2,489 research outputs found

    Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps

    Get PDF
    Ordinary tensor models of rank D3D\geq 3 are dominated at large NN by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large NN limits. We first study the most generic quartic model at D=4D=4, with maximally enhanced non-melonic interactions. The existence of the 1/N1/N expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large NN free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio

    Three Hopf algebras and their common simplicial and categorical background

    Get PDF
    We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebras of Goncharov for multiple zeta values, that of Connes--Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, cooperads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretation of known constructions in a large common frameworkPreprin

    Integral Lattices in TQFT

    Get PDF
    We find explicit bases for naturally defined lattices over a ring of algebraic integers in the SO(3) TQFT-modules of surfaces at roots of unity of odd prime order. Some applications relating quantum invariants to classical 3-manifold topology are given.Comment: 31 pages, v2: minor modifications. To appear in Ann. Sci. Ecole Norm. Su

    Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds

    Full text link
    Based on recent work on simplicial diffeomorphisms in colored group field theories, we develop a representation of the colored Boulatov model, in which the GFT fields depend on variables associated to vertices of the associated simplicial complex, as opposed to edges. On top of simplifying the action of diffeomorphisms, the main advantage of this representation is that the GFT Feynman graphs have a different stranded structure, which allows a direct identification of subgraphs associated to bubbles, and their evaluation is simplified drastically. As a first important application of this formulation, we derive new scaling bounds for the regularized amplitudes, organized in terms of the genera of the bubbles, and show how the pseudo-manifolds configurations appearing in the perturbative expansion are suppressed as compared to manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6 and theorem

    Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term sps+μ\sum_{s}|p_s| + \mu

    Full text link
    We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank dd Tensorial Group Field Theory. These models are called Abelian because their fields live on U(1)DU(1)^D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models ϕ2n\phi^{2n} over U(1)U(1), and a matrix model over U(1)2U(1)^2. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension DD. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank dd Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.Comment: 69 pages, 35 figure

    An analysis of the intermediate field theory of T4T^4 tensor model

    Get PDF
    In this paper we analyze the multi-matrix model arising from the intermediate field representation of the tensor model with all quartic melonic interactions. We derive the saddle point equation and the Schwinger-Dyson constraints. We then use them to describe the leading and next-to-leading eigenvalues distribution of the matrices.Comment: 16 pages, 2 figure
    corecore