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Catch, Clean, and Release: A Survey of Obstacles and
Opportunities for Network Trace Sanitization

Keren Tan, Jihwang Yeo, Michael E. Locasto, David Kotz

March 21, 2011

Abstract

Network researchers benefit tremendously from access to traces of production networks, and several
repositories of such network traces exist. By their very nature, these traces capture sensitive business
processes and personal activity. Furthermore, traces contain operational information about the target
network, such as its structure, identity of the network provider, or addresses of important servers. To
protect private or proprietary information, researchers must “sanitize” a trace before sharing it.

In this chapter, we survey the growing body of research that addresses the risks, methods, and
evaluation of network trace sanitization. Research on the risks of network trace sanitization attempts to
extract information from published network traces, while research on sanitization methods investigates
approaches that may protect against such attacks. Although researchers have recently proposed both
quantitative and qualitative methods to evaluate the effectiveness of sanitization methods, such work
has several shortcomings, some of which we highlight in a discussion of open problems. Sanitizing
and sharing network traces, however challenging, remains an important method for advancing network-
based research.

1 Introduction
The sharing of network trace data provides important benefits to both network researchers and administra-
tors. Sharing traces helps scientists and network engineers compare and reproduce results and the behavior
of network tools. The practice of sharing such information, however, faces a number of obstacles. Net-
work traces contain significant amounts of sensitive information about the network structure and its users.
Thus, researchers wishing to share traces must “sanitize” them to protect this information. We distinguish
the terms “anonymization” and “sanitization”: “anonymization” attempts to protect the privacy of network
users, and “sanitization” attempts to protect the privacy of network users and the secrecy of operational
network information. In contrast, freely sharing full-capture traces happens rarely and usually requires ei-
ther close, pre-established personal relationships between researchers or extensive legal agreements (as in
the PREDICT repository [51]). Furthermore, most real-world traces contain a large volume of information

Table 1: A Taxonomy of Anonymization-related Papers
Category Example

Anonymization Coull [18], Slagell [59], Zhang [65], Xu [61], Fan [26], Pang [48], Har-
van [30], Zhang [66], Ramaswamy [52], Ylonen [62], Brekne [8], Over-
lier [46], Koukis [36], CPdPriv [44], TCPurify [6], CANINE [41, 42]

De-anonymization Koukis [35], Brekne [8], Pang [48], Coull [18], Coull [15]
Evaluation Coull [15], Yurcik [64]
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with features along many different dimensions, making the problem of identifying and masking sensitive
data non-trivial.

It remains difficult to precisely specify a policy regarding the type and structure of information that
should be sanitized, let alone provide a reliable method that ensures the conclusive suppression of such in-
formation in the shared trace. Thus, two main categories of concerns arise: (1) legal and ethical obstacles to
capturing information derived from human interaction for research purposes and (2) operational difficulties
arising from a lack of effective tools and techniques for suppressing sensitive information. In this chap-
ter, we survey a selection of both seminal and recent papers to summarize the reasons for these concerns,
identify the work that has been done to help address or overcome them, and frame what we have come to
view as the next major problem in this space: the invention of metrics describing the quality of a particular
sanitization or anonymization technique on a given dataset.

We find that network researchers face a dilemma: although they can hypothesize about network data
properties and prototype sanitization tools, they find it difficult to obtain real network traces to test these hy-
potheses and tools and verify whether they are correct, or to operate with any utility on real-world networks,
respectively. Fortunately, network research is far from stagnant because researchers have put a significant
amount of effort into (or find creative ways of) obtaining access to large, meaningful traffic traces from real
production networks.

1.1 Challenges for trace collection and sharing

The daunting challenge of creating and maintaining a network monitoring infrastructure involves obtain-
ing legal and administrative approval, reaching out to the campus or corporate community, implementing
extensive security and control measures, maintaining internal records and documentation, and (sometimes)
undergoing external security audits (see Section 6). This investment of time and effort can restrict the
ability to capture meaningful amounts of network data to larger or well-funded organizations. In such an
environment, sharing becomes an essential feature of networking research. Yet, the legal, ethical, and
privacy issues of capturing and sharing production network traces threatens to chill such sharing and to
eliminate this form of applied research.1

Many of the relevant laws are unclear about the legality of capturing and releasing network traces [58].
Even if such laws were amended to include specific exceptions for research use of network traces, as
some advocate [11], individual privacy would still need protection and organizations would still wish to
protect operational details. For example, network administrators may wish to share data for operational,
not research purposes, but privacy concerns remain. Moreover, the network operator may wish to protect
other information of proprietary or operational significance, such as the structure of the network, the identity
of important servers, or how the network itself responds to particular types of threats.

We recognize the inherent trade-off between privacy and usefulness. Sanitization methods intention-
ally degrade the quality of a network trace to protect against trace users who actively seek to extract sensitive
information from the trace, and inevitably reduce the type and content of features useful for non-malicious
research. It is difficult to simultaneously achieve privacy and usefulness. A relationship exists between
the amount of information shared and the level of risk an organization or individual assumes in sharing
that information. Methods of sanitization or anonymization seek to bound the level of risk as information
sharing increases, but they can also bound the utility of the resulting data.

1.2 Real-world network trace sharing efforts

Although they may seem abstract, privacy concerns are far from theoretical, and recent incidents involving
real data sets have increased such concerns. The release of and subsequent de-anonymization attacks against

1Some point out that simulation provides an alternative to using real traffic data. For certain types of research (e.g., anomaly-
based intrusion detection), simulation is unlikely to prove useful, as the details of a real data sample are important, not just those
properties derived from aggregate statistics.
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the AOL data set [29], the release of the Enron email archive [25], and the de-anonymization attack on the
Netflix competition data set [45] show how easily simple methods of content anonymization can be broken
and highlight the risk posed by data once considered “private” or confidential.

Yet, the utility of sharing traces is so compelling that several efforts exist to share varying amounts and
types of network trace data, including CAIDA, CRAWDAD, and PREDICT.

CAIDA (Cooperative Association for Internet Data Analysis) [12] collects several different types of
network data (including topology, security, traffic characteristics, routing, real time monitors, and perfor-
mance related data) at geographically and topologically diverse locations. CAIDA makes this data available
to the research community while preserving the data donors’ privacy. Currently its data repository has more
than 230,000 data files. DatCat [21] is a CAIDA project providing the Internet Measurement Data Catalog
(IMDC), a searchable registry of information about network measurement datasets. It aims to provide a
searchable index of available network datasets and to enhance the documentation of the dataset via a public
annotation system.

