826 research outputs found

    On the State of Crypto-Agility

    Get PDF
    The demand for crypto-agility, although dating back for more than two decades, recently started to increase in the light of the expected post-quantum cryptography (PQC) migration. Nevertheless, it started to evolve into a science on its own. Therefore, it is important to establish a unified definition of the notion, as well as its related aspects, scope, and practical applications. This paper presents a literature survey on crypto-agility and discusses respective development efforts categorized into different areas, including requirements, characteristics, and possible challenges. We explore the need for crypto-agility beyond PQC algorithms and security protocols and shed some light on current solutions, existing automation mechanisms, and best practices in this field. We evaluate the state of readiness for crypto-agility, and offer a discussion on the identified open issues. The results of our survey indicate a need for a comprehensive understanding. Further, more agile design paradigms are required in developing new IT systems, and in refactoring existing ones, in order to realize crypto-agility on a broad scale

    Securing future decentralised industrial IoT infrastructures: challenges and free open source solutions

    Get PDF
    peer-reviewedThe next industrial revolution is said to be paved by the use of novel Internet of Things (IoT) technology. One important aspect of the modern IoT infrastructures is decentralised communication, often called Peer-to-Peer (P2P). In the context of industrial communication, P2P contributes to resilience and improved stability for industrial components. Current industrial facilities, however, still rely on centralised networking schemes which are considered to be mandatory to comply with security standards. In order to succeed, introduced industrial P2P technology must maintain the current level of protection and also consider possible new threats. The presented work starts with a short analysis of well-established industrial communication infrastructures and how these could benefit from decentralised structures. Subsequently, previously undefined Information Technology (IT) security requirements are derived from the new cloud based decentralised industrial automation model architecture presented in this paper. To meet those requirements, state-of-the-art communication schemes and their open source implementations are presented and assessed for their usability in the context of industrial IoT. Finally, derived building blocks for industrial IoT P2P security are presented which are qualified to comply with the stated industrial IoT security requirements

    High Performance Technology in Algorithmic Cryptography

    Get PDF
    Alan Turing’s article, “Computation and intelligence”, gives the preamble of the characteristics of guessing if it is a machine or another human being. Currently, the use of ubiquitous technologies, such as the use of firmware, allows direct access to analog data, however, we must find a way to secure the information. Analyzing cryptographic algorithms for the transfer of multimedia information. Raise the use of cryptarithmetic. Finite automata will be developed that will govern the logic of the cryptographic algorithms to be integrated into Firmware, performance tests and controls will be carried out to determine the best strategies for their performance and algorithmic complexity. Technologies are expressed that allow the creation of learning environments, such as neural networks, that support other processes as the recognition of patterns on images

    Opportunities and challenges of using blockchain technology in government accounting in Brazil

    Get PDF
    New technologies lead to significant changes in how public and private organizations structure their processes and activities. This study aims to identify the challenges and opportunities of using blockchain technology in government accounting in Brazil. This is a descriptive research using quantitative and qualitative data, collected through a questionnaire applied to a non-probabilistic sample of 94 professionals. The data were submitted to descriptive statistical analysis and content analysis, based on seven categories: technology, government accounting, security, transparency, control, change, and knowledge. For 89.4% of respondents, blockchain can improve government accounting and be applied to financial transactions, auditing, and asset transfers. The technology offers the benefits of trust and control, information security, and control against fraud and corruption. For 98.9% of the sample, the challenges of using blockchain technology in government accounting are the lack of knowledge about the technology and its cost-benefit and implementation, difficulties in replacing or adapting systems, and few blockchain use cases demonstrating the technology’s use and application

    ELCA: Introducing Enterprise-level Cryptographic Agility for a Post-Quantum Era

    Get PDF
    Given the importance of cryptography to modern security and privacy solutions, it is surprising how little attention has been given to the problem of \textit{cryptographic agility}, or frameworks enabling the transition from one cryptographic algorithm or implementation to another. In this paper, we argue that traditional notions of cryptographic agility fail to capture the challenges facing modern enterprises that will soon be forced to implement a disruptive migration from today’s public key algorithms (e.g., RSA, ECDH) to quantum-safe alternatives (e.g., CRYSTALS-KYBER). After discussing the challenge of real-world cryptographic transition at scale, we describe our work on enterprise-level cryptographic agility for secure communications based on orchestrated \textit{cryptographic providers}. Our policy-driven approach, prototyped in service mesh, provides a much-needed re-envisioning for cryptographic agility and highlights what’s missing today to enable disruptive cryptographic change at scale

    Towards trustworthy end-to-end communication in industry 4.0

    Get PDF
    Industry 4.0 considers integration of IT and control systems with physical objects, software, sensors and connectivity in order to optimize manufacturing processes. It provides advanced functionalities in control and communication for an infrastructure that handles multiple tasks in various locations automatically. Automatic actions require information from trustworthy sources. Thus, this work is focused on how to ensure trustworthy communication from the edge devices to the backend infrastructure. We derive a meta-model based on RAMI 4.0, which is used to describe an end-to-end communication use case for an Industry 4.0 application scenario and to identify dependabilities in case of security challenges. Furthermore, we evaluate secure messaging protocols and the integration of Trusted Platform Module (TPM) as a root of trust for dataexchange. We define a set of representative measurable indicator points based on existing standards and use them for automated dependability detection within the whole system

    Cybersecurity Research: Challenges and Course of Action

    Get PDF
    corecore