
Universidade do Minho
Escola de Engenharia

Vitor Alberto Teixeira da Silva

HAL-ASOS
Hardware Assisted Linux for
Application Specific Operating Systems

Fevereiro de 2022UM
in

ho
 |

 2
02

2
Vi

to
r A

lb
er

to
 T

ei
xe

ira
 d

a
Si

lva
H

AL
-A

SO
S

- H
ar

dw
ar

e
As

si
st

ed
 L

in
ux

 fo
r

Ap
pl

ic
at

io
n

Sp
ec

ifi
c

O
pe

ra
tin

g
Sy

st
em

s

Vitor Alberto Teixeira da Silva

HAL-ASOS
Hardware Assisted Linux for
Application Specific Operating Systems

Tese de Doutoramento
Programa Doutoral em
Engenharia Eletrónica e de Computadores (PDEEC)
Especialidade de Informática Industrial e Sistemas Embebidos

Trabalho efetuado sob a orientação do
Professor Doutor Adriano José da Conceição Tavares
e do
Professor Doutor Francisco Carlos Afonso

Universidade do Minho
Escola de Engenharia

Fevereiro de 2022

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas

práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos. Assim, o

presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial-SemDerivações
CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

Acknowledgements

I would like to express my deepest gratitude to Professor Adriano Tavares for the guidance throughout this

thesis. His knowledge and expertise were of utmost importance to the achievements in this work. I also

would like to thank to Professors João Monteiro and Jorge Cabral for their support helping me to overcome

the major obstacles faced during this thesis. I am also grateful to centro ALGORITMI for providing the

necessary conditions that made this thesis possible. On a personal note, I would like to thank to my family

for every sacrifice made, so that I could pursue my dreams in the world of science. Lastly I would like

to acknowledge the financial support received from Portuguese Foundation for Science and Technology

(FCT) with the PhD grant SFRH/BD/82732/2011.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

Resumo

HAL-ASOS - Linux com Aceleração em Hardware para Sistemas Operativos dedicados à

Aplicação.

O ecossistema de sistemas embebidos de hoje tornou-se enorme, cobrindo vários e diferentes sistemas,

exigindo desempenho e mobilidade completa enquanto atingem autonomias de bateria cada vez maiores.

Mas a crescente frequência de relógio que resultou em dispositivos cada vez mais rápidos começou a

estagnar antes dos transístores pararem de encolher. Plataformas Field Programmable Gate Array (FPGA)

são uma solução alternativa para a implementação de sistemas completos e reconfiguráveis. Fornecem

desempenho e eficiência computacional para satisfazer requisitos da aplicação e do sistema embebido.

Vários Sistemas Operativos (SO) assistidos por FPGA foram propostos, mas ao estreitar seu foco na sín-

tese do datapath do acelerador de hardware, a grande maioria ignora a integração semântica destes no

SO. Ambientes de síntese de alto nível (HLS) elevaram a abstração além da linguagem de transferência de

registo (RTL), seguindo uma abordagem específica de domínio enquanto misturam software e abstrações

de hardware ad hoc, que dificultam as otimizações. Além disso, os modelos de programação para soft-

ware e hardware reconfigurável carecem de semelhanças, o que com o tempo dificultará a Exploração

do Ambiente de Design (DSE) e diminuirá o potencial de reutilização de código. Para responder a estas

necessidades, propomos HAL-ASOS, uma ferramenta para implementar sistemas embebidos baseados

em Linux que fornece (1) elasticidade no design em conformidade com a natureza evolutiva deste SO, (2)

integração semântica profunda de tarefas de hardware nos modelos de programação do Linux, (3) facili-

dade na gestão de complexidade através de metodologia e ferramentas para apoiar o design, verificação

e implementação, (4) orientada por princípios de design híbridos e eficiência no sistema. Para avaliar as

funcionalidades da ferramenta, foi implementado um aplicativo criptográfico que demonstra alcance de

desempenho enquanto se emprega a metodologia de design. Novos níveis de desempenho são atingidos

numa aplicação de Visão por Computador que explora recursos de programação assíncrona-síncrona. Os

resultados demonstram uma abordagem flexível na reconfiguração entre hardware e software, e desem-

penho que aumenta consistentemente com acréscimo de recursos ou frequência de relógio.

palavras chave: FPGA, Linux, Elasticidade Evolutiva, Microcódigo, Aceleração em Hardware.

v

Abstract

HAL-ASOS - Hardware Assisted Linux for Application Specific Operating System

Today’s embedded systems ecosystem became huge while covering several and different computer-based

systems, demanding for performance and complete mobility while experiencing longer battery lives. But

the rampant frequency that resulted in faster devices began hitting a wall even before transistors stopped

shrinking. Field Programmable Gate Array (FPGA) platforms are an alternative solution towards imple-

menting complete reconfigurable systems. They provide computational power, efficiency, in a lightweight

solution to serve the application requirements and increase performance in the overall system. Several

FPGA-assisted Operating Systems (OS) have been proposed, but by narrowing their focus on datapath

synthesis of the hardware accelerator, they completely ignore the deep semantic integration of these ac-

celerators into the OS. State-of-the-art High-Level Synthesis (HLS) environments have raised the level of

abstraction beyond Register Transfer Language (RTL) by following a domain-specific approach while mixing

ad hoc software and hardware abstractions, making harder for performance optimizations. Furthermore,

the programming models for software and reconfigurable hardware lack commonalities, which in time will

hinder the Design Space Exploration (DSE) and lower the potential for code reuse. To overcome these

issues, we propose HAL-ASOS, a framework to implement Linux-based Embedded systems which provides

(1) elasticity by design to comply with the evolutive nature of Linux, (2) deep semantic integration of the

hardware tasks in the Linux programming models, (3) easy complexity management using methodology

and tools to fully support design, verification and deployment, (4) hybrid and efficiency-oriented design

principles. To evaluate the framework functionalities, a cryptographic application was implemented and

demonstrates performance achievements while using the promoted application-driven design methodol-

ogy. To demonstrate new levels of performance that can be achieved, a Computer Vision application

explores several mixed asynchronous-synchronous programming features. Experiments demonstrate a

flexible design approach in terms of hardware and software reconfiguration, and significant performance

that increases consistently with the rising in processing resources or clock frequencies.

Keywords: FPGA, Linux, Evolutive elasticity, Microcode, Hardware Acceleration.

vi

Table of Contents

Resumo vi

Abstract vii

List of Listings xi

1 Introduction 1

1.1 Research questions and Methodology . 5

1.2 Scope . 6

1.3 State of the Art . 6

1.3.1 Native FPGA Acceleration . 6

1.3.2 Operating systems for FPGA . 7

1.3.3 Application-specific operating systems 12

1.3.4 Microcode-level customizations . 12

1.4 Conclusions . 13

1.5 Thesis Structure . 14

2 Design Methodology 15

2.1 Design flow . 15

2.2 Programming model . 18

2.3 Application Development . 20

2.4 Software refactoring . 23

2.4.1 The File reader task . 24

2.4.2 The Encryptor task . 25

2.4.3 The Uploader task . 26

2.4.4 Functional validation . 27

vii

2.5 Application profiling . 29

2.5.1 Profile tools . 29

2.5.2 Profiling Results . 29

2.5.3 Conclusions . 31

2.6 Accelerator model . 32

2.6.1 Hardware Kernel model . 33

2.6.2 Hardware Task model . 34

2.6.3 Linux Integration . 36

2.6.4 Emulator Model . 38

2.7 Computational offloading . 39

2.7.1 Hardware specification . 40

2.7.2 Emulating Hardware Accelerators . 43

2.7.3 Hardware description . 46

2.7.4 Co-Simulation model . 50

2.7.5 Encryptor co-simulation . 52

2.7.6 Encryptor SA co-simulation . 58

2.8 Platform deployment . 61

2.8.1 Hardware selection . 62

2.8.2 Full simulation Model . 65

2.8.3 Full system simulation . 67

2.9 System Implementation . 75

2.10 Conclusions . 77

3 First-class Hardware Components 79

3.1 Kernel Core . 82

3.1.1 Authentication . 84

3.1.2 Control Unit . 86

3.1.3 Hardware System Calls . 90

3.1.4 Microprogram . 96

3.1.5 Time Events . 100

3.1.6 System-Level Datapath . 103

viii

3.1.7 Kernel Runtime . 109

3.1.8 Kernel Call and Response . 111

3.1.9 Kernel Procedures . 113

3.2 HW-Task . 116

3.2.1 Programming Model . 117

3.2.2 User Procedures . 121

3.2.3 Linux programming interface . 125

3.3 Hardware Kernel Interfaces . 134

3.3.1 Generic Interface . 135

3.3.2 Multi-clock design . 136

3.3.3 Synchronizer for generic interface . 137

3.3.4 Multi-master design . 139

3.3.5 S00 Control Interface . 146

3.3.6 S01 Data Interface . 150

3.3.7 M00 System Interface . 152

4 Auxiliary Hardware Components 157

4.1 Local-Bus . 157

4.2 HW-Mutex . 160

4.3 Local RAM . 163

4.4 Message-Queue . 167

4.5 Local Interrupts . 171

4.6 ZeroCopy Unit . 173

4.7 Performance Counters . 181

4.8 Accelerator Versions . 185

5 Experimental Results 190

5.1 Object detection a case study . 190

5.2 Feature detection stage . 192

5.3 Software-only Accelerated Feature Detection . 195

5.4 Asynchronous-synchronous datapath . 201

5.5 Multi-threaded Synchronous design . 204

ix

5.6 Stand-alone Synchronous Single-task . 211

5.7 Stand-alone Asynchronous Dual-task . 216

5.8 Stand-alone Asynchronous Single-task . 224

5.9 Performance Comparison . 226

6 Conclusions and Future work 234

A Resource Addressing 239

B Clock Synchronizers 249

C Source Listings 253

D Auxiliary Figures 304

E AES Implementation 314

E.1 Computations in the AES . 315

E.2 Overview of the AES . 318

E.3 Structure of the AES . 319

E.4 Cipher Round . 320

E.5 The Key Schedule . 332

E.5.1 Sequential Key Expansion . 334

E.5.2 Pipelined Key Expansion . 335

E.6 The Software AES . 337

E.6.1 Encrypt process . 337

E.6.2 Decrypt process . 338

E.7 Hardware Architecture for AES . 339

E.7.1 Sequential Encryption . 339

E.7.2 Pipelined Encryption . 341

F Features from Segment Test 356

F.1 Feature Detection . 357

F.1.1 Address Controller . 359

F.1.2 Classifier Filter . 360

x

F.1.3 Contiguity Checking . 361

F.1.4 Scoring . 362

F.1.5 Final Score . 362

F.2 Non-maximum Suppression . 364

F.2.1 Suppressor . 365

F.3 Design Co-simulation . 365

References 375

xi

List of Abbreviations

ABI Application Binary Interface.

AES Advanced Encryption Standard.

AMBA Advanced Microcontroller Bus Architecture.

API Application Programming Interface.

ASIC Application Specific Integrated Circuit.

ASOS Application-Specific Operating Systems.

AXI Advanced eXtensible Interface.

BRAM Logic blocks of Random-access memory (RAM).

BSP Board Support Package.

CPU Central Processing Unit.

DCR Device Control Register.

DDS Data Distribution System.

DMA Direct Memory Access.

DPI Direct Programming Interface.

DPR Dynamic Partial Reconfiguration.

DSE Design Space Exploration.

DTC Device Tree Compiler.

EDA Electronic Design Automation.

xii

FLI Foreign Language Interface.

FPGA Field Programmable Gate Array.

FS File System.

FSM Finite State Machine.

GCC Gnu Compiler Collection.

GPP general purpose processors.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HAL Hardware Abstraction Layer.

HAL-ASOS Hardware Assisted Linux for Application Specific Operating Systems.

HDL Hardware description language.

HLS High-Level Synthesis.

HTC Hybrid Threads Compiler.

HWTI Hardware Thread Interface.

ILP Instruction Level Parallelism.

IP Intellectual Property core.

IP-XACT Standard Structure for Packaging, Integrating, and Reusing IP.

ISA Instruction Set Architecture.

JIT Just-in-time compilation.

LINTC Accelerator Local Interrupt Controller.

LRAM Accelerator Local RAM.

OS Operating System.

xiii

PL Programmable Logic.

PLB Processor Local Bus.

POSIX Portable Operating System Interface.

PS Processing System.

RAM Random-access memory.

RTL Register Transfer Language.

SDK Software Development Kit.

SIMD Single Instruction Multiple Data.

SoC System on a Chip.

SPUFS Synergistic Processor Units File System.

stdout standard output descriptor.

TLP Thread Level Parallelism.

UHD Ultra High Definition.

UML Unified Modelling Language.

VFS Virtual File System.

VLIW Very Long Instruction Word.

VM Virtual Machine.

XML Extensible Markup Language.

xiv

List of Figures

2.1 The HAL-ASOS design flow. 16

2.2 Simplified UML diagram of template class Task. 19

2.3 Overview of the AES-128-bit algorithm. 21

2.4 Machine 1 application - task graphical representation. 22

2.5 The Machine 1 application - SW task version source code. 23

2.6 File reader task - simplified run() member. 24

2.7 Encryptor task - simplified run() member. 25

2.8 Uploader task - simplified ’run()’ member (full listing:C.3) 26

2.9 Machine 1 - SW-only application output for one million digits. 27

2.10 Machine 2 - Server application Output. 27

2.11 Machine 2 - contents of plain data file after decryption. 28

2.12 Machine 2 - contents of encrypted file received. 28

2.13 Profile results of the Machine 1 application. 31

2.14 HAL-ASOS Accelerator model integrated into Host platform. 32

2.15 Hardware Kernel simplified model. 33

2.16 Hardware Task simplified model. 35

2.17 HAL-ASOS file system structure on Linux. 36

2.18 Accelerator Model Emulator - Simplified UML class diagram. 39

2.19 HW Encryptor Task - Simplified Datapath . 41

2.20 HW Encryptor Task - Simplified Control unit Finite State Machine (FSM) 42

2.21 Machine 1: emulated HW Encryptor software changes 44

2.22 Machine 1: Hardware Task emulator . 45

2.23 Machine 1 - HW encryptor using emulator . 46

2.24 Encryptor - simplified control path. 48

2.25 Encryptor SA - simplified control path. 50

xv

2.26 HAL-ASOS simplified Co-Simulation model . 51

2.27 Machine 1 - software changes for Co-Simulation using the HW Encryptor task. 52

2.28 Co-Simulation - HW Encryptor Accelerator settings 53

2.29 Co-Simulation - HW Encryptor application output 54

2.30 Co-Simulation - HW Encryptor handshake messages 55

2.31 Co-Simulation - HW Encryptor wave plot using Vivado simulator 57

2.32 Machine 1 - Co-Simulation Standalone HW Encryptor Task 58

2.33 Co-Simulation - HW Encryptor SA application output. 59

2.34 Machine 1 - HW Encryptor SA handshake messages using ModelSim 59

2.35 Co-Simulation - HW Encryptor SA wave plot using ModelSim. 60

2.36 Machine 1 -Simplified block design using ZC702 platform. 63

2.37 Programmable Logic - device tree source two accelerators. 64

2.38 HAL-ASOS Full simulation Model . 65

2.39 Full Simulation - HW Encryptors block design . 67

2.40 Full Simulation - hal_asos_link simulation parameters 68

2.41 Full Simulation - QEMU and Vivado handshake log 69

2.42 Full Simulation - running Linux image on QEMU 70

2.43 Full Simulation - Machine 1 application using HW Encryptor task 71

2.44 Full Simulation - HW Encryptor simulation waveform. 72

2.45 Full Simulation - Standalone HW Encryptor design 73

2.46 Full Simulation - Stand-Alone HW Encryptor simulation waveform. 74

2.47 Machine 1 - Software-only application version running on ZC702 board. 75

2.48 Zynq ZC702 - Application performance of the machine 1 application. 78

2.49 Zynq ZC702 - Application performance of the hardware accelerated designs. 78

3.1 Accelerator Model - and overview of the provided services. 80

3.2 Hardware system call - wait event sequence diagram. 81

3.3 Hardware system call - mutex lock sequence diagram. 82

3.4 Kernel Core internal structure . 83

3.5 Authenticator device architecture . 84

3.6 Authenticator wave diagram: control operation for HW-Task restart. 85

3.7 Kernel Core - Control Unit Overview . 86

xvi

3.8 Kernel Core - FSM state diagram . 87

3.9 Kernel Core - control unit wave diagram. 89

3.10 Kernel Core - system-level datapath and microprogram interaction. 90

3.11 HW-Kernel package - system call types, entry and exit records 91

3.12 Microprogram - opcode format example in mutex lock step two. 97

3.13 Microprogram - ROM-based internal architecture. 99

3.14 Time Event unit - simplified architecture diagram. 101

3.15 Time Event unit - control logic state diagram. 102

3.16 Time Event unit - Wait for a signal event using a 6-clock timeout. 103

3.17 System-Level datapath - system call signals and target resource. 104

3.18 System-Level datapath - Time event parameters and return signals. 106

3.19 System-Level datapath - Local-BUS and MBUS fields of system call. 107

3.20 Kernel Core - status register signals. 108

3.21 System-Level datapath - Index management service. 109

3.22 Kernel Core - execution progress service. 111

3.23 Kernel Core - input and output interface types using VHDL records. 112

3.24 Kernel Core - execution runtime overview from the HW-Task perspective. 114

3.25 Kernel package procedures - wait signal event descriptions. 115

3.26 Kernel package procedures - read local-RAM in burst format descriptions. 116

3.27 Hardware Task - simplified example architecture. 118

3.28 Task Model - concurrent user procedure description example. 119

3.29 HW-Task Model - Sequential units descriptions using VHDL. 121

3.30 User package procedures - scheduling concurrent system calls. 122

3.31 User package - VHDL procedure to burst read the sysram memory. 124

3.32 Hardware descriptor - record composition and specialized types. 126

3.33 Kernel package - VHDL excerpt of the file and socket descriptor records. 127

3.34 Kernel-level internal message hierarchy. 128

3.35 Query message - file descriptor query sequence diagram. 129

3.36 User package - procedure to query for a file HW-based descriptor. 130

3.37 Data transfer message - file descriptor write sequence diagram. 132

3.38 Remote call message - file descriptor write data sequence diagram. 133

xvii

3.39 Kernel Package - Kernel-level communication tokens. 134

3.40 Generic Interface Master-Slave model . 135

3.41 Synchronizer for the generic interface . 138

3.42 Generic Bus component - The top level and schedule policies 140

3.43 Generic Bus Arbiter - internal architecture . 141

3.44 Generic Bus Arbiter - internal architecture . 142

3.45 Generic Bus component - internal architecture . 144

3.46 Generic Bus wave plot - timing simulation using A and B interfaces. 145

3.47 Slave decoder component- internal architecture. 147

3.48 S01 interface - multi-master connectivity. 151

3.49 M00 interface - multi-master connectivity. 153

3.50 M00 interface - Read four words in SYSRAM using burst format. 156

4.1 Local-BUS mapping - Low- and High-memory regions. 158

4.2 Local-BUS architecture - slave interfaces and address decoding. 159

4.3 Local-BUS - Resource usage for final design in Zynq ZC702. 160

4.4 HW-Mutex design architecture. 161

4.5 HW-Mutex control unit state diagram. 162

4.6 HW-Mutex wave diagram: concurrency scenarios. 164

4.7 Local RAM - internal architecture for 32-bit accelerator design. 165

4.8 Local-Ram wave diagram: burst read system call. 166

4.9 HW FIFO[1:3] - architecture using 3 and 8 configured parameters. 168

4.10 HW FIFO[1:3] - architecture using 3 and 8 configured parameters. 169

4.11 HW-FIFO [1:3] - Wave plot simulation diagram using Vivado. 170

4.12 Local Interrupt Controller - control and status register. 171

4.13 Local Interrupt Controller - internal architecture diagram. 172

4.14 ZeroCopy unit - Connectivity in the accelerator model. 174

4.15 ZeroCopy unit - architectural design. 176

4.16 ZeroCopy unit - Lock unit. 177

4.17 ZeroCopy unit - Write enable. 177

4.18 ZeroCopy unit - Control unit FSM. 178

xviii

4.19 ZeroCopy unit wave diagram - Read the S01 interface and write to the system memory

using burst format. 180

4.20 Performance Counter - architecture simplified block diagram. 183

4.21 Performance counter wave diagram - Blocked counter metrics using example HW-Task. 184

4.22 HW kernel - architecture configurations for b and f variants. 188

4.23 HAL-ASOS accelerator - architecture components and configuration clause. 189

5.1 Object Detector application block diagram. 191

5.2 Object Detector application test. 192

5.3 Image mapping to Bresenham circle example. 193

5.4 Block Diagram for the Software Full dataset test. 196

5.5 Block Diagram for the Software Non-maximum suppression. 197

5.6 Hardware accelerated feature detection application using HAL-ASOS framework. . . . 198

5.7 Software-only feature detection: application performances when using input and output

files and time command on the target platform Xilinx ZC-702. 199

5.8 Software-Only feature detection performances using 1080p test images. 200

5.9 An abstract overview of synchronous (a) versus asynchronous (b) pipeline in the Classi-

filter block design. 202

5.10 Hardware Accelerated Feature detection feature datapath. 203

5.11 Simplified synchronous control unit for HW feature detection. 204

5.12 Extended features for the multi-threaded HW-Task that targets LRAM resource when

using the V4_00_B accelerator. 206

5.13 Excerpt of the multi-threaded application source that targets the LRAM resource using

the V4_00_B accelerator. 207

5.14 Performances for the multi-threaded HW accelerated feature detention using V4_00_B

and V4_00_F accelerators at 50 MHz and 8 kB and 2 kB block sizes. 208

5.15 Application performances between software and synchronous HW accelerated feature

detection. 209

5.16 Performances for the multi-threaded HW accelerated feature detention using accelerator

versions V4_00_B/F at 142 MHz and 32 kB and 2 kB block sizes. 210

5.17 Excerpt from the source to implement standalone application using synchronous design

and the V4_00_F accelerator. 211

xix

5.18 Extended features for the standalone HW-Task that targets SYSRAM resource when using

the V4_00_F accelerator. 213

5.19 Performances for the stand-alone synchronous control using V4_00_B/F accelerators

at 50 MHz and 8 kB and 2 kB block sizes. 213

5.20 Performance comparison of the synchronous design HW-accelerated applications using

8 kB block and 50 MHz clock frequency. 214

5.21 Performance of the standalone synchronous application using the V4_00_F accelerator

and 90,000 corners and varying the input block size and design frequency. 215

5.22 Dual task hardware accelerated feature detection block diagram. 216

5.23 Asynchronous control for hardware accelerated feature detection. 218

5.24 Extended Features design-level for the HW-Task MFastSA that targets the SYSRAM re-

source and uses de V4_00_F accelerator version 220

5.25 Performance of asynchronous designs using V4_00_B and V4_00_F accelerators. . . 221

5.26 Performance of the interrupt latency of V4_00_B and V4_00_F accelerators. 222

5.27 Performance of the interrupt latency of V4_00_F accelerators. 223

5.28 Logic Analyzer using interrupt as trigger in the V4_00_F accelerator. 224

5.29 Performances of asynchronous V4_00_A and V4_00_F/B accelerators. 226

5.30 Performances for the asynchronous designs varying the input file. 227

5.31 Performances using dual-task V4_00_F accelerators and 90,000 corners. 228

5.32 Full frame-rate operation using 100 MHz clock and 32 kB input block size. 229

5.33 Hardware accelerated object detection application results. 232

5.34 Software accelerated object detection application results. 233

A.1 S00 interface - Two-level address decoding design. 240

A.2 S00 interface - Two-level address resource usage in Zynq7000. 240

A.3 S00 interface - Single-level address resource usage in Zynq7000. 241

A.4 S00 Interface - Two-level address resource usage in Virtex 5 family. 242

A.5 Slave decoder internal architecture block diagram. 243

A.6 S00 interface - Resource usage for tri-state datapath design in Zynq7000. 243

A.7 S00 interface - Resource usage for MUX datapath design in Zynq ZC702. 244

A.8 Slave decoder internal architecture block diagram. 245

A.9 Page decoder component - internal architecture. 246

xx

A.10 S00 interface - Resource usage final design using ZC702 platform. 246

B.1 Flip-Flop D time constraints setup, hold and propagation delay 249

B.2 Flip-Flop D time constraints violation . 250

B.3 Multi-Flop D synchronizer circuit . 250

B.4 Multi-Flop D pulse synchronizer circuit . 251

B.5 Synchronizer Generic: single clock ACK-based handshake circuit. 252

D.1 Platform Deployment - Machine 1 block design using ZC702 board (Back to Figure 2.36). 304

D.2 Co-Simulation - Standalone HW Encryptor signals using Vivado simulator (back to Fig-

ure 2.35) . 305

D.3 Time Event unit - Wait for a signal event using 6 as timeout parameter, not exhausted. 306