CRAWDAD (Community Resource for Archiving Wireless Data At Dartmouth) [19] provides a collec-
tion of trace data from wireless-network and mobile-computing researchers around the world. As of July
2010, CRAWDAD.org has over 2,337 users from 73 countries. It now makes 60 data sets and 23 tool sets
available through the archive, with several more in the pipeline. Over 200 papers have been published
with or about CRAWDAD data sets. In addition, a Dartmouth-wide wireless monitoring infrastructure has
contributed to the CRAWDAD repository since 2001.

PREDICT (Protected Repository for the Defense of Infrastructure Against Cyber Threats) [51] is spon-
sored by the Department of Homeland Security (DHS) Science and Technology (S&T) directorate. The
datasets in this repository, which include security-relevant network traces and host logs, are only available
to qualified cyber defense researchers and only in the United States.

The DSHIELD [24] repository of firewall logs is one of the earliest examples of sharing intrusion alert
information. Newer sharing efforts like OpenPacket.org tend to have a more limited number of datasets.

1.3 Terminology

Since this chapter assumes a focus on network traces, rather than other types of data collections (notably
databases), our terminology reflects this bias by referring to packets, headers, and other network-related
terms. Within the world of network traces, however, many specific types exist (such as SNMP logs, IP
packet dumps, or Netflow traces), each with their own organization, data types, and information peculiar-
ities. The content of a network trace includes not only the information from a network protocol (such as
IP and MAC addresses, or port numbers), but also other metadata such as timestamps, session duration,
or a wireless device’s geographical coordinates. Such diversity of network traces makes it difficult or im-
possible to construct a universal algorithm for uniformly sanitizing all types of network traces. Moreover,
due to a lack of understanding of (or documentation about) what information a trace might contain, trace
sanitization can be much more challenging than it might initially appear.

We assume a general model for a network trace that holds a series of records. Each record contains a
tuple of several fields. Each component represents a specific feature, such as source and destination MAC
address, source and destination IP address, and timestamp.

Sanitization techniques can be applied independently to specific fields or sets of fields, and can in-
clude intra-record methods (hiding correlations between fields of a single record), inter-record methods
(hiding correlations between multiple records in a trace), and inter-trace methods (hiding correlations be-
tween traces captured from different devices or at different times). Section 2 gives a detailed review of the
sanitization techniques, especially IP-address anonymization techniques, and introduces several state-of-art
network trace sanitization tools.

De-sanitization techniques extract sensitive information from the sanitized network traces. These tech-
niques can be classified into two categories: direct de-sanitization attacks and indirect de-sanitization at-
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tacks. While a direct de-sanitization attack exploits the flaws and limitations of some sanitization tech-
niques, an indirect attack often leverages implicit information from the sanitized trace or auxiliary infor-
mation from other sources. As an interesting example of the indirect attack, a CRAWDAD user sug-
gested that the characteristic scanning behavior of a well-known Internet worm could be used to reverse the
anonymization of IP addresses in some traces. Section 3 introduces current de-sanitization techniques and
demonstrates several sucessful de-sanitization practices.

1.4 Database sanitization and privacy-preserving data mining

A large body of research has been also conducted from the database and data mining community on saniti-
zation metrics (and techniques) and privacy-preserving data mining [1].

Anonymity is widely used as a key measure of privacy in sanitized databases [49]. One specific
anonymity metric is “k-anonymity” [55], which in the database setting is defined such that a system pro-
vides k-anonymity protection if each record in the database cannot be distinguished from at least k − 1
other records, with respect to every set of quasi-identifiable non-sensitive attributes. Machanavajjhala et al.
demonstrate some severe problems with k-anonymity, however, especially when the attacker uses back-
ground knowledge, and propose “l-diversity” as a more powerful privacy definition than k-anonymity [43].
Li et al. show some limitations of l-diversity, in that it is neither necessary nor sufficient to prevent attribute
disclosure, and propose a privacy notion called “t-closeness” that protects against attribute disclosure [40].

Although from these metrics we may gain some insights for network trace sanitization, they have made
some assumptions that are specific to the database setting. For example, each of these metrics assumes that
the set of “sensitive” attributes are known a priori, which is difficult to assume for network traces [15, 17].
Moreover, the metrics are purely static and syntactic in that they only consider the distribution of attribute
values in the sanitized database and do not aim to capture the dynamic change of the adversary’s semantic
knowledge [9].

Instead, Shannon’s entropy is often used as a simple indicator of anonymity and a measure of the adver-
sary’s knowledge gain in a network trace. Many information-theoretic metrics have been proposed [22, 56,
14, 15], including the degree of anonymity [22, 15] and the measure of the adversary’s knowledge gain [15].

Producing sanitized data that have “good” utility for various data mining tasks is an important re-
search goal in privacy-preserving data mining [9]. There are two approaches for measuring utility: a
workload-independent measure, i.e., a utility measure that can be used for any data mining tasks, and a
workload-dependent measure. Although workload-independent measures of utility are ideal for broader
uses of published data sets, they inevitably use “workload-independent” or “syntactic” properties, such as
the amount of generalization and suppression [13], average size of quasi-identifier equivalence class [43], or
preservation of marginals [33]. Such ”syntactic” measures, however, are of little use for some specific data
mining tasks such as classification algorithms and therefore several workload-dependent utility measures
such as accuracy of data-mining algorithms have been also studied [9, 31, 39, 60].

We believe that both workload-independent (syntactic) and workload-dependent (semantic) approaches
are applicable to usefulness metrics for network trace sanitization. For specific applications like network
security analysis, some approaches define and exploit a workload-dependent usefulness metric [64, for
example]. However, there is limited research on workload-independent metrics for the usefulness of a
trace for network analysis. We discuss more details about the usefulness metric for network sanitization in
Section 4 and 5.

1.5 Chapter organization

As network and security researchers, we have faced many obstacles, challenges, and problems in our efforts
to share network trace information with others, be it wireless frames or intrusion alerts. Our experience
building and maintaining CRAWDAD has shown us the promise of trace sharing. Similarly, our experience
building the 200-sniffer Dartmouth Internet Security Testbed (DIST [23]) informs our opinion about the
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cost to create such systems and their utility as a shared infrastructure for a wider community. Our experience
led us to want a deeper understanding of the issues involved in safely sharing network traces.

