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Finite volume approximation for an immiscible two-phase flow in

porous media with discontinuous capillary pressure∗

Konstantin Brenner† Clément Cancès‡ Danielle Hilhorst§

February 21, 2013

Abstract

We consider an immiscible incompressible two-phase flow in a porous medium composed of two different
rocks so that the capillary pressure field is discontinuous at the interface between the rocks. This leads us
to apply a concept of multi-valued phase pressures and a notion of weak solution for the flow which have
been introduced in [Cancès & Pierre, SIAM J. Math. Anal, 44(2):966–992, 2012]. We discretize the prob-
lem by means of a numerical algorithm which reduces to a standard finite volume scheme in each rock and
prove the convergence of the approximate solution to a weak solution of the two-phase flow problem. The
numerical experiments show in particular that this scheme permits to reproduce the oil trapping phenomenon.

Keywords : Finite volume schemes, degenerate parabolic, two-phase flow in porous media, discontinu-
ous capillarity

AMS Classification : 35K65, 35R05, 65M12, 76M12

1 Introduction

1.1 Multivalued phase pressures

Models of incompressible immiscible two-phase flows are widely used in oil engineering to predict the motion
of oil in the underground. They have been widely studied from a mathematical point of view (see e.g. [1],
[2], [6], [7], [18]) as well as from a numerical point of view (see e.g. [17], [20], [21], [19], [30], [35]). In these
models, sometimes referred to as dead-oil approximations, it is assumed that there are only two phases, oil
and water, and that each phase is composed of a single component.

The governing equations are derived by substituting the Darcy-Muskat law in the conservation equations for
both phases, so that we obtain for each phase α ∈ {o, w} (o corresponds to the oil phase, while w corresponds
to the water phase):

φ∂tsα − div
(

K
kα(sα)

µα
(∇pα − ραg)

)
= 0, (1)

where φ = φ(x) is the porosity of the rock (φ ∈ (0, 1) in the domain Ω), sα is the saturation of the phase α, the
permeability of the porous medium K is supposed to be a positive scalar function, the relative permeability
kα of the phase α is an increasing function of the saturation sα, satisfying kα(0) = 0 and kα(1) = 1, µα, pα
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and ρα denote respectively the viscosity, the pressure and the density of the phase α, and g is the gravity
vector. Assuming that the two phases occupy the whole porous volume, one has

so + sw = 1, (2)

so that we can eliminate the water saturation. We note s := so, so that sw = 1− s.

We suppose that the phase pressures satisfy the relation

po − pw = π(so), (3)

where π is the capillary pressure function, which is strictly increasing on (0, 1).

It follows from [16] and [1] that the quantity

∑

α∈{o,w}

∫ T

0

∫

Ω

K
kα(sα)

µα
(∇pα)2 dxdt (4)

is bounded. However, when the phase α vanishes, i.e. when sα = 0, this does not provide any control on the
pressure pα. This leads to define pα as a graph, allowing it to take any value lower than a threshold value,
for which the phase α would appear. This point of view, which has been developed in [16], leads to

po ∈ [−∞, pw + π(0)] if so = 0 (5)

and
pw ∈ [−∞, po − π(1)] if so = 1. (6)

We will take advantage of this multivalued formalism in order to deal with the case where the porous medium
is composed of several rock types, and where the functions describing the porous medium depend of space in
a discontinuous way.

Following the approach of [10] and [15], the capillary pressure function s 7→ π(s,x) has to be extended into
a maximal monotone graph π̃(·,x) from [0, 1] to R defined by

π̃(s,x) =





[−∞, π(0,x)] if s = 0,
π(s,x) if s ∈ (0, 1),
[π(1,x),+∞] if s = 1,

so that the relations (5) and (6) imply that

po(x, t)− pw(x, t) ∈ π̃(s(x, t),x) for (x, t) ∈ Ω× (0, T ). (7)

Note that relation (7) does not enforce a unique value for the phase pressures. Nevertheless, if sα(x, t) > 0,
the corresponding phase pressure pα(x, t) is uniquely defined since it is controlled by the quantity (4).

Now, focusing on the case where x 7→ π(s,x) is discontinuous across a surface Γ separating two rocks Ω1

and Ω2, the problem turns to finding phase pressures on the interface such that the relation (7) is satisfied
on both sides of Γ. Denoting by π̃i the capillary pressure graph in Ωi and by si the one-sided trace of the
saturation on Γ from Ωi, then the phase pressures have to satisfy

po(x, t)− pw(x, t) ∈ π̃1(s1(x, t)) ∩ π̃2(s2(x, t)) for (x, t) ∈ Γ× (0, T ). (8)

We stress that the one-sided traces pα,i of the phase pressure pα (if it exists) can be discontinuous across
Γ, i.e. pα,1 6= pα,2, if sα,j = 0 on one side of the interface. However, there exist interface phase pressures
pα(x, t) for x ∈ Γ such that (8) holds. It is important to notice that, for x ∈ Γ, if sα,1(x, t) and sα,2(x, t)
both belong to (0, 1], the phase pressure pα(x, t) corresponds to the trace of the phase pressure pα on both
sides of the interface.

Finally, we prescribe the balance of the flux across the interface, i.e.,
∑

i∈{1,2}
Ki

kα,i(s)
µα

(
∇pα|Ωi

− ραg
)
· ni = 0 on Γ, (9)

where pα|Ωi
denotes the restriction of pα to the domain Ωi, ni is the normal to Γ outward w.r.t. Ωi, and Ki

denotes the permeability of Ωi.
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1.2 A brief review of the state of the art

Since discontinuous capillarity play a crucial role in the qualitative behavior of the saturation field in het-
erogeneous rock, numerous contributions have already been published for proposing numerical methods and
mathematical analysis tools on this subject.

In particular, as pointed out by C.J. van Duijn et al. [38], such capillarity discontinuities may be responsible
of oil-trapping. The first rigorous existence and uniqueness results in the one dimensional case has been
proposed by M. Bertsch el al. [8] for a particular choice of functions characterizing the porous medium. This
existence and uniqueness frame was extended to general physical data in [15] and [11], but still in the one-
dimensional frame, relying on the graph extension of the capillary pressure. Note that this graph extension
was simultaneously and independently proposed in [10]. The concept of multivalued phase pressures, based
on the graph extension of the capillary pressure, allowed to prove the global existence of a solution to the
problem [16].

Concerning the numerical approximation of the solution to the problem, let us mention first the contribution
of B.G. Ersland et al [25] where a method based on the characteristic method combined with Finite Elements
was proposed. In [23], G. Enchéry et al. proved the convergence of a Finite Volume scheme for a simplified
model reducing to a single equation, but the convergence proof was performed in the multidimensional
case. It was then shown in [11] that, in the one-dimensional case, and accounting the convection, a closely
related scheme converges towards the unique one-dimensional solution to the problem. In [29], R. Eymard et
al. studied general Finite Volume method based on a pressure–pressure formulation. The convergence of
the method was proved under a non-degeneracy assumption. A numerical method based on Mixed Finite
Element was developed by H. Hoteit and A. Firoozabadi [34], while a Discontinuous Galerkin method has
been proposed by A. Ern et al. [24], and its effective implementation was discussed in the contribution of I.
Mozolevski and L. Schuh [36]. As far as we know, our contribution is the first one where the convergence of
the numerical approximation is proved without particular assumption, like non-degeneracy or reduction of
the model to a single equation.

In their recent contribution [3], B. Amaziane et al. studied the case of a compressible two-phase flow. Another
model enrichment, that consists in taking the dynamic capillary effects into account, has been studied in [32],
[33], where numerical strategies are proposed for solving the degenerate pseudo-parabolic corresponding
problem. Finally, let us mention the contribution of A. Papafotiou et al. [37] where a node centered Finite
Volume method was built in order to take the hysteresis into account.

Finally, since the effects of the capillary diffusion are often negligible within the homogeneous rock, several
contributions have been proposed for computing the vanishing capillarity solution. Let us mention in partic-
ular the contributions [12], [13], [14], where it has been established that the interaction between buoyancy
and capillary pressure discontinuities can produce singular effects yielding oil trapping. In the recent contri-
bution [5], it has been pointed out that, even if the capillarity seems to be neglected in the so-called vanishing
capillarity regime, the capillary pressure curves have a strong influence on the behavior of the solution. A
“cheap” Finite Volume scheme was proposed in [4] for simulating the vanishing capillarity solution in the
multidimensional context.

1.3 The model problem and assumptions on the data

We assume that the porous medium Ω is a connected open bounded polygonal subset of Rd, and is made of
two disjoint homogeneous rocks Ωi, i ∈ {1, 2}, which are both open polygonal subsets of Rd. We denote by
Γ the interface between Ω1 and Ω2, i.e.

Γ = ∂Ω1 ∩ ∂Ω2.

For all functions a depending on the physical characteristics of the rock, we use the notation ai = a(·,x) if
x ∈ Ωi.
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We assume that the initial phase distribution is known

s|t=0 = s0 ∈ L∞(Ω; [0, 1]). (10)

We also assume the natural boundary conditions

Ki
kα,i(s)

µα
(∇pα − ραg) · ni = 0, on (∂Ω ∩ ∂Ωi)× (0, T ), (11)

where the positive constant T is fixed but arbitrary. Nevertheless, it should be possible to deal with other
types of boundary conditions, such as Dirichlet conditions on a part of the boundary and Neumann conditions
on the remaining part.

We make the following assumptions on the capillary pressure functions.

Assumption 1 The functions πi are increasing, locally Lipschitz continuous on (0, 1), and belong to L1(0, 1).

Their graph extensions, denoted by π̃i, are defined by

π̃i(s) =





[−∞, πi(0)] if s = 0,
πi(s) if s ∈ (0, 1),
[πi(1), +∞] if s = 1.

Since π̃i are maximal monotone graphs from [0, 1] to R, they admit maximal monotone inverse graphs θi

from R to [0, 1], defined by

θi(p) :=





0 if p ≤ πi(0),
π−1

i (p) if p ∈ (πi(0), πi(1)),
1 if p ≥ πi(1).

Due to the fact that πi are supposed to be strictly increasing, the graphs θi are in fact nondecreasing
continuous functions defined from R to [0, 1]. The following property holds:

θi(p) = s iff p ∈ π̃i(s). (12)

Therefore, at the interface Γ, one has

π ∈ π̃1(s1) ∩ π̃2(s2) iff s1 = θ1(π) and s2 = θ2(π). (13)

The relations (13) are illustrated on Fig. 1.

We now state another crucial property of the functions θi, whose proof is given in [16].

Lemma 1.1 It follows from Assumption 1 that

θi ∈ L1(R−) and (1− θi) ∈ L1(R+), i ∈ {1, 2}.

We do also the following assumptions on the relative permeabilities.

Assumption 2 For α ∈ {o, w}, the relative permeabilities kα,i of the phase α are the strictly increasing
Lipschitz continuous functions of the saturation sα, satisfying kα,i(0) = 0 and kα,i(1) = 1.

