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Abstract

Ordinary tensor models of rank D ≥ 3 are dominated at large N by tree-like graphs, known as mel-
onic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to 
different types of large N limits. We first study the most generic quartic model at D = 4, with maximally en-
hanced non-melonic interactions. The existence of the 1/N expansion is proved and we further characterize 
the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic 
class of models for which the large N free energy and the relevant expectations can be calculated explicitly. 
They are matched with random matrix models which contain multi-trace invariants in their potentials: they 
possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose 
entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, 
which proves analyticity in the coupling constants in cardioid domains.
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1. Introduction

An interesting way to define and work with continuous random geometries (for instance, the 
continuous random tree) is to start with random discrete spaces (for instance, trees) whose sizes 
can become arbitrarily large. In a suitable scaling limit, such random discrete objects can con-
verge in a precise (Gromov–Hausdorff–Prokhorov [1,2], or GHP for short) sense to a continuous 
random space of a certain universality class.

It is standard for physicists to think of discrete random spaces as combinatorial objects 
generated by the Feynman expansion of some integrals over tensors. A tensor of rank D is a 
D-dimensional array of (complex) numbers. A position in such an array is labeled by a D-uple 
of integers each ranging from 1 to N . Of particular interest to us are random tensors equipped 
with a U(N)D-invariant distribution. If the Feynman expansion can be organized as a series 
in 1/N , then the large N limit exists and selects a class of combinatorial objects (the random 
spaces) to be summed over.

A tensor of rank 1 is a vector and the large N limit of vector models consists of plane trees 
(in the intermediate field representation) whose GHP limit is the continuous random tree (CRT, 
for short) [3]. The CRT, also known as the branched polymer universality class, has Hausdorff 
dimension 2 and spectral dimension 4/3.

The situation changes drastically for tensors of rank two, i.e. random matrices. Indeed, matrix 
models provide a quantization of two-dimensional gravity coupled to conformal matter [4–6]. 
Such matrix integrals typically generate maps (possibly decorated with matter) weighted by 
N2−2g where g is the genus of the map [7]. This topological expansion is dominated at large 
N by planar maps (of spherical topology). As random spaces, planar maps (without critical mat-
ter) converge in the GHP sense to the Brownian sphere [8,9], a random space with Hausdorff 
dimension 4 and (expected) spectral dimension 2.

In higher dimensions matrix models generalize to tensor models [10,11] and group field the-
ories [12–15]. However such models did not admit a large N limit. The situation changed with 
the advent of colored [16,17] and U(N)D-invariant [18] tensor models. They admit a 1/N ex-
pansion [19–21]. This perturbative Feynman expansion furthermore sums over all manifolds of 
dimension D and a restricted class of pseudo-manifolds [22]. The weights of those objects are 
moreover simple discretizations of the Einstein–Hilbert action [23], coinciding with Euclidean 
dynamical triangulations. Hence tensor models seem relevant for the quantization of gravity in 
dimensions higher than 2 [24–26]. They can support matter fields [27–30] and have statistical 
mechanics applications [31].

The first analytic solution of tensor models at large N , for D ≥ 3, matched the expec-
tations from the numerical analysis of Euclidean dynamical triangulations, [18,32]. Mainly, 
they are dominated by melonic graphs which are representatives of the universality class of 
branched polymers [33]. The coupling to matter reproduces the critical exponents of multi-
critical branched polymers. Notice that the colored and invariant families of tensor models admit 
double-scaling limits for D < 6 [34–37], which are also made of trees. We would like to point 
out that trees can serve as building blocks for more elaborated objects. A key idea is to decorate 
them cleverly with a certain density of loops, for instance by additional data such as Scha-
effer’s “well-labelings” [38] (the process which leads to the Brownian sphere), or by mating 
two trees (a process which leads to a kind of Brownian sphere decorated with an SLE called a 
“peanosphere” [39]). The present article precisely shows a way for tensor models to go from trees 
to planar maps through a phase transition which exhibits a proliferation of planar maps along a 
tree.
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There is indeed more to tensor models than melonic graphs. For instance, one can trivially 
build a square matrix from a tensor of rank 4 and equip it with an ordinary matrix model, which 
would converge at large N to the Brownian sphere. Importantly, this requires the distribution 
on the random variables to have a different behavior with N than those dominated by melonic 
graphs. Furthermore, the boundary observables of tensor models are far more richer than those 
of matrix models: instead of collections of loops, they are labeled by D-regular graphs. Most of 
them usually contribute to sub-leading corrections, even when they explicitly enter the measure. 
However, it might be possible to modify the behavior of the measure with N so as to enhance 
such non-melonic observables. This idea was first developed in [40]. It showed1 that while some 
models with non-melonic distributions simply extend the range of applicability of the universality 
theorem of [41], some other models can escape it and converge to some random space that is not 
the CRT.

It was in fact noticed in the last section of [41] that every tensor observable which appears in 
the measure should admit a range of admissible scalings with N for which the 1/N expansion 
exists. For a melonic invariant, this range is restricted to a single possible value, which is the 
one used in [18,41]. But non-melonic invariants can lead to different types of 1/N expansion, as 
established and exploited in [40]. The present article pushes this approach further: we start the 
analysis of a new kind of 1/N expansion for tensor models. It is based on melonic interactions, 
and non-melonic ones which in contrast to the existing literature (except for [40]) are appropri-
ately rescaled to their largest admissible scaling. We say that those observables are enhanced and 
call such models maximally rescaled.

In Section 2, we explain the notion of maximally rescaled observable and briefly review basic 
facts about tensor models (including the structure of the Feynman graphs and a comparison of 
the present approach with [40]).

In Section 3, the most generic quartic, maximally rescaled model at D = 4 is analyzed. The 
combinatorial analysis is performed thanks to the intermediate field method. It proves the ex-
istence of the 1/N expansion and characterizes the graphs which dominate the free energy at 
large N .

In Section 4, we introduce another generic class of maximally rescaled models whose mea-
sures involve non-melonic, non-quartic invariants which we call trees of necklaces (still at 
D = 4). The motivation is that these observables are boundary observables of the dominant 
graphs of one of the quartic models. This makes possible to use the combinatorial analysis 
of Section 3 to identify the graphs which dominate at large N . Combined with Schwinger–
Dyson equations (or Tutte equations), that leads to their enumeration which allows the large N
evaluation of the free energy (in particular its critical entropy exponents) and expectations of 
observables. While the critical behaviors which arise in this class of models are known from 
the literature on matrix models with multi-trace invariants [42–46], our analysis paves the way 
for the future analysis of more complicated maximally rescaled models which would better take 
advantage of the richness of tensor observables.

Finally, Section 5 offers a non-perturbative analysis of the quartic maximally-rescaled models 
for any rank D. It establishes uniform analyticity and Borel summability at large N in cardioid 
domains of the couplings. That is a non-trivial extension of the results of [47] which establishes 
similar results for quartic models of any rank, but without enhancement of non-melonic observ-
ables.

1 This analysis was also required in order to define tensor models for “rectangular” tensors.
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2. Models with maximally enhanced interactions

2.1. Maximally enhanced observables

Consider a Hermitian inner product space V of dimension N and {en|n = 1, . . . , N} an or-
thonormal basis in V . The inner product allows us to identify the dual of V and its complex 
conjugate V̄ , hence not to distinguish between {en|n = 1, . . . , N} and its dual basis, nor between 
upper and lower indices. A complex tensor of rank D is a multilinear form T : V ⊗D → C, which 
can be written in components as

T =
∑

n1,...,nD

Tn1···nD
en1 ⊗ · · · ⊗ enD

. (1)

It is important that Tn1···nD
has no symmetry properties. Hence its indices have a well defined 

position. We call the position of an index its color. We have therefore a set D of D colors. From 
now on we specialize to rank D = 4 hence to D = {1, . . . ,4}, and T = ∑

n1,...,n4
Tn1···n4 en1 ⊗

· · · ⊗ en4 . The dual tensor T is defined by

T =
∑

n1,...,n4

T n1···n4 en1 ⊗ · · · ⊗ en4 . (2)

The unique quadratic invariant is the (scalar) Hermitian pairing of T and T which writes:

T ·D T =
∑

n1,n2,n3,n4

T n1···n4Tn1···n4 . (3)

Observables are monic, homogeneous polynomials invariant under U(N)D. Given a finite set 
of such observables, {Bi(T,T)}i∈I , we define the action S, the partition function Z and the free 
energy F as

S(T,T) = T ·D T +
∑
i∈I

tiBi(T,T),

exp(−F) = Z =
∫ ∏

n

dT ndTn

2ıπ
exp

(
−NαS(T,T)

)
. (4)

The exponent α which parametrizes the measure is usually fixed by the following requirements:

• the free energy is bounded, for any choice of {Bi}i∈I , by a polynomial bound at large N of 
type |F | ≤ NK ,

• there exist interactions {Bi}i∈I so that expanding the free energy perturbatively in the cou-
pling constants around the Gaussian measure, there are infinitely many Feynman graphs with 
the same exponent of N ,

• the coupling constants {ti}i∈I are independent of N .

