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Resumo

HAL-ASOS - Linux com Aceleracao em Hardware para Sistemas Operativos dedicados a

Aplicacao.

0 ecossistema de sistemas embebidos de hoje tornou-se enorme, cobrindo varios e diferentes sistemas,
exigindo desempenho e mobilidade completa enquanto atingem autonomias de bateria cada vez maiores.
Mas a crescente frequéncia de relogio que resultou em dispositivos cada vez mais rapidos comecou a
estagnar antes dos transistores pararem de encolher. Plataformas Field Programmable Gate Array (FPGA)
sao uma solucao alternativa para a implementacao de sistemas completos e reconfiguraveis. Fornecem
desempenho e eficiéncia computacional para satisfazer requisitos da aplicacao e do sistema embebido.
Varios Sistemas Operativos (SO) assistidos por FPGA foram propostos, mas ao estreitar seu foco na sin-
tese do datapath do acelerador de hardware, a grande maioria ignora a integracao semantica destes no
SO. Ambientes de sintese de alto nivel (HLS) elevaram a abstracdo além da linguagem de transferéncia de
registo (RTL), seguindo uma abordagem especifica de dominio enquanto misturam software e abstracdes
de hardware ad hoc, que dificultam as otimizacoes. Além disso, os modelos de programacao para soft-
ware e hardware reconfiguravel carecem de semelhancas, o que com o tempo dificultara a Exploracao
do Ambiente de Design (DSE) e diminuira o potencial de reutilizacdo de cdédigo. Para responder a estas
necessidades, propomos HAL-ASOS, uma ferramenta para implementar sistemas embebidos baseados
em Linux que fornece (1) elasticidade no design em conformidade com a natureza evolutiva deste SO, (2)
integracdo semantica profunda de tarefas de hardware nos modelos de programacao do Linux, (3) facili-
dade na gestdo de complexidade através de metodologia e ferramentas para apoiar o design, verificacao
e implementacao, (4) orientada por principios de design hibridos e eficiéncia no sistema. Para avaliar as
funcionalidades da ferramenta, foi implementado um aplicativo criptografico que demonstra alcance de
desempenho enquanto se emprega a metodologia de design. Novos niveis de desempenho sao atingidos
numa aplicacéo de Visao por Computador que explora recursos de programacao assincrona-sincrona. Os
resultados demonstram uma abordagem flexivel na reconfiguracao entre hardware e software, e desem-

penho que aumenta consistentemente com acréscimo de recursos ou frequéncia de relogio.

palavras chave: FPGA, Linux, Elasticidade Evolutiva, Microcodigo, Aceleracdo em Hardware.



Abstract

HAL-ASOS - Hardware Assisted Linux for Application Specific Operating System

Today's embedded systems ecosystem became huge while covering several and different computer-based
systems, demanding for performance and complete mobility while experiencing longer battery lives. But
the rampant frequency that resulted in faster devices began hitting a wall even before transistors stopped
shrinking. Field Programmable Gate Array (FPGA) platforms are an alternative solution towards imple-
menting complete reconfigurable systems. They provide computational power, efficiency, in a lightweight
solution to serve the application requirements and increase performance in the overall system. Several
FPGA-assisted Operating Systems (0OS) have been proposed, but by narrowing their focus on datapath
synthesis of the hardware accelerator, they completely ignore the deep semantic integration of these ac-
celerators into the OS. State-of-the-art High-Level Synthesis (HLS) environments have raised the level of
abstraction beyond Register Transfer Language (RTL) by following a domain-specific approach while mixing
ad hoc software and hardware abstractions, making harder for performance optimizations. Furthermore,
the programming models for software and reconfigurable hardware lack commonalities, which in time will
hinder the Design Space Exploration (DSE) and lower the potential for code reuse. To overcome these
issues, we propose HAL-ASOS, a framework to implement Linux-based Embedded systems which provides
(1) elasticity by design to comply with the evolutive nature of Linux, (2) deep semantic integration of the
hardware tasks in the Linux programming models, (3) easy complexity management using methodology
and tools to fully support design, verification and deployment, (4) hybrid and efficiency-oriented design
principles. To evaluate the framework functionalities, a cryptographic application was implemented and
demonstrates performance achievements while using the promoted application-driven design methodol-
ogy. To demonstrate new levels of performance that can be achieved, a Computer Vision application
explores several mixed asynchronous-synchronous programming features. Experiments demonstrate a
flexible design approach in terms of hardware and software reconfiguration, and significant performance

that increases consistently with the rising in processing resources or clock frequencies.

Keywords: FPGA, Linux, Evolutive elasticity, Microcode, Hardware Acceleration.
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Chapter 1

Introduction

With network connectivity, Operating System (OS) and database integration, today’'s embedded systems
universe became huge, covering several and different computer-based systems, both in size and func-
tionalities. From mobile phones to self-driving car systems, from Ultra High Definition (UHD) cameras to
remote health monitors, from a simple smart watch to internet-aware home devices, our world has been
shaped by an increasingly sophisticated set of electronic devices. These are the elements in a highly
interconnected ecosystem that is smarter, more efficient and strives for multi-functionality and flexibility,

thus facing harder and ever-increasing complex designs.

Today’s most frequent demands for embedded devices are still grounded to performance, from multiple
and concurrent software applications, high quality graphics, to complete mobility, with connectivity every-
where and longer battery lives. But the rampant frequency that resulted in faster devices, began requiring
huge cooling systems and state-of-the-art power supplies to keep up with the power-hungry Central Pro-
cessing Unit (CPU)s. The Moore’s Law [1] that served as the underlying philosophy that driven processor

design, began hitting a wall even before transistors stopped shrinking.

Industry has adopted the multicore-platform to deliver advances in the current and next-generation em-
bedded devices. We live now in the many-core era where Thread Level Parallelism (TLP) has become a
dominating factor in computing performance. But the computational performance is not per se guaran-
teed by an increase in the number of CPU cores in the system. Performance benefits are mainly restricted
to the code sections that can be parallelized, from coarse grained process and thread levels, through finer
grained instruction and data levels (Amdahl’s Law [2]). Currently, two issues must be addressed effi-

ciently, the scalability and the heterogeneity. While the processor utilization, throughput and Instruction
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Level Parallelism (ILP) are the root drivers of performance in the system, the performance of the many-
core demands for scalability, as the system utilization will only be exacerbated by a proper and efficient
parallelization. Another consideration is the fact that distinct CPU architectures will map more efficiently
into specific types or sections inside an application. The control dominated or event-bounded sections
are generally composed by independent code sections and can be efficiently executed in more traditional
out-of-order execution processor. Other sections can be more data-centric or processor-bounded, such
as image or signal processing, and can also executed in the same machine, but it will experience great
performances in a more complex CPU architecture such as Single Instruction Multiple Data (SIMD) or

Very Long Instruction Word (VLIW) processors.

The struggle to serve the different application needs pushed chip manufactures into designing systems
that mix core architectures and dynamically adjust performance to the computational needs. ARM has
been developing the big.LITTLE heterogeneous processing Architecture since 2011. The design uses two
classes of processors and in the latest design specifications, the Big processor cluster can include four
Cortex-A73, while the Little processor cluster can also include four Cortex-A53. Apple launched the A13
Bionic chip, an ARM-based System on a Chip (SoC) design that includes a 64-bit hexa-core processor with
two 2.65 GHz Lightning cores for high-performance processing, and four 1.8GHz Thunder cores for power
efficient processing. Intel announced the Hybrid x86 CPU designed with power efficiency in mind, with

one x86 Sunny Cove core (big CPU) and four smaller design x86 CPU cores (small CPUs).

However, different core architectures can introduce Instruction Set Architecture (ISA) and Application Bi-
nary Interface (ABI) incompatibilities, different memory hierarchies, cache organization or coherence al-
gorithms. Currently, specific OSes are used to deal with these issues, by abstracting the computing
platform into a single Virtual Machine (VM), where system calls represent the standard set of operations
for each specific machine while providing the designer an established way for structuring its applications.
The assumption that such set of virtual operations will be available across different platform distributions,
provides the means for portability and consequently guide industry acceptance. Although a valid solution,
the specific OSes usually restrict the available application software base and target specific software tools
that can raise development effort. Consequently, new design projects are featured by growing software

complexity and engineering effort.

Generic purpose OSes usually provide fast application prototyping with eased use, high software integra-

tion, increased hardware support, and extended debugging features that are not usual in target specific
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OSes. But despite of the expected overhead and performance metrics degradation, most of the 'well-
accepted’ operating systems, were never created to abstract such a level of heterogeneity into a unified
VM model. They are built into the premise of some internal homogeneity and so, they are now struggling
with the hardware level asymmetries at many levels of implementation, raising considerable issues to

programming and increased computational overhead to conform with the system.

The risen in silicon logic densities, pushed the Field Programmable Gate Array (FPGA) from being applied
as glue logic and prototyping towards implementing complete reconfigurable systems. Today's FPGA
platforms provide large density fabrics and include the latest multi-core CPU architectures. They represent
the desired architecture for most embedded devices and motivated designers to use them not only as
development platforms but also as final products. Offloading computation to specialized hardware circuitry
is not new as it has been successfully used in the past. The mix of fast CPU cores and fine-grained
reconfigurable logic allows to map both sequential or control-dominated code and highly parallel data-
centric computations into a single platform. They can provide computational power, efficiency, in a light-
weight solution to serve the application requirements, increasing performance, and they can also be

considered as complementary to complex heterogenic processor architectures.

However, the programming models for software and reconfigurable hardware lack commonalities, which
in time will hinder the Design Space Exploration (DSE) and lower the potential for code reuse. Traditional
design techniques were not able to kept with these risen in system complexity. Generally, they do not
consider any efficiencies on the purposed programming models. Also, the existing design techniques
for these types of reconfigurable devices evolved from the Application Specific Integrated Circuit (ASIC)

design and tend to view the specialized hardware as passive processing units in the system.

A new design methodology is demanded for dealing with aforementioned new systems requirements and
constraints of multiple functionalities, programmability, heterogeneity, smartness, real-time performance,
power consumption and security due to connectivity, that all together have been compounding the design
complexity. Essentially, it must raise the abstraction level to design, allowing the user to quickly envision,
develop and deploy the application. Specifically, it must be one that: (1) promotes the reconfigurable
hardware to first-class computing unit, being able to synchronize, communicate and notify other computing
units in the system; (2) provides seamless hardware integration through an automated DSE, guided by
an improved metric-driven approach and encompassing an integrated system emulator with multilevel

simulation; (3) encourages creativity, exploring the hardware and software synergies, and thus expanding
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the scope of electronic design beyond its original boundaries.

In spite of the panoply of existing Electronic Design Automation (EDA) tools, supporting capabilities such
as high-level synthesis, system profiling, simulation and emulation as well as Standard Structure for Pack-
aging, Integrating, and Reusing Intellectual Property (IP) (IP-XACT) [3] design and overlay architecture for
FPGAs, only to mention a few, none of them can efficiently handle such demand for nowadays systems
requirements and constraints. A toolset is in need to leverage IP evaluation, quality assurance and mostly
a snap-in integration. Most of the existing IPs, are blacked boxed with few or none visibility into, neither
software to support for validation and assist in device-driver development, thus forcing the integration task

to a level of development effort.

To gain the insight to what such a tool needs to address it is better to start by answering what is the
today’s system realization. Traditionally, most systems are developed from the bottom up starting with the
hardware. The OS already exists and is generally pre-selected and the applications are developed within
the limitations of the pre-determined hardware and software stacks. Typically, the application development
is largely abstracted from the hardware, and in the absence of a virtual emulator, the application will not
be completed until the target hardware is fully available. The system integration and debugging will occur
later in the development cycle, and it will usually face schedule delays and quality issues that, ultimately
resulted in quality degradation. Applications are pre-sentenced to the underlying hardware and software
layers, and must conform to any constraint limitations imposed. Any potential glitch that simultaneously
involves the application, OS, and hardware layers is extremely difficult to fix and demands for very time-

consuming effort with a lot of iteration and debugging.

To support the narrow range of application needs and still being able to tackle performance and efficient
design metrics, one must ditch the hardware-first paradigm and follow a different approach. One that
starts by quickly envisioning the application, allowing designers to feel the application needs and then
choose the right platform, resources and the software layers. For an effective performance, the hardware
and software must to be developed concurrently to better promote efficiency in a resource-aware design

approach that fits the solution with just the right needs.
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1.1 Research questions and Methodology

We believe that extracting the performance benefits from computational offload to FPGA reconfigurable
devices, requires an agnostic approach to the software. One that follows an application-centric design
methodology, where the application is driving the system requirements instead of system capabilities
driving the application. One that raises the abstraction level to programming and provides transparent

reconfigurable hardware devices integration.
For these reasons, this thesis tries to answer to the following questions:

1. How can we transparently and dynamically extend the Linux programming models with reconfig-

urable hardware devices?
2. How can we lower programmability gap between the hardware and software?

3. Can we provide and automated design flow that mitigates the system complexity, keeps track on
development and ensures compliance with the design metrics, while leveraging better computing

and resource efficiency?

We address the questions above by applying the following methodology that is anchored to (1) elasticity by
design, (2) deep semantic integration, (3) easy complexity management, (4) hybrid and efficiency-oriented
design principles, to implement Hardware Assisted Linux for Application Specific Operating Systems (HAL-

ASOS):

1. Run a parallelization tuning cycle using profilers and based on several workloads to identify critical

Linux kernel- and user-level subsystems that should be tuned for scalability;

2. Propose a high-level programming abstraction at the same level of software task to express hard-
ware translated tasks from Linux, application and middleware components by making reconfig-

urable hardware first-class computing entities;

3. Leveraging computing and resource efficiency by applying mixed asynchronous—synchronous de-

sign, event-driven, microcode dynamicity and laziness approaches;

4. Support system designer in the creation of the full platform solutions, including Board Support

Package (BSP), OS, device drivers, middleware and applications software;
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5. Provide an integrated solution that automates the development of the software on which the user

application will be built by exploring the capabilities of the application-tailored SoC.

HAL-ASOS targets the design of Embedded systems, tailored to the application requirements, which are
implemented using CPU+FPGA platforms.

1.2 Scope

The scope of this thesis falls within the development of software and reconfigurable hardware devices,
but it is constrained to the hardware accelerated Linux-based embedded systems on CPU+FPGA plat-
forms. It also falls into the scope of design methodologies to ensure an efficient design and ease the
programmability gap between software and hardware, while providing the designer with a complete solu-
tion for developing reconfigurable systems that, benefit from the synergy among software, hardware and

services, and deliver powerful computation solutions that can be built with just the right resources.

1.3 State of the Art

The state-of-the-art for this thesis falls into four areas that will be discussed in the paragraphs below: (1)
Native or ad hoc FPGA acceleration (2) operating systems for FPGA; (3) Application-Specific Operating

Systems (ASOS); and (4) microcode-level customization and update:

1.3.1 Native FPGA Acceleration

Many native FPGA-based acceleration solutions exist, which are hand-optimized for one specific application
and FPGA platform, hindering the productivity by demanding for complete rewriting or time-consuming
porting. HThreads [4] provided a unified multi-threaded programming model for architectures with re-
configurable components, by delivering mechanisms that implement transparent integration of hardware
threads into a heterogenous system. Such mechanisms, implement basic scheduling, synchronization and
interrupt handling for the hardware threads. A Hardware Thread Interface (HWTI) abstracts a platform-
independent compilation target, for hardware-resident computations. It enables the use of standard thread
communication and synchronization across the software/hardware boundary. The system is designed

from C code language sources, which are compiled using the HybridThreads compiler (HTC) to create
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VHDL code that is integrated into the HThreads synthesis process. A runtime support implementing a
hardware-based microkernel provides OS backend to the components in the system. It enables the design
of heterogeneous systems using Portable Operating System Interface (POSIX) programming abstractions.
From the designer perspective, it provides a multi-threaded programming model where a parent thread
creates any number of children threads that will execute transparently on the underlying computational
resources. Despite the novelty in this research, the use of dedicated compiler from C to Register Transfer
Language (RTL) to implement hardware threads in the application, is very limiting in terms of portability

and maintenance.

Luca Pezzarossa et al. [5] evaluated the potential benefits of using Dynamic Partial Reconfiguration (DPR)
to implement hardware accelerators in real-time systems by driving the main focus towards: (1) trade-offs
between hardware utilization, worst-case performance, and speed-up over a pure software solution and (2)
the trade-offs between the use of multiple specialized accelerators combined with DPR instead of the use
of a more general accelerator, and the memory footprint of the partial-bit streams. The interaction between
software and hardware is based on the control registers of each accelerator and specific shared memory
regions. For testing, it implemented a passive coprocessor model where the software is responsible for
activating accelerators when input data is ready for processing. The results compare performance of the
software using softcore processor over the hardware accelerators in combination with the DPR feature of
the FPGAs. The use of DPR can lead to significant reduction in the hardware size when the reconfigured
tasks are computationally intensive, and maintain performances gains ranging from 1.2 to 4.1 times over

the software execution.

Solutions described above narrow their focus on datapath synthesis of the hardware accelerator, com-
pletely ignoring the deep semantic integration of these into operating system, or high-level synthesis
(High-Level Synthesis (HLS)) environments as well as DPR-enabled elasticity. In the absence of and
0S environment, applications fail to handle reliable software operation as well as the legacy software

execution and well-established programming models.

1.3.2 Operating systems for FPGA

There have been many proposals for building operating systems for FPGA, mainly due to the risen in silicon
logic densities alongside the differentiating capabilities of FPGAs. Offloading computation to specialized

hardware circuitry has been used to provide computational power, efficiency, in a light-weight solution to
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serve the application requirements and increasing performance, while it can also be considered as com-
plementary to complex heterogenic processor architectures. To reduce development time and to ease
a complex design implementation, HLS environments have raised the level of abstraction beyond RTL
(i.e., by using high-level languages such C/C++ or OpenCL) and following a domain-specific approach,
while mixing ad hoc software and hardware abstractions, making harder performance optimizations. Fur-
thermore, design portability is strongly impacted when changing from one HLS environment to another,
due to their specific dependencies on custom data type, hardware support IPs, and compiler-specific

"pragmas” [6].