D.4 Time Event unit - Wait for a signal event using no timeout. 306

D.5 ZeroCopy unit wave diagram - Read system memory and write S01 interface in burst

format. 307

D.6 Kernel Core - FSM state diagram for the RAM-based microprogram. 308

D.7 Kernel Core - Control and status registers for the RAM-based microprogram. 308

D.8 Kernel Core - system-level datapath and microprogram interaction for the RAM-based

microprogram. 308

D.9 Microprogram - RAM-based internal architecture. 309

D.10 Feature detection test images dataset. 309

D.11 Synchronous control unit for the multithread-based HW-Task design. 310

D.12 Synchronous control unit for the FastSA HW-Task. 311

D.13 Block design for the Dual-Task Asynchronous design targeting ZC702 platform. 312

D.14 Asynchronous control unit for the single Task feature detection. 313

E.1 The AES block interface. 318

E.2 The AES-128 algorithmic structure. 319

E.3 The AES block cipher matrix - The state S matrix. 320

E.4 The AES parallel SubBytes block diagram. 321

E.5 The sbox function internal blocks. 321

E.6 The software SubBytes function using C language. 323

E.7 The software InvSubBytes function using C language. 323

xxi

E.8 The hardware SubBytes step using VHDL language. 323

E.9 The ShiftRows step in the AES. 324

E.10 The software ShiftRows function using C language. 325

E.11 The software inverse of ShiftRows function using C language. 325

E.12 The hardware ShiftRows function using VHDL. 326

E.13 The MixWord (or MixColumn) block in the AES MixColumns step. 328

E.14 The AES MixColumns - software implementation using C language. 329

E.15 The AES InvMixWord - software source using C language. 330

E.16 The AES MixWord - hardware description using VHDL. 330

E.17 The AES AddRoundKey step block diagram. 331

E.18 The AES AddRoundKey step - software implementation using C language. 332

E.19 The AES AddRoundKey step - hardware implementation using VHDL. 333

E.20 The AES Key Schedule Algorithm- pipeline-based block diagram. 333

E.21 The AES Key Expansion - software C sequential implementation. 335

E.22 The AES Key Expansion - hardware sequential-based description using VHDL. 336

E.23 The AES software encrypt process - sequential implementation. 338

E.24 The AES software decrypt process - sequential implementation. 339

E.25 The hardware AES - sequential design. 340

E.26 The hardware AES - pipeline design. 342

F.1 HW-Fast or HW-NMS parameter registers. 356

F.2 Hardware Feature detection datapath. 358

F.3 Address controller hardware block diagram. 359

F.4 Classifier filter hardware block diagram. 361

F.5 Contiguity check hardware block diagram. 362

F.6 Scoring hardware block diagram. 363

F.7 Feature detection final score. 363

F.8 Non-Maximum suppression datapath. 364

F.9 Suppression hardware block diagram. 365

F.10 Feature Detection co-simulation - Block design using Vivado. 366

F.11 Feature Detection co-simulation - Single corner input file. 367

F.12 Feature Detection co-simulation - Wave plot of the FAST datapath. 369

xxii

F.13 Feature Detection co-simulation - Wave plot of the FAST+NMS datapaths. 370

F.14 Feature Detection co-simulation output logs. 371

List of Tables

1.1 Gap Analysis considering the literature solutions revised in the section. 13

3.1 Kernel Core - HW system call summary description 93

3.2 Microprogram - Binary excerpt from the Microprogram. 98

3.3 The S00 interface - Page 0 internal register mapping. 148

3.4 The S00 interface - Page 1 internal register mapping. 149

3.5 Performance Counter internal register offsets. 150

3.6 The M00 interface - signal description and generic interface mapping. 154

4.1 HAL-ASOS accelerator versions V3 and V4 features. 186

5.1 Hardware Accelerated Feature detection designs comparison. 230

5.2 HW-Accelerated FAST using HAL-ASOS (a) compared to the literature. 231

List of Equations

5.1 Fast algorithm Bright comparison . 193

5.2 Fast algorithm Bright comparison . 193

5.3 Fast algorithm Scoring function . 194

xxiii

List of Listings

2.1 Profile script used on Machine 1 application. 30

A.1 Page decoder component - entity declaration using VHDL. 247

A.2 Slave decoder component - architecture description using VHDL. 248

C.1 ’Encryptor’ task ’run()’ member specialization (Figure 2.7). 253

C.2 ’File reader’ task ’run()’ member specialization(Figure 2.6). 254

C.3 ’Uploader’ task ’run()’ member specialization (Figure 2.8). 255

C.4 Machine 1:Encryptor HW Task:(back to Figure 2.24). 256

C.5 Machine 1:Encryptor HW Task datapath:(back to text 2.7.3). 257

C.6 Encryptor SA - control path (1/2):(back to Figure 2.25). 258

C.7 Encryptor SA - control path (2/2):(back to Figure 2.25). 259

C.8 Encryptor SA - synchronous control path:(Figure 2.25). 260

C.9 Encryptor SA - synchronous datapath:(Figure 2.25). 261

C.10 Co-Simulation Encryptor - SystemVerilog test-bench file:(sec. 2.7.5). 262

C.11 Full Simulation - SystemVerilog testbench for QEMU. 263

C.12 Machine 1 Application - receive parameters from command line. 264

C.13 Machine 1 Application - HW Encryptor software refactoring. 264

C.14 Machine 1 Application - HW Encryptor SA software refactoring. 265

C.15 Kernel Package - LBUS register and LRAM write procedures. 266

C.16 Microprogram - VHDL description for the test input MUX. 267

C.17 Microprogram - VHDL description for the outputs DEMUX.. 268

C.18 Microprogram - VHDL description for program in ROM. 269

C.19 Local-BUS - System call configuration descriptions. 270

C.20 Kernel Package - import and export Kernel Core interfaces. 271

C.21 Kernel Package - VHDL procedures declaration (part 1/3). 272

C.22 Kernel Package - VHDL procedures declaration (part 2/3). 273

xxiv

C.23 Kernel Package - VHDL procedures declaration (part 3/3). 274

C.24 User Package - VHDL procedures declaration (part 1/6). 275

C.25 User Package - VHDL procedures declaration (part 2/6). 276

C.26 User Package - VHDL procedures declaration (part 3/6). 277

C.27 User Package - VHDL procedures declaration (part 4/6). 278

C.28 User Package - VHDL procedures declaration (part 5/6). 279

C.29 User Package - VHDL procedures declaration (part 6/6). 280

C.30 User package - VHDL procedure to read the sysram memory. 280

C.31 Data transfer message - file descriptor write sequence diagram. 281

C.32 HAL-ASOS Accelerator - HW-Kernel configurations for the a, c, d and e variants. 282

C.33 File reader software Task run member. 283

C.34 CornerDump and CornerUploader software run members. 284

C.35 Full Feature detector software thread run member(1/2). 285

C.36 Full Feature detector software thread run member(2/2). 286

C.37 Software application for the synchronous standalone feature detection. 287

C.38 Synchronous control for HW accelerated feature detection(1/2). 288

C.39 Synchronous control unit for the HW accelerated feature detection(2/2). 289

C.40 Extended features synchronous Control unit for the HW accelerated feature detection

using the LRAM(1/2). 290

C.41 Extended features synchronous Control unit for the HW accelerated feature detection

using the LRAM(2/2). 291

C.42 Extended features synchronous Control unit for the HW accelerated feature detection

using the SYSRAM(1/2). 291

C.43 Extended features synchronous Control unit for the HW accelerated feature detection

using the SYSRAM(2/2). 292

C.44 Extended features for the standalone synchronous Control unit of the HW accelerated

feature detection using the SYSRAM(1/2). 293

C.45 Extended features for the standalone synchronous Control unit of the HW accelerated

feature detection using the SYSRAM(2/2). 294

C.46 Control FSM VHDL description for the FastSA HW-Task (1/2). 294

C.47 Control FSM VHDL description for the FastSA HW-Task (2/2). 295

xxv

C.48 Extended features VHDL description for the MFastSA HW-Task. 296

C.49 Extended features VHDL description for the FastSA HW-Task. 297

C.50 Asynchronous control unit for the NonmaxSA HW-Task(1/2). 298

C.51 Asynchronous control unit for the NonmaxSA HW-Task(2/2). 299

C.52 Asynchronous Extended Features the NonmaxSA HW-Task(1/2). 299

C.53 Asynchronous Extended Features the NonmaxSA HW-Task(2/2). 300

C.54 Network changes to asynchronous Extended Features the NonmaxSA. 300

C.55 Standalone Dual-Task network-based Feature Detection. 301

C.56 Ed.Rosten-C network-based Feature Detection (1/2). 302

C.57 Ed.Rosten-C network-based Feature Detection (1/2). 303

E.1 The hardware AES - Pipeline architecture (back to Figure E.26). 344

E.2 The hardware AES - Sequential architecture (back to Figure E.25). 345

E.3 AES Key Expansion - Pipeline architecture (back to E.5.2). 347

E.4 AES Key Expansion - Sequential architecture (back to E.5.1). 349

E.5 AES Cipher Round - architecture description using VHDL. 351

E.6 AES SubBytes - architecture description using VHDL. 351

E.7 AES SubWord - architecture description using VHDL. 352

E.8 AES Sbox - architecture description using VHDL (back to Figure E.8). 352

E.9 AES MixColumns description using VHDL (Figure E.16). 355

xxvi

List of Algorithms

1 Microprogram to lock an HW-Mutex . 94

2 Microprogram to write one word to the system bus 95

3 Microprogram to write word at M00 interface . 155

xxvii

Chapter 1

Introduction

With network connectivity, Operating System (OS) and database integration, today’s embedded systems

universe became huge, covering several and different computer-based systems, both in size and func-

tionalities. From mobile phones to self-driving car systems, from Ultra High Definition (UHD) cameras to

remote health monitors, from a simple smart watch to internet-aware home devices, our world has been

shaped by an increasingly sophisticated set of electronic devices. These are the elements in a highly

interconnected ecosystem that is smarter, more efficient and strives for multi-functionality and flexibility,

thus facing harder and ever-increasing complex designs.

Today’s most frequent demands for embedded devices are still grounded to performance, from multiple

and concurrent software applications, high quality graphics, to complete mobility, with connectivity every-

where and longer battery lives. But the rampant frequency that resulted in faster devices, began requiring

huge cooling systems and state-of-the-art power supplies to keep up with the power-hungry Central Pro-

cessing Unit (CPU)s. The Moore’s Law [1] that served as the underlying philosophy that driven processor

design, began hitting a wall even before transistors stopped shrinking.

Industry has adopted the multicore-platform to deliver advances in the current and next-generation em-

bedded devices. We live now in the many-core era where Thread Level Parallelism (TLP) has become a

dominating factor in computing performance. But the computational performance is not per se guaran-

teed by an increase in the number of CPU cores in the system. Performance benefits are mainly restricted

to the code sections that can be parallelized, from coarse grained process and thread levels, through finer

grained instruction and data levels (Amdahl’s Law [2]). Currently, two issues must be addressed effi-

ciently, the scalability and the heterogeneity. While the processor utilization, throughput and Instruction

1

2 Chapter 1. Introduction

Level Parallelism (ILP) are the root drivers of performance in the system, the performance of the many-

core demands for scalability, as the system utilization will only be exacerbated by a proper and efficient

parallelization. Another consideration is the fact that distinct CPU architectures will map more efficiently

into specific types or sections inside an application. The control dominated or event-bounded sections

are generally composed by independent code sections and can be efficiently executed in more traditional

out-of-order execution processor. Other sections can be more data-centric or processor-bounded, such

as image or signal processing, and can also executed in the same machine, but it will experience great

performances in a more complex CPU architecture such as Single Instruction Multiple Data (SIMD) or

Very Long Instruction Word (VLIW) processors.

The struggle to serve the different application needs pushed chip manufactures into designing systems

that mix core architectures and dynamically adjust performance to the computational needs. ARM has

been developing the big.LITTLE heterogeneous processing Architecture since 2011. The design uses two

classes of processors and in the latest design specifications, the Big processor cluster can include four

Cortex-A73, while the Little processor cluster can also include four Cortex-A53. Apple launched the A13

Bionic chip, an ARM-based System on a Chip (SoC) design that includes a 64-bit hexa-core processor with

two 2.65 GHz Lightning cores for high-performance processing, and four 1.8GHz Thunder cores for power

efficient processing. Intel announced the Hybrid x86 CPU designed with power efficiency in mind, with

one x86 Sunny Cove core (big CPU) and four smaller design x86 CPU cores (small CPUs).

However, different core architectures can introduce Instruction Set Architecture (ISA) and Application Bi-

nary Interface (ABI) incompatibilities, different memory hierarchies, cache organization or coherence al-

gorithms. Currently, specific OSes are used to deal with these issues, by abstracting the computing

platform into a single Virtual Machine (VM), where system calls represent the standard set of operations

for each specific machine while providing the designer an established way for structuring its applications.

The assumption that such set of virtual operations will be available across different platform distributions,

provides the means for portability and consequently guide industry acceptance. Although a valid solution,

the specific OSes usually restrict the available application software base and target specific software tools

that can raise development effort. Consequently, new design projects are featured by growing software

complexity and engineering effort.

Generic purpose OSes usually provide fast application prototyping with eased use, high software integra-

tion, increased hardware support, and extended debugging features that are not usual in target specific

Chapter 1. Introduction 3

OSes. But despite of the expected overhead and performance metrics degradation, most of the ’well-

accepted’ operating systems, were never created to abstract such a level of heterogeneity into a unified

VM model. They are built into the premise of some internal homogeneity and so, they are now struggling

with the hardware level asymmetries at many levels of implementation, raising considerable issues to

programming and increased computational overhead to conform with the system.

The risen in silicon logic densities, pushed the Field Programmable Gate Array (FPGA) from being applied

as glue logic and prototyping towards implementing complete reconfigurable systems. Today’s FPGA

platforms provide large density fabrics and include the latest multi-core CPU architectures. They represent

the desired architecture for most embedded devices and motivated designers to use them not only as

development platforms but also as final products. Offloading computation to specialized hardware circuitry

is not new as it has been successfully used in the past. The mix of fast CPU cores and fine-grained

reconfigurable logic allows to map both sequential or control-dominated code and highly parallel data-

centric computations into a single platform. They can provide computational power, efficiency, in a light-

weight solution to serve the application requirements, increasing performance, and they can also be

considered as complementary to complex heterogenic processor architectures.

However, the programming models for software and reconfigurable hardware lack commonalities, which

in time will hinder the Design Space Exploration (DSE) and lower the potential for code reuse. Traditional

design techniques were not able to kept with these risen in system complexity. Generally, they do not

consider any efficiencies on the purposed programming models. Also, the existing design techniques

for these types of reconfigurable devices evolved from the Application Specific Integrated Circuit (ASIC)

design and tend to view the specialized hardware as passive processing units in the system.

A new design methodology is demanded for dealing with aforementioned new systems requirements and

constraints of multiple functionalities, programmability, heterogeneity, smartness, real-time performance,

power consumption and security due to connectivity, that all together have been compounding the design

complexity. Essentially, it must raise the abstraction level to design, allowing the user to quickly envision,

develop and deploy the application. Specifically, it must be one that: (1) promotes the reconfigurable

hardware to first-class computing unit, being able to synchronize, communicate and notify other computing

units in the system; (2) provides seamless hardware integration through an automated DSE, guided by

an improved metric-driven approach and encompassing an integrated system emulator with multilevel

simulation; (3) encourages creativity, exploring the hardware and software synergies, and thus expanding

4 Chapter 1. Introduction

the scope of electronic design beyond its original boundaries.

In spite of the panoply of existing Electronic Design Automation (EDA) tools, supporting capabilities such

as high-level synthesis, system profiling, simulation and emulation as well as Standard Structure for Pack-

aging, Integrating, and Reusing Intellectual Property (IP) (IP-XACT) [3] design and overlay architecture for

FPGAs, only to mention a few, none of them can efficiently handle such demand for nowadays systems

requirements and constraints. A toolset is in need to leverage IP evaluation, quality assurance and mostly

a snap-in integration. Most of the existing IPs, are blacked boxed with few or none visibility into, neither

software to support for validation and assist in device-driver development, thus forcing the integration task

to a level of development effort.

To gain the insight to what such a tool needs to address it is better to start by answering what is the

today’s system realization. Traditionally, most systems are developed from the bottom up starting with the

hardware. The OS already exists and is generally pre-selected and the applications are developed within

the limitations of the pre-determined hardware and software stacks. Typically, the application development

is largely abstracted from the hardware, and in the absence of a virtual emulator, the application will not

be completed until the target hardware is fully available. The system integration and debugging will occur

later in the development cycle, and it will usually face schedule delays and quality issues that, ultimately

resulted in quality degradation. Applications are pre-sentenced to the underlying hardware and software

layers, and must conform to any constraint limitations imposed. Any potential glitch that simultaneously

involves the application, OS, and hardware layers is extremely difficult to fix and demands for very time-

consuming effort with a lot of iteration and debugging.

To support the narrow range of application needs and still being able to tackle performance and efficient

design metrics, one must ditch the hardware-first paradigm and follow a different approach. One that

starts by quickly envisioning the application, allowing designers to feel the application needs and then

choose the right platform, resources and the software layers. For an effective performance, the hardware

and software must to be developed concurrently to better promote efficiency in a resource-aware design

approach that fits the solution with just the right needs.

Chapter 1. Introduction 5

1.1 Research questions and Methodology

We believe that extracting the performance benefits from computational offload to FPGA reconfigurable

devices, requires an agnostic approach to the software. One that follows an application-centric design

methodology, where the application is driving the system requirements instead of system capabilities

driving the application. One that raises the abstraction level to programming and provides transparent

reconfigurable hardware devices integration.

For these reasons, this thesis tries to answer to the following questions:

1. How can we transparently and dynamically extend the Linux programming models with reconfig-

urable hardware devices?

2. How can we lower programmability gap between the hardware and software?

3. Can we provide and automated design flow that mitigates the system complexity, keeps track on

development and ensures compliance with the design metrics, while leveraging better computing

and resource efficiency?

We address the questions above by applying the following methodology that is anchored to (1) elasticity by

design, (2) deep semantic integration, (3) easy complexity management, (4) hybrid and efficiency-oriented

design principles, to implement Hardware Assisted Linux for Application Specific Operating Systems (HAL-

ASOS):

1. Run a parallelization tuning cycle using profilers and based on several workloads to identify critical

Linux kernel- and user-level subsystems that should be tuned for scalability;

2. Propose a high-level programming abstraction at the same level of software task to express hard-

ware translated tasks from Linux, application and middleware components by making reconfig-

urable hardware first-class computing entities;

3. Leveraging computing and resource efficiency by applying mixed asynchronous–synchronous de-

sign, event-driven, microcode dynamicity and laziness approaches;

4. Support system designer in the creation of the full platform solutions, including Board Support

Package (BSP), OS, device drivers, middleware and applications software;

6 Chapter 1. Introduction

5. Provide an integrated solution that automates the development of the software on which the user

application will be built by exploring the capabilities of the application-tailored SoC.

HAL-ASOS targets the design of Embedded systems, tailored to the application requirements, which are

implemented using CPU+FPGA platforms.

1.2 Scope

The scope of this thesis falls within the development of software and reconfigurable hardware devices,

but it is constrained to the hardware accelerated Linux-based embedded systems on CPU+FPGA plat-

forms. It also falls into the scope of design methodologies to ensure an efficient design and ease the

programmability gap between software and hardware, while providing the designer with a complete solu-

tion for developing reconfigurable systems that, benefit from the synergy among software, hardware and

services, and deliver powerful computation solutions that can be built with just the right resources.

1.3 State of the Art

The state-of-the-art for this thesis falls into four areas that will be discussed in the paragraphs below: (1)

Native or ad hoc FPGA acceleration (2) operating systems for FPGA; (3) Application-Specific Operating

Systems (ASOS); and (4) microcode-level customization and update:

1.3.1 Native FPGA Acceleration

Many native FPGA-based acceleration solutions exist, which are hand-optimized for one specific application

and FPGA platform, hindering the productivity by demanding for complete rewriting or time-consuming

porting. HThreads [4] provided a unified multi-threaded programming model for architectures with re-

configurable components, by delivering mechanisms that implement transparent integration of hardware

threads into a heterogenous system. Suchmechanisms, implement basic scheduling, synchronization and

interrupt handling for the hardware threads. A Hardware Thread Interface (HWTI) abstracts a platform-

independent compilation target, for hardware-resident computations. It enables the use of standard thread

communication and synchronization across the software/hardware boundary. The system is designed

from C code language sources, which are compiled using the HybridThreads compiler (HTC) to create

Chapter 1. Introduction 7

VHDL code that is integrated into the HThreads synthesis process. A runtime support implementing a

hardware-based microkernel provides OS backend to the components in the system. It enables the design

of heterogeneous systems using Portable Operating System Interface (POSIX) programming abstractions.

From the designer perspective, it provides a multi-threaded programming model where a parent thread

creates any number of children threads that will execute transparently on the underlying computational

resources. Despite the novelty in this research, the use of dedicated compiler from C to Register Transfer

Language (RTL) to implement hardware threads in the application, is very limiting in terms of portability

and maintenance.

Luca Pezzarossa et al. [5] evaluated the potential benefits of using Dynamic Partial Reconfiguration (DPR)

to implement hardware accelerators in real-time systems by driving the main focus towards: (1) trade-offs

between hardware utilization, worst-case performance, and speed-up over a pure software solution and (2)

the trade-offs between the use of multiple specialized accelerators combined with DPR instead of the use

of a more general accelerator, and the memory footprint of the partial-bit streams. The interaction between

software and hardware is based on the control registers of each accelerator and specific shared memory

regions. For testing, it implemented a passive coprocessor model where the software is responsible for

activating accelerators when input data is ready for processing. The results compare performance of the

software using softcore processor over the hardware accelerators in combination with the DPR feature of

the FPGAs. The use of DPR can lead to significant reduction in the hardware size when the reconfigured

tasks are computationally intensive, and maintain performances gains ranging from 1.2 to 4.1 times over

the software execution.

Solutions described above narrow their focus on datapath synthesis of the hardware accelerator, com-

pletely ignoring the deep semantic integration of these into operating system, or high-level synthesis

(High-Level Synthesis (HLS)) environments as well as DPR-enabled elasticity. In the absence of and

OS environment, applications fail to handle reliable software operation as well as the legacy software

execution and well-established programming models.

1.3.2 Operating systems for FPGA

There have been many proposals for building operating systems for FPGA, mainly due to the risen in silicon

logic densities alongside the differentiating capabilities of FPGAs. Offloading computation to specialized

hardware circuitry has been used to provide computational power, efficiency, in a light-weight solution to

8 Chapter 1. Introduction

serve the application requirements and increasing performance, while it can also be considered as com-

plementary to complex heterogenic processor architectures. To reduce development time and to ease

a complex design implementation, HLS environments have raised the level of abstraction beyond RTL

(i.e., by using high-level languages such C/C++ or OpenCL) and following a domain-specific approach,

while mixing ad hoc software and hardware abstractions, making harder performance optimizations. Fur-

thermore, design portability is strongly impacted when changing from one HLS environment to another,

due to their specific dependencies on custom data type, hardware support IPs, and compiler-specific

”pragmas” [6].

BORPH [7] implements an operating system level support for FPGA-based reconfigurable computers. It

introduces the concept of hardware process which is the same as normal UNIX process, but execution is

handled by hardware circuits on FPGA. Under BORPH, hardware and software share the same familiar

UNIX interface and the same level of support from the OS kernel. An application using BORPH is composed

of a collection of files, to implement a predetermined number of processes, that can be software or

equivalent hardware processes. The framework is composed of a kernel module and a user Application

Programming Interface (API) that provides the set of system calls to interact with the computing resources.

The kernel module is responsible for the request handling that mainly correspond to the allocation and

configuration of the hardware resources. The API includes a series of system calls that implement a

message passing interface allowing a hardware process to access data files or to communicate with other

processes using pipes. In design terms, a hardware process is a BORPH executable binary file (BOF),

that contains information about the resources. By extending the standard Linux kernel to accommodate

the hardware process, it conflicts with its evolutive nature, demanding for a continuous updated patching

of the Linux source. No hardware interface is established and the communication is based on passive

hardware regions that are populated into the Linux procfs, under the process identification (pid) folder. In

doing so, a new folder is created with any new execution, thus creating different virtual file locations that

are unpredictable to the application.

FUSE [8] implements a framework to abstract HW accelerators and design PetaLinux-based embedded

systems. It provides a POSIX compliant thread model that can be implemented using software or hard-

ware resources. To abstract the accelerator model to the software application, it relies on the Top-Level

FUSE Component (TLFC) and the Low-Level FUSE Component (LLFC), that operate at Linux user and

kernel spaces, respectively. The TLFC is as software library that provides thread creation, initialization,

Chapter 1. Introduction 9

scheduling and destruction. It also implements a set of functions to interact at the LLFC using the OS

interface. The LLFC is a kernel module that acts as low-level abstraction and is responsible for the com-

munication, synchronization and monitoring of the hardware tasks. Each hardware task is coupled with

an accelerator interface that is orchestrated by the LLFC module. For every such interface, a loadable ker-

nel module is created dynamically at runtime and LLFC maps each hardware interface as peripheral I/O

devices. Communication is implemented on the software side, exchanging data using operating system

services and thus forcing the hardware task design to a passive coprocessor model.