These criteria uniquely select α = D − 1. The first two requirements are crucial. The first one 
ensures that the free energy, appropriately rescaled like F/NK , is not divergent at large N . This 
requires α not to be too small. The second one is necessary to avoid trivial models where only a 
finite number of Feynman graphs would contribute at a fixed order of the 1/N expansion. This 
requires α not to be too large.
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However, the last requirement does not seem equally important. In fact, it can be relaxed to 
the benefit of getting new large N behaviors, as we will show in the present article. The situation 
is slightly similar to the case of matrix models. There D = 2 and α = 1 for actions which are 
sums of single-trace invariants. Multi-trace invariants can be included provided they come with 
N -dependent weights, otherwise the free energy is divergent.

To see how that works, we need to give a bit more information on the usual large N limit of 
tensor models. The free energy goes like ND and it is dominated by the melonic observables, i.e. 
F only depends at large N on the coupling constants of melonic polynomials. In other words, 
the second criterion above is only satisfied for melonic interactions.

If B is non-melonic, the B-action SB = T ·D T + tB B(T,T) leads to a free energy FB which 
is independent of tB at large N . However, there may exist an N -dependent weight tB = NαB t̃B , 
with t̃B N -independent, such that the associated B-action preserves the boundedness of the free 
energy while leading to a non-trivial (and non-melonic) model. If such an αB > 0 exists, we say 
that B can be maximally enhanced. Here “maximally” refers to the fact that if the value of αB is 
increased, boundedness of the free energy is lost.

It is quite simple to see that such models do exist. For instance, set D = 4 and consider T as a 
matrix of size N2 × N2 between pairs of tensor indices. Then, matrix model building applies as 
usual (and leads to a 2D quantum gravity phase at large N ).

This was already observed in [40], with a different but equivalent strategy. Instead of keeping 
α = D − 1 fixed and enhancing non-melonic polynomials, it was chosen to decrease α < D − 1
and simultaneously add some N -dependent weights on melonic observables so that F does not 
diverge. It is easy to check that upon a rescaling of T, this is equivalent to the approach we have 
just described.

However, our present work improves [40] on many aspects. For instance, the models described 
in [40] are labeled by “slices of colors”, i.e. a choice of partition of the D indices of the random 
tensor. As a consequence, observables which only differ by a permutation of some tensor indices 
would receive in [40] different N -dependent weights. There is no such partition here and all 
observables which differ by a relabeling of the indices receive the same enhancing.

Furthermore, in the context of the color slices, it was proved in [40] that the large N limit is 
always of the same type as in tensor models with their standard scaling, except if the action con-
tains some generalized matrix-like observables.2 However, the large N limit of the latter models 
was not studied, and neither were models containing both melonic and matrix-like interactions. 
In the present article, we will give a much more comprehensive analysis of what happens when 
melonic observables are mixed with certain matrix-like observables. This mixing means that 
those observables will all appear in Feynman graphs. We will then see that this can be used to 
include new observables which result from gluing melonic and matrix-like observables together 
in the action of the model.

2.2. Feynman graphs

The ordinary perturbative expansion is obtained by expanding the exponential of the non-
quadratic terms of S in (4) (called the interactions of the theory) into a series in the couplings 
{ti}i∈I then (illegally!3) commuting the sum of the series with the remaining Gaussian integral. 

2 These observables are defined technically as having a single face of colors (i, j) and a single face of colors (k, l), 
where {i, j, k, l} = {1, 2, 3, 4}.

3 The legal version of this procedure is constructive theory, see Section 5.
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Fig. 1. The seven invariants at rank 3 and order 6: there are two different melonic families each with three members 
(shown left and center) and the non-planar bipartite complete graph K3,3 (shown right).

The resulting series is indexed by Wick contractions, also called Feynman graphs which we now 
describe.

First, we recall that invariant polynomials can be represented as bipartite, D-regular graphs 
with edges colored in {1, . . . , D} such that no two edges incident to the same vertex carry the 
same color. A white (or black) vertex represents T (or T) and an edge of color c between two of 
them represents the contraction of their indices in position c. We call such graphs bubbles. Some 
bubbles are on display in Fig. 1.

The Feynman graphs generated by tensor integrals consist of bubbles chosen in arbitrary 
(finite) numbers among those which represent the invariant polynomials {Bi}i∈I , connected 
via additional edges to which the color 0 is attributed. The resulting graphs are bipartite, 
(D + 1)-regular graphs whose edges have a color in {0, . . . , D} such that the edges incident 
to a given vertex all have different colors. We call them vacuum Feynman graphs and the free 
energy expands as a sum over the connected ones.

If G is a connected vacuum Feynman graph generated by the logarithm of the integral (4), 
containing ni(G) bubbles of type Bi , for each i ∈ I , then the amplitude associated to G reads

A(G) = NF(G)−αE0(G)+α
∑

i∈I ni (G)
∏
i∈I

(−ti )
ni (G), (5)

which also works in the maximally rescaled case where the couplings ti may have an 
N -dependence. Here E0(G) is the number of edges of color 0 (it equals the number of white 
vertices of G). The quantity F(G) is the total number of faces. A face of colors (0c), for 
c ∈ {1, . . . , D}, is a cycle whose edges have the colors 0 and c only. One has the partition 
F(G) = ∑D

c=1 F0c(G).

3. Enhanced quartic models

At rank 3, the three quartic (two black and two white vertices), connected bubbles are all mel-
onic (and the associated model, restricted to a single coupling, i.e. invariant under permutations 
of the colors, was built non-perturbatively in [48]). The first non-trivial maximally rescaled ten-
sor model with quartic interactions has to be looked for at D = 4. At that rank there are seven 
quartic bubbles, four of which are melonic and three non-melonic, as depicted in Fig. 2. We call 
the non-melonic bubbles necklaces.

3.1. Rank 4 quartic tensor models

We simplify slightly the notations of [47], to adapt to the rank 4 case. The normalized Gaus-
sian measure associated to the unique quadratic invariant (3) is

dμ0 =
(∏ dT ndTn

2ıπ

)
e−N3T·DT. (6)
n
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Fig. 2. The quartic invariants at rank 4: there are four types of melonic graphs (one of them shown left, the others being 
obtained by permuting the colors) and three types of necklaces (one of them shown right, the others being obtained by 
color permutations).

A connected quartic U(N)4-invariant polynomial BC is specified by a partition of D =
{1, 2, 3, 4} into two non-trivial subsets C ⊂ D and its complement D \ C. The associated in-
variant can be written as a trace over the indices of C of a partial scalar product over the indices 
of D \ C or vice-versa [47]

BC(T,T) = TrC
[[

T ·D\C T
]
·C

[
T ·D\C T

]]
= TrD−C

[[
T ·C T

]
·D\C

[
T ·C T

]]
, (7)

where we denoted ·C the product of operators from V ⊗C to V ⊗C .
There are therefore 7 quartic connected invariants at rank 4, the 4 melonic ones which corre-

spond to type 1–3 partitions in which one subset is a singleton (Fig. 2 left hand side), so to BCi

with Ci = {i}, i = 1, 2, 3, 4 and the three non-melonic, necklace partitions (Fig. 2 right hand side) 
which correspond to type 2–2 partitions, hence to BC1i

with C1i = {1, i} with i = 2, 3, 4. Remark 
that such necklace interactions can be interpreted also as ordinary matrix traces on an N2 space, 
namely V ⊗ V .

More precisely in components we have:

BC1(T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4Tn1n
′
2n

′
3n

′
4
T n′

1n
′
2n

′
3n

′
4
Tn′

1n2n3n4
(8)

and three similar formulae for BC2 , BC3 and BC4 , replacing the special position 1 by 2, 3 and 4. 
Also

BC12(T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4Tn1n2n
′
3n

′
4
T n′

1n
′
2n

′
3n

′
4
Tn′

1n
′
2n3n4

(9)

and two similar formulae for BC13 and BC14 replacing the special pair 12 by 13 and 14.
The standard general quartic tensor model at rank 4 is then the (invariant) perturbed Gaussian 

measure

dμstandard = dμ0 e−N3 ∑4
i=1 λiBCi

(T,T) −N3 ∑4
i=2 λ1iBC1i

(T,T) . (10)

The standard melonic color-symmetric quartic model at rank 4 corresponds to λ1 = λ2 = λ3 =
λ4 = g1 and to λ12 = λ13 = λ12 = 0, hence it has only one coupling constant g1. It has 
been proved Borel summable uniformly in N for g1 in a cardioid domain in [48]. The stan-
dard color-symmetric quartic model at rank 4 corresponds to λ1 = λ2 = λ3 = λ4 = g1, and to 
λ12 = λ13 = λ12 = g2, hence it has two coupling constants. It has been proved Borel summable 
uniformly in N for g1 and g2 in cardioid domains in [47].
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The maximally rescaled general quartic model at rank 4 corresponds to changing in (10) the 
scaling of the necklace terms from N3 to N4. This corresponds to their more natural scaling as 
matrix traces over some V ⊗ V space,4 and is also the maximal rescaling for which the 1/N

expansion of the tensor model still exists,

dμmax = dμ0 e−N3 ∑4
i=1 λiBCi

(T,T) −N4 ∑4
i=2 λ1iBC1i

(T,T) . (11)

The maximally rescaled restricted quartic model at rank 4 (in short called from now on the 
restricted model) is the same model but without the interactions BC13 and BC14 :

dμres = dμ0 e−N3 ∑4
i=1 λiBCi

(T,T) −N4λ12BC12 (T,T) . (12)

We are interested in the generating function of the moments and the cumulants κ of the mea-
sure dμ, which are defined as:

Z(J, J̄ ) =
∫

dμ e
∑

n TnJ̄n+∑
n̄ T̄n̄Jn̄ ,

κ(Tn1 T̄n̄1 . . . Tnp T̄n̄p ) =
∂(2p)

(
lnZ(J, J̄ )

)
∂J̄n1∂Jn̄1 . . . ∂J̄np∂Jn̄p

∣∣∣∣
J=J̄=0

. (13)

In order to compute the cumulants of μ we need to compute the logarithm of the generat-
ing function Z(J, J̄ ). This is where the field-theoretic notion of Feynman graphs is useful: the 
function Z(J, J̄ ) expands as a power series in g1 and g2 indexed by Feynman graphs, and its 
logarithm expands as power series in g1 and g2 indexed by the same Feynman graphs but con-
nected.