BORPH [7] implements an operating system level support for FPGA-based reconfigurable computers. It
introduces the concept of hardware process which is the same as normal UNIX process, but execution is
handled by hardware circuits on FPGA. Under BORPH, hardware and software share the same familiar
UNIX interface and the same level of support from the OS kernel. An application using BORPH is composed
of a collection of files, to implement a predetermined number of processes, that can be software or
equivalent hardware processes. The framework is composed of a kernel module and a user Application
Programming Interface (API) that provides the set of system calls to interact with the computing resources.
The kernel module is responsible for the request handling that mainly correspond to the allocation and
configuration of the hardware resources. The API includes a series of system calls that implement a
message passing interface allowing a hardware process to access data files or to communicate with other
processes using pipes. In design terms, a hardware process is a BORPH executable binary file (BOF),
that contains information about the resources. By extending the standard Linux kernel to accommodate
the hardware process, it conflicts with its evolutive nature, demanding for a continuous updated patching
of the Linux source. No hardware interface is established and the communication is based on passive
hardware regions that are populated into the Linux procfs, under the process identification (pid) folder. In
doing so, a new folder is created with any new execution, thus creating different virtual file locations that

are unpredictable to the application.

FUSE [8] implements a framework to abstract HW accelerators and design Petalinux-based embedded
systems. It provides a POSIX compliant thread model that can be implemented using software or hard-
ware resources. To abstract the accelerator model to the software application, it relies on the Top-Level
FUSE Component (TLFC) and the Low-Level FUSE Component (LLFC), that operate at Linux user and

kernel spaces, respectively. The TLFC is as software library that provides thread creation, initialization,
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scheduling and destruction. It also implements a set of functions to interact at the LLFC using the OS
interface. The LLFC is a kernel module that acts as low-level abstraction and is responsible for the com-
munication, synchronization and monitoring of the hardware tasks. Each hardware task is coupled with
an accelerator interface that is orchestrated by the LLFC module. For every such interface, a loadable ker-
nel module is created dynamically at runtime and LLFC maps each hardware interface as peripheral I/0
devices. Communication is implemented on the software side, exchanging data using operating system

services and thus forcing the hardware task design to a passive coprocessor model.

FOSFOR [9] is a framework that implements a transparent abstraction layer for applications following the
Synchronous Data Flow model, deployed on System on Chip architectures. The underlying platform is
composed by a combination of reconfigurable hardware regions (RR) and the required number of general
purpose processors (GPP)s. It considers a Synchronous Data Flow model description and an architectural
mapping to describe associations between processing units and actors. The implementation is based on
C/C++ language for the software, and VHDL descriptions for the hardware-based components. The re-
sulting synthesis is a hardware design used to configure the FPGA and perform the actual computation.
It implements the concept of hardware threads, that are composed of a static component responsible
for the communication, providing local resources and associated control interfaces. A dynamic part is
used to implement the application related design. For this, Flexible OS was selected as hardware op-
erating system and RTEMS was chosen for the management of the software parts. A middleware layer
implemented using hardware and software parts establishes a single programming interface. It abstracts
both implementation and mapping, and offers some mechanisms like the accesses to OS services and the
inter-process communication. Focusing on the synchronous data flow model, system portability increases,

but communication efficiency becomes a system performance bottleneck.

SPREAD [10] provides a point-to-point streaming oriented programming environment, for architectures
with reconfigurable components. It is a thread-based approach where hardware tasks are encapsulated
into threads that resemble the POSIX programming interface. It considers three basic operations per-
formed by each thread, in getting the application-related data, the computation itself, and then providing
the processing results to the next thread. To facilitate switching between hardware and software, a soft-
ware delegate is created, and is responsible for the monitoring of the hardware thread on the software
side. A Hardware Thread Interface (HTI) abstracts the hardware thread design and enables communica-

tion between hardware and software as well as between hardware threads. Streaming channels can be
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dynamically interconnected at runtime, to provide interthread communication. Depending on whether
the execution resource is hardware or software it provides three distinct communication channels. When
both threads are implemented in software, the communication is implemented using memcopy function.
When implemented on hardware, they communicate directly using FIFOs that are synchronized by the HTI.
Lastly, when a software and hardware threads need to communicate, they use a Direct Memory Access
(DMA) point-to-point connection. A hardware thread manager is also provided to handle hardware threads
and is responsible for their creation and termination. Unlike previous frameworks, SPREAD is an inte-
grated solution specifically developed for streaming application design. It does not allow “one-to-many”
and “many-to-one” streaming interconnections, which are more common but not so easy automate. The
hardware task programming interface is centered around the passive coprocessor model, where control
unit blocks waiting for input data, executes processing upon arrival, and concludes producing results on

the local resources and signaling the software execution.

ReconOS [11] implements an operating system that extends the software multi-threaded programming
model to reconfigurable hardware. From the programmability point of view, it provides an API close to the
POSIX programming model where threads can be executed either on CPU or in reconfigurable hardware.
Software threads can be implemented using the POSIX library and synchronized using semaphores, mu-
texes, condition variables and mailboxes. Hardware threads are abstracted by the OS interface (OSIF)
that implements synchronization and communication mechanisms. An indexing scheme is also used to
implement resource sharing. The software-level interthread communication is implemented using shared
memory, while communication between hardware and software uses a message-based exchange model.
Thread memories are shared leaving consistency and coherence hazards to be handled by the program-
mer. Such constraint penalizes the performance in the overall system by the increased use of interrupt

events and consequent latency involved.

Zongwei Zhu et al. [12] proposes a task scheduling framework on the DPR-based platform that exploits
the hardware task cycle accuracy and task preemption overhead to improve scheduling efficiency. The
framework is based on general OS and takes the full consideration of the preemption overhead, the recon-
figuration time and hardware tasks' cycle accuracy. The scheduling method is based on the predictable
execution time of hardware tasks in DPR to improve scheduling efficiency of the whole system. The hard-
ware task participates in the scheduling of the OS through the associated delegate thread and optimizes

the task scheduling model, thereby reducing both the number and the overhead of task context switch.
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FOS [13] provides an OS that adopts a modular FPGA development flow, to allow each system component
to be changed and be agnostic to the heterogeneity of EDA tool versions, hardware and software layers. It
dynamically maximizes the utilization transparently from the users by using resource-elastic scheduling to
arbitrate the FPGA resources in both the time and spatial domain for any type of accelerators. Moreover,
FOS can switch between different accelerator implementations on the fly in order to balance resource
allocation for the best performance and load scenarios. It provides an application-centric view to the
developers by hiding most of the complexity encountered when using a heterogeneous CPU-FPGA accel-
eration system with a Linux backend. A user level daemon is responsible for managing FPGA resources
and initiate scheduling operations. Updating individual components includes the latency of the partial
reconfiguration that ranges from 3.8 to 6.8 milliseconds to replace one hardware accelerator, or 20.7 to
98.4 milliseconds to replace the entire FPGA shell. It abstracts the software design perspective but disre-
gards the efforts required to semantically integrate the hardware accelerators in the application, mapping
them by its hardware regions and considering accelerators as passive coprocessors. A design methodol-
ogy is also proposed but it lacks co-simulation or full-simulation supports to validate the accelerator nodes

in the application.

Hoang-Gia Vu et al. [6] propose a hardware task migration scheme assisted by (1) a checkpointing ar-
chitecture for FPGAs that flattens the structure of nested modules at the hardware description language
(HDL) level, (2) a static analysis of the original HDL source code to reduce the cost of hardware and
(3) Python-based tool to generate the checkpointing architecture at the HDL level. In the hardware task
migration scheme the checkpoint procedures overlap data transfers to minimize downtime to 1.251 mil-
liseconds in the worst-case scenario. When compared to the original design, clock degradations observed
vary from 9.73% to 0.15% averaging at 1.66%. The design is limited to a single-clock domain and yet to

be ported across different FPGA vendors.

Coyote [14] is a configurable FPGA “OS” for hybrid compute servers, designed mainly for reflecting on
the performance and efficiency benefits of importing OS abstractions wholesale to FPGAs. It goes beyond
ReconOS'’s deep semantic integration by supporting secure spatial and temporal multiplexing of the FPGA
between tenants, virtual memory, communication, and memory management inside a uniform execu-
tion environment. The overhead of Coyote is small and the performance benefit is significant, but more

importantly it allows us to reflect on whether importing OS abstractions wholesale to FPGAs is the best
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way forward. It shows that a coherent and reasonably complete set of OS abstractions can be imple-
mented, and still achieve acceptable performances in throughput, space efficiency, scheduling overhead
and memory bandwidth. As FPGAs become larger, the demand for the more traditional OS services will
grow. Migrating commonly used OS features to hardware IPs requires the right set of abstractions to

prevent them from quickly becoming obsolete.

1.3.3 Application-specific operating systems

Several works have been conducted on performance optimization of different features of an operating sys-
tem due to the following reasons [15]: (1) OSes are critical to the performance of the running application,
especially for system-intensive applications that invoke kernel features extensively, and (2) nowadays in
cloud era, many servers only run a single application. Tarax [15] is a one-size-fits-all compiler-based and
profile-guided optimization approach for constructing an ASOS. The implementation is based on modified
versions of the Linux kernel and Gnu Compiler Collection (GCC), to support kernel instrumentation and pro-
file collection. Detailed analysis has provided insights on how profile feedback helps GCC to perform better
optimizations on the Linux kernel in an application-specific manner. The outcome is an optimized kernel
image tailored to improve performance of the application and reduce kernel size. Experiments conducted
using popular server applications provided a performance increase of 16% in the Linux kernel. Differently
from the HAL-ASOS design framework that is assisted by the mainstream and system-wide OProfile tool,
Tarax does not seamlessly evolve with the Linux OS kernel as it demands both the instrumented Linux OS

kernel and GCC.

1.3.4 Microcode-level customizations

Microcode is an abstraction layer between the physical components of a CPU and the programmer-visible
instruction set architecture of the computer. Originally, it was purposed to simplify the design of CISC
(Complex Instruction Set Computing) CPUs with capability for in-field CPU updating without requiring any
special hardware [16]. More recently, x86 microcode-level update capability gains moment by mitigating
Spectre and Meltdown vulnerabilities. Benjamin Kollenda et al. [16] reverse engineered the microcode of
x86 CPU and proposed a microcode-assisted instrumentation framework, alongside the enclave function-
ality to realize a small trusted execution environment, leveraging system security defenses such as timing

attack mitigations, hardware-assisted address sanitization, and instruction set randomization. CHEx86
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processor architecture [17] proposes a transparent capability-based protection scheme enforced through
microcode instrumentation, to defend against security exploits targeting temporal and spatial memory
safety vulnerabilities. These works are not directly compared to the evolutive elasticity of Hardware Ker-

nel, but similar microcode mechanisms are deployed in both fields.

1.4 Conclusions

To conclude the state-of-art review, Table 1.1 provides the gap analysis based on the above design princi-

ples. Any further details are already given on the previous summaries of each individual compared works.

Table 1.1: Gap Analysis considering the literature solutions revised in the section.

SW Base Integration Levels Design Clock
Linux Other | Semantic P.Model Elasticity Support | Strategy | Domains

HThreads [4] - v’ PCoP TH ST - SYN SC
Luca et al. [5] - Ve PCoP TH ST/DPR - SYN SC
BORPH [7] v’ - PCoP PR/FS ST - SYN SC
FUSE [8] v’ - PCoP TH ST - SYN SC
FOSFOR [9] - v’ PCoP TH ST - SYN SC
SPREAD [10] - v’ PCoP TH ST - SYN SC
ReconOS [11] v’ OSL TH ST/DPR - SYN SC
Zhu et al. [12] - v’ PCoP TH ST/DPR - SYN SC
FOS [13] - PCoP TH ST/DPR M SYN SC
Vu et al. [6] - v’ PCoP TH ST/DPR - SYN SC
Coyote [14] v’ - OSL TH ST - SYN SC
HAL-ASOS v’ - OSL TH/FS MP M,C-FS A-SYN MX,/SC

PCoP - Passive Coprocessor Model semantic integration; OSL - Operating System Level semantic integration;

TH - Thread-based programming model; PR - Process-based programming model; FS - File System-based programming model;

ST - Static Design approach; DPR - Dynamic Partial Reconfiguration features; MP - Micro-programmable design;

M - Design Methodology; C-FS - Co-Simulation and Full System Simulation;

SYN - Synchronous design; A-SYN - Asynchronous-Synchronous design;
SC - Single Clock domain; MX - Multiple Clock domains.

The works included in Table 1.1 are the most representatives in the field, although several others could

be included in this review, such as FISH [18], RIFFA [19], RACOS [20], R3TOS [21] and SEOS [22], just

to name a few.
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1.5 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the HAL-ASOS framework. A simple case study is introduced and the

design methodology is applied and discussed using the HAL-ASOS framework;

Chapter 3 discusses the first-class components in the Accelerator model, that consist of the HW-Kernel, the
HW-Task and the host system interfaces. In begins with an overview of the HWW-Kernel provided services,
followed by the Kernel Core implementation, and concludes by discussing Hardware Task programming

model in the Linux programming interface.

Chapter 4 discusses the HW-Kernel auxiliary components used to provide: (1) synchronization with the
host system, by use of the HW-Mutex(es) and the Local interrupt controller; (2) control-oriented message
service, at HW-Kerneland HW-Task levels, by use of the HW-FIFOs; (3) local storage service using the Local-
RAM, (4) the ZeroCopy unit; and the (5) Hardware Performance Counters. In each section, it provides
architecture details and functional simulations that are based on the hardware system calls that address

each component feature.

Chapter 5 applies the HAL-ASOS accelerator model to a computer vision application, to assess many levels
of performance while using distinct accelerator versions. It initiates development from the software-only
implementation, moving towards initial hardware acceleration concepts, and concludes by refactoring the

application using distinct levels of asynchronous design;

Chapter 6 summarizes this thesis and describes the future work considering this framework.
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Design Methodology

The design methodology is a field in science that pushes development towards better productivity by
reducing technological gaps and exploring their synergies. But developing hardware and software concur-
rently requires an efficient design methodology that must be transparent from the engineers’ perspective,
abstracting away the semantic gap between software and hardware concepts (i.e., a co-design flow that
assists in modeling, simulation and verification of a design before committing to hardware). To reduce
design and coding efforts, such design methodology must rest on principles of control algorithm refine-
ment, modularity, and best suitability between the algorithm to implement and the chosen hardware
platform. The overall design decisions will ultimately be constrained to (1) the identification of kernel
functions to be offloaded to FPGA fabrics, (2) ensuring a profitable offloading in terms of performance or
any pre-selected design metrics, and (3) using accelerator architecture that promotes the accelerators to

the same computing level of the CPU.

In this charter, the development of an application will be discussed within the HAL-ASOS framework. It will
also provide an overview of the most relevant functionalities an it will introduce the purposed models that
combined make up the HAL-ASOS design methodology. We will begin by describing the HAL-ASOS design

flow and applying it to the application, which will structure the reminding descriptions in this chapter.

2.1 Design flow

When following the HAL-ASOS design flow, the Application development can start with a new design, or an
existing application that needs to be refactored for functionality, quality of the results or performance at

several levels of implementation. Any existing design models can be considered, but the best use of the

15
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framework starts with the Unified Modelling Language (UML) design describing the system to be imple-
mented and an application/algorithm task-graph illustrating the semantic relations between the system

functional units, while also ensuring a clear understanding in terms dependency and data movement in

the application model. Figure 2.1 describes the HAL-ASOS design flow.
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Figure 2.1: The HAL-ASOS design flow.

We enter the design flow in the software refactoring stage where the designer uses the framework by
mapping the identified functional units into the HAL-ASOS programming model. The software tools will
be used to compile the application prototype that will target the system to be developed. The framework
requires compilation using the GCC 7 and distinct framework branches will allow the alternate use of the

POSIX native thread runtime model, against the C++ runtime or boost library-based runtime.
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For a better understanding of how the application model is translated into the host system CPU resources,
a profiling stage needs to be applied, thus exposing the computational demands of the application. The
designer will (re)partition the application in the search of the data-level and control-level parallelisms,
where it exists and if exists, to take advantage of the multiprocessing units in the system. The potential for
performance will be made clear with the computational demands of the application expressed across the
set of profiled results. This development stage will put designers in a better position to make hardware
and software design decisions, while targeting the pre-selected results and addressing any imposed re-
strictions. The hardware and software co-design can then proceed in a concurrent development approach

to efficiently address each individual application requirements.

Entering the Computational Offloading is a one-step phase if the designer is integrating hardware and
software solutions, or it can be a two-step phase when the complex design is the case. The hardware
models for the candidates to computational offloading can be addressed in a C/C++ emulator model
provided in the HAL-ASOS framework and used within the application prototype. The use of HAL-ASOS
emulator name space provides the means for the user to implement a C/C++ based HW-Task and integrate
it with the application prototype, opening the possibility to integrate high level synthesis tools such as
Vivado HLS or MatLab to translate the model to appropriated RTL representation. Besides this, it also
provides the designer with a clear understanding about the control algorithm to be implemented, and
since not all candidates are suitable for offloading, or will be selected in the final design choice, it can
help in anticipating these decisions in the design flow and avoid development and the time-consuming

validation efforts of functional units that are not suited for computational offloading.

The accelerator model is applied to the selected candidates when offloading the computation and the
model provides a complementary set of functional units, intended to ease the integration of the accelerator
within the application. The use of such model is supported by RTL packages at user- and kernel-levels
and these were designed to ease the programmability. To assist this development stage in the functional
unit’s validation, a co-simulation model will unify the application into a single set of functional results. The
designer can then access these results, re-evaluate design decisions and iterate between the SW and the
HW tasks in the search of the optimal solution. The Co-simulation model provides a unified simulation
environment where the user can subject the designed hardware units to the application real demands
as opposed to an isolated development and validation. The supported RTL simulation tools are Xilinx’s

Vivado and Mentor Graphics’ ModelSim.
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The platform selection is the last phase in the design flow and it occurs when all software and hardware
components are fully developed and well consolidated, closing the development phase and sentencing
the application to the underlying hardware. To assist in this design stage, the tool provides a Full simula-
tion model that being based on the previous co-simulation principles, it considers the full hardware and
software layers in the system. For that, it selected a platform emulator such as QEMU [23], and extended
the QEMU functionalities to the surrounding simulation tools. The full simulation model will provide the
user with a clear view of the application deployed to the target platform, and it will assist this development
stage in addressing any potential glitch that can simultaneously conflict with the Application, the OS and
the underlying hardware units. It will allow the user to strip down the several levels of implementation
in the system and debug each one as an integrated part, as opposed to the efforts of reproducing a
failure in isolated test fixture. For completeness, the platform binaries are also validated and usually the

Buildroot [24] tool is used to provide the host with the necessary software packages.

