based on conditional

entropy [11, 65]. For measuring data utility, they compared the detection rates of the DoS

and Scan attacks based on IP-based detection metrics (e.g., unique address counts and

Shannon entropy) computed on the original traces with those based on IP-based detection

metrics computed on anonymized traces. According to their results, truncation effectively
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prevents host identification but degrades the utility of data for anomaly detection.

They found that the degree of utility degradation depends on the detection metrics used

for anomaly detection (e.g., unique address counts vs. entropy) [18]. For example, the

entropy detection metrics are more resistant to truncation than unique address counts be-

cause the entropy detection metrics better represent the distribution of flows per IP address

than the unique address counts metrics, even when the IP addresses are truncated. They

also noticed that the detection quality of anomalies degrades much faster in internal ad-

dresses than in external addresses. Specifically, the usefulness of internal address counts is

lost even for truncation of only 4 bits while the usefulness of external address entropy is

virtually unchanged even for truncation of 20 bits.

Research on methods to evaluate the efficacy of sanitization methods is obviously in its

infancy, and many research questions remain. Among them, two issues draw our attention

more than others: first, only a few evaluation metrics, either sanitization metrics or useful-

ness metrics, have been suggested that can precisely quantify the efficacy of network data

sanitization. Second, even when a metric can give a precise measure of the sanitization

efficacy, there may exist a large gap between the semantics of the metric and the semantics

understood by users of the sanitization tool, or of the network trace. We discuss these two

issues more deeply in Sections 3.5.2 and 3.5.3.
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3.5 Challenges and open problems

Sanitizing network traces is about managing risk [93]. The amount of risk depends on both

the trace publisher’s policies and assumptions about the attacker’s knowledge and capabil-

ity. The trace publisher drafts sanitization policies according to his/her specific privacy or

secrecy concerns, and these sanitization policies are mapped to a set of sanitization tech-

niques and their configuration. Generally the trace publisher has a “benign wish” when

sanitizing traces, that is, to preserve the trace’s usefulness as much as possible. However,

there is a tradeoff between privacy and usefulness during sanitization. In choosing a saniti-

zation approach, the trace publisher balances privacy and usefulness, informally evaluating

the risk that an adversary will be motivated and capable of exposing sensitive information

by leveraging benign information the publisher chooses to leave in the trace. Therefore, a

top-level challenge for trace-sanitization research is to help trace publishers deal with the

tradeoff between anonymity and usability.

In this section, we discuss several challenges to achieve this goal. The challenges in-

clude how to quantify private or sensitive information, what metrics to use for evaluating

the sanitization result, and how to interpret the sanitization result.

3.5.1 Quantifying sensitive information

To protect personal or proprietary interests, the trace publisher would like to know how

much private or proprietary information is contained in the trace. This may be difficult,

however, for two reasons.
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First, the boundary between sensitive and insensitive fields is obscure and changing

over time. Some fields of a packet are obviously “sensitive,” while others are not. It is well

known that a port number is useful to identify a specific service, a MAC address is enough

to identify a unique NIC, and an IP address may be useful to identify a specific host. For

some other fields, the degree of sensitivity is not clear at first glance, but they actually

may contain private information. For example, recent research shows that an attacker can

fingerprint a physical host by using only the clock drift in TCP timestamps [61]. The length

of an HTTP/TCP connection can identify the web server (if a well-known public server),

and the order of IP addresses contained in SYN packets can be used to partly reconstruct

the anonymized IP addresses [64]. The point here is that with the development of new

techniques, fields that seem to be safe today may become sensitive in the future.

Second, in addition to the explicit values described in each field of a packet or an entry

in a log, there is information “implicitly” contained in the network traces. For example,

such information includes the traffic pattern of a host, the topology of the traced network,

and the mutual relationships between hosts. Previous sanitization research mainly focused

on anonymizing explicit values, and neglected this implicit information. As a result, some

de-sanitization techniques, such as dominant state analysis and subnet clustering [28], can

dig out valuable information.

We think a great amount of information exists intrinsically in the traces or is intention-

ally preserved by the specific sanitization technique, such as the network topology discov-

ered by subnet clustering but preserved by Pang’s prefix-preserving method [93]. Although

trace publishers who intentionally preserve such useful information may be willing to take
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the risk of de-sanitization, others may not realize that they are preserving such information,

or that new methods can extract more than they expect. Nevertheless, we regard this kind

of de-sanitization research to be important, if only to inspire new sanitization methods and

to help determine the privacy bounds of those methods.

3.5.2 Metrics for evaluating sanitization results

Trace publishers sanitize their traces to achieve both their “sanitization” goals (to pro-

tect both personal and operational information) and “usefulness” goals (to protect research

value); after sanitization, presumably, they would like to know whether their goals are

actually achieved. To evaluate whether their goals are achieved, we need metrics for mea-

suring the degree of sanitization and usefulness of the sanitized traces. It would be even

better if these metrics could also be used to help control the tradeoff between the degree of

sanitization and usefulness.

Although several generic “anonymity” metrics have been suggested [23, 36, 104, 106],

and some were specifically suggested for network traces [26], we have yet to find any

generic metric for the “usefulness” of a trace for network analysis. For specific applications

like security analysis, some approaches define and exploit a usefulness metric [132, for

example].

Different research interests have different understandings of and requirements for the

usefulness of network traces. For example, network-security research for wired networks

pays most attention to the TCP/IP layers and above, and does not often address the link
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layer. In the wireless-network security world, however, the focus is largely on the link

layer [10]. Even for the same feature in a network trace, such as timestamp, Quality-of-

Service research may require micro-second resolution [101], while other research, such as

Delay Tolerant Networks, may be satisfied with minute-level resolution. Because of diverse

research interests, it is infeasible to generalize the notion of “usefulness” by including the

semantics of all possible usages. We think that there is another avenue for future research

on the usefulness metric: we need a range of possible metrics that each apply to one or

more trace features, then we need a framework that allows one to compose these per-feature

metrics to provide an overall metric for the trace’s usefulness.

3.5.3 Interpreting sanitization results

Although some evaluation papers report comparison results [26, for example], such as

which sanitization method is most effective for a given trace and what kind of trace is

most effectively sanitized when the same sanitization method is applied, there needs to be

more research on how to develop an explicit evaluation stage that informs the trace pub-

lisher about the quality of the sanitization result in terms of various sanitization metrics,

and on methods to effectively communicate the results to the trace publisher.

Indeed, trace publishers may find it difficult to interpret a sanitization result in terms

of sanitization metrics. Generally, publishers are most interested in how to use sanitization

methods or tools and how well the methods or tools achieve the publishers’ initial goals,

that is, for anonymity and usefulness. Therefore, they may prefer an intuitive interpretation
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of the sanitization result rather than rigorous metrics expressed in complicated mathemat-

ics. For example, although entropy has been used often in anonymity research [23,36,106],

it may be difficult for trace publishers to intuitively interpret an entropy-based metric.

Thus, it remains an open problem to present the evaluation results as high-level feed-

back about the quality and limits of the sanitization. The feedback may report how well

each of the user-specified sanitization goals is achieved, and if any goal fails, to identify a

reason and to recommend a method that may resolve the conflict resulting from the tradeoff

between anonymity and usability.

3.6 Summary and conclusion

It can be technically and logistically challenging to collect large amounts of real network

data. Sharing such data with the larger research community becomes an imperative for

advancing scientific progress. Similarly, network operators and engineers look for ways

to reliably share network traces to help analyze network problems. Unfortunately, legal,

ethical, and privacy concerns complicate these sharing efforts.

In this chapter, we survey methods for sanitizing traces, methods for de-sanitizing

traces, and methods for evaluating sanitization algorithms and tools. We discuss much

of the research that describe methods to (or demonstrate the failure of methods to) protect

the privacy of network users and the confidentiality of certain network properties.

Although this body of work contains numerous examples of methods for sanitizing a

particular feature or set of fields (that is, identifying such information and blanking it out
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or transforming it in some way to suppress it), these methods are often bypassable by de-

sanitization techniques that consider inter-feature or inter-record relationships or external

information.

We hypothesize that, because researchers and network operators who want to share

trace data have access to only a few tools for quantitatively assessing the quality of a

particular sanitization technique or resulting data set, it is difficult for much substantial

progress to be made on anticipating and defeating de-sanitization attacks. In essence, the

risks of certain classes of sanitization methods are not well understood because metrics for

evaluating the efficacy of classes of de-sanitization attacks are in their infancy.