We organize this chapter to reflect the structure of our own foray into this topic: a progression we
hope will ease the reader’s journey. We start by identifying other overviews of sanitization techniques and
selecting those we believe provide a novel perspective. In particular, the work of Ohm et al. highlights the
legal issues surrounding network monitoring for research [58]. That paper serves as a wake-up call for the
wider networking community, because collecting and sharing network data has several subtle pitfalls that
tend to get overlooked simply because computer scientists are rarely trained as social-science researchers
or legal experts.

Gattani et al. define a comprehensive reference model that can capture anonymization problems [28].
They introduce the notion of universal information, which is the complete truth regarding the users and
the network where the trace was recorded. They show that the raw trace is only a subset of the universal
information and as such cannot contain the universal information in its entirety. They propose a new entity
set consisting of collector, auditor, analyst, and adversary, where the auditor was missing in the traditional
entity set. They define the auditor to be an entity internal to the organization, who works with the collector
to guarantee the privacy, accuracy and usability of a sanitized trace. As the only entity that can access
the universal information, the auditor emulates the role of an adversary, as demonstrated by Coull [15].
Their reference model is reasonable, and they demonstrate its utility by applying it to Coull’s work; the
comprehensiveness of the model has not been verified with enough examples, however. Therefore, we do
not use their model in describing and comparing a variety of problems and methods in this paper.

Kelly et al. survey the state of the art in metrics for precisely quantifying the information leakage from
anonymized network data [32]. They offer a comprehensive summary of existing anonymity metrics and
compare them in terms of applicability (whether a metric is useful for data privacy or communication
privacy), complexity (whether the method requires substantial computation), and practicality (reflecting the
trade-off between practicality and mathematical rigor). In this paper, we not only address the issues and
problems of anonymity metrics but also on research of usefulness metrics that quantify how useful the
sanitized trace is for the researchers to analyze the trace.

Porras et al. propose nine risks and challenges [50]. They group these challenges into three categories:
network sensors that generate data, repositories that collect data and make them available for analysis, and
the network infrastructure which delivers the data from the sensors to the repository. Similarly, Bishop
et al. pay special attention to the interactions between the multiple actors (collector, analyst, and adversary)
involved in a sanitization problem [5, 20]. Coull et al. suggest that the research on anonymizing census
microdata may also provide several useful insights on how to effectively anonymize network traces [17].

These surveys served as a starting point to explore various themes in the field. We organize our own
report into three main sections bracketed by this Introduction and an argument about three critical open
problems for trace sanitization (Section 5). The main sections consider, in turn, sanitization techniques
(Section 2), methods of attacking these techniques (Section 3), and current proposals for evaluating the
strength of sanitization and sanitization effects on datasets (Section 4). We seek to highlight the coevolution
between ways to perform sanitization [18, 59, 65, 61, 26, 48, 30, 66, 52, 62, 8, 46, 36, 44, 6, 41, 42], de-
sanitization techniques [35, 8, 48, 18, 15], and methods of measuring [15, 64] the success of both such
efforts.

Finally, we close with a consideration of various “gaps” in the space of sanitization and sanitization
techniques. We posit that the largest such gap is the difference between the type of information sanitiza-
tion tools operate on (and thus report on) and the type of information meaningful to a human operator to
help them assess the quality of a particular sanitization pass over a specific dataset. Although several re-
searchers [5, 50] note that network data sanitization requires methods that simultaneously protect sensitive
or private information and preserve information useful for analysis, there has been only limited develop-
ment of usable quantitative metrics for measuring privacy protection for network data (e.g., the degree of

5



anonymity [15]).

2 Sanitization
To share network traces while preserving privacy, the trace publishers draft sanitization policies according
to their specific privacy concerns. These policies explicitly or implicitly determine which sanitization
methods to apply and how.

In this section, we review current research on sanitization, with a focus on techniques and tools. Here,
“techniques” refer to specific methods or algorithms that solve a specific sanitization problem. Because
different fields in the network trace possess different characteristics, they require different sanitization tech-
niques; other techniques are needed to sanitize some inferable and implicit information, such as network
topology. A sanitization “tool,” on the other hand, provides a systematic solution for a range of applications.
A sanitization tool usually implements a set of sanitization techniques and provides a convenient interface
to its user.

2.1 Sanitization techniques

General techniques to sanitize specific network trace fields can be classified into a few categories [18, 59]:
destruction, fixed transformation, variable transformation, and typed transformation. Destruction removes
part of, or all, the information from a field, for example, complete removal of the TCP payload, or the
removal of the least significant bits of the IP address. Fixed transformation uses a single pseudonym
value to substitute all values appearing in a field, e.g., to replace the field with zero. Intrinsically this
is same as destruction. Variable transformation provides more flexibility by using different pseudonym
values according to the context of the field. One example is to substitute an original IP address with
different pseudonym values according to the type of upper-layer protocols, such as HTTP or SMTP. Typed
transformation, also called permutation in the most general sense, is a one-to-one mapping between a
pseudonym value and a distinct value of the original field. “Prefix-preserving” address anonymization, a
common technique, belongs to this category.

Among all the fields in the network trace, the IP address has received most research attention. There
are several types of IP-address anonymization techniques based on different design considerations [65, 59].
IP-address partial destruction removes the rightmost IP-address bits, which identify an individual host
on a subnet. Prefix-preserving anonymization (pseudonymization) is a special case of permutation that
preserves the hierarchical nature of IP addresses and is often preferred to random permutations. There are
two general classes of prefix-preserving IP address anonymization techniques: the strict bitwise-preserving
approach [44, 61, 26], and Pang’s “divide-and-conquer” approach [48].