FOSFOR [9] is a framework that implements a transparent abstraction layer for applications following the

Synchronous Data Flow model, deployed on System on Chip architectures. The underlying platform is

composed by a combination of reconfigurable hardware regions (RR) and the required number of general

purpose processors (GPP)s. It considers a Synchronous Data Flow model description and an architectural

mapping to describe associations between processing units and actors. The implementation is based on

C/C++ language for the software, and VHDL descriptions for the hardware-based components. The re-

sulting synthesis is a hardware design used to configure the FPGA and perform the actual computation.

It implements the concept of hardware threads, that are composed of a static component responsible

for the communication, providing local resources and associated control interfaces. A dynamic part is

used to implement the application related design. For this, Flexible OS was selected as hardware op-

erating system and RTEMS was chosen for the management of the software parts. A middleware layer

implemented using hardware and software parts establishes a single programming interface. It abstracts

both implementation and mapping, and offers some mechanisms like the accesses to OS services and the

inter-process communication. Focusing on the synchronous data flow model, system portability increases,

but communication efficiency becomes a system performance bottleneck.

SPREAD [10] provides a point-to-point streaming oriented programming environment, for architectures

with reconfigurable components. It is a thread-based approach where hardware tasks are encapsulated

into threads that resemble the POSIX programming interface. It considers three basic operations per-

formed by each thread, in getting the application-related data, the computation itself, and then providing

the processing results to the next thread. To facilitate switching between hardware and software, a soft-

ware delegate is created, and is responsible for the monitoring of the hardware thread on the software

side. A Hardware Thread Interface (HTI) abstracts the hardware thread design and enables communica-

tion between hardware and software as well as between hardware threads. Streaming channels can be

10 Chapter 1. Introduction

dynamically interconnected at runtime, to provide inter-thread communication. Depending on whether

the execution resource is hardware or software it provides three distinct communication channels. When

both threads are implemented in software, the communication is implemented using memcopy function.

When implemented on hardware, they communicate directly using FIFOs that are synchronized by the HTI.

Lastly, when a software and hardware threads need to communicate, they use a Direct Memory Access

(DMA) point-to-point connection. A hardware thread manager is also provided to handle hardware threads

and is responsible for their creation and termination. Unlike previous frameworks, SPREAD is an inte-

grated solution specifically developed for streaming application design. It does not allow “one-to-many”

and “many-to-one” streaming interconnections, which are more common but not so easy automate. The

hardware task programming interface is centered around the passive coprocessor model, where control

unit blocks waiting for input data, executes processing upon arrival, and concludes producing results on

the local resources and signaling the software execution.

ReconOS [11] implements an operating system that extends the software multi-threaded programming

model to reconfigurable hardware. From the programmability point of view, it provides an API close to the

POSIX programming model where threads can be executed either on CPU or in reconfigurable hardware.

Software threads can be implemented using the POSIX library and synchronized using semaphores, mu-

texes, condition variables and mailboxes. Hardware threads are abstracted by the OS interface (OSIF)

that implements synchronization and communication mechanisms. An indexing scheme is also used to

implement resource sharing. The software-level inter-thread communication is implemented using shared

memory, while communication between hardware and software uses a message-based exchange model.

Thread memories are shared leaving consistency and coherence hazards to be handled by the program-

mer. Such constraint penalizes the performance in the overall system by the increased use of interrupt

events and consequent latency involved.

Zongwei Zhu et al. [12] proposes a task scheduling framework on the DPR-based platform that exploits

the hardware task cycle accuracy and task preemption overhead to improve scheduling efficiency. The

framework is based on general OS and takes the full consideration of the preemption overhead, the recon-

figuration time and hardware tasks’ cycle accuracy. The scheduling method is based on the predictable

execution time of hardware tasks in DPR to improve scheduling efficiency of the whole system. The hard-

ware task participates in the scheduling of the OS through the associated delegate thread and optimizes

the task scheduling model, thereby reducing both the number and the overhead of task context switch.

Chapter 1. Introduction 11

FOS [13] provides an OS that adopts a modular FPGA development flow, to allow each system component

to be changed and be agnostic to the heterogeneity of EDA tool versions, hardware and software layers. It

dynamically maximizes the utilization transparently from the users by using resource-elastic scheduling to

arbitrate the FPGA resources in both the time and spatial domain for any type of accelerators. Moreover,

FOS can switch between different accelerator implementations on the fly in order to balance resource

allocation for the best performance and load scenarios. It provides an application-centric view to the

developers by hiding most of the complexity encountered when using a heterogeneous CPU-FPGA accel-

eration system with a Linux backend. A user level daemon is responsible for managing FPGA resources

and initiate scheduling operations. Updating individual components includes the latency of the partial

reconfiguration that ranges from 3.8 to 6.8 milliseconds to replace one hardware accelerator, or 20.7 to

98.4 milliseconds to replace the entire FPGA shell. It abstracts the software design perspective but disre-

gards the efforts required to semantically integrate the hardware accelerators in the application, mapping

them by its hardware regions and considering accelerators as passive coprocessors. A design methodol-

ogy is also proposed but it lacks co-simulation or full-simulation supports to validate the accelerator nodes

in the application.

Hoang-Gia Vu et al. [6] propose a hardware task migration scheme assisted by (1) a checkpointing ar-

chitecture for FPGAs that flattens the structure of nested modules at the hardware description language

(HDL) level, (2) a static analysis of the original HDL source code to reduce the cost of hardware and

(3) Python-based tool to generate the checkpointing architecture at the HDL level. In the hardware task

migration scheme the checkpoint procedures overlap data transfers to minimize downtime to 1.251 mil-

liseconds in the worst-case scenario. When compared to the original design, clock degradations observed

vary from 9.73% to 0.15% averaging at 1.66%. The design is limited to a single-clock domain and yet to

be ported across different FPGA vendors.

Coyote [14] is a configurable FPGA “OS” for hybrid compute servers, designed mainly for reflecting on

the performance and efficiency benefits of importing OS abstractions wholesale to FPGAs. It goes beyond

ReconOS’s deep semantic integration by supporting secure spatial and temporal multiplexing of the FPGA

between tenants, virtual memory, communication, and memory management inside a uniform execu-

tion environment. The overhead of Coyote is small and the performance benefit is significant, but more

importantly it allows us to reflect on whether importing OS abstractions wholesale to FPGAs is the best

12 Chapter 1. Introduction

way forward. It shows that a coherent and reasonably complete set of OS abstractions can be imple-

mented, and still achieve acceptable performances in throughput, space efficiency, scheduling overhead

and memory bandwidth. As FPGAs become larger, the demand for the more traditional OS services will

grow. Migrating commonly used OS features to hardware IPs requires the right set of abstractions to

prevent them from quickly becoming obsolete.

1.3.3 Application-specific operating systems

Several works have been conducted on performance optimization of different features of an operating sys-

tem due to the following reasons [15]: (1) OSes are critical to the performance of the running application,

especially for system-intensive applications that invoke kernel features extensively, and (2) nowadays in

cloud era, many servers only run a single application. Tarax [15] is a one-size-fits-all compiler-based and

profile-guided optimization approach for constructing an ASOS. The implementation is based on modified

versions of the Linux kernel and Gnu Compiler Collection (GCC), to support kernel instrumentation and pro-

file collection. Detailed analysis has provided insights on how profile feedback helps GCC to perform better

optimizations on the Linux kernel in an application-specific manner. The outcome is an optimized kernel

image tailored to improve performance of the application and reduce kernel size. Experiments conducted

using popular server applications provided a performance increase of 16% in the Linux kernel. Differently

from the HAL-ASOS design framework that is assisted by the mainstream and system-wide OProfile tool,

Tarax does not seamlessly evolve with the Linux OS kernel as it demands both the instrumented Linux OS

kernel and GCC.

1.3.4 Microcode-level customizations

Microcode is an abstraction layer between the physical components of a CPU and the programmer-visible

instruction set architecture of the computer. Originally, it was purposed to simplify the design of CISC

(Complex Instruction Set Computing) CPUs with capability for in-field CPU updating without requiring any

special hardware [16]. More recently, x86 microcode-level update capability gains moment by mitigating

Spectre and Meltdown vulnerabilities. Benjamin Kollenda et al. [16] reverse engineered the microcode of

x86 CPU and proposed a microcode-assisted instrumentation framework, alongside the enclave function-

ality to realize a small trusted execution environment, leveraging system security defenses such as timing

attack mitigations, hardware-assisted address sanitization, and instruction set randomization. CHEx86

Chapter 1. Introduction 13

processor architecture [17] proposes a transparent capability-based protection scheme enforced through

microcode instrumentation, to defend against security exploits targeting temporal and spatial memory

safety vulnerabilities. These works are not directly compared to the evolutive elasticity of Hardware Ker-

nel, but similar microcode mechanisms are deployed in both fields.

1.4 Conclusions

To conclude the state-of-art review, Table 1.1 provides the gap analysis based on the above design princi-

ples. Any further details are already given on the previous summaries of each individual compared works.

Table 1.1: Gap Analysis considering the literature solutions revised in the section.

SW Base Integration Levels Design Clock
Linux Other Semantic P.Model Elasticity Support Strategy Domains

HThreads [4] - PCoP TH ST - SYN SC
Luca et al. [5] - PCoP TH ST/DPR - SYN SC
BORPH [7] - PCoP PR/FS ST - SYN SC
FUSE [8] - PCoP TH ST - SYN SC
FOSFOR [9] - PCoP TH ST - SYN SC
SPREAD [10] - PCoP TH ST - SYN SC
ReconOS [11] OSL TH ST/DPR - SYN SC
Zhu et al. [12] - PCoP TH ST/DPR - SYN SC
FOS [13] - PCoP TH ST/DPR M SYN SC
Vu et al. [6] - PCoP TH ST/DPR - SYN SC
Coyote [14] - OSL TH ST - SYN SC

HAL-ASOS - OSL TH/FS MP M,C-FS A-SYN MX/SC
PCoP - Passive Coprocessor Model semantic integration; OSL - Operating System Level semantic integration;

TH - Thread-based programming model; PR - Process-based programming model; FS - File System-based programming model;

ST - Static Design approach; DPR - Dynamic Partial Reconfiguration features; MP - Micro-programmable design;

M - Design Methodology; C-FS - Co-Simulation and Full System Simulation;

SYN - Synchronous design; A-SYN - Asynchronous-Synchronous design;

SC - Single Clock domain; MX - Multiple Clock domains.

The works included in Table 1.1 are the most representatives in the field, although several others could

be included in this review, such as FISH [18], RIFFA [19], RACOS [20], R3TOS [21] and SEOS [22], just

to name a few.

14 Chapter 1. Introduction

1.5 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the HAL-ASOS framework. A simple case study is introduced and the

design methodology is applied and discussed using the HAL-ASOS framework;

Chapter 3 discusses the first-class components in the Accelerator model, that consist of theHW-Kernel, the

HW-Task and the host system interfaces. In begins with an overview of the HW-Kernel provided services,

followed by the Kernel Core implementation, and concludes by discussing Hardware Task programming

model in the Linux programming interface.

Chapter 4 discusses the HW-Kernel auxiliary components used to provide: (1) synchronization with the

host system, by use of the HW-Mutex(es) and the Local interrupt controller; (2) control-oriented message

service, atHW-Kernel andHW-Task levels, by use of theHW-FIFOs; (3) local storage service using the Local-

RAM, (4) the ZeroCopy unit; and the (5) Hardware Performance Counters. In each section, it provides

architecture details and functional simulations that are based on the hardware system calls that address

each component feature.

Chapter 5 applies the HAL-ASOS accelerator model to a computer vision application, to assess many levels

of performance while using distinct accelerator versions. It initiates development from the software-only

implementation, moving towards initial hardware acceleration concepts, and concludes by refactoring the

application using distinct levels of asynchronous design;

Chapter 6 summarizes this thesis and describes the future work considering this framework.

Chapter 2

Design Methodology

The design methodology is a field in science that pushes development towards better productivity by

reducing technological gaps and exploring their synergies. But developing hardware and software concur-

rently requires an efficient design methodology that must be transparent from the engineers’ perspective,

abstracting away the semantic gap between software and hardware concepts (i.e., a co-design flow that

assists in modeling, simulation and verification of a design before committing to hardware). To reduce

design and coding efforts, such design methodology must rest on principles of control algorithm refine-

ment, modularity, and best suitability between the algorithm to implement and the chosen hardware

platform. The overall design decisions will ultimately be constrained to (1) the identification of kernel

functions to be offloaded to FPGA fabrics, (2) ensuring a profitable offloading in terms of performance or

any pre-selected design metrics, and (3) using accelerator architecture that promotes the accelerators to

the same computing level of the CPU.

In this charter, the development of an application will be discussed within the HAL-ASOS framework. It will

also provide an overview of the most relevant functionalities an it will introduce the purposed models that

combined make up the HAL-ASOS design methodology. We will begin by describing the HAL-ASOS design

flow and applying it to the application, which will structure the reminding descriptions in this chapter.

2.1 Design flow

When following the HAL-ASOS design flow, the Application development can start with a new design, or an

existing application that needs to be refactored for functionality, quality of the results or performance at

several levels of implementation. Any existing design models can be considered, but the best use of the

15

16 Chapter 2. Design Methodology

framework starts with the Unified Modelling Language (UML) design describing the system to be imple-

mented and an application/algorithm task-graph illustrating the semantic relations between the system

functional units, while also ensuring a clear understanding in terms dependency and data movement in

the application model. Figure 2.1 describes the HAL-ASOS design flow.

Software Refactoring

Application Profiling

Computational Offloading

Platform Deployment

Application Design & Modelling

- Application partitioning
- HAL-ASOS software API
- Host compilation/debug
- Functional validation

- Profiling the application
- Hot kernels identification
- Functional validation

- HAL-ASOS HW Task(s)
- Compilation/debug
- Co-Simulation

- Cross-compilation
- Platform BSP
- Full system simulation

*.c, *.cpp

application

- Bootloader
- Linux root file system
- FPGA bitstream

dtb

devicetree

System Implementation

Other
tools

POSIX

()

GDB GCC

elf

task graph
*.v, *.vhd

17

>_

Figure 2.1: The HAL-ASOS design flow.

We enter the design flow in the software refactoring stage where the designer uses the framework by

mapping the identified functional units into the HAL-ASOS programming model. The software tools will

be used to compile the application prototype that will target the system to be developed. The framework

requires compilation using the GCC 7 and distinct framework branches will allow the alternate use of the

POSIX native thread runtime model, against the C++ runtime or boost library-based runtime.

Chapter 2. Design Methodology 17

For a better understanding of how the application model is translated into the host system CPU resources,

a profiling stage needs to be applied, thus exposing the computational demands of the application. The

designer will (re)partition the application in the search of the data-level and control-level parallelisms,

where it exists and if exists, to take advantage of the multiprocessing units in the system. The potential for

performance will be made clear with the computational demands of the application expressed across the

set of profiled results. This development stage will put designers in a better position to make hardware

and software design decisions, while targeting the pre-selected results and addressing any imposed re-

strictions. The hardware and software co-design can then proceed in a concurrent development approach

to efficiently address each individual application requirements.

Entering the Computational Offloading is a one-step phase if the designer is integrating hardware and

software solutions, or it can be a two-step phase when the complex design is the case. The hardware

models for the candidates to computational offloading can be addressed in a C/C++ emulator model

provided in the HAL-ASOS framework and used within the application prototype. The use of HAL-ASOS

emulator name space provides the means for the user to implement a C/C++ basedHW-Task and integrate

it with the application prototype, opening the possibility to integrate high level synthesis tools such as

Vivado HLS or MatLab to translate the model to appropriated RTL representation. Besides this, it also

provides the designer with a clear understanding about the control algorithm to be implemented, and

since not all candidates are suitable for offloading, or will be selected in the final design choice, it can

help in anticipating these decisions in the design flow and avoid development and the time-consuming

validation efforts of functional units that are not suited for computational offloading.

The accelerator model is applied to the selected candidates when offloading the computation and the

model provides a complementary set of functional units, intended to ease the integration of the accelerator

within the application. The use of such model is supported by RTL packages at user- and kernel-levels

and these were designed to ease the programmability. To assist this development stage in the functional

unit’s validation, a co-simulation model will unify the application into a single set of functional results. The

designer can then access these results, re-evaluate design decisions and iterate between the SW and the

HW tasks in the search of the optimal solution. The Co-simulation model provides a unified simulation

environment where the user can subject the designed hardware units to the application real demands

as opposed to an isolated development and validation. The supported RTL simulation tools are Xilinx’s

Vivado and Mentor Graphics’ ModelSim.

18 Chapter 2. Design Methodology

The platform selection is the last phase in the design flow and it occurs when all software and hardware

components are fully developed and well consolidated, closing the development phase and sentencing

the application to the underlying hardware. To assist in this design stage, the tool provides a Full simula-

tion model that being based on the previous co-simulation principles, it considers the full hardware and

software layers in the system. For that, it selected a platform emulator such as QEMU [23], and extended

the QEMU functionalities to the surrounding simulation tools. The full simulation model will provide the

user with a clear view of the application deployed to the target platform, and it will assist this development

stage in addressing any potential glitch that can simultaneously conflict with the Application, the OS and

the underlying hardware units. It will allow the user to strip down the several levels of implementation

in the system and debug each one as an integrated part, as opposed to the efforts of reproducing a

failure in isolated test fixture. For completeness, the platform binaries are also validated and usually the

Buildroot [24] tool is used to provide the host with the necessary software packages.

The target validation will proceed beyond this design flow and the designer will confront the developed

solution with the initial design expectations. At this stage, any significant change to the system usually

represents a costly decision, that will ultimately result in quality degradation.

The main concern of this design methodology was to mitigate the technological gap between the hardware

and software concepts, ease the programmability to explore the synergies between the hardware and

software concepts, and provide the designer with themeans to quickly integrate the implemented hardware

units with the application, but also, care was taken to provide the user with the necessary level information

that will allow anticipation of potential problems in the early stages of design where they are properly

addressed.

2.2 Programming model

In this thesis, an object-oriented multithreading programming model is proposed for HAL-ASOS framework.

One that integrates software threads and hardware accelerators in a unified and customized design, that

will assist the development in partitioning the application and offloading the critical workload function-

ality to the accelerator model. The purposed programming model follows the standard of Multithread

Programming Models for C/C++ applications on Linux OS, where the elementary processing units are

implemented by the software threads.

Chapter 2. Design Methodology 19

A software thread usually represents a precise flow of execution inside an application, and is commonly

delimited by the smallest sequence of programmed instructions that can be managed independently. In

the majority of cases, this flow explores the code cyclic use and for that reason the execution is restricted

within an application dependent loop. They can be seen as an integrant part of a process that executes

concurrently with other threads in the same application and share memory resources. A multitude of

threads in the same application can implement a parallel model that aims to promote the efficient use

among the many sources of computation in the system.

The purposed model is centered around the class Task that symbolizes the thread in the traditional pro-

gramming model. The Task can be semantically interpreted as software task that maps to the traditional

thread, or as hardware task that is deployed into the accelerator model. Figure 2.2 shows a simplified

UML of the class Task. It can be seen that the implementation is based in the C++ templates metapro-

gramming and by using specialization we address the configurability inside the application model. The

class template qualifiers range between a predefined and a variable template pack that allows the user to

configure and extend qualifiers to the application needs. The template parameter pack will be evaluated

and matched to the available class implementations during the compilation phase.

TaskConfig_t

+Subscription: TopicConfig_t

...

+TaskTag: std::string
+Publication: TopicConfig_t

+Resources: ControlResources_t

Task
<Type,Config,Args...>

-p_Topic: dds::Topic

-run():void

+start():bool

-Native: std::thread

-p_Subscription: dds::Subscription
...

-unconditional_shutdown():bool

...

TaskType_t Type
TaskConfig_t Config
Semantics_t Semantics
CommProfile_t Profile

CommProfile_t
enum

UserIO

StandardIO

Semantics_t
enum

Shared

TaskType_t
enum

HwTask
SwTask

+join():bool

SharedResources

ZeroCopy
CoSimulation
Emulator

Restricted

Figure 2.2: Simplified UML diagram of template class Task.

Any instance of the class Task demands a specialized run() member and a unique configuration that links

to the class parameters (i.e., TaskConfig_t). This configuration includes a string Tag used for identification

and log messages, a Topic and a Subscription setting, and a predefined set of members that address

resource allocation inside class members.

20 Chapter 2. Design Methodology

The use of the SwTask as Task qualifier will match the class with an implementation that assigns the

Native thread execution to a specializable run() member. The alternate HwTask qualifier will select an

implementation that assigns the Native thread to the class internal services, as result of computation

offload to the accelerator model. These services mostly include the boundary crossings between the

software and hardware specialized circuitry while exchanging data between the class instance and the

accelerator model, and to connect the accelerator with the Linux OS services.

The Semantics qualifier establishes data exchange semantics between Shared or Restricted models. A

shared model will allow multiple references for the task data while sharing results with other existing Tasks.

The restricted model will enforce a unique instance of data that can only be collected by one Task instance

despite being shared with any definable number of Tasks.

The Profile qualifier will be matched in the HwTask specialized instances of the class Task and establishes

the communication model with the hardware resources. The use of this qualifier affects the critical path

and latency observed at the processing boundary crossings and it is limited to the predefined set. As an

example, the qualifier StandardIO which is the default parameter will bind the class resource handling with

the traditional set of Linux system calls and exchange data by use of the high and low memory regions.

Alternately, the UserIO qualifier will reduce the usage of the system calls and map the hardware resources

into the application address space.

Throughout the application development several crossed configurations can occur. The multitude of qual-

ifiers combines specialized implementations at different layers of functionality. It is fair to say that for

a specific application scenario the correct configuration might not exist. Instead, an optimized solution

that explores the distinct trade-off(s) between different class implementations will be achieved. One that

during the design space exploration is found to be the best solution for the desired performance metrics

within the specificity of the application requirements.

2.3 Application Development

When creating applications, designers usually start with an idea in mind, a solution to a problem, an

identified market need, or a technological vision to improve existing solutions. Generally, at this early

stage of development, there is no reasonable expectation of what the application will be. To maximize

creativity, designers should start by a quick prototype development, to rapidly envision the application and

Chapter 2. Design Methodology 21

what the outcome results need to be, before facing any restrictions imposed by the commitment to the

hardware and software stacks.

When we observe of most today’s common computer applications, we realize they are internet-aware, and

use the internet to exchange data, by using cloud services or any form of private servers. But within the

Internet connectivity, applications are facing a growing need for security, leading developers to rely on

complex cryptographic algorithms, that target specific requirements not suited for implementation in the

most generic embedded devices.

Traditionally, designers use standard encryption algorithms to cope with security needs and a common

example is the use of the Advanced Encryption Standard (AES). The AES is a well-established algorithm

that operates on blocks of 128-bit plain data, and is available in three different cipher lengths: 128, 192

and 256-bit [25]. It is classified as symmetric-key algorithm which means that the same cipher is used for

both operations, encrypting and decrypting the source data. Each of the 128-bit blocks represents a 4x4

bytes matrix, also designated by state Si, where i is the consecutive block number in {1, ..., n} blocks

of data. Figure 2.3 helps to illustrate conceptual implementation of the AES-128 algorithm.

P
la

in
 d

at
a

C
ip

h
e

re
d

 d
at

a

C
ip

h
e

r
ke

y

Round keys 1 - 9

Round key 10

Final Round

Shift rows
Substitute

bytes

S(i,j)

Add round
key

[i,j]

Round 9

Shift rows Mix columns

.C(x)

Substitute
bytes

S(i,j)

Add round
key

[i,j]

Initial Add

Add round
key

Rijndael key schedule

Figure 2.3: Overview of the AES-128-bit algorithm.

Using the Rijndael key schedule, the input cypher will be expanded into ten additional ciphers and used

in the successive rounds that establish the encryption/decryption algorithm. As so, the encryption of a

state Si can be summarized to one initial adding operation, using the input cipher, and ten subsequent

rounds using one of ten expanded ciphers. The rounds one to nine are identical and include four stages,

namely: substituting bytes; shifting rows; mixing columns; and adding the round cipher. The state Si

encryption concludes with the tenth round, similar to the previous nine but skipping the mix columns

stage. Implementation details about the AES-128 can be consulted in the Appendix E.

22 Chapter 2. Design Methodology

We will consider the example of an application that needs to upload files through the internet and selects

the 128-bit AES algorithm to enforce security. The example will target a generic embedded device here

referenced as Machine 1.

