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An existence result for multidimensional immiscible two-phase

flows with discontinuous capillary pressure field∗

Clément Cances† Michel Pierre‡

November 24, 2011

Abstract

We consider the system of equations governing an incompressible immiscible two-phase flow

within an heterogeneous porous medium made of two different rock types. Since the capillary

pressure function depends on the rock type, the capillary pressure field might be discontinuous

at the interface between the rocks. We introduce multivalued phase pressures to give a sense

to the transmission conditions at the interface. We prove the existence of a solution for such a

flow by passing to the limit in regularizations of the problem.

keywords: two-phase flows, porous media, discontinuous capillarity, multivalued pressures

AMS subject classification: 35M33, 35Q86, 35K65, 76S05, 76T99

1 Introduction

The models of immiscible two-phase flows in porous media are often used to give a prediction of
the motions of complex flows in subsoil, particularly in the frame of oil-engineering. So they have
been widely studied, both from theoretical and numerical points of view. One of the main difficulty
appearing in their study is linked to the degeneracy of the problem where one of the two phases
vanishes.

Because of variations of the rock type, one has to take into account strong heterogeneities of the
subsoil with respect to space in the model and to assume that the physical properties of the porous
medium are even discontinuous in the case of severe variations of the rock type. It is well known
that such discontinuities of the medium induce discontinuities of the fluid composition, but also
discontinuous pressure fields (see [vDMdN95], [EEN98], [BDPvD03], [EEM06], [CGP09], [BLS09],
[Can09]). While some mathematical analysis in the one-dimensional case has been carried out
in [BDPvD03], [BLS09], [CGP09] and [Can09], ensuring the well-posedness of the problem, there
is no existence result available for the solution of immiscible two-phase flows with discontinuous
pressure fields in several dimensions, unless some strong assumptions are made in order to reduce
the problem (see [CGP09], [EEM06]). In this paper, we propose to establish an existence result for
the solution of the system of equations governing such a flow.

∗Part of this work was supported by GNR MoMaS
†UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (cances@ann.jussieu.fr)
‡ENS Cachan Bretagne, UEB, IRMAR, (michel.pierre@bretagne.ens-cachan.fr)
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1.1 Presentation of the problem

For the sake of simplicity, we suppose that the porous medium, represented by a bounded open
subset Ω with Lipschitz continuous boundary of Rd (d = 2 or 3), is built of two homogeneous
subdomains, represented by bounded open subsets (Ωi)i∈{1,2} with Lipschitz continuous boundaries

such that Ω1 ∩ Ω2 = ∅, and Ω1 ∪ Ω2 = Ω. We denote by Γ ⊂ Ω the interface between the two
subdomains : Γ = Ω1∩Ω2. The extension of our paper to the case of a finite number of homogeneous

Γ

Ω1

Ω2

Figure 1: A example of domain Ω made of subdomains Ω1 and Ω2 separated by the interface Γ

subdomains Ωi is straightforward as soon as each ∂Ωi is Lipschitz continuous.
The porous medium Ω is supposed to be saturated by a moisture made of only two immiscible

phases, the oil phase (for which the subscript o stands) and the water phase (for which the subscript
w stands). One denotes by s the oil saturation, and (1− s) is thus the water saturation.

The motion of each phase in Ωi is governed by the diphasic Darcy-Muskat laws (see e.g. [AS79]):

φi∂ts− div

(

Ki
ko,i(s)

µo
(∇po − ρog)

)

= 0, (1)

−φi∂ts− div

(

Ki
kw,i(s)

µw
(∇pw − ρwg)

)

= 0, (2)

where φi ∈ (0, 1) is the porosity of Ωi, the symmetric definite positive matrix Ki is the permeability
of the rock Ωi, kα,i is the relative permeability of the phase α ∈ {o, w} in Ωi, µα > 0 is its viscosity,
pα its pressure, ρα its density and g stands for the gravity. In order to simplify the problem, we
suppose that there are no irreducible saturations. More precisely, we do the following assumptions
on the functions kα,i :

Assumption 1 For i ∈ {1, 2},
• ko,i ∈ C1 is (strictly) increasing on [0, 1] with ko,i(0) = 0 and ko,i(1) = 1;

• kw,i ∈ C1 is (strictly) decreasing on [0, 1] with kw,i(0) = 1 and kw,i(1) = 0.

The difference between the phase pressures, so called capillary pressure, is given by the following
simplified law

po − pw = πi(s). (3)

We do the following reasonable assumption on the capillary pressure functions.

Assumption 2 For i ∈ {1, 2}, the function πi belongs to C1((0, 1);R) ∩ L1((0, 1);R), and are
(strictly) increasing.

2



Note that the functions πi are not supposed to be bounded near 0 and 1, but, thanks to the
monotonicity of πi, we can define

R ∋ πi(0) = lim
s→0+

πi(s), R ∋ πi(1) = lim
s→1−

πi(s).

It has been stressed in [ALV84] (and will be detailed later) that the natural topology for the
phase pressures po, pw in Ωi is (formally) governed by the estimate

∫∫ (

ko,i(s)

µo
(∇po)2 +

kw,i(s)

µw
(∇pw)2

)

dxdt ≤ C



1 +
∑

i∈{1,2}

‖πi‖L1(0,1)



 < +∞. (4)

In particular, assume that s(x, t) = 0 for some x ∈ Ωi, then it follows from Assumption 1 that
ko,i(s(x, t)) = 0. As a consequence, the control of the left-hand side in (4) provides no information
on po(x, t). But because of the relation (3), then the oil-pressure po(x, t) cannot exceed the threshold
value pw(x, t) + πi(0), otherwise the oil-phase should be present. Hence, po(x, t) should be defined
in a multivalued way, i.e.

s(x, t) = 0 ⇔ po(x, t) = [−∞, pw(x, t) + πi(0)]. (5)

Similarly, one has
s(x, t) = 1 ⇔ pw(x, t) = [−∞, po(x, t) − πi(1)]. (6)

We deduce from (5) and (6) that the capillary pressure function πi has to be extended into a
monotone graph π̃i, defined by

π̃i(s) =







πi(s) if s ∈ (0, 1)
[−∞, πi(0)] if s = 0
[πi(1),+∞] if s = 1.

The capillary pressure graph π̃i admits a continuous inverse, denoted by π−1
i , mapping R to [0, 1],

that, thanks to Assumption 2, satisfies

‖π−1
i ‖L1(R−) +

∥

∥π−1
i − 1

∥

∥

L1(R+)
= ‖πi‖L1((0,1)) <∞. (7)

Remark 1. The most classical choices for the capillary pressure functions are the so-called Van
Genuchten and Brooks-Corey capillary pressure functions, respectively defined by (we suppose here
that the water phase is the wetting phase)

πV G(s) = A
(

(1− s)−
ν

ν−1 − 1
)

1
ν , πBC(s) = B + C(1 − s)−

1
λ ,

where A > 0, B ≥ 0, C > 0, ν > 2, and λ > 1 are parameters depending on the rock type. These
choices of capillary pressure functions satisfy Assumption 2, but are not bounded in the vicinity
of 1. Therefore, allowing unbounded capillary pressures is of great interest in the current study.
The boundedness of the energy (4) of the system only requires the capillary pressure functions to
belong to L1(0, 1), as prescribed by Assumption 2.

Let us now focus on the transmission conditions at the interface Γ. On one hand, because of
mass balance of each phase, both phase fluxes have to be continuous, i.e. for α ∈ {o, w}, one has

∑

i∈{1,2}

(

Ki
kα,i(s)

µα
(∇pα − ραg)

)

· ni = 0 on Γ, (8)
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where ni denotes the outward normal to ∂Ωi. On the other hand, following [EEM06], we prescribe
the continuity of the pressure of the mobile phases :

kα,1(s1) (pα,1 − pα,2)
+ − kα,2(s2) (pα,2 − pα,1)

+ = 0 on Γ, (9)

where si, pα,i denote the traces on Γ from Ωi of s, pα respectively. The relation (9) claims that
either the pressure of the phase α is continuous through the interface Γ, or the phase α is missing
at the side of the interface where its pressure is larger. Using the multivalued formalism introduced
in (5) and (6), the relation (9) is equivalent to

pα,1 ∩ pα,2 6= ∅ on Γ× (0, T ). (10)

We make more comments on these conditions in Remark 3.
In order to close the system, we impose a no-flux boundary condition for each phase on ∂Ω

(

Ki
kα,i(s)

µα
(∇pα − ραg)

)

· n = 0, (11)

where n denote the outward normal to Ω, and an initial condition

s0(x) ∈ L∞(Ω, [0, 1]). (12)

It is worth noticing that due to the choice of the boundary condition (11), the pressures are only
determined up to an additive constant.

The purpose of this paper is to show that, after suitable reformulation, the problem (1)–
(3),(8),(10)–(12) admits a solution.