In the strict bitwise-preserving approach, two anonymized IP addresses will have a common n-bit pre-
fix if and only if the un-anonymized IP addresses have a common n-bit prefix. Minshall implemented one
approach to such prefix-preserving anonymization in TCPdpriv with the “A50” option [44]. Xu and Fan
showed that such prefix-preserving anonymization functions all follow a canonical form. They proposed
a cryptography-based, prefix-preserving anonymization technique, which is implemented in Crypto-PAn,
without the need for a prefix table [61, 26]. A geometric interpretation of this prefix-preserving anonymiza-
tion technique can be described as follows [30]. The collection of all possible IP addresses can be repre-
sented by a complete binary tree (see Figure 1). For IPv4 addresses the height of the tree is 32, and for IPv6
it is 128. Each leaf node of the tree represents a distinct IP address, and each non-leaf node corresponds to
a bit position, indicated by the height of the node, and a bit value, indicated by the branch direction from
its parent node. The set of distinct addresses present in the unanonymized trace can be represented by a
subtree of this complete binary tree. This subtree is called the original address tree. A prefix-preserving
anonymization function can be viewed as specifying a binary variable for each non-leaf node of the original
address tree. This variable determines whether the anonymization function “flips” this bit or not. Apply-
ing this anonymization function to the original address tree results in an anonymized address tree. Based

6



Figure 1: Geometric interpretation of prefix-preserving anonymization function: (a) represents nine ad-
dresses from a 4-bit address space as a binary tree; (b) shows a randomly chosen anonymization function,
that is, a set of nodes in the tree are flipped to generate anonymized addresses; (c) shows the anonymized
4-bit addresses produced by applying the anonymization function from (b).

on Xu and Fan’s work, Harvan [30] extended this algorithm to preserve SNMP’s lexicographical-ordering
property. Zhang and Li [66] observed that a trace is often used by different research groups at the same
time. Since each group has a distinct trustworthy level, one network trace needs to be anonymized sep-
arately to fulfill each group’s requirement. Thus, if there are n research groups, there will be n copies
of anonymized trace from one original trace. They proposed a scheme that only generates one copy of
an anonymized trace, but the users with different knowledge (secret keys) may recover different traces
from this single copy. Ramaswamy [52] presented an online prefix-preserving anonymization algorithm–
top-hash subtree-replicated anonymization– with low processing requirements and small space complexity.
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Unlike the above bitwise-preserving approaches, Pang’s approach [48] remaps the IP addresses dif-
ferently based on the type of addresses, either external addresses or internal addresses. All external ad-
dresses– the IP addresses that do not belong to the trace publishing organization– are remapped using the
IP address anonymization algorithm in Crypto-PAn. All internal addresses– the IP addresses that belong
to the trace publishing organization– are divided into the subnet portion and host portion. These two por-
tions are remapped independently and preserve only whether two addresses belong to the same subnet.
This means that all hosts in a given subnet in the original trace will also appear in the same subnet in the
anonymized trace. Note that this mapping does not preserve the relationship between subnets. For example,
two 24-bit subnet numbers that share a 20-bit prefix in the original trace will not necessarily also have a
20-bit common prefix in the anonymized trace. Pang suggested that this anonymization approach can also
be applied to the MAC address.

However, several researchers have criticized current prefix-preserving techniques. Ylonen demonstrates
that the prefix-preserving anonymization in TCPdpriv with the “A50” option is not necessarily good enough
to keep a well-informed adversary from determining where the data were collected [62]. In Crypto-PAn’s
prefix-preserving anonymization, any given bit of the anonymized address is dependent on all previous
bits of the unanonymized addresses; Coull et al. argue that this kind of dependence causes a single de-
anonymization to affect all anonymized addresses that share a common prefix with the true unanonymized
addresses [18]. Moreover, Brekne et al. present a set of attacks employing active packet injection and fre-
quency analysis to systematically compromise individual IP addresses protected by the anonymization tech-
niques implemented in TCPdpriv and Crypto-PAn [8, 46]. They propose transaction-specific anonymization
schemes that use stream ciphers to encrypt each bit of an IP address and do not preserve the one-to-one
mapping between the original and the anonymized IP addresses at all. By individually performing pseudo-
random permutation on the subnet and host portions of internal IP addresses, Pang’s approach reduces
linkability among anonymized addresses more than Crypto-PAn’s approach and is more robust against
Coull’s attack [18]. However, Coull shows that some sensitive information, such as network topology and
network servers, can still be inferred from traces anonymized by Pang’s approach [18].

2.2 Sanitization tools

Many network trace sanitization techniques have been proposed; some of these techniques are also imple-
mented as software tools. As mentioned above, Crypto-PAn implements the cryptography-based prefix-
preserving anonymization technique proposed by Fan and Xu [61, 26]. It uses the Rijndael cipher (AES
algorithm) as its underlying pseudorandom function and has the following properties: a one-to-one map-
ping from unanonymized to anonymized IP addresses, a prefix-preserving mapping, and consistent address
mapping across traces. TCPurify [6] is a packet-capture program with sanitization capabilities. After
recognizing the Ethernet or IP header, it removes all data payload before storing the packet (except for
certain protocols), and does a reversible randomization on IP addresses without preserving network prefix
information. TCPdpriv [44] also anonymizes packet traces, with several options to process IP address and
TCP/UDP port numbers. TCPdpriv provides prefix-preserving anonymization of IP addresses using a prefix
table on a per-trace basis, and thus may not provide a consistent mapping: a particular address will likely be
anonymized to different pseudonym addresses in different traces. CANINE (Converter and ANonymizer for
Investigating Netflow Events) provides multiple format conversion utilities and integrates several sanitiza-
tion methods, such as IP anonymization and timestamp sanitization, on NetFlow logs [41, 42]. AnonTool,
an open-source implementation of a set of anonymization APIs, aims to build an anonymization assem-
bly line, up to the application level, by expressing the anonymization policy as several sets of sequential
function calls [36].

Compared to the sanitization tools above, tcpmkpub [48] and FLAIM [59] provide a more compre-
hensive and flexible solution. Both of them implement a generic framework for sanitizing network traces.
These two frameworks have several common characteristics: (1) User-defined sanitization policies are de-
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Figure 2: PCAP header sanitization rules used in FLAIM

Figure 3: TCP sanitization rules used in tcpmkpub

scribed by a set of explicit rules using a dedicated language. Figure 2 gives an example of PCAP header
sanitization rule used in tcpmkpub. The XML-based language used by FLAIM is called the Module Schema
Language. A snippet of this language is shown in Figure 3. (2) The framework follows a modular design
and is extensible. Many sanitization primitives and common algorithms, such as truncation and prefix pre-
serving, are implemented and integrated into the framework. Users can also develop their new sanitization
techniques as modules and plug these new modules into the framework. (3) tcpmkpub supports sanitization
for multiple layers: link layer, network layer and transport layer. FLAIM supports sanitization for several
types of logs. For each type of log, FLAIM implements a parser module respectively.