The simplified architecture for the Machine 1 application can be decomposed into three processing

threads: a ’File reader’, that polls on the OS file system for files, reads the file contents and fragments

data into adequate size before submitting to the application internal structures; an ’Encryptor’ thread that

implements the AES-128 algorithm, collects the fragmented plain data and converts them into ciphered

data; and an ’Uploader’ thread that regroups the ciphered fragments and synchronizes the file transfers

through the internet. Figure 2.4 depicts this organization.

Publish(data)

Publish(data)

Plaint data

16 Bytes

16 Bytes

MailBox MailBox

16 Bytes

16 Bytes

16 Bytes16 Bytes

Linux Userspace

16 Bytes

16 Bytes

1024 Bytes

AES 128-Bit

Network

Data Distribution System (DDS)

Thread: Uploader
Thread: Encryptor

Thread:File reader

read(buffer,1024)

Filesystem

fragmentation

regrouping

write(bufffer,1024)

Cipher key

Subscribe(FileReader) Subscribe(Encryptor)

10110

111001

[4x4][4x4]

[4x4][4x4]

16 Bytes

16 Bytes

16 Bytes

16 Bytes

16 Bytes

16 Bytes

ciphered
data

State_t

State_t

Figure 2.4: Machine 1 application - task graphical representation.

This example gravitates near the data-centric class of applications, where data is the main concern to the

system and they tend to view data manipulation as the most important part of the work. Consequently,

threads will need an efficient way to exchange data and for that we will use a Data Distribution System

(DDS) provided as part of the HAL-ASOS framework. The DDS will link threads through an exchange model

based on Publish-Subscribe, where the ’FileReader’ will create a topic that is subscribed by the ’Encryptor’

thread and consequently, this thread creates another topic that is subscribed by the ’Uploader’ thread.

The DDS implementation follows a low-memory footprint model, where the multiple attempts on creating

the same topic will result on copied references of the same object. If a multitude of subscribers exist in

Chapter 2. Design Methodology 23

one topic, they will receive memory references of the same ’const’ data. The memory resources involved

are allocated by any of the topic publishers, and later released when a subscriber attempts to destroy the

last memory reference.

2.4 Software refactoring

For the Machine 1 application, the thread ’File reader’ will create a topic named FileReader using the DDS

services. Continuing with processing, all the thread results will be published in that topic. The thread

’Encryptor’ will subscribe the FileReader topic and will periodically receive any published data to that topic.

Similarly, the ’Encryptor’ thread will create a topic named Encrypted that is subscribed by the ’Uploader’

thread. The ’create topic’ and ’subscribe topic’ operations consider a numeric tag for identification that is

created from hashing the TopicConfig_t members. The application code for the Machine 1 is presented

in Figure 2.5.

#include "hal_asos.h" 9

#define HLEN (sizeof(state_t))//16 10

...

const hal_asos::TaskConfig_t TFRead = { "FileReader", //TaskTag 12

{ "PlainData",HLEN,1,1 },//Topic 13

{ "",0 }// No Subscription 14

}; 15

const hal_asos::TaskConfig_t TEncrypt = { "Encryptor", 16

{ "CipheredData", HLEN,1,1 }, 17

{ "PlainData",HLEN,1,1 } 18

}; 19

const hal_asos::TaskConfig_t TUpload = { "Uploader", 20

{ "",0 }, 21

{ "CipheredData",HLEN,1,1 } 22

}; 23

...

void hal_asos_demo::test_aes128_file_sw_threads(void) { 205

using namespace hal_asos; 206

 207

Task<SwTask, TFRead> T0; 208

Task<SwTask, TEncrypt>T1; 209

Task<SwTask, TUpload>T2; 210

 211

T0.start(); 212

T1.start(); 213

T2.start(); 214

T0.join(); 215

T1.join(); 216

T2.join(); 217

} 218

Figure 2.5: The Machine 1 application - SW task version source code.

Three TaskConfig_t structures were specified for each of the Tasks (lines 12 to 23). The ’File Reader’

and the ’Encryptor’ tasks will create the ’PlainData’ and ’CypheredData’ topics respectively, and use the

same topic length specified by the ’HLEN’ macro. Each class instance will link with the TaskConfig_t

24 Chapter 2. Design Methodology

structure by template parameter (lines 208 to 210). Using the SwTask qualifier, all class instances were

parametrized for software resource as result of initial development iteration. Not all qualifiers and con-

figuration parameters were specified and default values predefined by the framework will be used. The

task start() member will assign the native OS thread execution to the class specialized run() member.

The execution will join() threads until completion of all operations and terminates releasing the allocated

resources.

2.4.1 The File reader task

The algorithm for the ’File reader’ task consists of: reading blocks of plain data from the input file; fragment

these into adequate size of 128-bit (16 bytes); and publish the resulting fragments in the DDS topic (line

59 to 66). The specialized run() member for the class ’File reader’ can be consulted in Figure 2.6. For

simplicity, some lines were omitted and the full listing can be consulted on the Attached Listing:C.2.

#define HLEN (sizeof(state_t)) 10

#define BLOCK_LEN 1024 11

...

template <> 26

void hal_asos::Task <hal_asos::SwTask, TFRead>::run(void) { 27

std::ifstream input_file; 28

std::shared_ptr<char[HLEN]> p_buff; 29

char* p_local_buff; 30

int InputFileSize, read_len, i, count = 0; 31

...

input_file.open(target_file.c_str(),ios::in|ifstream::binary); 33

...

input_file.read(p_local_buff+sizeof(int),(BLOCK_LEN-sizeof(int))); 53

...

while (this->StatusRunning && Read_len > 0) { 56

for (i = 0; i < Read_len; i += HLEN) { 57

p_buff = std::shared_ptr<char[HLEN]>(new char[HLEN]); 58

copy_len = mmin(HLEN, (int)(Read_len - i)); 59

std::copy_n(p_local_buff + i, copy_len, p_buff.get()); 60

this->p_Topic->publish(p_buff); 61

count++; 62

} 63

input_file.read(p_local_buff, BLOCK_LEN); 64

Read_len = (long)input_file.gcount(); 65

} 66

input_file.close(); 67

this->p_Topic->close_topic(); 68

LOG_MSG << this->TaskTag << "finished...(" << count << ")\n"; 69

delete[] p_local_buff; 70

} 71

Figure 2.6: File reader task - simplified run() member.

An input file containing one million digits of pi (“3.”+1.000.000 digits) was selected as source of data and

is open for read in line 33. Once in the “main” loop, the thread will read successive blocks of 1024 bytes

from the source file, fragment each block into smaller 16-byte blocks and publish the resulting data in

Chapter 2. Design Methodology 25

the DDS topic (lines 58 to 61). After reading all source file content, the thread will exit the main loop by

failing the condition at line 56 (Read_len > 0) and close the file and the DDS topic (lines 67,68). A closed

topic will allow the subscribers to consume the remaining publications. The thread concludes issuing a

log message that prints the number of blocks processed and releases all the allocated resources (line 67

to 70).

2.4.2 The Encryptor task

The simplified code for the ’Encryptor’ task run() member is presented in Figure 2.7. Similarly, the full

listing can be consulted attached in Listing C.1.

template <> 81

void hal_asos::Task <hal_asos::SwTask, TEncrypt>::run(void) { 82

std::shared_ptr<dds::Publication> pLocal; 83

std::shared_ptr<char[HLEN]> p_cyphered; 84

std::shared_ptr<const char[]> p_plain; 85

...

set_cypher_key(key); 90

key_expansion(); 91

 92

while (this->StatusRunning && ret > 0) { 93

ret = this->p_Subscription->take_publication(pLocal); 94

if (ret) { 95

...

p_current_state = (state_t*)p_cyphered.get(); 101

add_round_key(0); 102

for (round = 1; round < NROUNDS; ++round){ 103

subst_bytes(); 104

shift_rows(); 105

mix_columns(); 106

add_round_key(round); 107

} 108

subst_bytes(); 109

shift_rows(); 110

add_round_key(NROUNDS); 111

ret = this->p_Topic->publish(p_cyphered); 112

} 113

} 114

...

this->p_Topic->close_topic(); 116

this->p_Subscription->terminate_subscription(); 117

LOG_MSG << this->TaskTag << "finished.(" << pcount << ")\n"; 118

}119

Figure 2.7: Encryptor task - simplified run() member.

The input cipher is set and the key expansion schedule is executed (lines 90 and 91). Once in the main

loop, the thread will collect 4x4 bytes (Si) of plain data from the DDS subscription (line 94). The ten

rounds that complete the AES-128 algorithm will encipher the received plain data, and the iteration of

Si concludes with publishing the resulting data (ciphered data) in the DDS topic (lines 102 to 112). A

negative return or a null ’pLocal’ pointer in the take_publication call (line 94), will force the execution to

26 Chapter 2. Design Methodology

break the main loop (line 93). The thread concludes closing the topic, terminating the subscription and

issuing a log message that prints the number of blocks processed (lines 116 to 118).

2.4.3 The Uploader task

The simplified code for the specialized run() member of the task ’Uploader’ is presented in Figure 2.8.

The task uses the name space networking from HAL-ASOS framework that provides eased access to the

OS network subsystem. An instance of CSocket<Client> will be used to establish a connection with a

network server for uploading files. A successful connection will allow the thread to proceed into the main

loop (lines 157-171). The main loop consists of receiving ciphered fragments from the DDS subscription

template <> 134

void hal_asos::Task <hal_asos::SwTask, TUpload>::run(void) { 135

using namespace hal_asos::networking; 136

int ret = 1, count = 0, index=0; 137

char* p_local_buff; 138

std::shared_ptr<const char[]> p_buff; 139

std::shared_ptr<dds::Publication> pLocal; 140

CSocket<Client> Soc; 141

...

this->StatusRunning = Soc.open_connection(); 157

while (this->StatusRunning && ret > 0) { 158

while (index < BLOCK_LEN && ret > 0) { 159

ret = this->p_Subscription->take_publication(pLocal); 160

if (ret) { 161

p_buff = pLocal->get_reference(); 162

std::copy_n(p_buff.get(),pLocal->get_len(), p_local_buff + index); 163

index += pLocal->get_len(); 164

count++; 165

} 166

} 167

if (index > 0) { 168

ret = Soc.safe_write(p_local_buff, index); 169

index = 0; 170

} 171

} 172

Soc.close_connection(); 173

this->p_Subscription->close_subscription(); 174

delete[] p_local_buff; 175

LOG_MSG<<this->TaskTag<<"finished...("<<count<<")\n"; 176

}177

Figure 2.8: Uploader task - simplified ’run()’ member (full listing:C.3)

and regrouping data into a network-adequate block size by using local_buffer (lines 159-167). Once

local_buffer is complete the results are transferred over the network (line 169). A negative return on

take_publication or a network communication error, will break the main loop by failing the condition ’ret

> 0’ on line 157. The thread concludes closing the network connection, terminating the subscription and

issuing a log message that prints the output results (lines 173-176).

Chapter 2. Design Methodology 27

2.4.4 Functional validation

The application for Machine 1 was selected for compilation at Host environment using Linux OS. Similarly,

a second machine, Machine 2, was configured with a server application to provide a connection and

receive the encrypted data. Details of the Machine 2 application are out of discussion in this thesis but.

Machine 1, using the network subsystem with IP 192.168.1.11, connects with the Server application

on Machine 2 for uploading the encrypted file 1M_digits_of_pi.txt. The output results of this test are

presented in Figure 2.9. The log messages from the three Tasks, in Figure 2.9, indicate that 62,501

Figure 2.9: Machine 1 - SW-only application output for one million digits.

blocks were processed and resulted in a file length of 1,000,016 bytes. The input file 1M_digits_of_pi.txt

contains 1,000,002 bytes and the output exceeds this value in 14 bytes, as result of including a minimal

header that indicates the file length and some padding to align the number of fragments with the state

matrix length.

At Machine 2, using IP 192.168.1.200, a connection was accepted and the file was received successfully.

The application log from this test can be consulted in Figure 2.10. The received data resulted in an

Figure 2.10: Machine 2 - Server application Output.

encrypted file containing 1,000,016 bytes that was stored in the encrypted_file.dat file. The Inverse

28 Chapter 2. Design Methodology

form of the AES-128 algorithm was then executed and after removing the transfer header, the remaining

1,000,002 bytes were stored in the plain.txt file. A portion of the plain file contents can be seen in

Figure 2.11. The pi number sequence is represented in a readable form, and that demonstrates the

functionality of the system.

Figure 2.11: Machine 2 - contents of plain data file after decryption.

The contents of the encrypted_file.dat are presented in Figure 2.12, and show no similarities to the original

data, thus ensuring a confidentiality level that can be used when sending sensitive data over the Internet.

Figure 2.12: Machine 2 - contents of encrypted file received.

The purpose of this application, the Machine 1, was to introduce some of the HAL-ASOS functionalities,

but also to establish a common ground in development between the traditional software design tech-

niques and the hardware accelerated application development, while using the HAL-ASOS framework. No

hardware acceleration concepts were yet used, as they need to be applied from design decisions that

ensure a profitable resource allocation and satisfy the overall design metrics. Also, no commitment to the

underlying hardware was established, as this decision will be made later in the design flow, thus avoid-

ing any constraints to initial development. The example also sets a common ground to well established

applications that need to be refactored for performance and offload computation to specialized hardware.

The next step in the design flow is the profiling of the application, and this stage will help to clarify how

the application needs are translated into the system resources.

Chapter 2. Design Methodology 29

2.5 Application profiling

As soon as the prototype application reaches an acceptable level of functionality, it is time to analyze how

well the application performs in the host system and try to understand the program intrinsic behavior. A

profiling tool can be used to identify all kind of bottlenecks in the system. Generically, we will be interested

in the performance profile, to identify hotspots in the program where the system spends significant amount

CPU time. Considering that the framework was specifically designed for Linux embedded systems, we

recommend using the OProfile tool for this stage in the design flow. Since the profiling will be performed

in the host development environment other similar tools can also be used.

2.5.1 Profile tools

The OProfile tool is a system profiler for Linux and it is available since kernel version 2.4. This tool will target

all parts in a Linux system, from an application, a set of processes or threads, kernel code or interrupt

handlers, a subset of system active processors, or ultimately the entire system. Conceptually, this tool

is classified as a statistics-based profiler since it operates by collecting strategic data at periodic time

intervals. Today’s CPU architectures provide hardware performance counters that record the occurrence

of specific events without the need for additional code instructions. A timing interruption triggers data

collection and signals the profiling application about the existing new data. Post-profiling tools will convert

this data into a human readable file that contains the desired profile results. Detailed information about

OProfile features and events are specific to each CPU architecture and can be consulted at [26].

A similar profiling tool is gprof, a superset of the Linux prof command, included in the GCC tools. The tool

results also focus on were the CPU spent time inside the application and includes the invocation count

to each of the application functions. The gprof tool demonstrated higher level of impact in the execution

since it links pre- and post-call routines in the application binary. Also, experiences realized with this tool

in the HAL-ASOS framework, revealed less stability across many profile trials that due to its strong software

dependent nature. Detailed information about this tool can be found at [27].

2.5.2 Profiling Results

The profile results of the Machine 1 application were obtained using OProfile. The choice of the OProfile

was mainly based on the acceptance of the tool in the Linux community, its strong hardware dependent

30 Chapter 2. Design Methodology

nature, the tool stability across many profiling iterations and high number of supported architectures.

For the Machine 1 application we will target the CPU cycle count event that automatically decrements a

hardware counter every time the CPU completes an execution cycle. The tool will register the program

address(es) every time the counter value reaches zero, and to achieve effective results, a considerable

number of executions was used. Listing 2.1 shows a bash script used to assist in the profiling of Machine

1 application.

Listing 2.1: Profile script used on Machine 1 application.

#!/bin/bash 1

if [$# -eq 3]; then 2

 3

sudo rm -rf oprofile_data/ 4

 echo --- 5

 echo "Profiling $1 for $2 iteration(s)" 6

 echo --- 7

 for i in $(seq 1 $2) 8

 do 9

 echo --- 10

 echo interation $i 11

 echo --- 12

 sudo operf --append --event CPU_CLK_UNHALTED:$3:0:0:1 ./$1 13

 echo --- 14

 done 15

 16

 opreport --accumulated\ 17

--exclude-dependent\

--exclude-symbols=_GLOBAL_OFFSET_TABLE_\

--symbols > iterationGlobal.perf

else 18

 echo "Wrong command <execuable> <n_iter> <sample_rate>" 19

fi 20

The command ’operf’ is used to launch the application binary with the OProfile predetermined settings (line

13). The argument CPU_CLK_UNHALTED indicates the desired hardware event and the desired sample

rate was set to 6.000 CPU cycles. The−append switch will append the profile data across several profile

sessions and the script launched the application for 100 times (lines 7 to 14). The opreport, in line 15,

outputs the results for the profile session with arguments that are used to establish the accumulated

results across the report entry lines and confine them to the application binary.

Figure 2.13 shows a simplified version of the profile results for the Machine 1 application. Analyzing

these results, one can conclude that the four AES-128 round used functions (lines 4 to 11) are respon-

sible for nearly 41% of CPU time spent in the application code. The percentage of line 13 shows that

Task<Encryptor> spends approximately 1% of the CPU time executing local code or out of any function

calls, and that between 1% and 2% of the assigned application time is being spent inside the functions

Chapter 2. Design Methodology 31

that relate to the DDS subsystem (lines 18-71). The workloads are evenly distributed across the AES-128

algorithm as no hotspots consume excessively amounts of CPU time. An estimate of 41% can be faced as

potential for performance contribution in the application, and it becomes clear which are the candidates

to the computational offload.

CPU: Intel Haswell microarchitecture, speed 3500 MHz (estimated) 1

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) 2

with a unit mask of 0x00 (No unit mask) count 50000 3

samples cum. symbol name 4

15.86% 15.86% mix_columns() 5

13.75% 29.61% add_round_key(unsigned char) 6

11.74% 41.35% subst_bytes() 7

...

1.44% 52.54% shift_rows()11

...

0.76% 54.43% hal_asos::Task<(hal_asos::TaskType_t)0,TEncryptor>::run() 13

...

0.61% 57.67% Topic<(hal_asos::dds::Semantic)1,TFReader>::publish<16>() 18

...

0.50% 61.00% hal_asos::dds::Publication::get_len() 24

...

0.44% 63.30% Topic<(hal_asos::dds::Semantic)1,TEncryptor>::publish<16>() 29

...

0.31% 71.20% Subscription<TEncryptor>::take_publication() 50

...

0.29% 72.10% Subscription<TUploader>::put_publication() 71

...

0.26% 75.62% hal_asos::Task<(hal_asos::TaskType_t)0,TUploader>::run() 76

...

0.23% 79.51% hal_asos::Task<(hal_asos::TaskType_t)0,TFReader>::run() 82

Figure 2.13: Profile results of the Machine 1 application.

2.5.3 Conclusions

The top listed functions in the profile report, generally include the candidates to computational offloading

and the decision needs to be validated according to the application requirements. Since requirements

are at the root of the application design, they altogether will influence these candidate selections. Such

an example could be security-related requirements. When consider that ’static’ hardware is not easily

patched and forced to abnormal behavior, or that cipher keys are not so easy to access when they are

encapsulated by custom and closed hardware, the requirement is favorable to offloading. But the power-

aware requirements might conflict with this decision, since more functional units might demand for more

energy consumption, depending on the implemented HW behavior when compared with its software coun-

terpart. This can represent a need for design power estimation, or the purposed design being evaluated or

re-designed to meet this requirement. When a multitude of choices play in favor or against each other, is

32 Chapter 2. Design Methodology

fair to say that the right choice might not exist. One can only achieve the optimized solution that attempts

on consolidating the overall of the design metrics.

Considering this development stage, and the purpose of these overview, we will proceed with the offload

of the ’Encryptor’ task. Since the development materializes into a deeming cycle, other solutions might

become attractive in-between iterations.

2.6 Accelerator model

The HAL-ASOS Accelerator model can be decomposed into a user defined HW-Task, a parametrizable HW-

Kernel with three differentiated transfer channels that aim to explore distinct bus technology dependent-

interfaces. A simplified representation of this model can be seen in Figure 2.14 and includes a minimal

Host system representation. To avoid miss confusion with the term host, we clarify that the host devel-

opment system is the system hosting the toolchain used to compile the several implementation levels of

this application, while the Host system is the target platform that hosts the accelerator model.

MPMC Sy
st

em
 B

u
s

HAL-ASOS AcceleratorInterrupt line

Slave
Interface

BUS
Arbiter

Control
channel

Data
channel

System
channel

Slave
Interface

Master
Interface

HW-Task

HW-KernelCore0

Host CPU

Figure 2.14: HAL-ASOS Accelerator model integrated into Host platform.

The HW-Task plays the central role in the design and uses the HW-Kernel to interact with the host. Optional

implementations allow a HW-Task tightly integrated in the accelerator model or a loosely design HW-Task,

as an independent component. The transfer channels are platform dependent and establish differentiated

data exchange with the Host system. These include: a fast, word-rated and low-bandwidth channel, used

for control-oriented transfers; an optimized speed, byte-rated and high-bandwidth channel, used for large

and data-oriented transfers; and an optimized speed, byte-rated channel, used by HW-Task to access

the system memory. Platform-classified model implementations will include PLB or AXI bus interfaces.

Chapter 2. Design Methodology 33

The Accelerator is a native 32-bit big-endian machine, but 64-bit word can be applied system-wide. An

interrupt line is mandatory and allow the accelerator to synchronize with the Host OS.

2.6.1 Hardware Kernel model

The Hardware Kernel model translates the Host system to the HW-Task and provides integration at hard-

ware and software levels. The model includes a Kernel Core implementing the Control unit with a system-

level datapath, and a collection of functional units that implement the service-level Datapath. Figure 2.15

presents a simplified model of the HW-Kernel. The Control unit uses single address microcode design to

encode the set of HW system calls. The system-level datapath implements the multiplexing and demulti-

plexing of the system call parameters into the service-level datapath. The M00_Kernel and S00_Task are

the master and slave interfaces of system call bus, used to connect with the interfaces in the HW-Task.

M00_Kernel S00_Task

S00_Control M00_System

Kernel Core

In
p

u
ts…

.

O
u

tp
u

ts …
.

HW-MutexHW-Mutex Interrupt

True dual Port
RAM

WE

LRAMLMUTEX SYSMUTEX LINTC

Control Status

MQ_OUT

HW-FIFO

MQ_IN DOUT

HW-FIFO

DIN

HW Syscalls
(BRAM)

S01_Data

System CallSystem Response

Ta
sk

 c
o

n
tr

o
l d

at
a

in
p

u
t

Ta
sk

 c
o

n
tr

o
l d

at
a

o
u

tp
u

t

Sy
st

em
 m

em
o

ry

LOCAL-BUS

Time Event.Authenticator

HW-FIFO HW-FIFO

co
n

tr
o

l d
at

a
in

p
u

t

co
n

tr
o

l d
at

a
o

u
tp

u
t

application data
register area HW-Kernel

Figure 2.15: Hardware Kernel simplified model.

The Kernel Core is responsible for the time management and provides waiting event coupled with time-

out functionalities and a parametrizable task sleep. The Control and Status registers will allow the host

system to interact with the HW-Kernel. To preserve the HW-Kernel status, any control operation issued by

the CPU cores, is for-warded via Authenticator unit that validates permissions before authorizing a write

operation. As consequence of the microprogramming technology used for the HW system calls, the Kernel

34 Chapter 2. Design Methodology

Core implementation results in a static unit that is independent of the HW-Task implementation and can

be configured or changed by applying microcode updates.

A service-level datapath includes (1) a dual-port and bi-directional message-queue used for messaging

control information within the host system services, (2) a dual-port bi-directional data-FIFO available for

HW-Task generic use (3) a Local Interrupt Controller (LINTC) that allows synchronization with the Linux

OS, (4) a true dual-port generic purpose Local RAM (LRAM) for data exchange and temporary storage, and

(5) two dual channel HW-Mutexes that implement mutual exclusion with the accelerator model. The latter

are directly coupled with the LRAM and a system memory region allocated at boot-time. At kernel-side,

dedicated interfaces are used to manage each of the HW-FIFO, while the remainder of the functional units

are accessed through custom Local-Bus. The M00_System interface is used to access a kernel-specific

region in the host system memory.

S00_Control and S01_Data offer the control- and data-oriented transfer interfaces for host system ac-

cesses to the HW-Kernel functional units. The S01_Data implements a byte-oriented bidirectional inter-

face used exclusively to access the LRAM. The reminder of the functional units, link to the S00_Control

in a bidirectional register type interface. The complete set of units that integrate the HW-Kernel model are

also parametrizable and are made available to the host system through the Linux integration model.