1.2 Reformulation of the problem

In order to avoid some of the difficulties linked to the degeneracies of the problem (1),(2), we follow
the classical idea of introducing the so-called global pressure P and Kirchhoff transform ϕi(s) (see
e.g. [CJ86], [AKM90], [Arb92]), and rewrite the equations (1)–(3) under the form

φi∂ts− div
(

Ki

(

ko,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

)

= 0, (13)

−div
(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

= 0, (14)

with

Mi(s) =
ko,i(s)

µo
+
kw,i(s)

µw
, ϕi(s) =

∫ s

0

ko,i(a)kw,i(a)

ko,i(a)µw + kw,i(a)µo
π′
i(a)da,

ζi(s) =
ko,i(s)

µo
ρo +

kw,i(s)

µw
ρw

and, for any π ∈ π̃i(s),
P = pw + λw,i(π) = po + λo,i(π), (15)
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where, for all π ∈ R, we have set

λw,i(π) =

∫ π

0

ko,i(π
−1
i (a))

ko,i(π
−1
i (a)) + µo

µw
kw,i(π

−1
i (a))

da, (16)

λo,i(π) = −
∫ π

0

kw,i(π
−1
i (a))

µw

µo
ko,i(π

−1
i (a)) + kw,i(π

−1
i (a))

da. (17)

Firstly, P is always single-valued, and does not depend on the choice of π ∈ π̃i(s). Indeed, if
s ∈ (0, 1), both expressions of P are single-valued. If s = 0, then pw is single-valued, and, for all
π ≤ πi(0),

∫ π

πi(0)

ko,i(π
−1
i (a))

ko,i(π
−1
i (a)) + µo

µw
kw,i(π

−1
i (a))

da = 0,

ensuring that P = pw + λw,i(π) is single-valued. In the case s = 1, one has to use the relation
P = po + λo,i(π). Notice that for all π ∈ R, one has

λw,i(π)− λo,i(π) = π. (18)

Note also that

Mi(s)∇P =
ko,i(s)

µo
∇po +

kw,i(s)

µw
∇pw. (19)

The function ϕ′
i is given by

ϕ′
i(s) =

ko,i(s)kw,i(s)

ko,i(s)µw + kw,i(s)µo
π′
i(s),

where π′
i(s) can possibly tend to +∞ as s tends to 0 or 1, but simultaneously, the ratio

ko,i(s)kw,i(s)
ko,i(s)µw+kw,i(s)µo

tends to 0. By the following assumption, we assume that the product remains bounded.

Assumption 3 The functions ϕi are Lipschitz continuous on [0, 1].

Thanks to Assumption 1 and since πi is supposed to be increasing, the functions ϕi defined
above are such that ϕ−1

i are continuous functions on [ϕi(0), ϕi(1)]. We define the quantity

αM = min
i∈{1,2}

(

min
s∈[0,1]

Mi(s)

)

,

it is then easy to check that αM > 0.

We now focus on the transmission conditions. The conservation of the oil-phase at the interface
can be written

∑

i∈{1,2}

Ki

(

ko,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· ni = 0 on Γ, (20)

while the conservation of the total flux at the interface yields

∑

i∈{1,2}

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· ni = 0 on Γ. (21)
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The relation (10) on the interface Γ implies that

there exists π ∈ π̃1(s1) ∩ π̃2(s2) s.t. P1 − λw,1(π) = P2 − λw,2(π). (22)

Remark 2. In (22), requiring that P1 − λw,1(π) = P2 − λw,2(π) corresponds to imposing the
continuity (in the multivalued sense (10)) of the water pressure. By adding π to this relation, we
obtain, thanks to (18), that

P1 − λw,1(π) + π = P1 − λo,1(π) = P2 − λw,2(π) + π = P2 − λo,2(π).

Then we also recover the continuity of the oil-pressure (in the same weak sense (10)), so that the
relation (22) contains the continuity of both pressures.

Concerning the boundary conditions, the no-flux boundary condition for each phase is replaced
by

Ki

(

ko,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· n = 0 on ∂Ω ∩ ∂Ωi, (23)

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· n = 0 on ∂Ω ∩ ∂Ωi. (24)

For the sake of simplicity, we choose to consider a finite time horizon T > 0, then we denote
by QT (resp. Qi,T ) the cylinder Ω × (0, T ) (resp.Ωi × (0, T )). All along the paper, for any f ∈
{φ,K, . . . }, we denote by x 7→ f(s, x) the piecewise constant function equal to fi(s) if x ∈ Ωi.

Definition 1.1 (weak solution) A couple (s, P ) is said to be a weak solution to the problem (12)-
(14), (20)-(24) in the cylinder QT if it fulfills the following points:

1. s ∈ L∞(QT , [0, 1]), φ∂ts ∈ L2
(

(0, T );
(

H1(Ω)
)′
)

and ϕi(s) ∈ L2((0, T );H1(Ωi));

2. P ∈ L2((0, T );H1(Ωi)) for i ∈ {1, 2} and
∫

Ω
P (x, t)dx = 0 for a.e. t ∈ (0, T );

3. there exists a measurable function π mapping Γ× (0, T ) to R such that, for almost all (x, t) ∈
Γ× (0, T ),

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π);

4. for all ψ ∈ L2((0, T );H1(Ω)), one has

∫∫

QT

φs∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

+
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

ko,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· ∇ψdxdt = 0; (25)

5. for all ψ ∈ L2((0, T );H1(Ω)), one has

∑

i∈{1,2}

∫∫

Qi,T

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· ∇ψdxdt = 0. (26)
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Remark 3. In the one-dimensional case, the problem reduces to a single degenerate parabolic
equation in each subdomain Ωi. Formally, this equation can be written with the extended capillary
pressure π : Ωi → R as main unknown, i.e.

φi∂tπ
−1
i (π) + ∂x (qfi(π) + γi(π)g − λi(π)∂xπ) = 0 in Qi,T

for some functions fi, γi and λi. Prescribing the continuity of π at the interface turns out to be
sufficient to obtain an existence/uniqueness result on the saturation s := π−1

i (π), thanks to a L1-
contraction principle established in [Can09] (see also [CGP09]). The traces si of s then naturally
satisfy

π ∈ π̃1(s1) ∩ π̃2(s2) 6= ∅ on Γ× (0, T ). (27)

In the multidimensional case, the problem in each Ωi really consists in two equations (1),(2) on
po, pw. Therefore, prescribing the single relation (27) is clearly not sufficient for obtaining a unique-
ness frame for (s, P ). Indeed, if (s, P ) is a weak solution of the problem with the single continuity
condition (27) instead of (22), i.e. if it satisfies the points 1,2,4 and 5 of Definition 1.1 and the
continuity of the capillary pressure (27), then, for any function κ ∈ L2(0, T ), defining

P̃κ(x, t) = P (x, t) + κ(t) (|Ω2|1Ω1
(x) − |Ω1|1Ω2

(x)) ,

the couple (s, P̃κ) also satisfies the points 1,2,4 and 5 of Definition 1.1 and the continuity of the
capillary pressure (27). In order to eliminate this spurious degree of freedom, one has to fix the
jump of the global pressure. The convenient way to do it consists in prescribing (in the graph sense
prescribed in the paper) the continuity of the phase pressure pw, i.e.

P1 − λw,1(π) = P2 − λw,2(π).

Since the capillary pressure pressure π is itself continuous, so does po thanks to Remark 2.

The paper is devoted to the proof of the following theorem.

Theorem 1 (main result) Under Assumptions 1,2 and 3, there exists a weak solution to the
problem (12)-(14), (20)-(24) in the sense of Definition 1.1.

It is well known that for suitable initial and boundary conditions, the flow governed by the
equations (13)–(14) admits a solution (see e.g. [ALV84], [AD85], [CJ86], [AKM90], [Arb92] or
[Che01]) in the case where the physical characteristics of the domain do not depend on space, or
at least sufficiently smoothly. In the case considered here, the difficulty will come from the fact
that the physical properties of the medium Ω —particularly the capillary pressure curve— are
discontinuous with respect to space at the interface Γ. The effects of space depending capillarities
have been widely studied during the last years. Analytical results have been provided by [ABE96],
[vDMdN95], [BDPvD03], [Can08], [CGP09]. Effective models have been provided in [BH95a],
[vDMP02], [vDEHP07] and [Sch08] using homogenization techniques. Some numerical schemes have
been introduced [EEN98], [EMS09] and studied [EEM06], [Can09], [BCH]. It has been pointed out
in [Can10a], [Can10b] and [Can10c] (see also [AC11]) that the orientation of the capillary forces at
the interface has a strong influence on the qualitative behavior of the saturation profile.
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1.3 Organization of the paper

In § 2, we introduce a simplified problem, where the pressure of both phases is (strongly) continuous
at the interface. This can be done under a compatibility condition of the capillary forces, that is

π1(0) = π2(0) ∈ R, π1(1) = π2(1) ∈ R. (28)

If the functions πi satisfy the above condition, the capillarity curves are said to be matching. In
that case, the existence of a weak solution is proven using a spatial regularization of the function
x 7→ π(·, x), i.e. by introducing a thin transition layer between the two rocks.

Section 3 is devoted to the end of the proof of Theorem 1. We will show that the problem with
non-matching capillarity curves, i.e. when the condition (28) is not satisfied, can be approximated
by problems with matching capillarity curves studied in § 2. Compactness properties on the family
of approximate solutions will allow us to exhibit a weak solution in the sense of Definition 1.1 as a
limit value.