3.2. Intermediate-field representation

Quartic models are most conveniently studied in the intermediate field (IF) representation (see 
Fig. 3). In our case it has been defined in detail in [47,48], so that we just give an informal de-
scription sufficient for our present purpose. The graphs of this IF-representation are in fact maps, 
i.e. there is a cyclic order of the edges incident to every vertex. Each IF vertex corresponds to 
a former cycle of 0-edges in the ordinary or O-representation, hence should be represented as 
a 4-stranded loop, with strands of colors 1, 2, 3, 4 corresponding to the position of the tensor 
indices. The corners (between two incident edges) of the IF representation represent the former 
edges of color 0 of the O-representation. Bubbles of the type BCi

of the O-representation become 
monocolored edges labeled with the color i, opening the single strand of color i of the IF ver-
tex. Bubbles of the type BC1i

in the O-representation become bicolored edges of color type 1i, 
opening simultaneously both strands of colors 1 and i = 2, 3, 4 of the IF vertices. Hence an IF 
graph of the full quartic model is a map with edges labeled by seven different color types (four 
monocolored possibilities and three bicolored types 1i) and an IF graph of the restricted quartic 
model is a map with edges of five different labels (four monocolored or the pair 12).

Finally external pairs of half-edges become cilia on the vertices in the IF representation; the 
exact correspondence is quite subtle and described in detail in [47,48], to which we refer the 
reader; let us simply remark that a cyclic IF vertex can bear either 0 or 1 cilium but no more.

4 This can be seen by changing T with T/
√

N . Both the Gaussian term and the necklace interactions then get a global 
factor N2, indicating a matrix model over V ⊗V where V has dimension N2. More details are provided in the following 
section.
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Fig. 3. Intermediate field graphs.

Also rather than computing a general cumulant, we may be interested in the expectation value 
of a particular (generally not connected) invariant.5 The relationship between cumulants and 
invariants is subtle and involves Weingarten functions [47,48]. For simplicity we shall consider 
most of the time the simplest6 function of the theory, namely the 2-point function

G2 =
∂(2)

(
lnZ(J, J̄ )

)
∂J̄n1∂Jn1

∣∣∣∣
J=J̄=0

. (14)

It corresponds to the expectation value of the unique invariant of order p = 1 defined in (3). It 
expands over IF connected ciliated maps with a single ciliated vertex which provides a natural 
root for the entire map, and Weingarten factors are trivial. More complicated observables can be 
also treated by the same method.

Consider a map M of the IF representation associated to a graph G of the O-representation, 
and let us translate formula (5) in the IF language for the full quartic model (11). We denote Ei , 

5 Tensor invariants are both the interactions and the observables of a tensor model.
6 The function logZ|J=J̄=0, which expands into connected maps without cilia (p = 0), is apparently even simpler, 

but in fact the lack of a natural root slightly complicates its combinatorics. Also it requires to factorize first an overall 
factor N4 in each vacuum map before attempting to compute the 1/N expansion. This N4 factor is the analog of the 
usual volume to factor in a thermodynamic limit and corresponds to the computation of an intensive rather than extensive 
quantity.
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i = 1, 2, 3, 4, the number of edges in M with color i, and E1i the number of bicolored edges of 
color type (1i), i = 2, 3, 4. Moreover, the faces of color 0i in G become the faces of the submaps 
Mi which contain all the edges of color i and color type 1i and only them (a vertex with no such 
incident edge is an isolated vertex in Mi which has one face). We can still think of them as faces 
of colors 0i since the color 0 labels the corners of M. Denote F0i the number of faces of colors 
0i, then

A(M) =
4∏

i=1

(−λi)
Ei

4∏
j=2

(−λ1j )
E1j N−�(M) (15)

where the exponent �(M) of 1/N in the amplitude for a map M is

�(M) = 3
4∑

i=1

Ei + 2
4∑

c=i

E1i −
4∑

i=1

F0i . (16)

3.3. The 1/N expansion

Before moving on to the main results of this section, we prove the following lemma which will 
be used throughout the section. We recall that a cut-edge, or a bridge, is an edge of a connected 
map whose deletion transforms a connected map into two connected maps.

Lemma 1. Let M be a connected map and e ∈ M an edge that is not a cut-edge. Denote Me

the connected map obtained by removing e. Then,

1. either e is a monocolored edge and �(M) ≥ �(Me) + 2,
2. or e is a bicolored edge and �(M) ≥ �(Me).

Moreover, if instead e ∈ M is a monocolored cut-edge which separates M1 and M2, then 
�(M) = �(M1) + �(M2) + 4.

Proof. Denote δO = O(Me) − O(M) for any quantity O defined on Me and M. We first 
prove that if the color label of e contains the color i then |δF0i | ≤ 1. Indeed, there are at most 
two faces of color 0i passing along e in M. If there are two distinct faces, they are merged 
together upon deleting e. If there is a single face along e, the deletion can at most split it into 
two.

• Then, if e is monocolored of color i, δ� = 3 δEi − δF0i . Therefore δ� ≤ 3 δEi + |δF0i |. 
With δEi = −1, this implies δ� ≤ −2.

• If e is bicolored with colors 1i, then δ� = 2 δE1i −δF01 −δF0i ≤ 2 δE1i +|δF01| +|δF0i | =
−2 + 1 + 1 = 0.

If e is monocolored of color i and separates M1 and M2, then removing e increases F0i by 1 
and decreases Ei by 1, all other quantities being unchanged. Therefore δ� = −δF0i +3δEi = −4
and �(Me) = �(M1) + �(M2). �

Establishing the existence of the 1/N expansion amounts to proving that �(M) is positive 
for all maps, up to an overall N4 for vacuum maps.
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Theorem 1. For any vacuum connected map �(M) ≥ −4; for any two-point connected map 
�(M) ≥ 0 and for any connected map for a higher order cumulant �(M) ≥ 2. Moreover, for 
any vacuum tree �(T ) = −4; for any 2-point tree �(T ) = 0.

The same theorem has been already established (e.g. in [47]) for the standard scaling 
�′(M) = 3(

∑4
i=1 Ei + ∑4

c=i E1i ) − ∑4
i=1 F0i . But this standard scaling is obviously strictly 

greater than �(M) if 
∑4

c=i E1i > 0. Hence Theorem 1 is a non-trivial new result. The fact that 
any cumulant of order higher than 2 is suppressed as N → ∞ is similar to the standard asymp-
totic freeness in matrix or tensor models [41].

Proof. We first show that for any closed connected map M, and any spanning tree T ⊂ M, 
�(M) ≥ �(T ). Then, we show that � is constant on trees.

Let T be a spanning tree in M. We delete the edges in the complement and track the variations 
of � in the process using Lemma 1. Order the edges in M \T arbitrarily from 1 to S = |M \T |
and define the finite sequence of maps (M(s))s=0,...,S with M(0) = M and for s = 1, . . . , S, 
M(s) as M(s−1) with the edge es removed (and M(S) = T ). None of the edges in M \ T are 
cut-edges, so that all the maps M(s) are connected. Moreover, Lemma 1 applies at each step. If 
es is monocolored �(M(s)) + 2 ≤ �(M(s−1)), and if es is bicolored, �(M(s)) ≤ �(M(s−1)). 
Clearly this leads to �(T ) ≤ �(M).

Notice that the bound obtained upon a monocolored deletion is strict, �(M(s)) < �(M(s−1)), 
while it is soft for bicolored deletions. This reflects the fact that in the strictly monocolored case, 
i.e. the melonic case, only trees can dominate the large N limit, while the bicolored edges may 
(and actually do) change that result.

Now we prove that all vacuum trees scale the same, then get a bound for trees with a fixed 
number of cilia.

• If M is the vacuum map reduced to a single vertex, it has amplitude N4 (one face for each 
submap Mi of color i). Adding a monocolored edge of type i will add one vertex, hence 
three new faces (those for j �= i) and a factor N−3, hence is neutral in N . The same thing 
holds for adding a bicolored edge of type 1i: it adds two new faces and a factor N−2, hence 
is neutral in N . Then, by induction, every vacuum map that is a tree scales like N4.

• Every 2-point tree map is obtained by adding a single cilium to a vacuum tree; this cilium 
opens exactly 4 strands, hence faces, hence every 2-point map that is a tree scales at O(1). 
Finally a tree for any cumulant of higher order is obtained by adding at least one more cilium 
to a 2-point tree. Considering the unique path in the tree between the two cilia, we see that 
the new cilium opens at least two new faces, that minimum being realized when the path is 
made of bicolored edges all of the same type. Therefore every higher-than-2-point tree map 
scales at most as N−2. �

3.4. Characterizing LO maps

In this subsection we prove the results for the vacuum case only, the 2-point case being similar.

