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ABSTRACT

The lack of proper crowd safety control and management often leads to spreading

human casualties and infectious diseases (e.g., COVID-19). Many Machine Learning

(ML) technologies inspired by computer vision and video surveillance systems have been

developed for crowd counting and density estimation to prevent potential personal injuries

and deaths at densely crowded political, entertaining, and religious events. However,

existing crowd safety management systems have significant challenges and limitations on

their accuracy, scalability, and capacity to identify crowd characterization among people

in crowds in real-time, such as a group characterization, impact of occlusions, mobility

and contact tracing, and distancing.

In this dissertation, we propose an Intelligent Crowd Engineering platform using

Machine-based Internet of Things Learning, and Knowledge Building approaches (ICE-

MILK) to enhance the accuracy, scalability, and crowd safety management capacity in

iii



real-time. Specifically, we design an ICE-MILK structure with three critical layers: IoT-

based mobility characterization, ML-based video surveillance, and semantic information-

based application layers. We built an IoT-based mobility characterization system by pre-

dicting and preventing potential disasters through real-time Radio Frequency (RF) data

characterization and analytics. We tackle object group identification, speed, direction de-

tection, and density for the mobile group among the many crowd mobility characteristics.

Also, we tackled an ML-based video surveillance approach for effective dense crowd

counting by characterizing scattered occlusions, named CSONet. CSONet recognizes

the implications of event-induced, scene-embedded, and multitudinous obstacles such as

umbrellas and picket signs to achieve an accurate crowd analysis result. Finally, we devel-

oped a couple of group semantics to track and prevent crowd-caused infectious diseases.

We introduce a novel COVID-19 tracing application named Crowd-based Alert and Trac-

ing Services (CATS) and a novel face masking and social distancing monitoring system

for Modeling Safety Index in Crowd (MOSAIC). CATS and MOSAIC apply privacy-

aware contact tracing, social distancing, and calculate spatiotemporal Safety Index (SI)

values for the individual community to provide higher privacy protection, efficient pene-

tration of technology, greater accuracy, and effective practical policy assistance.
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CHAPTER 1

INTRODUCTION

1.1 Background

Due to civilization development and population growth, crowd safety control and

management have become an increasingly important issue worldwide. In addition, crowded

events are a significant part of modern human society, such as festivals, concerts, sports,

political (protests), and religious events (Hajj or Kumbha Mela). Hence, the essential role

of crowd management can be seen in ensuring the safety of the attendees at a crowded

event. In many cases, the number of people gathering at the event location can create

potential risks that lead to dangerous consequences if not controlled. Thus, cities and

governments face the daunting task of containing such massive gatherings. These events

require extensive attention from the planners to set up an appropriate crowd management

system to ensure attendeesâ safety. Nevertheless, the lack of proper crowd safety control

and management can often lead to human casualties and the spread of infectious diseases

(i.e., COVID-19) at densely crowded events. Also, the crowd’s density plays a critical

role, and larger crowds at events are more complex, challenging to handle, and riskier,

which can lead to dangerous incidents. Table 1 indicates numerous recent cases of crowd

disasters that happened during events and caused human losses around the world. For

example, in Madagascar in 2019, during a concert on their 59th Independence Day at the

Mahamasina Municipal Stadium, at least 16 people were killed, and 101 were injured.
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The show was about to start, and people believed they could enter the stadium, so they

began to push each other [1]. A similar situation happened in Angola in 2017 where peo-

ple tried to enter the stadium for a football match before the time. It ended up with a

stampede with at least 17 people killed and 61 others injured [2]. Human crowd incidents

are continuously occurring. In addition, the Hajj stampede in 2015 is another example

of a crowd disaster. This happened during the annual Islamic pilgrimage called Hajj that

occurs in Mecca, Saudi Arabia. Groups of pilgrims walked in the opposite direction to

get to their destination faster. So, the crowd flow got blocked from the crowd flow in the

opposite direction. It resulted in more than 2000 casualties, which is considered one of

the most significant crowd disasters that caused human losses in previous years [3].

Table 1: Crowd disasters around the world.

Location (Country/City) Human Casualties Year Event Type

Houston, USA 308 2021 Entertainment

Iran, Kerman 256 2020 Religious

Madagascar, Antananarivo 117 2019 Entertainment

Iraq, Karbala 130 2019 Religious

Bangladesh, Chittagong 60 2018 Religious

Angola, Uige 78 2017 Entertainment

Italy, Turin 1526 2017 Entertainment

Ethiopia, Addis Ababa 300 2016 Protests

Saudi Arabia, Mecca 2000 2015 Religious

Brazil, Santa Maria 242 2013 Entertainment

Egypt, Port Said 74 2012 Sport

Germany, Duisburg 361 2010 Entertainment

India, Jodhpur 224 2008 Religious
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Figure 1: Hajj before Covid-19 vs. Hajj after Covid-19.

Therefore, crowd safety management focuses on potential crowd disaster preven-

tion. Moreover, in early 2020, COVID-19 caused pandemic interventions all over the

world. As of March 2022, the virus has infected more than 471 million people and caused

more than 6 million deaths worldwide [4]. COVID-19 has changed life completely, in-

cluding the ways of learning and working. The spread of the pandemic led to a halt to

large social events due to the high contagiousness of the virus. Lockdowns, travel restric-

tions, and self-isolations due to the coronavirus have cleared public squares and travel

destinations across the globe and left many public spaces deserted. As shown in Figure 1,

governments and health systems around the world have made many policies regarding

gathering restrictions such as social distancing (6 feet distancing between people), wear-

ing a mask, and so on to prevent and protect people from this virus.

However, even with COVID-19 restrictions, a crowd disaster can still occur unless

there is excellent crowd safety management to control the crowd. Otherwise, it can end
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Figure 2: Astroworld Festival 2021 in Texas, USA.

up with human casualties. For example, in November 2021, a densely crowded music

festival occurred in Houston, Texas. As shown in Figure 2, more than 50 thousand people

attended the event. Due to the dense crowd, people compressed up against each other and

pushed forward and back sides. Thus, the event ended with at least eight people killed

and more than 300 injured [5].

On the other hand, crowd events have long been known to increase the risks of in-

fectious disease outbreaks, specifically now with COVID-19, and the number of infection

cases during densely populated events. For example, during the COVID-19 pandemic in

April 2021, a massive gathering happened in India called Kumbh Mela, which is a major

pilgrimage in Hinduism. As shown in Figure 3, the festival occurred with a huge num-

ber of attendees. Due to the lack of implementing the COVID-19 restrictions, the virus

rapidly spread between the attendees, and over 386,000 new cases of COVID-19 and over

3,500 deaths were reportedly caused by the Kumbh Mela event [6].
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Figure 3: Covid-19 and Kumbh Mela festival 2021.

Accordingly, crowd safety control and management are becoming increasingly

vital elements to event planning. As part of that, crowd behavior analysis, including

characterization, counting, and modeling the crowd’s safety, are valuable instruments to

ensure safety and avoid human disasters. However, we need an integrated and intelligent

crowd engineering system to anticipate and control crowd disasters and infectious dis-

eases in different contexts, which includes factors such as characterizing crowds, density,

mobility, contact tracing, social distancing, and mask-wearing. This integrated system

should enhance real-time accuracy, scalability, and crowd safety management capacity in

addition to density and count detection.
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1.2 Crowd Engineering

Crowding is an unavoidable occurrence, and it can occur anywhere and at any

time. We can define the concept of the crowd as a large number of individuals gathered

together in specified areas or for a particular event. Crowding is a potential hazard at

entertainment events (sports), political events (protests, rallies), religious events (Hajj),

shopping areas (malls), or transportation areas (train stations, airports). Usually, events

generate a high crowd density, and there may be more significant risks to the attendees’

safety unless there is an excellent crowd control system. To better understand this, many

researchers have defined crowd in regards to this purpose. Duives et al. [7] defines the

crowd as a large group of heterogeneous individuals who share a common goal in a com-

mon physical environment. Crowd members may behave differently when they are alone

or in a small group.

In order to discuss the definition of crowd, we need to define crowd engineering

and how it is essential to control the crowd. Therefore, crowd engineering is an integrated

and intelligent science that aims to analyze and characterize crowds using various ele-

ments in different aspects, including density measures, mobility, contact tracing, social

distancing, and mask-wearing to prevent human casualties and infectious diseases (i.e.,

COVID-19). However, crowd engineering is widely essential in smart cities, where it

can plan, monitor, and manage crowds to enhance the accuracy, scalability, and crowd

safety management capacity in real-time. Notably, artificial intelligence (AI) techniques

such as crowd counting and mask-wearing detection in a crowd have been applied to the

science of crowd engineering, which plays a critical role in promoting crowd safety and
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management.

1.2.1 Types of Crowds

According to crowd safety and risk analysis, understanding the types of crowds

possible in a space is paramount to enhancing the efficiency and accuracy of the crowd

engineering techniques. Therefore, crowd density is considered a significant characteristic

in determining the type of crowd, which can assess the efficiency of crowd movement,

the capacity of a place, and it needs to understand the relative risks of each crowd density

type. Therefore, we categorized the types of the crowd into three types, including static,

mobile, and hybrid crowds.

Figure 4: Static Crowd (standing).

The static crowd (standing) usually gathers people in a specific location. It

mainly stands during the event, such as musical events. As illustrated in Figure 4, people

are standing in the event, and the crowd’s density depends on the event’s space. However,
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these events could be dense or sparse, and the complexity of crowd management depends

mainly on crowd density. Hence, the average space per person is 50 cm per square meter

in a sparse crowd, and space decreases when the crowd’s density increases [8].

However, in mobile crowds (dynamic) people move from one place to another,

such as during protests. It requires more space and is harder to manage or control com-

pared to the static crowd [2]. In addition, the risk of human casualties and the spread of

infectious diseases’ during mobile crowd events are more likely to occur because small

incidents at the crowd are enough to cause panic throughout the whole crowd of attendees

[9].

Figure 5: Mobile Crowd (unidirectional).

Mobile crowds can be unidirectional, as illustrated in Figure 5, where the crowd

is moving in the same direction. As the density is related to the crowd type, when density

becomes two people in a square meter, the flow speed is considered normal. However,
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when density becomes more than three people per square meter, the flow speed decreases

and becomes a high-risk crowd.

Figure 6: Mobile Crowd (non-unidirectional).

Furthermore, mobile crowds can be non-unidirectional. As illustrated in Figure 6,

the crowd can move randomly in different directions. The flow speed decreases signifi-

cantly, even at a lower density because to avoid collision crowd flow must halt. With this

type of crowd, a high-density crowd is high-risk crowd. When the crowd force pushes

forward, shock waves begin to ripple through the tightly packed mass, and it causes a

crush risk that can quickly lead to crowd disasters.

The last type is the hybrid crowd, which includes all previous crowds types in

the same space. These types of crowds happen where people need to move and stand

in the same location, sharing a common goal or common interests, such as in shopping

malls, train stations, and airports. As shown in Figure 7, the hybrid crowd is also consid-

ered a complex task to manage because it requires considering the density of each type of
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Figure 7: Hybrid Crowd.

crowd in the same place to control the crowd effectively. In addition, when people stand

and move randomly in different directions in the crowd, the flow speed decreases signifi-

cantly at the lower density, and collisions are avoided by stopping the flows momentarily.

High-density creates a high-risk crowd, and it can lead to a crush and allow infectious dis-

eases to spread. Therefore, risks of human casualties at crowded events are more likely to

initially occur as a small incident which panics the other attendees to start hustling, col-

lapsing, trampling, and stampeding each other. Inappropriate crowd management often

results in disastrous repercussions such as injuries and losses of human life.

These types of crowds need to be anticipated by the planner to set up an appro-

priate crowd management system. According to crowd safety and risk analysis [10],

understanding each crowd type’s impact and consequence, including crowd density and

relative risks, is critical for managing crowd safety.
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1.3 IoT-based Crowd Engineering

The term Internet of Things (IoT) technology has been widely employed in smart

cities to build innovative crowd management systems and control the crowd in particular

contexts. Scientists and researchers have developed many applications and technologies

in the field of crowd management. Nevertheless, these technologies enhance the under-

standing of crowd mobility, including characterization, density, and data analytics, by

providing unique perspectives and solutions, which can promote safety management of

urban communities. For example, CROMO [11] proposed an intelligent IoT framework

that enhances safety management for mobile crowd events. It detects and prevents po-

tential disasters using real-time Bluetooth low energy (BLE) signal characterization and

analytics. The framework implementation consists of a BLE transmitter tag, a BLE signal

scanner, and an analytic server. CROMO identifies the crowd density, object group loca-

tion, flow direction, and speed by analyzing BLE beacon counts, radio strength signals

received (RSSI) power, and variation patterns. Weppner et al. [12] proposed a procedure

for estimating crowd density using a mobile device to scan for Bluetooth devices that

appear in the environment. The device is used to scan and analyze social contexts and ex-

tend into advanced features, which will allow estimating the absolute number of devices

in the environment. Notably, the recent advancement of the science of IoT technology

has enhanced crowd surveillance systems’ efficiency, scalability, and capability. There-

fore, crowd management systems have incorporated IoT devices and sensors to provide

valuable and accurate detection and analysis to control the crowd and ensure the safety of

attendees. In addition, an intelligent crowd engineering system has employed IoT-based
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crowd management strategies and integrated them with computer vision, ML, and deep

learning approaches, which has resulted in an intelligent crowd system to control crowd

disasters and infectious diseases, including crowd characterizing, density measurement,

crowd mobility, contact tracing, social distancing, and mask-wearing.

1.4 AI-based Crowd Engineering

With the development of science and technology, AI plays a significant role in

controlling and managing crowds. It is being used to simplify and improve how humans

control crowds and enhance public safety and security during crowded events. There-

fore, researchers in crowd management have proposed various techniques and strategies

to control and manage the crowd. These techniques include crowd mobility, counting, and

tracking. They have improved the performance and reduced the complexity of the crowd

in practical contexts; however, crowds still have complexities and limited accuracy due to

unforeseeable congested areas and perspectives, including image resolutions, occlusions,

and non-uniform environments. This part will discuss the use of machine learning (ML)

and the tools used to build intelligent crowd management techniques.

Machine Learning (ML) is a subfield of artificial intelligence, which is defined

as the capability of a machine to imitate intelligent human behavior to solve complex

problems. It provides self-learning and improves from experience without being explic-

itly programmed. The machine learning model consists of numerous layers on multiple

levels to extract features from data. There are two types of learning in machine learning,

supervised and unsupervised. Supervised learning trains the machine using labeled data
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such as classification and recognition problems. However, unsupervised learning does

not need these labeled inputs. It mainly uses unlabeled data to find patterns in the input

data, such as clustering. In addition, Convolutional Neural Networks (CNNs) have be-

come popular in crowd management applications in recent years. In practice, a CNNs

algorithm can learn the mapping function of the input data and extract the features. It

uses mathematical formulation operations to detect features from the input to allow the

model to categorize detected objects [13]. Furthermore, machine learning methods are

categorized into regression and classification based on detection purposes. For example,

the regression methods used to detect the values and the classification used to detect a

category or determine between true and false. These aspects of machine learning allow

crowd management systems to be built and enhanced in smart cities to control crowd

events in broad aspects.

On the other hand, crowd counting is becoming an increasingly important ele-

ment of crowd management for AI techniques as well. It has many applications in smart

cities, especially regarding public safety, such as surveillance, traffic monitoring, and ur-

ban planning [14]. Counting the number of people plays an essential role in the security

and management of cities and facilities. It aims to develop AI tools that allow for a

quick and accurate estimation of the count of people in a crowded environment. These

tools can be used to perform real-time tracking of people counts in crowded areas. Hence,

automated crowd interpretation using AI techniques [15] is becoming an increasingly crit-

ical task for many practical crowd safety applications [16]. Although many CNN-based

methods have been proposed to improve the performance on complex crowd images to
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deal with variations in scale, perspective, and image resolution [17, 18], they still have

significant limitations in the face of occlusions that partially impede sight of individuals

in a crowd scene.

Figure 8: Machine Learning lifecycle.

As shown in Figure 8, building an intelligent crowd management system using

machine learning requires several steps (lifecycle), which yeilds a robust system while

reducing costs and time.

• Data Collection: Identifying relevant data for the implemented machine learning

application is a major step required for efficient machine learning solutions [19].

There are two ways to collect this type of data. First is manual data collection,

which is needed when applications may not have enough ready data to train the
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model fully. Therefore, the developers manually collect data from various sources

such as the internet by writing a programming script or generating the data from

sensors (Raspberry Pi) or mobile devices. The second way is to find the required

data from an existing resource such as Google and GitHub. This way will speed up

the performance and save more time and effort.

• Data Preparation: This is an iterative process of structuring, cleaning, and trans-

forming raw data into a desired format that can be used in modeling. It is con-

sidered the most critical step due to it being the most time-consuming effort to

provide valuable data for further analysis and better decision-making in less time

[20]. Nevertheless, the preparation process consists of significant activities, includ-

ing structuring, cleaning, and labeling. For this task, the VGG Image Annotator

(VIA) software [21] can be used to manually draw the annotations like bounding

boxes, rectangles, circles, polygons, and points on the image and assign each la-

beled object to a class. This information generates a ground truth for each image,

which is used to train the model.

• Modeling: Building the model is a core and the fundamental step of any ML

project. The model can be created from scratch, which requires an understanding

of the targeted problem’s requirements, including data, parameters, configurations,

and the model’s features. Nevertheless, it is also possible to use a pre-trained CNN

model as a backbone method to integrate into your model. The examples of the

pre-trained architectures include VGG-16 [22], ResNet-152 [23], MobileNet-V2

[24], EfficientNet-B0 [25], DenseNet-121 [26], YOLO V3 [27], and YOLO V5
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[28]. In addition, model selection is the process of writing and running the pro-

grams of a targeted problem with solid results using programming languages like

Python, Matlab, C++, and R. Python programming language is considered the most

popular language with tons of libraries and software such as TensorFlow [29], Py-

Torch [30], and Keras [31]. Specifically, TensorFlow is an open-source platform

for ML released by Google. It uses efficient numerical computing tools to create

deep learning architectures to assist developers in deploying their models across

various platforms. PyTorch is an open-source framework (Torch library) released

and developed by Facebook. It is mainly used in machine learning and deep learn-

ing applications. Furthermore, Keras is an open-source library written in Python.

It provides a high-level neural network implementation. Keras is tightly integrated

with TensorFlow to create ML models.

• Model Training: We train the model using the training set to check the model’s

performance and learning patterns for the best outcome of the problem. Usually,

any ML problem dataset is characterized into three sets: training, testing, and val-

idation. Furthermore, several parameters are used to evaluate the model perfor-

mance, such as Adam optimizer [32], Stochastic Gradient Descent [33], learning

rate, momentum, batch size, and epoch number.