It is important to mention that all available sanitization tools can only do a “one-way job”. That is,
they can only sanitize a network trace, but they can not provide the user any feedback about the quality
of sanitization, such as how much privacy information has been removed or kept in the trace. The goal
of sanitization is to pursue a balance between protecting privacy and preserving trace’s utility. Since no
perfect sanitization techniques exist, choosing and tuning these techniques affects the final sanitization
result greatly. As noted by many researchers [48, 59, 15, 61], exploring the relationship between the
strength and utility of sanitization is an important task for future research.

3 De-sanitization
In security research, we often perform a worst-case analysis that assumes an adversary has almost unlimited
resources and knowledge to launch an attack on the examined target. Due to the intrinsic complexity of
network trace sanitization, we must admit that there are few, if any, available network-trace sanitization
schemes that can provide a water-tight guarantee under the worst-case analysis. That we hold this opinion
is not to degrade the value of sanitization research presented in Section 2 but rather to emphasize that
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current de-sanitization research has been remarkably creative and successful.
According to the attack strategies employed by an adversary, we classify current de-sanitization re-

search into two categories: direct attacks that exploit the limitations of an anonymization algorithm [8,
46, 18], and indirect attacks that use implicit information contained in the trace [18, 27, 2, 47, 38], auxil-
iary information obtained from other sources [38, 18, 47], and new techniques from other research fields,
such as machine learning and pattern recognition [16, 7, 47, 2], to uncover sensitive information from the
anonymized network trace.

One example of a direct attack exploits a flaw in Crypto-PAn [61]. As mentioned in Section 2, Crypto-
PAn implements a strict bitwise-prefix-preserving anonymization algorithm, and any given bit of the ad-
dress anonymized by Crypto-PAn depends on all previous bits of the anonymized addresses. This depen-
dence enables a de-anonymization on one address to affect all anonymized addresses that share a com-
mon prefix with the true address [18]. For instance, if an anonymized address a = a1a2 . . . an−1an
is deanonymized to reveal its true address t = t1t2 . . . tn−1tn, then the adversary also learns that the
anonymized address of another true address t∗ = t1t2 . . . tn−1t

∗
n. should be a∗ = a1a2 . . . an−1a

∗
n. Be-

cause t and t∗ have a common prefix of n − 1 bits, their anonymized addresses a and a∗ must also have
the same (n − 1)-bit prefix. Based on this idea, Brekne et al. proposed an attack against Crypto-PAn that
uses packet injection and frequency analysis to compromise individual addresses in multilinear time [8, 46].
Pang’s “divide-and-conquer” approach is regarded as an improvement over Crypto-PAn by processing the
subnet and host portions of internal IP address respectively, and thus it decreases the linkability among
anonymized addresses [48].

From a trace publisher’s view, an indirect attack is probably more dangerous and much harder to defend
than a direct attack. Although Pang’s tcpmkpub [48] is regarded as one of the most state-of-art and com-
prehensive sanitization solutions, Coull’s work [18] shows that this solution is far from enough to provide a
“water-proof” protection for a lot of sensitive information. For instance, a “dominant state analysis” charac-
terizes the behavior of each host and then classifies these hosts into logical groups, such as a possible server
or an ordinary client, based on their behavior profiles. The subnet clustering algorithm takes advantage
of the prefix-preserving anonymization to extract information about the underlying network topology. By
associating the above information extracted from the anonymized trace with other auxiliary information,
such as DNS records, SMTP traffic, ARP traffic and publicly available website information, their exper-
iment shows that they can not only completely deanonymize some public hosts but also depict detailed
traffic properties at some observation points.

Moreover, recent research has extended such indirect de-sanitization attacks to the wireless-network
domain. Many researchers have shown that an IEEE 802.11 wireless device’s chipset, the firmware or the
driver can be identified by either passive fingerprinting [27, 2] (in which the adversary simply observes
network traffic) or active fingerprinting [7] (in which the adversary sends out probes and observes the re-
sponses). Whether passive or active, these techniques work by building a database of the unique variations
in protocol behaviors, as seen across different vendors or implementations, and later discerning the make
and model of an unknown Wi-Fi network interface by observing this behavior in network traffic. Knowl-
edge of the brand used by a Wi-Fi user may, when combined with other external information, allow an
adversary to de-anonymize that user’s traffic within a trace. Using auxiliary location information, Kumar’s
work shows the possibility to categorize Wi-Fi users based on their gender [38]. As a further step, Pang
et al. demonstrate that by using so-called “implicit identifiers”, such as network destinations, SSID probes,
broadcast packet size and IEEE 802.11 MAC protocol fields, an adversary can accurately pin down user
identities in some circumstances [47].

The above de-sanitization research shows that there is no one sanitization technique that can handle all
situations. Any flaw in an anonymization algorithm can lead to disastrous privacy leakage. Beyond the
robustness of the anonymization algorithm applied, a desirable outcome depends on the properties of the
original unanonymized trace, such as the type and volume of implicit information contained in the trace.

10



To maximally defend against an indirect attack, the trace publisher should have a comprehensive view of
the anonymization problem. This means that when sanitizing a trace, the trace publisher should not only
focus on the trace itself but also take all auxiliary information into consideration. As shown above, the
combination of auxiliary information plays a vital role in a de-sanitization. We regard the progress in
network trace de-sanitization as a valuable and indispensable complement to anonymization research.

4 Evaluation of Sanitization
Methods to evaluate the efficacy of sanitization methods seem somewhat underdeveloped compared to the
wide variety of actual suppression techniques and attacks. Most evaluation papers naturally focus on both
quantitative and qualitative measures [15, 64, 10], but some consider the aspects of traces that can be
exploited in the sanitization process. For example, the remote and local port features reveal more distin-
guishing information than the timestamp feature, and therefore re-examining the anonymization policy on
these features may improve the efficacy of sanitization [15]. Settling on a particular metric of sanitization
effectiveness is difficult, in part due to the variety of features in network traces. It is not immediately clear,
for example, how one might meaningfully compare the sanitization of IP addresses with the anonymization
of user browsing profiles.

There seem to be two broad types of metric. First, sanitization metrics measure how well the sanitiza-
tion method has fulfilled predefined requirements. In view of the definition of sanitization, the predefined
requirements may be those for privacy or secrecy. Second, usefulness metrics measure how well the sani-
tized traces remain useful to the researchers for the purpose of trace analysis.

Table 2 summarizes some representative evaluation papers with regard to evaluation metrics, evaluated
sanitization methods, and evaluation methods.