The last assumption on the data we need concerns the Kirchhoff transform function, the will be introduced
in Section 1.4.

Assumption 3 For i ∈ {1, 2}, the function s 7→ ko,i(s)kw,i(s)π′i(s) belongs to L∞(0, 1).

All along the paper, we denote by QT and Qi,T the space-time cylinders

QT := Ω× (0, T ), Qi,T := Ωi × (0, T ).
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Figure 1: The capillary pressure graphs π̃i are obtained by extending the capillary pressure functions πi by
adding them the semi-axes [−∞, πi(0)] and [πi(1), +∞]. At the interface Γ, to each capillary pressure level π
correspond two values si = θi(π) that are the one-sided traces of the saturation on both sides of the interface.

1.4 Global pressure formulation of the problem

The lack of control on the phase pressures, described in Section 1.1 and in [16], leads to important math-
ematical difficulties. A classical mathematical tool to circumvent some of them consists in introducing the
so-called global pressure P as a new unknown function.

Define the total mobility Mi by Mi(s) = Ki

(
ko,i(s)

µo
+

kw,i(s)
µw

)
. Since the relative permeabilities kα,i are

supposed to be strictly monotone, one has kα,i(s) > 0 if s ∈ (0, 1). As a consequence,

there exists αM > 0 such that, for i ∈ {1, 2}, and for all s ∈ [0, 1],
one has Mi(s) ≥ αM .

(14)

Then, for (x, t) ∈ QT,i and π ∈ π̃i(s(x, t)), we set

P (x, t) = pw(x, t) +
∫ π

0

ko,i(θi(a))
ko,i(θi(a)) + µo

µw
kw,i(θi(a))

da, (15)

= po(x, t)−
∫ π

0

kw,i(θi(a))
kw,i(θi(a)) + µw

µo
ko(θi(a))

da. (16)

The global pressure P is built so that it satisfies

Mi(s)∇P = Ki

(
ko,i(s)

µo
∇po +

kw,i(s)
µw

∇pw

)
.

While the phase pressures pα shall be defined as multivalued, it has been pointed out in [16] that the global
pressure P is always single valued (despite it seems to be defined up to a choice of π ∈ π̃i(s)), and is therefore
much easier to work with. Remark that P may however be discontinuous at the interface Γ. It is well known
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that in the case where the domain Ω is homogeneous ([17]), or if x 7→ π(s,x) is a smooth fonction ([7], [18]),
then the global pressure belongs to the space L∞(0, T ; H1(Ω)). This regularity result does not remain true,
as it will be shown in the sequel, in the case of a discontinuous capillary pressure.

Let us define the fractional flow function fi(s) =
ko,i(s)

ko,i(s) + µo

µw
kw,i(s)

and introduce the Kirchhoff trans-

form

ϕi(s) =
∫ s

0

Ki
ko,i(a)kw,i(a)

µwko,i(a) + µokw,i(a)
π′i(a)da, ∀s ∈ (0, 1), (17)

that we extend in a continuous way by constants outside of (0, 1). It follows from Assumption 2 that
the functions fi are Lipschitz continuous and increasing on [0, 1], with fi(0) = 0 and fi(1) = 1. Moreover,
Assumptions 1, 2 and 3 imply that the functions ϕi are 1 and 2 that the functions ϕi are Lipschitz continuous
and increasing on [0, 1].

It is well known (see [17]) that the system (1)–(3) can be formally rewritten in Qi,T under the form




φi∂ts + div (fi(s)qi + γi(s)g −∇ϕi(s)) = 0,
divqi = 0,
qi = −Mi(s)∇P + ζi(s)g,

(18)

where

γi(s) = Ki(ρo − ρw)
ko,i(s)kw,i(s)

µwko,i(s) + µokw,i(s)
(19)

and

ζi(s) = Ki

(
ko,i(s)

µo
ρo +

kw,i(s)
µw

ρw

)
.

The boundary conditions on the phase fluxes (11) are given by

qi · ni = 0, (fi(s)qi + γi(s)g −∇ϕi(s)) · ni = 0, on (∂Ω ∩ ∂Ωi)× (0, T ). (20)

Concerning the transmission conditions on the interface Γ, we look for two phase pressures so that the
relation (7) holds. This leads us to require the existence of a capillary pressure π such that

π ∈ π̃1(s1) ∩ π̃2(s2), (21)
P1 −W1(π) = P2 −W2(π), (22)

where
Wi(p) =

∫ p

0

fi ◦ θi(u)du.

In view of (15), the function Wi is such that P − Wi(π) = pw,i for any π ∈ π̃i(s). Therefore, Eq. (22) is
nothing but the requirement of the continuity of the water pressure in an extended sense. Indeed, if s1 and
s2 both belong to [0, 1), water is present on both sides of the interface, and (22) requires the continuity of the
water pressure. But if s1 or s2 is equal to 1, then (21)–(22) only enforce the existence of an interface water
pressure such that (8) holds. By adding π (given by (21)) on both sides in (22), we deduce from (16) that
the continuity in the same extended sense of the oil pressure is also required by the system (21)–(22).

The conservation of the total mass and of the oil mass give
∑

i∈{1,2}
qi · ni = 0 on Γ, (23)

∑

i∈{1,2}
(fi(s)qi + γi(s)g −∇ϕi(s)) · ni = 0 on Γ, (24)

where ni denotes the outward normal to Γ with respect to Ωi.
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Since the global pressure P is defined up to a constant, we have to impose a condition to select a solution.
Let mΩi(P )(t) denote a mean value of a global pressure in the subdomain i

mΩi(P )(t) :=
1

m(Ωi)

∫

Ωi

P (x, t)dx for i ∈ {1, 2}

We impose that
mΩ1(P )(t) = 0, for a.e. t ∈ (0, T ). (25)

The global pressure jump at the interface is fixed by the relation (22), so that the mean value mΩ2(P ) of P
on Ω2 is locked by (25).

We now define a weak solution of Problem (18)-(25).

Definition 1.1 We say that a function pair (s, P ) is a weak solution of Problem (18)-(25) if:

1. s ∈ L∞(QT ; [0, 1]) and ϕi(s) ∈ L2(0, T ; H1(Ωi));

2. P ∈ L2(0, T ;H1(Ωi)), with mΩ1(P )(t) = 0 for almost every t ∈ (0, T );

3. there exists a measurable function π on Γ× (0, T ) such that, for a.e. (x, t) ∈ Γ× (0, T )

π ∈ π̃1(s1) ∩ π̃2(s2), (26)
P1 −W1(π) = P2 −W2(π). (27)

4. for all ψ ∈ C∞c
(
Ω× [0, T )

)
, the following integral equalities hold:

∫ T

0

∑

i∈{1,2}

∫

Ωi

qi · ∇ψdxdt = 0, (28)

and
∫ T

0

∫

Ω

φs∂tψdxdt +
∫

Ω

φs0ψ(·, 0)dx

=
∫ T

0

∑

i∈{1,2}

∫

Ωi

(fi(s)qi + γi(s)g +∇ϕi(s)) · ∇ψdxdt, (29)

where
qi = −Mi(s)∇P + ζi(s)g.

We will use several time the following lemma, which ensures that the global pressure jump P1 − P2 at the
interface belongs to L∞(Γ× (0, T )).

Lemma 1.2 The function p 7→ W1(p) −W2(p) belongs to C1(R;R), is uniformly bounded on R and admits
finite limits as p → ±∞.

Proof: Define

Ŵi(p) =





∫ p

0

(fi ◦ θi(p)− 1) dp if p ≥ 0,

∫ p

0

fi ◦ θi(p) dp if p < 0,

(30)

therefore W1(p) − W2(p) = Ŵ1(p) − Ŵ2(p). Hence, we deduce that if Ŵ1(p), Ŵ2(p) have finite limits for
p → ±∞, then W1−W2 also does, since fi(1) = 1. Since Ŵ1, Ŵ2 are nonincreasing functions, it only remains
to check that they are bounded. Let p ≥ 0, then

0 ≥ Ŵi(p) ≥ −
∫ p

0

|fi ◦ θi(p)− fi(1)|dp

≥ −Lfi

∫ p

0

|θi(p)− 1|dp ≥ −Lfi‖θi − 1‖L1(R+).
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Similarly, for p < 0, one has
0 ≤ Ŵi(p) ≤ Lfi‖θi‖L1(R−).

We conclude the proof of Lemma 1.2 by applying Lemma 1.1. ¤

2 The Finite Volume approximation

2.1 Discretization of QT

Definition 2.1 An admissible mesh of Ω is given by a set T of open bounded convex subsets of Ω called
control volumes, a family E of subsets of Ω contained in hyperplanes of Rd with strictly positive measure, and
a family of points (xK)K∈T (the “centers” of control volumes) satisfying the following properties:

1. there exists i ∈ {1, 2} such that K ⊂ Ωi. We note Ti = {K ∈ T ,K ⊂ Ωi} ;

2.
⋃

K∈Ti
K = Ωi. Thus,

⋃
K∈T K = Ω;

3. for any K ∈ T , there exists a subset EK of E such that ∂K =
⋃

σ∈EK
σ. Furthermore, E =

⋃
K∈T EK ;

4. for any (K,L) ∈ T 2 with K 6= L, either the “length”(i.e. the (d− 1) Lebesgue measure) of K ∩ L is 0
or K ∩ L = σ for some σ ∈ E. In the latter case, we write σ = K|L, and

• Ei = {σ ∈ E , ∃(K, L) ∈ T 2
i , σ = K|L}, Eint = E1 ∪ E2, EK,int = EK ∩ Eint,

• Eext = {σ ∈ E , σ ⊂ ∂Ω}, EK,ext = EK ∩ Eext,

• EΓ = {σ ∈ E , ∃(K,L) ∈ T1 × T2, σ = K|L}, EK,Γ = EK ∩ EΓ;

5. The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if σ = K|L, it is assumed
that the straight line (xK ,xL) is orthogonal to σ.

For all σ ∈ E, we denote by m(σ) the (d − 1)-Lebesgue measure of σ. If σ ∈ EK , we note dK,σ = d(xK , σ),
and we denote by τK,σ the transmissibility of K through σ, defined by τK,σ = m(σ)

dK,σ
. If σ = K|L, we note

dK,L = d(xK ,xL) and τKL = m(σ)
dK,L

. The size of the mesh is defined by:

size(T ) = max
K∈T

diam(K),

and a geometrical factor, connected with the regularity of the mesh, is defined by

reg(T ) = max
K∈T


 ∑

σ=K|L∈EK,int

m(σ)dK,L

m(K)


 .

Remark 2.1 One can see the spatial discretization introduced above is an admissible mesh in the sense of
[26]. In addition we assume that it resolve the interface Γ. We illustrate this definition thanks to Figure 2.

Definition 2.2 A uniform time discretization of (0, T ) is given by an integer value N and a sequence of
real values (tn)n∈{0,...,N}. We define δt = T

N+1 and, ∀n ∈ {0, . . . , N}, tn = nδt. Thus we have t0 = 0 and
tN+1 = T .