• Model Testing: In this step, we test the model to check the model’s performance

and outcome accuracy. However, suppose we are not satisfied with the final models’

accuracy and outcome. In that case, we can configure and train the model again,
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which may improve the performance for a better outcome of the problem. The test-

ing steps determine the model’s percentage accuracy as per the targeted problem’s

requirement.

• Development: This is the final step of building an ML project. This step is con-

sidered the deployment step. It is required to deploy and integrate the model as a

prototype or platform in real-world application in order to solve real-world prob-

lems.

To summarize, ML techniques, including deep learning, are widely used for crowd

monitoring and associated tasks such as counting, density estimation, tracking, scene un-

derstanding, localization, and behavior detection to build an intelligent crowd manage-

ment system. Furthermore, it provides various benefits such as efficiency, flexibility, and

high-performance accuracy.

1.5 Research Domains

This dissertation aims to build an intelligent crowd engineering platform by en-

hancing accuracy, scalability, and capacity to support public safety and management in

real-time. Specifically, three essential components will be addressed: IoT-based mobility

characterization, ML-based video/image surveillance, and semantic knowledge as shown

in Figure 9.
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Figure 9: Intelligent Crowd Engineering (ICE) Platform

1.5.1 IoT-Based Mobility Characterization

Due to the unprecedented scale and speed of urbanization, cities are facing the

daunting task of accommodating for urban dynamics. The concept of smart cities at-

tract city planners and researchers as it facilitates many smart community services by

combining cyber-physical systems and social entities through wireless, mobile, and in-

telligent information and communication technologies (ICT). One of the critical service

requirements of future cities is safety management for citizens and communities [34].

Specifically, safety management during densely populated events such as religious, enter-

tainment, and political gatherings becomes more significant as it happens more frequently

and at large scale in modern cities. Unlike static crowd events where a crowd is formed
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in a specific location, when a crowd is moving from a location to another (i.e., unidirec-

tional), it requires more space (i.e., less density). If crowd mobility exhibits multiple non-

unidirectional patterns, it would require even more space to be safe and is much harder to

manage and control [35, 2]. Risk of human casualties with mobile crowd events are more

likely to occur because small incidents at the crowd are enough to cause panic among the

attendees to start hustling, collapsing, trampling, and stampeding each other. Any inap-

propriate crowd management in these situations often result in disastrous repercussions

such as injuries and casualties [9].

The recent smart video surveillance inspired by advanced AI technologies and

ML algorithms enables a broad spectrum of promising safety applications, including ob-

ject detection and identification, behavior recognition and tracking, and anomalous event

detection [36, 37]. However, video surveillance alone cannot identify and predict a par-

ticular crowdâs status. It cannot scale and lacks the capacity for providing appropriate

mobile crowd safety management in real-time. For example, in Mecca, Saudi Arabia,

during Hajj season, groups of pilgrims started going in the opposite direction to get to

their destination faster. When the crowd flow got clogged from the colliding crowds, it

resulted in more than 2000 casualties. Although there were 5000 video surveillance de-

vices installed all around Mecca to monitor the Hajj season [34], the accident was not

able to be prevented in time.
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1.5.2 ML-Based Video/Image Surveillance

Crowd Counting: This is becoming an increasingly important issue of computer

vision, as it has many applications in the context of smart cities, especially pertaining to

public safety. The lack of proper crowd safety control and management often leads to hu-

man casualties and the spread of infectious disease (i.e., COVID-19) at densely crowded

political, entertainment, and religious events. Hence, automated crowd interpretation us-

ing AI techniques [38, 39] is becoming an increasingly critical task for many practical

crowd safety applications [40, 41, 42]. Although many CNN-based methods have been

proposed to improve the performance of complex crowd imaging to deal with variations

in scale, perspective, and image resolution [43, 44, 45, 46, 47], they still have significant

limitations in the face of occlusions that partially impede sight of individuals in a crowd

scene. Crowd images are often scattered with occlusions that makes it difficult to iden-

tify the total amount of people in a scene. As illustrated in Figure 31, the types of fixed

environmental obstacles such as buildings, big trees, and walls are constrained to specific

parts of an image, thus can be easily excluded from the crowd counting area. However,

the interpretations of scattered occlusions (SO), such as umbrellas and picket signs, are

challenging, as they can obscure the sight of one or more individuals entirely or partially

depending on crowd size, density and occlusion types [2]. Despite their commonness in

many mass gathering scenes such as sport events, political rallies, or protests, existing

approaches fail to accurately count people with the presence of SO in crowd images.

Safety Modeling in Crowd: In battling against the global pandemic caused by

COVID-19, many countries and local governments continuously predict the pandemic
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trajectories for healthcare-related policy decisions such as opening schools, limiting busi-

nesses, and planning infrastructure healthcare facilities and personnel. In addition, grow-

ing evidence shows that requiring masks in public areas in parallel with aggressive testing

and rapid vaccinations are critical for achieving herd immunity [48, 49]. As illustrated in

Figure 41, many scientists, the World Health Organization [50] and the CDC [51] con-

firms that masking in public places is one of the most effective health measures along with

social distancing to break the coronavirus transmission chain. For example, the chance

of coronavirus transmission reduces from 90% to 1.5% by wearing masks. Despite such

safety recommendations, in reality, face mask-wearing and social distancing are practi-

cally practiced at a varied level depending on place and time.

Monitoring and assessing the conformity of mask-wearing and social distancing

in public places would provide more accurate input to pandemic trajectory predictions and

understand the safety level of communities. However, existing approaches do not directly

address the issue and fall short of effective and scalable tasks. There are several ML-based

object detection and classification approaches aimed for COVID-19 projections [51], di-

agnosis, social distancing [52], and contact tracing [53] applications; however, as the

technologies to ensure masking in public places aim at surveillance and tracking individ-

uals [54, 55], they are rendered less useful in public areas, such as crowds on the street,

airports, and schools, due to scalability limitation and privacy concerns.
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1.5.3 Semantic Knowledge Information-based Tracing Application

COVID-19 causes multiple pandemic waves worldwide for years due to the na-

ture of its long incubation period, the aggressive asymptomatic transmission, and new

mutations of the virus. Lockdown measures (shrinking the community at the elementary

level, such as a family and limiting contact between communities) and social distanc-

ing is the last resort against it. In addition to vigorous testing and vaccination, very

aggressive social distancing in public places is a vital part of the strategy for keeping

such exponential infections from happening again after the first wave recedes and the

society reopens. However, existing technologies, such as contact tracing apps, have not

been adopted due to privacy and accuracy concerns. Without achieving a critical mass of

individual users, these personal technologies have been rendered useless. Although large-

scale policy efforts have been complicated, requiring the coordination of federal, state,

and local governments and the logistics of regulation enforcement, applying technologies

to small, focused communities can retain individual privacy, achieve wide user adoption,

and allow easy implementation. Unfortunately, they are not helpful for the post-pandemic

era (a new normal) to prevent another potential future pandemic wave.

1.6 Our Contributions

In this dissertation, we are proposing an intelligent crowd engineering platform

using Machine-based Internet of Things Learning and Knowledge Building approaches

(ICE-MILK) to enhance the accuracy, scalability, and safety management capacity for

crowds in real-time. Specifically, a three-layer ICE-MILK structure, including IoT-based
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mobility characterization, ML-based video surveillance, and semantic information-based

application layers will be designed. Thus, we summarize the contribution of this disserta-

tion work as follows:

• In the IoT-based mobility characterization, we propose CROMO that enhances

crowd mobility characterization through real-time Radio Frequency (RF) data an-

alytics. The system will be constructed by predicting and preventing potential dis-

asters through real-time Radio Frequency (RF) data characterization and analytics.

Object group identification, speed, direction detection, and density for the mobile

group among the many crowd mobility characteristics will be anticipated for this

step.

• In the ML-based video/image surveillance, we propose an architecture for scat-

tered occlusion characterization called CSONet for efficient crowd counting and

high-quality density heatmap generation. CSONet recognizes the implications of

event-induced, scene-embedded, and multitudinous obstacles such as umbrellas and

picket signs to achieve an accurate crowd analysis result. Two new scattered occlu-

sion object datasets, which contain crowd images occluded with umbrellas (cso-

umbrellas dataset) and picket signs (cso-pickets dataset), will be used. In addition,

we propose a novel face masking detection system for Modeling Safety Index in

Crowd (Mosaic), a Machine Learning (ML)-based approach for detecting mask-

ing in a crowd by building new dense mode crowd masking datasets. Mosaic de-

tects, counts, and classifies the crowd’s masking condition and calculates each com-

munity’s spatiotemporal Safety Index (SI) values instead of monitoring individual
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masking cases using a weighted neighbor relationship to ensure privacy protection.

• For the semantic knowledge information-based application, we applied the previ-

ous technologies to group semantics to track and prevent infectious diseases (i.e.,

COVID-19) and crowd-related accidents. We also propose a novel tracing applica-

tion named crowd-based alert and tracing services (CATS). CATS applies privacy-

aware contact tracing, social distancing, and ML-based mask-wearing principles to

provide higher privacy protection, efficient penetration of technology, greater ac-

curacy, and effective practical policy assistance. The system builds a sustainable,

safe community cluster against COVID-19 and beyond using affordable Internet of

Things (IoT) and edge-enabled technologies. We have integrated CATS compo-

nents into an edge-based IoT system.

The primary purpose of this study is to improve crowd safety management methods

through real-time RF to characterize and analyze the crowd mobility in speed, direc-

tion, and density to predict and prevent potential disasters. Also, building a ML-based

video surveillance approach for effective dense crowd counting by characterizing SOs

in crowd events. We integrated the crowd mobility characterization and the ML-based

video surveillance approach to group semantics to track and prevent infectious disease

(i.e., COVID-19) and the crowd-related accidents.
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1.7 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 discusses the

related work in the IoT-based mobility characterization, ML-based video/image surveil-

lance approaches, and semantic Knowledge application. Chapter 3 encompasses IoT-

based mobility characterization and proposes CROMO to improve crowd mobility char-

acterization through real-time RF data analytics. In Chapter 4, the Scattered Occlusions

for Effective Dense-Mode Crowd Counting (CSONet) is introduced. Also, an ML-based

face masking detection system for Modeling Safety Index in Crowd (Mosaic) will be

included. Chapter 5 will elaborate on semantic information-based application layers,

including crowd-based alert and tracing services for building a safe community cluster

against COVID-19 (CATS) and crowd safety sensing (CroSS) for the post pandemic era.

Finally, this dissertation will provide some pointers to future research work in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss the state-of-art research work related to crowd Engi-

neering in different aspects. As mentioned in Chapter 1, this dissertation aims to build

an Intelligent Crowd Engineering (ICE) platform by enhancing the accuracy, scalability,

and capacity to help ensure public safety and management in real-time. Thus, this related

work chapter is organized into three sections, in which each section discusses previous

works done at specific application domains.

2.1 IoT-based Mobility Characterization

Crowd monitoring and tracking topics are attracting the attention of researchers

due to its importance for urbanizing cities. There have been several recent crowd man-

agement studies that address the issue of tracking the massive crowd using video cameras

or wireless technologies . In this section, we review the most related works in Radio

Frequency RF-based tracking.

2.1.1 RF-based tracking Approach

Radio Frequency (RF)-based tracking such as Wi-Fi, is another method of crowd

managing which has many papers proposing solutions for crowd density estimation and

tracking [56, 57, 58]. The authors in [56] used coordinated indoor Wi-Fi routers to collect

data between TX and RX and used SVM model to train the data to count the number of
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people in a room. The study in [57] attempts to localize people at TT festival in Assen, The

Netherlands and improved accuracy by de-noising the collected Wi-Fi data. Both studies

focus on limited crowd characteristics. Nunes et al. [58] analyzed MAC addresses and

associated SSIDs to study the dynamism of tourists, but it is for a static posterior analysis

rather than a real-time crowd management. K. Li et al. [59] proposed a framework to

capture probe packets sent by smart-phones and use it to monitor crowd density in the

indoors. Also, they used RSSI to indicate the closest sensor to smart-phones to collect data

to reduce packet duplication. Our work is different where we have focused on tracking

crowd mobility indoor and outdoor environments using multiple metrics such as RSSI,

beacon count, and time-stamp. Also, our work uses bracelets instead of smart-phones due

to data privacy issue. Patil et al. [60] suggested Wi-Fi to track the number of people at a

massive event. They capture probe packets of attendees’ smart-phone Wi-Fi to estimate

the size of crowd. Their work is focused on estimating the number of attendees, while our

work focuses on tracking crowd mobility at the events. Unlike the above, we use BLE

instead of Wi-Fi due to its low power consumption, low cost, availability, flexibility in size

and friendly-wearable. RFID has been one of the most common wireless technologies to

identify and track objects with an active RFID tag. Yamin et al. [61] used GPS equipped

RFID tags connected to a centralized database to track pilgrims. This method also applies

to Al-Hashedi et al. who proposed using RFID connected to a data center to track pilgrims

during Hajj [62] and Mitchell et al., who also mentioned the possibilities of using RFID

along with smart-phones to track the pilgrims during Hajj [63]. In our work, we are using

BLE instead of RFID because the RFID system cannot support any communication based
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intelligent monitoring approaches [64]. GPS is a satellite-based system that has been used

for navigating and tracking objects in outdoor environments. Blanke et al. [65] suggested

using GPS for tracking crowd in large scale areas, but GPS has limitation coverage for

indoor environments event, in which it does not support our study in this paper.

BLE is low power wireless technology that has been used to connect smart de-

vices. There are a couple of papers used BLE in their solutions. Basalamah et al. [66]

used an active mode Bluetooth Low Energy (BLE) tag. The beacon messages are scanned

by smart-phones (detectors). However, the active BLE tags consume the battery power

quickly. It also increased the chance of overhead and packet collisions at dense events. In

facts, this approach decreased the data accuracy since the people carried the smart-phones

(detectors) within the crowd. In contrast, our approach takes a passive mode tag that

improves data accuracy, scalability, and power consumption. Weppner et al. [67] used

smart-phones to scan for other Bluetooth devices to estimate the crowd density. How-

ever, this work did not provide any additional intelligent measurements for managing the

crowds. Also, their work mainly focused on assessing the static crowd density, while our

work tackles a mobile crowd to handle the crowd mobility and safety [68]. Alessandrini

et al. [69] used RSSI in Wi-Fi for localization in the crowd and to track the flow. We are

using RSSI in BLE [70] as a tool for localizing objects. Several papers studied RSSI in

BLE for indoor localization. Wu et al. [71] used the BLE RSSI captured by three signal

sniffers to classify if people are in a queue during the crowd at indoor. Our approach

is different because we used BLE RSSI from the respond beacons, then we used RSSI

average and variation to detect the crowd density and mobility indoor and outdoor events.
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2.2 ML-based Video/Image Surveillance

2.2.1 Video Surveillance Approach

Video Surveillance is one of the most common and traditional ways for safety

and security monitoring. Several papers addressed the issue of crowd density risks and

proposed videos surveillance to estimate the density or monitor the crowd [36, 72]. How-

ever, video surveillance requires manual data analysis; it cannot respond in real-time. In

addition, it is not accurate to track and estimate the high-density crowd using cameras

because obstacles such as wall, tree and the human body can block the camera’s vision

from capturing objects [71]. Head detection using cameras is another approach because

the human head is the most visible part of the human body at a crowd from the camera’s

tower. Shami et al. [73] proposed an algorithm that detects peoples’ head at a crowd for

counting the density using Convolutional Neural Network CNN. However, the accuracy

of capturing the human heads can be affected in case if some pedestrians have umbrellas

or small persons blocked by large persons from the cameraâs view. Bek et al. [9] proposed

an approach to measure the crowd density flow for congestion risk assessment. The study

used single camera tracking example without taking into consideration that large crowd

required more than a camera, so in case of multiple cameras may have different measure-

ments in tracking the moving crowd for risk assessment [74]. Alahi et al. [74] proposed

unsupervised technique learning to match multiple camera single-view in tracking pedes-

trians by estimating the distance between pair cameras. Matching the view of multiple

cameras to track pedestrians is a great effort. However, their work did not take into ac-

count object navigating. For example, in the case of out-view objects during moving from
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one camera’s angle to another or in the case of obstacles blocking a cameraâs view of an

object. Therefore, due to the accuracy and capability limitation of the video surveillance

approaches, it cannot manage crowd events alone.

2.2.2 Crowd Counting Approach

There have been significant studies and remarkable improvements made in crowd

counting and density estimation. Traditional non-machine learning methods can be broadly

classified into three categories, namely, detection-based, regression-based, and density

estimation-based approaches [75]. Despite various advancements, those approaches have

shortcomings of complexities and limited accuracy. In recent years, researchers mostly

have adopted machine learning techniques to overcome those weaknesses. In this section,

we briefly highlight noticeable prior studies.

2.2.2.1 Traditional Methods

A number of early methods have attempted to tackle the challenges of crowd

counting and density estimation via implementing detection-based approaches. Gener-

ally, these methods use a detector or classifier to recognize a human’s whole or body part

to estimate the crowd count. Dollar et al. [76] applied a sliding window detector to extract

the features from the input image and determine the human count. Most of the methods

focused on extracting features, such as histograms of oriented gradients HOG [77], and

Haar wavelets [78] from the crowd images to learn the density and the count. However,

the counting results of the whole body methods perform poorly in highly crowded im-

ages. Although a part-based detector is proposed to detect the density of people in a
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crowd [79, 80], these methods still face difficulties in locating people, especially when

the crowd in a scene is highly occluded or densely populated, as it happens often in var-

ious events. Regression-based approaches have been proposed to tackle the limitations

of the detection-based method, concentrating on the difficulty of detecting the count in

a highly dense crowd scene. Regression methods aim to learn the mapping between ex-

tracted features from the image and the count number of objects [81, 82]. Regression

methods typically have two main components: low-level feature extraction and regres-

sion modeling [83]. Density estimation-based methods are another approach for crowd

counting and density estimation. Researchers have successfully addressed the issues of

occlusion and clutter by using regression-based methods. Nevertheless, some of the ex-

isting techniques overlooked spatial information, which affected the result of counting.

In contrast, Lempitsky et al. [84] proposed a supervised learning framework to estimate

the count of objects in images. They used a linear mapping technique that focuses on

the density through learning the relationship between the local image features and object

density maps. However, Pham et al. [85] observed the limitation of the linear mapping

and proposed a random forest framework to learn a non-linear mapping between local

image features and density maps.