Coull et al. [15] evaluate two well-known anonymization methods, CryptoPAn [61] and Pang [48],
in terms of the privacy requirement. For the evaluation, they de-anonymize the sanitized data on a few
selected fields to quantify the anonymity of the data. They defined the anonymity of each object (e.g., each
host) with respect to a feature (e.g., port number) by calculating the entropy of the “similarity” distribution.
For an object A, the similarity distribution consists of the probability PF (A, i) over N objects. This
probability expresses how similar the object A is to an unanonymized object i with respect to the feature F .
If the anonymity of the object A (in this case, the entropy of the object A) is close to its minimum value
(zero), then there probably exists an unanonymized object that is similar to A with respect to the feature F .
Otherwise, if the anonymity of the object A is close to its maximum value, logN , then the object is not
more similar to any one unanonymized object than any other unanonymized object.

Yurcik et al. compare a variety of sanitization methods in terms of how they trade-off anonymity and
usefulness [64]. They use the SCRUB-tcpdump network packet anonymization tool [63] to perform various
anonymization methods on all fields of the data. The anonymization methods include replacing values
with a predefined constant (black marker), mapping values to any valid permutation (pure randomization),
hashing values with a small key (keyed randomization), and classifying values into groups (grouping).
They examine, as the usefulness metric, the difference in the number of alarms from the Snort IDS, an
intrusion-detection system [54], before and after a trace is anonymized.

They showed that some fields (Transport Protocol Number and Total Packet Length) have a zero-sum
tradeoff, meaning that “the more network data is anonymized for privacy-protection, the less value the
network data may be for security analysis” [64]. However, most of the other fields have a more complex
tradeoff (not zero sum), suggesting that both privacy and usefulness can be achieved in certain cases.

More recently, Burkhart et al. investigated the tradeoff between data utility for anomaly detection and
the risk of host identification for IP address truncation [10]. They evaluated the risk of de-anonymizing
individual IP addresses using a metric based on conditional entropy [4, 37]. For measuring data utility,
they compared the detection rates of the DoS and Scan attacks based on IP-based detection metrics (e.g.,
unique address counts and Shannon entropy) computed on the original traces with those based on IP-
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Table 2: Representative evaluation papers

Paper Metric Methods Evaluated Evaluation Method
Coull
[15]

the anonymity of each ob-
ject (e.g., network host)
defined by calculating the
entropy from the probabil-
ity distribution on the ob-
ject identity

CryptoPAn [61], Pang [48] simulate adversary’s behaviors
and compare anonymization
techniques by examining the
impact on the anonymity of the
data.

Yurcik
[64]

tradeoff between privacy
protection vs. research
usefulness (security
analysis capability)

black marker, pure random-
ization, keyed randomization,
bilateral classification, and
grouping

calculate the difference of
intrusion-detection-system
alarms before and after the
anonymization.

Burkhart
[10]

tradeoff between privacy
protection (host identifica-
tion) vs. research useful-
ness (anomaly detection
capability)

IP address truncation privacy risk is evaluated us-
ing a metric based on condi-
tional entropy and usefulness
is evaluated using ROC (Re-
ceiver Operating Characteris-
tic) curve, i.e., true positive rate
of anomaly detection.

based detection metrics computed on anonymized traces. According to their results, truncation effectively
prevents host identification but degrades the utility of data for anomaly detection.

They found that the degree of utility degradation depends on the detection metrics used for anomaly de-
tection (e.g., unique address counts vs. entropy) [10]. For example, the entropy detection metrics are more
resistant to truncation than unique address counts because the entropy detection metrics better represent
the distribution of flows per IP address than the unique address counts metrics, even when the IP addresses
are truncated. They also noticed that the detection quality of anomalies degrades much faster in internal
addresses than in external addresses. Specifically, the usefulness of internal address counts is lost even for
truncation of only 4 bits while the usefulness of external address entropy is virtually unchanged even for
truncation of 20 bits.

Research on methods to evaluate the efficacy of sanitization methods is obviously in its infancy, and
many research questions remain. Among them, two issues draw our attention more than others: first, only
a few evaluation metrics, either sanitization metrics or usefulness metrics, have been suggested that can
precisely quantify the efficacy of network data sanitization. Second, even when a metric can give a precise
measure of the sanitization efficacy, there may exist a large gap between the semantics of the metric and the
semantics understood by users of the sanitization tool, or of the network trace. We discuss these two issues
more deeply in Sections 5.2 and 5.3.

5 Challenges and open problems
Sanitizing network traces is about managing risk [48]. The amount of risk depends on both the trace pub-
lisher’s policies and assumptions about the attacker’s knowledge and capability. The trace publisher drafts
sanitization policies according to his/her specific privacy or secrecy concerns, and these sanitization poli-
cies are mapped to a set of sanitization techniques and their configuration. Generally the trace publisher
has a “benign wish” when sanitizing traces, that is, to preserve the trace’s usefulness as much as possible.
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However, there is a tradeoff between privacy and usefulness during sanitization. In choosing a sanitization
approach, the trace publisher balances privacy and usefulness, informally evaluating the risk that an adver-
sary will be motivated and capable of exposing sensitive information by leveraging benign information the
publisher chooses to leave in the trace. Therefore, a top-level challenge for trace-sanitization research is to
help trace publishers deal with the tradeoff between anonymity and usability.

In this section, we discuss several challenges to achieve this goal. The challenges include how to
quantify private or sensitive information, what metrics to use for evaluating the sanitization result, and how
to interpret the sanitization result.

5.1 Quantifying sensitive information

To protect personal or proprietary interests, the trace publisher would like to know how much private or
proprietary information is contained in the trace. This may be difficult, however, for two reasons.

First, the boundary between sensitive and insensitive fields is obscure and changing over time. Some
fields of a packet are obviously “sensitive,” while others are not. It is well known that a port number is
useful to identify a specific service, a MAC address is enough to identify a unique NIC, and an IP address
may be useful to identify a specific host. For some other fields, the degree of sensitivity is not clear at
first glance, but they actually may contain private information. For example, recent research shows that an
attacker can fingerprint a physical host by using only the clock drift in TCP timestamps [34]. The length
of an HTTP/TCP connection can identify the web server (if a well-known public server), and the order of
IP addresses contained in SYN packets can be used to partly reconstruct the anonymized IP addresses [35].
The point here is that with the development of new techniques, fields that seem to be safe today may become
sensitive in the future.