The target validation will proceed beyond this design flow and the designer will confront the developed
solution with the initial design expectations. At this stage, any significant change to the system usually

represents a costly decision, that will ultimately result in quality degradation.

The main concern of this design methodology was to mitigate the technological gap between the hardware
and software concepts, ease the programmability to explore the synergies between the hardware and
software concepts, and provide the designer with the means to quickly integrate the implemented hardware
units with the application, but also, care was taken to provide the user with the necessary level information
that will allow anticipation of potential problems in the early stages of design where they are properly

addressed.

2.2 Programming model

In this thesis, an object-oriented multithreading programming model is proposed for HAL-ASOS framework.
One that integrates software threads and hardware accelerators in a unified and customized design, that
will assist the development in partitioning the application and offloading the critical workload function-
ality to the accelerator model. The purposed programming model follows the standard of Multithread
Programming Models for C/C++ applications on Linux OS, where the elementary processing units are

implemented by the software threads.
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A software thread usually represents a precise flow of execution inside an application, and is commonly
delimited by the smallest sequence of programmed instructions that can be managed independently. In
the majority of cases, this flow explores the code cyclic use and for that reason the execution is restricted
within an application dependent loop. They can be seen as an integrant part of a process that executes
concurrently with other threads in the same application and share memory resources. A multitude of
threads in the same application can implement a parallel model that aims to promote the efficient use

among the many sources of computation in the system.

The purposed model is centered around the class Task that symbolizes the thread in the traditional pro-
gramming model. The Task can be semantically interpreted as software task that maps to the traditional
thread, or as hardware task that is deployed into the accelerator model. Figure 2.2 shows a simplified
UML of the class Task. It can be seen that the implementation is based in the C++ templates metapro-
gramming and by using specialization we address the configurability inside the application model. The
class template qualifiers range between a predefined and a variable template pack that allows the user to
configure and extend qualifiers to the application needs. The template parameter pack will be evaluated

and matched to the available class implementations during the compilation phase.

TaskType_t Type .
TaskConfig_t Config Semantics.t liiﬂype‘t
Semantics_t Semantics enum
Task _ CommProfile_t Profile Shared SwTask
<Type.Config Args..> Restricted HwTask

-Native: std::thread
-p_Topic: dds:Topic CommProfile_t

-p_Subscription: dds::Subscription TaskConfig_t enum
i Standard|O
-run().VO_ll.j _ +TaskTag: std:string SharedResources
-unconditional_shutdown():bool +Publication: TopicConfig_t UserlO
+start():bool +Subscription: TopicConfig_t ZeroCopy
+join():bool +Resources: ControlResources_t CoSimulation
Emulator

Figure 2.2: Simplified UML diagram of template class Task.

Any instance of the class Task demands a specialized run() member and a unique configuration that links
to the class parameters (i.e., TaskConfig_1). This configuration includes a string Tag used for identification
and log messages, a Topic and a Subscription setting, and a predefined set of members that address

resource allocation inside class members.
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The use of the SwTask as Task qualifier will match the class with an implementation that assigns the
Native thread execution to a specializable run() member. The alternate HwTask qualifier will select an
implementation that assigns the Native thread to the class internal services, as result of computation
offload to the accelerator model. These services mostly include the boundary crossings between the
software and hardware specialized circuitry while exchanging data between the class instance and the

accelerator model, and to connect the accelerator with the Linux OS services.

The Semantics qualifier establishes data exchange semantics between Shared or Restricted models. A
shared model will allow multiple references for the task data while sharing results with other existing Tasks.
The restricted model will enforce a unique instance of data that can only be collected by one Task instance

despite being shared with any definable number of Tasks.

The Profile qualifier will be matched in the HwTask specialized instances of the class Task and establishes
the communication model with the hardware resources. The use of this qualifier affects the critical path
and latency observed at the processing boundary crossings and it is limited to the predefined set. As an
example, the qualifier StandardlO which is the default parameter will bind the class resource handling with
the traditional set of Linux system calls and exchange data by use of the high and low memory regions.
Alternately, the UserlO qualifier will reduce the usage of the system calls and map the hardware resources

into the application address space.

Throughout the application development several crossed configurations can occur. The multitude of qual-
ifiers combines specialized implementations at different layers of functionality. It is fair to say that for
a specific application scenario the correct configuration might not exist. Instead, an optimized solution
that explores the distinct trade-off(s) between different class implementations will be achieved. One that
during the design space exploration is found to be the best solution for the desired performance metrics

within the specificity of the application requirements.

2.3 Application Development

When creating applications, designers usually start with an idea in mind, a solution to a problem, an
identified market need, or a technological vision to improve existing solutions. Generally, at this early
stage of development, there is no reasonable expectation of what the application will be. To maximize

creativity, designers should start by a quick prototype development, to rapidly envision the application and
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what the outcome results need to be, before facing any restrictions imposed by the commitment to the

hardware and software stacks.

When we observe of most today’s common computer applications, we realize they are internet-aware, and
use the internet to exchange data, by using cloud services or any form of private servers. But within the
Internet connectivity, applications are facing a growing need for security, leading developers to rely on
complex cryptographic algorithms, that target specific requirements not suited for implementation in the

most generic embedded devices.

Traditionally, designers use standard encryption algorithms to cope with security needs and a common
example is the use of the Advanced Encryption Standard (AES). The AES is a well-established algorithm
that operates on blocks of 128-bit plain data, and is available in three different cipher lengths: 128, 192
and 256-bit [25]. Itis classified as symmetric-key algorithm which means that the same cipher is used for
both operations, encrypting and decrypting the source data. Each of the 128-bit blocks represents a 4x4
bytes matrix, also designated by state S;, where i is the consecutive block number in {1, ..., n} blocks

of data. Figure 2.3 helps to illustrate conceptual implementation of the AES-128 algorithm.
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5

Figure 2.3: Overview of the AES-128-bit algorithm.

Using the Rijndael key schedule, the input cypher will be expanded into ten additional ciphers and used
in the successive rounds that establish the encryption/decryption algorithm. As so, the encryption of a
state S; can be summarized to one initial adding operation, using the input cipher, and ten subsequent
rounds using one of ten expanded ciphers. The rounds one to nine are identical and include four stages,
namely: substituting bytes; shifting rows; mixing columns; and adding the round cipher. The state S;
encryption concludes with the tenth round, similar to the previous nine but skipping the mix columns

stage. Implementation details about the AES-128 can be consulted in the Appendix E.
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We will consider the example of an application that needs to upload files through the internet and selects
the 128-bit AES algorithm to enforce security. The example will target a generic embedded device here

referenced as Machine 1.

The simplified architecture for the Machine 1 application can be decomposed into three processing
threads: a 'File reader’, that polls on the OS file system for files, reads the file contents and fragments
data into adequate size before submitting to the application internal structures; an 'Encryptor’ thread that
implements the AES-128 algorithm, collects the fragmented plain data and converts them into ciphered
data; and an 'Uploader’ thread that regroups the ciphered fragments and synchronizes the file transfers

through the internet. Figure 2.4 depicts this organization.
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Figure 2.4: Machine 1 application - task graphical representation.

This example gravitates near the data-centric class of applications, where data is the main concern to the
system and they tend to view data manipulation as the most important part of the work. Consequently,
threads will need an efficient way to exchange data and for that we will use a Data Distribution System
(DDS) provided as part of the HAL-ASOS framework. The DDS will link threads through an exchange model
based on Publish-Subscribe, where the 'FileReader’ will create a topic that is subscribed by the 'Encryptor’
thread and consequently, this thread creates another topic that is subscribed by the 'Uploader’ thread.
The DDS implementation follows a low-memory footprint model, where the multiple attempts on creating

the same topic will result on copied references of the same object. If a multitude of subscribers exist in
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one topic, they will receive memory references of the same 'const’ data. The memory resources involved
are allocated by any of the topic publishers, and later released when a subscriber attempts to destroy the

last memory reference.

2.4 Software refactoring

For the Machine 1 application, the thread 'File reader’ will create a topic named FileReader using the DDS
services. Continuing with processing, all the thread results will be published in that topic. The thread
"Encryptor’ will subscribe the FileReader topic and will periodically receive any published data to that topic.
Similarly, the 'Encryptor’ thread will create a topic named Encrypted that is subscribed by the 'Uploader’
thread. The 'create topic’ and 'subscribe topic’ operations consider a numeric tag for identification that is
created from hashing the TopicConfig_t members. The application code for the Machine 1 is presented

in Figure 2.5.

9 #include "hal_asos.h"
10 #define HLEN (sizeof(state_t))//16

12 const hal_asos::TaskConfig_ t TFRead = { "FileReader", //TaskTag

13 { "PlainData",HLEN,1,1 },//Topic

14 { "",0 }// No Subscription

15 };

16 const hal_asos::TaskConfig_t TEncrypt = { "Encryptor",
17 { "CipheredData", HLEN,1,1 },

18 { "PlainData",HLEN,1,1 }

19 };

20 const hal_asos::TaskConfig_t TUpload = { "Uploader",
21 {",01},

22 { "CipheredData",HLEN,1,1 }

23 };

205 void hal_asos_demo::test_aes128_file_sw_threads(void) {
206 using namespace hal_asos;
207

208 Task<SwTask, TFRead> T0;
209 Task<SwTask, TEncrypt>T1;
210 Task<SwTask, TUpload>T2;
211

212 TO.start();

213 Til.start();

214 T2.start();

215 T0.join();

216 T1.join();

217 T2.join();

218 }

Figure 2.5: The Machine 1 application - SW task version source code.

Three TaskConfig_t structures were specified for each of the Tasks (lines 12 to 23). The 'File Reader’
and the "Encryptor’ tasks will create the 'PlainData’ and 'CypheredData’ topics respectively, and use the

same topic length specified by the '"HLEN' macro. Each class instance will link with the TaskConfig_t
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structure by template parameter (lines 208 to 210). Using the SwTask qualifier, all class instances were
parametrized for software resource as result of initial development iteration. Not all qualifiers and con-
figuration parameters were specified and default values predefined by the framework will be used. The
task start() member will assign the native OS thread execution to the class specialized run() member.
The execution will join() threads until completion of all operations and terminates releasing the allocated

resources.

2.4.1 The File reader task

The algorithm for the "File reader’ task consists of: reading blocks of plain data from the input file; fragment
these into adequate size of 128-bit (16 bytes); and publish the resulting fragments in the DDS topic (line
59 to 66). The specialized run() member for the class 'File reader’ can be consulted in Figure 2.6. For

simplicity, some lines were omitted and the full listing can be consulted on the Attached Listing:C.2.

10 #define HLEN (sizeof(state_t))
11 #define BLOCK_LEN 1024

26 template <>

27 void hal_asos::Task <hal_asos::SwTask, TFRead>::run(void) {
28 std::ifstream input_file;

29 std::shared_ptr<char[HLEN]> p_buff;

30 char* p_local_buff;

31 int InputFileSize, read_len, i, count = 0;

33 input_file.open(target file.c_str(),ios::in|ifstream::binary);
53 input_file.read(p_local_buff+sizeof(int), (BLOCK_LEN-sizeof(int)));

56 while (this->StatusRunning && Read_len > 9) {

57 for (i = @; i < Read_len; i += HLEN) {

58 p_buff = std::shared_ptr<char[HLEN]>(new char[HLEN]);
59 copy_len = mmin(HLEN, (int)(Read_len - i));

60 std::copy_n(p_local_buff + i, copy_len, p_buff.get());
61 this->p_Topic->publish(p_buff);

62 count++;

63 }

64 input_file.read(p_local_buff, BLOCK_LEN);

65 Read_len = (long)input_file.gcount();

66 }

67 input_file.close();

68 this->p_Topic->close_topic();

69 LOG_MSG << this->TaskTag << "finished...(" << count << ")\n";
70 delete[] p_local_buff;

71}

Figure 2.6: File reader task - simplified run() member.

An input file containing one million digits of pi (“3.”+1.000.000 digits) was selected as source of data and
is open for read in line 33. Once in the “main” loop, the thread will read successive blocks of 1024 bytes

from the source file, fragment each block into smaller 16-byte blocks and publish the resulting data in
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the DDS topic (lines 58 to 61). After reading all source file content, the thread will exit the main loop by
failing the condition at line 56 (Read_len > 0) and close the file and the DDS topic (lines 67,68). A closed
topic will allow the subscribers to consume the remaining publications. The thread concludes issuing a
log message that prints the number of blocks processed and releases all the allocated resources (line 67

to 70).

2.4.2 The Encryptor task

The simplified code for the 'Encryptor’ task run() member is presented in Figure 2.7. Similarly, the full

listing can be consulted attached in Listing C.1.

81 template <>

82 void hal_asos::Task <hal_asos::SwTask, TEncrypt>::run(void) {
83 std::shared_ptr<dds::Publication> pLocal;

84 std::shared_ptr<char[HLEN]> p_cyphered;

85 std::shared_ptr<const char[]> p_plain;

90 set_cypher_key(key);

91 key_expansion();

92

93 while (this->StatusRunning && ret > 0) {

94 ret = this->p_Subscription->take_publication(pLocal);
95 if (ret) {

101 p_current_state = (state_t*)p_cyphered.get();
102 add_round_key(9);

103 for (round = 1; round < NROUNDS; ++round){
104 subst_bytes();

105 shift_rows();

106 mix_columns();

107 add_round_key(round);

108 }

109 subst_bytes();

110 shift_rows();

111 add_round_key (NROUNDS) ;

112 ret = this->p_Topic->publish(p_cyphered);

113 }

114 }

116 this->p_Topic->close_topic();

117 this->p_Subscription->terminate_subscription();

118 LOG_MSG << this->TaskTag << "finished. (" << pcount << ")\n";
119 }

Figure 2.7: Encryptor task - simplified run() member.

The input cipher is set and the key expansion schedule is executed (lines 90 and 91). Once in the main
loop, the thread will collect 4x4 bytes (S;) of plain data from the DDS subscription (line 94). The ten
rounds that complete the AES-128 algorithm will encipher the received plain data, and the iteration of
S; concludes with publishing the resulting data (ciphered data) in the DDS topic (lines 102 to 112). A

negative return or a null "pLocal’ pointer in the take_publication call (line 94), will force the execution to
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break the main loop (line 93). The thread concludes closing the topic, terminating the subscription and

issuing a log message that prints the number of blocks processed (lines 116 to 118).

2.4.3 The Uploader task

The simplified code for the specialized run() member of the task 'Uploader’ is presented in Figure 2.8.
The task uses the name space networking from HAL-ASOS framework that provides eased access to the
0S network subsystem. An instance of CSocket<Client> will be used to establish a connection with a
network server for uploading files. A successful connection will allow the thread to proceed into the main

loop (lines 157-171). The main loop consists of receiving ciphered fragments from the DDS subscription

134 template <>

135 void hal_asos::Task <hal_asos::SwTask, TUpload>::run(void) {
136 using namespace hal_asos: :networking;

137 int ret = 1, count = 0, index=0;

138 char* p_local_buff;

139 std::shared_ptr<const char[]> p_buff;

140 std::shared_ptr<dds::Publication> plLocal;

141 CSocket<Client> Soc;

157 this->StatusRunning = Soc.open_connection();
158 while (this->StatusRunning && ret > 0) {

159 while (index < BLOCK_LEN && ret > 0) {

160 ret = this->p_Subscription->take_publication(pLocal);
161 if (ret) {

162 p_buff = pLocal->get_reference();

163 std::copy_n(p_buff.get(),pLocal->get_len(), p_local_buff + index);
164 index += pLocal->get_len();

165 count++;

166 }

167 }

168 if (index > @) {

169 ret = Soc.safe_write(p_local_buff, index);

170 index = 0;

171 }

172 }

173 Soc.close_connection();

174  this->p_Subscription->close_subscription();

175 delete[] p_local_buff;

176 LOG_MSG<<this->TaskTag<<"finished...("<<count<<")\n";
177}

Figure 2.8: Uploader task - simplified 'run()’ member (full listing:C.3)

and regrouping data into a network-adequate block size by using local_buffer (lines 159-167). Once
local_buffer is complete the results are transferred over the network (line 169). A negative return on
take_publication or a network communication error, will break the main loop by failing the condition 'ret
> (0’ on line 157. The thread concludes closing the network connection, terminating the subscription and

issuing a log message that prints the output results (lines 173-176).
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2.4.4 Functional validation

The application for Machine 1 was selected for compilation at Host environment using Linux OS. Similarly,
a second machine, Machine 2, was configured with a server application to provide a connection and

receive the encrypted data. Details of the Machine 2 application are out of discussion in this thesis but.

Machine 1, using the network subsystem with IP 192.168.1.11, connects with the Server application
on Machine 2 for uploading the encrypted file 1M_digits_of_pi.txt. The output results of this test are
presented in Figure 2.9. The log messages from the three Tasks, in Figure 2.9, indicate that 62,501

machinel@host:~/machine_1_app$ ip a | grep "inet "

inet 127.0.0.1/8 scope host lo

inet 192.168.1.11/24 brd 192.168.1.255 scope global noprefixroute enp@s3
machinel@host:~/machine_1_app$ ./machine 1 app 1M digits of pi.txt
[FileReader<SwTask>]finished. .. (62501)
[Encryptor<SwTask>]finished...(62501)
[Uploader<SwTask=]finished. .. (62501)
machinel@host:~/machine_1_app$ [

Figure 2.9: Machine 1 - SW-only application output for one million digits.

blocks were processed and resulted in a file length of 1,000,016 bytes. The input file 1M_digits_of pi.txt
contains 1,000,002 bytes and the output exceeds this value in 14 bytes, as result of including a minimal
header that indicates the file length and some padding to align the number of fragments with the state

matrix length.