2 The problem with matching capillary pressure curves

In this section, we assume that the capillary pressure functions πi belong to C1([0, 1];R), and fulfill
the relation (28), so that the relation (22) turns to

π1(s1) = π2(s2) and P1 − λw,1(π1(s1)) = P2 − λw,2(π2(s2)). (29)

So the pressure of each phase is continuous at the interface Γ, i.e.

po,1 = po,2, pw,1 = pw,2. (30)

Theorem 2 Under assumption (28), there exists a weak solution (s, P ) to the problem (12)-(14),
(20), (21), (23), (24), (29) in the sense of Definition 1.1.

Remark 4. The result stated in Theorem 2 is very close to the main result of the paper [BH95b].
However, it seems that there is a technical gap in the proof suggested in [BH95b] and detailed in
[Hid93]. For this reason, we choose to give another proof of this theorem. But we stress the fact
that the main result proposed in [BH95b] is true and that numerous ideas presented here have
already been proposed in [BH95b], [Hid93]. In particular, the homogeneization result published in
[BH95a] relies on correct preliminaries.

2.1 The regularized problems

Let ǫ > 0. In order to obtain regular phase pressures, the problem is regularized as follows: find
(sǫ, pǫo, p

ǫ
w) such that

φi∂ts
ǫ − div

(

Ki
ko,i(s

ǫ)

µo
(∇pǫo − ρog)

)

= ǫ∆πi(s
ǫ) in Qi,T (31a)

−φi∂tsǫ − div

(

Ki
kw,i(s

ǫ)

µw
(∇pǫw − ρwg)

)

= −ǫ∆πi(sǫ) in Qi,T (31b)

where pǫo − pǫw = πi(s
ǫ). We require the continuity of the regularized pressures at the interface, i.e.

pǫo,1 = pǫo,2, pǫw,1 = pǫw,2 on Γ× (0, T ), (31c)
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as well as the volume balances

∑

i∈{1,2}

(

Ki
ko,i(s

ǫ)

µo
(∇pǫo − ρog) + ǫ∇πi(sǫ)

)

· ni = 0 on Γ× (0, T ), (31d)

∑

i∈{1,2}

(

Ki
kw,i(s

ǫ)

µw
(∇pǫw − ρwg)− ǫ∇πi(sǫ)

)

· ni = 0 on Γ× (0, T ). (31e)

No-flux boundary conditions are considered on ∂Ω×(0, T ), and we keep the initial data sǫ(·, 0) = s0
in Ω

In order to use an existing result (adaptation of Theorem 1 in [Arb92] or Theorem 2.1 in
[Che01]), we introduce a smooth regularization of Ω, consisting in introducing a thin transition
layer to replace Γ. Let δ > 0, we define the Lipschitz continuous function Hδ on Ω by

Hδ(x) =
1

2

(

1−min

(

d(x,Ω1)

δ
, 1

)

+min

(

d(x,Ω2)

δ
, 1

))

so that Hδ(x) = 1 if d(x,Ω2) ≥ δ and Hδ(x) = 0 if d(x,Ω1) ≥ δ. Let f ∈ {K, φ, kα, π} piecewise
constant on Ω with respect to space, we define the function

f δ : (s, x) 7→ f1(s)H
δ(x) + f2(s)(1 −Hδ(x))

which has been built in order to be Lipschitz continuous with respect to the space variable x. For
g ∈ {M,ϕ, ζ, λw}, we denote by gδ the function obtained by using kδα, π

δ instead of kα, π in the
definition of g.

We define the fully regularized problem by: find (sǫ,δ, pǫ,δo , pǫ,δw ) such that

φδ∂ts
ǫ,δ − div

(

Kδ k
δ
o(s

ǫ,δ)

µo

(

∇pǫ,δo − ρog
)

)

= ǫ∆πδ(sǫ,δ) in QT , (32a)

−φδ∂tsǫ,δ − div

(

Kδ k
δ
w(s

ǫ,δ)

µw

(

∇pǫ,δw − ρwg
)

)

= −ǫ∆πδ(sǫ,δ) in QT , (32b)

where pǫ,δo − pǫ,δw = πδ(sǫ,δ) in QT . Once again, we consider no-flux boundary conditions on ∂Ω×
(0, T ).

In the sequel, we denote by mKi
(resp. MKi

) the smallest (resp. largest) eigenvalue of the
symmetric definite positive matrix Ki, and by mK := minimKi

and MK := maxiMKi
.

Proposition 2.1 Under Assumption (28), there exist sǫ,δ ∈ L∞(QT , [0, 1]) ∩ C([0, T ];L2(Ω)) with
∂ts

ǫ,δ ∈ L2((0, T ;H−1(Ω)), and pǫ,δo , pǫ,δw ∈ L2((0, T );H1(Ω)) (hence πδ(sǫ,δ) ∈ L2((0, T );H1(Ω)))
solution to the system (32). Moreover, the following energy estimate holds: there exists C depending
only on φ, K, ρα, µα, Ω, T , g (but neither on ǫ nor on δ) such that

mK

2

∑

α∈{o,w}

∫∫

QT

kα,i(s
ǫ,δ)

µα

(

∇pǫ,δα

)2
dxdt

+ǫ

∫∫

QT

(

∇π(sǫ,δ)
)2
dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (33)
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Denoting by
P ǫ,δ = pǫ,δw + λδw(π

δ(sǫ,δ)), (34)

one can furthermore require that

∫

Ω

P ǫ,δ(x, t)dx = 0 for a.e. t ∈ [0, T ]. (35)

Proof. The existence proofs carried out in [Arb92] and [Che01], dealing with the case ǫ = 0, can
be mimicked for ǫ > 0. This particularly yields the existence of a function πǫ,δ ∈ L2((0, T );H1(Ω))
and pǫ,δo , pǫ,δo ∈ L2((0, T );H1(Ω)) such that

φδ∂t
(

πδ
)−1

(πǫ,δ)− div



Kδ
kδo

(

(

πδ
)−1

(πǫ,δ)
)

µo

(

∇pǫ,δo − ρog
)



 = ǫ∆πǫ,δ,

−φδ∂t
(

πδ
)−1

(πǫ,δ)− div



Kδ
kδw

(

(

πδ
)−1

(πǫ,δ)
)

µw

(

∇pǫ,δw − ρwg
)



 = −ǫ∆πǫ,δ,

where pǫ,δo − pǫ,δw = πǫ,δ and πǫ,δ(·, 0) =
(

πδ
)−1

(s0). Note that, thanks to classical arguments, the
solution to the above system satisfies

πǫ,δ(x, t) ∈ Iπ :=

[

min
j

(πj(0)),max
j

(πj(1))

]

=
[

πδ(0, x), πδ(1, x)
]

, a.e. in QT .

It is important to remark that, thanks to Assumption (28), the interval Iπ does not depend on
x. Since the function πδ(·, x) is a homeomorphism from [0, 1] to Iπ, for a.e. (x, t) ∈ QT , there
exists sǫ,δ(x, t) such that πǫ,δ(x, t) = πδ(sǫ,δ(x, t)). Thus we obtain the existence of a function
sǫ,δ ∈ L∞(QT , [0, 1]) and pǫ,δo , pǫ,δo ∈ L2((0, T );H1(Ω)) satisfying the system (32). The fact that
sǫ,δ belongs to C([0, T ];L2(Ω)) can be deduced for example from the result of [CG11] applied on
the first equation of (32).

Choosing pǫ,δo as test function in the first equation, pǫ,δw in the second one and summing yields:

〈

φδ∂ts
δ,ǫ, πδ(sδ,ǫ)

〉

+
∑

α∈{o,w}

∫∫

QT

(

kδα(s
δ,ǫ)

µα
Kδ∇pδ,ǫα · ∇pδ,ǫα

)

dxdt

+ǫ

∫∫

QT

∣

∣∇πδ(sδ,ǫ)
∣

∣

2
dxdt−

∑

α∈{o,w}

∫∫

QT

kδα(s
δ,ǫ)

µα
Kδ∇pδ,ǫα · ραgdxdt = 0. (36)

Denoting by Πδ(s, x) =

∫ s

0

πδ(a, x)da, it is classical (see e.g. Lemma 4 in [Car99]) that

〈φδ∂tsδ,ǫ, πδ(sδ,ǫ)〉 =
∫

Ω

φδ(x)Πδ(sδ,ǫ)(x, T )dx−
∫

Ω

φδ(x)Πδ(s0)(x)dx

≥ −2

∫

Ω

φδ(x)

∫ 1

0

∣

∣πδ(a, x)
∣

∣ dadx ≥ −2|Ω|
(

max
i
φi

)(

max
i

‖πi‖L1(0,1)

)

. (37)
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Since each Ki is a symmetric positive definite matrix, Kδ(x) also for all x ∈ Ω. We denote by
mKδ (x) (resp. MKδ (x)) its smaller (resp. larger) eigenvalue. Then it is easy to check that for all
x ∈ Ω, one has

mK = min
i∈{1,2}

mKi
≤ mKδ (x), MK = max

i∈{1,2}
MKi

≥MKδ (x).