2.2.2.2 CNN-based Approaches

Several studies have proposed Convolutional Neural Networks (CNN) based ap-

proaches for crowd counting and density estimation. Those methods have obtained a sig-

nificant improvement in crowd counting and density estimation addressing various kinds
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of challenges, such as perspective, image resolutions, occlusions, and non-uniform envi-

ronment. Here, we briefly summarize various of the recent methods for crowd counting

and density estimation in terms of their CNN architectures. A multi-column CNN archi-

tecture called MCNN was proposed in [86] to estimate the crowd count and density map

in an arbitrary crowd image. The CrowdNet method proposed in [87] is considered one

of the early CNN based architectures inspired by VGG16 [22]. The CrowdNet combined

convolutional networks and a shallow network to learn robust scale features and to gen-

erate the density maps. Cao et al. [88] present an encoder-decoder network called a scale

aggregation network (SANet). The encoder layer extracts the multi-scale features, and

the decoder will generate high-resolution density maps. Also, training loss is introduced

by combining euclidean loss and local pattern consistency loss, which contributed to im-

proving the final count. Li et al. [89] introduce the congested scene recognition network

(CSRNet), which is one of the state-of-the-art in terms of performance among the ones

inspired by VGG16. It consists of two essential components: CNN as the front-end lay-

ers and dilated convolution layers as the back-end. Zhang et al. [90] proposed a method

that generates a probability map and presents the high expectations indicated in locations

where heads are possible to be present. CANet [91] proposed a deep network architecture

that performs multi-level feature comparison between the support and the query images

and iterative refinements of the results. Chen et al. [92] proposed a scale pyramid network

(SPN), which consists of a single column structure to extract multiple-scale features by

dilated convolutions with various rates. ASNet [93] is also considered as a state-of-the-art

method. It contains a density attention network that generates attention masks, and then
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provides it to attention scaling network in order to generate scaling factors outputting

attention-based density.

Despite improvements achieved by such recent approaches, the accuracy of crowd

counting can significantly diminished in the presence of SOs in a crowd scene. Our

method address the very issue of SOs and achieves a high accuracy of crowd counting

in the presence of such SOs.

2.2.3 Modeling Safety Index in Crowd

While there are a number of image and video processing techniques that could

be used for COVID-19 pandemic related analysis, they are limited to individual analyses

rather than a scalable crowd analyses that can be practically used for crowded or big pub-

lic areas such as streets, airports, and schools. ML methods have significantly improved

the image classification networks in many aspects, especially the popular use of Convo-

lutional Neural Networks (CNN) techniques. Since 2020, researchers have attempted to

develop and deploy object detection and classification tools to prevent the spread of the

COVID-19 virus by detecting the face masking in public places.

A face mask detection method is proposed that can classify the face masking con-

ditions into three categories: correct face masking, incorrect face masking, and no face

masking [94]. Meanwhile, the Principal Component Analysis (PCA) algorithm has been

deployed to detect the masked and no-masked face [95] based on the observation that face

recognition accuracy is extremity affected by wearing masks using the PCA algorithm. A

real-time face emotion classification approach is proposed based on deep learning [96],
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which adopted VGG16 to classify facial expressions. A face mask classifier has been

implemented using You Only Look Once (YOLO) v3 [97], which uses Darknet-53 as the

backbone and achieved a high accuracy in face mask classification. A hybrid deep learn-

ing model was proposed for face mask detection [98], which consists of two components,

the first component used Resnet50 to extract the feature, and the second part used the

concept of Support Vector Machine for classification. Most of the proposed face masking

detection methods have used deep learning methods such as ResNets [99], Vgg-16 [22],

Fast R-CNN [100], Yolo v3[27], and Yolo v5 [28]. While multiple face mask datasets

have been constructed [101, 102, 103, 104, 105], none of them includes the scenarios of

dense mode. This missing link and the compelling need inspired us to collect and annotate

a new face mask dataset that contains crowd density models from low to high. In addition,

face mask detection alone is not sufficient to prevent the transmission of the COVID-19

virus. An intelligent masking detection system is highly desired that can detect, count,

and classify the crowd’s masking conditions and generate SI values for each community

instead of detecting individual masking cases.

Our work uniquely fills the current gap between high-level pandemic prediction

model that does not take the reality of mask-wearing practices and individual level image

processing that is not effective for scalable crowd analysis. Mosaic assesses the various

types of mask-wearing practices from low resolution crowd images, and provide spatio-

temporal SI in a scalable and effective manner.
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2.3 Semantic Knowledge Information-based Tracing Application

In this section, we examine the existing solutions. We are well aware of the re-

cent project activities of contact tracing in the U.S. (e.g., Apple and Googleâs contract

tracing API [106], PACT [107] [108], PrivateKit [109], etc.) as well as the effective

practices in countries in East Asia in combating this pandemic such as South Korea, Tai-

wan and Singapore [110]. While the success of contact tracing in East Asian countries

is attributed to extensive testing and strong government coordination, the compromise of

personal privacy was main weakness [111]. In contrast, US society highly values privacy

and is distrustful of mass government surveillance. Policy decisions in the US are much

more complex due to federal and state power divisions and the diverse populace. Accord-

ing to the recent polls [112], 71% of respondents said they have no plans to download

and use a contact tracing app. Additionally, 44% expressed concern over digital privacy,

39% said the app gave a false sense of security, 37% believed the apps would not slow

the spread of COVID-19, and 35% cited their distrust of the app providers. However,

another survey shows 70 - 80% of Americans are willing to install an app if they are per-

fectly private and accurate, which is a significant increase. Many of RTLS companies,

including Pozyx [113], Tsingoal [114], Localino [115], Iterate Labs [116], Arin [117],

and RightCrowd [118], have already commenced COVID-19 contact tracing and social

distancing application systems. Start-ups, enterprise/commercial GPS companies, and

carriers are drawn to this space with wearables and the Internet of things apps. Several
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commercial devices available for tracking such as Filip Technologies Inc. [119], Loca-

tion Based Technologies, Inc. [120], Amber Alert GPS [121], Wonder Technology Solu-

tions [122], hereO [123], Quattro [124], and Masternaut [125]. More examples include

[126, 127, 128, 129, 130, 131, 132, 133, 134]. However, most of them are expensive and

fundamentally rely on GPS that is not available in-doors, nor is it energy-inefficient. Fur-

thermore, these devices use cellular communication for one-to-one communication. Thus,

they incur high monthly charges, and the efficacy of monitoring is limited. Most of all,

none of them addresses the issue of privacy that significantly impacts the crowd participa-

tion. According to ABI Research, the significant barriers of personal location devices and

applications market have been expensive devices, cellular subscriptions, indoor locations,

and severe regionalization and fragmentation of coverage [135]. In summary, the existing

approaches have the following significant limitations.

• Privacy/Technology adoption: Many individuals in the US do not have smartphones

or will avoid any kind of contact tracing such as children, people with disabilities,

people who are undocumented or have family members who’ve been in trouble with

the law, will deteriorate the value of the system.

• Accuracy/False positives: It is known that signal alone cannot clearly distinguish

the existence of walls or barriers between contacts.

• Binary tracing information: Different types of contacts (thus different potential im-

pacts of contacts) are ignored. Thus, it only acts as a less effective backtracking

mechanism after a potentially long asymptomatic incubation period.
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Likewise, once the technical issues such as privacy and accuracy on the contact

tracing and social distancing are resolved effectively, the community’s adaptation will be

dramatically increased. The core of our idea is to efficiently utilize crowds/communities

to protect people from pandemic outbreaks using innovative technologies.
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CHAPTER 3

IOT-BASED MOBILITY CHARACTERIZATION

Human casualties at entertaining, religious, or political events often occur due to

lack of proper crowd management. Notably, for the crowd in mobile, a minor accident

can create a panic for the people to start stampeding and trampling others. Although

many smart video surveillance technologies are recently proposed, it is still very chal-

lenging problems to predict a crash in real-time among the mobile crowd for preventing

any potential disaster. In this work, we propose CROMO that enhances crowd mobil-

ity characterization through real-time Radio Frequency (RF) data analytics. Inspired by

the recent advanced artificial intelligence (AI) technology and machine learning (ML)

algorithms, traditional video surveillance technologies make object detection and identi-

fication possible in real-time. However, their scalability and capacity lack in a crowded

mobile environment. CROMO propose to fill the gap via RF signal analytics. Among

the many crowd mobility characteristics, we tackle object group identification, the speed,

and direction detection for the mobile group. We also apply them to group semantics to

track the crowd status and predict any potential accidents and disasters. Taking advantage

of power-efficiency, cost-effectiveness, and ubiquitous availability, we specifically ana-

lyze a Bluetooth Low Energy (BLE) signal. We have tested CROMO in both a practical

crowd event and the controlled indoor and outdoor lab environments. The results show

that CROMO can detect the direction, the speed, and the density of the mobile crowd in
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real-time. Therefore, it can help the crowd management in avoiding disasters possibilities

at crowd events.

3.1 Introduction

Due to the unprecedented scale and speed of urbanization, cities are facing the

daunting task of accommodating the urban dynamics. The concept of Smart Cities at-

tracts city planners and researchers as it facilitates many smart community services by

combining cyber-physical systems and social entities through the wireless, mobile, and

intelligent information and communication technologies (ICT). One of the critical ser-

vice requirements of future cities is the safety management for citizens and communi-

ties [34]. Specifically, the safety management during the densely populated events such

as religious, entertainment (such as sport and music), and political gatherings becomes

more significant as it happens more frequently and in a large scale in modern cities. Un-

like static crowd events where a crowd is formed in a specific location when a crowd is

moving from a location to another (i.e., unidirectional), it requires more space (i.e., less

density). If crowd mobility exhibits multiple non-unidirectional patterns, it would require

even more space to be safe and is much harder to manage or control them [35, 2]. Risks of

human casualties at mobile crowd events are more likely to occur because small incidents

at the crowd are enough to cause panic to the attendees to start hustling, collapsing, tram-

pling, and stampeding each other. Any inappropriate crowd management often results in

disastrous repercussions such as injuries and casualties [9]. Table 2 shows many recent

cases of crowd disasters that cause human losses around the world [136]. The community
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stakeholders need to provide their best efforts to maintain the crowds properly.

Table 2: Crowd caused disasters around the global.

Location (Country/City) Human Casualties Year Event Type

Saudi Arabia, Mecca > 2000 2015 Religious

Brazil, Santa Maria > 242 2013 Entertainment

Egypt, Port Said > 74 2012 Sport

India, Jodhpur > 224 2008 Religious

Iraq, Baghdad > 935 2005 Religious

The recent smart video surveillance inspired by the advanced Artificial Intelli-

gence (AI) technologies and Machine Learning (ML) algorithms enables a broad spec-

trum of promising safety applications, including object detection and identification, be-

havior recognition and tracking, and anomalous event detection [36, 37]. However, video

surveillance alone cannot identify and predict particular crowd status. It cannot scale

and lacks the capacity for providing an appropriate mobile crowd safety management in

real-time. As illustrated in Figure 10, the image shows very high density crowd that is

located on a bridge. However, it does not reveal the group identity and location within the

crowd and their moving direction and speed. For example, in Mecca, Saudi Arabia, dur-

ing Hajj season, groups of pilgrims were taking the opposite road direction to get to their

destination faster. When the crowd flow got clogged from the crowd flow from the oppo-

site direction, it resulted in more than 2000 casualties. Although there were 5000 video

surveillance installed all around Mecca to monitor the Hajj season [34], the accident was

not able to be prevented in time.
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Figure 10: Crowd Image Surveillance Illustration.

Figure 11: CROMO Layer Architecture.

In this work, we propose CROMO that enhances crowd mobility characteriza-

tion through real-time Radio Frequency (RF) data analytics [11, 137]. It enhances safety

management for a mobile crowd events by predicting and preventing potential disasters
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through real-time Radio Frequency (RF) data characterization and analytics. The moti-

vation is to improve safety management method for the mobile crowd by filling up the

scalability and capability gaps of the existing video surveillance via tightly integrating

RF signal analytics (Figure 11). It implements a wireless-based, efficient and a scal-

able crowd/group tracking technology. Specifically, we exploit a tracking bracelet and

monitoring infrastructure as well as a couple of abnormality scenarios and prediction al-

gorithms. CROMO uses a Bluetooth Low Energy (BLE) [138] communication in this

project as it is power-efficient, cost-effective, and ubiquitous [139]. Among the many

crowd mobility characteristics, by using passive BLE scanners, we measure the number

of beacons, the Radio Strength Signals Received (RSSI) value, and its variation pattern.

Integrating the received beacon values, CROMO can identify the crowd density, the ob-

ject group location, and the flow direction and speed. We have conducted various practical

mobile crowd tests in both indoor and outdoor environments under different crowd con-

ditions from low to high-density. We also apply them to group semantics to track the

crowd status and predict any potential accidents and disasters. For example, participant’s

data such as names, ID numbers, group ID, destination locations, contacts, and necessary

health information can be registered into the tracking bracelet. In case of an emergency,

the data could be used to facilitate help by the public safety personnel. By using a couple

of algorithms, CROMO is able to predict a few potential problems in the mobile crowd

scenarios. CROMO detects speed among the moving groups as well as identify a potential

collision by measuring the flow density. The proposed monitoring approach is explicitly

designed for densely crowded environments.
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3.2 System Architecture

Mobile crowd management is one of the hardest tasks because predicting human

behavior during a crowded event is extremely difficult. In CROMO, we study the feasi-

bility of using BLE beacon signals from various BLE transmitters for tracking the mobile

crowd status.

3.2.1 CROMO Layer

According to the crowd safety and risk analysis [10], understanding the impact

of crowd density (the number of people per square meter) for both a standing crowd

and a mobile crowd is critical for managing crowd safety. For example, to assess the

efficiency of crowd movement, a capacity of places, it needs to understand the relative

risks of both standing crowd density and the moving crowd density. In some case, if a

standing crowd becomes mobile and a unidirectional crowd becomes non-unidirectional,

the planned capacity design fail. It can cause any unexpected disasters. As illustrated in

Figure 12, when the crowd density (the number of people per square meter) increases, the

comfort level of the crowd decreases and flow speed starts to decrease as people cannot

take full paces forward. After a saturation point, crowd mobility becomes constrained

and accumulated, and the flow rates dramatically drop. For the crowd moving in the

same direction, when density becomes more than three people in a square meter, the flow

speed starts to decrease, and when density becomes more than four people in a square

meter, the flow speed drops to become a high-risk crowd. However, when the crowd

moves randomly in different directions, the flow speed decreases significantly at the lower
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density and even at the density of 3 or 2.5 people becomes a high-risk crowd. In a low-

density case, a collision can be avoided by stopping the flows. However, in a high-density

case, when crowd force pushes forward the people in front and shock waves began to

ripple through the tightly packed mass, it causes a crush and crowd disasters. The crowd

safety management should be able to predict the potential flow directions well before the

crowd is getting into a high-crowd condition.

Figure 12: Mobile Crowd Density vs. Flows.

As shown in Figure 13 [37], using the advanced artificial intelligence (AI) tech-

nology and machine learning (ML) algorithms, the intelligent video surveillance enables

to detect and track multiple moving objects. However, it cannot scale to monitor various

objects in a high-density crowd due to the limitation of visual processing. Also, video

surveillance cannot follow the moving objects if obstacles or another human block them.

It is hard to handle the hand-over from one camera angle to another [74]. Furthermore,
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the video surveillance alone cannot identify and predict particular crowd status such as

group semantics. For example, it does not expose the group identity and location within

the crowd and their moving direction and speed. Hence it alone lacks the capacity of

providing an appropriate crowd safety management in real-time.

Figure 13: Smart Video Surveillance.

CROMO enhances safety management method for the mobile crowd by harness-

ing BLE signal data analytics layer (in Figure 11) over the existing video surveillance.

Among the many crowd mobility characteristics, by using a BLE bracelet and BLE scan-

ners, CROMO measures the beacon counts, the RSSI power, and its variation pattern.

Although these metrics are used in various applications, their behavior in a high-density

is not well known. By integrating the parameters and application-specific semantics over

the video surveillance, CROMO can identify the crowd density, the object group location,

and the flow direction and speed in both indoor and outdoor environments. CROMO also

can predict any potential accidents and disasters. For example, participant’s data such as

names, ID numbers, group ID, destination locations, contacts, and necessary health infor-

mation can be registered into the tracking bracelet. By using group speed and direction
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detection algorithms, CROMO can predict a potential collision in various mobile crowd

scenarios.

3.2.2 CROMO Design

CROMO uses a Bluetooth Low Energy (BLE) communication. As illustrated in

Table 3, BLE is known to be more energy efficient than other wireless technologies such

as classic Bluetooth and Wi-Fi [140]. The coverage range of BLE, over 100 m, is as good

as others. It is enough to cover the densely populated crowd area. CROMO consists of the

BLE tracker bracelets worn by a human, the BLE scanners, and the scanning algorithms.

Each BLE tracker bracelet has a unique identification-ID to identify each bracelet.

Table 3: RF Transmission Approaches.

Protocol Range Mobility Deployment
BLE ≥ 100 m ≤5 Mph Ubiquitous, Low power usage, low association time
WiFi ≥ 100 m ≤5 Mph Ubiquitous, Low power usage, high association time

Cellular ≥ 10 Km ≥60 Mph Ubiquitous, Low power usage, high association time

3.2.2.1 BLE Scanning Approaches

In a wireless communication system, there are a couple of common messaging

modes. In a passive mode, a node does not send any periodic message but scans incoming

messages. In an active mode, a node periodically sends messages to indicate its exis-

tence. As illustrated in Figure 14, the combination of these two modes are used between

the BLE scanners and the pedestrians’ bracelets (BLE trackers) to communicate the crowd

states. A tuple of the BLE tracker mode and the BLE scanner mode approaches including
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an active-active approach (AAA), an active-passive approach (APA), a passive-active ap-

proach (PAA), and a passive-passive approach (PPA) are investigated to ensure efficiency

in power usage, increase the scalability in message communications, and improve the

accuracy in event detection.

Figure 14: BLE Scanning Approaches.

• An Active / Active Approach (AAA) has a better chance of capturing most of the

pedestrians’ bracelets data because the BLE scanners point is sending a request and

waiting for a response, in the same time the pedestrians’ bracelets are on active

mode, sending requests, and waiting for responses. However, this will cause higher

power consumption on both sides, which is one of our significant concerns in im-

proving battery consumption. That does not only increase battery consumption,

but it also increases the number of requests and responses causing overhead and

increasing the probabilities of data collisions.

• An Active / Passive Approach (APA) is a passive scanning approach for the BLE

scanners. The pedestrians’ bracelets keep on sending their locations. The BLE
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scanners listen and respond upon receiving messages. The pedestrians’ bracelets

are always active, the power consumption on the bracelet is one of the main con-

cerns, and one of the primary research focus is to reduce the power consumption

on the pedestrians’ bracelets. Also, the number of messages is proportional to the

number of bracelets. Hence, for a densely populated environment, the approach

may increase the message overhead and cause a high chance for message collisions.