Efforts to improve our ability to measure the efficacy of sanitization are of paramount

concern. As we note above, metrics, be they simple measures of a particular feature or com-

plicated mathematical models, face an underlying problem: there is a large gap between

their semantics and the semantics understood by users of the sanitization tool, or of the net-

work trace. The key problem is that the semantics of sanitization success remains unclear

and unintuitive for trace producers and (legitimate) trace consumers. Any such metric must

simultaneously convey (1) how well sensitive information has been suppressed (that is, the

level of effort for an attacker to recover this information) and (2) the potential loss for legit-

imate research or operational uses. Metrics that have these semantics can then be used with

confidence in decisions about which traces, portions thereof, or derivative statistics can or

should be shared with various consumers.
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Chapter 4

Privacy analysis on user-association logs

In many large-scale wireless local area networks (WLANs), user-association logs keep

a record of each association and disassociation event between users’ wireless devices and

the network’s access points (APs). Such traces collected from production networks, when

made available for research, play a critical role in understanding user activity patterns,

analyzing network protocol dynamics, and evaluating the performance, reliability, and se-

curity of new network designs [32, 105, 111]. We have monitored a campus-wide WLAN

for almost one decade and some of our collected traces have been made public through

our CRAWDAD website [29]. These network traces have been extensively studied by the

wireless research community.

To preserve users’ privacy, a trace publisher must sanitize the network traces before

sharing them with the public (Chapter 3). Although many network sanitization techniques

have been proposed and developed, recent research has shown that many of these tech-

niques provide limited protection against user (or host) re-identification attacks. Existing

sanitization techniques usually deal with explicit sensitive fields in the dataset, such as

IP/MAC addresses, port number, and TCP/UDP payloads, but ignore implicit information
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that can be potentially extracted and used to identify an anonymized user (or host). For

an enterprise-wide network with thousands of users, privacy analysis on wired network

traces has been widely studied to understand the severity of some potential trace-sharing

risks [16,28,89]. However, similar research is scarce for enterprise-wide, large-scale wire-

less networks [68, 116]. As the edge of the Internet is increasingly becoming wireless, and

because wireless networks have some unique characteristics, such as user mobility, it is

important to evaluate privacy threats posed due to shared wireless network traces.

In this chapter, we conduct privacy analysis on one of the simplest wireless network

traces, a user-association log, collected from a large-scale WLAN. Compared to other se-

mantically rich wireless-network traces, we would hope the simplicity of the user-association

log could make it more resistant to potential privacy risks. We consider the following two

questions: (1) Using only the “insensitive” information in an anonymized user-association

log, is it possible to build a unique signature for each user? These signatures, when com-

bined with some auxiliary information, such as a short-term un-anonymized log, can be

used to distinguish users and infer some sensitive information from the anonymized log.

(2) If privacy breach is possible, how effective is a proposed mitigation approach in pre-

venting an adversary from building such signatures?

In a nutshell, we make three major contributions in this chapter. First, we simulate the

role of an adversary and propose a “correlation attack” – a method based on Conditional

Random Field (CRF) – that can be used to breach user privacy from a released WLAN

user-association log. Second, we use extensive experiments to demonstrate the effective-

ness of the CRF-based correlation attack. Using an anonymized campus-wide WLAN
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user-association log with more than four thousand users and millions of user-association

records, and a short-term observation of the victim’s association activities, we show that the

CRF-based correlation attack, under certain circumstances, can reveal the victim’s identity

in the released dataset with a probability as high as 70%, or narrow down the victim’s

identity to 20 candidates with a probability close to 100%. Third, we evaluate the effec-

tiveness of standard sanitization techniques, including generalization and perturbation, in

mitigating the proposed correlation attack; the results reveal only limited success of these

methods, suggesting that more thorough treatment is needed when anonymizing wireless

user-association logs before the public release.

4.1 Related work

As noted in Chaper 1, “sanitization” is a superset of “anonymization”: “anonymization”

attempts to protect the privacy of network users, and “sanitization” attempts to protect

the privacy of network users and the secrecy of operational network information. In this

chapter, because we only focus on analyzing the potential threats against network users’

privacy when sharing a user-association log, we may use these two terms, “sanitization”

and “anonymization”, interchangeably.

Due to the intrinsic complexity of network trace sanitization, however, recent research

has revealed that there are few, if any, available network-trace sanitization schemes that can

provide a water-tight guarantee under the worst-case analysis. These works often mimic

the role of an adversary that tries to launch a de-sanitization attack against the sanitized

trace. According to the employed attack strategies, these de-sanitization research results
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can be classified into two categories. Direct attacks exploit the limitations of a sanitization

algorithm [16,28,89]. Indirect attacks use implicit information contained in the trace [9,28,

45, 92], auxiliary information obtained from other sources [28, 69, 92], or new techniques

from other research fields, such as machine learning [9, 14, 25, 92], to uncover sensitive

information from anonymized network traces.

In the domain of wireless networks, many physical-device-fingerprinting techniques

could potentially be used to launch de-sanitization attacks [9, 14, 45]. Because most of

these techniques work by monitoring unique variations in protocol behaviors, such as those

seen across different vendors or device-driver implementations, they often require very-

high-resolution data or even special measurement equipment. Such requirements greatly

limit their applicability for de-sanitization on most types of released traces. Some other

researchers have focused on how to fingerprint users. For instance, Pang et al. demonstrated

that by combining information from multiple sources together, such as destination address,

broadcast packet size and IEEE 802.11 MAC protocol fields, an adversary could uniquely

identify users under certain circumstances [92]. Their techniques, however, rely on much

more abundant trace semantics than our work and have only been evaluated with much

smaller wireless network traces than the one we used. Most close to this work, Kumar

and Helmy have recently shown that it is possible to breach privacy from WLAN user-

association logs [68]. Their attack model assumes that the adversary can inject data into

the wireless network during the trace collection or has some out-of-band information such

as the victim’s academic major and gender. In practice, these conditions may be difficult to

satisfy. The type of attacks we discuss in this chapter do not require these assumptions.
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Location privacy has been investigated in diverse communication networks in the past

few years. Krumm presented a comprehensive survey of computational location privacy,

in which users’ location data are treated as geometric information [66]. Hoh et al. ana-

lyzed a set of week-long GPS traces from 233 vehicles and showed that applying previous

privacy algorithms either led to inaccurate results or failed to satisfy privacy guarantees;

they further proposed an uncertainty-aware algorithm that is able to preserve privacy for all

vehicles [52]. In comparison, the trace used in our work covered thousands of users and

more than two months. Location privacy in sensor networks has also been studied under

different adversarial models [80,88,90]. Our work differs from this line of research because

it considers location privacy in a different network environment, which leads to a different

threat model. For example, we do not assume that the adversary is capable of monitoring

the entire network traffic in our work.

Narayanan et al. proposed a method to robustly de-anonymize a large dataset [85].

Their work is based on the assumption that the studied dataset is highly sparse; for example,

in their studied Netflix dataset, the number of attributes (movies) is twenty times more than

the number of potential targets (Netflix subscribers). In our study, we make no assumptions

about the sparsity of user-association logs.