This provides that for α ∈ {o, w}, one has

∫∫

QT

(

kδα(s
δ,ǫ)

µα
Kδ∇pδ,ǫα · ∇pδ,ǫα

)

dxdt ≥ mK

∫∫

QT

kδα(s
δ,ǫ)

µα

∣

∣∇pǫ,δα

∣

∣

2
dxdt. (38)

From Cauchy-Schwarz inequality, one has

∫∫

QT

kδα(s
δ,ǫ)

µα
Kδ∇pδ,ǫα · ραgdxdt

≤ MK

ρα√
µα

|g||QT |
1
2

(∫∫

QT

kδα(s
δ,ǫ)

µα

∣

∣∇pǫ,δα

∣

∣

2
dxdt

)

1
2

.

Using that for a, b ∈ R, one has ab ≤ mK
a2

2 + b2

2mK

, we obtain the existence of C depending only
on K, ρα, µα, Ω, T , g such that

∫∫

QT

kδα(s
δ,ǫ)

µα
Kδ∇pδ,ǫα · ραgdxdt ≤

mK

2

∫∫

QT

kδα(s
δ,ǫ)

µα

∣

∣∇pǫ,δα

∣

∣

2
dxdt + C. (39)

The inequality (33) is a consequence of (36)–(39). Since the function pǫw (and thus pǫo) is defined
up to a function depending on time, one can choose this function so that (35) holds. �

Lemma 2.2 There exists Cǫ depending only on π, φ, K, ρα, µα, Ω, T , g, αM and ǫ (but not on
δ) such that

∫∫

QT

(

∇pǫ,δβ

)2

dxdt ≤ Cǫ, for β ∈ {o, w}.

Proof. We will prove this estimate only for the oil pressure, since obtaining it for the water pressure
is similar.

∫∫

QT

(

∇pǫ,δo

)2
dxdt ≤ 1

αM

∫∫

QT

(

kδo(s
ǫ,δ)

µo
+
kδw(s

ǫ,δ)

µw

)

(

∇pǫ,δo

)2
dxdt

≤ 1

αM

∫∫

QT

[

kδo(s
ǫ,δ)

µo

(

∇pǫ,δo

)2
+
kδw(s

ǫ,δ)

µw

(

∇pǫ,δw +∇πδ(sǫ,δ)
)2
]

dxdt.

Since (a+ b)2 ≤ 2(a2 + b2), and since 0 ≤ kδw(s) ≤ 1, one obtains

∫∫

QT

(

∇pǫ,δo

)2
dxdt

≤ 1

αM

∫∫ [

kδo(s
ǫ,δ)

µo

(

∇pǫ,δo

)2
+ 2

kδw(s
ǫ,δ)

µw

(

∇pǫ,δw

)2
+

1

µw

(

∇πδ(sǫ,δ)
)2
]

dxdt.
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We conclude by using the energy estimate (33). �

Let h > 0, then we define Ωh
i = {x ∈ Ωi s.t. dist(x,Ωj) > h for j 6= i} and Qh

i,T = Ωh
i × (0, T ).

On the set Ωδ
i , the functions f δ is equal to f for all f ∈ {kα, π, . . . }. This particularly yields that

in Qδ
i,T , the two first equations of the system (32) can be rewritten under the form

φi∂ts
ǫ,δ − div

(

Ki

(

ko,i(s
ǫ,δ)

µo

(

∇P ǫ,δ − ρog
)

+∇ϕi(s
ǫ,δ)

))

= ǫ∆πi(s
ǫ,δ), (40)

−div
(

Ki

(

Mi(s
ǫ,δ)∇P ǫ,δ − ζi(s

ǫ,δ)g
)

)

= 0. (41)

Lemma 2.3 There exists C depending only on φ, K, ρα, µα, Ω, T , g, αM (but neither on ǫ nor
on δ) such that for all ǫ, δ > 0,

∫∫

Qδ
i,T

(

∇P ǫ,δ
)2
dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

.

Proof. One has, thanks to the relation (19),

∫∫

Qδ
i,T

(

∇P ǫ,δ
)2
dxdt ≤ 1

α2
M

∫∫

Qδ
i,T

(

Mi(s
ǫ,δ)∇P ǫ,δ

)2
dxdt

≤ 1

α2
M

∫∫

Q
i,Tδ

(

ko,i(s
ǫ,δ)

µo
∇pǫ,δo +

kw,i(s
ǫ,δ)

µw
∇pǫ,δw

)2

dxdt

≤ 2

min(µo, µw)α2
M

∫∫

Q
i,T δ

(

ko,i(s
ǫ,δ)

µo

(

∇pǫ,δo

)2
+
kw,i(s

ǫ,δ)

µw

(

∇pǫ,δw

)2
)

dxdt.

We conclude by using Proposition 2.1. �

Lemma 2.4 There exists C depending only on φ, K, ρα, µα, Ω, T , g, αM (but neither on ǫ nor
on δ) such that for all ǫ, δ > 0, one has:

∫∫

Qδ
i,T

(

∇ϕi(s
ǫ,δ)
)2
dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

.

Proof. This estimate is only a consequence of the fact that in Qδ
i,T ,

∇ϕi(s
ǫ,δ) =

ko,i(s
ǫ,δ)

µo

(

∇pǫ,δo −∇P ǫ,δ
)

.

We conclude by using Proposition 2.1 and Lemma 2.3. �

Lemma 2.5 Let τ ∈ (0, T ) and let h > 0, then there exists Ch depending on φ, K, ρα, µα, Ω, T ,
g, Lϕi

, αM and h such that for all ǫ > 0 and for all δ ∈ (0, h),

∫∫

Q2h
i,T−τ

(

ϕi(s
ǫ,δ)(·, ·+ τ) − ϕi(s

ǫ,δ)
)2
dxdt ≤ τCh

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (42)
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Proof. Let ξh be a nonnegative smooth function equal to 1 in Ω2h
i and equal to 0 in

(

Ωh
i

)c
. Since

ϕi is Lipschitz continuous, one has

∫∫

Q2h
i,T−τ

(

ϕi(s
ǫ,δ)(x, t + τ)− ϕi(s

ǫ,δ)(x, t)
)2
dxdt

≤
∫∫

Qh
i,T−τ

ξh(x)
(

ϕi(s
ǫ,δ)(x, t+ τ) − ϕi(s

ǫ,δ)(x, t)
)2
dxdt

≤ Lϕi

∫∫

Qh
i,T−τ

ξh(x)
(

ϕi(s
ǫ,δ)(x, t + τ)− ϕi(s

ǫ,δ)(x, t)
)

(sǫ,δ(x, t+ τ) − sǫ,δ(x, t))dxdt

≤ −Lϕi

φi

∫∫

Qh
i,T−τ













∇
(

ξh(x)
(

ϕi(s
ǫ,δ)(x, t+ τ)− ϕi(s

ǫ,δ)(x, t)
))

∫ τ

0

(

Ki
ko,i(s

ǫ,δ)(x, t + θ)

µo
(∇pǫ,δo (x, t+ θ)− ρog)

+ǫ∇πi(sǫ,δ)(x, t+ θ)
)

dθ













dxdt

≤ 2τ
Lϕi

φi
‖∇
(

ξhϕi(s
ǫ,δ)
)

‖L2(Qh
i,T

) ×

[

(T |Ωi|) 1
2

µo
ρo|Kig|+

(

2

∫∫

Qh
i,T

(

(

Ki
ko,i(s

ǫ,δ)

µo
∇pǫ,δo

)2

+ ǫ
(

∇πi(sǫ,δ)
)2

)

dxdt

)
1
2

]

.

Moreover, since ‖ϕi‖∞ ≤ Lϕi
, there exists Ch depending only on Ω and h such that

‖∇
(

ξhϕi(s
ǫ,δ)
)

‖L2(Qh
i,T

) ≤ ChLϕi
+
√
2‖∇ϕi(s

ǫ,δ)‖L2(Qh
i,T

).

One concludes by using Proposition 2.1 and Lemma 2.4. �

We have now all the necessary estimates to consider the limit δ → 0 of our problem.