At Machine 2, using IP 192.168.1.200, a connection was accepted and the file was received successfully.

The application log from this test can be consulted in Figure 2.10. The received data resulted in an

machine2@server:~/machine_2_app$ ip a | grep "inet "
inet 127.0.0.1/8 scope host lo
inet 192.168.1.200/24 brd 192.168.1.255 scope global noprefixroute enp0s3
machine2@server:~/machine_2_app$ 1ls -1 Output/
total 0
machine2@server:~/machine_2 app$ ./machine 2 app
[Server]:Received connection!
[Server]:Upload finished! Received 1000016 bytes

[Server]:file Saved:Qutput/plaint.txt --- 1000002 bytes
machine2@server:~/machine_2_app$ 1s -1 Output/
total 1960

-rw-r--r-- 1 machine2 machine2 1000016 fev 18 19:10 encripted file.dat
-rw-r--r-- 1 machine2 machine2 1000002 fev 18 19:10 plain.txt
machine2@server:~/machine_2_ app$ D

Figure 2.10: Machine 2 - Server application Output.

encrypted file containing 1,000,016 bytes that was stored in the encrypted_file.dat file. The Inverse
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form of the AES-128 algorithm was then executed and after removing the transfer header, the remaining
1,000,002 bytes were stored in the plain.txt file. A portion of the plain file contents can be seen in
Figure 2.11. The pi number sequence is represented in a readable form, and that demonstrates the

functionality of the system.

GNU nano 2.9.3 Output/plain.txt

.141592653589793238462643383279502884197169399375105820974944592307816406286208998628%

We Get Help WY Write Out @l Where Is my Cut Text a8 Justify W® Cur Pos
MY Read File @\ Replace Y Uncut Text gl To Spell Wl Go To Line

Figure 2.11: Machine 2 - contents of plain data file after decryption.

The contents of the encrypted_file.dat are presented in Figure 2.12, and show no similarities to the original

data, thus ensuring a confidentiality level that can be used when sending sensitive data over the Internet.

GNU nano 2.9.3 Output/encripted file.dat

GpBEK~HIGR

BaR4®_6-6@8HE" ] /66 K-B66 WH166Z)868X; ,\76 {#6rébCokes; 8666 0n

3= sGtx C POO{]~U~[1~UB®
~AuG-=6"?0"53'46-86"\BOFB}_: 66" A! 6>06060006: GEMBIBGBOGTHCHEY T U=0-8" M WE>6"Z ' YUHH] GO
66" FH"F166>1V~mRGAG\"FDNiGHGOLE"S 66666~ K YU Dk8EG V! |16 |6ve"~ MOTHTHEGVEMXE
zG66666"RE

| 6r 86" \uBs>6608'e I, KBeP F|X §-e063906k

~“XDG NGHEH A~ XG0 [ GvH666E

~0BBB[M 6HaBBGVTEBDEGCH<"U0BPET7 :Md6z66"Z 666" F#+606060

Wt Get Help i Write Out i Where Is W Cut Text g Justify W® Cur Pos
@ Exit fi Read File g\ Replace By Uncut Text g To Spell Wl Go To Line

Figure 2.12: Machine 2 - contents of encrypted file received.

The purpose of this application, the Machine 1, was to introduce some of the HAL-ASOS functionalities,
but also to establish a common ground in development between the traditional software design tech-
niques and the hardware accelerated application development, while using the HAL-ASOS framework. No
hardware acceleration concepts were yet used, as they need to be applied from design decisions that
ensure a profitable resource allocation and satisfy the overall design metrics. Also, no commitment to the
underlying hardware was established, as this decision will be made later in the design flow, thus avoid-
ing any constraints to initial development. The example also sets a common ground to well established

applications that need to be refactored for performance and offload computation to specialized hardware.

The next step in the design flow is the profiling of the application, and this stage will help to clarify how

the application needs are translated into the system resources.
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2.5 Application profiling

As soon as the prototype application reaches an acceptable level of functionality, it is time to analyze how
well the application performs in the host system and try to understand the program intrinsic behavior. A
profiling tool can be used to identify all kind of bottlenecks in the system. Generically, we will be interested
in the performance profile, to identify hotspots in the program where the system spends significant amount
CPU time. Considering that the framework was specifically designed for Linux embedded systems, we
recommend using the OProfile tool for this stage in the design flow. Since the profiling will be performed

in the host development environment other similar tools can also be used.

2.5.1 Profile tools

The OProfile tool is a system profiler for Linux and it is available since kernel version 2.4. This tool will target
all parts in a Linux system, from an application, a set of processes or threads, kernel code or interrupt
handlers, a subset of system active processors, or ultimately the entire system. Conceptually, this tool
is classified as a statistics-based profiler since it operates by collecting strategic data at periodic time
intervals. Today's CPU architectures provide hardware performance counters that record the occurrence
of specific events without the need for additional code instructions. A timing interruption triggers data
collection and signals the profiling application about the existing new data. Post-profiling tools will convert
this data into a human readable file that contains the desired profile results. Detailed information about

OProfile features and events are specific to each CPU architecture and can be consulted at [26].

A similar profiling tool is gprof, a superset of the Linux prof command, included in the GCC tools. The tool
results also focus on were the CPU spent time inside the application and includes the invocation count
to each of the application functions. The gprof tool demonstrated higher level of impact in the execution
since it links pre- and post-call routines in the application binary. Also, experiences realized with this tool
in the HAL-ASOS framework, revealed less stability across many profile trials that due to its strong software

dependent nature. Detailed information about this tool can be found at [27].

2.5.2 Profiling Results

The profile results of the Machine 1 application were obtained using OProfile. The choice of the OProfile

was mainly based on the acceptance of the tool in the Linux community, its strong hardware dependent
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nature, the tool stability across many profiling iterations and high number of supported architectures.
For the Machine 1 application we will target the CPU cycle count event that automatically decrements a
hardware counter every time the CPU completes an execution cycle. The tool will register the program
address(es) every time the counter value reaches zero, and to achieve effective results, a considerable
number of executions was used. Listing 2.1 shows a bash script used to assist in the profiling of Machine

1 application.

Listing 2.1: Profile script used on Machine 1 application.

#!/bin/bash
if [ $# -eq 3 ]; then

1
2
3
4 sudo rm -rf oprofile_data/

5 EChO m-m-mmmm s e e e
6 echo "Profiling $1 for $2 iteration(s)"

7

8

9

echo ----------mmmr e

for i in $(seq 1 $2)

do
10 ECH0 mmmmmm e e
11 echo interation $i
12 ECN0 mm s m mmm e
13 sudo operf --append --event CPU_CLK_UNHALTED:$3:0:0:1 ./$1
14 Lol 1o T
15 done

17 opreport --accumulated\
--exclude-dependent\
--exclude-symbols=_ GLOBAL_OFFSET_TABLE_\
--symbols > iterationGlobal.perf
18 else
19 echo "Wrong command <execuable> <n_iter> <sample_rate>"
20 fi

The command 'operf is used to launch the application binary with the OProfile predetermined settings (line
13). The argument CPU_CLK_UNHALTED indicates the desired hardware event and the desired sample
rate was set to 6.000 CPU cycles. The —append switch will append the profile data across several profile
sessions and the script launched the application for 100 times (lines 7 to 14). The opreport, in line 15,
outputs the results for the profile session with arguments that are used to establish the accumulated

results across the report entry lines and confine them to the application binary.

Figure 2.13 shows a simplified version of the profile results for the Machine 1 application. Analyzing
these results, one can conclude that the four AES-128 round used functions (lines 4 to 11) are respon-
sible for nearly 41% of CPU time spent in the application code. The percentage of line 13 shows that
Task<Encryptor> spends approximately 1% of the CPU time executing local code or out of any function

calls, and that between 1% and 2% of the assigned application time is being spent inside the functions
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that relate to the DDS subsystem (lines 18-71). The workloads are evenly distributed across the AES-128
algorithm as no hotspots consume excessively amounts of CPU time. An estimate of 41% can be faced as
potential for performance contribution in the application, and it becomes clear which are the candidates

to the computational offload.

CPU: Intel Haswell microarchitecture, speed 3500 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)
with a unit mask of @x00 (No unit mask) count 50000

samples cum. symbol name

15.86% 15.86% mix_columns()

13.75% 29.61% add_round_key(unsigned char)

11.74% 41.35% subst_bytes()

N ouvbh w N R

11 i:44% 52.54% shift_rows()

13 é:;G% 54.43% hal_asos::Task<(hal_asos::TaskType_t)0, TEncryptor>::run()
18 é:él% 57.67% Topic<(hal_asos::dds::Semantic)1,TFReader>: :publish<16>()
24 é:ée% 61.00% hal_asos::dds::Publication::get_len()

29 5:44% 63.30% Topic<(hal_asos::dds::Semantic)1,TEncryptor>::publish<16>()
50 é:él% 71.20% Subscription<TEncryptor>::take_publication()

71 é:£9% 72.10% Subscription<TUploader>::put_publication()

76 é:is% 75.62% hal_asos::Task<(hal_asos::TaskType_t)@,TUploader>::run()

82 ©.23% 79.51% hal_asos::Task<(hal_asos::TaskType_t)0,TFReader>: :run()

Figure 2.13: Profile results of the Machine 1 application.

2.5.3 Conclusions

The top listed functions in the profile report, generally include the candidates to computational offloading
and the decision needs to be validated according to the application requirements. Since requirements
are at the root of the application design, they altogether will influence these candidate selections. Such
an example could be security-related requirements. When consider that 'static’ hardware is not easily
patched and forced to abnormal behavior, or that cipher keys are not so easy to access when they are
encapsulated by custom and closed hardware, the requirement is favorable to offloading. But the power-
aware requirements might conflict with this decision, since more functional units might demand for more
energy consumption, depending on the implemented HW behavior when compared with its software coun-
terpart. This can represent a need for design power estimation, or the purposed design being evaluated or

re-designed to meet this requirement. When a multitude of choices play in favor or against each other, is
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fair to say that the right choice might not exist. One can only achieve the optimized solution that attempts

on consolidating the overall of the design metrics.

Considering this development stage, and the purpose of these overview, we will proceed with the offload
of the "Encryptor’ task. Since the development materializes into a deeming cycle, other solutions might

become attractive in-between iterations.

2.6 Accelerator model

The HAL-ASOS Accelerator model can be decomposed into a user defined HW-Task, a parametrizable HW-
Kernel with three differentiated transfer channels that aim to explore distinct bus technology dependent-
interfaces. A simplified representation of this model can be seen in Figure 2.14 and includes a minimal
Host system representation. To avoid miss confusion with the term host, we clarify that the host devel-
opment system is the system hosting the toolchain used to compile the several implementation levels of

this application, while the Host system is the target platform that hosts the accelerator model.
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Figure 2.14: HAL-ASOS Accelerator model integrated into Host platform.

The HW-Task plays the central role in the design and uses the HW-Kernel o interact with the host. Optional
implementations allow a HW-Task tightly integrated in the accelerator model or a loosely design HW-Task,
as an independent component. The transfer channels are platform dependent and establish differentiated
data exchange with the Host system. These include: a fast, word-rated and low-bandwidth channel, used
for control-oriented transfers; an optimized speed, byte-rated and high-bandwidth channel, used for large
and data-oriented transfers; and an optimized speed, byte-rated channel, used by HW-Task to access

the system memory. Platform-classified model implementations will include PLB or AXI bus interfaces.
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The Accelerator is a native 32-bit big-endian machine, but 64-bit word can be applied system-wide. An

interrupt line is mandatory and allow the accelerator to synchronize with the Host OS.

2.6.1 Hardware Kernel model

The Hardware Kernel model translates the Host system to the HW-Task and provides integration at hard-
ware and software levels. The model includes a Kernel Core implementing the Control unit with a system-
level datapath, and a collection of functional units that implement the service-level Datapath. Figure 2.15
presents a simplified model of the HW-Kernel. The Control unit uses single address microcode design to
encode the set of HW system calls. The system-level datapath implements the multiplexing and demulti-
plexing of the system call parameters into the service-level datapath. The MOO_Kernel and SO0_Task are

the master and slave interfaces of system call bus, used to connect with the interfaces in the HW-Task.
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Figure 2.15: Hardware Kernel simplified model.

The Kernel Core is responsible for the time management and provides waiting event coupled with time-
out functionalities and a parametrizable task sleep. The Control and Status registers will allow the host
system to interact with the HW-Kernel. To preserve the HW-Kernel status, any control operation issued by
the CPU cores, is for-warded via Authenticator unit that validates permissions before authorizing a write

operation. As consequence of the microprogramming technology used for the HW system calls, the Kernel
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Core implementation results in a static unit that is independent of the HW-Task implementation and can

be configured or changed by applying microcode updates.

A service-level datapath includes (1) a dual-port and bi-directional message-queue used for messaging
control information within the host system services, (2) a dual-port bi-directional data-FIFO available for
HW-Task generic use (3) a Local Interrupt Controller (LINTC) that allows synchronization with the Linux
0S, (4) a true dual-port generic purpose Local RAM (LRAM) for data exchange and temporary storage, and
(5) two dual channel HW-Mutexes that implement mutual exclusion with the accelerator model. The latter
are directly coupled with the LRAM and a system memory region allocated at boot-time. At kernel-side,
dedicated interfaces are used to manage each of the HW-FIFO, while the remainder of the functional units
are accessed through custom Local-Bus. The MOO_System interface is used to access a kernel-specific

region in the host system memory.

S00_Control and SO1_Data offer the control- and data-oriented transfer interfaces for host system ac-
cesses to the HW-Kernel functional units. The SOI_Data implements a byte-oriented bidirectional inter-
face used exclusively to access the LRAM. The reminder of the functional units, link to the SO0_Control
in a bidirectional register type interface. The complete set of units that integrate the HW-Kernel model are

also parametrizable and are made available to the host system through the Linux integration model.

2.6.2 Hardware Task model

The Hardware Task model provided by the HAL-ASOS accelerator follows traditional architecture modelling
techniques. The design can be partitioned in a Control Unit and a collection of user-defined functional
units that compose the Datapath. Figure 2.16 presents a simplified model of the HW-Task. The Control
synchronizes the task internal implementation while the Datapath implements the task algorithm. Using
the HAL-ASOS VHDL packages, the Control can also synchronize externally with the other tasks in the
system. Mainly, these packages provide a set of services that are divided into user- and kernel-levels. The
user-level implementation, considers the task-related functionality and only uses local resources, while
the kernel-level considers a more service-related implementation, where it is allowed to talk to the local

hardware or system resources, including the Linux OS.

Both the user and kernel services are manly implemented using VHDL procedures and the HW-Task will
link the datapath to each procedure implementation. A VHDL procedure, denotes a subprogram descrip-

tion that is implemented in zero simulation time. It differs from the VHDL functions, in the sense that, it
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Figure 2.16: Hardware Task simplified model.

A 4

can receive parameters as input and output, and using signal driver capabilities, manipulate values that
exist outside the subprogram. To accommodate the complexity of each procedure, the kernel provides
generic FSMs for each of the RTL layers being concurrently executed. In doing so, the task description
scales, implementing procedures from the user or kernel packages. At user package, each procedure
is implemented using functionality-based procedures from the kernel package. While executing, the ker-
nel_call interface will be updated by the procedure RTL and the kernel will execute HW system calls

accordingly.

Generically, once the HW-Task control-path implements a procedure call, the Control unit is blocked and
the synchronization is transferred to the Kernel Core control. The procedure will execute in a predetermined
number of clocks that depends on each distinct implementation and value of the passed parameters.
These parameters will be copied or forwarded to the procedure circuitry accordingly, and at completion,
an exit path will ultimately enable back the task Control Unit. The kernel package uses the kernel_call
and kernel_response registers, that link to the HW-Kernel system call infrastructure using MOO_Task
and SO0_Kernel interfaces. A template for the HW-Task design is provided, and it includes a minimal
control FSM with blocking functionality. The designer will then extend the FSM states to accommodate
the HW-Task algorithm description. The implementation details of the HW-Task, the RTL packages or the
HW-Kernel will be best discussed in Chapter 3.
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2.6.3 Linux Integration

The HAL-ASOS Accelerator model integrates with the target platform OS at user- and kernel-levels. Due
to the myriad of functional units in the model, a proper OS support requires a collection of device-drivers
that efficiently export each functionality into the Linux user-space. Such a collection of drivers is best

organized through a customized File System(FS). Figure 2.17 presents the HAL-ASOS FS structure.
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Figure 2.17: HAL-ASOS file system structure on Linux.

The HAL-ASOS file system mounts during Linux start-up and it can be found at the root of the Linux file
system in the hal-asos folder. Any existing accelerators will be extracted from the device tree information
that results from the deployment phase, and mapped into individual Accelerator_x folders. The folder
name results from a configurable name tag in the accelerator listing, and a sequence number that counts
the instances using the same tag. Inside the accelerator folder, the structure is organized in a kernel folder,
an interrupt folder and a sub-set of virtual files that map the remainder of functional units in the Accelerator

model. These include: the LRAM and the local-mutex (LMUTEX); the system memory region (i.e., sysram)
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and associated hardware mutex (sysram-mutex); the HW-Kernel message-queue with read-only size and

space files; and similarly, the data-fifo with the size and space files.

The interruptfolder contains the virtual files that provide the synchronization between the software threads
in the system and the accelerator. The lintc file represents the local interrupt controller and it uses seven
native interrupts that are mapped to the local_* files. Since a configurable number of user definable

interrupts is also available, up until twenty-four user_*files can be present in this directory.

Some of the FS functionality demand proper registration by using the local-kernelfile in the kernel directory.
The registration is based on exclusive ownership model and the local-kernel initializes a private structure
containing a 32-bit key automatically hashed. The transfer_* files map distinct profile interfaces between
the software framework and the accelerator model, and the mcode.bin file is used to update the Kernel
Core microprogram. These features will require validation using the previously generated key or otherwise

will be denied.