• A Passive / Active Approach (PAA) is a BLE scanner driven approach. The BLE

scanners are sending polling or probing requests. The pedestriansâ bracelets are

listening and responding upon receiving the request messages. As the pedestrians’

bracelets are passive, the power on the bracelet is efficiently utilized. Also, the

number of messages is kept to a minimum as the bracelets are responding upon the

requests. As the control is in the BLE scanner side, the responding messages from

the bracelets can be efficiently controlled as well. The approach can decrease the

message overhead and maintain a smaller chance of message collisions.

• A Passive / Passive Approach (PPA) does not perform any active probing. Both

the BLE scanners and the pedestrians’ bracelets are on listening mode. Although

this approach can save power usage, it does not provide any meaningful information

about the moving groups. A possible option is if the control room can detect a low

traffic situation (during the off-peak times) by using other methods such as CCTV.

In a passive BLE scanner mode, BLE scanner does not perform any periodic ac-

tive probing by assuming that BLE tracker periodically sends beacon messages. However,
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if the BLE tracker bracelets sends beacon messages periodically, the power consumption

on each bracelet is one of the primary concerns. Besides, the number of messages is pro-

portional to the number of bracelets. Hence, in a densely populated crowd, the passive

BLE scanner approach can significantly increase the message overhead and cause a high

chance for message collisions. Meanwhile, in an active BLE scanner mode, a BLE scan-

ner periodically sends polling or probing requests. The BLE tracker bracelets are listening

and responding upon receiving a probe message. As the BLE tracker bracelets are in a

listening mode without periodically sending beacon messages, it can maintain its power

consumption efficiently. Besides, the number of beacon messages is kept to a minimum

as the bracelets are responding only to the requests. As the control is in the BLE scanner

side, it can adequately control the number and period of beacons according to the size and

density of the crowd. The approach can decrease the message overhead and maintain a

smaller chance of message collisions. CROMO uses a passive BLE tracker mode and

an active BLE scanner mode approach (PAA). An CROMO probing message includes

a sampling factor by indicating a replying pattern. For example, a BLE scanner specifies

the BLE IDs for a few specific groups. Using this methodology reduces the probabilities

of collisions. It also helps to decrease the power consumption of the BLE tracker bracelet

because only the bracelet with the specified ID will reply in response to the polling mes-

sages.
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Figure 15: Group Speed Detection Illustration.

3.2.2.2 Crowd Detection Scenarios

Group Speed and Direction Detection: Even if the crowd is moving in the same

direction, the moving speed can be different from one group to another. It may cause

congestion and collision by the fast-moving groups. For example, Figure 15 illustrates

the scenario where a couple of groups are walking in the same direction. However, a fast-

moving group 1 in the back causes congestion by taking up the front group 2. CROMO

can detect the moving speed of each group from the time-stamp and the distance from

BLE scanners at point A to B. If the speed of each group can be detected earlier, the

system could predict any potential collision. Assuming the average walking speed of a

human is 3.1 mph (5 kph) [138], CROMO can identify the speed of each group and gives

a warning to the fast-moving groups or members. Furthermore, if the group 2 is mov-

ing slower than the average speed, the system can alert the group 2 to speed up or give

a slow down warning to the group 1. The BLE scanners also coordinate to detect the

movement direction of each group. By comparing the time-stamps of each groups’ pass-

ing position, CROMO can also detect the moving directions of each group. For example,
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Figure 16 illustrates that a group 2 is moving from the BLE scanner point A to point B.

However, assuming that group 1 is supposed to move in an opposite direction according

to the schedule, CROMO can identify a potential wrong direction of the group 1 (or a

temporary backward movement). The wrong movement shall be alerted to the group and

other neighbor group as it may result in a collision with upcoming group 2.

Figure 16: Wrong Lane Group Detection via Direction.

Figure 17: Lane Merge Detection via Density.
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Figure 18: Wrong Lane Group Detection via Density.

Group Density Detection: CROMO can scan the density of each group within

the monitoring range and shares the information with the neighbor scanners in real-time.

In practice, a crowd collision (i.e., unexpected high density) often happens for various

reasons. It can be due to the structure of the road as well as human errors. For example,

as illustrated in Figure 17, two lanes are merged into one lane and various intersections

mix flows into several directions. Also, shown in Figure 18, a group of people in a crowd

may be veering off an opposite lane (when it is available) instead of using the slow and

crowded path so that they can move faster. These cases can be identified by tracking the

density changes on each point. Both CASE A and CASE B illustrate scenarios where

group 1 and 2 are merging into one lane due to the road design either merging lanes or

intersection. BLE scanners can detect both cases by checking the density distribution

changes on a scanning point B. The density at the BLE scanner point B becomes higher

than the density at the BLE scanner point A. CASE C illustrates a scenario where group

2 is, all of a sudden, changing its path in the middle of the road to veer off the opposite
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lane. CASE D is a similar scenario, but group 2 takes both lanes. BLE scanners can detect

CASE C by checking the density distribution changes on a scanning point. At the BLE

scanner point A, the density near the scanner is high, but the far side is low. However,

in the BLE scanner point B, although the total density is the same, the density near the

scanner becomes low and the far side changes to high. BLE scanners can also detect

CASE D by checking the density changes. At the BLE scanner point A, the density near

the scanner is high, but the far side is low (like in CASE C). However, the density at

the BLE scanner point B becomes higher than the density at the BLE scanner point A,

as well as the density near the scanner and the far side of the scanner, become comparable.

The density distribution can be measured by multiple scanners using the RSSI power and

beacon counts (shown in experimental results).

3.3 Evaluations and Results

As CROMO is a mobile cyber-physical system in a densely populated environ-

ment, the communication feasibility issue should be evaluated in a real environment [9].

Hence, we verify how human object movements could affect the BLE signal in a crowded

environment.

3.3.1 Experimental Setup

We conducted experiments at a couple of different settings. First, we experi-

mented during one of the largest events at UMKC called âCulture Nightâ, where around

1300 people from different countries are presenting their cultures in a conference hall.

The goal of this experiment is to study how significantly interference and crowd density
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could affect CROMO. As the conducted experiments were mainly for the feasibility anal-

ysis, we wanted to see if the BLE signal from a BLE transmitter tag can indicate any

crowd status. For the purpose, only one BLE transmitter within the crowd was carrying a

smartphone with an application that advertises its BLE signal. Also, to explore multiple

scenarios during the event to establish a better understanding of crowd status.

Figure 19: Culture Night Indoor Experiment.

As illustrated in Figure 19, a conference hall size is about 700 m2 (33 m * 21 m),

and people area is about 370 m2 (26 m * 14 m). We posted a couple of BLE scanners on

an opposite side placed at the height of 3 m. The distance between the two BLE scanners

was about 25 m. We also put another BLE scanner placed at the height of 1 m next to the

door. A moving human object walks around the hall in a circle.
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Figure 20: Indoor and Outdoor RSSI Experiment Setup.

Figure 21: Experimental Settings.

Second, we conducted RSSI experiments in both indoor and outdoor. As shown

in Figure 20, we place a BLE transceiver at 2.75 m height and a BLE transmitter at 1 m

height in 3 m apart. We put human interference from none to 3 or 4 people near the BLE

transmitter. We set up the transceiver to scan for a minute each test, with a total of ten

separate times for each test session.
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As illustrated in Figure 21, we measure beacon count, RSSI power, and RSSI

variation metrics to detect crowd density, location, speed, and direction. We test in both

indoor and outdoor environment with different scanner positions (1 m and 3 m) as the

system settings. The workload parameter, in Figure 21, consists of a couple of sets. The

crowd density parameters characterized in No Crowd (NC), Medium Crowd (MC), and

High Crowd (HC). For example, given 370 m2 human area of the hall, when there are

1000 people, it is about three people in 1 m2. We classified it HC as it belongs to the

high-risk case for the free moving environment. In the RSSI experiment, the human

effect parameter consists of No Human Interference (NHI), Single Human Interference

(SHI), and Multiple Human Interference (MHI). As the RSSI testing environment is 3 m

distance, a few human-objects can make a high crowd effect.

(they are in order now.)

3.3.2 Beacon Count Tests

Counting beacons for a given time to find a population seems to be a straightfor-

ward approach. However, when there is a mass of crowd, the result may not be the same

due to the collision and interference.
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Figure 22: BLE Reception vs. Scanner Height in Crowd.

Figure 22 presents the results of the BLE reception rate (i.e., received (R) percent-

age of sent (S) beacons) for the different heights in both NC and HC environments. We

setup the BLE transceiver heights for 1 meter (low) and 3 meters (high), respectively. In

general, it shows that the higher crowd (HC) there were, the higher number of beacon

messages were dropped. The result shows that the message-receiving ratio in HC envi-

ronment was about 50% less than that in NC environment. Furthermore, the reception

rate of the higher BLE detector (3 meters) was about 31% higher than that of the lower

BLE detector (1 meter). In this result, we can see that the efficient BLE detector location

(in height) is above every human height to avoid any signal absorption by the crowds.
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Figure 23: Beacon per Second (Bps).

Figure 23 shows the average received beacons per second (Bps). For the experi-

ment, we configured the BLE transmitter’s beacon advertising interval to 20 ms. Adding

a random delay of 0–10 ms and a scan interval of 10 ms, a BLE scanner can get a beacon

about every 40 ms, which means it receives around 24–25 Bps. The results show that in

the NC environment the received beacons are around 23 Bps while in the HC environment

it decreased to 13 Bps. The results indicate that human object certainly has an impact on

the received beacon count. The effect is proportional to the amount of the crowd.

Figure 24: Beacon Counts for BLE Scanners.
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Figure 24, compares the results of beacon counts on two separate BLE scanners

(posted in an opposite side of a hall) for both NC and HC conditions while an object

is moving in a circle as showing in Figure 19. The HC result exhibits a pattern that

the beacon count increases when a moving object approaches a specific BLE transceiver,

while the beacon count decreases in the other BLE transceiver. In addition to exposing

the proximity of the moving object, the result also infers the moving speed and direction

(i.e., for two BLE transceivers, it will display approaching and going.) We observed the

pattern becomes evident when the crowd density increases. Meanwhile, the NC result

shows that both BLE transceivers received almost the same number of beacons regardless

of a moving object location. As a result, it indicates that when the environment is NC,

object tracking is not possible. However, receiving the similar amount of beacons on both

BLE scanners and the beacon counts are more than HC condition, we can observe that the

crowd condition is at low risk.

3.3.3 RSSI Tests

In addition to beacon counting, we further measure a couple of BLE RSSI metrics

including the RSSI power and variation. In both indoor and outdoor environments, we

tested under three workload conditions including NHI, SHI, and MHI. The indoor test

results in Figure 25 show that the average RSSI power in NHI is stronger than both SHI

and MHI, while there is no significant difference in the signal power average between the

SHI and MHI. On the other hand, the outdoor average RSSI power results in Figure 26

show that NHI receives stronger signal RSSI power than SHI, and SHI has stronger signal
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RSSI power than MHI. As shown in Figure 27, the total indoor RSSI power of both SHI

and MHI is the same, while the total outdoor shows each NHI, SHI, and MHI RSSI powers

show a clear difference.

Figure 25: Indoor Average RSSI.

In summary, both indoor and outdoor results indicate that they can identify any

human interference (i.e., NHI vs. non-NHI). However, the indoor case cannot discern

the density level difference (i.e., SHI vs. MHI). Unlike the indoor case, the outdoor can

distinguish the different density levels. It indicates that the RSSI power metric alone can

identify a coarse level of the human interference, especially the indoor case.
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Figure 26: Outdoor Average RSSI.

Figure 27: Average RSSI Comparison.

We test a variation of the received RSSI power. We pick the maximum, and min-

imum RSSI power values among the beacons received in a second (Vps), and use the

difference as a variation value. The indoor RSSI variation test results in Figure 28 show

that the RSSI variation in NHI is stable while the RSSI variation in other non-NHI (i.e.,

SHI and MHI) is randomly fluctuating. On the other hand, the outdoor RSSI variation
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test results in Figure 29 show that the RSSI variation results in all workloads (NHI, SHI,

and MHI) are unstably vibrating. As shown in Figure 30, the average indoor RSSI vari-

ation values are stable in all workload from 8.5 to 10 Vps. Although the average values

are similar, the variation values in both SHI and MHI are fluctuating while NHI variation

is stable. Meanwhile, the average outdoor RSSI variation values are much higher than

the indoor variation average values and are also different between NHI and non-NHI. The

non-NHI values are similar and higher than the NHI value. In summary, the indoor results

indicate that they can identify any human interference (i.e., NHI vs. non-NHI). However,

the outdoor case cannot discern any density. Hence, it indicates that the RSSI variation

metric alone can identify a coarse level of indoor human interference. For example, it can

be used to check if there is a person in the room or not, but it not possible to notice the

crowd density.

Figure 28: Indoor RSSI Variation.
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Figure 29: Outdoor RSSI Variation.

3.3.4 Discussion

The primary purpose of this study is to improve crowd safety management method

through real-time Radio Frequency (RF) to predict and prevent potential disasters. Our

approach focused on characterizing and analyze the crowd mobility in speed, direction,

and density through BLE beacon count and RSSI power and variation. In summary, the

findings from the experimental results include followings: BLE beacon count approach

can be used to detect a location, direction and the speed of an object during the crowd by

coordinating multiple scanners. The RSSI power average can be used to identify human

interference in outdoor, while RSSI variation can check any human intervention in indoor,

but it cannot evaluate the density. Therefore, by integrating those metrics, CROMO can

identify the flow direction and speed, and the crowd density and object group location.
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Figure 30: RSSI Variation Comparison (Indoor vs. Outdoor)

3.4 Conclusion

One of the critical services in smart cities is the safety management of urban com-

munities. However, it is very challenging problems to predict a crash in real-time among

the mobile crowd for preventing any potential disaster. In this work, we designed, im-

plemented, and tested CROMO that enhances crowd mobility characterization through

real-time BLE data analytics. We built a CROMO layer that fills the scalability and ca-

pability gaps of the smart video surveillance via BLE signal analytics. Among the many

crowd mobility characteristics, we measure the beacon counts, the RSSI power, and its

variation pattern by using a BLE bracelet and BLE scanners. We also apply them to group

semantics to track the crowd status and predict any potential accidents and disasters. We

have tested CROMO in both a practical crowd event and the controlled indoor and outdoor

lab environments. The results show that by integrating the BLE data metrics, CROMO
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can identify the crowd density, the object group location, and the flow direction and speed

in real-time. It shows the feasibility of using the proposed CROMO layer enhancing the

safety management system.
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CHAPTER 4

ML-BASED VIDEO/IMAGE SURVEILLANCE

Overcrowding areas and exposure to large crowds often lead to human casual-

ties and infectious diseases (i.e., COVID-19). Using video surveillance with intelligent

techniques to analyze data is a growing trend in the field of computer vision for crowd

analysis and management purposes. Various scenarios are considered in terms of ana-

lyzing a crowd, most of which are concerned with safety and health-related implications

behind crowd formation. In this chapter, we propose two novel Machine Learning (ML)

approaches in order to crowd management using intelligent techniques. We first pro-

pose a novel deep learning approach for effective dense crowd counting by characterizing

scattered occlusions, called (CSONet). CSONet recognizes the implications of event-

induced, scene-embedded, and multitudinous obstacles such as umbrellas and picket signs

to achieve an accurate crowd analysis result.

Moreover, In addition to rapid vaccination, predicting possible trajectories of the

COVID-19 pandemic is critical to health-care-related policy decisions and infrastructure

planning. Growing evidence shows that face masks and social distancing can considerably

reduce the spread of respiratory viruses like COVID-19. However, the current pandemic

trajectory predictions take overly simplified policy input rather than actual observations

of face masks and social distancing practices in a crowd. Thus, it is crucial to monitor

and understand the extent of masking practices and assess the safety level in a scalable
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manner. Thus we propose a novel face masking detection system for Modeling Safety

Index in Crowd called (Mosaic), a Machine Learning (ML)-based approach for detecting

masking in a crowd by building new dense mode crowd mask datasets. Mosaic detects,

counts, and classifies the crowd’s masking condition and calculates each community’s

spatiotemporal Safety Index (SI) values instead of detecting individual masking cases.

4.1 Part 1: Characterizing Scattered Occlusions for Effective Dense-Mode Crowd

Counting

Crowd counting is becoming an increasingly important issue of computer vision,

as it has many applications in the context of smart cities especially pertaining to public

safety. The lack of proper crowd safety control and management often leads to human ca-

sualties and infectious disease (i.e., COVID-19) spreading at densely crowded political,

entertaining, and religious events. Hence, automated crowd interpretation using AI tech-

niques [38, 39] is becoming an increasingly critical task for many practical crowd safety

applications [40, 41, 42]. Although many CNN-based methods have been proposed to

improve the performance on complex crowd images to deal with variations in scale, per-

spective, and image resolution [43, 44, 45, 46, 47], they still have significant limitations in

the face of occlusions that partially impede sight of individuals in a crowd scene. Crowd

images are often scattered with occlusions that make it difficult to identify all human

heads in the scene. As illustrated in Figure 31, the types of fixed environmental obstacles

such as buildings, big trees, and walls are constrained to specific parts of a image, thus

can be easily excluded from the crowd counting area. However, the interpretations of
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Figure 31: Crowd Map with Occlusion Objects (Overpass, Buildings, Walls, Fences,
Trees, Umbrellas, and Pickets).

event-induced, scene-embedded, and multitudinous obstacles, namely Scattered Occlu-

sions (SO), such as umbrellas and picket signs are challenging, as they can obscure the

sight of one or more individuals entirely or partially depending on crowd size and density

as well as occlusion types [2]. Despite its commonness in many mass gathering scenes

such as sport events, political rallies or protests, existing approaches fail to do accurate

human counting in the presence of SO in crowd images.