Proposition 2.6 There exists sǫ ∈ L∞(QT ; [0, 1]), p
ǫ
o, p

ǫ
w ∈ L2((0, T );H1(Ω)) solution to the sys-

tem (31). Moreover, there exists C depending only on φ, K, ρα, µα, Ω, T , g, αM such that

mK

2

∑

α∈{o,w}

∫∫

QT

kα,i(s
ǫ)

µα
(∇pǫα)2 dxdt

+ǫ

∫∫

QT

(∇π(sǫ))2 dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (43)

Furthermore, for i ∈ {1, 2}, one has P ǫ, ϕi(s
ǫ) ∈ L2((0, T );H1(Ωi)) with

P ǫ
1 − λw,1(π1(s

ǫ
1)) = P ǫ

2 − λw,2(π2(s
ǫ
2)), a.e. on Γ× (0, T ), (44)

where sǫi denotes the trace on Γ× (0, T ) from Qi,T of sǫ. Moreover,

∫

Ω

P ǫ(x, t)dx = 0 for a.e. t ∈ [0, T ], (45)
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and (sǫ, P ǫ) that satisfies the following system: ∀ψ ∈ D(Ωi × [0, T )),
∫∫

QT

φsǫ∂tψdxdt +

∫

Ωi

φs0ψ(·, 0)dx

−
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

ko,i(s
ǫ)

µo
(∇P ǫ − ρog) +∇ϕi(s

ǫ) + ǫ∇πi(sǫ)
)

· ∇ψ dxdt = 0; (46)

∑

i∈{1,2}

∫∫

Qi,T

Ki (Mi(s
ǫ)∇P ǫ − ζi(s

ǫ)g) · ∇ψ dxdt = 0. (47)

The following energy estimate holds:
∫∫

Qi,T

(∇P ǫ)2 dxdt+

∫∫

Qi,T

(∇ϕi(s
ǫ))2 dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (48)

Let h > 0 and τ ∈ (0, T ), then there exists Ch depending only on φ, K, ρα, µα, Ω, T , g, Lϕi
, αM

and h such that
∫∫

Qh
i,T−τ

(ϕi(s
ǫ)(·, ·+ τ) − ϕi(s

ǫ))2 dxdt ≤ τCh

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (49)

Proof. Let ǫ be a fixed strictly positive parameter. First of all, since for all δ > 0, 0 ≤ sǫ,δ ≤ 1 a.e.
in QT , there exists sǫ ∈ L∞(QT ; [0, 1]) such that, up to a subsequence,

sǫ,δ → sǫ in the L∞(QT ) weak- ⋆ sense, and 0 ≤ sǫ ≤ 1 a.e. in QT . (50)

Let h > 0. It follows from Lemma 2.4 that for all δ ∈ (0, h),
∫∫

Qh
i,T

(

∇ϕi(s
ǫ,δ)
)2
dxdt ≤ C.

Then in particular, for all ξ > 0, one has the following estimate on the space-translates of ϕi(s
ǫ,δ):

∫∫

Qh+ξ
i,T

(

ϕi(s
ǫ,δ)(·+ ξ, ·)− ϕi(s

ǫ,δ)
)2
dxdt ≤ Cξ2 (51)

where C does not depend on ǫ, δ, ξ (see e.g. [Bré83]). Using moreover Lemma 2.5 allows to use the
Kolmogorov compactness criterion (see e.g. [Bré83]) that provides that

(

ϕi(s
ǫ,δ)
)

δ∈(0,h)
is relatively

compact in L2(Qh
i,T ). Hence, up to a subsequence, there exists a function f ∈ L2(Qh

i,T ) such that

ϕi(s
ǫ,δ) converges almost everywhere in Qh

i,T towards f . Since ϕ−1
i is continuous, one obtains that

sǫ,δ converges almost everywhere in Qh
i,T towards ϕ−1

i (f) = sǫ. Since this convergence results holds
for all h > 0, one obtains that, up to a subsequence,

sǫ,δ → sǫ a.e. in QT . (52)

Because of the definition (34) of the global pressure P ǫ,δ and thanks to (35), one has, for almost
every t ∈ [0, T ] that

∫

Ω

pǫ,δw (x, t)dx = −
∫

Ω

λδw(π
δ(sǫ,δ))dx.

14



Hence, since we have supposed in this section that πi ∈ C1([0, 1];R) and since 0 ≤
(

λδw
)′ ≤ 1, we

obtain that
∣

∣

∣

∣

∫

Ω

pǫ,δw (x, t)dx

∣

∣

∣

∣

≤ ‖π1‖∞|Ω|. (53)

Similarly, using the fact that P ǫ,δ = pǫ,δo + λδo(π
δ(sǫ,δ)) provides that for almost every t ∈ [0, T ],

one has
∣

∣

∣

∣

∫

Ω

pǫ,δo (x, t)dx

∣

∣

∣

∣

≤ ‖π1‖∞|Ω|. (54)

Thanks to Lemma 2.2 and Poincaré-Wirtinger inequality, one can claim the existence of Cǫ which
is not depending on δ such that

∥

∥

∥

∥

pǫ,δβ − 1

|Ω|

∫

Ω

pǫ,δβ (x, ·)dx
∥

∥

∥

∥

L2((0,T );H1(Ω))

≤ Cǫ, for β ∈ {o, w}.

This yields, using (53)-(54), that
(

pǫ,δβ

)

δ
is uniformly bounded in L2((0, T );H1(Ω)). Thus there

exits pǫβ belonging to L2((0, T );H1(Ω)) such that, up to a subsequence,

pǫ,δβ → pǫβ weakly in L2((0, T );H1(Ω)). (55)

In particular, πδ(sǫ,δ) = pǫ,δo −pǫ,δw also converges weakly in L2((0, T );H1(Ω)) and strongly in L2(QT )
towards π(sǫ) thanks to (52). In order to check that P ǫ satisfies the equation (45), it suffices to
verify that P ǫ,δ tends weakly to P ǫ in L2(QT ). This convergence can be directly established using
the definition (34) and (52)–(55).

Writing (32a) under a weak form and taking the no-flux boundary condition into account yield:
∀ψ ∈ D(Ω× [0, T )),

∫∫

QT

φδsǫ,δ∂tψdxdt+

∫

Ω

φδs0ψ(·, 0)dx

−
∫∫

QT

Kδ k
δ
o(s

ǫ,δ)

µo

(

∇pǫ,δo − ρog
)

∇ψdxdt = ǫ

∫∫

QT

∇πδ(sǫ,δ)∇ψdxdt (56)

while the weak formulation corresponding to (32b) is: ∀ψ ∈ D(Ω× [0, T )),
∫∫

QT

φδsǫ,δ∂tψdxdt +

∫

Ω

φδs0ψ(·, 0)dx

+

∫∫

QT

Kδ k
δ
w(s

ǫ,δ)

µw

(

∇pǫ,δw − ρwg
)

∇ψdxdt = ǫ

∫∫

QT

∇πδ(sǫ,δ)∇ψdxdt. (57)

Since φδ and Kδ converge almost everywhere respectively towards φ and K, and since, thanks
to (52), kδβ(s

ǫ,δ) tends almost everywhere —thus strongly in Lp(QT ) for all p ∈ [1,∞)— towards
kβ(s

ǫ), one can pass to the limit in (56)–(57) using (52) and (55), obtaining
∫∫

QT

φsǫ∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

−
∫∫

QT

K
ko(s

ǫ)

µo
(∇pǫo − ρog)∇ψdxdt = ǫ

∫∫

QT

∇π(sǫ)∇ψdxdt (58)
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and
∫∫

QT

φsǫ∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

+

∫∫

QT

K
kw(s

ǫ)

µw
(∇pǫw − ρwg)∇ψdxdt = ǫ

∫∫

QT

∇π(sǫ)∇ψdxdt. (59)

Thanks to (52) and (55), one can also pass in the limit in the relation pǫ,δo − pǫ,δw = πδ(sǫ,δ), leading
to

pǫo − pǫw = π(sǫ),

then sǫ, pǫo and pǫw are solutions to (31).
Since in Qi,T , the function P ǫ has been built so that

Mi(s
ǫ)∇P ǫ =

ko,i(s
ǫ)

µo
∇pǫo +

kw,i(s
ǫ)

µw
∇pǫw,

classical calculations (see e.g. [AKM90], [CJ86]) yield that the weak formulation (58)–(59) is
equivalent to (46)–(47).

Let h > 0, then for all δ ∈ (0, h), one has

∇P ǫ,δ = ∇pǫ,δw +
ko,i(s

ǫ,δ)

ko,i(sǫ,δ) +
µo

µw
kw,i(sǫ,δ)

∇πi(sǫ,δ) a.e. in Qh
T .

Thus it follows from (52)–(55) that ∇P ǫ,δ converges towards ∇P ǫ weakly in L2(Qh
T ) as δ tends to

0. This ensures that
∫∫

Qh
i,T

(∇P ǫ)2 dx ≤ lim inf
δ→0

∫∫

Qh
i,T

(

∇P ǫ,δ
)2
dx.

Thanks to Lemma 2.3, one obtains that for all h > 0,
∫∫

Qh
i,T

(∇P ǫ)
2
dx ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

.

Letting now h tend to 0 provides the estimate (48). The estimates (43) and (49) are directly
provided by letting δ tend to 0 in the estimates (33) and (42).

Since pǫw ∈ L2((0, T );H1(Ω)), then it is continuous on Γ×(0, T ) in the sense that its traces from
Q1,T and Q2,T coincide. Using the definition (15) of the global pressure provides (44). �

2.2 Proof of Theorem 2

The goal of this section is to let tend ǫ to 0 in the system (31). We first give the following technical
lemma, that ensures that the global pressure jump at the interface remains uniformly bounded, and
that remains valid for non-matching capillary pressure functions.

Lemma 2.7 Let π1, π2 be increasing functions belonging to C1((0, 1);R)∩L1((0, 1)), then the func-
tions λw,i, defined by (16), are non-decreasing and bounded on R− while the functions λo,i, defined
by (17), are non-increasing and bounded on R+. As a consequence, the function

p 7→ Z(p) = λw,1(p)− λw,2(p) = λo,1(p)− λo,2(p)

is bounded on R by a quantity depending only on kα,i, µα and ‖πi‖L1((0,1)) (i ∈ {1, 2}, α ∈ {o, w}),
and admits finite limits as p→ ±∞.
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Proof. Denote by Li the Lipschitz constant of s 7→ ko,i(s)
ko,i(s)+

µo
µw

kw,i(s)
, then, for all p ≤ 0,

λw,i(p) =

∫ p

0

ko,i(π
−1
i (a))

ko,i(π
−1
i (a)) + µo

µw
kw,i(π

−1
i (a))

da ≥ −Li

∫ 0

p

|π−1
i (a)|da.