A performance counters folder will be found if the accelerator model is active for performance metrics.
Generally, these follow a hardware event counter model, coupled with synchronous clock timer model,
that register the number of events and associated latency across the HW-Kernel functionality. One file
for each active performance counter will be found in that directory, and reading them or using a 'cat’
command from the Linux bash, will output the current performance results in a conveniently formatted

text message. The Performance functionality will be best discussed in Chapters 4 and 5.

At the application-level, to efficiently handle the exported model, the software framework provides the class
Proxy that maps the FS functionality into a resource-oriented set of operations. A Proxy member will be
found in all class Task instances that were specialized for HwTask. The transfer profiles are differentiated

using distinct Proxy implementations that explore the different interfaces provided by the FS.

The HAL-ASOS file system is a Linux functionality provided by the framework and exists only in the target
generated platform binaries, mostly because of its hardware and device tree dependencies. For that
reason, it will only be available on the System implementation phase, or alternately, when applying the
Full simulation model to the platform binaries, in the deployment phase. When compiling the application

for the development host, an emulated version of the file system is implemented by the Emulator model.
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2.6.4 Emulator Model

The Emulator model is a framework feature that assists in mapping the pre-selected candidates to compu-
tational offloading into the HW-Task structure. By using a software development perspective, it promotes
a more flexible environment that exposes the task algorithm requirements and consolidates HW-Task in-
teroperability in the application. This stage establishes a design iteration that aims to create a control

algorithm that fits the application requirements and it is close to the RTL specification.

The Emulator Model is composed by a set of function-oriented entities that can be divided in two imple-
mentation layers: (1) the HW emulation layer, that includes the Accelerator described above; and (2)
the software layer that emulates the Linux integration in the HAL-ASOS file system. This model follows a
design approach that took the effort in describing the implementation details and available interfaces on
each functional unit, and can ultimately be considered as a software description of the HW counterpart.
The Emulator model is a C/C++ functionality implemented by the 'hal_asos::emulator namespace, and
considers a unified implementation with purposed programming model. Figure 2.18 shows a simplified
UML class diagram for the first layer. In that figure, it can be seen that the AcceleratorModel class inte-
grates the HwTaskModel class and the HwKernelModel class, and the three altogether form a template
model qualified by the accelerator configuration. For simplicity, the following section will refer the Emulator

model entities by the name of their representative hardware counterparts.

The user packages are private members of the class HW-Task and a similar implementation can be found
in the HW-Kernel, with respect to the kernel packages. A C++ Friend definition will allow the HW-Task
to access the private parts of the HW-Kernel and talk directly with the kernel packages. The HW-Task
plays the central role in the emulator as it stimulates the model using its Native thread member. Among
other internal code, the thread loops using the run_iteration member, that considers the processing in
an equivalent clock cycle of the HW-Task. The successive calling of this member will iteratively progress
the task algorithm code. The designer will provide a specialized run_iteration member that contains the
task algorithm implementation, and since it is using the same configuration as template qualifier, it will

be linked to the class unique code.

A call to any of the user package members will ultimately result in a kernel HW system call, and the
execution proceeds by copying the parameters to the member KernellCall that binds the two classes.
When executing the HW-Kernel member execute_sys_call, it will transfer execution to the kernel model

and the system call will be implemented. Any data exchange or control updates in the kernel set of
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Figure 2.18: Accelerator Model Emulator - Simplified UML class diagram.

functional units will be performed. At conclusion, the resulting data will be found in the KernelReturn

member and the execution returns to the HW-Task

At the Host system, the Accelerator is accessed via PlatformDevice. This structure encapsulates the model
representation in a common form, and similarly to the Linux device model, interfaces the Accelerator via

read or write set of operations that is used by SW Layer of the Emulator.

2.7 Computational offloading

In this design stage we leverage the computation offload by applying a two-step HW description. We begin
with the specialization of the HW Encryptor task that includes the selected candidates from the profiling
phase. We then apply the Emulator model to ease the HW partitioning and gain perception about the
new task implications, and once completed, we apply the Accelerator model and proceed to the hardware
description stage. At completion, we verify the design by applying the Co-Simulation model and establish

a unified simulation environment, where this new application snapshot will be validated.

In a real design scenario, multiple attempts to map application functionality are most likely to occur, and
can result from metric-driven improvements or control algorithm refinements. But to reduce the design
iteration on this example application, we anticipate two decisions before proceeding into the computation

offload phase. First, using a behavioral modelling style, we will describe the HW-Task and map the
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pre-selected candidates with minimal application refactoring. The task control unit will also be described
following a close to emulator description style. Then, the resulting accelerator will be functionally validated
using the co-simulation model. And finally, to conveniently explore the interaction between the Accelerator
model and Host system, we will execute another design iteration and offload the file and network socket
functionalities into a unified HW-Task design, that assumes the role of a standalone (SA) task in the
application. These two functional units will be confined to specific accelerator implementations that will
proceed in the design flow until the System implementation phase, where they will be evaluated and
compared. To distinguish the HW from the SW counterparts we will be referring these tasks as the HW

Encryptor and HW Encryptor SA.

2.7.1 Hardware specification

When we look at the source code of the Encryptor task in Figure 2.7, we realize that generically, the thread
is polling for data using the DDS subscription and, at arrival of such data, it will be encrypted and published
back to the DDS topic. As soon as the subscription expires, the thread will break the loop and terminate the
execution. To map this outline into the Accelerator model, the best use of resources demands that we use
the Accelerator data channel to exchange data with the DDS subsystem. This exchange is implemented
by a combination of service request, that use the HW system calls in the accelerator and the Linux kernel
system calls, to synchronize the HW-Task with the application functionality. To minimize the resulting
computation overhead on the Host side, we maximize the transfer length involved, thus lowering the

number of requests per-file and consequently lowering the synchronization events at the Linux kernel.

The first design decision will be to properly handle data in blocks of 1024 bytes that will be stored in the
Accelerator’s Local-RAM. To extract individual fragments of 128-bit (16 bytes) of plain data, we will specify
the first loop of the HW-Task and name it encrypt loop. We will call this the inner-loop. Numerous block
transfer requests may be necessary until the file is exhausted, as so, we will use a second loop and call
it exchange loop. Since the file contents might not conform with the block alignment, at every request
iteration we will check how many bytes were effectively transferred, and proceed in the exchange loop with
a new target value. For now, we decide to use a target length counter, and to comply with the task final

message informing the processing results, we will include another counter here referred as total counter.

If we elaborate the set of identified requirements into a block diagram, we obtain the HW Encryptor

datapath. Such diagram can be seen in Figure 2.19 and includes the connection with the Control unit.
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From that figure it can be seen that the input of the data-path is the return data from the HW system
call and that similarly, the output data will be forward via HW system call. The two blue functional blocks
represent the synchronous registry for local storage and we add a comparison unit to signal when the
target and count contents match. The light red blocks represent the combinational units that are kept
steady value using the synchronous registry. The white labelled blocks are mere representation of data

that exists in those registers.
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Figure 2.19: HW Encryptor Task - Simplified Datapath

The AES-128 functionality can ultimately be accomplished by integrating any existing functional unit and
to serve the purpose of simplicity we will resume the AES description to a top-level functional description.
The conceptual implementation was extracted from the diagram depicted in Figure 2.3, and the data
inputs and output can be observed here matching the signals in this top-level. The control signals of
the AES-128 unit are: the key_expand, to expand the cipher in ten additional keys; and the run signal
that triggers the unit execution. A done signal will inform control that the ciphered data is ready to be
collected at the output. The AES design follows a twelve-clock pipeline design strategy but to simplify the
task specification, this continuous mode of operation will not be explored. Details about HW description

of the AES-128 can be consulted in the Appendix C.

The Control Unit for the HW Encryptor can be implemented using an FSM-based design, integrating eleven

states that sequence the necessary operations, in the true parallel nature of the HW implementation. Such
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design can be consulted in Figure 2.20.
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Figure 2.20: HW Encryptor Task - Simplified Control unit FSM

The state zero is a mandatory state for synchronizing the HW-Task with the application and the Accelerator
enters a sleep state when steady in state zero for more time that a parametrizable time constant. As soon
as Control receives the run signal from the HW-Kernel, the task will issue the first request, demanding a
transfer of 1024 bytes from the DDS subscription. The second state will evaluate the transfer result into a
new target value and proceed to the encrypt loop. Any processing error would result in a negative or null

target value that redirects the next state to the write message, thus concluding prematurely.

The target length is accomplished with the state three to state six sequenced loop while the Control Unit is
using the user package to: synchronously read blocks of 16-bytes (128-bit) of plain data, here referenced
as parametrizable constant C_PLAIN_LEN, and after being submitted to the AES encryption; write the
resulting ciphered data to the same address of the Local-RAM. One must say that the fragmenting and

regrouping performed by the FileReader and the Uploader tasks are by now redundant.

In the state four we trigger the AES execution and move to state five where Control issues a wait event
system call. Similarly, the clock enable will be cleared and the designer needs to tackle this condition
since it needs to keep the AES unit working. The Control unit will reach the seventh state with the counter
value matching the target from the encrypt loop iteration, and it will conclude by issuing a request to
transfer the block of 1024 bytes of ciphered data to the DDS topic, thus restarting the exchange loop.
The state nine is achieved after failing the target value evaluation in s2, and preparing the message in

the standard output format at the Local-RAM on state s8. The Control will issue a request to forward this
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message and concludes in the state ten, issuing a task_exit call from the user package. Beyond this call,
the Control unit will not be available until a software reset is issued using local-kernel file in the HAL-ASOS

file system.

2.7.2 Emulating Hardware Accelerators

When modelling the behavior of the Encryptor using C/C++ languages and applying the Emulator model
provided by the framework, one must take into account that the sequential statements of the C language
will be implemented concurrently if modelling the hardware using HDL. With this idea in mind, care must
be taken to avoid the use of temporary data that results from the current flow of execution. For the Emulator
model, one clock cycle is implemented by the run_iteration call, and one execution of this function will

produce results that can only be used in the next cycle.

To develop an emulated Encryptor task we start by defining the configuration structure where we specify
the accelerator parameterizable resources, namely: the size in number of words of the Local-RAM; the
space in number of words in the control FIFOs; the number of parallel words exchanged between HW-
Kernel, HW-Task and HW-FIFOs; the number of user-defined interrupts; and the accelerator name or task
tag. Atthe software-side of the application, the Task class needs to be reconfigured by the HwTask qualifier
combined with the Emulator profile, and one accelerator entity needs to be instanced. Figure 2.21 shows
the necessary changes to the application when using the Emulator model. The emulated accelerator is
instanced in line 208 and uses the configuration as template qualifier. We extend the T1 template pack
with the desired profile (line 213) and add one Virtual File System(VFS) instance with the purpose of listing

the available accelerators when executing the application (lines 209-210).

The specialized run_interarion member is presented in Figure 2.22 and is identified by the compiler
using the HwEncrypter configuration as template qualifier. The majority of local variables need to be
static to preserve data between successive calls that resemble the HW clock cycles. To abstract design
from the AES-128 implementation details, we have included this functionality in C++ class (line 43). The
FSM implementation uses a switch case block to re-evaluate the TaskState member at the beginning of
each cycle. Every case entry will conclude by redefining the TaskStateNext value and the task iteration

concludes with the assignment of the TaskState with this new value (not represented).

In state s1 the Control transfers 1024 bytes to the Local-RAM address 'Oh’ and stores the return value in

the target length variable. In state s2 this new target determines the next state and, in state s3 the Control
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26 AcceleratorConfig_t HwEncrypter = {"HwEncrypter@", //TaskTag

27 32, //DataFifo Len

28 8, //Message Queue Len

29 1, //DataIn Number of simultaneous words
30 1 //DataOut Number of simultaneous words
31}

205 void hal_asos_demo: :test_aes128_file_hw_thread_cypher_3_emulator(void) {
206 using namespace hal_asos;

207

208 emulator::AcceleratorModel<hal_asos::emulator: :HwEncrypter> AQ;
209 emulator::VFS& file_system = emulator::VFS::instance();

210 file_system.1ls();

211

212 Task<SwTask, TFRead> T0;

213 Task<HwTask, THwEncrypter, profile<proxy::Emulator>> T1;

214 Task<SwTask, TUpload> T2;

215

216 To.start();

217 Tl.start();

218 T2.start();

219 T0.join();

220 T1l.join();

221 T2.join();

Figure 2.21: Machine 1: emulated HW Encryptor software changes

begins the encrypt loop implementation. In state s4 the control triggers the AES execution and in s5 the
task issues a wait event system call, that when concluded will allow the state to copy the ciphered data
to the current block variable. This copy operation represents a synchronous register assignment and as
so, such usage should only be considered in the next cycle. The state s6 will conclude the encrypt loop
by storing the current block to the LRAM, updating counters and re-evaluating loop continuity. In s7 the
control closes the exchange loop iteration and a null or negative target length will redirect the next state
to the exit path. At s8 the message is transferred to the LRAM at the address '80h’ and at s90 the control
issues a request to write the standard output descriptor (stdout). At s99 the Control enters the task exit

call that releases the Native thread from the main loop and the emulator concludes the operation.

Experimental log for this emulator stage can be seen in Figure 2.23. The file_system object prints the
message to inform the user of its service and the /s member lists the existing accelerator(s). The remaining
four lines are the task conclusion messages, and we can observe the Emulator profile and the HwTask

qualifiers in use, at the HwEncrytorQ task log message.

In this design stage the Encryptor task was mapped into the Accelerator model using the emulator names-
pace. After dealing with some model-related considerations, we have decided to increase the data ex-
change between Task's software resources and the Accelerator model, and in doing so, the fragmented
and regrouping of the adjacent tasks became redundant. This consideration raised the need to refactor

the SW tasks FileReader and the Uploader but no changes were performed. Instead, we wait for the
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template <>
void HwTaskModel<HwEncrypter>::task_run_iteration(void) {
static int count_len = @, target_len, index=0, total_len
static block state_t curr_block;
static char message_file[] = "finished...(%d)\\n";
static uintl6_t text_len = sizeof(message_file) - 1, mlen = text_len + 4;
static Ip_AES128 cypher Encrypter;
switch (this->TaskState){
case sO:
if (this->pLKernel->isControlRun()) {
Encrypter.p_UserKey = &key;
Encrypter.key_set();
total_len = 0;
this->TaskStateNext = s1;} break;
case sl:
transfer_data_from_dds_subscrition(0,1024);
target_len = cast_return_to_transfer_len();
count_len = 0;

0;

index = 0;
TaskStateNext = s2; break;
case s2:

TaskStateNext = s8;
if(target_len > 0)
TaskStateNext = s3; break;
case s3:
safe_read_lram_word32((int*)& curr_block, 4, index);
count_len = count_len + HLEN;
TaskStateNext = s4; break;
case s4:
Encrypter.p_plain = (block_state_t*)&curr_block;
Encrypter.trigger_aes();
TaskStateNext = s5; break;
case s5:
this->pLKernel->wait_event(Encrypter.Done);
TaskStateNext = s6; break;
case s6:
std::copy_n((char*)Encrypter.p_cyphered, HLEN, (char*)curr_block);
safe_write_lram_word32((int*)& curr_block, 4, index);
index = index + 4;
total_len = total_len + 1;
TaskStateNext = s7;
if(count_len < target_len)
TaskStateNext = s3;
break;
case s7:
transfer_data_to_dds_topic(@,count_len);
TaskStateNext = sl1; break;
case s8:
safe_write_lram(message_file, mlen, &total_len,4,128);
count_len = 0;
TaskStateNext = s90; break;
case s90:
write_stdout(text_len,mlen,128);
TaskStateNext = s99; break;
case s99:
this->task_exit(); break;
default: break;}}

Figure 2.22: Machine 1: Hardware Task emulator
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machinel@host:~/machine_1 app$ ./machine_1 app 1M digits_of pi.txt
[Main] :VFS hal-asos Mounted
root[hal-asos]

- - [HwEncryptero]

---->data-fifo

---->data-fifo-size
---->data-fifo-space
---->message-queue
---->message-queue-size
---->message-queue-space
---->local-ram

---->sys-ram

---->Lram-mutex

---->sysram-mutex

----[interrupts]

------ >local-intc

------ >local_interrupt_ 0

—————— >local_interrupt_1

—————— >local_interrupt 2

------ >local_interrupt_ 3

------ >local_interrupt 4

------ >local interrupt 5

------ >local interrupt 6
----[kernel]

—————— >local-kernel

—————— >transfers-zerocopy

------ >transfers-shared-page
[FileReader<SwTask>]finished...(62501)
[HwEncrypter@<HwTask,Emulator>]:finished...(62501)
[Uploader<SwTask>]finished...(62501)
[Main] :VFS hal-asos Destructed
machinel@host:~/machine 1 app$ [

Figure 2.23: Machine 1 - HW encryptor using emulator

standalone HW-Task performance results as we believe that it will translate into similar changes and less

computation overhead.

The Machine 1 application was validated using this new configuration and from the functional results,
we can accept the specifications and proceed in design, implementing the HW Encryptor task in the

HAL-ASOS Accelerator model.

2.7.3 Hardware description

To implement the HW Encryptor we start with a template HW-Task provided by the framework that includes
a minimal task implementation with control and datapath units. The Control unit uses an FSM-based
design that evaluates a task state register to encode the implemented states. This FSM design is composed
of concurrent VHDL processes that target synchronous and asynchronous combinational features. The
synchronous processes establish synchronism and the required registers, and allow the task to block

and resume while interacting at kernel level. The combinational design establishes the control path that
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dictates the FSM behavior and through the use of the RTL packages, it will allow the task to interact at the

application level.

The provided FSM model implements a Moore's machine-based description, where each individual state
determines the set of active control outputs. A closed-loop locks the task next state on the current value,
until an input change determines a new next state. The next valid clock pulse will store this value and
FSM will produce a new set of state dependent control outputs. A clock pulse is considered valid if it
produces a synchronous assignment. A non-valid clock pulse can result from the blocked-task condition
that disables functional units’ clock as result of kernel control interchange. For this reason, the description

of the datapath registers uses asynchronous design to implement the blocking and sleeping functionalities.

