65 research outputs found

    A comprehensive approach to MPSoC security: achieving network-on-chip security : a hierarchical, multi-agent approach

    Get PDF
    Multiprocessor Systems-on-Chip (MPSoCs) are pervading our lives, acquiring ever increasing relevance in a large number of applications, including even safety-critical ones. MPSoCs, are becoming increasingly complex and heterogeneous; the Networks on Chip (NoC paradigm has been introduced to support scalable on-chip communication, and (in some cases) even with reconfigurability support. The increased complexity as well as the networking approach in turn make security aspects more critical. In this work we propose and implement a hierarchical multi-agent approach providing solutions to secure NoC based MPSoCs at different levels of design. We develop a flexible, scalable and modular structure that integrates protection of different elements in the MPSoC (e.g. memory, processors) from different attack scenarios. Rather than focusing on protection strategies specifically devised for an individual attack or a particular core, this work aims at providing a comprehensive, system-level protection strategy: this constitutes its main methodological contribution. We prove feasibility of the concepts via prototype realization in FPGA technology

    Modeling and automated synthesis of reconfigurable interfaces

    Get PDF
    Stefan IhmorPaderborn, Univ., Diss., 200

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    HAL-ASOS - Linux com aceleração em hardware para sistemas operativos dedicados à aplicação

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (PDEEC) (especialidade de Informática Industrial e Sistemas Embebidos)O ecossistema de sistemas embebidos de hoje tornou-se enorme, cobrindo vários e diferentes sistemas, exigindo desempenho e mobilidade completa enquanto atingem autonomias de bateria cada vez maiores. Mas a crescente frequência de relógio que resultou em dispositivos cada vez mais rápidos começou a estagnar antes dos transístores pararem de encolher. Plataformas Field Programmable Gate Array (FPGA) são uma solução alternativa para a implementação de sistemas completos e reconfiguráveis. Fornecem desempenho e eficiência computacional para satisfazer requisitos da aplicação e do sistema embebido. Vários Sistemas Operativos (SO) assistidos por FPGA foram propostos, mas ao estreitar seu foco na síntese do datapath do acelerador de hardware, a grande maioria ignora a integração semântica destes no SO. Ambientes de síntese de alto nível (HLS) elevaram a abstração além da linguagem de transferência de registo (RTL), seguindo uma abordagem específica de domínio enquanto misturam software e abstrações de hardware ad hoc, que dificultam as otimizações. Além disso, os modelos de programação para software e hardware reconfigurável carecem de semelhanças, o que com o tempo dificultará a Exploração do Ambiente de Design (DSE) e diminuirá o potencial de reutilização de código. Para responder a estas necessidades, propomos HAL-ASOS, uma ferramenta para implementar sistemas embebidos baseados em Linux que fornece (1) elasticidade no design em conformidade com a natureza evolutiva deste SO, (2) integração semântica profunda de tarefas de hardware nos modelos de programação do Linux, (3) facilidade na gestão de complexidade através de metodologia e ferramentas para apoiar o design, verificação e implementação, (4) orientada por princípios de design híbridos e eficiência no sistema. Para avaliar as funcionalidades da ferramenta, foi implementado um aplicativo criptográfico que demonstra alcance de desempenho enquanto se emprega a metodologia de design. Novos níveis de desempenho são atingidos numa aplicação de Visão por Computador que explora recursos de programação assíncrona-síncrona. Os resultados demonstram uma abordagem flexível na reconfiguração entre hardware e software, e desempenho que aumenta consistentemente com acréscimo de recursos ou frequência de relógio.Today’s embedded systems ecosystem became huge while covering several and different computer-based systems, demanding for performance and complete mobility while experiencing longer battery lives. But the rampant frequency that resulted in faster devices began hitting a wall even before transistors stopped shrinking. Field Programmable Gate Array (FPGA) platforms are an alternative solution towards implementing complete reconfigurable systems. They provide computational power, efficiency, in a lightweight solution to serve the application requirements and increase performance in the overall system. Several FPGA-assisted Operating Systems (OS) have been proposed, but by narrowing their focus on datapath synthesis of the hardware accelerator, they completely ignore the deep semantic integration of these accelerators into the OS. State-of-the-art High-Level Synthesis (HLS) environments have raised the level of abstraction beyond Register Transfer Language (RTL) by following a domain-specific approach while mixing ad hoc software and hardware abstractions, making harder for performance optimizations. Furthermore, the programming models for software and reconfigurable hardware lack commonalities, which in time will hinder the Design Space Exploration (DSE) and lower the potential for code reuse. To overcome these issues, we propose HAL-ASOS, a framework to implement Linux-based Embedded systems which provides (1) elasticity by design to comply with the evolutive nature of Linux, (2) deep semantic integration of the hardware tasks in the Linux programming models, (3) easy complexity management using methodology and tools to fully support design, verification and deployment, (4) hybrid and efficiency-oriented design principles. To evaluate the framework functionalities, a cryptographic application was implemented and demonstrates performance achievements while using the promoted application-driven design methodology. To demonstrate new levels of performance that can be achieved, a Computer Vision application explores several mixed asynchronous-synchronous programming features. Experiments demonstrate a flexible design approach in terms of hardware and software reconfiguration, and significant performance that increases consistently with the rising in processing resources or clock frequencies.Financial support received from Portuguese Foundation for Science and Technology (FCT) with the PhD grant SFRH/BD/82732/2011

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Security Framework and Jamming Detection for Internet of Things

    Get PDF

    A coarse-grained dynamically reconfigurable MAC processor for power-sensitive multi-standard devices

    Get PDF
    DRMP, a Dynamically Reconfigurable MAC Processor, is an innovative, dynamically reconfigurable System-on-Chip architecture. The architecture exploits substantial overlaps in the functionality of different wireless MAC layers. Its flexibility is specialized for addressing the requirements of the MAC layer of wireless standards. It is targeted at consumer, multi-standard, handheld devices, and its design is meant to address the balance of flexibility and power-efficiency that this target market demands. The DRMP reconfigures packet-by-packet on the fly, allowing execution of concurrent protocol modes on a single hardware co-processor. An interrupt-driven programming model has also been presented and shown to implement the protocol state-machine of the three protocols on a CPU. These features will allow the DRMP to replace three MAC processors in a hand-held device. The most innovative component of the DRMP architecture is its Interface and Reconfiguration Controller. It uses a combination of asynchronous controllers to dynamically reconfigure the functional units in the architecture and delegate MAC tasks to them. The architecture has been modeled in Simulink at cycle-approximate abstraction. Results of simulations involving transmission and reception of packets have been presented, showing that the platform concurrently handles three protocol streams, reconfigures dynamically, yet meets and exceeds the protocol timing constraints, all at a moderate frequency. Its heterogeneous and coarse-grained functional units, limited connectivity requirements between these units, and proportionally large time that these resources are idle, promise a very modest power-consumption, suitable for mobile devices, while offering flexibility to implement different MAC protocols
    corecore