Definition 1. A map saturating the bound of the theorem is said to be LO (which stands for 
leading order). For simplicity we shall again restrict to vacuum or 2-point maps and define a 
LO connected (vacuum or 2-point) map as a map saturating the bound, hence with �(M) = −4
(vacuum case) or �(M) = 0 (2-point case). Trees are LO.
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Lemma 2. If a connected map M is LO, all its connected submaps M′ ⊂M must also be LO .

Proof. Suppose M′ ⊂ M is vacuum and not LO. We can pick a spanning tree T ⊂ M whose 
restriction T ′ to M′ is a spanning tree of M′. Then �(M) = �(T ) = �(T ′) < �(M′).

• Let M̃ =M′ ∪(T \T ′) be the map obtained from M by deleting the edges which are neither 
in T nor in M′. Performing those deletions one after another one, one gets a sequence of 
maps which are all connected and by Lemma 1, �(M) ≥ �(M̃). (Notice that here it is not 
necessary to pay attention to whether the deleted edges are monocolored or bicolored.)

• Deleting the edges of T \T ′ from M̃ then does not change the value of �. Indeed, M̃\M′ =
T \ T ′ is a forest of trees, each of which can be rooted at the vertex which meets with T ′
(there is only one such vertex; otherwise, there would be a path from one to another going 
through T ′ and another path along T \ T ′ which is impossible as T ′ ⊂ T ). It is then easy 
to check that deleting a leaf together with its incident edge leaves � invariant. By induction 
from the leaves to the roots of T \ T ′, it comes that �(M) ≥ �(M̃) = �(M′). �

We now want to characterize the LO maps. The above proposition implies that:

Proposition 1. For any connected LO map,

1. Any connected submap made of monocolored edges is a tree.
2. For all i �= 1, any connected submap formed by bicolored edges with colors 1i is planar.
3. The connected submaps made of bicolored edges only are planar.

Proof. By Lemma 2, it is sufficient to prove that the connected LO maps with only monocolored 
edges are trees, and that the LO maps with only bicolored edges are planar.

• Item 1 The LO maps formed by monocolored edges correspond to the melonic sector of the 
quartic tensor models and consist of trees in the IF-representation [48].

• Item 2 It is a direct consequence of Lemma 2 applied to Item 3 of the proposition. However, 
we can offer a simple and direct proof, so that we can use this result to prove Item 3. We 
set i = 2 for definiteness, and denote M12 the connected map. As an ordinary map (that is, 
forgetting the edge colors), we denote the number of faces, edges and vertices F12, E12 and 
V12. Notice that its faces with colors 01 and those with colors 02 coincide, which implies 
F01 = F02 = F12. Moreover, each vertex contributes to one face with colors 03 and one with 
colors 04. Therefore F03 = F04 = V12. Consequently, the function � evaluated on such a 
connected submap reduces to

�(M12) = 2E12 − F01 − F02 − F03 − F04 = −2(F12 − E12 + V12) = 4g12 − 4,

where the genus g12 ≥ 0 of M12 has been introduced. Therefore, minimizing �(M12) is 
equivalent to the map being planar, g12 = 0.

• Item 3 Denote M a connected map made of bicolored edges only. When seen as an ordinary 
combinatorial map, M has V vertices, E = ∑4

j=2 E1j edges and F faces and we want to 
show that its genus g vanishes whenever M is a LO map. Notice that the F faces coincide 
with the F01 faces of colors 01. Therefore Euler’s formula for the genus can be used to write 
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the evaluation of � on M,

�(M) = 2E − F − F02 − F03 − F04 = 2g − 2 + V +
4∑

j=2

(
E1j − F0j

)
. (17)

Then, let j ∈ {2, 3, 4} and consider the submap Mj made of edges of color type 1j . From 
the above Item 2, for each connected component of Mj Euler’s formula holds with trivial 
genus. We denote ρj the number of connected components. A vertex of M which is not 
incident to an edge of type 1j is counted as a connected component with vanishing genus – 
it has a single vertex and a single face (we have to count those isolated vertices since such 
a vertex carries a face of color 0j and these are the ones we want to count). Therefore, the 
total number of vertices of Mj is V and

E1j − F0j = −2ρj + V ⇒ �(M) = 2g − 2 + 2
(

2V −
4∑

j=2

ρj

)
. (18)

Finally we show that 
∑4

j=2 ρj ≤ 2V + 1. This is proved by induction on V . It is true for 
V = 1 since then ρj = 1 for j = 2, 3, 4. Assume the bound holds for any connected maps 
over V vertices and let M be a connected map over V + 1 vertices. Let v be an arbitrary 
vertex of M and let M′ be the map obtained by removing v and all its incident edges 
from M. We denote ρM = ∑4

j=2 ρj for M and ρM′ the same quantity for M′. There is 
at least one edge connecting v to M′. If there is exactly one, say of type 12, then v (and 
its possible incident loop edges) counts as a connected component for M13 and M14, and 
ρM = ρM′ + 2. If there are more than one, then it might be that v belongs to connected 
components of several color types which intersect M′, which implies ρM ≤ ρM′ + 2. The 
induction hypothesis on M′, i.e. ρM′ ≤ 2V +1, then leads to ρM ≤ 2(V +1) +1, as desired.
Therefore, the bound 

∑4
j=2 ρj ≤ 2V + 1 implies that

�(M) ≥ 2g − 4, (19)

from which is it concluded that a map of genus g ≥ 1 cannot be a LO map. �
We also want to analyze how the various monocolored and bicolored connected submaps are 

connected to one another in a LO map. First, we show a stronger statement than just saying that 
monocolored edges form forests.

Proposition 2. All monocolored edges of a LO map are cut-edges.

This can be seen as a refinement of Lemma 2 in the case where the submap M′ is formed of 
monocolored edges, for which the strict bound of the case 1 of Lemma 1 applies.

Proof. Let M be a (connected) LO map and assume that e is monocolored and not a cut-edge. 
Then its deletion results in a map M′ which remains connected. Moreover, from the case 1 of 
Lemma 1, �(M′) < �(M). This is a contradiction. �
3.4.1. LO maps, restricted quartic model

In the restricted case, the maps are made of monocolored edges and bicolored edges of color 
type 12 only. We introduce some notations and definitions.
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Definition 2. Let M be a vacuum, connected map.

• Removing all monocolored edges, we get a map whose connected components are submaps 
made of bicolored edges only (including the trivial submap made of an isolated vertex). Let 
M12 be the set of those connected components.

• Denote E the set of monocolored edges. Notice that the vertices incident to a monocolored 
edge belong to at least one element of M12, by definition.

• Let GM be the graph whose vertices are the elements of M12 and whose edge set is E .

Theorem 2. The vacuum, connected LO maps are the maps M such that M12 consists of planar 
maps of color type 12 and whose monocolored edges are cut-edges. Moreover, the graph GM is 
a tree.

Proof. We already know that if M is LO, then M12 consists of planar components and mono-
colored edges are cut-edges. Therefore, we only have to prove that those two constraints are 
sufficient. Let M be such a map.

Let e be a monocolored edge in M. It gives rise to a unique edge in GM and the other way 
around. Therefore we identify both edges, denoted e. The fact that it is a cut-edge in M implies 
that it also is a cut-edge in GM. Since this holds for all edges of GM, it means that it is a tree.

It remains to show that the degree of M is �(M) = −4. We will use the tree GM to that 
purpose. Denote M12 = {M(ρ)

12 }ρ∈R where R is a finite set, and every M(ρ)
12 is a connected 

bicolored (planar) submap of M as well as a vertex of GM. We equip GM with a root vertex, 
i.e. a distinguished ρ∗ ∈ R and a corresponding root submap M(ρ∗)

12 . That induces a partial order 

relation on M12. M(ρ∗)
12 is declared the largest element and its adjacent vertices are all smaller, 

and so on down to the leaves.
The leaves are the elements which have no elements smaller than them. In M, they correspond 

to submaps incident to a single monocolored edge. For every one of them, this edge is separating. 
Consequently, the last part of Lemma 1 applies, and

�(M(1)) = �(M) − �(M(ρ)
12 ) − 4. (20)

Here M(ρ)
12 is the submap corresponding to the leaf of GM under consideration, which is incident 

to the edge e. M(1) is the map obtained by deleting M(ρ)
12 and e from M. Since M(ρ)

12 is planar, 

�(M(ρ)
12 ) = −4, hence

�(M(1)) = �(M).

The graph GM(1) is precisely GM with the leaf and its incident edge removed. Thus, it also is a 
rooted tree. One then proceeds inductively, from the leaves to the root of GM. This inductively 
removes all the connected pieces M(ρ)

12 , ρ ∈ R, and their planarity is crucial so that the degree �
does not increase along the removal process.

The induction reduces GM to a single vertex (the root) which corresponds in M to either a 
single vertex or a non-trivial connected planar submap of color type 12. The degree is −4 and 
this is the degree of M too. �
Remark. An alternative to the statement “GM is a tree” (and its proof) of Theorem 2 consists 
in the following. Let TM ⊂ M be the submap whose vertices are the vertices of M, which 
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contains all monocolored edges of M as well as the bicolored edges of a spanning tree of every 
maximally connected submaps M(ρ)

12 of color type 12 (not reduced to a single vertex). Then TM
is a tree if and only if M is a LO map.