In this work, we propose a novel deep learning approach for effective dense-mode

crowd counting by characterizing scattered occlusions (CSONet). CSONet effectively
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recognizes event-induced, scattered, and multitudinous occlusions and applies the ef-

fect to improve crowd counting accuracy and crowd density mapping quality. Specifi-

cally, CSONet tackles the dense-mode crowd scenarios such as people under umbrellas

and behind pickets, which can hide people according to the event and recurring patterns

in various ways. CSONet is an efficiently trained model using a simple convolutional

structure comprised of three components. First, the Scattered Occlusion Datasets (SOD)

component generates two new crowd counting datasets that contain diffused umbrella

(cso-umbrellas dataset) and picket (cso-pickets dataset) occlusion objects in the crowd

images. SOD also trains the model and outputs umbrella and picket heatmaps. Second, a

network for Crowd Overfit Reduction (COR) is added on the well-trained VGG16-based

CSRNet architecture [89] to reduce the Mean Absolute Error (MAE) and Mean Squared

Error (MSE). We use the first ten layers of VGG16 to extract features from the crowd

images. The extracted VGG16 features are grouped in a Spatial Pyramid Pooling (SPP)

layer using average pooling in two different receptive fields (6× 6 and 12× 12) to soften

overfitting. The Dilated Convolution Layers (DCL) outputs a predicted count and den-

sity map, which improves the crowd density prediction. Finally, a Scattered Occlusion

Mapper (SOM) is implemented to combine the SO object heatmap with the human crowd

heatmap to generate an accurate crowd density map and the crowd count. Using multiple

datasets (cso-umbrellas dataset, cso-pickets dataset, and ShanghaiTech datasets A (dense-

mode) and B (sparse-mode)), we demonstrate that CSONet’s accuracy outperforms exist-

ing techniques such as SPN [92], ASNet [93] and CSRNet [89]. Our main objective is

to achieve higher accuracy with the SO. CSONet reaches 100% better MAE and MSE
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for cso-umbrellas(MAE-U and MSE-U) and 30% better MAE and MSE for cso-pickets

(MAE-P and MSE-P) than CSRNet. CSONet also achieves 64% better MAE and 80%

better MSE than SPN for umbrella dataset and 46% better MAE and MSE than ASNet

for picket dataset. To the best of our knowledge, this is the first work that adaptively es-

timates the number of people occluded by objects scattered throughout a crowd scene to

accurately quantify the total counts of people in a crowd image. The main contributions

of this work include [141]:

• We have designed and developed a CSONet architecture, which is the first deep

learning model for characterizing scattered occlusions of effective dense-mode crowd

counting to the best of our knowledge.

• We have investigated the impact and challenges of SO in CNN crowd counting

methods by collecting and annotating two new SO datasets, containing crowd im-

ages occluded with umbrellas (cso-umbrellas dataset) and picket signs (cso-pickets

dataset).

• We have implemented COR by adding SPPL and DCL over modified VGG16 lay-

ers, which deploys a deeper CNN for capturing high-level features of extended re-

ceptive fields. COR was trained on the two new SO object datasets and the Shang-

haiTech A and B datasets.

• We have built an algorithm that merges scattered object heatmaps and visible human

heatmaps to generate a more accurate crowd density output.
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4.1.1 Proposed Architecture

The proposed design aims to characterize scattered occlusions to improve the ac-

curacy of crowd counting as well as the quality of crowd density mapping. In this section,

we introduce the CSONet architecture that consists of a network for Scattered Occlu-

sion Datasets (SOD), Crowd Overfit Reduction (COR), and Scattered Occlusion Mapper

(SOM), as depicted in Figure 32. SOD creates two new scattered occlusion object datasets

and trains on them. COR deploys a deeper CNN for capturing high-level features with

larger receptive fields. SOM generates high-quality crowd density maps.

4.1.1.1 Scattered Occlusion Datasets (SOD)

In the Scattered Occlusion Datasets (SOD) component, we build two new datasets

and perform CSONet training with these new datasets and two well-known public datasets.

• Datasets and Experimental Settings: Our goal is to investigate the impact and

challenges of Scattered Occlusion (SO) objects in the CNN crowd counting meth-

ods. However, there has been no crowd image dataset available focusing on SO

objects such as umbrellas and pickets. Hence, we have created new SO object

datasets and trained our network CSONet on them. The generated dataset consists

of the cso-umbrellas dataset and the cso-pickets dataset. They were collected from

two resources. First, both umbrella and picket crowd images were mainly down-

loaded from Google images by running web search scripts with various keywords,

including ”umbrellas” (”crowd with umbrellas” and ”crowd in the rain”) and ”pick-

ets” (”demonstration” and ”protest”). Second, the cso-umbrellas dataset images
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Figure 32: CSONet Architecture.

are partially converted from the Hajj event videos, an annual Islamic pilgrimage to

Mecca, Saudi Arabia, during the summer, where the crowd holds umbrellas.

The cso-umbrellas dataset contains 250 crowd images and a total of 27,697 um-

brella annotations. Among them, 170 images were used for training, and 80 images

were used for testing. The cso-pickets dataset consists of 200 images and 9,681

picket annotations. 130 images were used for training, and 70 images were used

for testing. To conduct comparisons with the existing state-of-the-art crowd count-

ing method, we also train and test on the ShanghaiTech A and B datasets. The

ShanghaiTech dataset is a large-scale crowd counting dataset containing 1198 im-

ages with 330,165 head annotations. It consists of two parts: ShanghaiTech A and

ShanghaiTech B. Part A includes 482 dense-crowd images that have been collected

randomly from the Internet. 300 images were used for training, and the remaining
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182 images were used for testing. Part B has 716 sparse-crowd images, which were

taken on busy streets in Shanghai. 400 images were used for training, and 316 were

used for testing. Table 4 demonstrates a summary of the statistics of the datasets.

• Ground-Truth Generation: We have annotated all the images to generate the den-

sity map “ground-truth”. We have applied the geometry-adaptive Gaussian kernels

[86] as defined below to generate the density map for each crowd image. The

labeled objects’ locations in the original image are converted to the ground-truth

density map F (x) as follows:

F (x) =
N∑
t=1

δ(x− xi) ∗Gσi(x), with σi = βdi (4.1)

where N is the number of object annotations in the image, xi is referring to each

object in a given image, and di indicates the average distance of k-nearest neighbors.

Also, the delta function δ(x − xi) is convolved with a Gaussian kernel with the

standard deviation parameter σi to generate density heatmaps.

• Training details: We have trained the CSONet structure in an end-to-end manner.

Adam optimizer [32] is used as an optimization method to train CSONet with a

learning rate of 1e-5 and a momentum of 0.9. Performing multiple experiments

starting from 1e-4 to 1e-9, we found that 1e-5 is the ideal learning rate. In addition,

we used other recommended training hyper-parameters, including a batch of size

32 and an epoch number of 100.
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Table 4: Summary of statistics of the datasets.

Datasets Images Annotations Avg. Count Max. Count Avg. Resolution
Shanghai A 482 241,677 501 3,139 589 x 868
Shanghai B 716 88,488 123 578 768 x 1024

cso-umbrellas 250 27,697 111 862 561 x 783
cso-pickets 200 9,681 48 386 728 x 969

4.1.1.2 Crowd Overfit Reduction (COR) Layer

In this subsection, we explain the network structure of the Crowd Overfit Reduc-

tion (COR) layer that consists of three components, including VGG16 Layers (VGGL)

[22], Spatial Pyramid Pooling Layers (SPPL) [142], and Dilated Convolution Layers

(DCL). We start with the VGG16 network, which was initially designed for large-scale

natural image classification. VGG16 has thirteen convolutional layers and three fully

connected layers. However, we have modified the VGG16 network, which learns ten

convolutional layers with max-pooling, does two SPPs with average-pooling and applies

three dense models in DCL.

• Modified VGG16 Network Layer: We apply the first ten convolutional layers and

three max-pooling layers of VGG16 to extract the crowd features. The VGG16 is

employed to ensure excellent learning performance in object classification and de-

tection, which has been used by various practices such as CSRNet [89] and DADNet

[143]. The input images commence with a fixed size by 224×224 pixel RGB image

at the first convolutional layer. As illustrated in Figure 32, the images sequentially

pass through a stack of 3× 3 kernel convolutional layers with different filter depths
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(64, 128, 256, and 512, respectively) and three max-pooling layers of 2 × 2 pixel

windows in-between to create VGG16 features.

Figure 33: Various receptive fields performance.

• Spatial Pyramid Pooling Layers (SPPL): We have implemented Spatial Pyramid

Pooling Layers (SPPL) to process the features extracted from the first ten VGG16

layers, which improves the semantic segmentation results [144] in the density map.

We apply average pooling instead of max-pooling to reduce the overfitting and level

the prediction results. In particular, the average pooling layer assigns the extracted

VGG16 features into two different receptive fields (6 × 6 and 12 × 12), followed

by a 1 × 1 convolutional layer. As presented in Figure 33, among the various sets

of receptive field experimental results, the receptive fields of (6 × 6 and 12 × 12)

achieve the lowest Mean Absolute Error (MAE) value.

• Dilated Convolution Layers (DCL): The Dilated Convolution Layers (DCL) is

the last function of the COR structure. Generally, DCL is widely used in various
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computer vision processes to promote crowd density predictions and improve se-

mantic segmentation results. Moreover, DCL maintains the exponential expansion

of the receptive field without reducing the resolution [145]. We implement DCL

with three convolution layers using the same depth filter of 256 and a kernel size

of 3 × 3. We set the dilation rate to two to gain better performance. However, we

transfer the feature maps to these smooth layers to produce the CSONet outputs,

predicted crowd count, and density heatmap. The motivation for utilizing the DCL

in COR was to promote the dense prediction in congested images.

4.1.1.3 Scattered Occlusion Mapper (SOM)

Scattered Occlusion Mapper (SOM) is the last component of CSONet architec-

ture. It generates a high-quality crowd density heatmap and an accurate crowd count

by merging Scattered Occlusion (SO) object data with human crowd data. Most of the

existing crowd counting methods require a visible head to detect and count the number

of people, which cannot delimit individuals under umbrellas or behind pickets. A simple

one-to-one mapping won’t work as the SO object’s impact on visual saliency for an image

depends on the size, density, mobility type, flow direction, and velocity. As illustrated in

Figure 34, an umbrella’s effect is different in the sparse and dense crowd scenarios. An

earlier study proposed an illustration for crowd counting per unit [2]. We propose a proce-

dure for estimating the number of people under umbrellas or behind pickets in a particular

crowd event. Our analysis shows that each umbrella covers zero to three people, and each

picket occludes zero to two people corresponding to the Occlusion Object to Human Ratio
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(OHR). Also, we assume that the number of SO objects cannot be more than the original

human count. However, those effects converge into similar values in the high-density im-

ages. As shown in Figure 35, the average number of people under an SO object mainly

depends on the OHR. Therefore, a formula is proposed to count the total number of people

in an SO image:

Thuman = Dhuman + (Dso ∗ α) (4.2)

where Thuman is the total predicted crowd count in an image, Dhuman is the detected

human count. Dso indicates the number of predicted objects in an image (umbrellas Du

or pickets Dp). An α can be measured by using the ground truth values named MSOI

(Measured SO Impact). Also, it is estimated as an SO Impact (SOI) value. According to

Figure 35, an α value is chosen from the SOI value according to the OHR. For example,

if OHR is 40 % (i.e., human count : SO object count = 100 : 40), α is 2.

4.1.2 Experiments

We test the proposed CSONet using multiple different datasets, including two new

SO object datasets (cso-umbrellas and cso-pickets), along with two public crowd datasets,

ShanghaiTech A [86] and ShanghaiTech B [86]. In this section, the evaluation metrics are

introduced and then SO evaluations are conducted to analyze the efficacy of the proposed

model. We evaluate and compare the performance of CSONet to various crowd counting

methods including SPN, ASNet, and CSRNet. The CSONet prototype was implemented

using the Pytorch framework [30]. All of the experiments were conducted on an NVIDIA
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Figure 34: Crowd image annotations with different mode, type, and object.

GeForce GTX 1080 Ti.

4.1.2.1 Evaluation Metrics

Both Mean Absolute Error (MAE) and Mean Squared Error (MSE) are adopted

in our performance testing. These metrics are broadly used in crowd counting to evaluate

the accuracy of the measurement performance.

MAE =
1

N

N∑
t=1

|Yi − Y G
i | (4.3)

MSE =

√√√√ 1

N

N∑
t=1

(Yi − Y G
i )2 (4.4)
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Figure 35: Scattered Occlusion (SO) impact values.

where N is the number of test images, Yi is the predicted number, and the Y G is the

ground-truth counts of the test image i.

We also compute the Structural Similarity Index (SSIM) [146], which is a metric

used to measure the similarity between two images. The SSIM value ranges from 0 to 1,

equaling 1 if the two images are identical.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.5)

Following the preprocessing method given by [146], Eq. (4.5) measures the similarity

between two images. Where x is the estimated density-map, and y is the ground-truth. C1

and C2 are small constants, used to avoid division by zero. In addition, µx and σ2
x are the

local mean and variance estimations of x, and σxy is the local covariance estimation. µy

and σ2
y are computed similarly.

For SO evaluation, we use ERT (error against real ground truth) in Eq. (4.6).

79



ERT = |Vi −OHG
i | (4.6)

where Vi refers to the detected human count, the OHG
i presents the real ground-truth

(RGT) of the test image i.

4.1.2.2 Scattered Occlusion Evaluations

The experiment is designed to evaluate SO object detection’s performance and

the accuracy of the estimated number of people occluded by the SO. We investigate how

significantly umbrellas and pickets impact the accuracy of crowd counting and density

estimation. For this purpose, we use an original crowd image with 114 people and contin-

uously increase SO object annotations over the image from 0 to 87.7 % (Occlusion Object

vs. Human Ratio (OHR)), as shown in Table ?? and Figure 36. CSRNet [89] is selected

as a baseline to compare and evaluate the prediction accuracy of the proposed work. Ta-

ble ?? shows the statistics of the experimental results with various scenarios and methods.

The Real Ground Truth (RGT) value is the original number of people in the crowd image

(i.e., 114 people) and the known number of SO objects (umbrellas (U) or Pickets (P))

placed on the image (i.e., from 0 to 100 umbrellas or pickets). We also use a Detected

Ground Truth (DGT) of the number of SO objects (U/P) and the number of remaining

visible humans heads (H), based on manual Matlab-based annotation analysis. DGT-U

is the DGT after umbrella annotation, and DGT-P is the DGT after picket annotation.

As the number of SO object annotation increases, the number of visible heads decreases

due to occlusion. Also, the SO object count accuracy reduces due to many overlaps (i.e.,
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only 72 umbrellas are detected after applying 100 umbrellas). We run both CSRNet and

CSONet to find the number of humans and SO objects in a crowd image. As presented

in Figure 36, after applying 75 SO object annotations (65.8% of OHR), there are almost

no visible human heads. However, as CSONet applies the SO object impacts (SOI) for its

final crowd counting according to Eq. (5.3), its prediction results are as good as RGT.

Table 5: Experimental results with SO objects.

OHR(%) RGT DGT-U DGT-P CSRNet CSONet
U/P U/P H U H P U P U P

0 0 114 0 114 0 119 119 113 113
0.9 1 112 1 111 2 107 107 113 115
2.6 3 108 4 106 3 105 105 115 112
6.1 7 97 7 100 7 85 85 102 106
8.8 10 94 11 94 9 88 88 102 105

17.5 20 57 17 68 19 68 86 95 97
43.9 50 15 49 30 46 18 55 110 106
65.8 75 6 64 9 70 14 13 105 110
87.7 100 0 72 0 73 7 4 110 110

Figures 37 and 38 compare the crowd counting performance of CSRNet and

CSONet in the aspect of ERT in Eq. (4.6) for umbrella and picket annotations, respec-

tively. The ERT of CSONet is much lower than the ERT of CSRNet. The ERTs of CSR-

Net significantly increase when OHR increases. However, the ERT of CSONet does not

increase for all OHR. Therefore, CSONet’s crowd counting performance is much more

stable and accurate than CSRNet, indicating that merging the human and SO density

heatmaps is critical for better crowd count accuracy.
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Figure 36: Crowd images with SO object annotations.

4.1.2.3 Performance Comparison

The performance in MAE and MSE metrics with ShanghaiTech datasets (i.e.,

MAE-A means MAE with ShanghaiTech A) of the existing state-of-the-art crowd count-

ing solutions, including CP-CNN [45], CSRNet [89], PCC Net [147], SPN [92], and AS-

Net [93] are compared in Table 6. It shows that the most recent ASNet achieves the least

MAE-A and MSE-A. SPN is as good as ASNet, which is 27% better than other earlier

approaches such as CSRNet. ASNet did not evaluate ShanghaiTech B dataset (sparse-

mode), as they are interested in counting densely populated crowd with ShanghaiTech A

(dense-mode) dataset.

Table 7 presents the crowd counting accuracy results with the new SO object
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Figure 37: Error against RGT umbrella annotations.

Table 6: Performance comparisons of different methods on ShanghaiTech A (dense-
mode) and B (sparse-mode).

Method MAE-A MSE-A MAE-B MSE-B
CP-CNN [45] 73.6 106.4 20.1 30.1
CSRNet [89] 68.2 115.0 10.6 16.0

PCC Net [147] 73.5 124.0 11.0 19.0
SPN [92] 61.7 99.5 9.4 14.4

ASNet [93] 57.78 90.13 - -

datasets. We choose 80 umbrella and 70 picket images from cso-umbrellas and cso-

pickets datasets, respectively, and tested them with SPN, ASNet, CSRNet, and CSONet

to obtain the MAE, MSE, and SSIM values (i.e., MAE-U means MAE for the umbrella

images). According to the density of cso-umbrellas and cso-pickets datasets in Table 4,

the MAE and MSE with the ShanghaiTech dataset in Table 6 align with the results in

Table 7. For example, MAE-P and MSE-P maintain lower values due to the cso-picket

images are sparse. Also, MAE-U and MSE-U of CSRNet are slightly higher than SPN

and ASNet. CSONet’s performance in terms of accuracy is significantly better than the
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Figure 38: Error against RGT picket annotations.

Table 7: Performance comparisons of CSRNet, SPN, ASNet, and CSONet with cso-
umbrellas and cso-pickets datasets.

Method MAE-U MAE-P MSE-U MSE-P SSIM-U SSIM-P SSIM-A
CSRNet [89] 73.6 19.1 135.9 35.5 0.83 0.92 0.76

SPN [92] 59.9 24.2 120.1 42.3 0.85 0.90 -
ASNet [93] 71.5 21.3 133.7 40.5 0.81 0.88 -
CSONet 36.5 14.6 66.5 28.4 0.87 0.94 0.91

other methods. For example, CSONet achieves 100% better MAE and MSE for cso-

umbrellas(MAE-U and MSE-U) and 30% better MAE and MSE for cso-pickets (MAE-P

and MSE-P) than CSRNet. CSONet also achieves 64% better MAE and 80% better MSE

than SPN for umbrella dataset and 46% better MAE and MSE than ASNet for picket

dataset. The SSIM measures the similarity between the ground-truth and the estimated

density-map images. Although SOs already impact the DGT images, the CSONet still

creates a higher structural similarity than the other methods. Figure 39 presents overall

performance results of crowd density heatmaps and crowd counts (human, umbrella, and
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Figure 39: Five crowd image samples are randomly selected from the SO object datasets
and evaluated with CSRNet, SPN, ASNet, and CSONet. We display the density maps and
counts of each sample. For a given RGB image, from the left column, the detected ground-
truth (DGT) density map shows the heads (H) and umbrellas (U)/ pickets(P) counts. The
CSRNet, SPN, and ASNet prediction results (count and density map) are in columns 3,
4, and 5, respectively. The last two columns present CSONet results. The h-map is the
human map and count, and p/u-maps are the detected SO objects (pickets/umbrellas). Fi-
nally, the CSONet map and count demonstrate the estimation of human count and density
map, which applies the SOI (i.e., under umbrellas or behind pickets) in a particular crowd
event.

picket) with five SO image samples. According to the heatmaps of DGT, CSRNet, SPN,

and ASNet, the area covered by SOs are shown by low density. However, the CSONet

adjusts those areas by identifying p/u heatmaps and overlaying them to human heatmaps,

which results in more accurate crowd counting. As showen in Figure 40, the similarity

(between the ground-truth and the estimated density-map images) of CSONet creates a

higher structural similarity than the other methods with accuracy of 95.44%
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Figure 40: Overall Performance Accuracy.