2.6.2 Hardware Task model

The Hardware Task model provided by the HAL-ASOS accelerator follows traditional architecture modelling

techniques. The design can be partitioned in a Control Unit and a collection of user-defined functional

units that compose the Datapath. Figure 2.16 presents a simplified model of the HW-Task. The Control

synchronizes the task internal implementation while the Datapath implements the task algorithm. Using

the HAL-ASOS VHDL packages, the Control can also synchronize externally with the other tasks in the

system. Mainly, these packages provide a set of services that are divided into user- and kernel-levels. The

user-level implementation, considers the task-related functionality and only uses local resources, while

the kernel-level considers a more service-related implementation, where it is allowed to talk to the local

hardware or system resources, including the Linux OS.

Both the user and kernel services are manly implemented using VHDL procedures and the HW-Task will

link the datapath to each procedure implementation. A VHDL procedure, denotes a subprogram descrip-

tion that is implemented in zero simulation time. It differs from the VHDL functions, in the sense that, it

Chapter 2. Design Methodology 35

HW Task
kernel-level packages

M01_TaskS01_Kernel

user-level packages

ALU

start s1

done

Datapath

system call entrysystem call return

parametersreturn parm.ret.

d
at

a
in

d
at

a
o

u
t

Control Unit

Start

Error Done

S1 S2

callreturnret. syscall block

kernel_response kernel_call

Extended Features

Figure 2.16: Hardware Task simplified model.

can receive parameters as input and output, and using signal driver capabilities, manipulate values that

exist outside the subprogram. To accommodate the complexity of each procedure, the kernel provides

generic FSMs for each of the RTL layers being concurrently executed. In doing so, the task description

scales, implementing procedures from the user or kernel packages. At user package, each procedure

is implemented using functionality-based procedures from the kernel package. While executing, the ker-

nel_call interface will be updated by the procedure RTL and the kernel will execute HW system calls

accordingly.

Generically, once the HW-Task control-path implements a procedure call, the Control unit is blocked and

the synchronization is transferred to the Kernel Core control. The procedure will execute in a predetermined

number of clocks that depends on each distinct implementation and value of the passed parameters.

These parameters will be copied or forwarded to the procedure circuitry accordingly, and at completion,

an exit path will ultimately enable back the task Control Unit. The kernel package uses the kernel_call

and kernel_response registers, that link to the HW-Kernel system call infrastructure using M00_Task

and S00_Kernel interfaces. A template for the HW-Task design is provided, and it includes a minimal

control FSM with blocking functionality. The designer will then extend the FSM states to accommodate

the HW-Task algorithm description. The implementation details of the HW-Task, the RTL packages or the

HW-Kernel will be best discussed in Chapter 3.

36 Chapter 2. Design Methodology

2.6.3 Linux Integration

The HAL-ASOS Accelerator model integrates with the target platform OS at user- and kernel-levels. Due

to the myriad of functional units in the model, a proper OS support requires a collection of device-drivers

that efficiently export each functionality into the Linux user-space. Such a collection of drivers is best

organized through a customized File System(FS). Figure 2.17 presents the HAL-ASOS FS structure.

\hal-asos

Accelerator_0 Accelerator_1 hal_asos_resources

interrupts kernel

performance
counters

local-ram

message-queue-size

message-queue-space

lram-mutex

sysram

sysram-mutex

message-queue

data-fifo-space

data-fifo-size

data-fifo

lintc

local_interrupt_0

local_interrupt_1

local_interrupt_2

local_interrupt_7

user_interrupt_0

user_interrupt_22

local-kernel

transfers-shared-mem

transfers-zero-copy

mcode.bin

...

…

101101
110011
000010

Figure 2.17: HAL-ASOS file system structure on Linux.

The HAL-ASOS file system mounts during Linux start-up and it can be found at the root of the Linux file

system in the hal-asos folder. Any existing accelerators will be extracted from the device tree information

that results from the deployment phase, and mapped into individual Accelerator_x folders. The folder

name results from a configurable name tag in the accelerator listing, and a sequence number that counts

the instances using the same tag. Inside the accelerator folder, the structure is organized in a kernel folder,

an interrupt folder and a sub-set of virtual files that map the remainder of functional units in the Accelerator

model. These include: the LRAM and the local-mutex (LMUTEX); the system memory region (i.e., sysram)

Chapter 2. Design Methodology 37

and associated hardware mutex (sysram-mutex); the HW-Kernel message-queue with read-only size and

space files; and similarly, the data-fifo with the size and space files.

The interrupt folder contains the virtual files that provide the synchronization between the software threads

in the system and the accelerator. The lintc file represents the local interrupt controller and it uses seven

native interrupts that are mapped to the local_* files. Since a configurable number of user definable

interrupts is also available, up until twenty-four user_* files can be present in this directory.

Some of the FS functionality demand proper registration by using the local-kernel file in the kernel directory.

The registration is based on exclusive ownership model and the local-kernel initializes a private structure

containing a 32-bit key automatically hashed. The transfer_* files map distinct profile interfaces between

the software framework and the accelerator model, and the mcode.bin file is used to update the Kernel

Coremicroprogram. These features will require validation using the previously generated key or otherwise

will be denied.

A performance counters folder will be found if the accelerator model is active for performance metrics.

Generally, these follow a hardware event counter model, coupled with synchronous clock timer model,

that register the number of events and associated latency across the HW-Kernel functionality. One file

for each active performance counter will be found in that directory, and reading them or using a ’cat’

command from the Linux bash, will output the current performance results in a conveniently formatted

text message. The Performance functionality will be best discussed in Chapters 4 and 5.

At the application-level, to efficiently handle the exported model, the software framework provides the class

Proxy that maps the FS functionality into a resource-oriented set of operations. A Proxy member will be

found in all class Task instances that were specialized for HwTask. The transfer profiles are differentiated

using distinct Proxy implementations that explore the different interfaces provided by the FS.

The HAL-ASOS file system is a Linux functionality provided by the framework and exists only in the target

generated platform binaries, mostly because of its hardware and device tree dependencies. For that

reason, it will only be available on the System implementation phase, or alternately, when applying the

Full simulation model to the platform binaries, in the deployment phase. When compiling the application

for the development host, an emulated version of the file system is implemented by the Emulator model.

38 Chapter 2. Design Methodology

2.6.4 Emulator Model

The Emulator model is a framework feature that assists in mapping the pre-selected candidates to compu-

tational offloading into the HW-Task structure. By using a software development perspective, it promotes

a more flexible environment that exposes the task algorithm requirements and consolidates HW-Task in-

teroperability in the application. This stage establishes a design iteration that aims to create a control

algorithm that fits the application requirements and it is close to the RTL specification.

The Emulator Model is composed by a set of function-oriented entities that can be divided in two imple-

mentation layers: (1) the HW emulation layer, that includes the Accelerator described above; and (2)

the software layer that emulates the Linux integration in the HAL-ASOS file system. This model follows a

design approach that took the effort in describing the implementation details and available interfaces on

each functional unit, and can ultimately be considered as a software description of the HW counterpart.

The Emulator model is a C/C++ functionality implemented by the ’hal_asos::emulator’ namespace, and

considers a unified implementation with purposed programming model. Figure 2.18 shows a simplified

UML class diagram for the first layer. In that figure, it can be seen that the AcceleratorModel class inte-

grates the HwTaskModel class and the HwKernelModel class, and the three altogether form a template

model qualified by the accelerator configuration. For simplicity, the following section will refer the Emulator

model entities by the name of their representative hardware counterparts.

The user packages are private members of the class HW-Task and a similar implementation can be found

in the HW-Kernel, with respect to the kernel packages. A C++ Friend definition will allow the HW-Task

to access the private parts of the HW-Kernel and talk directly with the kernel packages. The HW-Task

plays the central role in the emulator as it stimulates the model using its Native thread member. Among

other internal code, the thread loops using the run_iteration member, that considers the processing in

an equivalent clock cycle of the HW-Task. The successive calling of this member will iteratively progress

the task algorithm code. The designer will provide a specialized run_iteration member that contains the

task algorithm implementation, and since it is using the same configuration as template qualifier, it will

be linked to the class unique code.

A call to any of the user package members will ultimately result in a kernel HW system call, and the

execution proceeds by copying the parameters to the member KernellCall that binds the two classes.

When executing the HW-Kernel member execute_sys_call, it will transfer execution to the kernel model

and the system call will be implemented. Any data exchange or control updates in the kernel set of

Chapter 2. Design Methodology 39

AcceleratorModel<Conf>
->PlatformDevice

-LocalKernel:HwKernelModel
-Task: HwTaskModel
...

Platformdevice

HwTaskModel
<Conf>

-safe_read_lram(...):int

+device_init(void):int
+device_write_word32(...):int
...

HwKernelModel
<Conf>

AccConfig_t Conf

+execute_sys_call(void): void

-Lintc: HwIntcModel

AccConfig_t Conf

...

-LMutex: HwMutexModel
-LocalRam[]: char

-safe_read_write(...):int

-task_run_iteration(void):void

-Native: thread

...

task_init(void): void

-kmutex_lock(void): void

-klram_read_word(...): void

+p_Syscall: KernelCall*
+SysRet: KernellReturn
...

+Syscall: KernelCall
+p_Sysret: KernellReturn*
...

AccConfig_t Conf

-TaskState: state_t

Figure 2.18: Accelerator Model Emulator - Simplified UML class diagram.

functional units will be performed. At conclusion, the resulting data will be found in the KernelReturn

member and the execution returns to the HW-Task

At the Host system, the Accelerator is accessed via PlatformDevice. This structure encapsulates the model

representation in a common form, and similarly to the Linux device model, interfaces the Accelerator via

read or write set of operations that is used by SW Layer of the Emulator.

2.7 Computational offloading

In this design stage we leverage the computation offload by applying a two-step HW description. We begin

with the specialization of the HW Encryptor task that includes the selected candidates from the profiling

phase. We then apply the Emulator model to ease the HW partitioning and gain perception about the

new task implications, and once completed, we apply the Accelerator model and proceed to the hardware

description stage. At completion, we verify the design by applying the Co-Simulation model and establish

a unified simulation environment, where this new application snapshot will be validated.

In a real design scenario, multiple attempts to map application functionality are most likely to occur, and

can result from metric-driven improvements or control algorithm refinements. But to reduce the design

iteration on this example application, we anticipate two decisions before proceeding into the computation

offload phase. First, using a behavioral modelling style, we will describe the HW-Task and map the

40 Chapter 2. Design Methodology

pre-selected candidates with minimal application refactoring. The task control unit will also be described

following a close to emulator description style. Then, the resulting accelerator will be functionally validated

using the co-simulation model. And finally, to conveniently explore the interaction between the Accelerator

model and Host system, we will execute another design iteration and offload the file and network socket

functionalities into a unified HW-Task design, that assumes the role of a standalone (SA) task in the

application. These two functional units will be confined to specific accelerator implementations that will

proceed in the design flow until the System implementation phase, where they will be evaluated and

compared. To distinguish the HW from the SW counterparts we will be referring these tasks as the HW

Encryptor and HW Encryptor SA.

2.7.1 Hardware specification

When we look at the source code of the Encryptor task in Figure 2.7, we realize that generically, the thread

is polling for data using the DDS subscription and, at arrival of such data, it will be encrypted and published

back to the DDS topic. As soon as the subscription expires, the thread will break the loop and terminate the

execution. To map this outline into the Accelerator model, the best use of resources demands that we use

the Accelerator data channel to exchange data with the DDS subsystem. This exchange is implemented

by a combination of service request, that use the HW system calls in the accelerator and the Linux kernel

system calls, to synchronize the HW-Task with the application functionality. To minimize the resulting

computation overhead on the Host side, we maximize the transfer length involved, thus lowering the

number of requests per-file and consequently lowering the synchronization events at the Linux kernel.

The first design decision will be to properly handle data in blocks of 1024 bytes that will be stored in the

Accelerator’s Local-RAM. To extract individual fragments of 128-bit (16 bytes) of plain data, we will specify

the first loop of the HW-Task and name it encrypt loop. We will call this the inner-loop. Numerous block

transfer requests may be necessary until the file is exhausted, as so, we will use a second loop and call

it exchange loop. Since the file contents might not conform with the block alignment, at every request

iteration we will check how many bytes were effectively transferred, and proceed in the exchange loop with

a new target value. For now, we decide to use a target length counter, and to comply with the task final

message informing the processing results, we will include another counter here referred as total counter.

If we elaborate the set of identified requirements into a block diagram, we obtain the HW Encryptor

datapath. Such diagram can be seen in Figure 2.19 and includes the connection with the Control unit.

Chapter 2. Design Methodology 41

From that figure it can be seen that the input of the data-path is the return data from the HW system

call and that similarly, the output data will be forward via HW system call. The two blue functional blocks

represent the synchronous registry for local storage and we add a comparison unit to signal when the

target and count contents match. The light red blocks represent the combinational units that are kept

steady value using the synchronous registry. The white labelled blocks are mere representation of data

that exists in those registers.

AES128

RUN DONEkey_expand

plain_data

cipher_key

ciphered_data

Target_len

Count_len

C_PLAIN_LEN

+

=

Cipher

Control Unit Kernel CallKernel Response

Datapath

selectselect H
W

 Sys.call

H
W

 Sys.call

1

Total_len

+

Figure 2.19: HW Encryptor Task - Simplified Datapath

The AES-128 functionality can ultimately be accomplished by integrating any existing functional unit and

to serve the purpose of simplicity we will resume the AES description to a top-level functional description.

The conceptual implementation was extracted from the diagram depicted in Figure 2.3, and the data

inputs and output can be observed here matching the signals in this top-level. The control signals of

the AES-128 unit are: the key_expand, to expand the cipher in ten additional keys; and the run signal

that triggers the unit execution. A done signal will inform control that the ciphered data is ready to be

collected at the output. The AES design follows a twelve-clock pipeline design strategy but to simplify the

task specification, this continuous mode of operation will not be explored. Details about HW description

of the AES-128 can be consulted in the Appendix C.

The Control Unit for the HW Encryptor can be implemented using an FSM-based design, integrating eleven

states that sequence the necessary operations, in the true parallel nature of the HW implementation. Such

42 Chapter 2. Design Methodology

design can be consulted in Figure 2.20.

0

#1
trans_from_dds

#0
ready

#2
eval_transfer

#3
safe_lram_read

#4
trigger_aes

#5
wait_event

#6
safe_write_lram

#7
trans_to_dds

#8
write_message

#9
write_std_io

#10
task_exit

aes_done_i/

target_len > 0

Exchange loop Encrypt loop

Figure 2.20: HW Encryptor Task - Simplified Control unit FSM

The state zero is a mandatory state for synchronizing the HW-Task with the application and the Accelerator

enters a sleep state when steady in state zero for more time that a parametrizable time constant. As soon

as Control receives the run signal from the HW-Kernel, the task will issue the first request, demanding a

transfer of 1024 bytes from the DDS subscription. The second state will evaluate the transfer result into a

new target value and proceed to the encrypt loop. Any processing error would result in a negative or null

target value that redirects the next state to the write message, thus concluding prematurely.

The target length is accomplished with the state three to state six sequenced loop while the Control Unit is

using the user package to: synchronously read blocks of 16-bytes (128-bit) of plain data, here referenced

as parametrizable constant C_PLAIN_LEN, and after being submitted to the AES encryption; write the

resulting ciphered data to the same address of the Local-RAM. One must say that the fragmenting and

regrouping performed by the FileReader and the Uploader tasks are by now redundant.

In the state four we trigger the AES execution and move to state five where Control issues a wait event

system call. Similarly, the clock enable will be cleared and the designer needs to tackle this condition

since it needs to keep the AES unit working. The Control unit will reach the seventh state with the counter

value matching the target from the encrypt loop iteration, and it will conclude by issuing a request to

transfer the block of 1024 bytes of ciphered data to the DDS topic, thus restarting the exchange loop.

The state nine is achieved after failing the target value evaluation in s2, and preparing the message in

the standard output format at the Local-RAM on state s8. The Control will issue a request to forward this

Chapter 2. Design Methodology 43

message and concludes in the state ten, issuing a task_exit call from the user package. Beyond this call,

the Control unit will not be available until a software reset is issued using local-kernel file in the HAL-ASOS

file system.

2.7.2 Emulating Hardware Accelerators

When modelling the behavior of the Encryptor using C/C++ languages and applying the Emulator model

provided by the framework, one must take into account that the sequential statements of the C language

will be implemented concurrently if modelling the hardware using HDL. With this idea in mind, care must

be taken to avoid the use of temporary data that results from the current flow of execution. For the Emulator

model, one clock cycle is implemented by the run_iteration call, and one execution of this function will

produce results that can only be used in the next cycle.

To develop an emulated Encryptor task we start by defining the configuration structure where we specify

the accelerator parameterizable resources, namely: the size in number of words of the Local-RAM; the

space in number of words in the control FIFOs; the number of parallel words exchanged between HW-

Kernel, HW-Task and HW-FIFOs; the number of user-defined interrupts; and the accelerator name or task

tag. At the software-side of the application, the Task class needs to be reconfigured by the HwTask qualifier

combined with the Emulator profile, and one accelerator entity needs to be instanced. Figure 2.21 shows

the necessary changes to the application when using the Emulator model. The emulated accelerator is

instanced in line 208 and uses the configuration as template qualifier. We extend the T1 template pack

with the desired profile (line 213) and add one Virtual File System(VFS) instance with the purpose of listing

the available accelerators when executing the application (lines 209-210).

The specialized run_interarion member is presented in Figure 2.22 and is identified by the compiler

using the HwEncrypter configuration as template qualifier. The majority of local variables need to be

static to preserve data between successive calls that resemble the HW clock cycles. To abstract design

from the AES-128 implementation details, we have included this functionality in C++ class (line 43). The

FSM implementation uses a switch case block to re-evaluate the TaskState member at the beginning of

each cycle. Every case entry will conclude by redefining the TaskStateNext value and the task iteration

concludes with the assignment of the TaskState with this new value (not represented).

In state s1 the Control transfers 1024 bytes to the Local-RAM address ’0h’ and stores the return value in

the target length variable. In state s2 this new target determines the next state and, in state s3 the Control

44 Chapter 2. Design Methodology

 AcceleratorConfig_t HwEncrypter = {"HwEncrypter0", //TaskTag 26

 32, //DataFifo Len 27

 8, //Message Queue Len 28

 1, //DataIn Number of simultaneous words 29

 1 //DataOut Number of simultaneous words 30

 };31

...
void hal_asos_demo::test_aes128_file_hw_thread_cypher_3_emulator(void) { 205

 using namespace hal_asos; 206

 207

 emulator::AcceleratorModel<hal_asos::emulator::HwEncrypter> A0; 208

 emulator::VFS& file_system = emulator::VFS::instance(); 209

 file_system.ls(); 210

 211

 Task<SwTask, TFRead> T0; 212

 Task<HwTask, THwEncrypter, profile<proxy::Emulator>> T1; 213

 Task<SwTask, TUpload> T2; 214

 215

 T0.start(); 216

 T1.start(); 217

 T2.start(); 218

 T0.join(); 219

 T1.join(); 220

 T2.join(); 221

}

Figure 2.21: Machine 1: emulated HW Encryptor software changes

begins the encrypt loop implementation. In state s4 the control triggers the AES execution and in s5 the

task issues a wait event system call, that when concluded will allow the state to copy the ciphered data

to the current block variable. This copy operation represents a synchronous register assignment and as

so, such usage should only be considered in the next cycle. The state s6 will conclude the encrypt loop

by storing the current block to the LRAM, updating counters and re-evaluating loop continuity. In s7 the

control closes the exchange loop iteration and a null or negative target length will redirect the next state

to the exit path. At s8 the message is transferred to the LRAM at the address ’80h’ and at s90 the control

issues a request to write the standard output descriptor (stdout). At s99 the Control enters the task exit

call that releases the Native thread from the main loop and the emulator concludes the operation.

Experimental log for this emulator stage can be seen in Figure 2.23. The file_system object prints the

message to inform the user of its service and the lsmember lists the existing accelerator(s). The remaining

four lines are the task conclusion messages, and we can observe the Emulator profile and the HwTask

qualifiers in use, at the HwEncrytor0 task log message.

In this design stage the Encryptor task was mapped into the Accelerator model using the emulator names-

pace. After dealing with some model-related considerations, we have decided to increase the data ex-

change between Task’s software resources and the Accelerator model, and in doing so, the fragmented

and regrouping of the adjacent tasks became redundant. This consideration raised the need to refactor

the SW tasks FileReader and the Uploader but no changes were performed. Instead, we wait for the

Chapter 2. Design Methodology 45

template <> 37

void HwTaskModel<HwEncrypter>::task_run_iteration(void) { 38

 static int count_len = 0, target_len, index=0, total_len = 0; 39

 static block_state_t curr_block; 40

 static char message_file[] = "finished...(%d)\\n"; 41

 static uint16_t text_len = sizeof(message_file) - 1, mlen = text_len + 4; 42

 static Ip_AES128_cypher Encrypter; 43

 switch (this->TaskState){ 44

 case s0: 45

 if (this->pLKernel->isControlRun()) { 46

 Encrypter.p_UserKey = &key; 47

 Encrypter.key_set(); 48

 total_len = 0; 49

 this->TaskStateNext = s1;} break; 50

 case s1: 51

 transfer_data_from_dds_subscrition(0,1024); 52

 target_len = cast_return_to_transfer_len(); 53

 count_len = 0; 54

 index = 0; 55

 TaskStateNext = s2; break; 56

 case s2: 57

 TaskStateNext = s8; 58

 if(target_len > 0) 59

 TaskStateNext = s3; break; 60

 case s3: 61

 safe_read_lram_word32((int*)& curr_block, 4, index); 62

 count_len = count_len + HLEN; 63

 TaskStateNext = s4; break; 64

 case s4: 65

 Encrypter.p_plain = (block_state_t*)&curr_block; 66

 Encrypter.trigger_aes(); 67

 TaskStateNext = s5; break; 68

 case s5: 69

 this->pLKernel->wait_event(Encrypter.Done); 70

 TaskStateNext = s6; break; 71

 case s6: 72

 std::copy_n((char*)Encrypter.p_cyphered, HLEN, (char*)curr_block); 73

 safe_write_lram_word32((int*)& curr_block, 4, index); 74

 index = index + 4; 75

 total_len = total_len + 1; 76

 TaskStateNext = s7; 77

 if(count_len < target_len) 78

 TaskStateNext = s3; 79

 break; 80

 case s7: 81

 transfer_data_to_dds_topic(0,count_len); 82

 TaskStateNext = s1; break; 83

 case s8: 84

 safe_write_lram(message_file, mlen, &total_len,4,128); 85

 count_len = 0; 86

 TaskStateNext = s90; break; 87

 case s90: 88

 write_stdout(text_len,mlen,128); 89

 TaskStateNext = s99; break; 90

 case s99: 91

 this->task_exit(); break; 92

 default: break;}} 93

Figure 2.22: Machine 1: Hardware Task emulator

46 Chapter 2. Design Methodology

Figure 2.23: Machine 1 - HW encryptor using emulator

standalone HW-Task performance results as we believe that it will translate into similar changes and less

computation overhead.

The Machine 1 application was validated using this new configuration and from the functional results,

we can accept the specifications and proceed in design, implementing the HW Encryptor task in the

HAL-ASOS Accelerator model.

2.7.3 Hardware description

To implement the HW Encryptor we start with a template HW-Task provided by the framework that includes

a minimal task implementation with control and datapath units. The Control unit uses an FSM-based

design that evaluates a task state register to encode the implemented states. This FSM design is composed

of concurrent VHDL processes that target synchronous and asynchronous combinational features. The

synchronous processes establish synchronism and the required registers, and allow the task to block

and resume while interacting at kernel level. The combinational design establishes the control path that

Chapter 2. Design Methodology 47

dictates the FSM behavior and through the use of the RTL packages, it will allow the task to interact at the

application level.

The provided FSM model implements a Moore’s machine-based description, where each individual state

determines the set of active control outputs. A closed-loop locks the task next state on the current value,

until an input change determines a new next state. The next valid clock pulse will store this value and

FSM will produce a new set of state dependent control outputs. A clock pulse is considered valid if it

produces a synchronous assignment. A non-valid clock pulse can result from the blocked-task condition

that disables functional units’ clock as result of kernel control interchange. For this reason, the description

of the datapath registers uses asynchronous design to implement the blocking and sleeping functionalities.

To describe the FSM discussed in the specification section we implement the task datapath using a set

of independent synchronous logic that includes the AES-128 component and the previously identified

counters. The task register descriptions follow the name used in the design stage and extends them with

the ’_d’ to denote the input connection, and the ’_q’ to denote the output of the registers. These input

and output connections link with the control path of the FSM, and so, the input register connections are

updated with the control-path outputs and the stored values are then forwarded back to the control-unit

inputs.

Describing hardware using HDL languages is analogous to computer programming, in the sense that we

structure an inherent functional behavior, through common language constructs such as if, then, else

or case, and delegate the details in the functional aspects to specific subprograms. Such description

denotes similarities with the emulator implementation depicted in Figure 2.22. The switch statement

from the C language, translates directly to a case statement of the VHDL, the when entry in the VHDL can

implement The case entries from the software implementation to create a similar structure that represents

the algorithmic level of the HW-Task. Figure 2.24 outlines a simplified VHDL process that translates the

emulator source to the FSM control path used in the HW Encryptor task. The complete listing can be

consulted in the attached Listing C.4.