4.2 WLAN user-association logs

At Dartmouth College, we have been monitoring the campus-wide WLAN network usage

since 2001. As of January 2010, this WLAN network consists of over 1300 Aruba APs that
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provide 54Mbps coverage to the entire campus. These Aruba APs are connected with and

controlled by a small set of Aruba Mobility Controllers. We poll every controller every 5

minutes using the SNMP protocol and receive replies. In addition to traffic statistics, these

replies contain a list of devices associated with every AP. After processing these replies,

each row of the resulting user-association log collected, which we call a user-association

record, has 4 comma-separated fields: the MAC address of the wireless card, the name of

the AP that the wireless card has connected with, and the start and end POSIX timestamp of

this connection. The following is a snippet of the user-association log that we extract from

the SNMP information (it shows anonymized MAC addresses to protect user privacy):

001d4f3bc496,14.5.1, 1251690285,1251691544
002608e4cdf7,80.3.2, 1251690458,1251691544
0021e9082bfd,142.6.1,1251689384,1251691544
0016cf29eb6d,76.5.3, 1251691151,1251691544
001cb3b51b58,188.4.6,1251689569,1251691544
0016cf295f33,206.5.7,1251688817,1251691544

There are a few things worth noting. First, although it is possible that a wireless card

may have been used in multiple devices or a device has been used by multiple people, we

assume that such cases are rare in our dataset. As in earlier chapters, we use a “wireless

card” and a “network user” (or a “user”) interchangeably. Second, because the Aruba

Mobility Controller only generates the start timestamp for each connection and we poll

the controller every 5 minutes, the connection’s end timestamp is only an estimated value,

whose error is therefore bounded by 5 minutes. Third, we use a hierarchical naming scheme

for APs in the dataset. For an AP named x.y.z, x is its building number, y is its floor

number, and z is its serial number within the floor.
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Sanitization. When sanitizing the user-association logs, we use a one-to-one perfect

one-way mapping function to rename the MAC addresses in the original dataset. Hence,

the anonymized MAC addresses in the sanitized dataset do not have any physical meaning

and are thus only symbolic names; a similar sanitization scheme has been used in other

work [68]. Here, we use the word “perfect one-way mapping” to emphasize the fact that

our proposed method will succeed without needing to reverse the mapping function; no

matter how good such a one-to-one mapping is, our proposed method will still work. In

some cases, by taking advantage of the hierarchical naming scheme for APs, we truncate

an AP’s name according to different sanitization levels. For example, if we want to only

keep building and floor information, we truncate each AP’s name from x.y.z to x.y.

4.3 Threat model and problem formulation

Complying with Narayanan’s definition of a privacy breach [85], the threat that we study

here is whether the limited insensitive information left in a sanitized association log could

still form implicit signatures for individual users. These implicit signatures, when com-

bined with auxiliary information, may provide the adversary the knowledge that the san-

itization process has aimed to protect, such as whether an anonymized ID in the released

dataset corresponds to a specific user. We make the following three assumptions in our

threat model:

Assumption 1: The adversary has access to a sanitized WLAN user association log Ls,

which is shared to the public by a trace publisher. There are Ns users in this association
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log. All users’ real MAC addresses are anonymized in Ls as follows: during the trace pub-

lisher’s sanitization process, each real MAC address has been replaced with a new identifier

IDi (1 ≤ i ≤ Ns) according to some one-to-one one-way mapping function. Hence, given

an anonymized MAC address IDi, the adversary cannot find the real MAC address that

is mapped to IDi. The AP’s name can be either preserved or truncated. The rest of the

fields, such as the start and end timestamp of each connection, are preserved during the

sanitization process.

Assumption 2: The adversary knows a sequence of association records about a victim

user’s device. This sequence of records, Q, need not be collected during the same time

period as Ls (otherwise the problem will be trivial). It is important to note that the infor-

mation provided in Q can be rather coarse. For example, the adversary may only need to

know which buildings1 the victim has visited rather than which exact APs the victim has

associated with.

There are a few ways for the adversary to obtain such information: (1) The adversary

has some general knowledge about the victim. For example, the adversary knows the victim

often stays in the library in the morning for 2 hours and then goes to the classroom around

3pm in the afternoon. (2) The adversary can manage to install some trojan software on the

victim’s device through some social engineering techniques (e.g., email attachments) or

exploiting software vulnerabilities on the victim’s device. The trojan secretly monitors the

network association/disassociation activities of the device and reports them to the adversary

through covert channels. (3) The adversary follows the victim physically and monitors the

1In this chapter, a building can be a library, a dormitory, or an office building, etc.
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victim’s network association/disassociation activities. For instance, when the victim opens

a laptop, usually the laptop will automatically find the closest AP and connect to it, which

leads to an association record. (4) The adversary can obtain the user-association records

of the victim user from a different dataset L′, which may or may not be published by the

same publisher as Ls. L′ may be produced using a weak anonymization scheme (or even no

sanitization at all) so that it is easier for the adversary to identify the victim’s AP association

records in it than in Ls.

Assumption 3: The adversary knows that the sanitized dataset Ls must contain the

victim’s AP association records. In many cases, Ls is published at an organization level

(e.g., by a university) and thus contains complete AP association logs of the organization’s

wireless users. Hence, if the adversary knows that the victim was a member of the organi-

zation when Ls was collected, it is easy for him to know that Ls should contain the victim’s

AP association records.

Given the three assumptions in the adversarial model, the (exact) correlation attack

problem is then formulated as follows: givenLs andQ, which anonymized identity IDi (1 ≤

i ≤ Ns) in Ls has also generated Q? In practice, however, due to incomplete data for

training or inference, or some intra- and inter-user association activity variations, finding

an algorithm to solve the exact correlation attack problem is difficult or even impossible.

In this work, we consider a relaxed and more practical version of this problem. The (re-

laxed) correlation attack problem is formulated as follows: given Ls and Q, which subset

of anonymized identities would contain the one that generated Q with high probability?

It is important to emphasize the difference between the correlation attack problem and
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the mobility anomaly detection problem [113, 126]. The latter one is stated as follows:

given the mobility history of a mobile user H, is a test mobility record R generated from

the same user? Although both problems are related to human mobility, the distinction

in their conditions (i.e., prior knowledge) suggests the difference: The mobility anomaly

detection problem is essentially a statistical hypothesis test, whose solution does not require

the knowledge of other users’ mobility history. In contrast, the correlation attack problem

is about classification: considering that there are Ns classes and we know each class’s

association records, we want to find the correct class for the observed association sequence

Q. Their difference can further be explained with an example. It is possible that the

observed association sequence Q does not exhibit the user’s regular mobility pattern and

can thus be treated as an anomaly in the mobility anomaly detection problem. But as long

as no other users have association records closer to Q, we may still be able to find the

correct class for Q in the correlation attack problem.

4.4 Algorithm description

The intuition behind the proposed algorithm is that human activities often follow certain

regularities. These regularities are inherent in the temporal and spatial information of the

association log, whether or not the log is sanitized. Different users may have different

association patterns, and we can use such differences to fingerprint and distinguish users.

To this end, we build a model that not only characterizes such inter-user differences but also

is robust to intra-user variations. In the previous section, we formulate the correlation attack
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as a classification problem, in which the two key components are feature representation and

the learning algorithm. We use association activity templates to represent user-association

logs and employ CRF as the learning algorithm.

4.4.1 Data representation

Previously, there are two general approaches to represent user-association activities: direct

representation and abstract representation. The method proposed by Song et al. [111],

for instance, is a typical direct representation that puts all visited APs in an AP transition

vector and the corresponding duration at each AP in a duration vector. Suppose that a user

has traveled from AP1 to AP2 to AP3 sequentially and connected with each AP for 30, 45,

25 minutes respectively. Then, the corresponding AP transition vector is [AP1, AP2, AP3]

and the duration vector is [30 min, 45 min, 25 min]. While this method captures every

AP association transition, it ignores other potentially valuable information, such as when

the connection took place. On the other hand, an abstract representation method, such as

Hsu et al.’s normalized association vector [53], aims to capture the overall trend of AP

association changes at the expense of losing many details during the abstraction process.

As the previous data representation methods ignore details that are important to clas-

sification, we propose a new approach that uses association activity templates to represent

user-association logs. In this method, we first split each user’s association log into day-to-

day pieces and then for each day build an individual association activity template, because

human activities often exhibit regularities associated with days of the week. An association
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Figure 4.1: Represent an user’s association log using association activity template.

activity template is a collection of association activity tags and their corresponding associ-

ation activity vectors. As shown in Figure 4.1, the association activity tag is the name of the

visited AP. Each element in an association activity vector is called a feature. In the current

implementation, we let an activity vector have six features: duration, day of week, starting

time, previous AP, next to previous AP, and next AP. Table 4.1 explains these features.

Several things are worth noting here. First, an association activity vector does not cor-

respond one-to-one with an AP association record (i.e., a row in the user association log).

This is because an association activity vector resides in an association activity template

that only holds association information for a specific 24-hour calendar day. Thus, if an

AP association record spans multiple days, it is divided into several association activity

88



templates and represented by multiple association activity vectors inside these templates.

The duration feature in an association activity vector follows this manner. If a connection

is entirely contained in a 24-hour calendar day, the value of duration is the end timestamp

less the start timestamp. If a connection spans several days, the value of duration is equal

to this connection’s cumulative amount of time in the corresponding 24-hour calendar day.