4.2 Part 2: Modeling Safety Index in Crowd by Detecting Face Masks against

COVID-19 and Beyond

In battling against the global pandemic caused by COVID-19, many countries

and local governments continuously predict the pandemic trajectories for health-care-

related policy decisions such as school opening and limiting businesses and infrastructure

planning such as preparing and planning healthcare facilities and personnel. In addition,

growing evidence shows that requiring masking in public areas in parallel with aggressive

testings and rapid vaccinations are critical for achieving herd immunity [48, 49]. As illus-

trated in Figure 41, many scientists and the health organization guidelines from WHO [50]

and CDC [51] confirm that masking in public places is one of the most effective health

measures along with social distancing to break the coronavirus transmission chain [148].
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For example, the chance of coronavirus transmission reduces from 90% up to 1.5% by

wearing masks. Despite such safety recommendations, in reality, face mask-wearing and

social distancing are practiced at a varied level depending on places and times.

Monitoring and assessing the conformity of mask-wearing and social distancing

in public places would provide more accurate input to pandemic trajectory predictions

and understand the safety level of communities. However, existing approaches do not

directly address the issue and fall short of effectively and scalable tasks. There are several

Machine Learning (ML)-based object detection and classification approaches aimed for

COVID-19 projections [51], diagnosis, social distancing [52], and contact tracing [53]

applications. However, as the technologies to ensure the masking in public places aim

at surveillance and tracking individuals [54, 55], they are rendered less useful in public

areas, such as crowds on the street, airports, and schools, due to the scalability limitation

and privacy concerns.

Table 8: Comparison with existing datasets.

Dataset Mask Type # Images # Faces Ave # of face in an image less than 5 people in an image
Kaggle FMD [104] Real-world 853 4072 4.77 527 (61.7%)

MOXA3k [105] Real-world 3000 12176 4.05 2028 (67.6%)
Mosaic (Proposed) Real-world 530 5309 10 53 (10%)

For example, Kaggle [104] has a Face Mask Detection (FDM) dataset with 853

images, and 66 (as of 6/1/2021) published mask detection codes using YOLO versions

and Faster RCNN models. Also, MOXA3k [105] with 3000 masks dataset has been

published for monitoring of people wearing medical masks. However, as described in

Table 8, around 60% to 70% of the datasets are less than five people (4 to 5 people in each

image on average), which do not represent realistic crowd scenarios.

87



Figure 41: Effectiveness of masking against COVID-19

In this work, we propose an ML-based face masking detection system for Modeling

Safety Index in Crowd (Mosaic). Mosaic builds a new dense mode crowd masking

dataset to detect, count, and classify the crowd’s masking condition in addition to mon-

itoring social distancing. It calculates spatio-temporal Safety Index (SI) values for each

community instead of detecting individual mask-wearing conditions to ensure an individ-

ual’s privacy. Mosaic calculates the weighted degree of each person’s masking to obtain

a more sophisticated SI model. The SI data can be shared or published to calculate the

area-based SI maps (as opt-in data) for assisting effective policy decisions and relief plans

against COVID-19. The evaluation results show that Mosaic detects various conditions

and types of masking states and calculates SI values of a crowd effectively. Our goal is

to investigate the impact and challenges of masking and social distancing the crowd to

develop each community SI. To the best of our knowledge, this is the first work that ef-

fectively and scalably gauges the safety level from dense mode crowd image analyses for

mask-wearing practices and social distancing in a crowd.
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The main contributions of this work include [149]:

• A new crowd face-mask dataset (dense mode) is collected, annotated, and aug-

mented to investigate the impact and challenges of mask-wearing. As shown in

Table 41, Mosaic dataset maintains only 10% of images less than five people in an

image (more than 10 people in each image on average);

• An advanced ML-method is proposed to detect the various type of mask-wearing

features and social-distancing values in a dense mode corwd; and

• A new SI calculation approach is introduced using weighted neighbor relationship

to ensure privacy protection.

4.2.1 Mosaic Architecture

To tackle the open challenges mentioned above, in this paper, we propose an ML-

based Mosaic system, which calculates SI values by detecting and classifying the crowd’s

masking conditions. To serve this purpose, Mosaic consists of three modules, namely

Data Training (DT), Feature Extraction (FE), and Safety Index (SI) Modeling.
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Figure 42: Data Training (DT) in Mosaic System

4.2.1.1 Data Training (DT)

The DT module is in charge of annotating and augmenting crowd masking images

to create datasets, as shown in Figure 42. Besides, DT module also trains the collected

datasets to enable various ML procedures.

• Mosaic Mask Datasets: We create and train a new dense mode masking dataset

for the crowded environment. Mask images were collected from Google images by

running web search scripts with various keywords, including ”mask” (’crowd with

mask’ and ’COVID-19 face mask’). The dataset contains 530 images with either a

90



Figure 43: Existing Face Mask Detection (Kaggle FMD and Moxa3k) Vs. Dense Mode
Crowd (Mosaic) Datasets

mask or no mask in a crowd. The dataset has various degrees of high-density crowd

images. To the best of our knowledge, the ’Mosaic’ dataset is the first dense mode

face mask images in a crowded environment.

As shown in Figure 43, the existing mask datasets such as Kaggle FMD [104] and

Moxa3k [105] usually contain images with a small number of faces for monitoring

mask-wearing conditions. As illustrated in Table 8, Kaggle FMD has 4.77 faces in a

picture on average, and Moxa3k has 4.05 faces in an image on average, but Mosaic

has 10 faces in an image on average. Furthermore, most of the existing dataset

images have less than 5 people in an image (61.7 % in Kaggle FMD and 67.6 %

in Moxa3k), which is not suitable for using mask-wearing detection in a crowded

environment. However, in Mosaic dataset, only 10% of images is less than 5 people

in an image.

We divided the Mosaic datasets into three categories, training set (70%), validation
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set (20%), and test set (10%).

• Data Annotation: The VGG Image Annotator (VIA) software [21] is used to

manually draw bounding boxes on the images and assign each labeled object to its

class. Our dataset has two classes: Mask that includes all people wearing a mask,

and No-Mask that refers to all people without any mask or incorrect masking. We

also generate the ground-truth density map. All fully or partially front-facing hu-

man faces are labeled Mask and No-Mask. Every labeled object and the information

are exported to a .json file for training. We converted the .json file information to

the .txt format to utilize it in YOLO v3 [150].

• Data Augmentation: Image augmentation techniques, including flip and satura-

tion, are applied to increase the training set (70% of 530 images) to 1116 training

images (372× 3). It improves model performance by reducing the chance of model

overfitting. Eventually, the dataset size becomes 1274 by adding 158 images (vali-

dation set (20%) and test set (10%)).

• Training Configuration: Adam optimizer [32] is used as an optimization method

for the training of Mosaic by configuring a learning rate (1e-4), and a momen-

tum (0.9). Performing multiple experiments starting from 1e-3 to 1e-9, we found

that 1e-4 is the most optimal learning rate. Other recommended training hyper-

parameters are adopted, including a batch of 16 and an epoch number of 100. The

Mosaic structure is implemented using the Pytorch framework [30]. All of the ex-

periments were conducted on an NVIDIA GeForce GTX 1080 Ti.
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4.2.1.2 Feature Extraction (FE)

As illustrated in Figure 44, the FE module uses a YOLO v3 [150] to extract fea-

tures. The Super-Resolution (SR) technique reconstructs a High-Resolution (HR) image

from the Lower-Resolution (LR) images before applying the YOLO. After the feature

extraction, FE classifies features as Mask and No-Mask.

• Image SR: An SRCNN [151] is used for single image SR to recover HR images

from LR images and to enhance images’ perceptual quality. SRCNN learns an end-

to-end mapping between the LR and HR images. The mapping is represented as a

CNN that takes the LR image as the input and outputs the HR one. We investigate

the challenges of facemask-wearing conditions in the proposed crowd face-mask

dataset, low-quality images and congested images are prevalent in the dataset. We

integrated the Super Resolution (SR) technique to identify the facemask-wearing

conditions and improve the classification accuracy. Practically, we have added the

SRCNN network before image classification to reconstruct HR images and restore

image details. SRCNN has a simple architecture that consists of three convolutional

layers, including the patch extraction and representation layer, the non-linear map-

ping layer, and the reconstruction layer. The LR images are upscale using bicubic

interpolation before inputting to SRCNN. The bicubic interpolation performs cubic

interpolation on each of the two axes. It takes 4×4 pixels into account and produces

smoother results. It is also similar to other interpolation-based upsampling methods

that improve the input image resolution based on its image signals without bringing

any more information.
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Figure 44: Feature Extraction (FE) in Mosaic System

The network settings are identical to settings that are explained in [151], such as

f1 = 9, f2 = 1, f3 = 5, n1 = 64, and n2 = 32. We also define the optimizer as

Adam and the learning rate to be (0.0003). The patch extraction and representation

layer extract patches from the interpolated image Y and represent each patch as

a high-dimensional vector. The non-linear mapping layer maps each feature map

into the HR patch representation. The reconstruction layer aggregates the HR patch

representation to generate the HR image F (Y ).

94



• Feature Extractor (YOLO): YOLO v3 extracts the target objects’ features of

masking from an input image. The architecture is composed of 53 convolutional

layers (i.e., Darknet-53). It continuously passes the extracted features to a masking

check function, which detects and evaluates the masking status in various aspects,

including mask, no-mask (incorrect masking). We have changed the hyperparame-

ters of Yolo, such as batch size, learning rate, and epochs number.

• Classification: We have added a classification layer at the end of the feature ex-

tractor (YOLOv3). It classifies the masking features like a red box for No-Mask

and a green box for Mask. It also counts the total number of people with Mask and

No-Mask. Also, the classification layer can detect incorrect masking and various

styles and colors. This information has been used to generate the Safety Index (SI)

value for each community.

4.2.1.3 Safety Index (SI) Modeling

The SI modeling module calculates the safety index of each image by applying a

weighted degree algorithm as presented in Algorithm 1.
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Figure 45: Safety Index (SI) Modeling in Mosaic System

As illustrated in Figure 45, a classified output image is converted into a grid (Grid-

ification) by applying perspective effects. We then fill a red color for No-Mask, a green

color for Mask, and a gray color for space (no people). For each grid, we apply the

following SI equations (4.7 and 4.8).

SI =

∑
WDij∑
P

(4.7)
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WDij =

∑
SFn
Nn

(4.8)

WDij presents a Weighted Degree (WD) value of a person on a grid i and j,

which is the sum of neighbors’ Safety Factor (SF) value,
∑
SFn, divided by the number

of neighbors, Nn. For example, in Figure 45, for WD11, the sum of neighbors’ Safety

Factor (SF) value is 120 (i.e., 100 + 10 + 10), and the number of neighbors is 3. Hence,

WD11 value is 40.

SI value of an image is calculated by dividing the total number of detected people

in the image,
∑
P , from the total WD values for the entire grids,

∑
WDij . For example,

in Figure 45, the total WD values for the entire grids is 1049, and the total number of

detected people in the image is 14. Hence, the SI value of an image is 75.

Map 1 represents the SF values according to degree relation (DR), which repre-

sents R as No-Mask (Red), G as Mask (Green), and N as no people (Gray). SF values

are drawn from the infection values (%) in Figure 41. For example, as RR (No-Masks

without distancing) has a very high transmission chance (90%), the SF value is 10. Also,

for RG or GR (Mask to No-Mask), as it is unclear which side asymptomatic COVID-19

carrier is, we average out the transmission chance (38%). The SF value becomes 62.

The mask ratio (%) is the masked people divided by the total number of detected

people in the image. In Figure 45, it is 28.57%.
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Algorithm 1 SI Modeling Algorithm
Result: Safety Index value

1 Grids = [(G0, class0), (G1, class1),....(Gi, classi)] SI.list = [ ] Green.count = 0
Red.count = 0

2 for G in Grids do
3 G.SF.list = [ ] N = Neighbors (Grids, G) for n in N do
4 if G.class is (Green or Red) then
5 if n.class is Gray then
6 G.SF.list.Append(100)
7 end
8 end
9 else if G.class is Green then

10 Green.count = Green.count+1 if n.class is Red then
11 G.SF.list.Append(62)
12 end
13 if n.class is Green then
14 G.SF.list.Append(98.5)
15 end
16 end
17 else if G.class is Red then
18 Red.count = Red.count+1 if n.class is Red then
19 G.SF.list.Append(10)
20 end
21 if n.class is Green then
22 G.SF.list.Append(62)
23 end
24 end
25 else if G.class is Gray then
26 continue
27 end
28 end
29 WDij = Avg(G.SF.list) SI.list.Append (WDij)
30 end

31 SI = Avg(SI.list) Mask Ratio = (Green.count /
∑

(Green.count, Red.count)) × 100 re-
turn SI, Mask Ratio
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4.2.2 Evaluations

Experimental study has been conducted using the trained Mosaic prototype and

the testing dataset. Figure 46 presents the detection results of incorrect masking (e.g., the

neckbeard, the sniffer, the stache, and the nose plug) and wearing various mask styles and

colors. For example, the red box detects both No-Mask and incorrect mask.

Figure 46: Detecting incorrect masking and various styles and colors.

Recall =
TP

TP + FN
(4.9)

Precision =
TP

TP + FP
(4.10)

The recall rate and precision metrics defined by equations (5.2 and 4.10) with

true-positive (TP), false-negative (FN), and false-positive (FP) are used to evaluate the
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Table 9: Classification performance.

Mask Recall Mask Precision No Mask Recall No Mask Precision mAP
90% 88% 79% 76% 82%

classification detection performance. A mean Average Precision (mAP) in object classi-

fication tasks is calculated. mAP is in a range from 0% to 100%, and the higher value

means better accuracy. As shown in Table 9, mask recall of 90%, mask precision of 88%,

no mask recall of 79%, no mask precision of 76%, and mAP (average) of 82% are high

enough for detection tasks in crowd. Both recall and precision results in No Mask are rel-

atively low because most of the labeled objects in the dataset are with Mask. We observed

that adding the SR network outperforms an excellent result and significantly improves the

classification accuracy.

Figure 47: Mosaic SI Range from 100 (safest) to 10 (not safe).

Figure 47 presents the Mosaic SI value range from 100 (the safest) to 10 (the
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least secure) with a couple of extreme examples. Both images’ mask ratios are 0% (no

mask-wearing), which indicates that the scene has the highest transmission probability.

However, the people in the left image keep social distancing very well, but the people in

the right image do not. Hence, the left image indeed has less transmission chance. The

Mosaic SI value differentiates the transmission chance using both mask-wearing relation-

ships and social distancing. The left image’s Mosaic SI value is 100 (very safe), while the

right image’s Mosaic SI value is 10 (very unsafe).

Figure 48: Mosaic SI vs. Mask Ratio.

Figure 48 shows a couple of crowd image examples. The left image shows that

its mask ratio is 0% (no mask-wearing), which indicates that the scene has the highest

transmission probability. With some social distancing, its Mosaic SI value is 40, which

is not safe. The right image shows that its mask ratio is 28.57%, which indicates that the

scene is not safe. However, its Mosaic SI value is 75 with social distancing, which is safe.
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4.3 Conclusion

In this chapter, we introduced two novel intelligent approaches in order to crowd

management using intelligent techniques. We proposed architecture for scattered occlu-

sion characterization called CSONet for efficient crowd counting and high-quality density

heatmap generation. CSONet recognizes event-induced, scattered, and multitudinous oc-

clusions and applies the effect to a human crowd map to generate an accurate crowd

count and high-quality density map. We also proposed a novel face masking detection

system for Modeling Safety Index in Crowd (Mosaic), a Machine Learning (ML)-based

approach for detecting masking in a crowd by building new dense mode crowd masking

datasets. Mosaic detects, counts, and classifies the crowd’s masking condition and cal-

culates each community’s spatiotemporal Safety Index (SI) values instead of monitoring

individual masking cases. Mosaic can provide an accurate assessment of SI of a com-

munity based on real measurement of masking and social distancing practices. Through

extensive evaluations, we demonstrated that the accuracy of these methods outperforms

over the state-of-art existing approaches.
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CHAPTER 5

SEMANTIC KNOWLEDGE INFORMATION-BASED TRACING APPLICATION

Due to its long incubation period, aggressive asymptomatic transmission, and new

mutations of the virus, COVID-19 is causing multiple pandemic waves worldwide. De-

spite recent vaccination, social distancing, and social restriction efforts, false negatives

and dormant positives can make pandemics challenging to restrain. In addition to rapid

vaccination, effective contact tracing, mask-wearing, and social distancing are critical for

outbreak containment and for achieving herd immunity. However, the existing technol-

ogy solutions, such as contact tracing apps and social-distance sensing, have been met

with suspicion due to privacy and accuracy concerns and have not been widely adopted.

Without achieving a critical mass of individual users, these personal technologies have

been rendered useless.

On the other hand, large-scale policy efforts have been complicated, requiring the

coordination of federal, state, and local governments and regulation enforcement logistics.

However, local communities balance these approaches and are an unrealized, powerful

resource to prevent future outbreaks.

This chapter proposes two novel infection management systems: Crowd-based

Alert and Tracing Services (CATS) to build a safe community cluster against COVID

-19. CATS applies social distancing and masking principles to small, focused communi-

ties to provide higher privacy protection, efficient penetration of technology, and greater
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accuracy. We have designed an intelligent tag for managing social distancing. We also

implemented a Machine Learning (ML)-based face mask tracking system to build non-

binary Safety Impact Values (SIV). Second, we propose Crowd Safety Sensing named

(CroSS) for building a sustainable safe community cluster against COVID-19 and beyond

using affordable Internet of Things (IoT) technologies. CroSS monitors social distancing

policies to small, focused communities for accommodating efficient technology penetra-

tion, greater accuracy, effective practices, and privacy policy assistance. We implemented

a social distancing method and integrated it into an edge-based IoT system.