Indeed, first assume that M is LO and that TM has a cycle. If it contains at least one mono-
colored edge, M cannot be LO. Therefore it must be a cycle whose edges are bicolored of color 
type 12. Obviously they belong to a single connected component M(ρ)

12 for some ρ ∈ R. This is 

however impossible since TM only contains a spanning tree of M(ρ)
12 . As a consequence, TM is 

a tree if M is LO.
Furthermore, assume that TM is a tree (this implies that monocolored edges are cut-edges) and 

that M(ρ)
12 is planar for all ρ. By construction, the difference between TM and M itself is a set of 

bicolored edges. Every one of them belongs to a unique maximally connected component of color 
type 12. Let e ∈ M(ρ)

12 be such an edge and let T (ρ)
12 ⊂ TM be the spanning tree of M(ρ)

12 . Since 
the full component is planar and since e is not a cut-edge, removing it does not change the value 
of � on M(ρ)

12 , which eventually gives �(M(ρ)
12 ) = �(T (ρ)

12 ) for all ρ. Moreover, the components 

of {M(ρ)
12 } are connected together by monocolored edges which are cut-edges. Therefore the last 

statement of Lemma 1 applies and easily leads to �(M) = �(TM). As we know from the proof 
of the 1/N expansion, the degree � is −4 for trees, hence �(M) = −4. A similar argument will 
be used in the full quartic model below.

3.4.2. LO maps, full quartic model
Consider a vacuum LO map M in the full quartic model. We know that monocolored edges 

are cut-edges and that the bicolored components are planar. It remains to characterize the way 
the bicolored planar components can be attached to one another. Indeed, in contrast with the 
restricted quartic case, there are three types of bicolored edges and not all planar maps with 
bicolored edges are LO.

Definition 3. Let M be a vacuum, connected map.

• Remove all edges but those of color type 12 (respectively 13 and 14) as well as the isolated 
vertices this creates, and denote the connected components thus obtained M(1)

12 , . . . , M(R2)
12

(respectively M(1)
13 , . . . , M(R3)

13 and M(1)
14 , . . . , MR4)

14 ).

• Pick up a spanning tree T (ρi )
1i for each i = 2, 3, 4 and ρi = 1, . . . , Ri . Let TM ⊂ M be the 

submap which contains all those spanning trees as well as all monocolored edges.

Proposition 3. Let M be a vacuum, connected, LO map of the full quartic model. Then TM is a 
tree.

Proof. TM obviously contains all the vertices of M and is a connected map. Let us assume that 
M is LO while TM has a cycle. This cycle cannot contain a monocolored edge. It is therefore 
assumed to be made of bicolored edges only. Furthermore, those bicolored edges cannot be all 
of the same color type. Indeed, if that were the case, then they would all belong to a single 
connected component M(ρi)

1i (by definition of the latter and because the cycle is connected), but 

this is impossible as only a spanning tree of M(ρi) is part of TM.
1i
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Fig. 4. This represents the structure of the LO maps in the full quartic model. The gray areas are connected components of 
given color types. A bicolored connected component can be attached to another one on a single vertex, without forming 
cycles of such components.

The cycle, say 
, thus has at least two bicolored edges of two different color types. As a vac-
uum map itself, it is easy to check that its degree takes a non-LO value, �(
) ≥ −2. According 
to Lemma 2, it cannot be a submap of a LO map, which is a contradiction. �

Proposition 3 puts explicit restrictions on the gluing of the planar components in the large N

limit. In particular, M(ρi )
1i and M(ρj )

1j can at most share one vertex. If not, there would be a path 

in T (ρi )
1i and another path in T (ρj )

1j joining the same two vertices, thus creating a cycle in TM.
Furthermore, there cannot be “closed chains” of planar components of different color types. 

If M(ρi )
1i and M(ρj )

1j are not incident to one another, then they can be connected through either 

monocolored (cut-)edges, or other connected submaps M(ρk)
1k whose removal disconnects M.

Fig. 4 therefore shows the structure of the LO maps. They are planar, and made of trees of 
monocolored edges which connect bicolored connected objects. The latter can touch one another 
at a single vertex at most and do not form closed chains, thus displaying a “cactus” structure.

4. Trees of necklaces and trees of disks

4.1. Trees of necklaces as generalizations of the quartic interactions

Results established in the frame of a model with fixed interactions are expected to hold be-
yond that particular model. This is the content of the expected universality (in the sense used in 
statistical mechanics): changing the microscopic details (the form of the building blocks) does 
not affect the critical properties. This is quite well verified in matrix models. There, it is intuitive 
that moving from triangulations to quadrangulations or hexangulations is imperceptible in the 
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scaling limit (mixing various interactions also brings additional degrees of freedom which upon 
fine-tuning leads to multi-critical behaviors). We know this is also true in tensor models equipped 
with their standard scaling.

Even off-criticality, one can draw interesting conclusions about generic models from the study 
of a single one. In the 2D case, for instance, this is based on the observation that hexagons can 
be obtained by merging two squares. We will apply this technique to the restricted case so as to 
extend the range of applicability of our results to a family of models. The restricted case indeed 
has a quite natural generalization:

• change the quartic melonic interactions into arbitrary melonic interactions

νmelonic = exp−N3
∑

melonic B

λB B(T,T), (21)

• change the quartic necklace interaction into a finite linear superposition of necklaces of the 
same color type but of arbitrary length

νnecklace(12) = exp−
∑
p

μp N2+p B
(p)

12 (T,T). (22)

The bubble corresponding to B(p)

12 has 2p vertices and a single cycle made of edges alternat-
ing the colors 1 and 3. Moreover, for each edge of color 1, there is an edge of color 2 between 
the same vertices. Similarly, for each edge of color 3 of the cycle, there is an edge of color 4 
between the same two vertices. Note that for p = 1 and 2, this reproduces the Gaussian and 
necklace term of the measure dμres.

If one turns off the necklace couplings (μp), this is just the ordinary tensor models with melonic 
interactions (which we know how to solve). If the melonic couplings are turned off on the other 
hand, this reduces to an ordinary matrix model. Indeed, defining MAB = √

N Tn1n2n3n4 whose 
matrix indices are pairs of tensor indices, A = (n1, n2) and B = (n3, n4), it is found that the 
necklace polynomial of degree n in T is

N2+p B
(p)

12 (T,T) = N2 Tr(MM†)p.

Finally, we can embed the above families of melons and necklaces into a larger one, for which 
we give a recursive definition.

Definition 4. We say that a necklace (of color type 12) is open on the color i, for i ∈ {1, 2, 3, 4}, 
if an edge of color i has been cut to form two half-edges. A tree of necklaces of type 
{p1, . . . , pn, pn+1} is obtained from a tree of necklaces of type {p1, . . . , pn} by removing any 
edge of color i and replacing it with the necklace of size pn+1 open on an edge of color i (and 
preserving bipartiteness). We call this process the insertion of a necklace (see Fig. 5).

The tree of necklaces of type {p1} is simply the necklace of size p1. The insertion of a neck-
lace of size p = 1 simply is a melonic insertion. Therefore we indeed reproduce all the melonic 
polynomials and all the necklaces of color type 12. Notice that the data {p1, . . . , pn} does not 
capture the full structure of the observable. It only records the sizes of the necklaces which are 
inserted one after the other one. This will be sufficient for the enumeration of the LO contribu-
tions.
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Fig. 5. A tree of necklaces.

Let us denote a generic tree of necklaces by L. If it is of type {p1, . . . , pn}, we set

ω(L) =
n∑

k=1

(2 + pk) − 3(n − 1) = 3 − n +
n∑

k=1

pk. (23)

This is the enhancement trees of necklaces require to contribute at large N .7 The class of model 
we will analyze is characterized by the measure

dμ(T,T) = exp
(
−

∑
L

Nω(L) tL BL(T,T)
)

dμ0(T,T). (24)

We recall that dμ0 is the Gaussian measure (6). The sum in the exponential is over a finite number 
of trees of necklaces.

Theorem 3. Let us denote the expectation of the necklace of size p as

Cp = N2+p

N4

〈
B

(p)

12 (T,T)
〉
= N2+p

N4

∫
dμ(T,T)B

(p)

12 (T,T)∫
dμ(T,T)

. (25)

Then the expectation of any tree of necklaces L{p1,...,pn} factorizes in the large N limit like

Nω(L{p1,...,pn})

N4

〈
L{p1,...,pn}(T,T)

〉
=

n∏
k=1

Cpk
. (26)

The strategy to prove this theorem will be to reduce it to the quartic case defined by the 
measure (12), for which the proof is simple (given the results of Section 3). To do so, we need to 
introduce the notion of boundary graph.

4.2. Reduction to the quartic case

The reduction from a generic model to the quartic model (with the standard scaling of tensor 
models) has already been used in [37]. Here we simply extend it to enhanced trees of necklaces.

An open Feynman graph is defined here as a connected, bipartite, edge-colored graph where 
all vertices have incident edges of colors 1, 2, 3, 4, together with some edges of color 0 which 

7 Notice that for each k, 2 + pk is the exponent of N expected for the necklace of size pk . The reason for the term 
−3(n − 1) will appear in the proof of Lemma 3. Let just say that those observables will be represented as trees within 
the quartic model with (n − 1) monocolored edges, each of them being supposed to come with a factor N−3.
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connect some black to some white vertices. In particular, some vertices are not incident to the 
color 0. We call them free vertices.