Given the duration feature’s maximum value is 24 hours, it is intrinsically normalized on

a 24-hour base. Second, instead of assigning an exact time (hour, minute and second) to

the starting time feature, we divide a day into six 4-hour slots (midnight, dawn, morning,

afternoon, evening, and night) and use the name of these slots as the coarse start time. As

shown in Kim’s work [59], although user-association behaviors have periodic patterns, they

also have some variations. Compared to the exact representation, representing the time at

a coarse level adds some tolerance for these variations. Third, at the beginning of each

day, we assign a special string “NA” to the previous AP and next-to-previous AP features;

similarly, we let the next AP feature be “NA” at the end of a day. Fourth, if a user is offline

all day, no association activity template is generated for her that day.

4.4.2 Algorithm procedure

To best communicate the “big picture” about the workings of the correlation attack, we

describe the attack algorithm in this section and defer the introduction to CRF to Sec-

tion 4.4.3.

Step 1. For each user in Ls, split his/her association log into day-to-day pieces and rep-
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Table 4.1: Features of an association activity vector
Feature Meaning Value Comments
duration Adjusted connec-

tion duration
Integer Normalized, inspired by

Hsu’s work [53]
day of week Day of the week

of this record
Enum. type, from Mon-
day to Sunday

To represent periodic
patterns, inspired by Kim’s
work [59]

starting
time

Time slot of a day
of this record

Enum. type, from Mid-
night to Night

previous
AP

The AP in the
previous record

String, AP’s name

To represent context
information, inspired by
Song’s work [111] and
YamCha [67]

next-to-
previous
AP

The AP in the
next-to-previous
record

next AP The AP in the
next record

resent each day’s log using an association activity template as described in Section

4.4.1.

Step 2. Feed each user’s association activity templates into a linear-chain CRF to model

this user’s association behavior. As there are Ns users in Ls, we build Ns CRF

models. The input fed to a CRF model is a sequence of association activity vectors

(Figure 4.1) and the output is a sequence of association activity tags, which are ac-

tually AP names. Let CRFi(V) denote the output from the i-th user’s CRF model,

where 1 ≤ i ≤ Ns and V denotes the sequence of association activity vectors fed to

the CRF model.

Step 3. For the observed user-association record Q, we preprocess it as described in Sec-

tion 4.4.1 to obtain an association activity template T . Let VT and GT denote the

sequence of association activity vectors and the sequence of association activity tags

in template T , respectively.
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Step 4. We feed VT to all CRF models trained in Step 2 and count the number of tags

that overlap between GT and CRFi(VT ) (1 ≤ i ≤ Ns), a score we denote wi.

The intuition applied here is that the victim’s CRF model is more likely to produce

correct activity association tags from her observed activity association vectors in Q,

and therefore score wi is higher than the others if IDi is the victim’s identifier in the

released user-association log.

Step 5. We sort all users based on score wi in non-increasing order and the algorithm

outputs this sorted list.

Ideally the top identifier on the sorted list should be treated as the sole candidate that

generated the observed user association sequence Q. In practice, however, due to incom-

plete data for training or inference, or some intra- and inter-user association activity varia-

tions, the top identifier may not correspond to the victim who produced Q. As mentioned

earlier, we tackle the relaxed correlation attack problem instead and thus use a small num-

ber of top identifiers on the sorted list. Clearly, from the attacker’s perspective, the smaller

the number of top identifiers needed to include the victim’s, the more successful his attack.

4.4.3 Conditional random field

One may wonder why we chose CRF models to characterize users’ AP association behav-

iors. We explain this choice by analyzing the nature of the correlation attack problem and

also provide a brief introduction to CRF.

Let X = (X1, X2, ..., Xn) denote a random variable of an observed sequence, each
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element of which has k features. In our problem, a realization of X is a sequence of

association activity vectors with the six features described in Table 4.1. Let Y denote

a random variable of a label sequence. A label here is actually an association activity

tag that indicates an AP name. According to Figure 4.1, each association activity vector

corresponds to an association activity tag. Hence, given an observed sequence of X (i.e.,

sequence VT in Step 3 of the algorithm shown in Section 4.4.2), we need to produce a label

sequence for it. It is thus a task of assigning label sequences to observation sequences,

which is common to many applications in bioinformatics, computational linguistics and

speed recognition [39, 79, 98].

We now explain why here we do not use Hidden Markov Model (HMM), a popular

probabilistic sequence model that characterizes the joint distribution p(X, Y ) directly [99].

HMM is known to be a generative model in the field of graphical models. The challenge

facing HMM is that it has to model the entire set of observation sequences p(X) explicitly,

which is intractable in our case (and many other domains) for two reasons. First, the

limited data collected from real-life network measurement makes it difficult to obtain a

full-fledged p(X). Second, the features inX (the features in the association activity vector)

can be highly correlated. For example, Song’s work shows that there is a strong correlation

between the lastest three APs visited by an user [111]. Kim’s work demonstrates that

the time and the location that a user will visit may follow a periodic pattern [59]. Such

dependences among features are difficult to model within an HMM. To circumvent the

problem, generative models like HMM and Naive Bayes make independence assumptions

that may not be realistic in practice.
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Note, however, that modeling the joint distribution for X and Y (i.e., p(X, Y )) is not

important for the sequence labeling problem at all, because the observation sequences have

already been available to us. What we need is to find the conditional probability p(Y |X)

from the training dataset. Although it is possible to derive p(Y |X) as p(Y )p(X|Y )
p(X)

based on

Bayes’ rule, the need to model the marginal distribution p(X) makes it a difficult approach.

The CRF method, in contrast, eliminates the necessity of knowing p(X) by building models

to predict label sequences Y conditional on observation sequences X . Hence, CRF is

indifferent to the dependence among features in X because X is now treated as given (i.e.,

a condition). Because CRF models the conditional probability p(Y |X) instead of the joint

distribution p(X, Y ), it is a discriminative approach rather than a generative one.

CRF is a special type of undirected graphic model. Let C denote the entire set of cliques,

which are fully connected subgraphs, in a CRF graph. A clique C ∈ C contains variables

from X , denoted XC , and also variables from Y , denoted YC . For a generic CRF, the goal

is to learn the following conditional distribution from the training data:

p(Y |X) =
1

Z(X)

∏
C∈C

ψC(YC , XC), (4.1)

where Z(X), sometimes called the partition function, is a normalization factor and is given

by:

Z(X) =
∑
Y

∏
C∈C

ψC(YC , XC). (4.2)

Furthermore, ψC is a real-valued potential function on clique C; a commonly used

93



function is:

ψC(YC , XC) = exp(
∑
i

λifi(YC , XC)), (4.3)

where fi is a feature function and λi is the weight of feature function fi.

There is a special type of CRF models, called linear-chain CRF models, which are

particularly useful for solving sequence-labeling problems. Linear-chain CRF models are

conditionally trained as linear chains, instead of generic undirected graphical models. In

Figure 4.2, we show a linear-chain CRF, where the node representing X generated from

the model. In a linear-chain CRF, the set of cliques C contains every node (cliques of

size 1) and every edge (cliques of size 2) in the graph. Hence, the conditional probability

distribution is given by:

p(Y |X) =
1

Z(X)

n∏
i=1

ψi(Yi, X)ψ′i(Yi, Yi−1, X), (4.4)

where

ψi(Yi, X) = exp(
k∑

j=1

θjsj(Yi, X, i)) (4.5)

ψ′i(Yi, Yi−1, X) = exp(
k∑

j=1

λjtj(Yi−1, Yi, X, i)). (4.6)

In the above equations, sj is a state feature function of a label variable, and tj is a transition

feature function that depends on two consecutive label variables; θj and λj are parameters

for the linear-chain CRF. As there is no transition from Y0 to Y1, we can simply let λ1 be 0.

In this work, we used CRFsuite [86], a linear-chain CRF implementation for parameter es-
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Label variable Observed variable

Figure 4.2: Illustration of linear-chain CRF.

timation and inference, and defined the state feature function and transition feature function

as boolean functions, which are similar to those in Sutton and McCallun’s book [114]. It is

worth noting that many methods have been proposed to train linear-chain CRF models and

use them for inference. Due to limited space, we refer interested readers to the literature

for more thorough treatment on the topic of CRF [70, 114, 120].