5.1 Part 1: Crowd-based Alert and Tracing Services for building a Safe

Community Cluster against COVID-19

Fighting against the global pandemic caused by COVID-19, many countries make

a mask-wearing and social distancing in public areas compulsory in parallel with aggres-

sive testings and vaccinations to achieve herd immunity. Many scientists support that

they are the most effective health measures to break the coronavirus transmission chain.

However, the technologies ensuring those health measures have not been broadly adopted

due to privacy and accuracy concerns. Without gaining a critical mass of individual users,

these personal technologies have been rendered useless. Although large-scale policy ef-

forts have been made aggressively, the technologies cannot effectively support federal,

state, and local governments’ coordination and regulation enforcement logistics.

In this work, we propose Crowd-based Alert and Tracing Services (CATS) to build

a safe community cluster, which provides higher privacy protection, efficient penetration
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Figure 49: CATS system concept

of technology, greater accuracy, and effective practical policy assistance [152]. As illus-

trated in Figure 49, CATS enhances the technology-based tracing capacity by transform-

ing the task from personal tracking to community gatekeeping and from binary to multi-

context of contact information and policy assistance. First, as society gradually reopens,

each community, such as schools, churches, businesses, and events, needs to be evalu-

ated for appropriate gatekeeping methods such as masks and sanitization requirements,

and temperature checks to ensure the members’ safety. It is critical to deploy tracing and

social distancing methods among the members. CATS facilitates tracing at a community

or a facility level using multiple form-factors (i.e., a smartphone app, plug-in, or a smart

tag) rather than an individual level to bear the characteristics of contacts according to the

adoption choices of specific communities. Second, CATS enables public authorities to

efficiently and dynamically assess their social distancing policies using the area-based
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safety value maps (opt-in data), various duration and distance alerts, and actively inform-

ing others via direct covert communication non-binary Safety Impact Values (SIV). As

of the first step, we have designed and developed a Machine Learning (ML)-based face

mask tracking method to find SIV of the community by measuring the % of mask-wearing

and the % of no or wrong mask-wearing people. It can adequately educate policymakers

about the pandemic’s meaningful status at the broader level and assist in effective policy

decisions and relief plans. Community-based safety spectrum data such as SIV from the

masking status (crowdsourcing data from each community) will become a novel dataset

that would augment existing biological COVID-19 data with sociological data.

5.1.1 Crowd-based Alert and Tracing Services (CATS)

As shown in Figure 50, during the pandemic, almost all the communities are gate-

keeping by putting up signs to wear masks and keep social distancing. However, putting

up posters is not practical since some may intentionally challenge those rules, and oth-

ers neglect them. Also, students who stay extended hours in school may not follow the

social distancing and mask-wearing rules unintentionally. A more effective and less inva-

sive nudge is required. However, surveys show that many people hesitate to adopt those

technologies due to privacy and accuracy concerns.
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Figure 50: Typical signs for pandemic rules

5.1.1.1 Social Distancing Measurement

As illustrated in Figure 51, we have implemented a proof-of-concept tag with WiFi

and BLE beacon stuffing and RSSI-based distance measurement functionalities using ESP

32 chipset. An Android smartphone app is developed to control the tag, and Google

Cloud Messaging (GCM) is used for server communication. Both WiFi and BLE beacons

should work in real-world environments, which may have hundreds of tags. When the

beacon signal becomes prevalent in a crowded intersection, there could be a chance of

beacon collision among the tags. Although WiFi and BLE beacons support spatiotem-

poral frequency isolation methods for mitigating the potential interference, it happens

due to hidden nodes, periodic delivery, and broadcast. Hence, we look for an efficient

beacon technology that can control and mitigate the beacon collision. A few theoretical

studies show that periodic beacon’s collision probability in practice is high. CATS tag

uses relative location (distance) to measure social distancing. The length of two BLE tags

can be calculated using the RSSI power using a simplified formula in Eq. (5.3) [153].
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The RSSI signal strength depends on distance and broadcasting power value. BLE works

with broadcasting power value (N) around 2â4 dBm, which depends on the environmen-

tal factor. The signal RSSI strength will be around -26 (a few inches) to -100 (40â50 m

distance). The Measured Power is a factory-calibrated constant of expected RSSI at a

distance of 1 meter.

Figure 51: Conceptual Smart Tag form-factor illustration

Distance = 10(MeasuredPower−RSSI)/(10∗N) (5.1)

The RSSI value would be less accurate and not stable for distance measurement

in a densely populated area such as shopping malls, grocery stores, and office build-

ings. However, considering the nature of social distancing problems, the environment is

less populated, and sub-meter distance accuracy is not significant. The Ultra Wide Band

(UWB) can measure distance and location to an accuracy of 5 to 10 cm with minimal noise

interference due to the short pulse width, unlike WiFi, Bluetooth, and other narrowband

radio systems that only reach several meters. UWB also consumes less power than WiFi,
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although Bluetooth 4.0 also uses significantly low power. However, UWB is not as perva-

sive as Bluetooth and WiFi. None of the current smartphones and mobile devices support

UWB except the recent Apple’s iPhone 11. As we choose to use both BLE and WiFi

beacons, we have conducted various ways to enhance the accuracy, including contextual

information, characterization of occlusion materials for different signals, and investigate

device positions (height and movement) accurate distance analysis. CATS supports dif-

ferent configuration and operation options to cope with social distancing’s various privacy

and security requirements, which differ among communities such as schools, churches,

industries, and government facilities. As monitoring and reporting are contained within

an organization, any public system (server or other tags) does not read personal data,

including personal identification and SIV inputs. They are kept in private within the per-

sonal smartphone app. The SIV scores are shared only after the ID anonymization. Any

log data only stays within the community server and will be removed within a couple of

weeks without any reviews.

5.1.1.2 Mask-Wearing Detection (MWD) for SIV

To reduce the spread of COVID-19, CDC urges individuals to cover their mouths

and noses with a mask when they around others. Wearing a mask is meant to protect

other people in case someone in the group is infected. Many people do not wear masks,

even in public areas, and when social distancing measures are challenging to maintain.

Such cases can be seen when crowds walk on the street, in airports, and schools. As

presented in Figure 52, MWD system collects data, detects face masks, classifies the
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masking condition in a crowd, and counts people. To serve this purpose, MWD consists

of data training and feature extraction modules. Eventually, we will deploy the model into

the CCTVs. MWD can report SIV for each community and provide a sense of which area

is safe from the spread of COVID-19. The system only creates SIV of the community and

eliminates any personal identities to ensure privacy.

Figure 52: MWD system architecture

• Data Training module is in charge of annotating and augmenting crowd masking im-

ages to create datasets and trains the collected datasets to enable various ML procedures.

First, we create and train new MWD Datasets for the crowded environment. Mask im-

ages were collected from Google images by running web search scripts with various

keywords, including ”mask.” The dataset contains 526 images with either a mask or no

mask in a crowd. As illustrated in Figure 52, the images have various crowd density,

unlike the existing mask datasets [101, 102], which only contain images with a small

number of faces for surveillance purposes. We divided our datasets into three cate-

gories, training set (70%), validation set (20%), and test set (10%). Second, the VGG

Image Annotator (VIA) software [21] is used for data annotation. It manually draws

bounding boxes on the images and assigns each labeled object to Mask that includes
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all people wearing a mask, and No-Mask that refers to all people without any mask.

We also generate the ground-truth density map. All fully or partially front-facing hu-

man faces are labeled Mask and No-Mask. Every labeled object and the information

are exported to a .json file for training. We converted the .json file information to the

.txt format. Third, data augmentation techniques, including scaling, flipping, rotation,

and converting images color scale to black and white scale, are applied to increase the

training set. We use these techniques to grow the dataset to 1262 images. It improves

model performance by reducing the chance of model overfitting. Finally, for training

configuration, Adam optimizer [32] is used as an optimization method for the training

of Mosaic by configuring a learning rate (1e-4), and a momentum (0.9). Performing

multiple experiments starting from 1e-3 to 1e-9, we found that 1e-4 is the most optimal

learning rate. Other recommended training hyper-parameters are adopted, including a

batch of 16 and an epoch number of 100. It is implemented using the Pytorch frame-

work [30]. All of the experiments were conducted on an NVIDIA GeForce GTX 1080

Ti.

• Feature Extraction module uses a YOLO v3 [150] to extract features. It continu-

ously passes the extracted features to a masking check function, which detects and

evaluates the masking status in various aspects, including mask, no-mask (incorrect

masking). We have changed the hyperparameters of Yolo, such as batch size, learn-

ing rate, and epochs number. The Super-Resolution (SRCNN) technique reconstructs

a High-Resolution (HR) image from the Lower-Resolution (LR) images before apply-

ing the YOLO. After the feature extraction, we have added a classification layer at the
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end of YOLOv3. It classifies the masking features like a red box for No-Mask and

a green box for Mask. It also counts the total number of people with Mask and No-

Mask. Eventually, SIV is calculated for each image by applying the mask ratio, which

is SIV = Totalmask/Totalpeople.

5.1.2 Evaluations

We conducted an ML-based MWD experiment using the trained MWD prototype

with the testing dataset. Figure 53 presents the detection results of incorrect masking (e.g.,

the neckbeard, the sniffer, the stache, and the nose plug) and various face mask styles and

colors. For example, the mask should cover the nose and mouth to stop the spread of

infection. The red box detects both No-Mask and incorrect mask.

Figure 53: Detection of various masks and incorrect masking

Figure 54 shows the calculated SIV in % from a target image. While the target

image is going through the MWD model, it identifies the number of detected people

(Totalpeople), total number of people with Mask (Totalmask), the number of people with

No-Mask (Totalno−mask), and the original count of people in an image. SIV is calculated
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for each image by applying the mask ratio, which is SIV = Totalmask/Totalpeople. For

example, the leaft image of Figure 54 has 82 of Totalpeople and 9 of Totalmask that results

11% of SIV (very unsafe as only 11% is masking).

Figure 54: SIV calculations

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(5.2)

Table 10: Classification performance

Mask Recall Mask Precision No Mask Recall No Mask Precision mAP

82% 79% 65% 63% 71%

The recall rate and precision metrics defined by Eq. (5.2) with true-positive (TP),

false-negative (FN), and false-positive (FP) are used to evaluate the classification detec-

tion performance. A mean Average Precision (mAP) in object classification tasks is also
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calculated. mAP is in a range from 0% to 100%, and the higher value means better ac-

curacy. As presented in Table 10, mask recall of 82%, mask precision of 79%, no mask

recall of 65%, no mask precision of 63%, and mAP (average) of 71% are pretty accurate

for detection tasks in a crowd. Both recall and precision results in No Mask are relatively

low because most of the labeled objects in the dataset are with Mask.

5.2 Part 2: Crowd Safety Sensing (CroSS) for the Post Pandemic Era

COVID-19 causes multiple pandemic waves worldwide for years due to the nature

of the long incubation period, the aggressive asymptomatic transmission, and new muta-

tions of the virus. The lockdown (shrinking the community at the elementary level, such

as a family and cutting the strings between the communities) for social distancing is the

last resort against it. In addition to vigorous testing and vaccination, ”very aggressive”

social distancing in a public place is a vital part of the strategy for keeping such exponen-

tial infection from happening again after the first wave recedes and the society reopens.

However, the existing technologies, such as contact tracing apps, have not been adopted

due to privacy and accuracy concerns. Without achieving a critical mass of individual

users, these personal technologies have been rendered useless. Although large-scale pol-

icy efforts have been complicated, requiring the coordination of federal, state, and local

governments and the logistics of regulation enforcement, applying technologies to small,

focused communities can retain individual privacy, achieve wide user adoption, and allow

easy implementation. They are not helpful for the post-pandemic era (a new normal) to

prevent another potential future pandemic wave.
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Figure 55: CroSS system concept vs. personal contact tracing

In this work, we propose a novel sensing strategy and system, named Crowd

Safety Sensing (CroSS) to build a sustainable safe community cluster, which pro-

vides efficient penetration of technology, greater accuracy, effective practices, and privacy

policy assistance [154]. CroSS uses affordable Internet of Things (IoT) technologies to

transfer to small communities without any heavy facility investment. As illustrated in

Fig 55, CroSS system facilitates effective social distancing technologies at a community

or a facility level rather than a personal level. Limiting the tracing scope from an un-

bounded area (e.g., city-wide or nation-wide tracing scope) to each community, CroSS

can improve scalability and effectiveness and supports the characteristics of contacts to

the adoption choices of specific organizations. CroSS enhances the technology-based

tracing capacity by transforming the task from personal tracking to community gatekeep-

ing, from binary to multi-context of contact information and policy assistance, and from

backtracking to forward-tracing.

CroSS enables innovative capabilities and transforms the technology-based trac-

ing as follows:
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• From a personal tracking tool to a community gatekeeper: As society gradu-

ally reopens, each community, such as schools, churches, businesses, and events,

need to be evaluated for appropriate gatekeeping methods such as social distancing,

mask-wearing and sanitization requirements, and temperature checks to ensure the

members’ safety. Among them, it is critical to deploy alerting and social distancing

methods among the members. CroSS facilitates alerting at a community or a facil-

ity level using multiple form-factors (i.e., a smartphone app, plug-in, or a smart tag)

rather than an individual level to bear the characteristics of contacts to the adoption

choices specific communities. Furthermore, the anonymized and encrypted tracing

data remains within the involved community for a limited duration. It enhances

privacy and adoption and penetration of technology by incentivizing communities

to opt-in for their activities and embracing people without smartphones or reluctant

to contact tracking,

• From binary to multi-context of contact information and policy assistance: The

existing contact tracing strategy uses binary information (a confirmed case or not)

only after a long potential asymptomatic period. CroSS enables public authori-

ties to efficiently and dynamically assess their social distancing policies using the

area-based safety value maps (opt-in data), various duration and distance alerts,

and actively informing others via direct covert communication non-binary Safety

Impact Values (SIV). It can adequately educate policymakers about the pandemic’s

meaningful status at the broader level and assist effective policy decisions and relief

plans.
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• From backtracking to forward-tracing: All existing contact tracing approaches

are designed to trace retrospectively for the confirmed case only. Hence, they are

not scalable to tackle the pandemic, which has prolonged incubation and asymp-

tomatic transmission. CroSS can proactively track potential incubation case con-

tacts by exchanging the safety spectrum between close contacts instead of waiting

for a confirmed case.

As illustrated in Fig 56, many ongoing privacy-aware smartphone-based contact

tracing approaches by Apple and Google [106], and PACT [107] take a similar concept at

its foundation, which consists of exchanging a key code stage (steps 1 and 2), sharing the

key code by an infected stage (steps 3 and 4), and alerting (opt-in) the contacts stage (steps

5 and 6) [155]. However, existing methods have significant limitations in technology

adoption, accuracy, and efficacy.

CroSS (1) effectively incentivize technology adoption among communities to pro-

vide (2) meaningful assistance to policymakers and public health authorities. Tracing

boundaries and details are set clearly by adopting communities focusing only on their

stakeholders and based on their unique tracing context (e.g., teacher vs. student, pastor

vs. parishioner), thus (3) providing a significant reduction in false negatives while (4)

enriching contact safety information. The effective penetration and the meaningful and

enriched contact tracing information enabled by our approach will allow other researchers

in various disciplines to model and understand the spread of COVID-19, inform and ed-

ucate policymakers and public health authorities about the science of virus transmission

and prevention, and encourage the communities and policymakers on the development of
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Figure 56: Privacy-aware contact tracing by Apple and Google

processes and actions to address this global challenge. Community-based safety spectrum

data such as Safety Impact Values (SIV) crowd-sourcing data from each community will

be a novel dataset that would augment existing biological COVID-19 data with sociolog-

ical data. New community-specific contact patterns would emerge, unique in duration,

distance, and the number of contacts. The impact of each contact can be disparate, ac-

cording to the community.

5.2.1 Crowd Safety Sensing (CroSS)

As shown in Fig 57, almost all the communities are gatekeeping by putting up

signs to wear masks and keep social distancing. However, just putting up posters is in-

sufficient, since some are challenging the value of those rules, and others are neglecting
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them. For example, some customers may intentionally refuse to wear masks. Also, stu-

dents who stay extended hours in school may not follow the social distancing and mask-

wearing rules unintentionally. A more effective and less invasive nudge is required. A

growing number of contact tracing apps are being developed and released to complement

manual contact tracing and ensure social distancing using location data or BLE beacons to

automatically detect if a user may have been exposed to risk. However, surveys show that

many people hesitate to install those apps due to the app’s privacy and accuracy concerns.

Figure 57: Signs for pandemic rules

Figure 59: WiFi and BLE Beacon stuffing
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Figure 58: CroSS system architecture

5.2.1.1 Technology Overview

As illustrated in Fig 58, CroSS system consists of three main components, includ-

ing a CroSS tag (hardware and software), a CroSS app, and a CroSS server. A CroSS tag

uses both WiFi and BLE beacons. BLE beacon is used between tags to do physical dis-

tancing and contact tracing, using a periodic active beacon. WiFi beacon is used between

the community facilities (i.e., WiFi access points) and tags for fencing and tracking the

tag holders, which uses a passive beacon with probe request and response. As illustrated

in Fig 59, a tag identity and supplementary information (i.e., SIV) are embedded into

a beacon frame by using a beacon stuffing technique [119]. A CroSS tag prototype was

built using ESP32, a series of low-cost, low-power systems on a chip microcontroller with

integrated WiFi and dual-mode Bluetooth 4.2 communications, built-in antenna switches,

and 520 KB SRAM. It comprises an LED light to indicate a social distancing alert, a
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battery (charging is optional), a microSD card for extended logging, and a power switch

(toggle to turn on and off). As of future work, it will be wrapped by a water-resistant

cover with a harness (i.e., neckless and wristband). A CroSS app is for both Apple and

Google by using a cross-platform IDE (i.e., Flutter). When a member checks in a com-

munity, a CroSS tag ID is associated with the app and registered to the CroSS server. The

app remains disabled most of the time while the tags are exchanging signals. CroSS app

facilitates a Safety Impact Value (SIV) calculation before any registration. The app cal-

culates an SIV (score) with the age, race/ethnicity, gender, some medical conditions, use

of certain medications, poverty and crowding, certain occupations, pregnancy, and recent

travel history information. It enables the non-binary tracing model. The SIV score will be

readjusted automatically according to the exposure duration, distance, and environment.

It also supports the check-out process to initiate the contact tracing data upload and tag

reset. A CroSS server maintains the encrypted contact tracing information and SIVs

from social distancing measurement for a limited time (i.e., for two weeks). The server

will delete the contact tracing data and associated SIV data within the community service

in a couple of weeks without any review. The server also monitors the occupancy density

(to identify any high-risk area) in all community parts to ensure an environment capable

of social distancing according to the configuration. It ensures compliance by checking

alerts if a tag is still functioning.