Remark 2.2 We can easily prove all the results of this paper for a general time discretization, but for the
sake of simplicity, we choose to only consider uniform time discretizations.
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Figure 2: In Definition 2.1, we assume both a classical orthogonality solution in the sense of [26] and the fact
that the interface Γ is made of a union of edges.

Definition 2.3 A finite volume discretization D of QT is a family

D = (T , E , (xK)K∈T , N, (tn)n∈{0,...,N}),

where (T , E , (xK)K∈T ) is an admissible mesh of Ω in the sense of definition 2.1 and (N, (tn)n∈{0,...,N}) is a
discretization of (0, T ) in the sense of definition 2.2. For a given mesh D, one defines:

size(D) = max(size(T ), δt), and reg(D) = reg(T ).

2.2 Definition of the scheme and main result

For K ∈ Ti, we denote by gK(s) = gi(s) for all function g whose definition depends on the subdomain Ωi, as
for example φi, ϕi, Mi, fi,Wi, . . . . For a function f : R → R and for (a, b) ∈ R2 we denote by R(f ; a, b) the
Godunov flux

R(f ; a, b) =
{

minc∈[a,b] f(c) if a ≤ b,
maxc∈[b,a] f(c) if b ≤ a.

(31)

The total flux balance equation is discretized by
∑

σ∈EK

m(σ)Qn+1
K,σ = 0, ∀n ∈ {0, . . . , N},∀K ∈ T , (32)

with

Qn
K,σ =





MK,L(sn
K ,sn

L)
dK,L

(Pn
K − Pn

L ) + Zn
K,σ if σ = K|L ∈ EK,i,

MK(sn
K)

dK,σ

(
Pn

K − Pn
K,σ

)
+ Zn

K,σ if σ ∈ EK,Γ,

0 if σ ∈ EK,ext,

(33)

where MK,L(sn+1
K , sn+1

L ) = ML,K(sn+1
L , sn+1

K ) is a mean value between MK(sn+1
K ) and ML(sn+1

L ). For exam-
ple, we can consider, as in [35], the harmonic mean

MK,L(sn+1
K , sn+1

L ) =
MK(sn+1

K )MK(sn+1
L )dK,L

dL,σMK(sn+1
K ) + dK,σMK(sn+1

L )
. (34)

The quantity Zn
K,σ is an approximation of ζK(s)g · nK,σ at the interface σ. We set

Zn
K,σ =





ζK(sn
K)dL,σ + ζK(sn

L)dK,σ

dK,L
g · nK,σ if σ = K|L ∈ EK,i,

ζK(sn
K)g · nK,σ if σ ∈ EK,Γ,
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where nK,σ denotes the outward normal to σ with respect to K.

Remark 2.3 Let us briefly justify the choice of the definition (33) of Qn
K,σ, in particular the discretization of

M . For the sake of simplicity, we neglect the gravity, despite our purpose can be extended to the full problem.
Assume that all the fluxes are discretized by following the formula

Qn
K,σ =

MK(sn
K)

dK,σ

(
Pn

K − Pn
K,σ

)
,

with the continuity condition Pn
K,σ = Pn

L,σ for σ = K|L ∈ Ei. Then, prescribing the conservativity of the
scheme, i.e.,

Qn
K,σ + Qn

L,σ = 0,

we recover the formula

Qn
K,σ =

MK,L(sn
K , sn

L)
dK,L

(Pn
K − Pn

L ) ,

where MK,L(sn
K , sn

L) is given by the formula (34).

The oil-flux balance equation is discretized as follows:

φK
sn+1

K − sn
K

δt
m(K) +

∑

σ∈EK

m(σ)Fn+1
K,σ = 0, (35)

with

Fn
K,σ =





Qn
K,σ fK(sn

K,σ) +R(GK,σ; sn
K , sn

L) +
ϕK(sn

K)− ϕK(sn
L)

dK,L
if σ = K|L ∈ EK,i,

Qn
K,σ fK(sn

K,σ) +R(GK,σ; sn
K , sn

K,σ) +
ϕK(sn

K)− ϕK(sn
K,σ)

dK,σ
if σ ∈ EK,Γ,

0 if σ ∈ EK,ext,

(36)

where GK,σ(s) = γK(s)g · nK,σ and sn+1
K,σ is the upwind value defined by

sn+1
K,σ =





sn+1
K if Qn+1

K,σ ≥ 0,

sn+1
L if Qn+1

K,σ < 0 and σ = K|L ∈ EK,i,

sn+1
K,σ if Qn+1

K,σ < 0 and σ ∈ EK,Γ.

(37)

The interface values
(
sn+1

K,σ , sn+1
L,σ , Pn+1

K,σ , Pn+1
L,σ

)
for σ = K|L ∈ EΓ are defined by the following nonlinear

system. For all σ = K|L ∈ EΓ, for all n ∈ {0, . . . , N}, there exists πn+1
σ ∈ R such that

πn+1
σ ∈ π̃K(sn+1

K,σ ) ∩ π̃L(sn+1
L,σ ), (38)

Pn+1
K,σ −WK

(
πn+1

σ

)
= Pn+1

L,σ −WL

(
πn+1

σ

)
, (39)

Qn+1
K,σ + Qn+1

L,σ = 0, (40)

Fn+1
K,σ + Fn+1

L,σ = 0. (41)

In view of relations (13) and (38), given a value of πn+1
σ , the values of the interface saturation sn+1

K,σ and sn+1
L,σ

are given by
sn+1

K,σ = θK(πn+1
σ ), sn+1

L,σ = θL(πn+1
σ ). (42)

We illustrate the localization of the unknowns of the unknowns on figure 3.

Moreover, we impose the discrete counterpart of the equation (25), that is, for all n ∈ {0, . . . , N},
∑

K∈T1

m(K)Pn+1
K = 0. (43)

10



Figure 3: In the scheme, we use cell unknowns (sn
K , Pn

K) corresponding to the saturation and the global
pressure as well as interface unknowns (πn

σ , Pn
K,σ, Pn

L,σ) corresponding to the capillary pressure and the one-
sided global pressures. From the capillary pressure πn

σ , we reconstruct one-sided saturations thanks to (42).
As it will be noticed in the sequel, the interface global pressures Pn

K,σ and Pn
L,σ can be eliminated thanks to

the linear system (39)–(40).

We will show below in Section 2.3 that the system (38)-(41) possesses a solution. We denote by X (D, i) the
finite dimensional space of piecewise constant functions uD defined almost everywhere in Qi,T having a trace
on the interface Γ, i.e.

X (D, i) :=
{

uD,i : Qi,T → R s.t. for all (K, σ, n) ∈ T × EΓ × {0, . . . , N},

uD,i is constant on K × (tn, tn+1], uD,i is constant on σ × (tn; tn+1)
}

,

and by X (D) the space of the functions uD whose restriction (uD)|Qi,T

belongs to X (D, i). We define the

solution (sD, PD) ∈ X (D)2 of the scheme by

sD(x, t) = sn+1
K , PD(x, t) = Pn+1

K if (x, t) ∈ K × (tn, tn+1],

and, for x ∈ σ = K|L ⊂ Γ for some K ∈ T1, L ∈ T2, for t ∈ (tn, tn+1), the traces

sD|Γ,1
(x, t) = sn+1

K,σ , sD|Γ,2
(x, t) = sn+1

L,σ .

In this paper we prove the following convergence result.

Theorem 1 Assume that Assumptions 1 and 2 hold. Let (Dm)m be a sequence of admissible discretizations of
QT in the sense of Definition 2.3, then for all m ∈ N, there exists a discrete solution (sDm , PDm) ∈ X (Dm)2 to
the scheme. Moreover, if limm→∞ size(Dm) = 0, and if there exists ζ > 0 such that, for all m, reg(Dm) ≤ ζ,
then up to a subsequence, sDm converges, towards s ∈ L∞(QT ; [0, 1]) in the Lp(QT ) topology for all p ∈ [1,∞),
PDm converges to P weakly in L2(QT ), where (s, P ) is a weak solution of Problem (18)-(25) in the sense of
Definition 1.1.

2.3 The interface conditions system

Define, for all σ = K|L ∈ EΓ, for all n ∈ {0, . . . , N},
Pn+1

σ (πn+1
σ ) := Pn+1

K,σ −WK

(
πn+1

σ

)
= Pn+1

L,σ −WL(πn+1
σ ), (44)

and
Qn+1

K,σ (πn+1
σ ) := αn+1

K

(
Pn+1

K − Pn+1
σ (πn+1

σ )−WK(πn+1
σ )

)
+ Zn

K,σ, (45)
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where αn+1
K = MK(sn+1

K )

dK,σ
. Then, the balance of the fluxes on the interface (40)–(41) can be rewritten as

Qn+1
K,σ (πn+1

σ ) + Qn+1
L,σ (πn+1

σ ) = 0 (46)

Qn+1
K,σ (πn+1

σ )fK

(
sn+1

K,σ (πn+1
σ )

)
+ Qn+1

L,σ (πn+1
σ )fL

(
sn+1

L,σ (πn+1
σ )

)

+R(GK,σ; sn+1
K , θK(πn+1

σ )) +R(GL,σ; sn+1
L , θL(πn+1

σ ))

+
ϕK(sn+1

K )− ϕK ◦ θK(πn+1
σ )

dK,σ
+

ϕL(sn+1
L )− ϕL ◦ θL(πn+1

σ )
dL,σ

= 0,

(47)

where

sn+1
K,σ (p) =

{
sn+1

K if Qn+1
K,σ (p) ≥ 0,

θK(p) if Qn+1
K,σ (p) < 0.

(48)

We deduce from (46) that

Pn+1
σ =

αn+1
K (Pn+1

K −WK(πn+1
σ )) + αn+1

L (Pn+1
L −WL(πn+1

σ ))
αn+1

K + αn+1
L

+
Zn

K,σ + Zn
L,σ

αn+1
K + αn+1

L

(49)

and thus that

Qn+1
K,σ (πn+1

σ ) =
αn+1

K αn+1
L

αn+1
K + αn+1

L

(
Pn+1

K − Pn+1
L −WK(πn+1

σ ) + WL(πn+1
σ )

)

+
αn+1

L Zn
K,σ)− αn+1

K Zn
L,σ

αn+1
K + αn+1

L

.

(50)

As a direct consequence of Lemma 1.2, Qn+1
K,σ belong to C1(R;R) and admits finite limits as p → ±∞.

Denote by
Ψn+1

σ (p) := Qn+1
K,σ (p) (fK(sK,σ(p))− fL(sL,σ(p)))

+R(GK,σ; sn+1
K , θK(p)) +R(GL,σ; sn+1

L , θL(p))

+
ϕK(sn+1

K )− ϕK ◦ π−1
K (p)

dK,σ
+

ϕL(sn+1
L )− ϕL ◦ π−1

L (p)
dL,σ

,

then Ψσ is continuous on R.