4.5 Evaluation

In this section, we evaluate the effectiveness of the CRF-based method for correlation at-

tacks. We use the user-association log extracted from the SNMP log collected at Dartmouth

College between January 4, 2010 and March 6, 2010, which in total covered 62 days cor-

responding to one academic term. In the original dataset, there were 19,579 distinct MAC

addresses, which contributed to 3,076,318 association records. Because the WLAN at

Dartmouth College is an open network, any one physically at the campus site can use this

network for free, and thus a great portion of MAC addresses belong to visitors who have

appeared in the logs for only a short period of time. Because training CRF models for these

95



transient users would be difficult due to insufficient data, we filtered out those users who

were active in fewer than 45 days during this 62-day period, and the resulting dataset still

contained 79.7% of the user-association records with 4,285 distinct users and 1,364 distinct

APs. We used this reduced dataset for the experiments below. All the experiments were

performed on four commodity PCs, which took around four days to finish.

We use the Minimum Size of Candidate Identifier Set (MSCIS) as the metric to measure

the attack efficiency. Consider the relaxed correlation attack problem with a sanitized user

association dataset Ls and an observed sequence of AP association records Q. For each

IDi where 1 ≤ i ≤ Ns in Ls, we compute score wi according to Step 4 in the CRF-based

method. Suppose that IDj is the user ID of the victim who generated Q. The MSCIS is

defined as the number of user IDs whose scores are no smaller than wj . MSCIS establishes

an upper bound on how many candidate user IDs need be considered in order to contain

the victim’s user ID in the sanitized dataset. Note that if a user has the same score as the

victim’s (i.e., wj), his ID should also be counted into MSCIS.

We perform 10-round leave-one-out experiments. The 62-day user-association log is

partitioned into 10 bins of approximately the same length for each user. In the j-th round

(1 ≤ j ≤ 10), we use the j-th bin of each user’s association records as the testing dataset

(Lu) and the remaining nine as the training dataset (Ls) to build the CRF models. The

results shown below are the 10-round averages.

To set up a baseline case for comparison, we developed a simple distance-based method

described as follows:

Step 1. For each user in Ls, we build a time vector each day that contains how much time
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this user spent at each AP. The length of a time vector is equal to the total number of

unique APs in the trace, and the number of time vectors for a given user is equal to

the number of days that the user appeared in Ls.

Step 2. Similarly, we compute a set of daily time vectors for each user in Lu.

Step 3. For each user in Lu, we compute the Euclidean distance between each of her time

vectors and every user’s time vectors in Ls, to obtain an average score for every user

in Ls.

Step 4. For each user in Lu, we sort the scores derived from Step 3 in non-decreasing

order to obtain a sorted list of user IDs in Ls, then compute the MSCIS for each user

in Lu.

Figure 4.3 compares the results of the CRF-based method and the distance-based method.

We initially sanitize the data by anonymizing only the MAC addresses but leaving the other

fields intact (other sanitization strategies are examined in Section 4.6). When the length of

Q is 5-6 days, the CRF-based method significantly outperforms the distance-based method

in attack efficiency: 73.2% of the 4,285 users can be pinpointed exactly from Ls; for 80.1%

of the users, their MSCIS is no more than 2, meaning that the victim’s ID appears among

the top two candidates according to the CRF-based method; for 99.7% of the users, their

MSCIS is no more than 20. Hence, using the CRF-based method, the adversary could al-

most surely narrow down the victim’s possible user ID into a set of 20 candidates from

the user association dataset with more than 4,000 users. The above results can be inter-

preted in the plain text as the following: an adversary has a 2-month-long anonymized
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Figure 4.3: Relationship between the attack performance and the amount of auxiliary in-
formation.

user-assocication log, and he also observes 5-6 days of un-anonymized days association

activities. By inputing this information into our CRF-based method, the adversary can

discover the real identities for 73.2% of the 4,285 users contained in the anonymized log.

By reducing the length ofQ to different values (from 5-6 days to 2 or 3 days), we show

how the amount of auxiliary knowledge affects the attack efficiency. Clearly, reducing the

auxiliary knowledge available to the attacker (shorter Q) degrades the performance of the

attack. However, even in the worst case here that the length of Q is only two days, the ad-

versary still can pinpoint the victim’s identity exactly from Ls with probability 61.7%, and

for 98.5% of the users, he can narrow down her identity in Ls to only 20 candidates. From

the attacker’s perspective, this is favorable because he needs to know a victim’s association

activities for only a short period to launch the correlation attack effectively.
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4.6 Mitigation strategies

In the previous section, we play an adversary’s role and evaluate the effectiveness of the

CRF-based correlation attack under different amount of auxiliary information. We are also

interested in how well standard sanitization measures can prevent such privacy breaches.

Generally speaking, there are four categories of approaches to anonymizing datasets to

protect privacy: suppression-based methods remove information from the data, generalization-

based methods coarsen the level of information released in the data, perturbation-based

methods add noise into the data, and permutation-based methods swap sensitive associa-

tions between entities [24]. Because the information provided in a user-association record

is already limited, removing any field in it would make a released dataset hard to use.

On the other hand, the identity information in released AP association records has been

anonymized and thus swapping identity information between different users does not pre-

vent correlation attacks discussed in this work. Therefore, in the following we focus on

analyzing the effectiveness of generalization-based and perturbation-based methods in mit-

igating correlation attacks.

4.6.1 Generalization

Recall that the AP-naming scheme in the user-association logs uses a hierarchical structure:

building ID, floor level, and AP serial number. Hence, it is natural to apply generalization

on the AP names. We consider two generalization schemes here: one keeping only the

building information of each AP, and the other keeping both the building ID and the floor
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Figure 4.4: Effectiveness of generalization-based mitigation against the proposed correla-
tion attack.

level. Using these two generalization schemes, we obtain two anonymized datasets and

then apply the CRF-based method to launch correlation attacks against them. The results,

together with results from CRF without any generalization, are depicted in Figure 4.4. All

the experiments in this section the same sanitized dataset Ls and unsanitized dataset Lu

(with 5-6 days) as those in the previous section.

It is clear that applying generalization-based anonymization techniques helps mitigate

correlation attacks. For instance, by keeping only the building and floor level information,

the probability of pinpointing the exact user is reduced from 73.2% to 70.9%, and the prob-

ability of having the victim appear among the top five candidates is reduced from 92.1% to

83.6%; by keeping only the building information, the top-one and top-five percentage are

further reduced to 64.8% and 74.1%, respectively. On the other hand, because keeping only

the AP’s building information is the best we can do to generalize AP names, we can see
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only limited effectiveness of generalization-based schemes in mitigating correlation attacks

on user-association logs.

It is possible to replace an AP’s real name (building, floor, and serial information) with

a pseudo name in the released user-association logs. This approach will completely deter

our proposed CRF-based attack method because our method relies on the AP’s real name

to build the association activity tag (Section 4.4.1) and then use the tag to train a CRF

model. However, this method is still not perfect. Recent research [130] has shown that

by using additional techniques, it is easy for a dedicated adversary to re-identify the real

building information even though they have been anonymized in our previously published

trace [51].

4.6.2 Perturbation

Perturbation is another commonly used technique for data sanitization. Its key idea is to

add some noise into the original dataset such that user privacy can be preserved while the

usability of the dataset is still ensured. Based on the characteristics of the user association

logs, we consider two perturbation methods: spatial perturbation and temporal perturba-

tion.

• The spatial perturbation method changes the AP information in the original dataset

as follows. Let Si denote the sequence of user IDi’s AP association records, sorted

in increasing order of starting timestamps. For each record Rj in Si, we change the

AP in Rj to the AP in Rj−1 with probability 15%, change it to the AP in Rj+1 with
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probability 15%, or keep it intact with probability 70%.

• The temporal perturbation method changes the start and end timestamps in the orig-

inal dataset as follows. For each AP association record, we add Gaussian noise with

mean 0 and standard deviation 3600 seconds to its start and end timestamps. Dur-

ing the process of adding noise, we do it sequentially on each user’s AP association

records and ensure that the starting timestamp of the current AP association record

is always greater than the end timestamp of the previous AP association record after

noise is added.

The effectiveness of both methods in mitigating correlation attacks is illustrated in Fig-

ure 4.5. Not surprisingly, both methods make it more difficult for the adversary to launch

correlation attacks. Using spatial perturbation, the probability of pinpointing the exact user

is reduced from 73.2% to 67.1%, and the probability of having the victim appear among

the top five candidates is reduced from 92.1% to 88.0%. On the other hand, if temporal per-

turbation is applied, the top-one and top-five percentage are reduced to 60.8% and 85.8%,

respectively.