CroSS system supports four conceptual functions, including social distancing,

contact tracing, geo-fencing, and geo-tracking.

• Social Distancing: Each member wears a CroSS tag that continuously monitors
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and stores beacon messages from nearby tags. If the received signal strength (i.e.,

RSSI) is approximately 6 feet for a certain duration, the tag indicates a visual warn-

ing by flashing a red LED light. It also logs each tag’s unique identifier, along with

a timestamp and the approximate distance. They will be transferred to the CroSS

server, when the tag enters the gateway.

• Contact Tracing: The concept of contact is different according to the community

system configuration, such as distance, duration, and SIV information (i.e., wearing

masks, travel, and health history). Contact tracing provides a dynamic reporting ap-

plication to identify members who have been in contact with a confirmed case. The

tag logs the unique identifier, timestamp, and approximate distance when there is a

contact. A CroSS server database renders all contact points and allows for further

analysis and reporting. If a member is tested positive later, all community contacts

for the last two weeks are tracked and notified. The application provides an analy-

sis of high-risk areas and people to enable the development of proactive mitigation

strategies. The data captured is called through an API, or optionally, enriched with

social distancing monitoring data or peopleâs COVID-status information. The com-

munity can communicate with affected members to implement their management

processes.

• Geo-Fencing: The fencing technology keeps a tag within a predefined set of com-

munity boundaries, which looks for weakening and losing the âheartbeatâ from a

tag. For example, if a tag holder tries to leave the community without returning the

tag (brought it to home or other places), it will give a visual warning. The process
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starts with the WiFi APs, which broadcast WiFi beacon (a probe request) periodi-

cally. If a tag does not receive any WiFi beacon signal for a long duration(over a

threshold), it turns an LED light on to complete the check-out process by returning

the tag.

• Geo-Tracking: The tracking technology searches a specific heartbeat signal from

a missing tag to identify the current location or the entire location history. For

example, a tag can be missing because a tag holder leaves the tag somewhere within

the community without adequately checking out (a zombie tag). The process starts

with the CroSS server when it receives an inoperative or missing tag report. It

enables the missing tag area by sending a service request message via a WiFi beacon

and sends a probe request to trigger a probe response from the missing tag. When

a nearby smartphone app receives a probe response from a (lost) tag, it relays its

location.

5.2.1.2 IoT-based CroSS Design and Development

We have implemented a proof-of-concept tag with WiFi and BLE beacon stuffing

and RSSI-based distance measurement functionalities using ESP 32 chipset. An Android

smartphone app is developed to control the tag, and a Google Cloud Messaging (GCM)

is used for server communication. CroSS system operates massive scale deployment and

practical experiments.

Both WiFi and BLE beacons have to work in real-world environments, which may
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have hundreds of tags. When the beacon signal becomes prevalent in a crowded intersec-

tion, there could be a chance of beacon collision among the tags. Although WiFi and BLE

beacons support spatiotemporal frequency isolation methods for mitigating the potential

interference, it happens due to hidden nodes, periodic delivery, and broadcast. Hence,

we look for an efficient beacon technology that can control and mitigate the beacon colli-

sion. We address the critical and practical issues of power usage and beacon collision at

the same time by eliminating the periodic beacon message broadcast. A few theoretical

studies show that periodic beacon’s collision probability in practice is high. We design

a specific SSID-based beacon probe request and probe response mechanism. An 802.11

probe request or response frame format is similar to a WiFi beacon frame format. How-

ever, the probe response is sent in response to a probe request. The probe responses don’t

carry the Traffic Indication Map (TIM) that identifies stations using a power-saving mode.

For example, WiFi Direct enables devices to connect without requiring a wireless access

point uses a probe request and response when a station searches a peer WiFi Direct sta-

tion. It continues to send probe request frames (with an SSID named DIRECT) and listen

for a while. When another WiFi Direct station receives a probe request, it triggers a probe

response. Instead of configuring tags to send periodic WiFi beacon frames, we enable a

listening mode for a tag that only responds upon a probe request. Instead, WiFi APs peri-

odically initiates a probe request that triggers probe responses from the tags in the range.

The second innovative approach is to let WiFi APs send a probe request with a specific

SSID (i.e., a group of tags or a missing tag). The probe request triggers only one probe

response from the matching group of tags instead of triggering multiple concurrent probe
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responses. It controls the concurrent degree of the probe responses using the proposed

approach. This opportunistic trigger mechanism reduces the number of beacon messages

in the network and significantly enhances a tag’s power usage.

CroSS tag uses relative location (distance) to detect both contact and social dis-

tancing. The distance of two BLE tags can be calculated using the RSSI power using a

simplified formula in Eq. (5.3) [153]. The RSSI signal strength depends on distance and

broadcasting power value. BLE works with broadcasting power value (N) around 2â4

dBm, depending on the environmental factor. The signal RSSI strength will be around -

26 (a few inches) to -100 (40â50 m distance). The Measured Power is a factory-calibrated

constant of expected RSSI at a distance of 1 meter.

Distance = 10(MeasuredPower−RSSI)/(10∗N) (5.3)

The RSSI value would be less accurate and not stable for distance measurement

in densely populated areas such as shopping malls, grocery stores, and office buildings.

An alternative to RSSI is the Bluetooth direction-finding technologies such as angle-of-

arrival (AoA) and angle-of-departure (AoD). They provide sub-meter location accuracy

and are ideal for dense indoor areas. Also, they can offer better granular data on person-

to-person contacts. However, considering the nature of social distancing and contact trac-

ing problems, the environment is less populated, and sub-meter distance accuracy is not

significant. Rather than distance accuracy, as illustrated in Fig 60, there are numerous

false-positive cases caused by various occlusions. For example, people can be counted
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Figure 60: Erroneous scenarios due to occlusions

as the social distancing violation cases if they are within 6 feet but are (a) staying in dif-

ferent spaces separated by a wall, (b) talking over the anti-spray transparent glass, or (c)

shopping in different aisles separated by high shelves. Barriers (i.e., desks, bags, etc.)

can vary the distance measurement by absorbing signals. Also, when a family member

with separate tags goes together, the result can be erroneous. We use the Channel Impulse

Response (CIR) to detect false positive, false negative, and erroneous scenarios caused

by occlusions. We tested the channel sounding effect of various RF signals (WiFi and

BLE) in the presence of multiple occlusions and a large number of concurrent tags. It is

known that the Ultra Wide Band (UWB) can measure distance and location to an accuracy

of 5 to 10 cm with minimal noise interference due to the short pulse width. At the same

time, WiFi, Bluetooth, and other narrowband radio systems can only reach several meters.

UWB also consumes less power than WiFi, although Bluetooth 4.0 also uses significantly

low power. However, UWB is not as pervasive as Bluetooth and WiFi. None of the
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current smartphones and mobile devices support UWB except the recent Apple’s iPhone

11. As we choose to use both BLE and WiFi beacons, we have conducted various ways

to enhance the accuracy, including contextual information, characterization of occlusion

materials for different signals, and investigate device positions (height and movement),

and accurate distance analysis. Specifically, we use the RSSI power interruption and the

RSSI variations to detect any tags’ interference.

CroSS supports different configuration and operation options to cope with various

privacy and security requirements of social distancing and contact tracing, which differ

among communities such as schools, churches, industries, and government facilities. As

monitoring and reporting are contained within a community, any public system (server or

other tags) does not read personal data, including personal identification and SIV inputs.

The SIV scores are shared only after the ID anonymization. The contact identities will be

resolved only after opt-in for confirmed contact case tracing is conceded as other privacy-

aware contact tracing approaches. Any log data only stays within the community server

and will be removed within a couple of weeks without any reviews.

5.2.2 Evaluations

We first explain RSSI (power and variation) experiments for detecting false-positive

social distancing cases due to an occlusion. As shown in Fig 61, we place a smartphone

(Samsung Galaxy 8) based BLE transceiver at 1 m height and an ESP 32 based BLE trans-

mitter at 1 m height 2.3 m apart in an indoor environment. We put an object interference

from none to one near the BLE transmitter. We set up the transceiver to scan each test for
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a minute, with ten separate times for each test session.

Figure 61: Smart tag experiment setup

5.2.2.1 False-positive social distancing

As presented in Fig 62, we measure the beacon’s RSSI power metric to detect the

impact of the interfering object. We test the RSSI power both with interference (with

shield (WS) and no interference (no shield (NS)). The test results show that the average

RSSI power in NS is steadily stronger than in WS. It indicates that we can detect the exis-

tence of an object between the beacon transmitter and receiver using normalized average

power values in addition to the distance.
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Figure 62: Occlusion detection with RSSI power

As presented in Fig 63, we also tested a variation of the received RSSI power.

We pick the maximum and minimum RSSI power values among the beacons received in

a second (Vps), and use the difference as a variation value. The indoor RSSI variation

test results show that the RSSI variation in NS is stable for all workloads from 8.5 to 10

Vps while the RSSI variation WS is dynamically fluctuating, which can be seen in their

standard deviation values. In summary, the results indicate that both RSSI average power

and variation metrics can identify any interference between the beacon transceiver and

receiver.
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Figure 63: Occlusion detection with RSSI power

5.3 Conclusion

In This chapter, we proposed two novel infection management systems in order to

build a safe community cluster against COVID-19 and beyond.

CATS applies social distancing and mask-wearing principles to small, focused

communities. We also implemented an ML-based mask tracking system to build non-

binary Safety Impact Values (SIV). CroSS proposed Crowd Safety Sensing, which is a

novel tracing strategy and system to build a sustainable, safe community using afford-

able Internet of Things (IoT) and edge-enabled technologies. We have integrated CroSS

components into an edge-based IoT system.

These approaches provide higher privacy protection, efficient penetration of tech-

nology, greater accuracy, and effective practical policy assistance. The feasibility test

results show that CroSS can identify false-positive social distancing cases.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we presented and discussed an Intelligent Crowd Engineering

platform using Machine-based Internet of Things Learning and Knowledge Building ap-

proaches (ICE-MILK) to enhance the accuracy, scalability, and crowd safety management

capacity in real-time. Specifically, we design a three-layer ICE-MILK structure, includ-

ing IoT-based mobility characterization layers, ML-based video/image surveillance, and

the semantic knowledge information-based application layer.

In the IoT-based mobility characterization layer, we designed, implemented, and

tested CROMO that enhances crowd mobility characterization through real-time BLE

data analytics. We built a CROMO layer that fills the scalability and capability gaps of

the smart video surveillance via BLE signal analytics. Among the many crowd mobility

characteristics, we measure the beacon counts, the RSSI power, and variation pattern

using a BLE bracelet and BLE scanners. We also apply them to group semantics to track

the crowd status and predict potential accidents and disasters. We have tested CROMO

in both a practical crowd event and controlled indoor and outdoor lab environments. The

results show that by integrating the BLE data metrics, CROMO can identify the crowd

density, the object group location, and the flow direction and speed in real-time. It shows

the feasibility of using the proposed CROMO layer to enhance the safety management

system.
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In addition, In the ML-based video/image surveillance layer, we proposed an

architecture for scattered occlusion characterization called CSONet for efficient crowd

counting and high-quality density heatmap generation. We first generated, annotated, and

trained two new scatter occlusion object datasets: the cso-umbrellas and the cso-pickets

datasets. We then implemented CSONet using spatial pyramid pooling and dilated con-

volutional layers to expand the receptive field without losing resolution in the congested

scenes. CSONet recognizes event-induced, scattered, and multitudinous occlusions and

applies the effect to a human crowd map to generate an accurate crowd count and high-

quality density map. Through extensive evaluations, we demonstrated that the accuracy of

CSONet outperforms the state-of-art existing crowd counting approaches. Also, we have

proposed a novel face masking detection system for Modeling Safety Index in Crowd

(Mosaic), a Machine Learning (ML)-based approach for detecting masking in a crowd by

building new dense mode crowd masking datasets. Mosaic detects, counts, and classifies

the crowd’s masking condition and calculates each community’s spatiotemporal Safety

Index (SI) values instead of monitoring individual masking cases. SI data can be shared

or published to calculate the area-based SI maps (as opt-in data) for assisting effective pol-

icy decisions and relief plans against COVID-19. Through variable evaluations, we have

shown that Mosaic scalably detects various conditions and types of masking states and

calculates SI values of a crowd effectively. Mosaic can provide an accurate assessment of

SI of a community based on real measurement of masking and social distancing practices.

It can also support pandemic trajectory predictions and input policy planning with better

precision in a scalable manner. Future work includes incorporating Mosaic into pandemic
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prediction modeling for improved ramification and accuracy of predictions.

Finally, In the semantic knowledge information-based application layer, we pro-

posed a novel tracing strategy and system named Crowd-based Alert and Tracing Ser-

vices to build a safe community cluster using affordable Internet of Things (IoT) and

edge-enabled technologies. It applies social distancing and mask-wearing principles to

small, focused communities to provide higher privacy protection, efficient penetration of

technology, greater accuracy, and effective practical policy assistance. We have imple-

mented a smart tag to support social distancing. We also implemented an ML-based mask

tracking system to build non-binary Safety Impact Values (SIV).

In our future work, we will integrate the ICE-MILK components to enhance the

accuracy, scalability, and crowd safety management capacity in real-time. In addition to

density and count detection, we will identify group characteristics such as mobility type,

directions by using ML technologies. For example, Group can be clustered according to

people facing the same direction or moving in the same way.
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CHAPTER 7

APPENDIX

The following papers have been published as a direct result of the research dis-

cussed in this dissertation:

• K. J. Almalki, M. Mohzary, B. -Y. Choi, S. Song and Y. Chen, ”Crowd Safety

Sensing (CroSS) for the Post Pandemic Era,” 2021 IEEE Globecom Workshops

(GC Wkshps), 2021, pp. 1-6, doi: 10.1109/GCWkshps52748.2021.9682120.

• K. J. Almalki, M. Mohzary, B. -Y. Choi, S. Song and Y. Chen, ”Mosaic: Model-

ing Safety Index in Crowd by Detecting Face Masks against COVID-19 and Be-

yond,” 2021 IEEE International Smart Cities Conference (ISC2), 2021, pp. 1-7,

doi: 10.1109/ISC253183.2021.9562953.

• K. J. Almalki, B. -Y. Choi, Y. Chen and S. Song, ”Characterizing Scattered Occlu-

sions for Effective Dense-Mode Crowd Counting,” 2021 IEEE/CVF International

Conference on Computer Vision Workshops (ICCVW), 2021, pp. 3833-3842, doi:

10.1109/ICCVW54120.2021.00428.

• K. J. Almalki, S. Song, M. Mohzary and B. -Y. Choi, ”CATS: Crowd-based Alert

and Tracing Services for building a Safe Community Cluster against COVID-19,”

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM),

2021, pp. 697-701.
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• A. Jabbari, K. J. Almalki, B. -Y. Choi and S. Song, ”ICE-MoCha: Intelligent Crowd

Engineering using Mobility Characterization and Analytics,” 2019 Sensors, 19,

1025. https://doi.org/10.3390/s19051025.

• A. Jabbari, K. J. Almalki, B. -Y. Choi and S. Song, ”CROMO: Enhancing Crowd

Mobility Characterization through Real-time Radio Frequency Data Analytics,”

2018 IEEE International Smart Cities Conference (ISC2), 2018, pp. 1-8, doi:

10.1109/ISC2.2018.8656977.
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Vereinigung zur FÄrderung des Deutschen Brandschutzes e. V.(vfdb), German Fire

Protection Association, Technical-Scientific Advisory Board (TWB), Department,

13:13–01, 2012.

[36] Sohei Kojima, Akira Uchiyama, Masumi Shirakawa, Akihito Hiromori, Hirozumi

Yamaguchi, and Teruo Higashino. Crowd and event detection by fusion of camera

images and micro blogs. In 2017 IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom Workshops), pages 213–

218. IEEE, 2017.

[37] Pritikana Das, M Parida, and VK Katiyar. Analysis of interrelationship between

pedestrian flow parameters using artificial neural network. Journal of Modern

Transportation, 23(4):298–309, 2015.

[38] Jiang Liu, Chenqiang Gao, Deyu Meng, and Alexander G Hauptmann. Decidenet:

Counting varying density crowds through attention guided detection and density

estimation. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 5197–5206, UT, USA, 2018. IEEE.

[39] Tao Zhao, Ram Nevatia, and Bo Wu. Segmentation and tracking of multiple hu-

mans in crowded environments. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 30(7):1198–1211, 2008.

141



[40] Yu-Jen Ma, Hong-Han Shuai, and Wen-Huang Cheng. Spatiotemporal dilated con-

volution with uncertain matching for video-based crowd estimation. IEEE Trans-

actions on Multimedia, 2021.

[41] Jing Shao, Chen-Change Loy, Kai Kang, and Xiaogang Wang. Slicing convolu-

tional neural network for crowd video understanding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 5620–5628, Las

Vegas, NV, USA, 2016. IEEE.

[42] HY Swathi, G Shivakumar, and HS Mohana. Crowd behavior analysis: a survey.

In 2017 International Conference on Recent Advances in Electronics and Commu-

nication Technology (ICRAECT), pages 169–178, Bangalore, India, 2017. IEEE,

IEEE.

[43] Lingbo Liu, Zhilin Qiu, Guanbin Li, Shufan Liu, Wanli Ouyang, and Liang Lin.

Crowd counting with deep structured scale integration network. In Proceedings of

the IEEE International Conference on Computer Vision, pages 1774–1783, Seoul,

Korea (South), Korea (South), 2019. IEEE.

[44] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu. Switching convolutional

neural network for crowd counting. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 4031–4039, Honolulu, HI, USA, 2017.

IEEE.

142



[45] Vishwanath A Sindagi and Vishal M Patel. Generating high-quality crowd density

maps using contextual pyramid cnns. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 1879–1888, Venice, Italy, 2017. IEEE.

[46] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene

crowd counting via deep convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 833–841,

Boston, MA, USA, 2015. IEEE.

[47] Lu Zhang, Miaojing Shi, and Qiaobo Chen. Crowd counting via scale-adaptive

convolutional neural network. In 2018 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 1113–1121, Lake Tahoe, NV, USA, 2018. IEEE.

[48] Shuo Feng, Chen Shen, Nan Xia, Wei Song, Mengzhen Fan, and Benjamin J Cowl-

ing. Rational use of face masks in the covid-19 pandemic. The Lancet Respiratory

Medicine, 8(5):434–436, 2020.

[49] R.C. Reiner IHME COVID-19 Forecasting Team. and et al. R.M. Barber. Modeling

covid-19 scenarios for the united states. In Nature, volume 27, pages 94–â105,
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