Then it follows from (7) that

0 ≥ λw,i(p) ≥ −Li

∥

∥π−1
i

∥

∥

L1(R−)
≥ −Li‖πi‖L1(0,1), ∀p ≤ 0,

and thus that, for all p ≤ 0, |Z(p)| ≤ Li ‖πi‖L1(0,1) . In order to deal with the case p ≥ 0, we remark

that, thanks to (18), Z(p) is also equal to λo,1(p)− λo,2(p), where

λo,i(p) =

∫ p

0

(

ko,i(π
−1
i (a))

ko,i(π
−1
i (a)) + µo

µw
kw,i(π

−1
i (a))

− 1

)

da ≥ −Li

∫ p

0

|π−1
i (a)− 1|da.

Hence, for all p ≥ 0,

0 ≥ λo,i(p) ≥ −Li

∥

∥π−1
i − 1

∥

∥

L1(R+)
≥ −Li‖πi‖L1((0,1)).

This yields that for all p ≥ 0, |Z(p)| ≤ Li ‖πi‖L1((0,1)). The fact that Z(p) admits a finite limit as

p → −∞ comes from the fact that so does λw,i(p), while λo,i(p) admits a finite limit as p → +∞,
ensuring that it is also the case for Z(p). �

Lemma 2.8 Denote by mi(P
ǫ)(t) = 1

|Ωi|

∫

Ωi
P ǫ(x, t)dx, then there exists C depending only on kα,j ,

‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}) such that

‖mi(P
ǫ)‖L2((0,T )) ≤ C.

Proof. It follows from (45) that for almost all t ∈ (0, T ), one has

|Ω1|m1(P
ǫ)(t) + |Ω2|m2(P

ǫ)(t) = 0. (60)

Thanks to (44), the following relation holds almost everywhere on Γ× (0, T ):

m1(P
ǫ)−m2(P

ǫ) = (P ǫ
2 −m2(P

ǫ))− (P ǫ
1 −m1(P

ǫ))− λw,2(π2(s
ǫ
2)) + λw,1(π1(s

ǫ
1)),

ensuring, thanks to (60), that

(m1(P
ǫ))2 ≤ C

(

(P ǫ
2 −m2(P

ǫ))2 + (P ǫ
1 −m1(P

ǫ))2 + (λw,2(π2(s
ǫ
2))− λw,1(π1(s

ǫ
1)))

2
)

.

Integrating this relation on Γ× (0, T ) provides

|Γ|
∫ T

0

(m1(P
ǫ)(t))

2
dt ≤ Aǫ

2 +Aǫ
1 +Bǫ, (61)

where, using that π1(s
ǫ
1) = π2(s

ǫ
2), we have set

Aǫ
i = C

∫ T

0

∫

Γ

(P ǫ
i −mi(P

ǫ))
2
dxdt

Bǫ = C

∫ T

0

∫

Γ

Z(πi(s
ǫ
i))

2dxdt,
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where the function Z was introduced in Lemma 2.7. Thanks to Lemma 2.7, there exists C depending
only on the prescribed data such that

Bǫ ≤ C. (62)

Thanks to the continuity of the trace operator mapping H1(Ωi) to L
2(Γ), there exists C depending

only on Ωi such that

‖P ǫ
i −mi(P

ǫ)‖L2(Γ×(0,T )) ≤ C‖P ǫ −mi(P
ǫ)‖L2((0,T );H1(Ωi)).

Now, from Poincaré-Wirtinger inequality and estimate (48), one has

‖P ǫ −mi(P
ǫ)‖L2((0,T );H1(Ωi)) ≤ C‖∇P ǫ‖L2(Qi,T ) ≤ C,

where C only depends on the prescribed data. As a consequence, there exists C depending only on
the prescribed data such that

Aǫ
i ≤ C. (63)

It follows then from (61)–(63) that
∫ T

0 (m1(P
ǫ)(t))

2
dt ≤ C. The derivation of an L2((0, T ))-estimate

on m2(P
ǫ) may then be deduced from (60). �

We now give the following lemma, which is a straightforward consequence of (48), Lemma 2.8
and the Poincaré-Wirtinger inequality.

Lemma 2.9 There exists P ∈ L2((0, T );H1(Ωi)) such that, up to a subsequence, P ǫ converges
towards P weakly in L2((0, T );H1(Ωi)) as ǫ tends to 0. Moreover,

‖P‖L2((0,T );H1(Ωi)) ≤ C,

where C only depends on kα,j, ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}).

Lemma 2.10 There exists s ∈ L∞(QT ; [0, 1]) such that, up to a subsequence,

sǫ → s a.e. in QT as ǫ→ 0,

ϕi(s
ǫ) → ϕi(s) weakly in L2((0, T );H1(Ωi)).

Moreover, there exists C depending only on kα,j, ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2},
α ∈ {o, w}) and Ch depending only on kα,j, ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2},
α ∈ {o, w}), Lϕi

and h such that

‖ϕi(s)‖L2((0,T );H1(Ωi)) ≤ C, (64)
∫∫

Qh
i,T−τ

(ϕi(s)(·, ·+ τ)− ϕi(s))
2
dxdt ≤ τCh, (65)

Proof. It follows from (48) and (49) that the family (ϕi(s
ǫ))ǫ is sequentially relatively compact

in L2(Qh
i,T ) for all h > 0. Then there exists fi ∈ L2(Qh

i,T ) such that, up to a subsequence,

ϕi(s
ǫ) → fi a.e. in Q

h
i,T as ǫ→ 0.

Since this relation stands for all h > 0, one can claim that

ϕi(s
ǫ) → fi a.e. in Qi,T as ǫ→ 0.
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Using the fact that ϕ−1
i is continuous, then, by setting s = ϕ−1

i (fi) in Qi,T , we obtain that

sǫ → s a.e. in QT as ǫ→ 0.

Since 0 ≤ sǫ ≤ 1 almost everywhere in QT , we obtain that s ∈ L∞(QT ; [0, 1]). It follows from (48)
that ϕi(s

ǫ) converges, up to a subsequence, towards ϕi(s) weakly in L2((0, T );H1(Ωi)), and that
the estimate (64) holds for the limit, while the estimate (65) is obtained by passing to the limit
in (49). �

Lemma 2.11 The function (x, t) 7→ ǫπ(sǫ(x, t), x) tends to 0 in L2((0, T );H1(Ω)) as ǫ tends to 0.

Proof. We deduce from the estimate (43) that

‖ǫπ(sǫ, ·)‖L2((0,T );H1(Ω)) ≤ Cǫ1/2,

ensuring the expected convergence. �

We now state a proposition that ends the proof of Theorem 2.

Proposition 2.12 Let s, P be the functions built in Lemmas 2.9 and 2.10. Then (s, P ) is a solution
to the problem (12)-(14), (20), (21), (23), (24), (29) in the sense of Definition 1.1.

Proof. The convergence properties stated in Lemmas 2.9, 2.10 and 2.11 allow to pass to the limit
ǫ→ 0 in the weak formulations (46) and (47). Since P ǫ converges weakly in L2((0, T );H1(Ωi)) for
i ∈ {1, 2}, it also converges weakly in L2(QT ). As a consequence, we deduce from (45) that for all
ψ ∈ L2((0, T )),

0 =

∫ T

0

(∫

Ω

P ǫ(x, t)dx

)

ψ(t)dt −→
ǫ→0

∫ T

0

(∫

Ω

P (x, t)dx

)

ψ(t)dt,

ensuring that for almost all t ∈ (0, T ),

∫

Ω

P (x, t)dx = 0.

Since ϕi(s
ǫ) converges towards ϕi(s) weakly in L2((0, T );H1(Ωi)) and strongly in L2(Qi,T ),

then it also converges strongly in L2((0, T );Hs(Ωi)) for s ∈ (1/2, 1). As a consequence, its trace on
Γ × (0, T ) converges strongly in L2(Γ × (0, T )). The continuity of ϕ−1

i ensures the convergence of
the traces sǫi towards si almost everywhere on Γ×(0, T ) (up to a subsequence) and in Lp(Γ×(0, T ))
for all p ∈ [1,∞). Hence, we can pass to the limit in the relation

π1(s
ǫ
1) = π2(s

ǫ
2) a.e. on Γ× (0, T ),

that gives π1(s1) = π2(s2) a.e. on Γ×(0, T ). Since P ǫ converges towards P weakly in L2((0, T );H1(Ωi)),
then P ǫ

i converges towards Pi weakly in L2(Γ× (0, T )). We can pass to the limit in the relation

P ǫ
1 − λw,1(π1(s

ǫ
1)) = P ǫ

2 − λw,2(π2(s
ǫ
2)),

that takes sense in L2(Γ× (0, T )), and that provides (29). �
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3 Existence for non-matching capillary pressure curves

In this section, we aim to prove the existence of a weak solution in the case where the capillary
pressure curve do not satisfy the assumption (28). As it has been done in [BLS09, CGP09] in
the case where the elliptic equation on the pressure can be removed, as for example in the one-
dimensional case, the main idea consists in approximating the capillary pressure graphs π̃i by
regularized capillary pressure functions πi,n satisfying the matching conditions (28).

