24 research outputs found

    On Spectral Coexistence of CP-OFDM and FB-MC Waveforms in 5G Networks

    Full text link
    Future 5G networks will serve a variety of applications that will coexist on the same spectral band and geographical area, in an uncoordinated and asynchronous manner. It is widely accepted that using CP-OFDM, the waveform used by most current communication systems, will make it difficult to achieve this paradigm. Especially, CP-OFDM is not adapted for spectral coexistence because of its poor spectral localization. Therefore, it has been widely suggested to use filter bank based multi carrier (FB-MC) waveforms with enhanced spectral localization to replace CP-OFDM. Especially, FB-MC waveforms are expected to facilitate coexistence with legacy CP-OFDM based systems. However, this idea is based on the observation of the PSD of FB-MC waveforms only. In this paper, we demonstrate that this approach is flawed and show what metric should be used to rate interference between FB-MC and CP-OFDM systems. Finally, our results show that using FB-MC waveforms does not facilitate coexistence with CP-OFDM based systems to a high extent.Comment: Manuscript submitted for review to IEEE Transactions on Wireless Communication

    Coexistence of OFDM and FBMC for Underlay D2D Communication in 5G Networks

    Full text link
    Device-to-device (D2D) communication is being heralded as an important part of the solution to the capacity problem in future networks, and is expected to be natively supported in 5G. Given the high network complexity and required signalling overhead associated with achieving synchronization in D2D networks, it is necessary to study asynchronous D2D communications. In this paper, we consider a scenario whereby asynchronous D2D communication underlays an OFDMA macro-cell in the uplink. Motivated by the superior performance of new waveforms with increased spectral localization in the presence of frequency and time misalignments, we compare the system-level performance of a set-up for when D2D pairs use either OFDM or FBMC/OQAM. We first demonstrate that inter-D2D interference, resulting from misaligned communications, plays a significant role in clustered D2D topologies. We then demonstrate that the resource allocation procedure can be simplified when D2D pairs use FBMC/OQAM, since the high spectral localization of FBMC/OQAM results in negligible inter-D2D interference. Specifically, we identify that FBMC/OQAM is best suited to scenarios consisting of small, densely populated D2D clusters located near the encompassing cell's edge.Comment: 7 pages, 9 figures, Accepted at IEEE Globecom 2016 Workshop

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    A hybrid-structure offset-QAM filter-bank multi-carrier MIMO system

    Get PDF
    Offset quadrature amplitude modulation (OQAM) filter-bank multi-carrier (FBMC), has great potential for boosting the spectral efficiency (SE) and energy efficiency (EE) of future communication systems. This is due to its superior spectral localization, CP-less transmission and relaxed synchronization requirements. Our research focuses on three main OQAM/FBMC research problems: the computational complexity reduction taking equalization into consideration, its integration with multiple-input multiple-output (MIMO) and its high peak-to-average power ratio (PAPR). OQAM/FBMC systems are mainly implemented either using frequency spreading (FS) or polyphase network (PPN) techniques. The PPN technique is generally less complex, but when using frequency domain equalization (FDE) to equalize multipath channel effects at the receiver, there is a computational complexity overhead when using PPN. A novel hybrid-structure OQAM/FBMC MIMO space-frequency block coding (SFBC) system is proposed, to achieve the lowest possible overall complexity in conjunction with FDE at the receiver in frequency selective Rayleigh fading channel. The Alamouti SFBC block coding is performed on the complex-orthogonal signal before OQAM processing, which resolves the problems of intrinsic interference when integrating OQAM/FBMC with MIMO. In better multipath channel conditions with a line-of-sight (LOS) path, a zero-forcing (ZF) time domain equalization (TDE) is exploited to further reduce the computational complexity with comparable performance bit-error-rate (BER). On the other hand, to tackle the high PAPR problem of the OQAM/FBMC system in the uplink, a novel single carrier (SC)-OQAM/FBMC MIMO system is proposed. The system uses DFT-spreading applied to the OQAM modulated signal, along with interleaved subcarrier mapping to significantly reduce the PAPR and enhance the BER performance over Rayleigh fading channels, with relatively low additional computational complexity compared to the original complexity of the FBMC system and compared to other FBMC PAPR reduction techniques.The proposed hybrid-structure system has shown significant BER performance in frequency-selective Rayleigh fading channels compared to OFDM, with significantly lower OOB emissions in addition to the enhanced SE due to the absence of CP. In mild multipath fading channels with a LOS component, the PPN OQAM/FBMC MIMO using TDE has a comparable BER performance with significantly less computational complexity. As for the uplink, the SC-OQAM/FBMC MIMO system significantly reduces the PAPR and enhances the BER performance, with relatively low additional computational complexity

