23 research outputs found

    An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field

    Get PDF
    International audienceWe consider the system of equations governing an incompressible immiscible two-phase flow within an heterogeneous porous medium made of two different rock types. Since the capillary pressure funciton depends on the rock type, the capillary pressure field might be discontinuous at the interface between the rocks. We prove the existence of a solution for such a flow by passing to the limit in regularizations of the problem

    Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution

    Get PDF
    We consider an immiscible two-phase flow in a heterogeneous one-dimensional porous medium. We suppose particularly that the capillary pressure field is discontinuous with respect to the space variable. The dependence of the capillary pressure with respect to the oil saturation is supposed to be weak, at least for saturations which are not too close to 0 or 1. We study the asymptotic behavior when the capillary pressure tends to a function which does not depend on the saturation. In this paper, we show that if the capillary forces at the spacial discontinuities are oriented in the same direction that the gravity forces, or if the two phases move in the same direction, then the saturation profile with capillary diffusion converges toward the unique optimal entropy solution to the hyperbolic scalar conservation law with discontinuous flux functions

    Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium

    Get PDF
    International audienceNeglecting capillary pressure effects in two-phase flow models for porous media may lead to non-physical solutions: indeed, the physical solution is obtained as limit of the parabolic model with small but non-zero capillarity. In this paper, we propose and compare several numerical strategies designed specifically for approximating physically relevant solutions of the hyperbolic model with neglected capillarity, in the multi-dimensional case. It has been shown in [Andreianov&Canc'es, Comput. Geosci., 2013, to appear] that in the case of the one-dimensional Buckley-Leverett equation with distinct capillary pressure properties of adjacent rocks, the interface may impose an upper bound on the transmitted flux. This transmission condition may reflect the oil trapping phenomenon. We recall the theoretical results for the one-dimensional case which are used to motivate the construction of multi- dimensional finite volume schemes. We describe and compare a coupled scheme resulting as the limit of the scheme constructed in [Brenner & Canc'es & Hilhorst, HAL preprint no.00675681, 2012) and two IMplicit Pressure - Explicit Saturation (IMPES) schemes with different level of coupling

    A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rocks media

    Get PDF
    International audienceWe discuss the convergence of the upstream phase-by-phase scheme (or upstream mobility scheme) towards the vanishing capillarity solution for immiscible incompressible two-phase flows in porous media made of several rock types. Troubles in the convergence where recently pointed out in [S. Mishra & J. Jaffré, Comput. Geosci., 2010] and [S. Tveit & I. Aavatsmark, Comput. Geosci, 2012]. In this paper, we clarify the notion of vanishing capillarity solution, stressing the fact that the physically relevant notion of solution differs from the one inferred from the results of [E. F. Kaasschieter, Comput. Geosci., 1999]. In particular, we point out that the vanishing capillarity solution de- pends on the formally neglected capillary pressure curves, as it was recently proven in by the authors [B. Andreianov & C. Canc'es, Comput. Geosci., 2013]. Then, we propose a numerical procedure based on the hybridization of the interfaces that converges towards the vanishing capillarity solution. Numerical illustrations are provided

    Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure

    Get PDF
    We consider an immiscible incompressible two-phase flow in a porous medium composed of two different rocks so that the capillary pressure field is discontinuous at the interface between the rocks. This leads us to apply a concept of multi-valued phase pressures and a notion of weak solution for the flow which have been introduced in [Cancés \& Pierre, {\em SIAM J. Math. Anal}, 44(2):966--992, 2012]. We discretize the problem by means of a numerical algorithm which reduces to a standard finite volume scheme in each rock and prove the convergence of the approximate solution to a weak solution of the two-phase flow problem. The numerical experiments show in particular that this scheme permits to reproduce the oil trapping phenomenon

    Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium

    No full text
    International audienceFor the hyperbolic conservation laws with discontinuous flux function there may exist several consistent notions of entropy solutions; the difference between them lies in the choice of the coupling across the flux discontinuity interface. In the context of Buckley-Leverett equations, each notion of solution is uniquely determined by the choice of a "connection", which is the unique stationary solution that takes the form of an undercompressive shock at the interface. To select the appropriate connection, following Kaasschieter (Comput. Geosci., 3(1):23-48, 1999) we use the parabolic model with small parameter that accounts for capillary effects. While it has been recognized in Cancès (Netw. Heterog. Media, 5(3):635-647, 2010) that the "optimal" connection and the "barrier" connection may appear at the vanishing capillarity limit, we show that the intermediate connections can be relevant and the right notion of solution depends on the physical configuration. In particular, we stress the fact that the "optimal" entropy condition is not always the appropriate one (contrarily to the erroneous interpretation of Kaasschieter's results which is sometimes encountered in the literature). We give a simple procedure that permits to determine the appropriate connection in terms of the flux profiles and capillary pressure profiles present in the model. This information is used to construct a finite volume numerical method for the Buckley-Leverett equation with interface coupling that retains information from the vanishing capillarity model. We support the theoretical result with numerical examples that illustrate the high efficiency of the algorithm

    A gravity current model with capillary trapping for oil migration in multilayer geological basins

    Get PDF
    International audienceWe propose a reduced model accounting capillary trapping to simulate oil migration in geological basins made of several rock types. Our model is derived from Darcy type models thanks to Dupuit approximation and a vertical integration in each geological layer. We propose a time-implicit finite volume scheme which is shown to be unconditionally stable and to admit discrete solutions. Numerical outcomes are then provided in order to illustrate the behavior of our reduced model

    Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure

    Get PDF
    We consider an immiscible incompressible two-phase flow in a porous medium composed of two different rocks so that the capillary pressure field is discontinuous at the interface between the rocks. This leads us to apply a concept of multi-valued phase pressures and a notion of weak solution for the flow which have been introduced in [Cancés \& Pierre, {\em SIAM J. Math. Anal}, 44(2):966--992, 2012]. We discretize the problem by means of a numerical algorithm which reduces to a standard finite volume scheme in each rock and prove the convergence of the approximate solution to a weak solution of the two-phase flow problem. The numerical experiments show in particular that this scheme permits to reproduce the oil trapping phenomenon

    On interface transmission conditions for conservation laws with discontinuous flux of general shape

    Get PDF
    International audienceConservation laws of the form tu+xf(x;u)=0\partial_t u+ \partial_x f(x;u)=0 with space-discontinuous flux f(x;)=fl()1x0f(x;\cdot)=f_l(\cdot)\mathbf{1}_{x0} were deeply investigated in the last ten years, with a particular emphasis in the case where the fluxes are ''bell-shaped". In this paper, we introduce and exploit the idea of transmission maps for the interface condition at the discontinuity, leading to the well-posedness for the Cauchy problem with general shape of fl,rf_{l,r}. The design and the convergence of monotone Finite Volume schemes based on one-sided approximate Riemann solvers is then assessed. We conclude the paper by illustrating our approach by several examples coming from real-life applications

    NEW APPROACHES TO DESCRIBING ADMISSIBILITY OF SOLUTIONS OF SCALAR CONSERVATION LAWS WITH DISCONTINUOUS FLUX

    No full text
    International audienceHyperbolic conservation laws of the form u_t + div f(t, x; u) = 0 with discontinuous in (t, x) flux function f attracted much attention in last 20 years, because of the difficulties of adaptation of the classical Kruzhkov approach developed for the smooth case. In the discontinuous-flux case, non-uniqueness of mathematically consistent admissibility criteria results in infinitely many different notions of solution. A way to describe all the resulting L1 -contractive solvers within a unified approach was proposed in the work [Andreianov, Karlsen, Risebro, 2011]. We briefly recall the ideas and re-sults developed there for the model one-dimensional case with f(t, x; u) = f_l (u)1_{x0} and highlight the main hints needed to address the multi-dimensional situation with curved interfaces. Then we discuss two recent developments in the subject which permit to better understand the issue of admissibility of solutions in relation with specific modeling assumptions; they also bring useful numerical approximation strategies. A new characterization of limits of vanishing viscosity approxi-mation proposed in [Andreianov and Mitrovic, 2014] permits to encode admissibility in singular but intuitively appealing entropy inequalities. Transmission maps introduced in ([Andreianov andCan es, 2014]) have applications in modeling flows in strongly heterogeneous porous media and lead to a simple algorithm for numerical approximation of the associated solutions. Moreover, in order to embed all the aforementioned results into a natural framework, we put forward the concept of interface coupling conditions (ICC) which role is analogous to the role of boundary conditions for boundary-value problems. We link this concept to known examples and techniques
    corecore