Let (πi,n)n≥1 ⊂ C1([0, 1];R) be a sequence of approximate capillary pressures satisfying the

matching condition (28), i.e. π1,n(0) = π2,n(0) and π1,n(1) = π2,n(1), such that

πi,n = πi on

[

1

n
, 1− 1

n

]

, (66)

such that
πi,n → πi in L

1(0, 1) as n→ ∞, (67)

and such that
πi,n(0) → min

j
πj(0), πi,n(1) → max

j
πj(1) as n→ ∞, (68)

the quantities minj πj(0) and maxj πj(0) belonging to R. In particular, due to (67), there exists
Cπ not depending on n fulfilling

∫ 1

0

|πi,n(a)| da ≤ Cπ, ∀i ∈ {1, 2}, ∀n ≥ 1, (69)

Note that Dini’s theorem implies that

π−1
i,n → π−1

i uniformly on R as n→ ∞. (70)

and that thanks to (67), one has furthermore that

‖π−1
i,n − π−1

i ‖L1(R) → 0 as n→ ∞. (71)

Remark 5. For proving (70), we use the following classical version of Dini’s theorem: let (fn)n be a
sequence of continuous nondecreasing functions from [0,∞) into some bounded interval [a, b] ⊂ R
which converges pointwise to some continuous function and such that limn→∞ fn(∞) = f(∞), then,
the convergence is uniform on [0,∞).

Denoting by

ϕi,n(s) =

∫ s

0

ko,i(a)kw,i(a)

µwko,i(a) + µokw,i(a)
π′
i,n(a)da,

we assume furthermore that the sequence (πi,n) is chosen such that there exists Cϕ, not depending
on n, such that, for all n ≥ 1,

Lϕi,n
:=
∥

∥ϕ′
i,n

∥

∥

L∞(0,1)
=

∥

∥

∥

∥

ko,ikw,i

µwko,i + µokw,i
π′
i,n

∥

∥

∥

∥

L∞(0,1)

≤ Cϕ. (72)
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Figure 2: An example of functions πi,n fulfilling the matching condition (28)
approximating non-matching capillary pressure functions πi.

This particularly yields that ϕi,n → ϕi uniformly on [0, 1] as n → ∞. One denotes by λw,i,n then
function defined by

λw,i,n(p) =

∫ p

0

ko,i(π
−1
i,n(a))

µo

µw
kw,i(π

−1
i,n(a)) + ko,i(π

−1
i,n(a))

da, ∀p ∈ R,

and

λo,i,n(p) = −
∫ p

0

kw,i(π
−1
i,n(a))

µw

µo
ko,i(π

−1
i,n(a)) + kw,i(π

−1
i,n(a))

da, ∀p ∈ R.

Denoting by Li a Lispchitz constant of
ko,i

µo
µw

kw,i+ko,i
, then, for all p ∈ R, one has

|λw,i,n(p)− λw,i(p)| ≤ Li

∫ max(0,p)

min(0,p)

|π−1
i,n(a)− π−1

i (a)|da

≤ Li‖π−1
i,n − π−1

i ‖L1(R) → 0 as n→ ∞
thanks to (71), so that

λw,i,n → λw,i uniformly on R as n→ ∞. (73)

For any fixed n, Theorem 2 ensures the existence of a weak solution (sn, Pn) to the following
approximate problem. In Qi,T , we prescribe the conservations laws

φi∂tsn − div

(

Ki

(

ko,i(sn)

µo
(∇Pn − ρog) +∇ϕi,n(sn)

))

= 0, (74a)

−div (Ki (Mi(sn)∇Pn − ζi(sn)g)) = 0. (74b)
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On Γ× (0, T ), the transmission conditions are given by

π1,n(s1,n) = π2,n(s2,n) on Γ× (0, T ), (74c)

P1,n − λw,1,n(π1,n(s1,n)) = P2,n − λw,2,n(π2,n(s2,n)), (74d)
∑

i∈{1,2}

Ki

(

ko,i(sn)

µo
(∇Pn − ρog) +∇ϕi,n(sn)

)

· ni = 0, (74e)

∑

i∈{1,2}

Ki (Mi(sn)∇Pn − ζi(sn)g) · ni = 0, (74f)

where si,n and Pi,n denote the respective traces of (sn)|Ωi
and (Pn)|Ωi

on Γ× (0, T ). The system is

closed by no-flux boundary conditions on ∂Ω× (0, T ) and the initial condition sn(·, 0) = s0 in Ω.

3.1 Uniform estimates with respect to n and compactness properties

First of all, since for all n ≥ 1, one has sn ∈ L∞(QT ; [0, 1]), there exists s ∈ L∞(QT ; [0, 1]) such
that, up to a subsequence,

sn → s in the L∞(QT ) weak- ⋆ sense. (75)

Thanks to Lemma 2.10 and to the assumption (69) on the sequences (πi,n)n, there exists C (not
depending on n) such that

∫∫

Qi,T

(∇ϕi,n(sn))
2
dxdt ≤ C.

Moreover, since (ϕi,n)n converges uniformly towards ϕi on [0, 1], then (ϕi,n(sn))n is uniformly
bounded in L∞(QT ) ⊂ L2(QT ). Thus there exists fi ∈ L2((0, T );H1(Ωi)) such that, up to a
subsequence,

ϕi,n(sn) → fi weakly in L2((0, T );H1(Ωi)) as n→ ∞. (76)

Let τ, h > 0, then it follows from Lemma 2.10 and (69) that there exists Ch (not depending on n)
such that

∫∫

Qh
i,T−τ

(ϕi,n(sn(·, ·+ τ)) − ϕi,n(sn))
2 dxdt ≤ τCh.

Hence the sequence (ϕi,n(sn))n is relatively compact in L2(Qh
i,T ) for all h > 0, thus also in L2(Qi,T ).

Using Minty’s trick (see e.g. [CGP09]), we obtain that up to a subsequence,

ϕi,n(sn) → ϕi(s) = fi a.e. in Qi,T .

Since ϕ−1
i is continuous, and since ϕi,n converges uniformly to ϕi (so that an adequate extension

of ϕ−1
i ◦ ϕi,n converges uniformly to the identity), we deduce that

sn → s a.e. in QT . (77)

Thanks to Lemma 2.9 and (69), we can claim that there exists P ∈ L2((0, T );H1(Ωi)) such that

Pn → P weakly in L2((0, T );H1(Ωi)) as n→ ∞. (78)
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Thus Pn tends to P also weakly in L2(QT ), hence, since Pn satisfies

∫

Ω

Pn(x, t)dx = 0 for a.e. t ∈ (0, T ).

Using again arguments developed in the proof of Proposition 2.12, one obtains for n tending to ∞
that

∫

Ω

P (x, t)dx = 0 for a.e. t ∈ (0, T ).

3.2 Recovery of the weak formulations (25) and (26)

Let ψ ∈ C∞
c (Ω× [0, T )), then thanks to (75), one has

∫∫

QT

φsn∂tψdxdt →
∫∫

QT

φs∂tψdxdt as n→ ∞. (79)

Thanks to (76), (77) and (78), one has

lim
n→∞

∑

i∈{1,2}

∫∫

Qi,T

Ki

(

ko,i(sn)

µo
(∇Pn − ρog)−∇ϕi,n(sn)

)

· ∇ψdxdt

=
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

ko,i(s)

µo
(∇P − ρog)−∇ϕi(s)

)

· ∇ψdxdt. (80)

The weak formulation (25) is then a direct consequence of (79) and (80).
The same way, in order to recover (26), it suffices to check that thanks to (77) and (78),

Ki (Mi(sn)∇Pn − ζi(sn)g) → Ki (Mi(s)∇P − ζi(s)g)

weakly in L2(Qi,T ) as n→ ∞.

3.3 Recovery of the transmission conditions on Γ× (0, T )

Since Pn converges weakly towards P in L2((0, T );H1(Ωi)), one has

Pi,n → Pi weakly in L2(Γ× (0, T )) as n→ ∞. (81)

Since the sequence (ϕi,n(sn)) converges (up to a subsequence) to ϕi(s) weakly in L
2((0, T );H1(Ωi))

and strongly in L2(Qi,T ) and since Ωi is supposed to be Lipschitz continuous, then for all s ∈ (12 , 1),
the sequence (ϕi,n(sn)) converges strongly in L2((0, T );Hs(Ωi)). In particular, the trace ϕi,n(si,n)
converges strongly in L2(Γ× (0, T )) towards ϕi(si), thus almost everywhere up to a new extraction.
Applying again the arguments used to derive (77), we deduce that

si,n → si a.e. on Γ× (0, T ). (82)

We denote by U and V the measurable sets of Γ× (0, T ) defined by

U = {(x, t) ∈ Γ× (0, T ) | {s1(x, t), s2(x, t)} 6= {0, 1}} and V = Uc.
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It is worth noticing that V is negligible if minj πj(1) > maxj πj(0). Indeed, assume for instance
that s1(x, t) = 0, s2(x, t) = 1; then, for α > 0 small and n large enough, we have

π2(1− α) = π2,n(1− α) ≤ π2,n(s2,n) = πn = π1,n(s1,n) ≤ π1,n(α) = π1(α). (83)

This implies π2(1− α) ≤ π1(α) and, letting α → 0:

min
j
πj(1) ≤ π2(1) ≤ π1(0) ≤ max

j
πj(0).