To describe the FSM discussed in the specification section we implement the task datapath using a set
of independent synchronous logic that includes the AES-128 component and the previously identified
counters. The task register descriptions follow the name used in the design stage and extends them with
the '_d’ to denote the input connection, and the '_q’ to denote the output of the registers. These input
and output connections link with the control path of the FSM, and so, the input register connections are
updated with the control-path outputs and the stored values are then forwarded back to the control-unit

inputs.

Describing hardware using HDL languages is analogous to computer programming, in the sense that we
structure an inherent functional behavior, through common language constructs such as if, then, else
or case, and delegate the details in the functional aspects to specific subprograms. Such description
denotes similarities with the emulator implementation depicted in Figure 2.22. The switch statement
from the C language, translates directly to a case statement of the VHDL, the when entry in the VHDL can
implement The case entries from the software implementation to create a similar structure that represents
the algorithmic level of the HW-Task. Figure 2.24 outlines a simplified VHDL process that translates the
emulator source to the FSM control path used in the HW Encryptor task. The complete listing can be

consulted in the attached Listing C.4.

In that figure, it can be seen the exchange and encrypt loops implemented in states s1to s7and s3to s6
descriptions. The request to exchange data with the DDS is implemented by the procedure call in lines
122 and 151, and the resulting transfer is read from, and written to, the Local-RAM in lines 133 and 143.
The procedure parameter p_current_d in line 133, is sourced to the p_current_q register that connects

with of the AES-128 component using plain_data_i signal. The p_cypher_i parameter in the procedure
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call of line 143, establishes the connection from the AES-128 cyphered output. Details of the AES-128
connections can be consulted in the attached Listing C.5. The wait_signal_event procedure in line 143,
extends the done_j port from the AES-128 to the kernel control and blocks the HW-Task. A high value

in this port will allow the system to return from the kernel system call and the FSM proceeds to the next

state.

[ R T e T LT

95 FSM_CONTROL: process(task_state,....)

L T e e T e

97 begin

114 hal_asos_link_to_kernel(kernel_response,kernel_call);

115 case task_state is

116 when s@_ready=>

117 if s@0_kernel_run = '1' then

118 task_state_next <= sl1_transfer_from_dds;

119 end if;

120 total_len_d<=0;

121 when sl1_transfer_from_dds=>

122 transfer_data_from_dds(kernel_call,kernel_response,®, C_BLOCK_LEN);

123 target_len_d <= cast_return_to_transfer_len(kernel_response);

124 index_d <= 0;

125 count_len_d<=0;

126 task_state_next <= s2_evaluate_transfer;

127 when s2_evaluate_transfer=>

128 task_state_next <= s8_write_message;

129 if(target_len_q >0) then

130 task_state_next <= s3_read_lram;

131 end if;

132 when s3_read_lram=>

133 safe_read_lram_word32(kernel_call, kernel_response,p_current_d,(C_PLAIN_LEN/4),index_q);

134 count_len_d <= count_len_q + C_PLAIN_LEN;

135 task_state_next <= s4_trigger_aes;

136 when s4_trigger_aes=>

137 trigger_aes_i<= '1';

138 task_state_next<= s5_wait_aes;

139 when s5_wait_aes=>

140 wait_signal_event(kernel_call, kernel_response,aes_done_i,Done_d);

141 task_state_next <= s6_write_lram;

142 when s6_write_lram=>

143 safe_write_lram_word32(kernel_call, kernel_response,p_cypher_i,(C_PLAIN_LEN/4),index_q);

144 index_d <= index_q + (C_PLAIN_LEN/4);

145 total_len_d <= total_len_qg + 1;

146 task_state_next <= s7_transfer_to_dds;

147 if(count_len_q < target_len_qg) then

148 task_state_next <= s3_read_lram;

149 end if;

150 when s7_transfer_to_dds=>

151 transfer_data_to_dds(kernel_call, kernel_response,@, count_len_q);

152 task_state_next<= sl1_transfer_from_dds;

153 when s8_write_message=>

154 safe_write_lram(kernel_call, kernel_response, fmessage,
std_logic_vector(to_unsigned(total_len_q,32)),9);

155 task_state_next <= s90_print_stdio;

156 when s90_print_stdio=>

157 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0);

158 task_state_next <= s99 exit;

159 when s99_exit=>

160 task_exit(kernel_call, kernel_response);

161 task_state_next <=s99_exit;

165 end process FSM_CONTROL;

166  — == == m i m i mm i m i m e e e e e e e

Figure 2.24: Encryptor - simplified control path.
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At state s6, when the counter register matches the target length register value, the task breaks the encrypt
loop and proceeds in to state s/, where it transfers the encrypted data to the DDS subsystem and restarts
a new exchange iteration. Once back at state s2, a null or negative value in the target_len register will
break the exchange loop, and the FSM proceeds to the state s8, where it transfers the results message to
the Local-RAM. At state s90, the FSM issues a request to write the message in the stdout, and in state s99
the FSM concludes with the task_exit procedure, notifying the software class and putting the accelerator
core in a dead state. Only a hardware reset or a software demanded initialization can revert the FSM back

to state s0O, and the HW-Task will be ready for a new iteration.

The HW Encryptor SA can be considered an incremental design iteration that uses the previous task de-
scription. The encrypt and exchange loops will remain in use but the task will exchange data with the input
file, and to the network socket, as opposed to the use of the DDS subsystem. To provide the interaction
with Linux OS services, the framework translates most of the common Linux models to HW descriptors
that maintain the status of each virtual representation in the application scope. Such descriptors are
ifile_qg and tsocket_g, which are implemented in the HW-Task synchronous process descriptions in its
datapath, and they are used by the control path while implementing user-related procedures. Figure 2.25
outlines the most relevant changes needed to describe the combinational procedure for the HW Encryptor

SA control.

In lines 124 and 130 the control will implement user package procedures to query for the required objects
and update the local HW descriptors. The file length is read in line 137 and will be used as header for
the encrypted file in line 138. The network socket will open a connection at line 148, that uses the pre-
determined connection settings, and at the exchange loop completion both objects will be closed (lines 189
and 192). The FSM concludes similarly by writing the results message to the Linux stdout and issuing
a task_exit procedure call that will put the accelerator in sleep state. The complete FSM description
including the combinational and synchronous procedure can be consulted in the attached Listing C.6,

C.7 and C.8. For completeness, the datapath description can also be found in the attached Listing C.9.

When we analyze the HW Encryptor SA descriptions listed in this section, and continuing throughout
the related attached figures, it can be noticed that the description style used follows a more hardware-
oriented, or structural description, when compared to the behavioral style used in the emulated Encryptor
task description. This style does not demonstrate the same level of similarity, but it reflects the incremental

description updates that aim to improve the logic extraction feature used by the implementation tools such
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117 hal_asos_link_to_kernel(kernel_response,kernel_call);

118 case task_state is

123 when s1_query_file=>

124 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d);
125 task_state_next <= s2_query_socket;

126 when s2_query_socket=>

127 pooled_socket_query(kernel_call,kernel_response,tsocket_g,tsocket_d);
128 task_state_next<= s3_open_file;

129 when s3_open_file=>

130 pooled_fstream_open(kernel_call,kernel_response,ifile_q,ifile_d);

131 status_ret_d <= cast_return_to_transaction_ret(kernel_response);

132 task_state_next <= s4_evaluate_file;

133 if(status_ret_q < 0)then

134 task_state_next <= s17_write_string_lram;

135 end if;

136 when s4_evaluate_file=>

137 pooled_fstream_read_len(kernel_call,kernel_response,ifile_q,file_len_d);
138 p_current_d(@) <= std_logic_vector(to_unsigned(file_len_qg,32));

139 task_state_next <= s16_close_file;

140 if(file_len_d >0) then

141 task_state_next <= s5_set_word_len;

142 end if;

143 when s5_set_word_len=>

144 safe_write_lram_word32(kernel_call, kernel_response, p_current_q,1,0);
145 inc_index <= '1"';

146 task_state_next<= s6_open_socket;

147 when s6_open_socket=>

148 pooled_socket_open(kernel_call,kernel_response,tsocket_g,tsocket_d);
149 status_ret_d <= cast_return_to_transaction_ret(kernel_response);

150 task_state_next <= s7_read_file;

151 if(status_ret_q < ©@)then

152 task_state_next <= s15_close_socket;

153 end if

184 when sl14_write_socket=>

185 clr_index<= '1';

186 pooled_socket_write_word32(kernel_call, kernel_response, tsocket_qg,index_q,0);
187 task_state_next <= s7_read_file;

188 when s15_close_socket=>

189 pooled_socket_close(kernel_call, kernel_response, tsocket_q,tsocket_d);
190 task_state_next <= s16_close_file;

191 when s16_close_file=>

192 pooled_fstream_close(kernel_call, kernel_response, ifile_q,ifile_d);
193 task_state_next<= s17_write_string_lram;

207 end process FSM_DPATH;

208 - - o - o mm oo oo e o

Figure 2.25: Encryptor SA - simplified control path.

as Vivado. Further details that concern the Accelerator model and some of the package provided features

used in this section will be best discussed in Chapter 3 and Chapter 4.

2.7.4 Co-Simulation model

From this point in the design flow, the two HW-Task descriptions that where implemented are ready for
functional validation. An efficient and proper design validation should consider the application as a unified
solution. Since this application will be running on the host development system, and the elaborated

designs will exist solely in the simulation tool, we apply the co-simulation model that links the application
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functionality with the simulation tool. The outcome of this model is a unified simulation environment that
simplifies the need for complex test benches that closely emulate the application by applying the real

application stimulus to the accelerator model.

At the software side, the framework will use the CoSimulation profile that specializes the task’s Proxy
member and implements the conceptual resource-based set of operations, by using two network chan-
nels, and establishing connection with each individual accelerator. Figure 2.26 helps to illustrate the
Co-Simulation model in the HAL-ASOS framework. A primary transfer channel will enqueue all of the Task
class requests and the secondary channel will provide the interrupt related synchronism. The pending
operations from the primary channel will be forwarded to the secondary channel for synchronism, before

re-attempting the primary channel again.

wait_interrupt() Master |System

Interface |channel

synch. channel

Task<HwTask, CoSimulation,...> HAL-ASOS Accelerator f
:--I nterrupt pin

run() [ Proxy<cCoSimulation Control Q ~
start( Interface Jchannel E (7}
Q =

;‘mtd send_data() 4
receive_data() - transfer channel nterface [chanmel ; ;
I

I

Software application HDL simulation

Figure 2.26: HAL-ASOS simplified Co-Simulation model

The Accelerator model interfaces the communication channels using similar network features that provide
a bus-abstraction to the original design. This feature is implemented using a mixed topology that combines
the RTL description with: (1) VHDL Foreign Language Interface (FLI), establishing a programming interface
that provides means to access data in the VHDL elaborated and simulated models; (2) or SystemVerilog
Direct Programming Interface (DPI), interfacing the hardware description to foreign languages, namely
C/C++ and System-C, by directly calling functions implemented in the foreign language. The choice is
simulation-tool dependent since FLI support is, up until now, only available in the ModelSim tool. In either
of the Model distinct implementations, the foreign language used was C/C++. Running a test-bench on the
accelerator will allow the network channels to listen and accept connections. The software application can
then start, and after a quick handshake, it will be running simultaneously at both sides of the implemented

design.
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2.7.5 Encryptor co-simulation

In this section, the Machine 1 application will be executed on the host’s development environment using
the co-simulation model. The co-simulation model involves the simulation of the software application,
containing the Task class reconfigured for HwTask and using the CoSimulation profile, and the developed
HW Encryptor, interacting with the accelerator model by using an RTL simulation tool. Figure 2.27 shows
the Machine 1 application, containing the necessary modifications to perform the functional validation
in the co-simulation environment. When we observe the lines in that figure, we can see that the Task
T1 declaration is using the THwEncrypter configuration, the HwTask qualifier and extends the template

package with the CoSimulation profile.

249 void hal_asos_demo::test_aes128 file_hw_cosim_thread_cypher_3(void) {
250 using namespace hal_asos;

252 Task<SwTask, TFRead> TO;
253 Task<HwTask, THwEncrypter,profile<proxy::CoSimulation>> T1;
254 Task<SwTask, TUpload> T2;

256 TO.start();
257 Til.start();
258 T2.start();
259 T0.join();
260 T1.join();
261 T2.join();

Figure 2.27: Machine 1 - software changes for Co-Simulation using the HW Encryptor task.

On the RTL side, we integrate the HW-Task in the application using the accelerator component, that can
be identified by the suffixes '_c’ for co-simulation and '_v ' for bus abstraction based on SystemVerilog. In
Figure 2.28a it can be seen the block design used for the co-simulation of the HW Encryptor task using a
Vivado design project. The upper block represents the accelerator model, where it receives stimuli at clock
and reset inputs, and responds with interrupt and heart-bit signals. These outputs are intended for their
graphical representations in the tool’s wave window, since the interrupt signal is sensed internally by the
bus abstraction model, and the heart-bit signal is an interface-based signal that denotes the accelerator

operability.

The lower block represents the HW-Task that was described in the previous section. This block design
is then instantiated as a component, and submitted to a test-bench using an RTL file provided with the
accelerator. The source listing of this test-bench can be consulted in the attached Listing C.10. The

framework provides distinct implementations of the accelerator model which include Extensible Markup
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¢ Re-customize [P X
hal_asos_accelerator_v4_00_c_v (4.00) i
0 Documentation IP Location
Show disabled ports Component Name hal_asos_accelerator_0
hal_asos_accelerator_0
C Accelerator Tag HwEncrypter0
pos ||+ 500_task mO0_kernel — |||
s s00_axi_ack interrupt_pin > C Data In Nwords 1
[ s00_axi_areseln  o_heart_beat > C Data Out Nwords p
h;czl_asos_accclcrator_M_DD_c_.v C Hostlp 192.168.1.11
Il-r- 200_taak mag_kemal r-.II C HostPort 12345
hw_encrypter 0 a00_anl_glk  Insemupe_pin
$00_aal_dresem o hedm_badt C Input Lfifo Depth 32
—|| + s00_kernel C Qutput Lfifo Depth 32
clock RTL  mO0 task o ||fmed
resetn +| C Peformance Counters
hw_encrypter_v1_0 C Sysram Pages 1

C User Interrupts 1

OK | | Cancel

(a) HW Encryptor accelerator connections (b) Accelerator v4.00.c.v parameters

Figure 2.28: Co-Simulation - HW Encryptor Accelerator settings

Language (XML) descriptions in the IP-XACT format, to simplify the block design step by promoting the
assisted connection with rule verification features. It also abstracts each group of the top-level logical

signals to single interface connections.

In the same image, Figure 2.28b, it is also possible to see the graphical interface used to configure the
accelerator. This accelerator uses the host network service and so, it needs parameters that configure the
network location where it will register its existence. The IP address and port number are used to connect
with the Machine 1 application, and the identification is mostly dependent of the name tag that matches

the configuration member used in the class Task.

When both, the application binary and the elaborated design are ready, the application and the simulation
can be started without any particular order. In Figure 2.29 it can be seen message log that took place on
the software side of the application. For this purpose, a smaller file containing 252 bytes (file small_pi.txt)
was used, thus reducing the simulation and exposing the task algorithm to less cycles than the specified
block size to complete the encryption, and to a file length that is not aligned with the accelerator word

size.

The HAL-ASOS network management service starts when the first registration attempt is received and
issues a message in the application log. Upon receiving the accelerator registration, it will assign new

port number used for handshake activities. The Task class will also register its particular interest about an
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accelerator that fits the provided parameters, and when found, it will receive back its IP address and the
new port number for the handshake activities that starts right away. The remaining log messages demon-
strate the application expected behavior and include the processing results sent by the HwEncrypterO
accelerator, which can be identified by the prefix from the template qualifiers HwTask and CoSimulation.
Each individual task message shows a total of sixteen processed fragments and the application concludes

as expected.

machinel@host: achine ps 1s *.txt -1

STWXF-X--- 1 machlnel machtnel 3072 jan 29 16:36 3k_pi.txt

-rwXr-x--- 1 machinel machinel 1000002 jan 29 16:36 pi.txt

-rwxr-x--- 1 machineil machtnei 252 jan 29 16:36 small_pi.txt

machinel@host: achine p$ ./machine_1_app

[HalAsos_ Network Servtce] started

[HalAsos Network Service]: HwEncrypterﬂ<Server> handshake sucess! [@192.168.1.11:27000]
[HalAsos_Metwork_Service]:HwEncrypter@<Client> handshake sucess! [@192.168.1.11:27000]
[HWEncrypter@<HwTask,CoSimulation>]:started

[FileReader<SwTask=>]finished...(16)
[HWEncrypter@<HwTask,CoSimulation>]:finished...(16)

[Uploader<SwTask>]finished...(16)

[HalAsos_Network_Service]:leaving..

machinei@host:~/machine_1_app$ [

Figure 2.29: Co-Simulation - HW Encryptor application output

Back on the RTL side, the simulation was started and the accelerator waits for the task handshake.
Figure 2.30 shows the log that results from this simulation in the Vivado's TCL console. It can be seen the
list of configuration parameters in use, here referred as Generics, and three log messages that encompass
the accelerator registration. All the displayed messages lines contain prefixes based on: the name of the
accelerator that sends the message; followed by the name of the internal operation that is being executed:;
and the current simulation time in nanoseconds. The handshake is triggered by the internal connect
function at 295 nanoseconds of simulation time. After a successful handshake, the Proxy member in the
class Task initializes the accelerator using local provided resources that include a system memory region.
The operation started at 385 nanoseconds and completed at 615 nanoseconds. The next two message
lines, report interrupts received from the HW-Kernel and the simulation concludes with the final two lines

that result from the software application disconnection.