Lemma 2.1 Let (sn+1
K , sn+1

L ) ∈ [0, 1]2, there exists πn+1
σ ∈ [mini πi(0), maxi πi(1)] such that Ψn+1

σ (πn+1
σ ) =

0.

Proof: From the definition (48) of sn+1
K,σ (p), since limp→mini πi(0) θK(p) = 0, and since Qn+1

K,σ (p) admits a limit
as p → mini πi(0), one has

lim
p→mini πi(0)

Qn+1
K,σ (p)

(
fK(sn+1

K,σ (p))− fL(sn+1
L,σ (p))

)
≥ 0

and also

lim
p→mini πi(0)

R(GM,σ; sn+1
M , θM (p)) = max

s∈[0,sM ]
GM,σ(s) ≥ 0, with M ∈ {K, L}.

This yields that

lim
p→mini πi(0)

Ψn+1
σ (p) ≥ ϕK(sn+1

K )
dK,σ

+
ϕL(sn+1

L )
dL,σ

≥ 0.

One obtains similarly that lim
p→maxi πi(1)

Ψn+1
σ (p) ≤ 0. One conclude thanks to the continuity of Ψn+1

σ . ¤
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Proposition 2.2 Let σ = K|L ∈ EΓ, and let
(
sn+1

K , sn+1
L , Pn+1

K , Pn+1
L

) ∈ R4, then there exists a solution(
πn+1

σ , sn+1
K,σ , sn+1

L,σ , Pn+1
K,σ , Pn+1

L,σ

)
∈ [mini πi(0), maxi πi(1)]× [0, 1]2 × R2 to the nonlinear system (38)–(41).

Proof: Let πn+1
σ ∈ R be a solution of the equation Ψn+1

σ (πn+1
σ ) = 0, whose existence has been claimed in

Lemma 2.1. Firstly, defining sn+1
K,σ := π−1

K (πn+1
σ ) and sn+1

L,σ := π−1
L (πn+1

σ ), one has directly that

πn+1
σ ∈ π̃K(sn+1

K,σ ) ∩ π̃L(sn+1
L,σ ).

As it was noticed in Lemma 1.2, the function p 7→ WK(p)−WL(p) is uniformly bounded. In view of (44) and
(50) the values Pn+1

K,σ and Pn+1
L,σ are also finite. It is now easy to check that

(
πn+1

σ , sn+1
K,σ , sn+1

L,σ , Pn+1
K,σ , Pn+1

L,σ

)

is a solution to the system (38)–(41) thanks to the analysis carried out above. ¤

3 A priori estimates and existence of a discrete solution

3.1 L∞(QT) estimate on the saturation

Proposition 3.1 Let (sD, PD) be a solution to the scheme (32)–(43), then

0 ≤ sD ≤ 1 a.e. in QT . (51)

Proof: We will prove that for all K ∈ T , for all n ∈ {0, . . . , N},
sn+1

K ≤ 1.

The proof for obtaining sn+1
K ≥ 0 is similar.

Using the definition (36) of Fn+1
K,σ , one can rewrite (35) under the form

HK

(
sn+1

K , sn
K ,

(
sn+1

L

)
L∈NK

,
(
sn+1

K,σ

)
σ∈EK,Γ

,
(
Qn+1

K,σ

)
σ∈EK

)
= 0, (52)

where HK is non increasing with respect to sn
K ,

(
sn+1

L

)
L∈NK

,
(
sn+1

K,σ

)
σ∈EK,Γ

. Making use of the notations

a>b = max(a, b), we obtain that

HK

(
sn+1

K , sn
K>1,

(
sn+1

L >1
)
L∈NK

,
(
sn+1

K,σ>1
)

σ∈EK,Γ

,
(
Qn+1

K,σ

)
σ∈EK

)
≤ 0.

We remark that for all K ∈ T and for all s ∈ [0, 1] one has
∑

σ∈EK

m(σ)GK,σ(s) = 0. (53)

Combining (53) and (32) we have

HK

(
1, 1, (1)L∈NK

, (1)σ∈EK,i
,
(
Qn+1

K,σ

)
σ∈EK

)
= 0.

Hence, using once again the monotonicity of HK , one obtains

HK

(
1, sn

K>1,
(
sn+1

L >1
)
L∈NK

,
(
sn+1

K,σ>1
)

σ∈EK,Γ

,
(
Qn+1

K,σ

)
σ∈EK

)
≤ 0.

Since a>b is either equal to a or to b, one has

HK

(
sn+1

K >1, sn
K>1,

(
sn+1

L >1
)
L∈NK

,
(
sn+1

K,σ>1
)

σ∈EK,Γ

,
(
Qn+1

K,σ

)
σ∈EK

)
≤ 0. (54)
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Next we remark that for any σ = K|L ∈ EΓ, the equation (41) can be written as

Hσ

(
sn+1

K , sn+1
L ,

(
sn+1

M,σ

)
M∈{K,L}

,
(
Qn+1

M,σ

)
M∈{K,L}

)
= 0.

Thanks to (40) and using γi(1) = 0 for i ∈ {1, 2}, one has

Hσ

(
1, 1, (1)M∈{K,L} ,

(
Qn+1

M,σ

)
M∈{K,L}

)
= 0.

We remark that Hσ is non decreasing with respect to sn+1
K , sn+1

L . Furthermore, since sn+1
M,σ = θM (πn+1

σ ) for
M ∈ {K, L}, we obtain that sn+1

M,σ ∈ [0, 1], implying that sn+1
M,σ>1 = 1. Hence, we deduce that

Hσ

(
sn+1

K >1, sn+1
L >1,

(
sn+1

M,σ>1
)

M∈{K,L}
,
(
Qn+1

M,σ

)
M∈{K,L}

)
≥ 0. (55)

Multiplying (54) by δt and summing over K ∈ T provides, using (55) and the conservativity of the
scheme, ∑

K∈T
φK(sn+1

K − 1)+m(K) ≤
∑

K∈T
φK(sn

K − 1)+m(K).

Since s0 ∈ L∞(QT ; [0, 1]), s0
K ∈ [0, 1] for all K ∈ T . A straightforward induction allows us to conclude.

¤

3.2 Energy estimate

Definition 3.1 We define the discrete L2(0, T ;H1(Ωi)) semi-norm of an element uD ∈ X (D, i) by

|uD|2D,i :=
∑

n

δt
∑

σ=K|L∈Ei

τKL

(
un+1

K − un+1
L

)2
+

∑
n

δt
∑

K∈Ti

∑

σ∈EK,Γ

τKσ

(
un+1

K − un+1
K,σ

)2

.

In what follows we prove the following energy estimate.

Proposition 3.2 There exists a positive constant C1, depending only on data, such that
∑

i∈{1,2}

(|PD|2D,i + |ϕ(sD)|2D,i

) ≤ C1. (56)

Let us first establish some technical results.

Lemma 3.3 The following inequalities hold:

• for all σ = K|L ∈ Eint,

Qn+1
K,σ fK

(
sn+1

K,σ

) (
πK(sn+1

K )− πL(sn+1
L )

) ≥ Qn+1
K,σ

(
WK(πK(sn+1

K ))−WL(πL(sn+1
L ))

)
; (57)

• for all σ ∈ EK,Γ,

Qn+1
K,σ fK

(
sn+1

K,σ

) (
πK(sn+1

K )− πn+1
σ )

) ≥ Qn+1
K,σ

(
WK(πK(sn+1

K ))−WK(πn+1
σ )

)
. (58)

Proof: Since fK ◦ θK is a non decreasing function, then function WK : p 7→ ∫ p

0
fK ◦ θK(a)da is convex, so

that for all (a, b) ∈ R2,

fK ◦ θK(a) (b− a) ≤ WK(b)−WK(a) ≤ fK ◦ θK(b) (b− a) .

The inequalities (57) and (58) follow from the definition (37) of sn+1
K,σ , from the property (12) of θK , and from

the fact that πK ≡ πL and WK ≡ WL if K|L ∈ Eint. ¤
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Lemma 3.4 Let us define

GK,σ(p) :=
∫ p

0

GK,σ (θK(τ)) dτ (59)

for all K ∈ T and σ ∈ EK . Then, the following estimates hold:

• for all σ = K|L ∈ Eint,

R(GK,σ; sn+1
K , sn+1

L )
(
πK(sn+1

K )− πL(sn+1
L )

) ≥ GK,σ(πK(sn+1
K ))− GK,σ(πL(sn+1

L )) (60)

• for all σ ∈ EK,Γ,

R(GK,σ; sn+1
K , sn+1

K,σ )
(
πK(sn+1

K )− πn+1
σ )

) ≥ GK,σ(πK(sn+1
K ))− GK,σ(πn+1

σ ). (61)

Proof: For any a, b ∈ R one has

R(GK,σ; θK(a), θK(b)) (a− b) =
∫ a

b

GK,σ (θK(p)) dp

+
∫ a

b

R (GK,σ; θK(a), θK(b))−GK,σ (θK(p)) dp. (62)

We only have to remark that in view of (31) the last term in the right hand side of (62) is positive, and that
πK ≡ πL and θK ≡ θL in the case K|L ∈ Eint. ¤

Lemma 3.5 For all K ∈ T , for all n ∈ {0, . . . , N} and for all σ ∈ EK,Γ, one has
(
ϕK(sn+1

K )− ϕK(sn+1
K,σ )

) (
πK(sn+1

K )− πn+1
σ

)

≥
(
ϕK(sn+1

K )− ϕK(sn+1
K,σ )

)(
πK(sn+1

K )− πK(sn+1
K,σ )

)
. (63)

Proof: Assume that sn+1
K,σ ∈ (0, 1), then π̃K(sn+1

K,σ ) = {πK(sn+1
K,σ )}, thus the inequality (63) is in fact an

equality (see Figure 1). Assume now that sn+1
K,σ = 0, then πn+1

σ ≤ πK(sn+1
K,σ ) ≤ πK(sn+1

K ), and ϕK(sn+1
K,σ ) ≤

ϕK(sn+1
K ). The inequality (63) follows. Similarly, if sn+1

K,σ = 1, then πn+1
σ ≥ πK(sn+1

K,σ ) ≥ πK(sn+1
K ), and

ϕK(sn+1
K,σ ) ≥ ϕK(sn+1

K ), leading also to (63). ¤

Proof of Proposition 3.2: Multiplying the equation (35) by δtπK(sn+1
K ) and summing over K ∈ T and

n ∈ {0, . . . , N} yield, after reorganizing the sum,

A + B = 0, (64)

where

A =
N∑

n=0

∑

K∈T
φKπK(sn+1

K )
(
sn+1

K − sn
K

)
m(K),

B =
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Fn+1
K,σ

(
πK(sn+1

K )− πK(sn+1
L )

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Fn+1
K,σ

(
πK(sn+1

K )− πn+1
σ

)
,

where we have used (41). The definition (36) of Fn+1
K,σ gives

B = B1 + B2 + B3, (65)
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where

B1 =
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ fK(sn+1

K,σ )
(
πK(sn+1

K )− πK(sn+1
L )

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ fK(sn+1

K,σ )
(
πK(sn+1

K )− πn+1
σ

)
,

B2 =
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)R(GK,σ; sn+1
K , sn+1

L )
(
πK(sn+1

K )− πK(sn+1
L )

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)R(GK,σ; sn+1
K , sn+1

K,σ )
(
πK(sn+1

K )− πn+1
σ

)
,

B3 =
N∑

n=0

δt
∑

σ=K|L∈Eint

τKL

(
ϕK(sn+1

K )− ϕK(sn+1
L )

) (
πK(sn+1

K )− πK(sn+1
L )

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

τKσ

(
ϕK(sn+1

K )− ϕK(sn+1
K,σ )

) (
πK(sn+1

K )− πn+1
σ )

)
.