A Feynman graph which is open has closed, internal faces as well as broken faces with alter-
nating colors 0, i, which go from a white free vertex to a black free vertex.

Definition 5. The boundary graph ∂G of an open Feynman graph G with 2p free vertices is 
defined as follows. Each (black or white) free vertex h gives rise to a (black or white) vertex vh. 
An edge of color i is drawn between two vertices vh, vg in ∂G if there is a broken face in G which 
starts and ends at the free vertices h and g. The boundary graph is bipartite, regular of degree 4, 
with colored edge and has 2p vertices, but not necessarily connected.

Note that a graph whose vertices are all free is its own boundary graph. The connected 
boundary graphs are precisely the observables of tensor models, i.e. the bubbles representing 
the connected tensor invariants. We recall that the latter appear as the 0-bubbles of Feynman 
graphs. Therefore, it makes sense graphically to trade an open, connected subgraph of a closed, 
connected Feynman graph for its boundary graph if the latter is connected: the result is still a 
connected, 5-regular, edge-colored bipartite graph. Furthermore, by definition of the boundary 
graph, this operation preserves all the faces which go through the subgraph but are not restricted 
to it (i.e. the broken faces of the subgraph).

Lemma 3. Let F and Fres be the sets of vacuum Feynman graphs generated by respectively the 
model defined by dμ (24) and that defined by dμres (12). There is a map Q which to every graph 
G ∈ F associates a graph Q(G) ∈ Fres such that the degrees �(G) and �(Q(G)) (calculated in 
the appropriate models) coincide.

Proof. We first build the map Q in a purely graphical way. This is done by exhibiting a family 
of open Feynman graphs of the quartic model whose boundary graphs are the trees of necklaces.

Let us start with a single necklace of size p. It can be obtained as the boundary graph of a loop 
of p quartic necklaces of color type 12 connected by edges of color 0 (drawn as dashed edges),

(27)

The loop creates one closed face of colors 01 and another of colors 02 and leaves 2p free vertices. 
In the boundary graph, each quartic necklace gives rise to an edge of color 1 and an edge of 
color 2. The edges of colors 3 and 4 correspond to broken faces shared by couples of quartic 
necklaces.

Assume we have constructed an open Feynman graph GL for every tree of necklaces with 
n insertions, such that ∂GL = L. We consider a tree of necklaces Ln+1 with one more insertion. 
It comes from inserting an open necklace of size pn+1 on an edge e of color i of a tree of 
necklaces Ln of type {p1, . . . , pn}. Consider its associated open Feynman graph GLn

. The edge 
e is represented in GLn

by a broken face of colors 0i. The white vertex to which e is incident is 
represented in GL by a white free vertex (no edge of color 0 incident). Let us attach to this free 
n
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vertex the following piece of graph

(28)

where the loop of quartic necklaces contains pn+1 of them. Denote GLn+1 the open graph ob-
tained this way. We want to show that ∂GLn+1 = Ln+1. Since the edges e1, e2 of color 0 are 
cut-edges, one can replace the subgraph GLn

with its boundary graph Ln and also the loop of 
quartic necklaces in (28) with its boundary graph (a necklace of size pn+1). Denote G̃n+1 the 
graph obtained this way, then ∂GLn+1 = ∂G̃n+1. The only portion of G̃n+1 which contains non-
free vertices looks like

(29)

By applying the definition of the boundary graph (and separating the cases i = 1, 2 and i = 3, 4), 
it is easy to see that it creates a necklace insertion of size pn+1 onto e in Ln, as desired.

As a consequence, given a graph G ∈ F , one can replace all its trees of necklaces {L} with 
their associated open graphs {GL}. This way, one obtains a vacuum Feynman graph Q(G) ∈Fres

from the restricted quartic model.
If G ∈ F contains 
(G) edges of color 0, F0i (G), i ∈ {1, 2, 3, 4}, faces of colors 0i, and a set 

of trees of necklaces {L}, it comes with weight N−�(G), where

−�(G) =
4∑

i=1

F0i (G) − 3
(G) +
∑
L⊂G

ω(L). (30)

From the definition of ω(L) in (23),

−�(G) =
4∑

i=1

F0i (G) − 3
(G) +
∑
L⊂G

n(L)∑
k=1

(2 + pk(L)) − 3(n(L) − 1)

= −3
(

(G) +

∑
L⊂G

(
2(n(L) − 1) +

n(L)∑
k=1

pk(L)
)) +

4∑
i=1

F0i (G)

+
∑
L⊂G

[
3(n(L) − 1) +

n(L)∑
k=1

(
2 + 4pk(L)

)]
. (31)

Now we partition the above contributions in order to assign them naturally to Q(G). We recognize


(Q(G)) = 
(G) +
∑(

2n(L) − 2 +
n(L)∑

pk(L)
)

(32)

L⊂G k=1
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as the number of edges of color 0 of Q(G): it still has those of G, plus those of the graphs GL. In 
one of those graphs, we count pk edges of color 0 to form each loop of quartic necklaces whose 
boundary graph is a necklace of size pk . If it has n(L) necklaces, there are 2n(L) − 2 edges of 
color 0 added to connect them (like e1, e2 in (28)). We also recognize

b12(Q(G)) =
∑
L⊂G

n(L)∑
k=1

pk(G), and b(Q(G)) =
∑
L⊂G

n(L) − 1, (33)

the number of quartic necklaces and the number of melonic quartic bubbles of Q(G). Finally

F0i (Q(G)) = F0i (G) + (δi,1 + δi,2)
∑
L⊂G

n(L), (34)

is the number of faces of Q(G) of colors 0i, since every necklace represented as in (28) has two 
internal faces, one of colors 01, and one of colors 02.

It comes

−�(G) = −3
(Q(G)) + 4b12(Q(G)) + 3b(Q(G)) +
4∑

i=1

F0i (Q(G)) = −�(Q(G)), (35)

as assigned in the restricted quartic model to Q(G). �
4.3. Factorization

Proof of Theorem 3. The expectation of an observable is a sum over all the closed Feynman 
graphs generated by the model which contain the observable as a marked subgraph. We choose 
the observable to be a tree of necklaces. The graphs contributing to its expectation are closed 
graphs made of trees of necklaces connected through edges of color 0. We apply the map Q to 
represent them in the quartic model and then use the intermediate-field representation. Through 
this process, a tree of necklace L of type {p1, . . . , pn} becomes an open graph GL which in the 
IF representation becomes a map TL with n bicolored loops of sizes p1, . . . , pn connected in a 
tree-like fashion (no closed circuits between those loops) via n − 1 monocolored edges.

From the combinatorial description of the LO graphs of the restricted quartic model, it is 
clear that there exist graphs G contributing to the expectation such that Q(G) is a LO graph. 
From Lemma 3, it thus comes that G contributes to the LO of the expectation if and only if Q(G)

is LO in the quartic model.
Let G be a LO graph contributing to the expectation of L which is of type {p1, . . . , pn}. In the 

IF representation, Q(G) contains GL as a marked subgraph with n − 1 monocolored edges and 
n bicolored loops. All those monocolored edges are cut-edges in Q(G). Cutting them yields n
connected components, each one containing one of the n bicolored loops as a marked subgraph. 
This establishes a factorization of the expectation of L onto its necklaces,

Nω(L{p1,...,pn})

N4

〈
L{p1,...,pn}(T,T)

〉
=

n∏
k=1

C̃pk
. (36)

Moreover, any set of graphs contributing to the expectations of the loops of sizes pk(L), k =
1, . . . , n, gives rise to a LO contribution to the expectation of L by gluing back the monocolored 
edges. This proves that the contribution of a necklace is C̃p = Cp as defined in Theorem 3. �
k k
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Although this result is simpler to prove using the IF representation, it can also be understood 
directly in terms of the edge-colored graphs generated by the initial model. If L is the observable 
whose expectation we are interested in, let Lpk

be one of its necklaces, and let v, v̄ ∈ Lpk
be 

white and black vertices incident to edges of color i which connect it to other necklaces. By 
construction of L, v and v̄ can be chosen such that their incident edges of color i are 2-cut-edges. 
In G, there are also two edges of color 0 incident to v and v̄.

• The factorization (36) means that any path which starts at v (or v̄) and follows its incident 
edge of color 0 does not hit L before it comes back to a vertex of Lpk

.
• Moreover, the equality C̃pk

= Cpk
can be found by studying the number of faces of colors 

0i which go through Lpk
. The unique face of colors 0i which crosses v follows the edge of 

color i incident to v and necessarily goes along the edge of color i incident to v̄. It happens 
this way because the two edges of color i incident to v and v̄ are 2-cut-edges, i.e. they carry 
a 2-point function with external edges of color i. Therefore, when counting the number of 
faces 0i which go through Lpk

, everything happens as if v and v̄ were connected by an edge 
of color i. This means that the counting can be performed directly on the isolated necklace 
of size pk , which yields the desired equality.