From the performed simulation, a wave diagram is also displayed where it's possible to examine the
contents in the registers of the elaborated design. Figure 2.31 combines a view of the simulation at
the top of the image, and an enlargement aligned with some FSM states at the bottom. At the top of the
figure, it can be seen the exchange loop iteration, encompassed between the states s1 and s8, and sixteen

encrypt loop iterations, delimited by the markers at 5.235 microseconds and the at 14.845 microseconds.
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Tcl Console 2 _ 0O &

update compile order -fileset sources_l

run 250 us

| c_accelerator_tag:HwEncrypter( |

| c_host_ip:182.163.1.11 I

| c_host_port:l12345 |

| c_input_fifo_depth:32 |

| c_output_fifo depth:32 |

| c_input mgueus depth:d |

| c_output_mgueue_depth:d |

| c_sysram pages:l |

| c_user_interrupts:l |

| c_data_in nwords:l |

| c_data out_nwords:1l |
[EwEncrypterl] : [connect] : [295 n3] :trying to connsct to hal asos (10)
[EwEncrypter(] : [connect] : [295 ns] :this name:DESETOP-JDE200U4
[EwEncrypter(] : [connect] : [295 ns] :this ip:r1%2.168.1.11
[EwEncrypterl] : [process_accelerator _init]:[385 ns]:started
[EwEncrypterl] : [process_accelerator _init]:[615 ns]:ready
[EwEncrypterld] : [interrupt_actiwve]:[14945 na]:Interrupt received
[HwEncrypterld] : [interrupt_actiwve]:[212%5 na]:Interrupt receiwved
[HwEncrypterl] : [process_transfers _host link]:[23285 ns]:Host link disconnected....
[HwEncrypterld]: [listen_connections]:[23295 ns]:Listensr closing....

Figure 2.30: Co-Simulation - HW Encryptor handshake messages

Through the lower part of the figure, we can observe the behavior across the encrypt loop, where reading
a fragment from Local-RAM takes twelve clock cycles, marker at 14,245.00 microseconds, in a two clock
per word rate, that includes the four words read, and two more words for locking and unlocking the LMutex.
The words used in the HW mutexes are equal and composed from a combination between configuration
parameters and hardware signatures from the used mutex channel. When we observe the block_task
signal, we realize that it remains active for the majority of the simulation time, which demonstrates an

intensive use of functionalities under the kernel control.

The behavior in the AES-128 top-level signals can also be examined, namely: runand done control signals,
and plain_data and ciphered_data ports. At the 14,465.00 microseconds marker, the FSM triggers the
AES run signal and proceeds to the wait_aes state, where it blocks in the HW system call. The AES uses a
twelve-stage pipeline to encrypt the input plain_data and then releases the done signal. The kernel event

subsystem will acknowledge a steady high value in the done signal, and the task returns from the system
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call in an additional four clocks. The AES connection differentiates blocking by using the kernel sleep

control signal, and keep its clock active while the task is blocked in the above system calls.

The same twelve clocks are used to write-back the cyphered data to the Local-RAM and the encrypt loop
restarts, or moves to state s7 and attempts a new exchange loop iteration. The number of clocks used
in the states s1 and s7 are mostly dependent of the network activity and does not reflect the four clocks
used in the HW system call implementation. Two clocks are spent writing a 64-bit message in the kernel
message-queue, and upon receiving, two more clocks are spent reading the response. Similar to other
transactions in the kernel set of functional units, one clock pulse is used during data exchanging, and

another clock pulse is used for reading the signals that acknowledge the operation.

The FSM completes the exchange loop with the count_len matching the target_len and the total_len_q
register indicating sixteen processed fragments, where it proceeds to state s8. Once in s8, the control
writes the final results in the Local-RAM, and the operation completes in the state s90 with the request to
transfer the message to the stdout. At the 22,505.00 microseconds marker, the FSM achieves the last
state and the execution concludes. The task_exit procedure notifies the Task class and puts the Kernel
Core in a dead state. It also suspends all the HW-Task activities with both, the block_task and sleep

signals active, until a hardware reset or a new initialization procedure is received.

A functional validation of the Machine 1 was performed, using the HW Encryptor description and the
accelerator model for co-simulation. At the software side, minimal reconfiguration was performed by
selecting the HwTask specialized class, that using the CoSimuation profile connects with the hardware
part of the application for a unified simulation environment. For convenience, a smaller file was used thus
producing a reduced number of cycles that ease the representation in the wave windows and allow for a
comprehensive description about the HW-Task behavior. We now proceed with the Machine 1 application
using the HW Encryptor SA task in the co-simulation environment. For completeness, we will be using the

ModelSim tool to simulate the accelerator's RTL behavior.
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2.7.6 Encryptor SA co-simulation

To address the roles of reading from the input file and writing to the network socket using the standalone
HW-Task, first the designer needs to create the local references of this objects in the software application.
For that it will use a framework software abstraction that encapsulates the implementation details of each

specific object in the software class VirtualObject.

The abstraction reduces the interaction to a message-based communication model, using internal mes-
sage format that can be sent or received by the accelerator. The template specializations of this class
include the most commonly used Linux device models. Figure 2.32 demonstrates the use of this feature

in abstracting the input file stream and the network socket for the Machine 1 application.

367 void hal_asos_demo::test_aes128 file hw_cosim_thread_cypher_sa(void) {
368 using namespace hal_asos;

369 hal_asos: :networking: :CSocket<hal_asos::networking::Client> Soc;

370 CFstream<std::ifstream> Input_file(target_file.c_str());

372 Task<HwTask, THwEncrypterSA, profile<proxy::CoSimulation>> T1;

374 Input_file.set_flags(std::ios::in | std::ifstream::binary);
375 Soc.set_ip_address(ip);

376 Soc.set_sock_family (AF_INET);

377 Soc.set_sock_type(SOCK_STREAM);

378 Soc.set_sock_port(PORT_NO);

380 T1.submit_to_pool(Input_file);
381 T1.submit_to_pool(Soc);

383 Til.start();
384 T1.join();

Figure 2.32: Machine 1 - Co-Simulation Standalone HW Encryptor Task

Such instances are declared in lines 369 and 370 of the same figure, and after some configurations, they
are submitted to the task T1 internal structures in lines 380 and 381. The file and the network socket are
kept closed until submission, but alternatively, they could have been opened. The TI Task instance uses
the same qualifiers as in previous validation but a new configuration that matches this new accelerator

descriptions is used.

The newly reconfigured application was once more compiled and executed at host environment, and
after connecting with the accelerator model, the output results were captured and can be observed in
Figure 2.33. Similar output from the HAL-ASOS network manager is reported and it can be noticed only

one task result message.
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machinel@host:~/machine_1_app$ ./machine 1 app

[HalAsos Network Service]:started....

[HalAsos Network Service]:HwEncrypterSAG@<Server> handshake sucess! [@192.168.1.11:27000]
[HalAsos Network Service]:HwEncrypterSA@<Client> handshake sucess! [@192.168.1.11:27000]
[HwEncrypterSA@<HwTask,CoSimulation>]:finished...(16)

[HalAsos Network Service]:leaving....

machinel@host:~/machine_1_app$ D

Figure 2.33: Co-Simulation - HW Encryptor SA application output.

At the ModelSim console, the configured settings were reported and upon receiving connection from the
software task, the simulation proceeded in a continuous mode until receiving disconnection. In Figure 2.34

it can be seen the console log from this simulation.

o
0
i
=]
m
H
e
0
[

ChCSt 1p= Ill Igl I2I I.I Ill IEI ISI I.I Ill I.I Ill Ill
c_host_port = "1' '2' '3T 4 o

c_peformance counters = 1

C_aCCElEratcr_tag = IHI le IEI Inl Il:' Irl IYI Ipl Itl IEI Irl ISI IAI 'I:||
c_input_ lfifo depth = 32

c_output_lfifo depth = 32

c_input_mgueus depth = &

Cc_output_mgqueus_depth = 3

C_user_interrupts = 1

C_sysram pages = 1

C_data_in nwords = 1

Cc_data out nwords = 1

E™

T M= M e e Tl T e e THe e e

e

V5IM 9> run -all

# [HWEncrypter3al]:process_accelerator init: started

# [HWEncrypter3al]:process_accelerator init: ready

[AWEncrypter5a0] :procesa_tranafers_host_link: Hoat link discomnected....
[HWEncrypterSal] :listen connections:lListensr closing....

Simmlation halt requested bv foreign interface.

VSIM 103 |

e e

Figure 2.34: Machine 1 - HW Encryptor SA handshake messages using ModelSim

A wave plot describing the register contents throughout the performed simulation is depicted in Fig-
ure 2.35. In a similar manner, the image is divided in two subplots where we can observe the over-
all path of the states implemented by the FSM, and a magnified view of the encrypt loop. At the bot-
tom of the topmost subplot, we can observe the first marker indicating the open file operation at time
1,940.00 nanoseconds, and consecutively the socket is opened at time 3,150.00 nanoseconds (i.e.,
S3_Open_file and S6_0Open_sock markers respectively). The hardware file descriptors updated with the
current state on the software side and it can be seen that the two virtual objects are kept closed until
each specific open state is reached. The complete file encryption starts at the 8,960.00 nanoseconds
and finishes at 18,710.00 nanoseconds in a total of sixteen processed fragments, (i.e., S9_load_plain

and S13_update_in markers respectively).
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The bottommost subplot in the same figure, highlights the cyclic behavior in the control unit, and it can be
observed the timing diagrams used per cycle. Attime 17,500.00 nanoseconds the FSM loads the AES-128
input with the contents of the Local-RAM. At time 17,320.00 nanoseconds it triggers the run signal and
10 nanoseconds later achieves the wait state where it stays blocked. At time 17,880.00 nanoseconds the
FSM reaches the Local-RAM update state and replaces the current address with the ciphered data, and
at time 18,100.00 nanoseconds it evaluates the encrypt cycle before proceeding on the exchange loop,

by writing to the network socket.

The operation concludes at time 31,420.00 nanoseconds (i.e., S99_Exit marker in the topmost subplot),
where the FSM reaches the final state after closing both virtual objects and transferring the results message
to the stdout. Both virtual file descriptors were updated to false open and the task remains blocked. The
wave plot from an equivalent simulation performed using Vivado simulator tool, can be found in the
attached Figure D.2. A close simulation time was achieved, with the task reaching the final state at time
28.3 microseconds. The main differences can be correlated with the states that are dependent on the

network operation and ultimately from the tool internal throughput.

From this point in design, the distinct versions of application where functionally validated in the host
environment. No commitment to the underlying hardware was established, and the overall design stage
provided an appropriate system abstraction that increased comprehension and placed the designer in a
better position to make decisions. We now proceed to the platform selection in the deployment phase,

implementing the binary files that will instantiate the system.

2.8 Platform deployment

In this section, we address the platform deployment while considering the requirements of the developed
application. We choose the underlying hardware that fit such requirements, and produce the binary files
that instantiate the system. To assist the designer, we will introduce the Full Simulation model. The Full
simulation model allows the designer to validate the complete stack that implements the system. The
provided simulation environment considers simulation at the lowermost level, the target architecture and
the developed RTL, at the Linux kernel and HAL-ASOS file system, and at the topmost level where the

application is instantiated.
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2.8.1 Hardware selection

Up until now, we have been developing the application using Xilinx’s Vivado, and in the supported set of
devices that target Linux embedded systems, we can find the Zyng family. The Zyng family is divided in four
ranges of application, namely: (1) the Cost-Optimized range, and includes the Zyng-7000 and Zynq7000S
SoC based on Artix devices; (2) the Mid-Range, and includes Zyng UltraScale+ MPSoC CG devices and
Zyng-7000 SoC Kintex; (3) the High-End range of UltraScale+ MPSoC EV and EG devices; and (4) the
High-End range of UltraScale+ RFSoC devices. We consider that the Machine 1 application requirements
do not fit the bills of the Graphics Processing Unit (GPU) provided by the third range, or the High bandwidth
RF data converters provided in the fourth range. As so, we will discard such devices and contemplate
the use of the Cost Effective or Mid-Range devices. The UltraScale+ device combines a heterogeneous
MPSoC using ARM Cortex-A53, a 64-bit multi-core asynchronous processing unit, and ARM Cortex-R5,
32-bit multi-core realtime processing unit, coupled with a system logic cell based programmable logic
area. The Zyng-7000 SoC family differs in a logic cell based and less dense programmable area, and
single- or dual-core 32-bit ARM Cortex-A9 architectures. We consider that Cost-effective range is the best
suit for the application requirements and among the set of available devices we chose the Zynq7000 SoC

on the ZC702 board.

The ZC702 board will be selected for this example, as it provides a moderate set of logic resources and also
a subset of surrounding hardware that suits the application requirements. It includes the Z-7020-CLG848-
1 device, a dual-core ARM Cortex A9 capable of achieving 866MHz CPU clock, and it is the third choice
considering dual-core architectures and available logic resources in the programmable area. Figure 2.36
shows the simplified block design for the Machine 1 using a Vivado project that targets the ZC702 board.
The Zyng-7000 Processing System (PS) can be seen in the center of the figure, and includes all the static
hardware in the system. The remaining functional units are implemented in the Programmable Logic
(PL) area, among which stand out the two hardware accelerators coupled with the HW-Tasks Encryptor
and Encryptor SA. To implement the design in the selected platform, we use the HAL-ASOS accelerator
V4_00_b component provided by the framework. The V4_00_b provides connectivity with Advanced
eXtensible Interface (AXI) bus using the Interconnect IPs for master and slave interfaces. In the current
design, we have considered a clock frequency of 100 MHz applied to all logic devices in PL. The detailed

representation of this block design can be consulted in the attached Figure D.1.

With respect to the design flow in Vivado, the tool produces a compressed file in hdf extension that contains
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processing_system7_0 [ DDR
axi_mem_intercon ) ps7_0_axi_periph D FIXED_IO
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Figure 2.36: Machine 1 -Simplified block design using ZC702 platform.

among other sources, the bitstream file that implements the block design in the PL and an XML file that
describes the design. The implemented system can then be exported to an Software Development Kit
(SDK) or Vitis project in the Vivado design flow, which provide the necessary compilation toolchain and the
platform BSP that allow the designer to build the files that instantiate the system. From this deployment
stage two files are produced: (1) a BOOT.bin file, that contains a first stage bootloader, the bitstream file
and the U-Boot file in the elf format; and (2) the devicetree.dtb file, a data structure that describes the

system in the format capable of being used by the Linux kernel.

The first-stage bootloader is provided by the BSP in one of the build tools, and the second stage bootloader
can be generated on a machine-based or custom-based configuration using the U-Boot sources. The
device tree can be generated in the build tools and compiled with the Device Tree Compiler (DTC) tool
from the host environment. Figure 2.37 outlines the source lines from the device tree that describe the
accelerators. Most of these lines refer to parameters configuring the hardware, but are also information

to be used by the HAL-ASQS file system while interacting with the implemented hardware.

To show some light in these lines, we can say that the Linux kernel will link the accelerator descriptions with
the file system code by using the compatible property cell in lines 446 and 472. Two interrupt lines were
assigned to each accelerator and they can be seen in the interrupt property cells in lines 449 and 475.
The first number is 0 and according to Xilin, it identifies a non-SPI peripheral where the interrupt numbers
offset form the number 32. As so, the 29 and 30 numbers correspond to the interrupt lines 61 and 62,
and since third number is 1, it specifies the interrupt type as edge-rising. The control interfaces base and

range addresses can be read using the reg property cells in lines 450 and 476. The accelerator-tag(s) are
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B43  hal_asos_accelerator_0: hal_asos_accelerator@43c00000 { 469 hal_asos_accelerator_1: hal_asos_accelerator@43c20000 {
B44  clock-names = "s@@_axi_aclk", "s@1_axi_aclk", "m@@_axi_aclk"; 470 clock-names = "s@@_axi_aclk", "s@1_axi_aclk", "m@@_axi_aclk"}
45 clocks = <&clkc 15>, <&clkc 15>, <&clkc 15>; 471 clocks = <&clkc 15>, <&clkc 15>, <&clkc 15>;

46 compatible = "xlnx,hal-asos-accelerator-v4-00-b"; 472 compatible = "xlnx,hal-asos-accelerator-v4-00-b";
B47  interrupt-names = "interrupt_pin"; 473  interrupt-names = "interrupt_pin";

A48 interrupt-parent = <&intc>; 474  interrupt-parent = <&intc>;

A49  interrupts = <@ 29 1>; 475 interrupts = <@ 30 1>;

50 reg = <0x43c00000 0x10000>; 476 reg = <0x43C20000 0x10000>;

51 xlnx,accelerator-tag = "HwEncryptere"; 477 xlnx,accelerator-tag = "HwEncrypterSAe";

52 xlnx,data-in-nwords = <@x1>; 478 xlnx,data-in-nwords = <@x1>;

453 xlnx,data-out-nwords = <@x1>; 479 xlnx,data-out-nwords = <@x1>;

54  xlnx,input-lfifo-depth = <@x20>; 480 xlnx,input-lfifo-depth = <@x20>;

55  xlnx,input-mqueue-depth = <@x8>; 481 xlnx,input-mqueue-depth = <0x8>;

56 xlnx,m@0-axi-addr-width = <@x20>; 482 xlnx,me@-axi-addr-width = <@x20>;

57 xlnx,me@@-axi-data-width = <0x20>; 483 xlnx,me@@-axi-data-width = <0x20>;

58 xlnx,output-lfifo-depth = <@x20>; 484  xlnx,output-lfifo-depth = <@x20>;

59  xlnx,output-mqueue-depth = <0x8>; 485  xlnx,output-mqueue-depth = <0x8>;

60  xlnx,peformance-counters = "true"; 486 xlnx,peformance-counters = "true";

61 xlnx,se@-axi-addr-width = <@xa>; 487 xlnx,s@@-axi-addr-width = <@xa>;

62 xlnx,se0-axi-data-width = <@x20>; 488 xlnx,s00-axi-data-width = <@x20>;

63 xlnx,s@l-axi-addr-width = <@xa>; 489 xlnx,s@l-axi-addr-width = <@xa>;

64  xlnx,s@l-axi-data-width = <@x20>; 490 xlnx,s@l-axi-data-width = <@x20>;

65 xlnx,sysram-pages = <Ox1>; 491 xlnx,sysram-pages = <0x1>;

l66 xlnx,user-interrupts = <@x1>; 492 xlnx,user-interrupts = <@x1>;

Aa67 }; 493 1

Figure 2.37: Programmable Logic - device tree source two accelerators.

used at file system level to create the task directory, and can be read using the property cells in lines 451
and 477. Some of these parameters will also be used in this section, as they are of utmost importance to
handshake of the block design using the Full simulation model. The overall use of this description will be

best discussed in the HW implementation details of the Accelerator model in Chapter 3.