Second, in addition to the explicit values described in each field of a packet or an entry in a log, there
is information “implicitly” contained in the network traces. For example, such information includes the
traffic pattern of a host, the topology of the traced network, and the mutual relationships between hosts.
Previous sanitization research mainly focused on anonymizing explicit values, and neglected this implicit
information. As a result, some de-sanitization techniques, such as dominant state analysis and subnet
clustering [18], can dig out valuable information.

We think a great amount of information exists intrinsically in the traces or is intentionally preserved
by the specific sanitization technique, such as the network topology discovered by subnet clustering but
preserved by Pang’s prefix-preserving method [48]. Although trace publishers who intentionally preserve
such useful information may be willing to take the risk of de-sanitization, others may not realize that they
are preserving such information, or that new methods can extract more than they expect. Nevertheless, we
regard this kind of de-sanitization research to be important, if only to inspire new sanitization methods and
to help determine the privacy bounds of those methods.

5.2 Metrics for evaluating sanitization results

Trace publishers sanitize their traces to achieve both their “sanitization” goals (to protect both personal and
operational information) and “usefulness” goals (to protect research value); after sanitization, presumably,
they would like to know whether their goals are actually achieved. To evaluate whether their goals are
achieved, we need metrics for measuring the degree of sanitization and usefulness of the sanitized traces.
It would be even better if these metrics could also be used to help control the tradeoff between the degree
of sanitization and usefulness.

Although several generic “anonymity” metrics have been suggested [55, 22, 56, 14], and some were
specifically suggested for network traces [15], we have yet to find any generic metric for the “usefulness”
of a trace for network analysis. For specific applications like security analysis, some approaches define and
exploit a usefulness metric [64, for example].

Different research interests have different understandings of and requirements for the usefulness of net-
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work traces. For example, network-security research for wired networks pays most attention to the TCP/IP
layers and above, and does not often address the link layer. In the wireless-network security world, however,
the focus is largely on the link layer [3]. Even for the same feature in a network trace, such as timestamp,
Quality-of-Service research may require micro-second resolution [53], while other research, such as Delay
Tolerant Networks, may be satisfied with minute-level resolution. Because of diverse research interests, it
is infeasible to generalize the notion of “usefulness” by including the semantics of all possible usages. We
think that there is another avenue for future research on the usefulness metric: we need a range of possible
metrics that each apply to one or more trace features, then we need a framework that allows one to compose
these per-feature metrics to provide an overall metric for the trace’s usefulness.

5.3 Interpreting sanitization results

Although some evaluation papers report comparison results [15, for example], such as which sanitization
method is most effective for a given trace and what kind of trace is most effectively sanitized when the
same sanitization method is applied, there needs to be more research on how to develop an explicit eval-
uation stage that informs the trace publisher about the quality of the sanitization result in terms of various
sanitization metrics, and on methods to effectively communicate the results to the trace publisher.

Indeed, trace publishers may find it difficult to interpret a sanitization result in terms of sanitization
metrics. Generally, publishers are most interested in how to use sanitization methods or tools and how well
the methods or tools achieve the publishers’ initial goals, that is, for anonymity and usefulness. Therefore,
they may prefer an intuitive interpretation of the sanitization result rather than rigorous metrics expressed
in complicated mathematics. For example, although entropy has been used often in anonymity research
[22, 56, 14], it may be difficult for trace publishers to intuitively interpret an entropy-based metric.

Thus, it remains an open problem to present the evaluation results as high-level feedback about the
quality and limits of the sanitization. The feedback may report how well each of the user-specified saniti-
zation goals is achieved, and if any goal fails, to identify a reason and to recommend a method that may
resolve the conflict resulting from the tradeoff between anonymity and usability.

6 Case study: Dartmouth Internet Security Testbed
In Section 1.1 we noted the that it is often tremendously difficult to obtain permission to collect network
traces on a production network, not to mention the logistical and technical challenges of establishing a
robust and effective trace-capture system. In this section, we offer as a case study our experiences in
deploying the Dartmouth Internet Security Testbed (DIST) [23]. We hope this case study offers practical
lessons for others who may wish to collect network traces within their own enterprise.

Several years ago, in January 2006, we sought to build a large testbed for conducting network-security
research at Dartmouth College. The testbed would contain both wired- and wireless-network compo-
nents, and would cover a substantial fraction of the campus production network. The wireless-network
infrastructure would be used initially for trace capture, but the hardware would also be useful for other
wireless-network experiments including controlled studies of Wi-Fi network attacks. The wired-network
infrastructure would only be used for capture and real-time analysis of traffic on the campus backbone
network. Although research was the primary purpose of and motivation for the infrastructure, the Dart-
mouth network-operations group was enthusiastically interested in leveraging the infrastructure and the
researchers’ results for operational monitoring of the network.

The wireless-network infrastructure consists of about 220 Wi-Fi access points, of the same brand and
model Dartmouth uses to provide its production Wi-Fi network on campus. We had developed a scalable
network-monitoring and intrusion-detection software base in our MAP project [57], in which we reflash
the Aruba AP70 access points with OpenWRT Linux and run our own software for sniffing on the Wi-
Fi network interface. This software uses pcap to capture Wi-Fi frames and packs multiple frames into a
custom format for transmission to our central server for real-time analysis and (optionally) storage.
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The wired-network infrastructure includes a one-way feed of the campus network traffic, from a span
port on one of the backbone routers, into a server located in the central computing facility. The research
goal was to install and evaluate various network intrusion-detection systems, including several developed
by Dartmouth researchers under previous projects, to evaluate their real-time performance on huge traffic
flows.

Needless to say, the installation and operation of such an infrastructure requires careful planning and
communication with the relevant campus departments. Although we had been collecting Wi-Fi network
traces since 2001, the new wireless-network infrastructure was going to capture an order of magnitude more
data, and the new wired-network infrastructure was going to capture data that had never been captured for
research purposes at Dartmouth. Furthermore, the physical installation of over 200 Wi-Fi access points in
about 10 large buildings around campus meant drilling holes into walls, leading to potential concerns about
aesthetics.

The first step was to obtain permission from the Network Services group within Peter Kiewit Computing
Services (PKCS), the central campus IT office. This step was easy, because we had developed the concept
in collaboration with Network Services. We are fortunate to have a group of talented professionals who are
also enthusiastic collaborators with researchers. We have repeatedly heard from colleagues, however, that
this hurdle is very difficult in their organizations.