4.4. Enumeration: large N free energy and expectations

Thanks to the combinatorial analysis of the quartic model performed in Section 3, the problem 
of evaluating the expectations of trees of necklaces at large N has been reduced to determining 
the expectations of the necklaces: this is the content of Theorem 3. Calculating those expectations 
amount to enumerating the number of Feynman graphs containing a necklace of fixed size as 
a marked subgraph. To do so, we will write an equation à la Tutte, known in our context as 
Schwinger–Dyson equations.

The Schwinger–Dyson equations of random tensor models have been described in [49], and 
the structure and large N solution have been described in [50,51]. We recall that an observable 
is a U(N)4-invariant polynomial which can be represented as a connected, bipartite, 4-colored 
graph. Then define the following two operations.

• The contraction of an observable B with 2p vertices along the black and white vertices 
v̄, v ∈ B , denoted B/(v̄, v) is obtained by connecting v and v̄ with an edge of color 0 and 
taking the boundary graph. Equivalently, one removes v̄ and v and reconnects the edges 
while respecting the colors, to get a set of disjoint observables on 2(p − 1) vertices.

• The composition of two observables B, B ′ along the pair v ∈ B, v̄′ ∈ B ′ is obtained by con-
necting v to v̄′ via an edge of color 0 and then taking the boundary graph. Equivalently, one 
removes v from B and v̄′ from B ′ and reconnects the edges while respecting the colors. If 
B has 2p vertices and B ′ has 2p′ vertices, then their composition, denoted B (v̄′,v) B ′, has 
2(p + p′ − 1) vertices.

Let B be an observable, represented as a connected, bipartite, 4-colored graph, with a marked 
white vertex v. There is one Schwinger–Dyson equation for each such observable with a marked 
vertex. It reads∑

v̄∈B

〈B/(v̄, v)〉 − N3〈B〉 −
∑
L

Nω(L) tL
∑
v̄′∈L

〈B (v̄′,v) L〉 = 0, (37)

where {L} denotes the set of trees of necklaces which defines the measure (24).
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We choose B = B
(p)

12 the necklace of size p, and multiply the equation by N(p−1)/N4. Then

• If v and v̄ are separated by k white vertices, then

N(p−1)

N4
〈B(p)

12 /(v̄, v)〉 = N2+(p−k−1)

N4
〈B(p−k−1)

12 〉 N2+k

N4
〈B(k)

12 〉 = Cp−k−1 Ck, (38)

which is the same large N factorization as in ordinary matrix models.
• The middle term of the equation, which comes from the Gaussian part of the measure, reads

N(p−1)

N4
N3〈B(p)

12 〉 = Cp. (39)

• If L is an interaction of the model, of type {p1, . . . , pn} and v̄′ ∈ L belongs in a necklace 
Lpj

, then the composition with B(p)

12 increases its size to pj + p − 1, and

N(p−1)+ω(L{p1,...,pn})

N4
〈B (v̄′,v) L{p1,...,pn}〉

= N
ω(L{p1,...,pj +p−1,...,pn})

N4
〈L{p1,...,pj +p−1,...,pn}〉

= Cpj +p−1

∏
k=1,...,n

k �=j

Cpk
, (40)

where the last equality makes use of Theorem 3.

Gathering the above pieces, Eqs. (37) become a system which determines the rescaled expecta-
tions (C1, C2, C3, . . .). It takes the following generic form. Let V (x1, x2, x3, . . .) be a polynomial 
in a finite number of variables (x1, x2, x3, . . .), and denote ∂p the derivative with respect to xp . 
Then the Schwinger–Dyson equation has the form

Cp =
p−1∑
k=0

Ck Cp−k−1 +
∑
j≥1

j ∂jV (C1,C2,C3, . . .) Cj+p−1. (41)

This equation has a clear interpretation in terms of branching planar maps (i.e. trees of disks). 
Cp is the number of maps in the class with root vertex of degree p, or by duality, boundary 
face of degree p. The quadratic term corresponds, as usual for equations à la Tutte, to the case 
where the root edge is a bridge. If not, its removal extends the length of the boundary face from 
p to p + j − 1, which is also usual for planar maps. However, it here comes with a weight 
j∂jV (C1, C2, . . .). When this is independent of the numbers {Ck} (the linear terms of V ), one 
simply recovers Tutte’s equation for planar maps with bounded face degrees. All other terms of V
correspond to gluing “on top” of our map other maps with prescribed boundary face degrees. This 
superimposition generates a branching process which we already analyzed at the combinatorial 
level in the quartic case in Section 3 in terms of trees of disks.

Eq. (41) can be found in the existing literature devoted to multi-trace matrix models [42,43]. 
Therefore, we will only describe its critical properties without reproducing the detailed analysis. 
The free energy behaves like (g − gc)

2−γ , where g is the “cosmological constant” (an overall 
coupling, or a coupling of ordinary single-trace terms of the potential), gc is the radius of conver-
gence of the generating function for (Cp)p≥1 (it depends on all the other couplings of the model) 
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and γ is the entropy exponent. The latter characterizes the proliferation of some combinatorial 
degrees of freedom of the maps like nγ−3 where n is the size of the objects. It classifies the 
various universality classes which can be achieved.

• When the planar components become critical while the branching process stays off-
criticality, the latter is washed away in the scaling limit and the string susceptibility exponent 
of pure 2D gravity is recovered, γ = −1/2.

• If the situation is reversed (non-critical maps, critical branching), γ = 1/2, as expected for 
trees since the planar components become irrelevant in the scaling limit; this is the univer-
sality class of branched polymers.

• If both are simultaneously critical (a phase reached by tuning one additional coupling to 
a critical value), the exponent γ = 1/3 can be reached. This phase transition describes a 
proliferation of baby universes.

• Tuning more couplings leads to more phases, with exponents γ = p/(n + m + 1), where 
p ≤ n and m are integers. It is argued in [43] that for n > 1 the polymerization is too strong 
for the surface to support macroscopic loops.

5. Analyticity of the model

We discuss the analyticity of the 2-point function G2 of the general quartic model in a cardioid 
domain of the complex plane, using the Loop Vertex Expansion [53]. The proof, being similar to 
the one of the non-enhanced case [47], will be discussed in less details.

Theorem 4. The 2-point function G2 of the maximally rescaled general quartic model with cou-
pling constants λC = |λC |eıφC is analytic for |λC | < 1

56 cos2 φ
2 , φ = maxC(φC).

To prove this theorem, we will first use a new series expansion of logZ in the intermediate 
field representation, (the Loop Vertex Expansion), then prove the absolute convergence of the 
series for all λ’s inside the cardioid domain.

5.1. Loop vertex expansion

Using a standard Hubbard–Stratonovich transformation on (11), the model can be re-written 
in terms of seven Hermitian matrices σC , where for i ∈ {1, . . . , 4}, σ i is a N × N matrix, and 
for i ≥ 2, σ 1i is a four indices tensor seen as an Hermitian N2 × N2 matrix acting on pairs of 
indices of color {1, i}. The measure on those matrices (known as intermediate fields) is

dμ(σ) = dμ0(σ )e
−TrD ln

[
1D + ∑4

i=1 ı

√
λi

N3

(
1D\{i}⊗σ i

) + ∑4
i=2 ı

√
λ1i
N

(
1D\{1,i}⊗σ 1i

)]
, (42)

where 1B is the identity matrix over the set of indices B and dμ0(σ ) is the normalized Gaussian 
measure of covariance 1 over the σ matrices.

Denoting A(σ) = ı
∑

C
√

λC
N4−|C|

(
1D\C ⊗ σC)

and R(σ) = [
1D + A

]−1
, the generating func-

tion of the cumulants (13) is

Z(J, J̄ ) =
∫

eN−3 ∑
n,n̄ J̄n̄R(σ )n̄nJndμ(σ ). (43)
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Fig. 6. A 4-stranded tree with a cilium. Resolvents are represented as thick bars crossing each strand of a corner.

Hence the 2-point function can be expressed as the connected expectation value of the resolvent, 
i.e.

G2 = 1

Z

∫
R(σ)

N3
dμ. (44)

Moreover, it admits an expansion as a sum of trees, via the BKAR formula [57,58]. For any tree 
Tv with v vertices,

• to any edge 
 of Tv , we assign a parameter u
 ∈ [0, 1],
• for any pair of vertices {i, j}, Pij being the unique path joining the vertices, we define wij =

min
∈Pij
u
, and we define wii = 1,

• we define a new set of σ matrices {σ i C} for each vertex i of Tv ,
• we define the interpolated Gaussian measure μTv,u as 

∫
σ i C

nn̄ σ
j C
mm̄ dμTv,u(σ ) = wij δnm̄δn̄m.