Considering the results in Figures 4.4 and 4.5, we conclude that for all the mitiga-

tion techniques evaluated, their effectiveness in mitigating CRF-based correlation attacks

is rather limited. For instance, none of these methods is able to reduce the probability of

pinpointing the exact user ID below 55%. Although adding more noise in the perturbation-

based methods can further constrain the adversary’s capability in launching correlation

attacks, it may also damage the usability of the released user-association datasets.
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Figure 4.5: Effectiveness of perturbation-based mitigation against the proposed correlation
attack.

4.7 Conclusion

User-association logs collected from real-world WLANs have played an important role

in understanding these networks. Sharing them with the public, however, poses potential

risks to the privacy of the users involved. In this work, we show that people’s association

behaviors form implicit signatures for individual users. When combined with auxiliary

information, such signatures can help reveal the true identities of anonymized IDs in a

sanitized WLAN user-association log. This fact depicts two fundamental challenges in

sanitizing wireless-network traces: (1) A wireless-network trace may be more difficult to

sanitize properly than a wired-network trace, because it contains additional information,

such as location. Some information that is unique to a wireless network, such as a user

mobility pattern, may impose a severe privacy threat in sanitizing a wireless-network trace.
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(2) Standard sanitization techniques, such as generalization and perturbation, are unable to

effectively mitigate some powerful de-sanitization attacks, such as our CRF-based attack.

This result calls for more thorough study of potential privacy risks when sharing wireless-

network traces with the public.
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Chapter 5

Case study: evaluating the tradeoff
between utility and privacy on
user-association logs

It takes great effort and care to correctly sanitize traces. In a survey that we conducted

among network researchers [127], only 34% of survey participants with experience sani-

tizing traces used a third-party tool; the rest either used home-grown software or manually

edited the traces. These solutions are inevitably likely to include errors affecting the privacy

or utility of the resulting trace. Moreover, 84% of those with experience sanitizing traces

stated that they did not use any quantitative metrics to measure sanitization strength. In this

chapter, we conduct a case study that evaluates the tradeoff between privacy and utility in

the process of sanitizing a user-association log. We focus on the following questions: To

what degree will the trace sanitization affect the research utility of a trace? In an extreme

case, will the research draw a different conclusion on the sanitized trace than it would on

an unsanitized trace? What changes made by the sanitization result in such a disparity?
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5.1 Utility metric: Markov handoff predictor

The utility of network traces is an abstract concept; it is only “instantiated” when attached

to a specific research task. Different research tasks use network traces in different ways,

and these researchers have different understandings of and requirements for the “utility” of

network traces. Furthermore a development of a global utility metric to apply to network

traces is difficult due to the inherent complexity and interdependent nature of a network

trace. An application-dependent utility metric is more feasible than a global metric. In this

chapter we choose handoff prediction in the wireless network as our application scenario,

a Markov handoff predictor as our utility metric [111], and the accuracy of such a predictor

as the indicator of trace utility.

To compare the trace utility before and after a sanitization, it is important to distinguish

between the concepts of the indicator of utility and the utility metric. In this case study, the

indicator of utility tells what is the prediction accuracy of a Markov predictor applied on a

dataset. It is a local view. The utility metric tells how well this Markov predictor behaves

compared to other Markov predictors. It is a global observation, or we say a research

conclusion. As to the utility of a trace, we care about the research conclusion drawn from

it (“Which Markov predictor is the best?”) instead of the specific numbers (“What is the

accuracy of this predictor?”).

Due to the limited propagation range of Wi-Fi radio waves, each AP can only cover a

limited geographical area. In such an environment, a wireless device associates with one

Access Point (AP) at any time to maintain the access to the network. When a wireless
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device moves from one place to another, it needs to disassociate from the previous AP and

associate with a new, closer AP. This procedure is named “handoff”, which also occurs in

other large-scale networks, such as cellular networks. Here, we focus on the “handoff” in

enterprise wireless networks, and we use the terms “location” and “AP” interchangeably.

With the increasing popularity of large-scale enterprise wireless networks, handoff predic-

tion for wireless devices becomes one of fundamental problems in mobile computing. For

more information about the importance of handoff prediction, interested readers may refer

to Song’s work [111, 112].

The goal of handoff prediction is to predict the next location where the wireless device

will move, based on the current location and the location history of this device. Many

location-prediction algorithms have been proposed in recent years, including Markov pre-

dictors, LZ-based predictors, and Prediction by Partial Matching (PPM) predictors. Here

we focus on the family of Markov predictors, which are convenient to implement and also

have performance comparable to (or even better than) more complex predictors [112].

An order-k (denoted as “O(k)”) Markov predictor predicts the next location from cur-

rent context, that is, the sequence of k most recent locations in the location history. A

wireless device’s location history to date is presented as a sequence L = loc0, loc1, ..., locn,

where loc0 is the AP associated at the beginning of history, locn is the AP where the device

is associated now, and each loci in the sequence represents a handoff to a different AP. If

the device leaves the network area, or turns off, a special loc =“OFF” is used.

Let subsequence L(i, j) = loci, loci+1, ..., locj for any 0 ≤ i ≤ j ≤ n. Let X be

the random variable of a device location, and X(i, j) be the sequence of random variables
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Xi, Xi+1, ..., Xj for any 0 ≤ i ≤ j ≤ n. Let L be the set of all possible locations. Define

the context c = L(n − k + 1, n). The Markov predictor is built on the validity of the

following equations, for any location l ∈ L,

P (Xn+1 = l | X(1, n) = L)

= P (Xn+1 = l | X(n− k + 1, n) = c)

= P (Xi+k+1 = l | X(i+ 1, i+ k) = c)

where P (Xi = l|...) is the conditional probability that Xi takes the value l given the cur-

rent context. These equations can be interpreted to mean that the probability that a de-

vice will move to a new location “l” only depends on the context of the k most recently

visited locations. We can generate an estimate of P , denoted by P̂ , using the equation

P̂ (X = l|L) = N(cl, L)/N(c, L) where N(s′, s) denotes the number of occurrences of the

subsequence s′ in the sequence s. When we use the O(k) Markov predictor to predict the

next location where a device will move, we choose a location l (l ∈ L) that produces the

maximum probability P̂ (X = l|L). It is worth noting that if the location l has never ap-

peared in the history before, the estimated probability is 0, and we name this phenomenon

“a missed prediction”.
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5.2 Privacy metric: LKC privacy

When sharing data, privacy is a relative concept because the data publishers often have

limited or no controls on the adversary’s background knowledge. Most researchers have

adopted a relaxed and more practical approach to privacy by confining the types of at-

tacks and the amount of background knowledge that are available to the adversary. Many

privacy metrics have been proposed and proven to be useful in database-privacy research

community, such as k-anonymity, (α, k)-anonymity, and l-diversity. However, these pri-

vacy metrics are not easily applicable to network traces, because network traces are high-

dimensional, sparse, and sequential. As a generalization of multiple traditional privacy

models, LKC privacy [82–84] is a newly proposed privacy model that tries to characterize

such high-dimensional, sparse, and sequential data.

Before we define LKC privacy, let us introduce the concept of “trajectory data” as an

example of sequential data. A trajectory dataset T is a collection of trajectory records,

where each record follows the form:

〈(loc0, t0)→ ...→ (locn, tn)〉 : s0, ..., sp : d0, ..., dm

where 〈(loc0, t0)→ ...→ (locn, tn)〉 is a path; (loci, ti) represents the fact that a given

object visited the location loci at time ti; si ∈ Si are sensitive attributes, and di ∈ Di are

quasi-identifying attributes associated with the object.