It follows from Lemma 3.3 that

B1 ≥
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ

(
WK(πK(sn+1

K ))−WK(πK(sn+1
L ))

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ

(
WK(πK(sn+1

K ))−WK(πn+1
σ )

)
.

Multiplying the equation (32) by δt
(
Pn+1

K −WK(πK(sn+1
K ))

)
and summing over K ∈ T and n ∈ {0, . . . , N}

yields, after reorganizing the sum and using (39) and (40),

N∑
n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ (Pn+1

K − Pn+1
L )

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ (Pn+1

K − Pn+1
K,σ )

=
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ

(
WK(πK((sn+1

K ))−WK(πK(sn+1
L ))

)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ

(
WK(πK(sn+1

K, ))−WK(πn+1
σ )

)
.

Therefore, using the definition (33) of Qn
K,σ, we deduce that

B1 ≥ B4 + B5, (66)

where

B4 =
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)MK,L

dK,L
(Pn+1

K − Pn+1
L )2

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)MK

dK,σ
(Pn+1

K − Pn+1
K,σ )2
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and

B5 =
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Zn
K,σ(Pn+1

K − Pn+1
L )

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Zn
K,σ(Pn+1

K − Pn+1
K,σ ).

(67)

Using (14), i.e. the fact that for all s ∈ R, Mi(s) ≥ αM > 0 we obtain

B4 ≥ αM

∑

i∈{1,2}
|PD|2D,i . (68)

The Cauchy-Schwarz inequality applied to the right hand side of (67) implies

|B5| ≤ Eint




N∑
n=0

δt
∑

σ=K|L∈Eint

m(σ)
dK,L

(Pn+1
K − Pn+1

L )2




1
2

+EΓ




N∑
n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)
dK,σ

(Pn+1
K − Pn+1

K,σ )2




1
2

,

where

(Eint)
2 =

N∑
n=0

δt
∑

σ=K|L∈Eint

m(σ)dK,L

(
Zn

K,σ

)2

and

(EΓ)2 =
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)dK,σ

(
Zn

K,σ

)2
.

Therefore we deduce that,

B2
5 ≤

3
2
T |g|2d

∑

i∈{1,2}
m(Ωi)‖ζi‖2L∞((0,1))

∑

i∈{1,2}
|PD|2D,i , (69)

where d stands for the dimension of Ω. Combining (66), (68) and (69) one has

B1 ≥ αM

∑

i∈{1,2}
|PD|2D,i −


3

2
T |g|2d

∑

i∈{1,2}
m(Ωi)‖ζi‖2L∞((0,1))




1
2


 ∑

i∈{1,2}
|PD|2D,i




1
2

. (70)

We now will show the estimates on the term B2. Using Lemma 3.4 we have

B2 ≥
N∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)
(GK,σ

(
πK(sn+1

K )
)− GK,σ

(
πK(sn+1

L )
))

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)
(GK,σ

(
πK(sn+1

K )
)− GK,σ

(
πn+1

σ

))
.

(71)

Recombining terms we obtain

B2 ≥
N∑

n=0

δt
∑

K∈T

∑

EK,int

m(σ)GK,σ

(
πK(sn+1

K )
)

+
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)
(GK,σ

(
πK(sn+1

K )
)− GK,σ

(
πn+1

σ

))
,
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which in view of (59) and (53) implies

B2 ≥ −
N∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)GK,σ

(
πn+1

σ

)
.

Remark that if σ = K|L ∈ EΓ then the function GK,σ(p) + GL,σ(p) in general is not equal to zero. However
we can write an lower bound for the term B2. Indeed, comparing the definition (17) of ϕi with the definition
(19) of γi, and using the fact that γi(0) = 0 and γi(1) = 0 one has

∫ πn
σ

0

γK ◦ θK(p)dp =
∫ sn

K,σ

0

γK(a)π′K(a)da = (ρo − ρw)ϕK(sn
K,σ)

and thus, in view of Proposition 3.1

B2 ≥ −|ρo − ρw||g| max
i∈{1,2}

ϕi(1) m(Γ)T.

Because of the definition (17) of the function ϕi, then, for all (a, b) ∈ [0, 1]2,

(ϕi(a)− ϕi(b))(πi(a)− πi(b)) ≥ max(µo, µw)
Ki

(ϕi(a)− ϕi(b))
2
. (72)

Then it follows from Lemma 3.5 and for inequality (72) that

B3 ≥ max(µo, µw)
mini∈{1,2}Ki

∑

i∈{1,2}
|ϕi(sD)|2D,i . (73)

We define Πi(s) =
∫ s

0
πi(a)da, then Πi is a continuous convex function. As a consequence, for all (a, b) ∈

[0, 1]2,
πi(b)(b− a) ≥ Πi(b)−Πi(a).

Therefore,

A ≥
N∑

n=0

∑

K∈T
φK

(
ΠK(sn+1

K )−ΠK(sn
K)

)
m(K)

=
∑

K∈T
φK

(
ΠK(sN+1

K )−ΠK(s0
K)

)
m(K).

Using the fact that, for all (a, b) ∈ [0, 1]2, one has

Πi(b)−Πi(a) =
∫ b

a

πi(u)du ≥ −
∫ 1

0

|πi(u)|du,

it follows from Proposition 3.1 that

A ≥ −
∑

i∈{1,2}
φim(Ωi)‖πi‖L1((0,1)). (74)

Taking (70), (73), (73) and (74) into account in (64) we have.

αM

∑

i∈{1,2}
|PD|2D,i −


3

2
T |g|2

d

∑

i∈{1,2}
m(Ωi)‖ζi‖2L∞((0,1))




1
2


 ∑

i∈{1,2}
|PD|2D,i




1
2

+
max(µo, µw)
mini∈{1,2}Ki

∑

i∈{1,2}
|ϕi(sD)|2D,i ≤ C.

(75)

Applying Young’s inequality to (71) we complete the proof of Proposition 3.2. Indeed,

αM

2

∑

i∈{1,2}
|PD|2D,i +

max(µo, µw)
mini∈{1,2}Ki

∑

i∈{1,2}
|ϕi(sD)|2D,i ≤ C.

¤
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3.3 Existence of a discrete solution

Proposition 3.6 There exists (at least) a solution to the scheme (35)-(43).

Proof: The proof is based on a topological degree argument (see for example [22]). For ν ∈ [0, 1], we
introduce the functions

• fν
i (s) = νfi(s) + (1− ν)s,

• ζν
i (s) = νζi(s), γν

i (s) = νγi(s)

• Mν
i (s) = νMi(s) + (1− ν)αM ,

• λν
i (s) = νλi(s) + (1− ν)αMs(1− s),

• πν
i (s) = νπi(s) + (1− ν)π1(s),

• ϕν
i (s) =

∫ s

0

λν
i (a) (πν

i )′ (a)da,

• W ν
i (s) =

∫ s

s?

fν
i (a) (πν

i )′ (a)da.

We denote by (sν
D, P ν

D) the solution to the modified scheme. For ν = 0, the problem becomes homogeneous,
corresponding to the equations

{
∂ts

0 − div
(
s0∇P 0 −∇ϕ0(s0)

)
= 0,

−αM∆P 0 = 0.
(76)

The pressure equation provides a classical linear Finite Volume scheme which is completely uncoupled from
the saturation equation. The transmission conditions (40),(39) turn to

Pn+1,0
K,σ = Pn+1,0

L,σ =
τKσPn+1,0

K + τLσPn+1,0
L

τKσ + τLσ
,

and thus
Qn+1,0

K,σ = τKL

(
Pn+1,0

K − Pn+1,0
L

)
.

Note that the a priori estimates (51) and (56) still hold for (sν
D, P ν

D) instead of (sD, PD). We introduce now
a new parameter η ∈ [0, 1], and we approximate the problem

{
∂ts

0,η − η div
(
s0,η∇P 0 −∇ϕ0(s0,η)

)
= 0,

−αM∆P 0 = 0.

The corresponding discrete solution s0,η
D satisfies

0 ≤ s0,η
D ≤ 1, ∀η ∈ [0, 1]. (77)

We introduce the compact set

K =
{

(uD, vD) ∈ (X (D))2
∣∣∣ ‖uD‖∞ ≤ 2 and |vD|D ≤ 2C1

}
,

where C1 is the quantity introduced in Proposition 3.2. Since, for ν = η = 0, the problem turns to an
invertible linear problem, we can claim that the corresponding topological degree is equal to +1 (since the
determinant of the underlying matrix is positive). One can let first η go to 1, and thanks to (56),(77),(
s0,η
D , P 0

D
)

never belongs to the boundary ∂K of K. Hence, the topological degree is constant for η ∈ [0, 1],
and, for η = 1, the discrete counterpart of (76) admits at least a solution. Letting then ν tend to 1 provides
thanks to similar arguments the existence of a solution to the scheme (35)-(38). ¤

4 Convergence analysis of the scheme

In order to prove the convergence of the scheme, we will use the method presented in [26] to derive the
relative compactness of the sequencies (sDm)m∈N and (PDm)m∈N, where (Dm)m∈N is a sequence of admissible
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discretizations of Ω × (0, T ) in the sense of Definition 2.3, for which the discretization parameter hm :=
size(Dm) tends to 0 as m →∞, while the regularity parameter reg(Dm) remains bounded.

Firstly, since 0 ≤ sDm ≤ 1 almost everywhere in QT , we can claim that there exists s ∈ L∞(QT ; [0, 1]), such
that, up to a subsequence,

sDm
⇀ s in the L∞(QT ) weak- ? sense as m →∞.

This is of course not sufficient to pass to the limit, so that we seek for additional compactness on the family
of approximate solutions (sDm , PDm)m.

The compactness arguments used for the quantities defined in Qi,T are fairly standard (see [26]). For the
sake of completeness and clarity, they are briefly recalled in Section 4.1. But in our problem, we have to
focus on the convergence of the traces on the interface. Up to our knowledge, the convergence of the traces
for piecewise constant functions with bounded discrete L2(H1) semi-norms has not been proved before. This
will be done in Section 4.2.