The next step was to obtain formal permission from Dartmouth’s Committee for Protection of Human
Subjects (CPHS). CPHS services as the Institutional Review Board (IRB) for Dartmouth; all universities
with federal research funding are required to operate an IRB so that research involving human subjects can
be evaluated to ensure that risks are acceptable and subjects provide informed consent where appropriate.
Our Wi-Fi network tracing effort was approved by CPHS several years prior, and our proposed effort was a
subset of what we had done earlier, so a simple renewal was sufficient. Our wired-network effort was new,
however, so we submitted a new project application to CPHS.

Meanwhile, we set out to obtain permission from the department heads located in the buildings where
we hoped to place Wi-Fi sniffers. These buildings included the main library complex, the school of engi-
neering, the school of business, a gymnasium, a student center, several dormitories, and several academic
buildings. In some cases, we chose sites where renovation was underway and our sniffers (and their wiring)
could be easily installed in the construction process, requiring less cost and no inconvenience to the build-
ing residents. In all cases, we met personally with the lead staff in each department, describing what we
planned to do. We walked through their building, sometimes repeatedly, discussing in detail the placement
of sniffers and their wiring. Each building required several months of planning to obtain permission, choose
sites, confirm the sites with department staff, obtain quotes from electricians, install the wiring, and install
the sniffers.

During this process, Sicker et al. published a paper on the legal issues involved in network trace cap-
ture [58]. The paper provides a thoughtful review of the many issues involved, and yet concludes that the
legal status of network trace-collection for research purposes is not entirely clear. We consulted with the
university counsel in depth, and with outside consultants, concluding that such trace collection could pro-
ceed as long as the research activity was closely coupled with network-operations activity. We had involved
PKCS Network Services from the start, but we adjusted our research program to more directly meet their
needs; our trace-capture facility can now support both operational and research goals simultaneously.

Furthermore, because of the scale of this effort, and the sensitive issues related to the privacy of network
users, we met with several leadership groups on campus to explain our plans, answer their questions, obtain
their feedback, and ultimately seek official approval from the College to proceed with trace collection. In
particular, we met with the high-level faculty committee responsible for sponsored research and the provost-
level council that includes all campus deans. In both cases we obtained valuable feedback that helped us
to clarify our operating parameters. We developed an increasingly crisp understanding of the privacy risks
and our mechanisms for mitigating those risks.
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Ultimately, we decided to conduct a careful, objective study of our trace-collection infrastructure and
our privacy-protection mechanisms. The College hired an outside expert, a researcher with several years
of network-tracing experience in academic settings, to visit campus, interview the research teams, and to
study our trace-collection infrastructure in detail. This visit served as a tremendous help to us, providing
a critical eye to help us recognize where our plans could be improved or become more specific. In the
end, based on the expert’s advice and internal deliberations, the College leadership decided that the risks
posed by the wired-network infrastructure (given the type of data needed by the researchers) were not easily
mitigated, and the wired-network capture will not proceed. For the Wi-Fi infrastructure, we decided to add
additional layers of security— to ensure that the infrastructure itself can not be compromised by attackers—
and additional layers of encryption and in-line anonymization to protect the privacy of network users. If, in
the future, we make non-trivial changes to our data-collection infrastructure we will again ask the expert to
evaluate our plans.

An important part of the process is communication and public notice, especially since informed consent
is not feasible in an open wireless network covering numerous buildings and a shifting population. Every
one of our sniffers is labeled with the URL of our website describing the project. We are posting notices at
the entries to each building, informing visitors of the data-collection effort and directing them to the website
for further information. At the request of the library, we are posting notices on every table in public areas of
the library. Finally, we issued a press release describing our research and the scope of the data collection.

At this writing, our Wi-Fi sniffing infrastructure is ready to begin operation. We include several layers
of security on the sniffers, including extremely limited services, narrow firewall openings, no crypto keys
in persistent storage, and frequent defensive port-scans. We discard all but the MAC layer from each
frame, then encrypt each packet of captured frames before sending them to the server; at the server they are
decrypted and immediately anonymized before being used for inline analysis or storage for offline analysis.
The anonymization map is generated anew for each experiment, using a random seed that is discarded after
use. As a result, very little sensitive information is captured and the most sensitive components (MAC
addresses and SSIDs) are thoroughly anonymized.

The result is, we expect, a highly secure, privacy sensitive, scalable capture system for Wi-Fi networks,
larger and more secure than any other ever assembled. We intend to use the infrastructure to collect oper-
ationally useful data for Network Services, and to serve our own ongoing research in trace anonymization
techniques.

7 Summary and conclusion
It can be technically and logistically challenging to collect large amounts of real network data. Sharing
such data with the larger research community becomes an imperative for advancing scientific progress.
Similarly, network operators and engineers look for ways to reliably share network traces to help analyze
network problems. Unfortunately, legal, ethical, and privacy concerns complicate these sharing efforts.

In this chapter, we survey methods for sanitizing traces, methods for de-sanitizing traces, and methods
for evaluating sanitization algorithms and tools. We discuss much of the research that describe methods to
(or demonstrate the failure of methods to) protect the privacy of network users and the confidentiality of
certain network properties.

Although this body of work contains numerous examples of methods for sanitizing a particular feature
or set of fields (that is, identifying such information and blanking it out or transforming it in some way to
suppress it), these methods are often bypassable by de-sanitization techniques that consider inter-feature or
inter-record relationships or external information.

We hypothesize that, because researchers and network operators who want to share trace data have
access to only a few tools for quantitatively assessing the quality of a particular sanitization technique or
resulting data set, it is difficult for much substantial progress to be made on anticipating and defeating de-
sanitization attacks. In essence, the risks of certain classes of sanitization methods are not well understood
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because metrics for evaluating the efficacy of classes of de-sanitization attacks are in their infancy.
Efforts to improve our ability to measure the efficacy of sanitization are of paramount concern. As we

note above, metrics, be they simple measures of a particular feature or complicated mathematical models,
face an underlying problem: there is a large gap between their semantics and the semantics understood by
users of the sanitization tool, or of the network trace. The key problem is that the semantics of sanitization
success remains unclear and unintuitive for trace producers and (legitimate) trace consumers. Any such
metric must simultaneously convey (1) how well sensitive information has been suppressed (that is, the
level of effort for an attacker to recover this information) and (2) the potential loss for legitimate research
or operational uses. Metrics that have these semantics can then be used with confidence in decisions about
which traces, portions thereof, or derivative statistics can or should be shared with various consumers.
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