In that figure, it can be seen the exchange and encrypt loops implemented in states s1 to s7 and s3 to s6

descriptions. The request to exchange data with the DDS is implemented by the procedure call in lines

122 and 151, and the resulting transfer is read from, and written to, the Local-RAM in lines 133 and 143.

The procedure parameter p_current_d in line 133, is sourced to the p_current_q register that connects

with of the AES-128 component using plain_data_i signal. The p_cypher_i parameter in the procedure

48 Chapter 2. Design Methodology

call of line 143, establishes the connection from the AES-128 cyphered output. Details of the AES-128

connections can be consulted in the attached Listing C.5. The wait_signal_event procedure in line 143,

extends the done_i port from the AES-128 to the kernel control and blocks the HW-Task. A high value

in this port will allow the system to return from the kernel system call and the FSM proceeds to the next

state.

--- 94

FSM_CONTROL: process(task_state,....) 95

--- 96

begin 97

...
hal_asos_link_to_kernel(kernel_response,kernel_call); 114

 case task_state is 115

 when s0_ready=> 116

 if s00_kernel_run = '1' then 117

 task_state_next <= s1_transfer_from_dds; 118

 end if; 119

 total_len_d<=0; 120

 when s1_transfer_from_dds=> 121

 transfer_data_from_dds(kernel_call,kernel_response,0, C_BLOCK_LEN); 122

 target_len_d <= cast_return_to_transfer_len(kernel_response); 123

 index_d <= 0; 124

 count_len_d<=0; 125

 task_state_next <= s2_evaluate_transfer; 126

 when s2_evaluate_transfer=> 127

 task_state_next <= s8_write_message; 128

 if(target_len_q >0) then 129

 task_state_next <= s3_read_lram; 130

 end if; 131

 when s3_read_lram=> 132

 safe_read_lram_word32(kernel_call, kernel_response,p_current_d,(C_PLAIN_LEN/4),index_q); 133

 count_len_d <= count_len_q + C_PLAIN_LEN; 134

 task_state_next <= s4_trigger_aes; 135

 when s4_trigger_aes=> 136

 trigger_aes_i<= '1'; 137

 task_state_next<= s5_wait_aes; 138

 when s5_wait_aes=> 139

 wait_signal_event(kernel_call, kernel_response,aes_done_i,Done_d); 140

 task_state_next <= s6_write_lram; 141

 when s6_write_lram=> 142

 safe_write_lram_word32(kernel_call, kernel_response,p_cypher_i,(C_PLAIN_LEN/4),index_q); 143

 index_d <= index_q + (C_PLAIN_LEN/4); 144

 total_len_d <= total_len_q + 1; 145

 task_state_next <= s7_transfer_to_dds; 146

 if(count_len_q < target_len_q) then 147

 task_state_next <= s3_read_lram; 148

 end if; 149

 when s7_transfer_to_dds=> 150

 transfer_data_to_dds(kernel_call, kernel_response,0, count_len_q); 151

 task_state_next<= s1_transfer_from_dds; 152

 when s8_write_message=> 153

 safe_write_lram(kernel_call, kernel_response, fmessage, 154

 std_logic_vector(to_unsigned(total_len_q,32)),0);
 task_state_next <= s90_print_stdio; 155

 when s90_print_stdio=> 156

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 157

 task_state_next <= s99_exit; 158

 when s99_exit=> 159

 task_exit(kernel_call, kernel_response); 160

 task_state_next <=s99_exit; 161

...
end process FSM_CONTROL; 165

--- 166

Figure 2.24: Encryptor - simplified control path.

Chapter 2. Design Methodology 49

At state s6, when the counter register matches the target length register value, the task breaks the encrypt

loop and proceeds in to state s7, where it transfers the encrypted data to the DDS subsystem and restarts

a new exchange iteration. Once back at state s2, a null or negative value in the target_len register will

break the exchange loop, and the FSM proceeds to the state s8, where it transfers the results message to

the Local-RAM. At state s90, the FSM issues a request to write the message in the stdout, and in state s99

the FSM concludes with the task_exit procedure, notifying the software class and putting the accelerator

core in a dead state. Only a hardware reset or a software demanded initialization can revert the FSM back

to state s0, and the HW-Task will be ready for a new iteration.

The HW Encryptor SA can be considered an incremental design iteration that uses the previous task de-

scription. The encrypt and exchange loops will remain in use but the task will exchange data with the input

file, and to the network socket, as opposed to the use of the DDS subsystem. To provide the interaction

with Linux OS services, the framework translates most of the common Linux models to HW descriptors

that maintain the status of each virtual representation in the application scope. Such descriptors are

ifile_q and tsocket_q, which are implemented in the HW-Task synchronous process descriptions in its

datapath, and they are used by the control path while implementing user-related procedures. Figure 2.25

outlines the most relevant changes needed to describe the combinational procedure for the HW Encryptor

SA control.

In lines 124 and 130 the control will implement user package procedures to query for the required objects

and update the local HW descriptors. The file length is read in line 137 and will be used as header for

the encrypted file in line 138. The network socket will open a connection at line 148, that uses the pre-

determined connection settings, and at the exchange loop completion both objects will be closed (lines 189

and 192). The FSM concludes similarly by writing the results message to the Linux stdout and issuing

a task_exit procedure call that will put the accelerator in sleep state. The complete FSM description

including the combinational and synchronous procedure can be consulted in the attached Listing C.6,

C.7 and C.8. For completeness, the datapath description can also be found in the attached Listing C.9.

When we analyze the HW Encryptor SA descriptions listed in this section, and continuing throughout

the related attached figures, it can be noticed that the description style used follows a more hardware-

oriented, or structural description, when compared to the behavioral style used in the emulated Encryptor

task description. This style does not demonstrate the same level of similarity, but it reflects the incremental

description updates that aim to improve the logic extraction feature used by the implementation tools such

50 Chapter 2. Design Methodology

 hal_asos_link_to_kernel(kernel_response,kernel_call); 117

 case task_state is 118

 ...
 when s1_query_file=> 123

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 124

 task_state_next <= s2_query_socket; 125

 when s2_query_socket=> 126

 pooled_socket_query(kernel_call,kernel_response,tsocket_q,tsocket_d); 127

 task_state_next<= s3_open_file; 128

 when s3_open_file=> 129

 pooled_fstream_open(kernel_call,kernel_response,ifile_q,ifile_d); 130

 status_ret_d <= cast_return_to_transaction_ret(kernel_response); 131

 task_state_next <= s4_evaluate_file; 132

 if(status_ret_q < 0)then 133

 task_state_next <= s17_write_string_lram; 134

 end if; 135

 when s4_evaluate_file=> 136

 pooled_fstream_read_len(kernel_call,kernel_response,ifile_q,file_len_d); 137

 p_current_d(0) <= std_logic_vector(to_unsigned(file_len_q,32)); 138

 task_state_next <= s16_close_file; 139

 if(file_len_d >0) then 140

 task_state_next <= s5_set_word_len; 141

 end if; 142

 when s5_set_word_len=> 143

 safe_write_lram_word32(kernel_call, kernel_response, p_current_q,1,0); 144

 inc_index <= '1'; 145

 task_state_next<= s6_open_socket; 146

 when s6_open_socket=> 147

 pooled_socket_open(kernel_call,kernel_response,tsocket_q,tsocket_d); 148

 status_ret_d <= cast_return_to_transaction_ret(kernel_response); 149

 task_state_next <= s7_read_file; 150

 if(status_ret_q < 0)then 151

 task_state_next <= s15_close_socket; 152

 end if 153

...
 when s14_write_socket=> 184

 clr_index<= '1'; 185

 pooled_socket_write_word32(kernel_call, kernel_response, tsocket_q,index_q,0); 186

 task_state_next <= s7_read_file; 187

 when s15_close_socket=> 188

 pooled_socket_close(kernel_call, kernel_response, tsocket_q,tsocket_d); 189

 task_state_next <= s16_close_file; 190

 when s16_close_file=> 191

 pooled_fstream_close(kernel_call, kernel_response, ifile_q,ifile_d); 192

 task_state_next<= s17_write_string_lram; 193

 ...
end process FSM_DPATH; 207

--208

Figure 2.25: Encryptor SA - simplified control path.

as Vivado. Further details that concern the Accelerator model and some of the package provided features

used in this section will be best discussed in Chapter 3 and Chapter 4.

2.7.4 Co-Simulation model

From this point in the design flow, the two HW-Task descriptions that where implemented are ready for

functional validation. An efficient and proper design validation should consider the application as a unified

solution. Since this application will be running on the host development system, and the elaborated

designs will exist solely in the simulation tool, we apply the co-simulation model that links the application

Chapter 2. Design Methodology 51

functionality with the simulation tool. The outcome of this model is a unified simulation environment that

simplifies the need for complex test benches that closely emulate the application by applying the real

application stimulus to the accelerator model.

At the software side, the framework will use the CoSimulation profile that specializes the task’s Proxy

member and implements the conceptual resource-based set of operations, by using two network chan-

nels, and establishing connection with each individual accelerator. Figure 2.26 helps to illustrate the

Co-Simulation model in the HAL-ASOS framework. A primary transfer channel will enqueue all of the Task

class requests and the secondary channel will provide the interrupt related synchronism. The pending

operations from the primary channel will be forwarded to the secondary channel for synchronism, before

re-attempting the primary channel again.

HAL-ASOS Accelerator
Interrupt pin

Control
channel

Data
channel

System
channel

H
W

 T
as

k

H
W

 K
e

rn
e

l

Slave
Interface

Slave
Interface

Master
Interface

Task<HwTask, CoSimulation,…>

transfer channel

synch. channel

run()
start()
…
shutdow()
…

Proxy<CoSimulation

>

send_data()
receive_data()
…
wait_interrupt()
…

Software application HDL simulation

(C/C++)

Figure 2.26: HAL-ASOS simplified Co-Simulation model

The Accelerator model interfaces the communication channels using similar network features that provide

a bus-abstraction to the original design. This feature is implemented using a mixed topology that combines

the RTL description with: (1) VHDL Foreign Language Interface (FLI), establishing a programming interface

that provides means to access data in the VHDL elaborated and simulated models; (2) or SystemVerilog

Direct Programming Interface (DPI), interfacing the hardware description to foreign languages, namely

C/C++ and System-C, by directly calling functions implemented in the foreign language. The choice is

simulation-tool dependent since FLI support is, up until now, only available in the ModelSim tool. In either

of the Model distinct implementations, the foreign language used was C/C++. Running a test-bench on the

accelerator will allow the network channels to listen and accept connections. The software application can

then start, and after a quick handshake, it will be running simultaneously at both sides of the implemented

design.

52 Chapter 2. Design Methodology

2.7.5 Encryptor co-simulation

In this section, the Machine 1 application will be executed on the host’s development environment using

the co-simulation model. The co-simulation model involves the simulation of the software application,

containing the Task class reconfigured for HwTask and using the CoSimulation profile, and the developed

HW Encryptor, interacting with the accelerator model by using an RTL simulation tool. Figure 2.27 shows

the Machine 1 application, containing the necessary modifications to perform the functional validation

in the co-simulation environment. When we observe the lines in that figure, we can see that the Task

T1 declaration is using the THwEncrypter configuration, the HwTask qualifier and extends the template

package with the CoSimulation profile.

void hal_asos_demo::test_aes128_file_hw_cosim_thread_cypher_3(void) { 249

using namespace hal_asos; 250

 251

Task<SwTask, TFRead> T0; 252

Task<HwTask, THwEncrypter,profile<proxy::CoSimulation>> T1; 253

Task<SwTask, TUpload> T2; 254

 255

T0.start(); 256

T1.start(); 257

T2.start(); 258

T0.join(); 259

T1.join(); 260

T2.join(); 261

} 262

Figure 2.27: Machine 1 - software changes for Co-Simulation using the HW Encryptor task.

On the RTL side, we integrate the HW-Task in the application using the accelerator component, that can

be identified by the suffixes ’_c’ for co-simulation and ’_v ’ for bus abstraction based on SystemVerilog. In

Figure 2.28a it can be seen the block design used for the co-simulation of the HW Encryptor task using a

Vivado design project. The upper block represents the accelerator model, where it receives stimuli at clock

and reset inputs, and responds with interrupt and heart-bit signals. These outputs are intended for their

graphical representations in the tool’s wave window, since the interrupt signal is sensed internally by the

bus abstraction model, and the heart-bit signal is an interface-based signal that denotes the accelerator

operability.

The lower block represents the HW-Task that was described in the previous section. This block design

is then instantiated as a component, and submitted to a test-bench using an RTL file provided with the

accelerator. The source listing of this test-bench can be consulted in the attached Listing C.10. The

framework provides distinct implementations of the accelerator model which include Extensible Markup

Chapter 2. Design Methodology 53

(a) HW Encryptor accelerator connections (b) Accelerator v4.00.c.v parameters

Figure 2.28: Co-Simulation - HW Encryptor Accelerator settings

Language (XML) descriptions in the IP-XACT format, to simplify the block design step by promoting the

assisted connection with rule verification features. It also abstracts each group of the top-level logical

signals to single interface connections.

In the same image, Figure 2.28b, it is also possible to see the graphical interface used to configure the

accelerator. This accelerator uses the host network service and so, it needs parameters that configure the

network location where it will register its existence. The IP address and port number are used to connect

with the Machine 1 application, and the identification is mostly dependent of the name tag that matches

the configuration member used in the class Task.

When both, the application binary and the elaborated design are ready, the application and the simulation

can be started without any particular order. In Figure 2.29 it can be seen message log that took place on

the software side of the application. For this purpose, a smaller file containing 252 bytes (file small_pi.txt)

was used, thus reducing the simulation and exposing the task algorithm to less cycles than the specified

block size to complete the encryption, and to a file length that is not aligned with the accelerator word

size.

The HAL-ASOS network management service starts when the first registration attempt is received and

issues a message in the application log. Upon receiving the accelerator registration, it will assign new

port number used for handshake activities. The Task class will also register its particular interest about an

54 Chapter 2. Design Methodology

accelerator that fits the provided parameters, and when found, it will receive back its IP address and the

new port number for the handshake activities that starts right away. The remaining log messages demon-

strate the application expected behavior and include the processing results sent by the HwEncrypter0

accelerator, which can be identified by the prefix from the template qualifiers HwTask and CoSimulation.

Each individual task message shows a total of sixteen processed fragments and the application concludes

as expected.

Figure 2.29: Co-Simulation - HW Encryptor application output

Back on the RTL side, the simulation was started and the accelerator waits for the task handshake.

Figure 2.30 shows the log that results from this simulation in the Vivado’s TCL console. It can be seen the

list of configuration parameters in use, here referred as Generics, and three log messages that encompass

the accelerator registration. All the displayed messages lines contain prefixes based on: the name of the

accelerator that sends the message; followed by the name of the internal operation that is being executed;

and the current simulation time in nanoseconds. The handshake is triggered by the internal connect

function at 295 nanoseconds of simulation time. After a successful handshake, the Proxy member in the

class Task initializes the accelerator using local provided resources that include a system memory region.

The operation started at 385 nanoseconds and completed at 615 nanoseconds. The next two message

lines, report interrupts received from the HW-Kernel and the simulation concludes with the final two lines

that result from the software application disconnection.

From the performed simulation, a wave diagram is also displayed where it’s possible to examine the

contents in the registers of the elaborated design. Figure 2.31 combines a view of the simulation at

the top of the image, and an enlargement aligned with some FSM states at the bottom. At the top of the

figure, it can be seen the exchange loop iteration, encompassed between the states s1 and s8, and sixteen

encrypt loop iterations, delimited by the markers at 5.235 microseconds and the at 14.845 microseconds.

Chapter 2. Design Methodology 55

Figure 2.30: Co-Simulation - HW Encryptor handshake messages

Through the lower part of the figure, we can observe the behavior across the encrypt loop, where reading

a fragment from Local-RAM takes twelve clock cycles, marker at 14,245.00 microseconds, in a two clock

per word rate, that includes the four words read, and two more words for locking and unlocking the LMutex.

The words used in the HW mutexes are equal and composed from a combination between configuration

parameters and hardware signatures from the used mutex channel. When we observe the block_task

signal, we realize that it remains active for the majority of the simulation time, which demonstrates an

intensive use of functionalities under the kernel control.

The behavior in the AES-128 top-level signals can also be examined, namely: run and done control signals,

and plain_data and ciphered_data ports. At the 14,465.00 microseconds marker, the FSM triggers the

AES run signal and proceeds to the wait_aes state, where it blocks in the HW system call. The AES uses a

twelve-stage pipeline to encrypt the input plain_data and then releases the done signal. The kernel event

subsystem will acknowledge a steady high value in the done signal, and the task returns from the system

56 Chapter 2. Design Methodology

call in an additional four clocks. The AES connection differentiates blocking by using the kernel sleep

control signal, and keep its clock active while the task is blocked in the above system calls.

The same twelve clocks are used to write-back the cyphered data to the Local-RAM and the encrypt loop

restarts, or moves to state s7 and attempts a new exchange loop iteration. The number of clocks used

in the states s1 and s7 are mostly dependent of the network activity and does not reflect the four clocks

used in the HW system call implementation. Two clocks are spent writing a 64-bit message in the kernel

message-queue, and upon receiving, two more clocks are spent reading the response. Similar to other

transactions in the kernel set of functional units, one clock pulse is used during data exchanging, and

another clock pulse is used for reading the signals that acknowledge the operation.

The FSM completes the exchange loop with the count_len matching the target_len and the total_len_q

register indicating sixteen processed fragments, where it proceeds to state s8. Once in s8, the control

writes the final results in the Local-RAM, and the operation completes in the state s90 with the request to

transfer the message to the stdout. At the 22,505.00 microseconds marker, the FSM achieves the last

state and the execution concludes. The task_exit procedure notifies the Task class and puts the Kernel

Core in a dead state. It also suspends all the HW-Task activities with both, the block_task and sleep

signals active, until a hardware reset or a new initialization procedure is received.

A functional validation of the Machine 1 was performed, using the HW Encryptor description and the

accelerator model for co-simulation. At the software side, minimal reconfiguration was performed by

selecting the HwTask specialized class, that using the CoSimuation profile connects with the hardware

part of the application for a unified simulation environment. For convenience, a smaller file was used thus

producing a reduced number of cycles that ease the representation in the wave windows and allow for a

comprehensive description about the HW-Task behavior. We now proceed with the Machine 1 application

using the HW Encryptor SA task in the co-simulation environment. For completeness, we will be using the

ModelSim tool to simulate the accelerator’s RTL behavior.

Chapter 2. Design Methodology 57

Fi
gu

re
2.
31

:
Co
-S
im
ul
at
io
n
-H

W
En
cr
yp
to
rw

av
e
pl
ot
us
in
g
Vi
va
do

si
m
ul
at
or

58 Chapter 2. Design Methodology

2.7.6 Encryptor SA co-simulation

To address the roles of reading from the input file and writing to the network socket using the standalone

HW-Task, first the designer needs to create the local references of this objects in the software application.

For that it will use a framework software abstraction that encapsulates the implementation details of each

specific object in the software class VirtualObject.

The abstraction reduces the interaction to a message-based communication model, using internal mes-

sage format that can be sent or received by the accelerator. The template specializations of this class

include the most commonly used Linux device models. Figure 2.32 demonstrates the use of this feature

in abstracting the input file stream and the network socket for the Machine 1 application.

void hal_asos_demo::test_aes128_file_hw_cosim_thread_cypher_sa(void) { 367

using namespace hal_asos; 368

 hal_asos::networking::CSocket<hal_asos::networking::Client> Soc; 369

 CFstream<std::ifstream> Input_file(target_file.c_str()); 370

 371

 Task<HwTask, THwEncrypterSA, profile<proxy::CoSimulation>> T1; 372

 373

 Input_file.set_flags(std::ios::in | std::ifstream::binary); 374

 Soc.set_ip_address(ip); 375

 Soc.set_sock_family(AF_INET); 376

 Soc.set_sock_type(SOCK_STREAM); 377

 Soc.set_sock_port(PORT_NO); 378

 379

 T1.submit_to_pool(Input_file); 380

 T1.submit_to_pool(Soc); 381

 382

 T1.start(); 383

 T1.join(); 384

} 385

Figure 2.32: Machine 1 - Co-Simulation Standalone HW Encryptor Task

Such instances are declared in lines 369 and 370 of the same figure, and after some configurations, they

are submitted to the task T1 internal structures in lines 380 and 381. The file and the network socket are

kept closed until submission, but alternatively, they could have been opened. The T1 Task instance uses

the same qualifiers as in previous validation but a new configuration that matches this new accelerator

descriptions is used.

The newly reconfigured application was once more compiled and executed at host environment, and

after connecting with the accelerator model, the output results were captured and can be observed in

Figure 2.33. Similar output from the HAL-ASOS network manager is reported and it can be noticed only

one task result message.

Chapter 2. Design Methodology 59

Figure 2.33: Co-Simulation - HW Encryptor SA application output.

At the ModelSim console, the configured settings were reported and upon receiving connection from the

software task, the simulation proceeded in a continuousmode until receiving disconnection. In Figure 2.34

it can be seen the console log from this simulation.

Figure 2.34: Machine 1 - HW Encryptor SA handshake messages using ModelSim

A wave plot describing the register contents throughout the performed simulation is depicted in Fig-

ure 2.35. In a similar manner, the image is divided in two subplots where we can observe the over-

all path of the states implemented by the FSM, and a magnified view of the encrypt loop. At the bot-

tom of the topmost subplot, we can observe the first marker indicating the open file operation at time

1,940.00 nanoseconds, and consecutively the socket is opened at time 3,150.00 nanoseconds (i.e.,

S3_Open_file and S6_Open_sock markers respectively). The hardware file descriptors updated with the

current state on the software side and it can be seen that the two virtual objects are kept closed until

each specific open state is reached. The complete file encryption starts at the 8,960.00 nanoseconds

and finishes at 18,710.00 nanoseconds in a total of sixteen processed fragments, (i.e., S9_load_plain

and S13_update_in markers respectively).

60 Chapter 2. Design Methodology

Fi
gu

re
2.
35

:
Co
-S
im
ul
at
io
n
-H

W
En
cr
yp
to
rS

A
w
av
e
pl
ot
us
in
g
M
od
el
Si
m
.

Chapter 2. Design Methodology 61

The bottommost subplot in the same figure, highlights the cyclic behavior in the control unit, and it can be

observed the timing diagrams used per cycle. At time 17,500.00 nanoseconds the FSM loads the AES-128

input with the contents of the Local-RAM. At time 17,320.00 nanoseconds it triggers the run signal and

10 nanoseconds later achieves the wait state where it stays blocked. At time 17,880.00 nanoseconds the

FSM reaches the Local-RAM update state and replaces the current address with the ciphered data, and

at time 18,100.00 nanoseconds it evaluates the encrypt cycle before proceeding on the exchange loop,

by writing to the network socket.

The operation concludes at time 31,420.00 nanoseconds (i.e., S99_Exit marker in the topmost subplot),

where the FSM reaches the final state after closing both virtual objects and transferring the results message

to the stdout. Both virtual file descriptors were updated to false open and the task remains blocked. The

wave plot from an equivalent simulation performed using Vivado simulator tool, can be found in the

attached Figure D.2. A close simulation time was achieved, with the task reaching the final state at time

28.3 microseconds. The main differences can be correlated with the states that are dependent on the

network operation and ultimately from the tool internal throughput.

From this point in design, the distinct versions of application where functionally validated in the host

environment. No commitment to the underlying hardware was established, and the overall design stage

provided an appropriate system abstraction that increased comprehension and placed the designer in a

better position to make decisions. We now proceed to the platform selection in the deployment phase,

implementing the binary files that will instantiate the system.

2.8 Platform deployment

In this section, we address the platform deployment while considering the requirements of the developed

application. We choose the underlying hardware that fit such requirements, and produce the binary files

that instantiate the system. To assist the designer, we will introduce the Full Simulation model. The Full

simulation model allows the designer to validate the complete stack that implements the system. The

provided simulation environment considers simulation at the lowermost level, the target architecture and

the developed RTL, at the Linux kernel and HAL-ASOS file system, and at the topmost level where the

application is instantiated.