4.1 Estimates on differences of space and time translates

In this section we show that there exists a subsequence of (Dm)m∈N (which we will denote again by (Dm)m∈N),
such that ϕi(sDm) → ϕi(s) strongly in Lp(Qi,T ) while sDm → s strongly Lp(Qi,T ) for any p ∈ [1,∞). Let us
firs recall here two lemmas adapted from [26].

Lemma 4.1 (Internal space translates ( Lemma 4.2 of [26] )) Let uD be an element of X (D), then
for all ξ ∈ Rd, ∫ T

0

∫

Ωi,ξ

(uD(x + ξ, t)− uD(x, t))2 dxdt ≤ |uD|2D,i|ξ| (|ξ|+ 2size(D)) ,

where Ωi,ξ = {x ∈ Ωi | [x,x + ξ] ⊂ Ωi}.

Lemma 4.2 (Truncated Rd space translates ( Lemma 4.3 of [26] )) Let uD be an element of X (D),
and let Ti(uD) the function of L2(Rd+1) defined by

Ti(uD)(x, t) =
{

uD(x, t) if (x, t) ∈ Ωi × (0, T ),
0 otherwise,

then for all ξ ∈ Rd,
∫ T

0

∫

Rd

(Ti(uD)(x + ξ, t)− Ti(uD)(x, t))2 dxdt

≤ |uD|2D,i|ξ| (|ξ|+ 2size(D) + 2m(∂Ωi) ‖uD‖∞) ,

where Ωi,ξ = {x ∈ Ωi | [x,x + ξ] ⊂ Ωi}.

The following result is an extension of Lemma 4.6 of [26] (see also Proposition 5.1 in [30]).

Lemma 4.3 There exists C3, which does not depend on size(T ), δt nor on τ such that for all τ ∈ (0, T ),
∫ T−τ

0

∑

i∈{1,2}

∫

Ωi

(ϕi(sD)(x, t + τ)− ϕi(sD)(x, t))2 dxdt ≤ C3τ. (78)

Proposition 4.4 The sequence (ϕi(sDm))m converges strongly in L2(Qi,T ), up to a subsequence, towards
the function ϕi(s) ∈ L2(0, T ;H1(Ωi)).

Proof: First recall that, by Proposition 3.1, (ϕi(sDm))m is bounded in L∞(Qi,T ) for i ∈ {1, 2} and that
by Proposition 3.2 the sequence (|ϕi(sDm)|Dm,i)m is bounded. Thanks to the lemmas 4.2 and 4.3 and
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the Kolmogorov compactness criterion (see e.g. [9] or [26, Theorem 3.9]), it follows that (Ti(ϕi(sDm
)))m

is relatively compact in L2(Rd+1) for i ∈ {1, 2}. Thus we can extract a subsequence, still denoted by
(Ti(ϕi(sDm

)))m, such that both T1(φ1(sDm
)) and T2(φ2(sDm

)) converge to their limit strongly in L2(Q1,T )
and L2(Q2,T ) respectively. As a direct consequence, (ϕi(sDm))m converges in L2(Qi,T ) for i ∈ {1, 2} towards
a function φ, which satisfies, thanks to Lemma 4.1,

∫ T

0

∫

Ωi,ξ

(φ(x + ξ, t)− φ(x, t))2dxdt ≤ C|ξ|2, ∀ξ ∈ Rd.

This implies (see [9]) that φ ∈ L2(0, T ; H1(Ωi)). It remains to identify φ as ϕi(s), i ∈ {1, 2}. This can be
done using Minty’s lemma (see e.g. [28, Theorem 4.1]). ¤

Corollary 4.5 Up to a subsequence, (sDm
)m converges towards s strongly in Lp(QT ) for all p ∈ [1,∞).

Proof: Since (ϕi(sDm
))m converges in L2(QT ) towards ϕi(s), it converges (up to a new subsequence) almost

everywhere in QT . Since ϕ−1
i is continuous, sDm

tends to s almost everywhere. The result then follows from
the uniform bound on (sDm)m stated in Proposition 3.1. ¤

Using the discrete Poincaré-Wirtinger inequality [31] and the energy estimates given by Proposition 3.2, one
can obtain the following convergence result.

Lemma 4.6 There exists P ∈ L2(0, T ; H1(Ωi)) such that, up to a subsequence,

PDm −mΩi(PDm) ⇀ P weakly in L2(Qi,T ) as m →∞.

We denote again by (Dm)m a subsequence of (Dm)m for which the convergence results stated by Proposition
4.4, Corollary 4.5 and Lemma 4.6 hold.

4.2 Convergence of the traces

We denote by sD|Γ,i
(resp. PD|Γ,i

) the trace of sD (resp. PD) on Γ from the side of Ωi, defined by

sD|Γ,i
(x, t) = sn+1

K,σ , PD|Γ,i
(x, t) = Pn+1

K,σ , ∀(x, t) ∈ σ × (tn, tn+1],

where σ ∈ EK,Γ, K ⊂ Ωi.

It has been proven in Proposition 4.4 that ϕi(sDm) converges strongly in L2(Qi,T ) towards ϕi(s) ∈ L2(0, T ;H1(Ωi)).
Hence, ϕ1(s) and ϕ2(s) admits a trace in the sense of L2(Γ× (0, T )). Since ϕ−1

i is continuous, s also admits
a traces on the interface, denoted by s1 and s2. We claim in Corollary 4.10 below that sDm|Γ,i

converges
strongly in Lp(Γ× (0, T )) towards si for all p ∈ [1,∞).

We now introduce another definition of the trace, denoted by ũ|Γ,i
. For a function u of X (D) we define

ũ|Γ,i
(x, t) := un+1

K if (x, t) ∈ σ × (tn, tn+1], σ ⊂ Γ ∩ ∂K, K ⊂ Ωi.

Lemma 4.7 Let u ∈ X (D), then
∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt ≤ |u|D (Tm(Γ)size(D))1/2
.

Proof: From the definitions of the traces of u,

∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt =
N∑

n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

m(σ)|un+1
K,σ − un+1

K |.
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Cauchy-Schwarz inequality yields that

∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt ≤



N∑
n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

τK,σ(un+1
K,σ − un+1

K )2




1/2

×



N∑
n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

m(σ)dK,σ




1/2

.

The result follows. ¤

Since Ωi is supposed to be polygonal, Γ is made of a finite number of faces (Γj)1≤j≤J contained in affine
hyperplanes of Rd. We denote by ni,j the outward normal to Γj with respect to Ωi. Let ε > 0 and
j ∈ {1, . . . , J}, then, following [27], we define the open subset ωi,j,ε of Ωi as the largest cylinder of width ε
generate by Γj and ni,j included in Ωi, that is

ωi,j,ε :=
{
x− hni,j ∈ Qi,T |x ∈ Γj , 0 < h < ε and [x, x− εni,j ] ⊂ Ωi

}
. (79)

We refer to Figure 4 for an illustration. We also define the subset Γi,j,ε = ∂ωi,j,ε∩Γj of Γj , that satisfies

m(Γj \ Γi,j,ε) ≤ Cε, (80)

where C only depends on Ω.

Figure 4: The largest cylinder ωi,j,ε of width ε generated by Γj included in Ωi.

Lemma 4.8 Let u ∈ X (D), then for all j ∈ {1, . . . , J},
∫ T

0

1
ε

∫

Γi,j,ε

∫ ε

0

(
ũ|Γ,i

(x, t)− u(x− hni,j , t)
)2 dhdxdt ≤ |u|2D (ε + size(D)) .

Proof: For all σ ∈ Eint, we denote by

χσ(x,y) :=
{

1 if (x,y) ∩ σ is reduced to a single point,
0 otherwise

and we introduce the quantity

TD(x, h, t) :=
∣∣ũ|Γ,i

(x, t)− uD(x− hni,j , t)
∣∣ ,

which satisfies

TD(x, h, t) ≤
∑

σ=K|L∈Ei

χσ(x,x− hni,j)
∣∣un+1

K − un+1
L

∣∣

for almost all x ∈ Γi,j,ε, almost all h ∈ (0, ε) and for all t ∈ (tn, tn+1]. It follows from the Cauchy-Schwarz
inequality that, for t ∈ (tn, tn+1],

(TD(x, h, t))2 ≤

 ∑

σ=K|L∈Ei

χσ(x,x− hni,j)

(
un+1

K − un+1
L

)2

dKL|ni,j · nKL|




×

 ∑

σ=K|L∈Ei

χσ(x,x− hni,j)dKL|ni,j · nKL|

 .
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For almost all x ∈ Γi,j,ε, there exists a unique K1 ∈ Ti such that x ∈ ∂K1. Moreover, for almost all h ∈ (0, ε),
there exists a unique K2 ∈ Ti such that x− hni,j belongs to K2 (possibly K2 coincides with K1). Let σ be
such that χσ(x,x− hni,j) = 1, then we suppose, without loss of generality, that σ = K|L where the straight
line from x to x− hni,j crosses the interface σ = K|L from K to L. Therefore, the quantity ni,j ·nKL has a
constant negative sign. Moreover, using the fact that xL − xK = dKLnKL, we can claim that

∑

σ=K|L∈Eint

χσ(x,x− hni,j)dKL|ni,j · nKL| = (xK1 − xK2) · ni,j

≤ (xK1 − x) · ni,j + h + |(xK2 − (x− hni,j)) · ni,j | . (81)

Since x− hni,j belongs to K2, we have

|(xK2 − (x− hni,j)) · ni,j | ≤ size(D),

and since x belongs to Γi, (xK1 − x) · ni,j ≤ 0. Then we obtain
∑

σ=K|L∈Eint

χσ(x,x− hni,j)dKL|ni,j · nKL| ≤ ε + size(D). (82)

For all σ ∈ Eint with σ ∩ ωi,j,ε = ∅ and all h ∈ (0, ε), one has
∫

Γε
i

χσ(x,x− hni,j)dx = 0.

For all σ ∈ Ei,j,ε := {σ ∈ Ei | σ ∩ ωi,j,ε 6= ∅}, one has

∀h ∈ (0, ε),
∫

Γi,j,ε

χσ(x,x− hni,j)dx ≤ m(σ)|ni,j · nKL|. (83)

We obtain from (82) and (83) that for all t ∈ (tn, tn+1], for all h ∈ (0, ε),
∫

Γi,j,ε

(TD(x, h, t))2 dx ≤ (ε + size(D))
∑

σ=K|L∈Ei,j,ε

τKL

(
un+1

K − un+1
L

)2
,

which complete the proof. ¤

Proposition 4.9 Up to a subsequence, the sequence
(
ϕi(sDm|Γ,i

)
)

m
converges towards ϕi(si) strongly in

L1(Γ× (0, T )) as m →∞.