Then we can express G2 as a sum over plane trees Tv,{C(
)},i∗ with v vertices, colored edges 

 and a single ciliated vertex i∗. Each corner p of a vertex i bears a resolvent R(σ i) whose 
indices nc

i,p, n̄c
i,p (c ∈ {1..4}) are contracted along the faces of color c of the tree. Therefore, the 

vertices have a structure of 4-stranded vertices and to an edge 
ij between i and j corresponds 
the contraction

δ
ij ,C(
ij ) =
(

δ
n̄
D\C
i,q n

D\C
i,q+1

)
δn̄Ci,qnCj,p+1

δn̄Cj,pnCi,q+1

(
δ
n̄
D\C
j,p n

D\C
j,p+1

)
. (45)

The ciliated vertex bears a cilium at a corner, that, for the 2-point function, is just a trivial con-
traction of the adjacent strands 1

N
δni,pn̄i,p+1 . For higher order cumulants, the strands have to be 

re-connected according to non-trivial permutations over cilia, and with a factor involving Wein-
garten functions [47,48,59,60]. The cilium acts as an edge for the ciliated vertex i∗, increasing 
its degree and number of corners by one. Thus,

(G2)n̄n = δn̄n

N4

∑
v≥1

1

v!
∑

Tv,{C(
)},i∗

1∫
0

⎡
⎣ ∏


∈Tv

du


⎤
⎦∫

dμTv,u(σ )

×
∑
n,n̄

⎛
⎝ ∏

i∈V (Tv)

degree(i)∏
p=1

R(σ i)n̄i,pni,p

⎞
⎠

⎛
⎝ ∏


∈Tv

−2λC(
)

N4−|C(
)| δ
,C(
)

⎞
⎠ . (46)

5.2. Cardioid domain

The series (46) is absolutely convergent for coupling constants |λC|eiφC , |φC | < π inside a 

cardioid domain |λC | < ρ cos2
(

φ
)

, φ = maxC φC . This can be shown by bounding the con-
2
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Fig. 7. First Cauchy–Schwarz iteration applied on the tree from Fig. 6. The cilia could have been deleted as they are 
merely identity operators.

tribution of each tree Tv,{C(
)},i∗ in (46) using iterated Cauchy–Schwarz inequalities [47,54]. 
Writing

C(Tv,{C(
)},i∗) =
⎛
⎝ ∏

i∈V (Tv)

d(i)∏
p=1

R(σ i)n̄i,pni,p

⎞
⎠ ∏


∈Tv

δ
,C(
), (47)

a colored plane tree T made of 4-stranded vertices but with no resolvent is structurally an inter-
mediate field Feynman graph and thus comes with the amplitude A(T ) as in (15). Resolvents 
can be taken care of by applying a by now rather standard technique [47,61–63]. Starting at 
the cilium, we order the (2v − 1) resolvents along the clockwise contour walk around the tree, 
indexing them as R1, R2 . . . . Then, we draw a line along the unique path between R1 and Rv

(see Fig. 7). Everything left (respectively right) of this path is called A (resp. B), then we use the 
following Cauchy–Schwarz bound:

C(Tv,{C(
)},i∗) = 〈A|R1 ⊗ Rv ⊗ 1⊗k|B〉 ≤ ‖R1‖‖Rv‖
√〈A|A〉〈B|B〉. (48)

Within the cardioid, ‖R(σ)‖ ≤ 1/ cos(φ/2) with φ = maxC φC . Moreover, the scalar product 
graphs 〈A|A〉 and 〈B|B〉 have the same structure of plane trees with resolvents as the original 
graph, except that 〈A|A〉 now bears 2v − 4 resolvents and 〈B|B〉 has 2v − 2. Repeating the 
same process on 〈A|A〉 (but using arbitrary corner as R1) will give rise to graphs bearing 2v − 6
resolvents and so on. Repeating the process until no resolvents remains on any graph, we have

C(Tv,{C(
)},i∗) ≤
2v−1∏
j=1

‖Rj (σ
i(j))‖

∏
gA

N
− F(gA)

2v−1
∏
gB

N− F(gB)

2v

≤
(

cos
φ

2

)−(2v−1)

NF(T \R
v ), (49)

where F(G) is the number of faces of G, gA and gB are the graphs bearing no resolvents cre-
ated from the right amount of iterations of the Cauchy–Schwarz bound on the graphs 〈A|A〉
and 〈B|B〉 and T \R

v is the tree with all resolvents removed. The second inequality arises from 
the conservation of the number of faces during the Cauchy–Schwarz process. Indeed, at each 
iteration, the number of faces is multiplied by 2.

For any tree, F(T \R
v ) = 4v − ∑


 C(
), therefore,

|(G2)nn| ≤
∑
v≥1

1

v! cos
φ

2

∑
T ∗

∏

∈T

2|λC(
)|
cos2 φ

2

. (50)
v,{C(
)},i v
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Finally, using 
∑

Tv,{C(
)},i∗ 1 = 7v−1 (2v−2)!
(v−1)! and |λC(
)|

cos2 φ
2

≤ ρ, we find absolute convergence of the 

series in the cardioid domain with ρ = 1
56 .

The perturbative expansion in λ can be recovered by applying Taylor expansion with integral 
remainder individually on each tree, up to a uniform order. This corresponds to expanding beyond 
trees by adding additional loop-edges to the graph. This mixed expansion [48] here does not 
have such simple properties as in [47], because additional two-colored loops do not always lead 
to higher orders in 1/N . The integral remainders however, still give a bound on the overall 
Taylor remainder of G2 which is good enough to prove Borel summability of the Feynman graph 
expansion uniformly in N .

This also extends to higher-order cumulants, introducing trees with more than one cilium and 
Weingarten functions [47,48]. As in [47], recovering proper scalings for the cumulants is done 
by Taylor expanding further than trees before using iterated Cauchy–Schwarz bounds. In this 
case however, two-colored loop edges do not lead to automatic scaling improvement, thus the 
expansion must be done with respects to single colored couplings only. This requires introducing 
several independent coupling constants.

6. Conclusion

Pushing further the approach of [40] and based on the observation of [41] that non-melonic 
observables can be enhanced, we have studied two (related) families of models with maximally-
rescaled interactions.

First we introduced the most generic quartic model at rank four, which features four melonic 
interactions and three necklaces which are matrix-like observables. In addition to the existence of 
the 1/N expansion, we performed a combinatorial analysis of the leading order (LO) graphs in 
the large N limit. In the case where only a single necklace has a non-vanishing coupling constant 
(called the restricted quartic case), Theorem 2 fully characterizes the LO graphs. They have the 
structure of trees whose vertices are disks, one tree being inserted on any face of the other one 
and so on.

The restricted case was then generalized to a generic class of interactions which we called 
trees of necklaces (the latter include all necklaces of a fixed color type as well as all melonic 
observables). We obtained a factorization theorem (Theorem 3) which reduces the large N evalu-
ation of the expectations of trees of necklaces. This, combined with Schwinger–Dyson equations, 
leads to the exact enumeration of the LO graphs contributing to the free energy or to such ex-
pectations. A phase transition (with a family of positive entropy exponents) is found between the 
branched polymer phase and 2D quantum gravity, which can be thought of as the proliferation 
of baby universes.

Beyond the specific outcome of the analysis (the Schwinger–Dyson equations reduce to the 
same equations as in matrix models with multi-trace invariants) we think the method we used is 
quite powerful and worth summarizing here.

• It starts with a quartic model. This is because for quartic interactions the intermediate field 
method is straightforward and powerful,8 simplifying greatly the combinatorial analysis. In 
particular, it was first used in [35] to study a quartic tensor model beyond its LO and first 
sub-leading correction (resulting in the first double-scaling limit for random tensors). More 

8 See however [56] for the more complicated intermediate field representation of higher order interactions.
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recently, the intermediate field method for quartic models has been used to construct such 
models non-perturbatively.

• Then a generic class of interactions is introduced: they are the boundary graphs of the quartic 
model studied before (in our case, of the restricted quartic model). This allows to consider 
the Feynman graphs of those new models as a sub-family of those of the quartic model. The 
combinatorial analysis performed in the quartic case thus applies.

• That combinatorial analysis is then a fruitful input which simplifies the Schwinger–Dyson 
equations and can turn them into a solvable set of equations.

This scheme was in fact first applied in [37]. It enabled extending the double-scaling limit of the 
quartic melonic model of [35] to arbitrary melonic models (invariant under permutations of the 
colors though). This is however the first time it is applied to non-melonic interactions. We empha-
size that the Gaussian expectations of a sub-family of trees of necklaces were calculated recently 
in [55] (with a completely different method). Clearly, the present method goes far beyond the 
previous achievements.

The present results can be continued in several directions. First, it would be interesting to 
know the continuous spaces towards which the “trees of disks” converge in the GHP sense. It is 
tempting to think about them as generalization of the “looptrees” [52], but further investigation 
is needed. The double-scaling limit of that model could also be studied to understand how the 
double-scaling limit of ordinary tensor models can cross over to the one of ordinary matrix 
models, and how it relates to the double-scaling limit of multi-trace matrix models [45].

In this article, we left unsolved the full quartic model. Indeed, the presence of several matrix-
like observables (necklaces of color types 12, 13 and 14) makes the Schwinger–Dyson equations 
more complicated. The fact they have different color types reveals that this model makes a better 
use of the tensorial structure. We expect it to depart from the multi-trace matrix models.

Another way to further take advantage of the richness of tensorial invariants is to introduce 
more maximally rescaled models. Remark that already at rank 3 and order 6, in addition to 
the six melonic interactions, there is a single non-melonic tensor invariant, whose bubble is the 
bipartite complete graph K3,3, which is non-planar and by Kuratowski’s theorem, is a kind of 
canonical source for non-planarity in bipartite graphs (see Fig. 1). When maximally rescaled, it 
could generate an interesting leading order. This is left to future study.

Finally it should be interesting to define similarly rescaled models of tensor group field the-
ories, with or without Boulatov type projectors, to generalize the growing list of renormalizable 
models studied so far [64–72]. In particular, they should allow to explore in depth the frontier 
between asymptotically free tensor field theories and asymptotically safe non-commutative field 
theories [73–77].
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