62 Chapter 2. Design Methodology

2.8.1 Hardware selection

Up until now, we have been developing the application using Xilinx’s Vivado, and in the supported set of

devices that target Linux embedded systems, we can find the Zynq family. The Zynq family is divided in four

ranges of application, namely: (1) the Cost-Optimized range, and includes the Zynq-7000 and Zynq7000S

SoC based on Artix devices; (2) the Mid-Range, and includes Zynq UltraScale+ MPSoC CG devices and

Zynq-7000 SoC Kintex; (3) the High-End range of UltraScale+ MPSoC EV and EG devices; and (4) the

High-End range of UltraScale+ RFSoC devices. We consider that the Machine 1 application requirements

do not fit the bills of the Graphics Processing Unit (GPU) provided by the third range, or the High bandwidth

RF data converters provided in the fourth range. As so, we will discard such devices and contemplate

the use of the Cost Effective or Mid-Range devices. The UltraScale+ device combines a heterogeneous

MPSoC using ARM Cortex-A53, a 64-bit multi-core asynchronous processing unit, and ARM Cortex-R5,

32-bit multi-core real-time processing unit, coupled with a system logic cell based programmable logic

area. The Zynq-7000 SoC family differs in a logic cell based and less dense programmable area, and

single- or dual-core 32-bit ARM Cortex-A9 architectures. We consider that Cost-effective range is the best

suit for the application requirements and among the set of available devices we chose the Zynq7000 SoC

on the ZC702 board.

The ZC702 board will be selected for this example, as it provides a moderate set of logic resources and also

a subset of surrounding hardware that suits the application requirements. It includes the Z-7020-CLG848-

1 device, a dual-core ARM Cortex A9 capable of achieving 866MHz CPU clock, and it is the third choice

considering dual-core architectures and available logic resources in the programmable area. Figure 2.36

shows the simplified block design for the Machine 1 using a Vivado project that targets the ZC702 board.

The Zynq-7000 Processing System (PS) can be seen in the center of the figure, and includes all the static

hardware in the system. The remaining functional units are implemented in the Programmable Logic

(PL) area, among which stand out the two hardware accelerators coupled with the HW-Tasks Encryptor

and Encryptor SA. To implement the design in the selected platform, we use the HAL-ASOS accelerator

V4_00_b component provided by the framework. The V4_00_b provides connectivity with Advanced

eXtensible Interface (AXI) bus using the Interconnect IPs for master and slave interfaces. In the current

design, we have considered a clock frequency of 100 MHz applied to all logic devices in PL. The detailed

representation of this block design can be consulted in the attached Figure D.1.

With respect to the design flow in Vivado, the tool produces a compressed file in hdf extension that contains

Chapter 2. Design Methodology 63

Figure 2.36: Machine 1 -Simplified block design using ZC702 platform.

among other sources, the bitstream file that implements the block design in the PL and an XML file that

describes the design. The implemented system can then be exported to an Software Development Kit

(SDK) or Vitis project in the Vivado design flow, which provide the necessary compilation toolchain and the

platform BSP that allow the designer to build the files that instantiate the system. From this deployment

stage two files are produced: (1) a BOOT.bin file, that contains a first stage bootloader, the bitstream file

and the U-Boot file in the elf format; and (2) the devicetree.dtb file, a data structure that describes the

system in the format capable of being used by the Linux kernel.

The first-stage bootloader is provided by the BSP in one of the build tools, and the second stage bootloader

can be generated on a machine-based or custom-based configuration using the U-Boot sources. The

device tree can be generated in the build tools and compiled with the Device Tree Compiler (DTC) tool

from the host environment. Figure 2.37 outlines the source lines from the device tree that describe the

accelerators. Most of these lines refer to parameters configuring the hardware, but are also information

to be used by the HAL-ASOS file system while interacting with the implemented hardware.

To show some light in these lines, we can say that the Linux kernel will link the accelerator descriptions with

the file system code by using the compatible property cell in lines 446 and 472. Two interrupt lines were

assigned to each accelerator and they can be seen in the interrupt property cells in lines 449 and 475.

The first number is 0 and according to Xilinx, it identifies a non-SPI peripheral where the interrupt numbers

offset form the number 32. As so, the 29 and 30 numbers correspond to the interrupt lines 61 and 62,

and since third number is 1, it specifies the interrupt type as edge-rising. The control interfaces base and

range addresses can be read using the reg property cells in lines 450 and 476. The accelerator-tag(s) are

64 Chapter 2. Design Methodology

hal_asos_accelerator_0: hal_asos_accelerator@43c00000 {443
clock-names = "s00_axi_aclk", "s01_axi_aclk", "m00_axi_aclk";444
clocks = <&clkc 15>, <&clkc 15>, <&clkc 15>;445
compatible = "xlnx,hal-asos-accelerator-v4-00-b";446
interrupt-names = "interrupt_pin";447
interrupt-parent = <&intc>;448
interrupts = <0 29 1>;449
reg = <0x43c00000 0x10000>;450
xlnx,accelerator-tag = "HwEncrypter0";451
xlnx,data-in-nwords = <0x1>;452
xlnx,data-out-nwords = <0x1>;453
xlnx,input-lfifo-depth = <0x20>;454
xlnx,input-mqueue-depth = <0x8>;455
xlnx,m00-axi-addr-width = <0x20>;456
xlnx,m00-axi-data-width = <0x20>;457
xlnx,output-lfifo-depth = <0x20>;458
xlnx,output-mqueue-depth = <0x8>;459
xlnx,peformance-counters = "true";460
xlnx,s00-axi-addr-width = <0xa>;461
xlnx,s00-axi-data-width = <0x20>;462
xlnx,s01-axi-addr-width = <0xa>;463
xlnx,s01-axi-data-width = <0x20>;464
xlnx,sysram-pages = <0x1>;465
xlnx,user-interrupts = <0x1>;466
}; };467

hal_asos_accelerator_1: hal_asos_accelerator@43c20000 {469
clock-names = "s00_axi_aclk", "s01_axi_aclk", "m00_axi_aclk";470
clocks = <&clkc 15>, <&clkc 15>, <&clkc 15>;471
compatible = "xlnx,hal-asos-accelerator-v4-00-b";472
interrupt-names = "interrupt_pin";473
interrupt-parent = <&intc>;474
interrupts = <0 30 1>;475
reg = <0x43c20000 0x10000>;476
xlnx,accelerator-tag = "HwEncrypterSA0";477
xlnx,data-in-nwords = <0x1>;478
xlnx,data-out-nwords = <0x1>;479
xlnx,input-lfifo-depth = <0x20>;480
xlnx,input-mqueue-depth = <0x8>;481
xlnx,m00-axi-addr-width = <0x20>;482
xlnx,m00-axi-data-width = <0x20>;483
xlnx,output-lfifo-depth = <0x20>;484
xlnx,output-mqueue-depth = <0x8>;485
xlnx,peformance-counters = "true";486
xlnx,s00-axi-addr-width = <0xa>;487
xlnx,s00-axi-data-width = <0x20>;488
xlnx,s01-axi-addr-width = <0xa>;489
xlnx,s01-axi-data-width = <0x20>;490
xlnx,sysram-pages = <0x1>;491
xlnx,user-interrupts = <0x1>;492

493

Figure 2.37: Programmable Logic - device tree source two accelerators.

used at file system level to create the task directory, and can be read using the property cells in lines 451

and 477. Some of these parameters will also be used in this section, as they are of utmost importance to

handshake of the block design using the Full simulation model. The overall use of this description will be

best discussed in the HW implementation details of the Accelerator model in Chapter 3.

The designer will also need a Linux distribution that targets the hardware and software stacks, and in some

cases, a customized Linux version that fits in the application requirements with just the right packages is

the desirable approach. In such case, an automated compilation tool is commonly used and examples of

these are OpenEmbedded [28] or Buildroot. We have selected Buildroot to generate the Linux distribution

for Machine 1, and generically, three files are produced: a U-boot executable elf format file, uboot.elf, that

can be used in the SDK to generate the BOOT.bin file; a uImage file, containing the Linux kernel image

in a format that can be used by the bootloader; and a rootfs.ext2 file that contains the compressed file

system for Linux. Also, generic Linux image in the compressed format can also be generated, and such

a file, zImage, will be used by the Full simulation model.

To support the Accelerator features in the Linux OS, the designer will need to add the HAL-ASOS file

system sources to the Linux kernel, by applying a file patch that matches the pre-selected kernel version.

Alternately the sources can be compiled separately as kernel module and mounted at boot time. Such

compilation can be performed using the host cross-compile environment provided by Buildroot. To comply

with this section descriptions, we have compiled the Linux kernel version 4.9.0, in the zImage format, with

the debug symbols, and already includes the HAL-ASOS file system sources.

Chapter 2. Design Methodology 65

2.8.2 Full simulation Model

The Full Simulation model of the HAL-ASOS framework, allows the designer to validate the system in an

integrated environment that includes all implementation domains, from the accelerators that exist in the

RTL simulation, the hardware devices the exist in the selected board, the Linux kernel binaries and file

systems, until the Linux user-space where the application will be executed. For that, it relies on the QEMU

platform, that allows to functionally emulate all the existing hardware on the system. To comply with the

RTL simulation, using the local device representation, the framework extends the traditional set of QEMU

devices with the hal_asos_qdev structure.

Generically, within a specific domain, such device implementation uses a shared network connection,

and forwards the subsequent read and write requests that result from guest code, to the simulation

environment where the target hardware is being simulated. In the opposite direction, another channel

is used the provide access to the system resources and trigger interrupt events that can result from the

hardware simulation. Figure 2.38 depicts a simplified diagram that describes this model considering the

example that integrates an RTL simulation tool.

hal_asos_link

BUS
Interconnect

bus_link

Acelerator0 Accelerator1

BUS
Interconnect

RTL Simulationsim_tool.so

Slave model

Master model

qemu_system_[arch]

Interrupt bus

SysBusDevice

hal_asos_qdev

read(hwaddr offset, unsigned len)

write(hwaddr offset, unsigned len)

init(void* p_private)

exit()

hwaddr base_address

char*name

int address_range

….

void* p_private

hal_asos_qdev

read(hwaddr offset, unsigned len)

write(hwaddr offset, unsigned len)

init(void* p_private)

exit()

hwaddr base_address

char*name

int address_range

….

void* p_private

exchange_packet(pkt)

MemoryRegionOps
Device

MemoryRegionBUS

Figure 2.38: HAL-ASOS Full simulation Model

With regard to software implementation, this model can be decomposed into three distinct domains:

(1) the extended QEMU device model, that creates an intermediate and generic representation ready to

be used with many different simulation tools; (2) the dynamic implementation, that allows reusing the

implemented features with the specifics of each simulation tools, and thus reduce excessive footprint

in the QEMU sources and consequent recompilations; and finally (3) using the programming interfaces

available in each simulation tool, establish the endpoints in the network connections that fit the device

66 Chapter 2. Design Methodology

network channels. As for the RTL simulation, the model assumes once again two implementation variants,

using VHDL FLI- or SystemVerilog DPI-based implementations in the ModelSim tool or SystemVerilog DPI-

based implementation in the Vivado simulation tool.

On the RTL side, the model stimulates the design and allows the user to explore how the accelerators

relate to the system bus, or how they synchronize with the application on the Host side, here consid-

ered QEMU guest. The hal_asos_link component initiates the connection with QEMU side, and in the

handshake phase, exchange the tool and accelerators intrinsic details. These include the tool name and

address range, and accelerator parameters namely, the task tag, base address and address range, and

the interrupt offset. Each device is then registered accordingly to map the corresponding accelerator in

the QEMU machine virtual representation.

On QEMU side, at the top of the hierarchy, stands the bus where the devices are attached. For every

device, there is a memory region and a file operation structure that uses each device specific code. Once

in service, and as consequence of the software execution, whenever QEMU needs to access the memory

region where the device is mapped, it launches the execution of the read or write functions from the

registered object. These implementations evaluate the address and the size of the request and forward

and appropriate message to the RTL simulation.

On the RTL side, the receiving requests from the network channel are forwarded to the Master Model. Such

model implements the procedures that exchange data with the HW-Kernel resources using the accelerator

differentiated interfaces, i.e., the S00_Control and S01_Data. Whenever an interrupt line is triggered, or

an accelerator accesses the system’s memory, the hal_asos_link component intermediates such request

by using the Slave Model, and proceeds by forwarding an appropriate message to the QEMU side. Upon

receiving such message, the bus_link on QEMU side uses native API to interact with the memory or

interrupt subsystems and complete the received request.

Despite presenting a wider validation chain, this model can replace the Co-simulation model and reduce

the number of iterations in the design flow. For this reason, once achieving the deployment phase, the

design flow does not iterate back to the Co-Simulation phase, assuming that it can validate the application

in full simulation environment. Care must be taken when dealing with design refinements in this stage

and appropriate planning is required.

Chapter 2. Design Methodology 67

2.8.3 Full system simulation

To apply the Full simulation model to the Machine 1 application the designer needs to provide the means

for connecting the accelerators that exist in the simulation tool with the virtual device representation

on QEMU. For that, it will replace the processing system in the block design of Figure 2.36, by the

hal_asos_link component that fit the SystemVerilog implemented version. Alternatively, it can create a

new block design and keep both designs in the Vivado project, to be used them in the subsequent design

iterations. Figure 2.39 depicts the block design for Full simulation of the Machine 1 application using

Vivado. To highlight the connections, the accelerator interface lines where manually colored in: light

purple for the accelerators’ master interfaces; light orange for the control-oriented slave interfaces; and

light blue for data-oriented slave interfaces.

Figure 2.39: Full Simulation - HW Encryptors block design

Similarly, as in the co-simulation model, the hal_asos_link component requires parametrizable settings

that configure the network connection. Figure 2.40 depicts the Vivado component generated interface, and

includes the parameters used in this simulation. Such block design requires one interrupt for accelerator

and two accelerators are in the block design. We use the same IP address as in the Co-Simulation but a

different port that depends in the tool specific implementation.

68 Chapter 2. Design Methodology

Figure 2.40: Full Simulation - hal_asos_link simulation parameters

On the QEMU side a custom implementation for Vivado tool was compiled as dynamic library and dur-

ing the QEMU machine initialization, the HAL-ASOS extension will load all the .so files that can be found

in the libraries path. In this example, a vivado.so dynamic library is loaded, and QEMU will wait for a

parametrizable time until receives connection from the simulation tool, before proceeds with the hand-

shake. Figure 2.41 depicts the handshake log messages at both sides of the simulation.

In Figure 2.41a, a cat command exposes the used boot settings. We have selected the QEMU pre-defined

machine xilinz_zynq_a9 and the compressed Linux generic image, zImage will be used. The rootfs.ext2

file will be mounted as SD device and the append switch specifies the kernel boot command. After

loading the symbols in the vivado.so library the open_connection of the bus_link was executed. Upon

receiving connection, the details about the simulation tool and the existing accelerators were exchanged.

At concluding the handshake, the simulation parameters were used to register two devices using the

device model extension, and once all hardware devices where initialized, the QEMU proceeded by booting

the Linux image.

In the Figure 2.41b we can see the handshake log messages in the Vivado TCL console. The first lines

list the accelerator parameters and result from SystemVerilog registry functions. At 265 nanoseconds

of simulation time, the hal_asos_link successfully established connection with QEMU. A continuous run

command was issued, and the simulation proceeds until the designer decides to manually stop the simu-

lation, or issues a shutdown on the Linux console of the guest machine and closes the QEMU execution.

The testbench source used in this simulation is a generic example provided by the HAL-ASOS framework

and can be consulted in the attached Figure C.11.

Chapter 2. Design Methodology 69

(a) QEMU handshake log (b) Vivado Simulator handshake log

Figure 2.41: Full Simulation - QEMU and Vivado handshake log

Once QEMU booted the Linux image, a set of commands were executed with the purpose of confirming

the correct state of the system, and the results can be seen in Figure 2.42a. A ’uname’ command

displays information about the system: a Linux 4.9.0 preemptible kernel for SMP architectures is in use

and is based on ARMv7l machines. A ’ls’ command lists the available accelerators in the HAL-ASOS file

system. Two directories with the accelerator’s names are found, and contain the virtual files that export the

accelerator model to the Linux user-space. Entering the QEMU monitor console, an ’info qtree’ command

lists the devices in the system and it can be seen the accelerators that were registered in the handshake

phase.

On Figure 2.42b it can be seen a console formatted message, from the local-kernel virtual file read that

lists the current accelerator status. It includes information such as: the accelerator name; the base

address and combined address range; the configured design parameters; some Linux kernel assigned

resources; internal statistics and status of the local-kernel registry; but is also displayed the overall status

of the HW-Kernel functional units being simulated in the RTL side.

Considering that the Linux image was successfully booted, the handshake established a connection be-

tween the emulated hardware in QEMU and the RTL simulation on Vivado, we now proceed with the

70 Chapter 2. Design Methodology

(a) QEMU - Survey HAL-ASOS file system and monitor (b) QEMU - File system query to accelerator kernel

Figure 2.42: Full Simulation - running Linux image on QEMU

functional validation of the Machine 1. For this stage, the Machine 1 application was once more com-

piled, but this time using the host cross-compilation toolchain.

To address the different application variants, the main function was updated to receive parameters form

the command line that specify both, the application variant and the input source. The attached Figure C.12

lists these software changes. The Machine 1 application was reconfigured to use the HwTask qualifier and

recompiled with debug symbols. The attached Figure C.13 lists the corresponding source. Figure 2.43

depicts the output log from the Machine 1 functional that selects the use the HW Encryptor task. A ’ls’

command lists the files in the home directory and two text files that contain 1,000,002 bytes and 252

bytes are listed. The file hw_encryptor file is the application binary in the elf format. The log that results

from the execution, demonstrates similar results as in the Co-Simulation stage, and we can observe the

HwTask as prefix of the Encryptor task log. Since the task is configured to use the StandardIO profile no

qualifier is printed.

On the RTL side, a simulation waveform was plotted and once more the image is divided in wide and

magnified views. Figure 2.44 at top, depicts the overall execution time of the Encryptor task. At time

1,813.235 microseconds the HW-Kernel received the control information to start the HW-Task and 151.38

Chapter 2. Design Methodology 71

Figure 2.43: Full Simulation - Machine 1 application using HW Encryptor task

microseconds later, the task enters the state s3 to read the first word from the Local-RAM. The encryption

of the 256 bytes completes 9.61 microseconds later and after 943.504 microseconds the task completes

the transfer to the DDS topic. The execution concludes 20.775 microseconds later. We can observe

that due to the multiple implementation levels, the HW-Task spends most of the time waiting on the

interaction with the simulation on QEMU. The light blue strips, indicate activity in the accelerator bus

interfaces. The S00_AXI is connected with the control-oriented channel and the S01_AXI is connected

with the data-oriented channel of the Accelerator model.

At the bottom of Figure 2.44, we zoom in to see the details of the activity on those signals. The purple

blocks represent read transactions, and the shaded red blocks represent write transactions. The read,

write, read pattern is used to lock the Local-RAM mutex with the transaction ID 0x5, and the ’1’ value

on the o_status[31] bit, indicates a locked mutex. Consecutive write transactions are performed in the

S01_AXI interface, to transfer the plain data from the DDS subscription to the Local-RAM. The first word

0xfc is the control field and indicates an effective file length of 252 bytes. Three clock cycles per word are

used to write the S01_AXI interface and an interval of eight clocks is used in the internal operation of the

hal_asos_link component.

Similarly, the HW Encryptor SA task was also validated and Figure 2.45 shows the application log in the

Linux command line at QEMU. The attached Figure C.14 lists the used source with the necessary changes.

A ’uname’ command lists the information about that system before running the application, and a ’ls’

command repeats the list of contents in the directory. The application is launched with argument ’2’,

which selects the standalone version of the Machine 1, and the same file was used. As expected, we can

observe that only one task is in execution, where 16 fragments of plain data where successfully ciphered

and consequently uploaded to the Machine 2. The simulation waveform of this execution can be seen in

Figure 2.46.

72 Chapter 2. Design Methodology

Fi
gu

re
2.
44

:
Fu
ll
Si
m
ul
at
io
n
-H

W
En

cr
yp
to
rs
im
ul
at
io
n
w
av
ef
or
m
.

Chapter 2. Design Methodology 73

Figure 2.45: Full Simulation - Standalone HW Encryptor design

At top we can see that the application received the run signal at 5,042.705 microseconds and 191.00

microseconds later, the received plain data was ciphered and is ready to be transferred over the network.

At time 6,179.695 microseconds, such transfer was completed and 9.95 microseconds later the task

concluded. The worst case in the task FSM is once again the network transfer with 916 microseconds

duration. It’s fair to say that due to the emulated nature of QEMU, the Full-Simulation environment involves

a great deal of overhead in the network subsystem, which includes the host development environment,

the QEMU network back-end, and the target Linux OS in QEMU.

Analogous bus activity can be observed in the accelerator interfaces. The bottom of Figure 2.46 depicts

the last transactions used to read the 64 words of ciphered data from the Local-RAM. Four clocks are spent

to read data in a total of eleven clocks per word transaction. The Local-RAM mutex remains locked until

the transaction completes and once more, the read, write, read pattern appears at the S00_AXI interface

to unlock the HW mutex. The o_status[31] bit is cleared indicating the mutex is free and the last owner

ID was 0x13.

When compared to the results of the Machine 1 Co-Simulation, the Full Simulation requires more clocks

per task iteration and it consumes more simulation time. For this reason, the major application design

refinements should be addressed during the Co-Simulation phase. The Full simulation provides a powerful

simulation environment that is capable of dealing with any potential glitches involving the tree major system

components: the Software; the hardware; and the Linux OS. But it also requires a good strategy in applying

debug iterations while addressing such faults.

In this section, the binary files that implement the system were cross-compiled to the target hardware and

the overall system files were validated. Usually in this phase, we use compilation with debug symbols

and as so the binary files might need to be once more re-compiled. We will proceed with the system

implementation using the ZC702 board, where the trifecta of application versions will be evaluated.

74 Chapter 2. Design Methodology

Fi
gu

re
2.
46

:
Fu
ll
Si
m
ul
at
io
n
-S
ta
nd
-A
lo
ne

H
W

En
cr
yp
to
rs
im
ul
at
io
n
w
av
ef
or
m
.

Chapter 2. Design Methodology 75

2.9 System Implementation

In this section, we implement the system in the selected board and evaluate the application in the three

implementation variants: the software-only, the software and hardware Encryptor and the hardware En-

cryptor as standalone. The target system is using the binary files that resulted from the previous section

where the bitstream includes the two implemented accelerators using 100 MHz bus clock

In similar manner to the Full simulation tests, the Machine 1 mounts the HAL-ASOS file system at boot-

time and two accelerator folders can be found in the hal-asos directory, at the root of the Linux file system.

The Machine 2 was set to receive the resulting ciphered files and both applications were simultaneously

executed. Figure 2.47 shows the results of the Machine 1 running on the ZC702 board. The tests were

executed using the ’time’ command that displays an output message with timing statistics about the

execution.

uname -a

Linux buildroot 4.9.0-xilinx #1 SMP PREEMPT Wed Jul 17 14:19:13 WEST

 2020 armv7l GNU/Linux

ls

100M_digits_pi.txt 1M_digits_pi.txt stress_test.sh

10M_digits_pi.txt machine_1_app

time ./machine_1_app 0 1M_digits_pi.txt

[FileReader<SwTask>]finished...(62501)

[Encryptor<SwTask>]finished...(62501)

[Uploader<SwTask>]finished...(62501)

real 0m 6.42s

user 0m 8.13s

sys 0m 1.56s

#

Figure 2.47: Machine 1 - Software-only application version running on ZC702 board.

The output results demonstrate similar log messages from the application. The timing statistics are dis-

played after the application log and include: (1) the real time between the invocation and the termination,

(2) the CPU time spent in the application running the user code and (3) the CPU time spent in the system

running the Linux kernel code. The SW-only real time results demonstrate 6.42 seconds spent using one

million digits of pi as input. The subsequent lines demonstrate that 8.13 seconds were spent running the

application code and 1.56 seconds running the system code. The total time value overcomes the real

time value and the differences result from the existing parallelism in the application and scheduling the

execution using two CPU cores to simultaneously execute the application. Similar messages describe the

76 Chapter 2. Design Methodology

results of the HW accelerated versions using the same input file and can be seen in Figure 2.48a. The

argument ’1’ selects the HW Encryptor implementation, whereas the argument ’2’ selects the stand-alone

version.

It can be seen that using the same input file, 3.58 seconds are spent by the HW Encryptor implemen-

tation, and 0.30 seconds as spent by HW Encryptor SA. Similar results are demonstrated reading the

performance counter used to count intervals between task execution. We are using a 100 MHz clock (10

nanoseconds per clock tick), and so the output demonstrates that one task iteration has been counted

and took 3.566439440 seconds. The counter starts in the moment that the run signal is received from

the HW-Kernel and stops when it receives the task_done_i signal from the HW-Task. The application

consumes more time when compared to the counter value, as it needs to initialize the internal structures

before issuing the start command, and the performance counter stops in the exact time the HW-Task

reaches the final state. In that moment, the application still needs to complete the file upload and release

all allocated resources and thus translating into the additional execution time.

A more accurate test considers statistical data that results from multiple iterations and to best characterize

the application behavior, we have increased the file length by 10 and 100 times, and repeated the test in

a per-file basis for 10 iterations. Figure 2.48b plots the resulting data from a total of 90 tests (i.e., the 3

application versions, for 3 file lengths, 10 times each trial). The red line indicates the execution time of

the SW-Only version, the blue line indicates the HW Encryptor and the black line indicates the stand-alone

version. We can observe that in the three application versions, the execution time scaled practically linear

with the file length.