Proof: For notation convenience, we remove the subscripts m in the proof. Denote by

Ai,j,D :=
∫ T

0

∫

Γj

∣∣∣ϕi(sD|Γ,i
)− ϕi(si)

∣∣∣ dxdt, (84)

then in view of Lemma 4.7 and Proposition 3.2, there exists C not depending on D such that

Ai,j,D =
∫ T

0

∫

Γj

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt + Csize(D)1/2. (85)

By (80), for any ε > 0, one has

∫ T

0

∫

Γj

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt ≤
∫ T

0

∫

Γi,j,ε

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt + ϕi(1)Cε. (86)

Next we apply the triangle inequality to deduce that
∫ T

0

∫

Γi,j,ε

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt ≤ B1,D,ε + B2,D,ε + B3,ε, (87)
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where

B1,D,ε =
1
ε

∫ T

0

∫

Γi,j,ε

∫ ε

0

∣∣∣ϕi(s̃D|Γ,i
)(x, t)− ϕi(sD)(x− hni,j , t)

∣∣∣ dhdxdt,

B2,D,ε =
1
ε

∫ T

0

∫

ωi,j,ε

|ϕi(sD)− ϕi(s)| dxdt,

B3,ε =
1
ε

∫ T

0

∫

Γi,j,ε

∫ ε

0

|ϕi(si)(x, t)− ϕi(s)(x− hni,j , t)| dhdxdt,

where we have used (79). From Cauchy-Schwarz inequality, one has

(B1,D,ε)
2 ≤ m(Γi,j,ε)T

∫ T

0

∫

Γi,j,ε

1
ε

∫ ε

0

(ϕi(s̃D|Γ,i
)(x, t)− ϕi(sD)(x− hni,j , t))2dhdxdt,

and then, from Proposition 3.2 and Lemma 4.8, one has

|B1,D,ε| ≤ (C1(size(D) + ε)m(Γi)T )1/2
. (88)

We can now let size(D) tend to 0 in (87). Thanks to Proposition 4.4, we can claim that

lim
size(D)→0

B2,D,ε = 0.

Then it follows from (86) and (88) that

lim sup
size(D)→0

∫ T

0

∫

Γj

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt ≤ C(ε +
√

ε) + B3,ε. (89)

Since ϕi(si) is the trace of ϕi(s) on Γ, limε→0 B3,ε = 0. Therefore, letting ε tend to 0 in (89) implies
that

lim
size(D)→0

∫ T

0

∫

Γj

∣∣∣ϕi(s̃D|Γ,i
)− ϕi(si)

∣∣∣ dxdt = 0.

Then the result follows from (84) and (4.2). ¤

Corollary 4.10 Up to a subsequence, the sequence
(
sDm|Γ,i

)
m

converges towards si strongly in Lp(Γ×(0, T ))

for all p ∈ [1,∞).

Proof: This corollary is just a consequence from the fact that ϕi(sDm|Γ,i
) converges, up to a subsequence,

almost everywhere on Γ × (0, T ), from the fact that ϕ−1
i is continuous and from the fact that sDm|Γ,i

is
essentially uniformly bounded between 0 and 1. ¤

Lemma 4.11 Up to a subsequence, the sequence
(
(PDm)|Γ,i

−mΩi(PD)
)

m
converges towards Pi weakly in

L2(Γ× (0, T )).

Proof: Let ψ ∈ D(Γi × (0, T )), then, there exists ε? depending on ψ such that, for any ε in (0, ε?) one has
supp(ψ) ⊂ Γi,j,ε × (0, T ). We aim to prove that

lim
size(D)→0

∫ T

0

∫

Γj

(
PD|Γ,i

−mΩi(PD)−Pi

)
ψdxdt = 0. (90)

Thanks to Lemma 4.7 and to Proposition 3.2, it is sufficient to show that

lim
size(D)→0

∫ T

0

∫

Γj

(
P̃D|Γ,i

−mΩi(PD)−Pi

)
ψdxdt = 0.

Let ε ∈ (0, ε?), then one has
∫ T

0

∫

Γj

(
P̃D|Γ,i

−mΩi(PDm)−Pi

)
ψdxdt = E1,D,ε + E2,D,ε + E3,ε,
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where

E1,D,ε =
∫ T

0

1
ε

∫

Γi,j,ε

∫ ε

0

(
P̃D|Γ,i

(x, t)− PD(x− hni,j , t)
)

ψ(x, t)dhdxdt,

E2,D,ε =
∫ T

0

1
ε

∫

Γi,j,ε

∫ ε

0

(PD(x− hni,j , t)−mΩi
(PD)− P(x− hni,j , t)) ψ(x, t)dhdxdt,

E3,ε =
∫ T

0

1
ε

∫

Γi,j,ε

∫ ε

0

(P(x− hni,j , t)− Pi) ψ(x, t)dhdxdt.

The Cauchy-Schwarz inequality gives that

(E1,D,ε)
2 ≤

∫ T

0

1
ε

∫

Γi,j,ε

∫ ε

0

(
P̃D|Γ,i

(x, t)− PD(x− hni,j , t)
)2

dhdxdt

×
∫ T

0

∫

Γj

(ψ(x, t))2 dxdt.

Using Proposition 3.2 and Lemma 4.8 yields

|E1,D,ε| ≤ ‖ψ‖L2(Γj×(0,T )) (C1(ε + size(D)))1/2
.

It has been stated in Lemma 4.6 that PD −mΩi(PD) tends to P weakly in L2(Qi,T ) as size(D) tends to 0,
then

lim
size(D)→0

E2,D,ε = 0.

Therefore,

lim sup
size(D)→0

∣∣∣∣∣
∫ T

0

∫

Γj

(
P̃D|Γ,i

− Pi

)
ψdxdt

∣∣∣∣∣ ≤ Cψ

√
ε + |E3,ε|.

Since Pi is the trace on Γ of P from the side of Ωi, one has

lim
ε→0

E3,ε = 0.

Thus, letting ε → 0, one obtains that for all ψ ∈ D(Γj × (0, T )),

lim
size(D)→0

∫ T

0

∫

Γj

(
P̃D|Γ,i

−mΩi(PD)−Pi

)
ψdxdt = 0. (91)

A straightforward generalization of [26, Lemma 3.10] allows us to claim, using Proposition 3.2 and the discrete
Poincaré-Wirtinger inequality [31], that

(
P̃D|Γ,i

−mΩi(PD)
)
D

is uniformly bounded in L2(Γ× (0, T )). Then,

we conclude, using a classical density argument, that (91) holds for all ψ ∈ L2(Γj × (0, T )). ¤

Proposition 4.12 There exists P ∈ L2(0, T ; H1(Ωi)) such that, up to a subsequence, PDm tends to P weakly
in L2(QT ) as m →∞, and such that

(
PDm|Γ,i

)
m

converges weakly in L2(Γ× (0, T )) towards Pi.

Proof: Firstly, since we have enforced mΩ1(PDm) = 0, we can set P := P in Q1,T . Next we search for a
uniform bound on ‖PDm‖L2(Q2,T ). In view of the discrete Poincaré-Wirtinger inequality

‖PDm‖2L2(Q2,T ) ≤ (mΩ2(PDm))2 + C, (92)

it only remains to check that mΩ2(PDm) is uniformly bounded w.r.t. m. This is a consequence of the fact
that, almost everywhere on Γ× (0, T ), one has

mΩ2(PDm) = PDm|Γ,1
−

(
PDm|Γ,2

−mΩ2(PDm)
)
− (W1(πDm)−W2(πDm)) .

Then, integrating on Γ× (0, T ) and using Lemma 1.2 provides

|mΩ2(PDm)| ≤ 1
m(Γ)T

∑

i∈{1,2}

∥∥∥PDm|Γ,i
−mΩi(PDm)

∥∥∥
L1(Γ×(0,T ))

+ ‖W1 −W2‖∞.
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For all i ∈ {1, 2} the quantities
∥∥∥PDm|Γ,i

−mΩi
(PDm

)
∥∥∥

L1(Γ×(0,T ))
are bounded by the proof of Lemma 4.11.

Hence, in view of (92), (PDm)m converges towards some function P weakly in L2(Qi,T ). From the analysis
performed in the proof of Lemma 4.6, we deduce that P ∈ L2(0, T ; H1(Ωi)), and from the analysis of
Lemma 4.11, we deduce the weak convergence of the traces. ¤

Lemma 4.13 Let s1, s2 ∈ L∞(Γ× (0, T )) be the respective limits of
(
sDm|Γ,1

)
m

and
(
sDm|Γ,2

)
m

, then,

π̃1(s1) ∩ π̃2(s2) 6= ∅ a.e. on Γ× (0, T ). (93)

Proof: For all m ∈ N , one has
π̃1(sDm|Γ,1

) ∩ π̃2(sDm|Γ,2
) 6= ∅.

Since the set F = {(a, b) ∈ [0, 1]2 | π̃1(a)∩π̃2(b) 6= ∅} is closed in [0, 1]2, we conclude that (93) holds. ¤

We now focus on the last technical difficulty for proving Theorem 1, that is the convergence of the sequence
(πDm

)m. This is done by following the same path as in [16].

In the sequel, we denote by T[A,B], the truncature operator defined by

T[A,B](s) =





s if s ∈ [A,B],
A if s ≤ A,
B if s ≥ B,

and by
U = {(x, t) ∈ Γ× (0, T ) | {s1, s2} = {0, 1}}, V = Uc,

so that
(x, t) ∈ U iff {s1(x, t) = 0 and s2(x, t) = 1} or {s1(x, t) = 1 and s2(x, t) = 0}.

Note that, thanks to Lemma 4.13, the set U is empty if mini πi(1) > maxi πi(0).

Lemma 4.14 There exists a measurable function π defined on V with values in R, such that, up to a subse-
quence,

πDm → π a.e. in V.

Proof: We define the functions ϕ̃i by

ϕ̃i : p 7→
∫ p

πi(0)

Ki
ko,i(θi(a))kw,i(θi(a))

µwko,i(θi(a)) + µokw,i(θi(a))
da.

In view of Assumptions 1 and 1, ϕ̃i satisfy

π ∈ π̃i(s) =⇒ ϕ̃i(π) = ϕ̃i(πi(s)) = ϕi(s), (94)

moreover
its restriction (ϕ̃i)|[πi(0),πi(1)]

admits a continuous inverse function. (95)

Thanks to Proposition 4.9 and to (94), we can claim that, up to a subsequence, ϕ̃i(πDm) converges almost
everywhere on Γ × (0, T ) towards ϕ̃i(πi(si)). For a.e. (x, t) ∈ V, the set π̃1(s1) ∩ π̃2(s2) is reduced to the
singleton {πi0(si0)} for some i0 ∈ {1, 2}. Thanks to (95), we can identify the limit π of πDm as πi0(si0).
¤

Lemma 4.15 Assume that [mini πi(1), maxi πi(0)] 6= ∅, then there exists

π ∈ L∞(U ; [min
i

πi(1),max πi(0)]),

such that, for all bounded interval J ⊂ R such that [mini πi(1), maxi πi(0)] ⊂
◦
J ,

TJ (πDm) → π in the L∞(U) weak- ? sense.
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Proof: For the sake of simplicity, we assume, without loss of generality, that π1(1) ≤ π2(0), then thanks to
Lemma 4.13, almost everywhere in U , s1 = 1 and s2 = 0.