    A frequency domain approach to synchronization of filterbank multicarrier systems in practice

    Get PDF
    [no abstract

    Multiantenna Interference Mitigation Schemes and Resource Allocation for Cognitive Radio

    Get PDF
    Maximum and efficient utilization of available resources has been a central theme of research on various areas of science and engineering. Wireless communication is not an exception to this. With the rapid growth of wireless communication applications, radio frequency spectrum has become a valuable commodity. Supporting very high demands for data rate and throughput has become a challenging problem which requires innovative solutions. Dynamic spectrum sharing (DSS) based cognitive radio (CR) is envisioned as a promising technology for future wireless communication systems, such as fifth generation (5G) further development and sixth generation (6G). Extensive research has been done in the areas of CRs and it is considered to mitigate the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In the first part of this thesis, we focus on enhancing the spectrum usage of CR’s using interference cancellation methods that provides considerable performance gains with realistic computational complexity, especially, in the context of the widely used multicarrier waveforms. The primary focus is on interference rejection combining (IRC) methods, applied to the black-space cognitive radio (BS-CR). Earlier studies on the BS-CR in the literature were focused on using CRs as repeaters for the primary transmitter to guarantee that the CR is not causing significant interference to nearby primary users’ receivers. This kind of approaches are transmitter-centric in nature. In this thesis, receiver-centric approaches such as multi-antenna diversity combining, especially enhanced IRC methods, are considered and evaluated. IRC methods have been widely studied and adopted in several practical wireless communication systems. We focus on developing such BS-CR schemes under strong interference conditions, which has not been studied in the CR literature so far. Spatial covariance matrix estimation under mobility and high carrier frequencies is found to be the most critical part of such scheme. Algorithms and methods to mitigate these effects are developed in this thesis and they are evaluated under realistic BS-CR receiver operating conditions. We use sample covariance estimation approach with silent gaps in the CR transmisison. Covariance interpolation between silent gaps improves greatly the robustness with time-varying channels. Good link performance can be reached with low mobility at carrier frequency considered for the TV white-spaced case. The proposed BS-CR scheme could be feasible at below 6 GHz frequencies with pedestrian mobilities. The second part of this thesis investigates the effect of radio frequency (RF) impairments on the performance of the cognitive wireless communication. There are various unavoidable imperfections, mainly due to the limitations of analog high-frequency transmitter and receiver circuits. These imperfections include power amplifier (PA) non-linearities, receiver nonlinearities, and carrier frequency offset (CFO), which are considered in this study. These effects lead to significant signal distortion and, as a result of this, the wireless link quality may deteriorate. In multicarrier communications such signal distortions may lead to additional interference, and it is important to evaluate their effects on spectrum sensing quality and on the performance of the proposed BS-CR scheme. This part of the thesis provides critical analysis and insights into such issues caused by RF imperfections and demonstrates the need for designing proper compensation techniques required to avoid/reduce such degradations. It is found that the transmitter’s PA nonlinearities affect in the same way as in basic OFDM systems and BS-CR receiver’s linearity requirements are similar to those for advanced DSP-intensive software defined radios. The CR receiver’s CFO with respect to the PU has the most critical effect. However, synchronizing the CR with the needed high accuracy is considered achievable due to the PU signal’s high-power level. The final part of the thesis briefly looks at alternate waveforms and techniques that can be used in CRs. The filter bank multicarrier (FBMC) waveforms are considered as an alternative to the widely used OFDM schemes. Here the core idea is interference avoidance, targeting to reduce the interference leakage between CRs and the primary systems, by means of using a waveform with good spectrum localization properties. FBMC system’s performance is compared with OFDM based system in the context of CRs. The performance is compared from a combined spectrum sensing and resource allocation point of view through simulations. It is found that well-localized CR waveforms improve the CR link capacity, but with poorly localized primary signals, these possibilities are rather limited

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF
    corecore