LKC privacy is built on the basic assumption that because of the practical difficulty

in a real-life attack, an adversary is not able to know a victim’s complete path sequence

〈(loc0, t0)→ ...→ (locn, tn)〉 but only part of it, and the adversary’s knowledge is bounded
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by L pairs of (loci, ti) in this victim’s path sequence. LKC privacy is then formally defined

as follows:

Definition 1 LKC privacy. Let L be the maximum length of the adversary’s background

knowledge. Let S be a set of sensitive attributes. A trajectory dataset T satisfies LKC

privacy if and only if for any sequence q = 〈(loci, ti) → ... → (locj, tj)〉 with |q| =

(j − i+ 1) ≤ L,

1. T (q) ≥ K, where K > 0 is an integer anonymity threshold, and

2. P (s|q) ≤ C for any s ∈ S, where 0 ≤ C ≤ 1 is a real number confidence threshold.

Here, sequence q is a snippet of a path in T , T (q) is the number of paths in dataset T

that contain sequence q, and P (s|q) is the conditional probability that a sensitive attribute

s may appear in the given sequence q.

By setting L, K, and C to different values, LKC privacy can achieve different-strength

tradeoffs between data utility and data privacy, or between data utility and adversary’s

knowledge. Decreasing L and K, or increasing C, will preserve data utility at the expense

of data privacy. Increasing L and K, or decreasing C, will improve data privacy while

jeopardizing data utility.

To measure how well a trajectory dataset fulfills LKC privacy, we introduce another

two concepts: violating sequence and minimum violating sequence.

Definition 2 Violating sequence. Let q be a sequence in T with |q| ≤ L. The sequence q is

a violating sequence with respect to a LKC-privacy requirement if (1) q is non-empty, and

(2) |T (q)| ≤ K or P (s|q) > C for any sensitive value s ∈ S.
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Definition 3 Minimal violating sequence. A violating sequence q is a minimal violating

sequence (MVS) if every proper subsequence of q is not a violating sequence.

It is obvious that a trajectory dataset will satisfy a given LKC privacy requirement if all

minimal violating sequences are removed from the dataset [82].

5.3 Experiment

To study the privacy-utility tradeoff using the Markov predictor and LKC privacy, we con-

ducted our experiments on the user-association logs collected at Dartmouth College be-

tween January 4, 2010 and March 6, 2010. This dataset contained 19,579 distinct MAC

addresses, which contributed 3,076,318 association records. We used the whole dataset

and did not filter out filter out any transient users. As noted in previous chapters, the AP-

naming scheme in the user-association logs uses a hierarchical structure: building ID, floor

level, and AP serial number. Here we only used buildingID as the location identifier.

There were 185 unique buildingIDs in the trace. If a wireless device disconnected from

the network at anytime, we regarded this device as in the “OFF” state during that time, and

we introduced the “OFF” state as a special location identifier. So in this experiment there

were 186 unique locations to which a wireless device could travel.

We built a Markov handoff predictor for each wireless device incrementally, as in the

prior literature: the predictor builds the Markov transition probability table, over time, as

the device moves to each new location. This practice, necessary in any practical location

predictor, results in some perturbation to the estimation of P̂ (X = l|L) because this esti-
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mated value evolves over time. So given the same context, the predictor may predict loci

as the next most probable location at time ti, but it may predict a different location locj at

a later time tj . This observation does not invalidate the Markov equations in Section 5.1,

because they are still valid at any given time for all the transitions they have seen until that

time.

We regarded the wireless device’s MAC address as the only sensitive attribute s0, in

LKC privacy, so there were 19,579 sensitive attributes considered. To be consistent with

the information available to the Markov predictor, we used the trajectory record that omit-

ted the time information and followed the form 〈(loc0) → ... → (locn)〉 : s0, where loci

was the buildingID, and s0 was the wireless device’s MAC address. All association activ-

ities of a given wireless device form one row in the trajectory dataset. Because the MAC

address is the only sensitive attribute, and each MAC address has one row of record in the

trajectory dataset, this leads to C = 1/K for the LKC-privacy analysis on these logs. For

a given LKC-privacy setting, after we identified all minimum violating sequences (MVSs)

using the algorithm proposed by Mohammed [82], we sanitized the trace by substituting

each occurrence of MVS with a special location identifier “B”. Not only does this global

substitution have the same effect as removing all MVSs to enforce LKC privacy, but also

it makes obvious the existence of sanitization to the trace users. When we applied Markov

predictor on such a sanitized trace, we treated the identifier “B” as the termination of a con-

text: we did not consider it as part of a context to build a prediction, and we did not predict

a destination noted by “B”. After leaving a “B” state, the device’s context began again as

empty, growing up to the length K as the device continued to move to new locations.
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Figure 5.1 is the empirical CDF plot of the correct prediction ratio on the unsanitized

original and various sanitized traces. The x and y axes are the correct prediction ratio and

the percentage of wireless devices respectively. The correct prediction ratio is defined for

each device as:

Correct prediction ratio = Number of correct predictions
Number of predictions

where Number of predictions = Number of correct + wrong + missed predictions. Fol-

lowing this manner, the wrong and missing prediction ratios are defined as:

Wrong prediction ratio = Number of wrong predictions
Number of predictions

Missed prediction ratio = Number of missed predictions
Number of predictions

The Markov handoff predictor achieved better prediction accuracy on the sanitized

traces than it did on the original unsanitized trace. That is, CDF curves for different LKC-

privacy settings (L = 5 and K = 5, L = 10 and K = 5) all stayed closer to the bottom

right than the CDF curves generated on the original trace. The Markov predictor also

improved the prediction accuracy along with the increased privacy strength (increasing L

from 5 to 10). This trend is easy to understand because after applying stronger LKC pri-

vacy, the more infrequent sequences were filtered out; these infrequent sequences tend to

be violating sequences and are difficult to predict. Thus not only did the number of unique

contexts decrease, but also for a given context in the Markov predictor, the number of prob-

able next locations decreased. This made the prediction easier because the predictor had

fewer choices. Figure 5.2 compares the number of unique contexts in the original and the

sanitized trace.

Song’s research [111, 112] illustrated that even though a longer context provides more
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Figure 5.1: Correct prediction ratio on unsanitized and sanitized traces.
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Figure 5.2: Comparison of number of unique contexts.
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information than a shorter one to the handoff predictor, it may not benefit the prediction

accuracy in practice. He evaluated Markov predictors with different context lengths and

observed that the O(2) Markov predictor outperformed both O(3) and O(4) Markov pre-

dictors. In Figure 5.1, our results followed the same trend as his observation on both the

original unsanitized trace (the green curves) and one sanitized trace (the red curves, L = 5

and K = 5). The consistent trend among the results was a useful phenomenon, because

it demonstrated that we could probably achieve a good balance between trace privacy and

trace utility: on one hand we could sanitize the original trace to improve its privacy, and

on the other hand such a sanitization could preserve the trace’s research utility, that is, the

conclusion drawn from the original trace is the same as the one drawn from the sanitized

trace. Ideally, we hoped the trend to hold no matter what sanitization was applied. How-

ever, after enforcing a stricter LKC privacy by increasing L from 5 to 10, the O(3) Markov

predictor replaced O(2) to be the new performance winner. This result overturned Song’s

result that O(2) was better than O(3) predictors.

Why would a stricter LKC privacy setting change the relative performance of Markov

predictors? Figure 5.3 and Figure 5.4 are the CDF plot of wrong- and missed- prediction

ratios, respectively. LKC privacy’s trace-filtering effect was visible in Figure 5.3, showing

that a longer context always had fewer wrong predictions (curves closer to the top-left

corner) no matter whether the trace was sanitized or not. However, this plot alone could

not explain why the O(3) Markov predictor outperformed the O(2) predictor on the 〈L =

10, K = 5〉 sanitized trace. Figure 5.4 provides the answer. The O(2) Markov predictor

has the fewest missing predictions on the original trace (the left subplot), while the O(3)
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Figure 5.3: Wrong-prediction ratio on unsanitized and sanitized traces.
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Figure 5.4: Missed-prediction ratio on unsanitized and sanitized traces.

118



Markov predictor has the fewest missing predictions on 〈L = 10, K = 5〉 sanitized trace.

We know that the following equation is always true:

Correct prediction ratio = 1 - (Wrong + Missed prediction ratios).

On the 〈L = 10, K = 5〉 sanitized trace, although the O(3) predictor had more wrong

predictions than the O(2) predictor, it had fewer missed predictions, which compensated

its disadvantage in wrong prediction. On the original unsanitized trace, the situation was

reversed. Overall, the O(2) Markov predictor was the winner on the original trace, but

the O(3) predictor replaced it on this sanitized trace. A missed prediction only happens

when the handoff predictor sees a given context for the first time. When a stricter LKC

privacy setting was applied, it had two opposite effects on the trace. First, it filtered out

infrequent sequences and reduced the number of unique contexts (as shown in Figure 5.2).