The sequence (TJ (πDm))m is bounded in L∞(U), thus, up to a subsequence, it converges towards a function
πJ in the L∞(U) weak-? sense. Let us now show that πJ does not depend on the choice of the bounded
interval J . Because of Lemma 4.13, one has, for a.e. (x, t) ∈ U ,

lim inf
m

πDm ≥ π1(1), lim sup
m

πDm ≤ π2(0). (96)

Let J1 and J2 be two bounded intervals such that [π1(1), π2(0)] ⊂
◦
J k (k ∈ {1, 2}). Then, it follows from (96)

that, for a.e. (x, t) ∈ U , for m large enough (depending on (x, t)),

TJ1(πDm
(x, t))− TJ2(πDm

(x, t)) = 0.

As a consequence, the sequence (TJ1(πDm
)− TJ2(πDm

))m converges almost everywhere to 0 on U , and is
uniformly bounded in L∞(U). The dominated convergence theorem yields that for all ψ ∈ L1(U),

∫∫

U
(TJ1(πDm)− TJ2(πDm))ψdxdt → 0 =

∫∫

U
(πJ1 − πJ2) ψdxdt.

Choosing ψ = (πJ1 − πJ2) provides that πJ1 = πJ2 = π almost everywhere in U . ¤

Lemma 4.16 Assume that [mini πi(1), maxi πi(0)] 6= ∅, then there exists π ∈ L∞(U) such that, for all

bounded interval J ⊂ R such that [mini πi(1), maxi πi(0)] ⊂
◦
J , the sequence (Wi(TJ (πDm)))m converges

towards Wi(π) in the L∞(U) weak-? sense.

Proof: We suppose, without loss of generality, that π1(1) ≤ π2(0). Then on U , s2 = 0 and s1 = 1. One
has

W2(TJ (πDm)) =
∫ π2(0)

0

f2 ◦ π−1
2 (p)dp +

∫ πDm

π2(0)

f2 ◦ π−1
2 (p)dp.

Since for almost every (x, t) ∈ U ,
lim sup

m
πDm(x, t) ≤ π2(0),

and since f2 ◦ π−1
2 (p) = 0 for all p ≤ π2(0), then for almost every (x, t) ∈ U ,

∫ πDm (x,t)

π2(0)

f2 ◦ π−1
2 (p)dp → 0 as m →∞.

Since the function W2 ◦ TJ is uniformly bounded on R, the dominated convergence theorem yields that, for
all ψ ∈ L1(U),

lim
m→∞

∫

U
W2(TJ (πDm))ψdxdt →

∫∫

U
W2(π2(0))ψdxdt =

∫∫

U
W2(π)ψdxdt.

Similarly, we obtain that
∫∫

U
(W1(TJ (πDm))− TJ (πDm)) ψdxdt →

∫∫

U
(W1(π1(1))− π1(1)) ψdxdt.

Since, thanks to Lemma 4.15, TJ (πDm) tends to π in the L∞(U) weak-? sense, one has

lim
m→∞

∫∫

U
W1(TJ (πDm))ψdxdt =

∫∫

U
(W1(π1(1)) + π − π1(1)) ψdxdt

=
∫∫

U
W1(π)ψdxdt.

¤
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Proposition 4.17 There exists a measurable function π on Γ × (0, T ), with π ∈ π̃1(s1) ∩ π̃2(s2) a.e. on
Γ× (0, T ), with value in [mini(πi(0)),maxi(πi(1))] such that,

W1(πDm)−W2(πDm) → W1(π)−W2(π) in the L∞(Γ× (0, T )) weak- ? sense as n →∞.

Proof: We know, from Lemma 1.2, that W1(p) − W2(p) is uniformly bounded on [mini πi(0), maxi πi(1)].
Hence, the sequence (W1(πDm)−W2(πDm))m converges in the L∞(Γ×(0, T )) weak-? sense towards a function
Z. Let ψ ∈ L1(Γ× (0, T )), then

∫ T

0

∫

Γ

(W1(πDm)−W2(πDm))ψdxdt =
∫∫

U
(W1(πDm)−W2(πDm))ψdxdt

+
∫∫

V
(W1(πDm)−W2(πDm)) ψdxdt.

Thanks to Lemma 4.14, πDm
tends almost everywhere to π on V, then for almost every (x, t) ∈ V, we can

identify Z(x, t) as W1(π(x, t))−W2(π(x, t)). Thus

lim
m→∞

∫∫

V
(W1(πDm)−W2(πDm)) ψdxdt =

∫∫

V
(W1(π)−W2(π)) ψdxdt.

We denote by

Am =
∫∫

U
(W1(πDm)−W2(πDm)−W1(π) + W2(π)) ψdxdt,

=
∫∫

U

(
Ŵ1(πDm)− Ŵ1(π)

)
ψdxdt +

∫∫

U

(
Ŵ2(πDm)− Ŵ2(π)

)
ψdxdt,

where Ŵ is given by (30). Let R ∈ R such that [mini πi(0),maxi πi(1)] ⊂ [−R,R], then

Am = B1,m(R)−B2,m(R) + Cm(R),

where
Bi,m(R) =

∫∫

U

(
Ŵi(πDm)− Ŵi(T[−R,R](πDm))

)
ψdxdt

and
Cm(R) =

∫∫

U

(
W1(T[−R,R](πDm))−W2(T[−R,R](πDm))−W1(π) + W2(π)

)
ψdxdt.

Let ε > 0, then since Ŵi admits finite limits as p → mini πi(0) and p → maxi πi(1), there exists R0(ε) > 0
such that

R > R0(ε) =⇒ ‖Ŵi − Ŵi ◦ T[−R,R]‖∞ ≤ ε.

Thus, for R > R0(ε) fixed,
|Bi,m(R)| ≤ Tm(Γ)ε.

Thanks to Lemma 4.16,
lim

m→∞
Cm(R) = 0,

then, for all ε > 0,
lim sup
m→∞

|Am| ≤ 2Tm(Γ)ε.

As a consequence, since the above estimate holds for all ε > 0, Am tends to 0, concluding the proof of
Proposition 4.17. ¤
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4.3 End of the proof of Theorem 1

We have proven in the section 4 that, up to a subsequence, the sequence of approximate solutions (sDm , PDm)m

converge towards (s, P ) as m → ∞. Moreover, it as been stated in Lemmata 4.14 and 4.15 that (πDm
)m

converges in some sense on Γ × (0, T ) towards a measurable function π. In order to conclude the proof
of Theorem 1, it remains to check that (s, P ) satisfy the weak formulations (28) and (29), and that the
transmission conditions (21) and (22) are fulfilled. Let us begin by this latter point.

It follows from the construction of the function π carried out in Lemmata 4.14 and 4.15 that, for almost
every (x, t) ∈ Γ× (0, T ),

π(x, t) ∈ π̃1(s1(x, t)) ∩ π̃2(s2(x, t)). (97)

Let ψ ∈ L2(Γ× (0, T )), then thanks to (39), one has, for all ψ ∈ L2(Γ× (0, T )),

∫ T

0

∫

Γ

(
PDm|Γ,1

− PDm|Γ,2

)
ψdxdt =

∫ T

0

∫

Γ

(W1(πDm)−W2(πDm)) ψdxdt.

Letting m tend to ∞ provides, thanks to Propositions 4.12 and 4.17, that
∫ T

0

∫

Γ

(P1 − P2) ψdxdt =
∫ T

0

∫

Γ

(W1(π)−W2(π)) ψdxdt.

Hence,
P1 −W1(π) = P2 −W2(π) a.e. on Γ× (0, T ). (98)

In order to recover the weak formulations (28) and (29), we can apply to our case the analysis carried out in
the proof of Theorem 5.1 in [35].

5 Numerical results
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Figure 5: The model porous medium Ω1 ∪ Ω2
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Figure 6: Capillary pressure connection at t = 0

In this Section we consider a model porous medium Ω = (0, 1)2 composed of two layers Ω1 and Ω2, which are
separated by an ”S-shaped” interface Γ (see Fig. 5), and which have different capillary pressure laws. The
porosity φ is constant and set to φ = 1, and the absolute permeability K is given by K1 = 1 and K2 = 0.5.
The oil and water densities are given by ρo = 0.81, ρw = 1 respectively, and g = −9.81ez. We suppose that
the porosity is such that φi = 1, i ∈ {1, 2}, and we define the oil and water mobilities by

ηo,i(s) = s2 and ηw,i = 3(1− s)2, i ∈ {1, 2}.
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Moreover we suppose that the capillary pressure curves have the form

π1(s) = ln(1− s) and π2(s) = 0.5− ln(1− s).

Test case 1. We suppose that the layer Ω1 contains some quantity of oil and it is situated below Ω2, which
is saturated with water, that is to say Ω1 = {(x, z) ∈ Ω | z < Γ(x)} and Ω2 = {(x, z) ∈ Ω | z > Γ(x)}. The
initial saturation is given by

s0(x) =
{

0.3 if x ∈ Ω1,
0 otherwise.
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Figure 7: Test case 1, oil saturation for t = 0.0125, t = 0.025 and t = 0.2.
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Figure 8: Test case 1, capillary pressure for t = 0.0125, t = 0.025 and t = 0.2.

The flow is driven by buoyancy, making the oil move along ez until it reaches the interface Γ. As one can
see on the figures 7 and 8, for t ≤ 0.11, oil can not access the domain Ω2, since the capillary pressure π1(s1)
is lower than the threshold value π2(0) = 0.5, which is called the entry pressure (see Fig. 6). Hence the
saturation below the interface s1 increases, as well as the capillary pressure π1(s1). As soon as the capillary
pressure π1(s1) reaches the entry pressure π2(0), oil starts to penetrate in the domain Ω2. Nevertheless, as
pointed out in [8, 11], a finite quantity of oil remains trapped under the rock discontinuity. This phenomenon
is called oil trapping. It is worth noting that the solution at t = 0 satisfies (21), thus in the absence of gravity
the initial distribution of oil-phase would be a steady state solution s(x, t) = s0(x).
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Figure 9: Test case 2, oil saturation for t = 0.2, t = 1.5 and t = 2.
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Test case 2. We assume that the oil is initially situated in the rock with a higher entry pressure pressure
i.e.

s0(x) =
{

0.3 if x ∈ Ω2,
0 otherwise.

where this time Ω1 = {(x, z) ∈ Ω | z > Γ(x)} and Ω2 = {(x, z) ∈ Ω | z < Γ(x)}. This time the flow is driven
not only by a buoyancy, but also by a difference in the capillary pressure potential (the solution at t = 0 does
not fulfill (21)). As a result the oil-phase can immediately penetrate the domain Ω1. The figure 9 shows that
the oil propagates in the domain Ω1 with a finite speed. Remark that in this case the capillary pressure and
the oil pressure remain discontinuous (see Fig. 10), yet the oil phase may pass through the discontinuity.
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Figure 10: Test case 2, capillary and oil pressure at t = 5.
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