We deduce the same in the case s1(x, t) = 1, s2(x, t) = 0.
In the sequel, we denote by Iπ = [minj πj(0),maxj πj(1)] and

πn := π1,n(s1,n) = π2,n(s2,n). (84)

Lemma 3.1 There exists a measurable function π mapping U to Iπ such that πn converges almost
everywhere to π on U , and such that

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π).

Proof. Let (x, t) ∈ U such that (s1,n(x, t), s2,n(x, t)) tends to (s1(x, t), s2(x, t)).

• if (s1, s2) = (0, 0), then, for α > 0 and for n large enough

π1,n(0) = π2,n(0) ≤ πn = π1,n(s1,n) = π2,n(s2,n) ≤ min
j
πj,n(α) = min

j
πj(α).

Since πj,n(0) → minj πj(0) as n→ ∞, it follows that πn → π = minj πj(0). In particular,

∃ j s.t. π = πj(sj) with π ∈ π̃1(s1) ∩ π̃2(s2). (85)

Note that if one πj is unbounded near 0, then minj πj(0) = −∞ = π ∈ π̃1(0) ∩ π̃2(0).

• if (s1, s2) = (1, 1), we prove similarly that πn → π = maxj πj(1) so that (85) remains valid.

• if we are not in the two previous cases, then, there exists j such that sj,n → sj ∈ (0, 1). In
this case, for n large enough, πn = πj,n(sj,n) = πj(sj,n) so that, by continuity, πn → πj(sj).
Assume for instance j = 1. Then, either s2 ∈ (0, 1), in which case by continuity π = π2(s2)
also and (85) holds. If s2 = 0, then since, for α > 0 small and n large enough,

πn = π2,n(s2,n) ≤ π2,n(α) = π2(α),

we have π ≤ π2(0). Therefore π ∈ π̃2(0) and again (85) holds. Finally, if s2 = 1, we similarly
have πn = π2,n(s2,n) ≥ π2(1 − α) and π ≥ π2(1) or π ∈ π̃2(1) and (85) holds.

Now, let us pass to the limit in

P1,n − P2,n = λw,1,n(πn)− λw,2,n(πn).

The left hand side converges weakly in L2(Γ× (0, T )) towards P1 − P2, thus also weakly in L2(U).
Thanks to Lemma 2.7, to the almost everywhere convergence on U of πn towards π, and to the
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uniform convergence (73) of λw,i,n towards λw,i, the righthand side converges strongly in L2(U)
towards λw,1(π)− λw,2(π). Then the relation

P1 − P2 = λw,1(π)− λw,2(π)

holds in L2(U), thus almost everywhere. �

As it has been already noticed, the set V has to be taken in consideration only if

π := min
i
πi(1) ≤ π := max

i
πi(0). (86)

Now, we assume that (86) is fulfilled. For any η > 0, we denote by Tη the function defined on R by

Tη(c) = min (π + η,max(π − η, c)) =







π − η if c ≤ π − η,
c if c ∈ [π − η, π + η],
π + η if c ≥ π + η.

Lemma 3.2 There exists π ∈ L∞(V ; [π, π]) such that, for all η > 0, up to a subsequence,

Tη(πn) → π in the L∞(V)-weak- ⋆ sense as n→ ∞.

Proof. First, since the sequence (Tη(πn))n is uniformly bounded on V , then there exists πη ∈
L∞(V) such that, up to a subsequence,

Tη(πn) → πη in the L∞(V)-weak- ⋆ sense as n→ ∞.

It remains to show that πη does not depend on η. Let η1, η2 > 0, then (up to a new subsequence),
one has

Tη1
(πn)− Tη2

(πn) → πη1 − πη2 .

Let (x, t) ∈ V such that s1,n(x, t) → s1(x, t) and s2,n(x, t) → s2(x, t), with {s1(x, t), s2(x, t)} =
{0, 1}, then it follows from (84) that

lim inf
n

πn(x, t) ≥ min
i
πi(1), lim sup

n
πn(x, t) ≤ max

i
πi(0).

As a consequence,

Tη1
(πn(x, t)) − Tη2

(πn(x, t)) → 0 a.e.(x, t) ∈ V as n→ ∞.

By dominated convergence, this implies that [Tη1
(πn) − Tη2

(πn)]ψ converges to 0 in L1(V) for all
ψ ∈ L1(V) and, consequently, that Tη1

(πn)−Tη2
(πn) converges also to 0 in L∞(V)−weak− ⋆. We

deduce πη1 = πη2 .
It remains to show that π ≤ π(x, t) ≤ π for almost all (x, t) ∈ V . Fix η > 0, and assume,

without loss of generality, that π2(1) ≤ π1(0). Using the fact that Tη is nondecreasing, it follows
from (83) that, for n large enough,

Tη(π2(1− α)) ≤ Tη(πn) ≤ Tη(π1(α)).

Letting first n tend to ∞, and then α tend to 0 gives

Tη(π) = π ≤ π(x, t) ≤ π = Tη(π). �
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Lemma 3.3 Let π ∈ L∞(V) be the function defined by Lemma 3.2, then, for a.e. (x, t) ∈ V, one
has

P1(x, t)− P2(x, t) = λw,1(π(x, t)) − λw,2(π(x, t))

Proof. First, thanks to (73), we can claim that

λw,1,n(πn)− λw,2,n(πn) = λw,1(πn)− λw,2(πn) + ǫ(n),

with limn→∞ ǫ(n) = 0. Thus, since Pi,n → Pi weakly in L2(V), it is sufficient to show that

λw,1(πn)− λw,2(πn) → λw,1(π)− λw,2(π) weakly in L2(V) as n→ ∞.

Let ψ ∈ L2(V), then, denoting by Z(p) = λw,1(p)− λw,2(p), for all η > 0,

∫∫

V

Z(πn)ψdxdt = An(η) + Bn(η), (87)

where one has

An(η) =

∫∫

V

Z(Tη(πn))ψdxdt, Bn(η) =

∫∫

V

(Z(πn)− Z(Tη(πn)))ψdxdt.

Fix ǫ > 0. Since, as stated in Lemma 2.7, Z(p) admits finite limits as p → ±∞, then there exists
R such that

η > R =⇒ ‖Z − Z ◦ Tη‖∞ ≤ ǫ,

ensuring that
η > R =⇒ |Bn(η)| ≤ Cǫ. (88)

We suppose now, without loss of generality, that π1(1) ≤ π2(0). Then for almost all (x, t) ∈ V ,
s2(x, t) = 0 and s1(x, t) = 1. One has

λw,2(Tη(πn)) =

∫ π2(0)

0

f2(a)da+

∫ Tη(πn)

π2(0)

f2(a)da,

where fi(p) =
ko,i◦π

−1

i (p)
µo
µw

kw,i◦π
−1
2 (p)+ko,i◦π

−1

i (p)
. Note that fi(p) = 0 if p ≤ πi(0), and fi(p) = 1 if p ≥ πi(1).

For almost all (x, t) ∈ V , one has lim supn πn(x, t) ≤ π2(0), thus

lim
n→∞

λw,2(Tη(πn(x, t))) =

∫ π2(0)

0

f2(a)da. (89)

Similarly, the relation

λw,1(Tη(πn))− Tη(πn) =

∫ π1(1)

0

(f1(a)− 1)da+

∫ Tη(πn)

π1(1)

(f1(a)− 1)da

yields that, for almost all (x, t) ∈ V ,

lim
n→∞

λw,1(Tη(πn(x, t))) − Tη(πn)(x, t) =

∫ π1(1)

0

(f1(a)− 1)da. (90)
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As a consequence of (89), (90) and Lemma 3.2, we obtain that, for all η > 0,

lim
n→∞

An(η) = C

∫ ∫

V

ψ dxdt +

∫ ∫

πψ dxdt,

where

C =

(

∫ π1(1)

0

[f1(a)− 1]da−
∫ π2(0)

0

f2(a)da

)

.

Since π1(1) = π ≤ π ≤ π = π2(0), we have

∫ π2(0)

π

f2(a)da = 0 =

∫ π1(1)

π

[f1(a)− 1]da,

so that

C + π =

∫ π

0

f1(a)da−
∫ π

0

f2(a)da = λw,1(π) − λw,2(π),

and

lim
n→∞

An(η) =

∫ ∫

V

Z(π)ψ dxdt. �

In order to conclude the proof of Theorem 1, we gather the results of Lemmas 3.1, 3.2 and 3.3
in the following proposition.

Proposition 3.4 There exists a measurable function π mapping Γ× (0, T ) to R such that, almost
everywhere on Γ× (0, T ), one has

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π).
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