This effect led the Markov predictor to have better overall performance on the sanitized

traces than that on the original trace. Second, the “infrequency” of those filtered-out se-

quences is solely decided by the LKC privacy setting, not by the Markov predictor. Thus a

sequence regarded as “infrequent” by LKC-privacy might be a “frequent” one in the view

of a Markov predictor. After applying a stricter LKC privacy setting, many such sequences

are marked as violating sequence and then removed. This results in the decreased number

of unique (and “Markov-frequent”) contexts, and thus a Markov predictor’s performance is

jeopardized.
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5.4 Summary

In this chapter, we present a case study that evaluates the tradeoff between privacy and util-

ity on a user-association log, by using the LKC privacy and Markov predictors. While san-

itization will unavoidably alter a user-association log, it is possible to preserve the trace’s

utility for handoff-prediction application and fulfill the designated LKC-privacy require-

ment at the same time. However, maintaining a good tradeoff between privacy and utility

is not an easy task. The trace publisher must cautiously plan and configure the privacy set-

tings when sanitizing a user-association log, otherwise an overwhelming privacy require-

ment may jeopardize the trace’s utility and overturn the corresponding research conclu-

sions. Similarly, the trace user (researcher) must carefully consider whether their planned

use of the trace may be affected by the transformations used to sanitize the trace. Cur-

rently my colleagues and I are developing the NetSANI (Network Trace Sanitization and

ANonymization Infrastructure) framework for automatic analysis and fine-tuning of the

privacy/utility tradeoff in network trace sanitization [44].
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Chapter 6

Summary and future work

In this chapter, we summarize our research on building a large-scale, distributed WLAN

measurement system, and analyzing potential privacy threats with a user-association log.

We also discuss future research directions in these fields.

6.1 Summary of contributions

As an important part of the Internet edge, enterprise-wide WLANs are increasingly used for

many mission-critical tasks. An understanding of WLAN usage and network behavior is

valuable for both network management and research. To study a large production WLAN

involves two fundamental difficulties: building a scalable, secure, and efficient WLAN

measurement system, and ensuring user privacy when sharing the collected wireless net-

work traces with other researchers. In this dissertation, we make important contributions to

both of these challenges.

In Chapter 2 we introduced the design, implementation, evaluation, and application of

DIST, our distributed large-scale WLAN measurement system. In the MAP project [107],
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the predecessor of the DIST project, we implemented a building-wide WLAN monitoring

system. However, when an attempt was made to scale the deployment from a building to a

campus, the MAP system could no longer meet the required levels of efficiency, scalability,

security and manageability. Our new measurement system, DIST, was designed to address

these challenges. I designed and built two major components in DIST: Saluki and DIST-

SANI. Saluki is a high-performance distributed sniffing system [115]. Compared to our

previous implementation and to other available sniffing programs, Saluki has the follow-

ing advantages: (1) its small footprint makes it suitable for a resource-constrained Linux

platform, such as those in commercial Wi-Fi access points; (2) the frame-capture rate in-

creased more than three-fold with minimal frame loss; (3) all traffic between the sniffer and

the back-end server was secured using 128-bit encryption; and (4) under the same frame-

capture rate, the traffic load on the backbone network was reduced to only 30% of that in

our previous implementation. DISTSANI is an online network trace sanitization and dis-

tribution program. It receives the network trace captured by Saluki, sanitizes several fields

in the frame/packet headers, and distributes the processed trace to different destinations,

according to user specifications – either to a trace file on local hard drives or to a live UDP

stream forwarded to data subscribers.

We conducted a long-term (62 days) experiment to evaluate the performance of DIST.

206 out of 210 AMs were used for this evaluation, and 412 Saluki instances were running

on 412 radio interfaces. Our DIST system collected 3.7 terabytes of traces in gzip com-

pressed format (24 terabytes in uncompressed form) and sustained 42,727 fps peak frame

rate. By using only 14% to 25% CPU on a 5-year-old-server, one instance of DISTSANI
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was able to handle the aggregated traffic streams from 412 Saluki instances. All these

proved the stability and efficiency of our DIST system in a production environment.

DIST provides us an efficient, general-purpose platform to study large-scale WLANs in

a refined manner. As one application of DIST for security study, we built the DIST Active

Protection System to mitigate the ongoing security threats on enterprise-wide WLANs.

The DIST APS uses several denial-of-service (DoS) attacks in a “benign” way that pre-

vents users from connecting to an unauthorized AP, or forces them to break an existing

connection. This system achieved 351-millisecond response time and used only 1.5 Mbps

bandwidth to protect all nearby client devices from an unauthorized AP.

Creating and operating a large-scale network measurement infrastructure is a daunt-

ing task. To fully take advantage of such a prohibitive investment, sharing network traces

becomes an essential feature of wireless network research. To preserve network users’ pri-

vacy, a trace publisher must sanitize the network traces before sharing them with the public.

For an enterprise-wide network with thousands of users, privacy analysis on wireless net-

work traces is necessary to understand the severity of potential trace-sharing risks.

In Chapter 4, we conduct privacy analysis on one of the simplest wireless network

traces, a user-association log collected from a large-scale WLAN. User-association logs

record where and when a user has used the network. Such information plays an impor-

tant role in wireless network research. By simulating an adversary’s role, we propose an

algorithm based on conditional random fields in which the adversary uses the anonymized

association log to build signatures for each user, and then leverages auxiliary information

to use these signatures to identify users within the anonymized log. The intuition behind
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the proposed algorithm is that human activities often follow certain regularities. These reg-

ularities are inherent in the temporal and spatial information of the association log, whether

or not the log is sanitized. Different users may have different association patterns, and we

can use such differences to fingerprint and distinguish users.

Using a user-association log that contains 4,285 distinct users and 1,364 distinct APs,

we demonstrate that this attack technique, under certain circumstances, was able to pin-

point the victim’s identity exactly with a probability as high as 70%, or narrow it down to

a set of 20 candidates with a probability close to 100%. We further evaluate the effective-

ness of standard anonymization techniques, including generalization and perturbation, in

mitigating correlation attacks; our experimental results reveal only limited success of these

methods, suggesting that more thorough treatment is needed when anonymizing wireless

user association logs before public release.

Thus, one should take great care to effectively sanitize network traces. However, a

trace publisher can not blindly increase the sanitization strength without considering the

utility left in the sanitized trace. Chapter 5 presents a case study to evaluate the tradeoff be-

tween privacy and utility on a user-association log, by using the LKC privacy and Markov

predictors. We observed that it was possible to achieve a balance between preserving the

trace’s utility for handoff-prediction application and fulfilling the predefined LKC-privacy

requirement. A stronger privacy setting does not always mean better: as shown in Chap-

ter 5, an overwhelming privacy requirement may not only jeopardize the trace’s utility but

also overturn the corresponding research conclusions.
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6.2 Future work

The following are some promising extensions of our work in wireless network measure-

ment and trace analysis:

• We could merge the packet data collected by DIST with those collected from other

sources, such as SNMP logs, to provide a unified view about the monitored wireless

network.

• We could find more efficient ways to store, retrieve, and analyze the huge volume of

data collected by DIST.

• We could integrate DIST with other 3rd-party tools, such as Wireshark, to provide a

user-friendly, convenient, and real-time analysis solution for network administrators.

• We could expand the DIST infrastructure to monitor more kinds of wireless network

traffic, such as Bluetooth and ZigBee traffic.

• We could develop a virtualization approach that enables DIST to be used for multiple

research tasks simultaneously.

• Besides network monitoring, we could leverage the wide deployment of DIST to

carry out other interesting wireless network research, such as mesh networks.

• To reduce the huge investment in building a large-scale WLAN monitoring system,

we could migrate the software components of DIST to commercial WLAN infras-

tructure, possibly combining the sniffing capability with the AP’s main responsibility

for managing client associations and bridging traffic.
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• We could apply the proposed correlation-attack algorithm to traces other than Dart-

mouth WLAN’s user-association log, such as cellphone-association logs.

• We could find a more effective approach to sanitize user-association logs.

• We could find a more powerful privacy metric than LKC privacy that could incorpo-

rate domain knowledge.

• We could find an automatic approach that discovers the optimal tradeoff between

privacy and utility in sanitizing network traces.
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