The designer will also need a Linux distribution that targets the hardware and software stacks, and in some
cases, a customized Linux version that fits in the application requirements with just the right packages is
the desirable approach. In such case, an automated compilation tool is commonly used and examples of
these are OpenEmbedded [28] or Buildroot. We have selected Buildroot to generate the Linux distribution
for Machine 1, and generically, three files are produced: a U-boot executable elf format file, uboot.elf, that
can be used in the SDK to generate the BOOT.bin file; a ulmage file, containing the Linux kernel image
in a format that can be used by the bootloader; and a rootfs.ext2 file that contains the compressed file
system for Linux. Also, generic Linux image in the compressed format can also be generated, and such

a file, zImage, will be used by the Full simulation model.

To support the Accelerator features in the Linux OS, the designer will need to add the HAL-ASQOS file
system sources to the Linux kernel, by applying a file patch that matches the pre-selected kernel version.
Alternately the sources can be compiled separately as kernel module and mounted at boot time. Such
compilation can be performed using the host cross-compile environment provided by Buildroot. To comply
with this section descriptions, we have compiled the Linux kernel version 4.9.0, in the zImage format, with

the debug symbols, and already includes the HAL-ASOS file system sources.
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2.8.2 Full simulation Model

The Full Simulation model of the HAL-ASOS framework, allows the designer to validate the system in an
integrated environment that includes all implementation domains, from the accelerators that exist in the
RTL simulation, the hardware devices the exist in the selected board, the Linux kernel binaries and file
systems, until the Linux user-space where the application will be executed. For that, it relies on the QEMU
platform, that allows to functionally emulate all the existing hardware on the system. To comply with the
RTL simulation, using the local device representation, the framework extends the traditional set of QEMU

devices with the hal_asos_qdev structure.

Generically, within a specific domain, such device implementation uses a shared network connection,
and forwards the subsequent read and write requests that result from guest code, to the simulation
environment where the target hardware is being simulated. In the opposite direction, another channel
is used the provide access to the system resources and trigger interrupt events that can result from the
hardware simulation. Figure 2.38 depicts a simplified diagram that describes this model considering the

example that integrates an RTL simulation tool.

Il
BUS MemoryRegion H
I Bus ||
:: Interconnect
& - Il
Device SysBusDevice i I ||
MemoryRegionOps H
I Master model
gemu_system_[arch] i
H
v v .H hal_asos_link Acelerator0 Acceleratorl
hal_asos_qgdev hal_asos_gdev .
char*name char*name H
hwaddr base_address hwaddr base_address A [H
int address_range int address_range b us ||n k "E Slave model
void* p_private void* p_private - ____H_:
) ) I “ Interrupt bus
read(hwaddr offset, unsigned len) read(hwaddr offset, unsigned len) Il
write(hwaddr offset, unsigned len) write(hwaddr offset, unsigned len) y I
init(void* p_private) init(void* p_private) 1 BUS
exit() exit() I Interconnect
Il . .
sim_tool.so I I exchange_packet(pkt) I RTL Simulation

Figure 2.38: HAL-ASOS Full simulation Model

With regard to software implementation, this model can be decomposed into three distinct domains:
(1) the extended QEMU device model, that creates an intermediate and generic representation ready to
be used with many different simulation tools; (2) the dynamic implementation, that allows reusing the
implemented features with the specifics of each simulation tools, and thus reduce excessive footprint
in the QEMU sources and consequent recompilations; and finally (3) using the programming interfaces

available in each simulation tool, establish the endpoints in the network connections that fit the device
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network channels. As for the RTL simulation, the model assumes once again two implementation variants,
using VHDL FLI- or SystemVerilog DPI-based implementations in the ModelSim tool or SystemVerilog DPI-

based implementation in the Vivado simulation tool.

On the RTL side, the model stimulates the design and allows the user to explore how the accelerators
relate to the system bus, or how they synchronize with the application on the Host side, here consid-
ered QEMU guest. The hal_asos_link component initiates the connection with QEMU side, and in the
handshake phase, exchange the tool and accelerators intrinsic details. These include the tool name and
address range, and accelerator parameters namely, the task tag, base address and address range, and
the interrupt offset. Each device is then registered accordingly to map the corresponding accelerator in

the QEMU machine virtual representation.

On QEMU side, at the top of the hierarchy, stands the bus where the devices are attached. For every
device, there is a memory region and a file operation structure that uses each device specific code. Once
in service, and as consequence of the software execution, whenever QEMU needs to access the memory
region where the device is mapped, it launches the execution of the read or write functions from the
registered object. These implementations evaluate the address and the size of the request and forward

and appropriate message to the RTL simulation.

On the RTL side, the receiving requests from the network channel are forwarded to the Master Model. Such
model implements the procedures that exchange data with the HW-Kernel resources using the accelerator
differentiated interfaces, i.e., the SO0_Control and SO1_Data. Whenever an interrupt line is triggered, or
an accelerator accesses the system’s memory, the hal_asos_link component intermediates such request
by using the Slave Model, and proceeds by forwarding an appropriate message to the QEMU side. Upon
receiving such message, the bus_link on QEMU side uses native API to interact with the memory or

interrupt subsystems and complete the received request.

Despite presenting a wider validation chain, this model can replace the Co-simulation model and reduce
the number of iterations in the design flow. For this reason, once achieving the deployment phase, the
design flow does not iterate back to the Co-Simulation phase, assuming that it can validate the application
in full simulation environment. Care must be taken when dealing with design refinements in this stage

and appropriate planning is required.
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2.8.3 Full system simulation

To apply the Full simulation model to the Machine 1 application the designer needs to provide the means
for connecting the accelerators that exist in the simulation tool with the virtual device representation
on QEMU. For that, it will replace the processing system in the block design of Figure 2.36, by the
hal_asos_link component that fit the SystemVerilog implemented version. Alternatively, it can create a
new block design and keep both designs in the Vivado project, to be used them in the subsequent design
iterations. Figure 2.39 depicts the block design for Full simulation of the Machine 1 application using
Vivado. To highlight the connections, the accelerator interface lines where manually colored in: light
purple for the accelerators’ master interfaces; light orange for the control-oriented slave interfaces; and

light blue for data-oriented slave interfaces.

axi_interconnect 1 hal_asos link_cv 0 axi_interconnect_0
) IEI . ) .
:: S00_AXI - po =00 _axi mi00_axi - MOO AXI i
T SO0 g A o Moo_ax) 1 T E—n X
-+ sor_aa She : il s o mlom MOTAXI
H—N hal_asos link_v4 00 cv i+ SO0 kvl MOZ_AXl 4 fi
A2 Interconnect B—0 3 ax + =
Axl Interconnect
hal_asos accelerator 0 hal_asos_accelerator 1
s00_task + =00 task
|| + =00_ . ma0_kemel - " “ ) mD0_kemel + “
|4 =00 _axi i . o |4 s00_axi . -
I m00_axi |- " . miO0_axi 4 -
|+ s01_axi . |+ =01 _axi "
hal_asos_accelerator_v4 00 b hal_asos accelerator w4 00 b
hw_encrypter 0 hw_encrypter_sa_0
||+ s00_kemel RTL m00_task +]|| |||+ s00_kemel RTL m00_task +]||
hw_encrypter v1_0 hw_encrypter sa v1_0

Figure 2.39: Full Simulation - HW Encryptors block design

Similarly, as in the co-simulation model, the hal_asos_link component requires parametrizable settings
that configure the network connection. Figure 2.40 depicts the Vivado component generated interface, and
includes the parameters used in this simulation. Such block design requires one interrupt for accelerator
and two accelerators are in the block design. We use the same IP address as in the Co-Simulation but a

different port that depends in the tool specific implementation.
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# Re-customize [P >

hal_asos_link_v4_00_cv (v4_00) '

Show disabled ports Component Name hal_asos_link_cv 0

-+ =00_axi
intermupt_bus[0:1] CHostlp 192.168.1.11
mid_axi_aclk i .
: mi0_axi - rl C Host Port 12345

mi0_axi_aresetn
=00_axi_aclk .
s00_axi_aresetn C Interrupt Lines 3

C Mumber Accelerators 2

QK Cancel

Figure 2.40: Full Simulation - hal_asos_link simulation parameters

On the QEMU side a custom implementation for Vivado tool was compiled as dynamic library and dur-
ing the QEMU machine initialization, the HAL-ASOS extension will load all the .so files that can be found
in the libraries path. In this example, a vivado.so dynamic library is loaded, and QEMU will wait for a
parametrizable time until receives connection from the simulation tool, before proceeds with the hand-

shake. Figure 2.41 depicts the handshake log messages at both sides of the simulation.

In Figure 2.41a, a cat command exposes the used boot settings. We have selected the QEMU pre-defined
machine xilinz_zynqg_a9 and the compressed Linux generic image, zimage will be used. The rootfs.ext2
file will be mounted as SD device and the append switch specifies the kernel boot command. After
loading the symbols in the vivado.so library the open_connection of the bus_link was executed. Upon
receiving connection, the details about the simulation tool and the existing accelerators were exchanged.
At concluding the handshake, the simulation parameters were used to register two devices using the
device model extension, and once all hardware devices where initialized, the QEMU proceeded by booting

the Linux image.

In the Figure 2.41b we can see the handshake log messages in the Vivado TCL console. The first lines
list the accelerator parameters and result from SystemVerilog registry functions. At 265 nanoseconds
of simulation time, the hal_asos_link successfully established connection with QEMU. A continuous run
command was issued, and the simulation proceeds until the designer decides to manually stop the simu-
lation, or issues a shutdown on the Linux console of the guest machine and closes the QEMU execution.
The testbench source used in this simulation is a generic example provided by the HAL-ASOS framework

and can be consulted in the attached Figure C.11.
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machinel@host:~/zynq/images$ cat boot.sh o )
gemu-system-arm -M xilinx-zyng-a9 \ TclConsole  x Messages Log
-serial /dev/null \ -
run 35 us

-serial mon:stdio \

-display none \

-kernel zImage

-dtb devicetree.dtb \

-drive file=rootfs.ext2,if=sd,format=raw,index=0 \

-append "console=ttyPS0,115200 root=/dev/mmcblke rw" \ | Task Name:HwEncrypter( |

-net nic \

-net user,id=mynet,hostfwd=tcp::2222-:22 |Base hddress:0x43c00000 |
machine1@host:~/zynq/images$ sh boot.sh |Range: 0x20000 |
[qemu]:[hal_._asos_lnat_i_@evices]:lnading Jopt/qemu/plugin_devices/vivado.so |Interrupt Offset:0 |
open_connections: waiting for connection....

| Rccelerator settings |

Tool name:Vivado2019.03

Tool ip:192.168.1.11

Tool port:12345 |Task Name:HwEncrypterShO |

Tool base_address:®x0000000043c00000 y i,

Tool range:0x000400800 |Base ARddress:0x43c20000 |

Tool models:2 |Range: 0x20000 |
| Interrupt Offset:1l |

| Rccelerator settings |

......................................... [Host] :register_accelerator:config is ready
Device name:HwEncrypter@

Device base address:0x0000000043c00000 . = X
Device range:0x00020000 | Qemu configured settings |

Device interrupt:61

""""""""""""""""""""" |Tool Name:Vivado2019.03

|
Device Info |Host IP:192.168.1.11 |
----------------------------------------- |Host Port:12345 |
Device name:HwEncrypterSA@ .
Device base address:0x0000000043c20000 |Base Rddress:0x43c00000 I
Device range:0x00020000 |Rddress Range:0x40000 |
Device interrupt:62 |Existing Models:2 |
|

open_connections:handshake success |Registerad Models:2

init_bus_link:mapping (2) devices
qumu%:Ejev:lce_?n?g:E:wgncryp;erg?ﬂg:I.)rir_wging I;Ip! WSLSTARUP sucess!
qemu]:[device_init]:[HwEncrypter®]:bringing up! ; ; - ; ;
gemu-system-arm: warning: nic cadence gem.1 has no peer [Host] :[start_simulation]:[265 ns]: connection established....
Booting Linux on physical CPU 0x@ run all

(a) QEMU handshake log (b) Vivado Simulator handshake log

Figure 2.41: Full Simulation - QEMU and Vivado handshake log

Once QEMU booted the Linux image, a set of commands were executed with the purpose of confirming
the correct state of the system, and the results can be seen in Figure 2.42a. A 'uname’ command
displays information about the system: a Linux 4.9.0 preemptible kernel for SMP architectures is in use
and is based on ARMv7I machines. A ’'ls’ command lists the available accelerators in the HAL-ASOS file
system. Two directories with the accelerator's names are found, and contain the virtual files that export the
accelerator model to the Linux user-space. Entering the QEMU monitor console, an info gtree’ command
lists the devices in the system and it can be seen the accelerators that were registered in the handshake

phase.

On Figure 2.42b it can be seen a console formatted message, from the local-kernel virtual file read that
lists the current accelerator status. It includes information such as: the accelerator name; the base
address and combined address range; the configured design parameters; some Linux kernel assigned
resources; internal statistics and status of the local-kernel registry; but is also displayed the overall status

of the HW-Kernel functional units being simulated in the RTL side.

Considering that the Linux image was successfully booted, the handshake established a connection be-

tween the emulated hardware in QEMU and the RTL simulation on Vivado, we now proceed with the
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# uname -a # cat kernel/local-kernel

Linux buildroot 4.9.8-xilinx #2 SMP PREEMPT Thu DeC 12 17:50122 - - === --== === o= oo oo oo
WET 2019 armv7l GNU/Linux Accelerator name:hal_asos_accelerator (1)

#ed jhal-asesf | sessssccescsecsscsssccssescssssssssssesssscssssssissacsssenees
# 1s Task name:HwEncrypterSA®

HWEncryptero HWEncryptersAo hal_asos_resources Base addressess/length: ©x43C20000/0x20000

# cd HWEncryptersae/ - - Kernel logical address: @xCBC40000

# 1s Input fifo size:32

Output fifo size:32

data-ﬁ.Fo . local-ram performance-counters Input mqueue size:8
dataf}fmstze lram-mutex sys-ram Output mqueue size:8
data-fifo-space message-queue sysram-mutex User interrupts:1
interrupts message-queue-size Total interrupts:8
kernel message-queue-space Irg line:49
# (gemu) info qtree Irq line status:1
bus: main-system-bus LIntc control_reg: Ox®
type System LIntc status_reg: 0x0
dev: hal asos-device, id "" Control reglstet:&)xﬂ
gpio-out "sysbus-irq" 1 :E‘ﬁgzkr:%;i:(_g'ﬂxg
name = HL:JEncrypte:B . . . " Sysram phys_address:0x7045000
dynamic library = "/opt/qemu/plugin_devices/vivado.so N N
. - "yivad " Hw-Kernel errors:0
tool info = "Vivado2019.03 Proxy open references:1
base address = 1136656384 (0x43c00000) Proxy open pending transactions:e
address range = 131072 (0x20000) Proxy transaction counter:1
number of interrupts = 1 (@x1) Local Kernel unregistered:(-1)
number of timers = 0 (0x0) Interrupt @ has @ threads pending (Status=0)
interrupt line = 61 (0x3d) Interrupt 1 has © threads pending (Status=0)
mmio 90EEOEEE43cOOO00/0000000000020000 Interrupt 2 has @ threads pending (Status=0)
dev: hal_asos-device, id "" Interrupt 3 has @ threads pending (Status=0)
gpio-out "sysbus-irq" 1 Interrupt 4 has @ threads pending (Status=0)
name = "HWEncrypterSAe" %“EE”UPE g :ﬁ-‘i g ‘E:FH:S Pﬁﬂj}ﬂg Eziﬁiuszg
dynamic library = "/opt/qemu/plugin_devices/vivado.so" nterrup as reads pending atus=
tool info = "Vivado2019.03" Interrupt 7 has @ threads pending (Status=0)

Performance counters:(0)
Fifo Data Input-space: 32
Fifo Data Output-size: @
MQueue Input-space: 8

base address = 1136787456 (0x43c20000)
address range = 131872 (0x20000)
number of interrupts = 1 (@x1)

number of timers = 0 (0x0) MQueue Output-size: @
interrupt line = 62 (0x3e) Lram-mutex id: 0x0
mmio ©000000043C20000,/0000000000020000 Sysram-mutex id: ©xe
dev: xlnx.ps7-dev-cfg, id "" #
(a) QEMU - Survey HAL-ASOS file system and monitor (b) QEMU - File system query to accelerator kernel

Figure 2.42: Full Simulation - running Linux image on QEMU

functional validation of the Machine 1. For this stage, the Machine 1 application was once more com-

piled, but this time using the host cross-compilation toolchain.

To address the different application variants, the main function was updated to receive parameters form
the command line that specify both, the application variant and the input source. The attached Figure C.12
lists these software changes. The Machine 1 application was reconfigured to use the HwTask qualifier and
recompiled with debug symbols. The attached Figure C.13 lists the corresponding source. Figure 2.43
depicts the output log from the Machine 1 functional that selects the use the HW Encryptor task. A 'ls’
command lists the files in the home directory and two text files that contain 1,000,002 bytes and 252
bytes are listed. The file hw_encryptor file is the application binary in the elf format. The log that results
from the execution, demonstrates similar results as in the Co-Simulation stage, and we can observe the
HwTask as prefix of the Encryptor task log. Since the task is configured to use the Standard/O profile no

qualifier is printed.

On the RTL side, a simulation waveform was plotted and once more the image is divided in wide and
magnified views. Figure 2.44 at top, depicts the overall execution time of the Encryptor task. At time

1,813.235 microseconds the HW-Kernel received the control information to start the HW-Task and 151.38
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Welcome to Buildroot
buildroot login: root
Password:
# 1s

hw_encryptor pi.txt small pi.txt
# ./hw _encryptor 1 small pi.txt
[FileReader<SwTask>]finished... (16)
[HwEncrypter@<HwTask>]:finished... (16)
[Uploader<SwTask>]finished...(16)
#

Figure 2.43: Full Simulation - Machine 1 application using HW Encryptor task

microseconds later, the task enters the state s3 to read the first word from the Local-RAM. The encryption
of the 256 bytes completes 9.61 microseconds later and after 943.504 microseconds the task completes
the 