The same data was plotted in a performance ratio comparing the SW-only to the HW accelerated versions.

Figure 2.49a depicts these results where the red line presents the performance gain achieved by offloading

the Encryptor task, and the blue line represents the performance gain achieved with the stand-alone

version. When comparing the application with the HW Encryptor task, is fair to say that the average gain

matches the potential for performance observed in the Profiling stage and becomes more evident when

the system utilization increases.

The computing overhead introduced in exchanging data between the software threads and the accelerator

was kept in acceptable values, and thus provided the system with effective performance. The stand-alone

version completely outranges the performance in the application, achieving a 93% increase in the 100

million digits of pi. A fair analysis concludes that such values result mainly from reducing the multi-thread

Chapter 2. Design Methodology 77

overhead in the synchronization and data exchange threads, and increasing the system performance with

the additional accelerator processing.

To best characterize the use of resources we have chosen the center value of the three input files, the 10

million digits, and applied different clock sources to the design from 25 MHz to 200 MHz. The SW-only

results remain steady since the frequency only affects the accelerators in the PL. Figure 2.49b plots the

results from the 100 test iterations. The block design implementation, using the two accelerators at 200

MHz, failed to meet the time constraints in the implementation phase of Vivado design flow. Even though

when tested, it was able to produce intermittent results in both designs. The hardware specifications of the

clock sources cannot produce 150 MHz clock and the closest match is 142.8 MHz. The two application

versions increase performance with clock until the 100 MHz. Beyond this value the performance increase

is imperceptible as the Host system cannot respond to the increased demand of the accelerators to avoid

starvation in the remanding processes in the system. A final design that does not face power-ware design

restrictions can be implemented using the 100 MHz clock, although the 50 MHz designs produce similar

performance results with greater efficiency.

2.10 Conclusions

We have already mentioned that the purpose of this chapter is to introduce some of the HAL-ASOS function-

alities, and guided by the Design flow, describe the purposed models that compose the design methodol-

ogy. For this reason, the HW Encryptor design followed a simplified design strategy. Several other design

techniques could be applied, and it is fair to say that the performance could be improved if for instance,

the decision was to use the system channel as opposed to data transfer channel, together with an asyn-

chronous mode of operation between AES pipeline and the memory transfers. In doing so, it would release

the potential for performance of the HW true parallel nature by exploring the data-level parallelism of this

application. We believe that such level of implementation is not suited to be described in this chapter as

it requires increased number of independent functional units and so we have decided for the closeness to

SW code approach, that is also capable of being reproduced by most of the commonly used HLS synthesis

tools that use C/C++ languages.

78 Chapter 2. Design Methodology

time ./machine_1_app 1 1M_digits_pi.txt

[FileReader<SwTask>]:finished...(62501)

[HwEncrypter0<HwTask>]:finished...(62501)

[Uploader<SwTask>]:finished...(62501)

real 0m 3.58s

user 0m 4.47s

sys 0m 2.10s

time ./machine_1_app 2 1M_digits_pi.txt

[HwEncrypterSA0<HwTask>]:finished...(62501)

real 0m 0.30s

user 0m 0.13s

sys 0m 0.14s

cat /hal-asos/HwEncrypter0/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 01

Counter value: 0356643943

Maxim event duration: 0356643943

Minimum event duration: 0356643943

Total events duration:000356643943

#

(a) HW Encryptors designs, two accelerators at 100 MHz bus clock. (b) HW Encryptors design, two accelerators at 100 MHz bus clock.

Figure 2.48: Zynq ZC702 - Application performance of the machine 1 application.

HW-only single.
HW/SW multi.

Performance gain increasing file length (Acc. 100 MHz clock)

File length [Millions of digits]

Pe
rf

or
m

an
ce

 G
ai

n

100%

90%

80%

70%

60%

50%

40%

30%
1M 10M 100M

(a) HW Encryptors designs, two accelerators at 100 MHz bus clock.

Application performance increasing clock frequency

Accelerator clock [MHz]

(b) HW Encryptors designs, two accelerators using 10 million digits.

Figure 2.49: Zynq ZC702 - Application performance of the hardware accelerated designs.

Chapter 3

First-class Hardware Components

The accelerator model implements a set of services that integrate the operation of digital logic circuits

in software applications for the Linux operating system. For programmability and complexity mitigation,

the proposed model redefines the concept of the HW-Task, to limit the design scope in the application of

such digital circuit. From the point view of the digital circuit, the HW-Task represents a local control that

integrates its operation in the host system. In the accelerator model, the HW-Task and the Kernel Core

are the prime computing units in the design, that require means to interact with other computing units in

the host platform. For this, the HW-Kernel implements distinct data- and control-oriented interfaces that

allow the host system to address the HW-Kernel resources, and allow the HW-Task to address the host

system memory.

From the accelerator’s point of view, an HW-Task is a local processing unit that this model promotes to

first-class computation entity. For the HW-Task operability, the accelerator model provides a Kernel Core

and establishes an exclusive bi-directional connection between these two components. In this connec-

tion, it implements an ambivalent Master-Slave relationship, where the HW-Task is the Master that initiates

system-level operations in the Kernel Core, but behaves as a Slave when these come into service, being

subject to the control signals that the execution gives rise to, until a pre-programmed sequence of oper-

ations is completed. In this sense, it is fair to say that the concept of computational entity is transferred

to the Kernel Core when it operates at the service of the HW-Task, and is returned back to the caller with

the service completion. Figure 3.1 describes the connectivity between the HW-Task and the Kernel Core

while implementing the set of services in the accelerator model.

To handle the distinct service requests, we introduce the concept of HW system calls and deployed these

into the Kernel Core. An HW system call is a pre-programmed set of control operations that use the

79

80 Chapter 3. First-class Hardware Components

Kernel
Core

HW-FIFOs

Mutex(s)

Local RAM

Interrupts
System

Memory
Time Events

M00 Kernel

M00 Task

S00 Kernel

S00 Task

HW-Kernel
Lo

ca
l-

B
U

S

Host
CPU

Interrupt line

Digital
Circuit

HW-Task

Control

Figure 3.1: Accelerator Model - and overview of the provided services.

local resources to implement services. These services can include time management, synchronization or

scheduling of operations, and data movement in the system or local memories. To implement the set of

HW system calls, the Kernel Core employs micro-code concepts, where all the control and synchronization

actions are encoded using a microprogram. In doing so, the Kernel Core design benefits from a static

and predictable implementation and the microprogram content can be modified to accommodate system

architecture impairments. To make these services accessible to the HW-Task design, the framework

provides a distinct set of procedures that interface the HW system calls in the parameters that these

require. Such procedures are defined by the kernel package and are implemented by the HW-Task design.

To illustrate the HW-Task and Kernel Core interoperability, let us consider a simplified design example,

where an HW-Task that needs to wait for a completion signal in its datapath, before proceeding with the ex-

ecution. For this, the control unit can implement the wait event procedure while estimating the worst-case

scenario in terms of timeout, as opposed to waiting indefinitely. Figure 3.2 depicts a sequence diagram

that includes the components involved in this HW system call. In this example, we have established a

one-hundred clock period timeout and selected the input i_flag as event parameters in the corresponding

kernel procedure. At the exact instant the procedure is initiated, the control unit of the HW-Task is blocked

by the Kernel Core, allowing this unit to proceed in configuring and triggering the Time Event unit. After

a successful configuration stage, the Kernel Core triggers the Time Event Unit to start counting form the

specified timeout, and waits for the event detection or an exhausted timeout signal.

Chapter 3. First-class Hardware Components 81

HW-Task Kernel Core Time Events

wait_event_timeout(i_flag,100)

write(100)

connect(i_flag)

run()

99
…
80
…

70

100

i_flag

i_flag

i_flag

(event,70)

(true)

i_flag

(b
lo

ck
ed

)

Figure 3.2: Hardware system call - wait event sequence diagram.

Beyond a time-interval of thirty clock cycles, the Time Event unit is triggered by the selected flag and thus

completing the wait stage. It then raises the event signal that notifies the Kernel Core to conclude the

system call, where it establishes a boolean response for the event detection and unblocks the HW-Task.

Figure 3.3 shows a sequence diagram that describes an operation scenario where the HW-Task competes

with the Host system for mutual exclusion in the Local-Mutex resource of the accelerator model. Through

this feature, it implements contention and concurrency control before writing to the local memory LRAM. In

similar way, the HW-Task invokes a system call using the mutex_lock procedure from the kernel package.

It places the LMutex_offset as parameter, to specify which of the two HW-Mutex in the accelerator model

is the target of the operation. At that moment, the control of the HW-Task is blocked and the Kernel Core

proceeds with the execution of the system call, by writing the TaskID in the indicated resource.

At the same time, a SW thread in the Linux OS competes for the same resource, by writing its ID as well.

The Kernel Core reads the result of its write operation and does not recognize in the received status, as

being the owner of this resource. In this condition, it must wait for the availability of the resource while

the HW-Task remains blocked. A few moments later, the host system thread releases the resource, and

the Kernel Core reacts by repeating the write operation on the HW-Mutex. The subsequent reading of

the status indicates a resource blocked by the kernel, and the Kernel Core completes the system call by

ensuring exclusivity and releasing the control unit of the HW-Task.

82 Chapter 3. First-class Hardware Components

locked

HW-Task Kernel Core LMutex

mutex_lock(LMutex)

write(TaskID)

read()

locked

(‘10’ &HostID)

(b
lo

ck
ed

)

locked

read()

(‘11’ &TaskID)

locked

write(TaskID)

Host System
concurrent

lock

Figure 3.3: Hardware system call - mutex lock sequence diagram.

In the next sections, we discuss the implementation of the Kernel Core in the HW-Task concept. We

then proceed with details of connectivity between the Kernel Core and the HW-Task, and the available

resources in the Kernel Core. In section 3.2 we discuss the HW-Task template design where we show

some application-level operations. We conclude in section 3.3 describing the host system connection with

the accelerator model.

3.1 Kernel Core

The Kernel Core manages the HW resources in the accelerator model and promotes the integration of

the HW-Task in the host platform, namely in the interaction with the operating system and the applica-

tion memory segment. Conceptually, the Kernel Core acts like any kernel that can be found in the most

elementary OS, by providing a set of services that interact with local resources through system call invoca-

tion. In the HAL-ASOS design, these are called HW system calls to distinguish themselves from the similar

software-based implementation. To operate at kernel level, the HW-Task implements system calls using

procedures described in the kernel HDL package. Alternatively, for more complex operations the user

HDL procedures can implement consecutive system calls that involve more than one local resource. Pro-

cedures can receive input and output parameters that link to resources from the HW-Task design. These

Chapter 3. First-class Hardware Components 83

in turn will allow the system call to access these resources and ultimately update them with execution

results.

Figure 3.4 shows a simplified diagram that describes the internal organization of this component. The

Control Unit determines the status of the accelerator, and it can be triggered by the active bits in the

control register. These in turn can be handled by the host system to address the application functional

requirements. Due to the critical nature of these operations, the content of this register is updated under

the supervision of the Authenticator device, which validates the received word before authorizing the

operation.

Kernel Core

Time Events

Index Counter

Schedule Cntr.

Error Counter

Authenticator

LOCAL BUSFIFO IN FIFO OUTS00 Control M00 System

Kernel Call Kernel Response

Microprogram
Control Unit

Control Reg. Status Reg.

System
Datapath

Figure 3.4: Kernel Core internal structure

Once active, the Control unit operates through the system-level datapath, establishing connectivity between

the micro-programmable unit and the kernel Call and Response interfaces. These interfaces match directly

to the S00_Task and M00_Kernel signals in the accelerator top-level, and allow the HW-Task to trigger the

system calls present in the micro-programmable unit. In turn, system calls give rise to a pre-programmed

set of control actions, which operate at the system level to handle adequate data manipulation using the

existing local resources.

When the HW-Task design needs a wait event within the duration of a predetermined number of clock

cycles, or to wait for an HW signal restricted to a maximum timeout interval, a system call can interact with

the Time Event device to provide this service. In addition, three parametrizable counters are included in the

kernel datapath and used internally when scheduling multiple and concurrent system calls, manipulating

data through indexes and to account for any errors that may occur as result of the execution.

84 Chapter 3. First-class Hardware Components

Once running, the micro-programmable unit suspends the clock signal at strategic points of the HW-Task

design for all system calls. In doing so, the HW-Task context remains suspended while it interacts at kernel

level. Pre-programmed control signals are then generated to forward the received parameters using the

system-level datapath. At the same time, status information is generated that indicates whether the system

call performs a write or read operation, or if it stays blocked waiting for available resources involved. In

the final active clock cycle that completes the system call execution, the microprogram re-establishes the

context on the HW-Task, allowing this entity to proceed with its processing.

3.1.1 Authentication

In the Kernel Core design, the Authenticator acts as a shield for the control register. All data write trans-

actions that target this register are forward via the Authenticator device that, after validating the received

word, determines whether or not such contents can be written. In Figure 3.5 we can see a simplified

diagram that describes the internal design of the Authenticator device.

Q[5:0]D[5:0]

increment

clear

load

Counter
(6-bit)

resetclock
100000

5 0

[5]

[4]

clock [5]reset

compare

match

ALU
[15:0]

[15:0]

A1

user_id

Auth_reg
CE

reset

D[N:0] Q[N:0]
i_data

WR_CE_i

reset

D Q
clk

CMASTER_KEY

Clock

clock Control.run

Control.sw_reset

Control.run_for_iteration

Control.restartauth_key

Control.auth_key

Q[5:0]D[5:0]

increment

clear

load

Counter
(6-bit)

resetclock
100000

5 0

[5]

[4]

clock

[5]

reset

master_id

valid_id

[15:0]

[28]

[29]

[30]

[31]

compare

match

ALU
[15:0]

[15:0]

A0

CUSER_KEY

master_id

user_id

Control.sw_reset Control.restart

RESET

auth_key

C0 C1

FF0

FF1

[30]

clear_i

Authenticator

reset

clock

CS(0)

txdata

S00_Control

control

o_sw_reset

o_sw_restart

* - control_offset = 0

ce

WR_CE

clear_i

Figure 3.5: Authenticator device architecture

On the left side of the figure, we see the S00_Control interface, which is the source of control-oriented

data, used by the host system. In this interface, the CS(0) line is active when the address matches the

control register offset, and the interface specifies a write transaction using the WR_CE signal. The logical

combination of both signals and logic ’0’ in the FF0 register, enables the clock (CE) in FF1 for one period.

The next active clock transition stores the contents of i_data in the internal register Auth_reg.

During this clock cycle, the Authenticator makes the word available at the control output, while comparing

the auth_key field with parameter keys in A0 and A1 inputs. The logical combination of user_id and

Chapter 3. First-class Hardware Components 85

negated control.sw_reset will activate the output valid_id, while at the same time, the input WR_CE

assumes the logical zero, which activates the clear_i internal signal. The subsequent clock cycle will use

the valid_id signal to store the control output in the Kernel Core register, while the clear signal discards

the contents in the Auth_reg. Figure 3.6 shows a wave plot that results from the functional validation of

the authenticator device, where the S00_Control interface writes in the control register of this unit.

Figure 3.6: Authenticator wave diagram: control operation for HW-Task restart.

At the 125 nanoseconds marker, the control word 0x1000ace1 sets the restart_hwtask bit, that combined

with the user_id flag, loads the counter C0. In the next clock cycle, the active 5th bit in Q[5:0] links with

the output o_sw_restart, and the same bit starts C0 counting. When the count value reaches “110000”,

the 4th bit clears C0, and at the 305 nanoseconds marker the output Q assumes the value of “000000”

that completes the restart operation. The authentication key CUSER_KEY gives the host privileges to

change all fields in the control register except for sw_reset bit. Due to such critical condition and to

avoid erroneous data re-use, this operation can only be triggered by the use of distinct CMASTER_KEY.

In a similar way, when the authenticator receives the CMASTER_KEY with the logical value high in the

sw_reset bit, the combination of this bit with the master_id flag loads C1. The output of this counter

triggers the SW demanded reset operation for a pre-determined number of clock cycles. The value of

both keys, as well as the count intervals of the C0 and C1, are parameters of the Authenticator. These

86 Chapter 3. First-class Hardware Components

values are defined in the hal_asos_configs package that can be adjusted to better suit the design timing

constraints. Some of the contents in this package will be discussed in this section.

3.1.2 Control Unit

The Control Unit is responsible for the status of the Kernel Core, and reacts to the active bits in the

control register and the task status bits. From the host’s point of view, this unit establishes synchronism

between the OS and the accelerator model. As from the accelerator’s point of view, it synchronizes the

HW-Task with the target application. Figure 3.7 1 describes the top-level signals of this unit, and it also

shows the control register implementation and the HW-Task status bits dead and done (i.e., task_dead_i

and task_done_i).

CE

reset

D Q

clk

Control.run

Control.run_for_iteration

Control.restart
[28]

[29]

[31]

control CE

reset

D Q

clk

Kernel_Call

task_done_i

CE

reset

D Q

clk

Status.Dead

task_sleep

task_run

task _restart

31 29 28 15 0

Control Register

Control.auth_key[15:0]

CE

reset

D Q

clk

core_state

sw_reset

reset

clear_run_i

restart_hwtask_i

run_i

RUN_IT

task _restart

reset_i

reset_i

clear_task_rst_i

[31]

[29]

[15:0]

valid_id

reset_i

reset_i

task_dead_i

RUN SW_RST30
RUN_IT RESTART AUTH_KEY-

Control Unit

clock

reset_i

clk

reset

clock
Kernel_Response

FF2

FF3

FF1

FF0

[28]

task_done

to Datapath
sw_restart

Time_Event.timeout

Time_Event.core_sleep

timeout_i

CE

Figure 3.7: Kernel Core - Control Unit Overview

The main source of information for this unit is the control register implemented using FF0 to FF3 logical

elements (LEs). When the RUN bit is active, the control enables the accelerator to a continuous run, that

can be quantifiable in HW-Task iterations or processing rounds. When this bit value switches to logical

zero, the control remains active until the HW-Task completes the current round, and signals completion

through the task_done bit. Similarly, the combination between RUN and RUN_IT bits, activates the control

unit to run for one HW-Task round. At completion, the task_done signal is used to set clear_run_i and

the next active clock transition will clear the RUN bit (FF0) in the control register. In response, the control

suspends the task_run output, which prevents the HW-Task from starting a new round. The HW-Task

rounds are comprised between the clock cycle in which the control activates the task_run output until the

clock cycle in which it receives the task_done signal.

Chapter 3. First-class Hardware Components 87

The implementation of the control unit follows a state logic that can be consulted in Figure 3.8. States

#0, #1 and #2 are referred to as online states since control is available to interact with the host system,

although from the HW-Task perspective, in #2, the internal context is suspended. In the remaining states,

the accelerator is considered offline, either because it is in the dead state or because a restart operation

has been triggered and it waits in #3 for the HW-Task to be ready for execution.

0
#0

ready

#1
processing

#2
sleeping

#4
dead

#3
restarting_task

timeout_i/

status.dead

task_done_i/

run_i/

run_i/

restart_hwtask_i

wait_event_timeout(run_i, CKERNEL_TIME_TILL_SLEEP)

wait_signal_...

/task_run

sys_call_yieldsys_call_none
/task_restart

run_i/

On-line states

restart_hwtask_i

/task_sleep

Figure 3.8: Kernel Core - FSM state diagram

The Control unit assumes the initial state ready after a system restart or a host demanded SW reset.

During this state, it is not possible to predict when the host system will be available to interact with

the accelerator, and thus the control initiates the HW system call waint_event_timeout. This system call

receives the run_i signal and the integer CKERNEL_TIME_TILL_SLEEP as input parameters. The numeric

value expresses the timeout value in clock cycles during which the execution will remain waiting for a high

value on the run_i signal. If the run_i input is not received before the counting expires, the control returns

from executing the system call with the timeout bit high, and transitions to #2.

In #2, the Control unit activates the task_sleep output to enable the sleep condition on the HW-Task

design. At the same time, it selects a similar system call but now using the logical combination of the

run_i or restart_hwtask_i as input signal and no timeout value. In doing so, this system call will wait

indefinitely for a high value in the input signal parameter. A zero value in the timeout parameter activates

the core_sleep signal that is output in the Time Event unit, and using this signal, strategic points of the

Kernel Core are kept with the clock signals disabled. If the input signal is detected, the Time Event unit

88 Chapter 3. First-class Hardware Components

disables the sleep signal and the Control unit transitions to the next state accordingly. Slightly modified

control unit is used to address microprogram updates and can be seen attached in Figure D.6.

Once in #1, the Control unit connects the system-level datapath and the micro-programmable unit to the

kernel Call and Response interfaces, so that it can answer to HW-Task requests. At the same time, the

task_run output is kept active, signaling the HW-Task to proceed with its execution. The HW-Task can

now execute any of the system calls that the Kernel makes available, until the host system decides to

disable the run bit. Alternatively, the HW-Task can terminate the execution using the task_yield system

call. This will activate the Dead flag in the Status register and the Control unit reacts with the transition to

#4. Once in #4, the clocks for all strategic points in the Kernel Core and HW-Task designs are once again

deactivated. The Control unit does not return from this state unless a software reset operation is initiated

by the host system, or the target platform is restarted.

In Figure 3.9 we can see a wave diagram of a short simulation of this Control unit, including relevant

signals that relate to the Kernel Core design. After an initial reset the control assumes the st0_ready

and remains in this state, while waiting for the host to intervene in the control register. At time 1,300.00

nanoseconds, the status register indicates that the HW-Task is ready but blocked waiting for the run signal.

From the contents of the sys_call_id signal, we can see that the microprogram is executing a wait event

system call, which a few clock cycles later, gives rise to a timeout signal in the Time Event unit. In response

to a timeout, the Control unit advances to the st2_sleep state, suspending the clock signal in the HW-Task

design. Simultaneously, it repeats the execution of the system call, using the logical combination of the

run and restart signals, and zero timeout clock cycles as parameters. Five clock cycles later, the Time

Event unit activates the core_sleep signal that suspends the clock sources in strategic points the Kernel

Core design. Under this condition, the Control unit enters into suspension mode, where it remains until

host system intervention.

At time 1,630.00 nanoseconds, the control register is updated with the user key and the active bits run

and restart. One of these two active signals would be enough to trigger the Time Event device, which in

response, disables the core_sleep signal. With the clock sources enabled, the Control unit recognizes

the flags that gave rise to the event and advances to st4_restart, where the context of the HW-Task is

restarted. After ten clock cycles, the restart concludes and the control switches to the st1_processing

and activates the task_run signal.

Chapter 3. First-class Hardware Components 89

Fi
gu

re
3.
9:

Ke
rn
el
Co
re
-c
on
tro
lu
ni
tw

av
e
di
ag
ra
m
.

90 Chapter 3. First-class Hardware Components

Once active, the HW-Task executes the system call that reads the control-oriented data FIFO, and when

completed, it decides to abort the execution by issuing the task_yield system call. The control switches

the st3_dead where it remains blocked with the clock signals suspended once again. A few cycles later,

the main reset signal restores the accelerator to its initial state. During these states, the status register

is updated with the information from the HW-Task, where its operating status is visible, as well as the

indication of blocking, dead, sleep and restart, by the use of the corresponding flags.

In Figure 3.10 we can see a functional block diagram depicts the connectivity between the kernel Call and

Response interfaces, the micro-programmable unit and the system-level datapath. In M0, the source of

parameters for the microprogram and the system-level datapath are determined by the state register of the

Control unit. Similarly, using M1, the kernel response interface will receive the outputs from the system

wait_event_timeout()

Kernel_Call

sys_call_i

core_state core_state

Kernel_Response

ready

processing

sleeping

dead

restartingsyscall_none() return_dead()

return_blocked()

return_sleeping()

ready

processing

sleeping

restarting

dead
cinput_bus[N:0]

sys_call

sleep

coutput_bus[M:0]

cresponse

block_task

validthis_call Microprogram
(microcode)

core_sleep_i
return_i

parameters[X:0] return_arg[X:0]

System-Level Datapath

cresponsecontrol_inputs control_ouputs

syscall_yield()

wait_event()

M0 M1

X – (C_MESSAGE_WIDTH-1) := 63 N – (C_MICROPROGRAM_INPUT_WIDHT-1) := 31 M – (C_MICROPROGRAM_OUTPUT_WITDH -1) := 15

Figure 3.10: Kernel Core - system-level datapath and microprogram interaction.

call execution, or otherwise it will be clamped to constant signals. In the processing state, the HW-Task is

the source and destination of these signals, whereas in the remaining states, M0 disconnects the HW-Task

from the microprogram and system-level datapath, and M1 reinforces the blocking signals. Details about

the microprogram and the system-level datapath will be discussed in the following subsections, after the

introduction of the HW system calls.

3.1.3 Hardware System Calls

An HW system call is a sequence of control operations that use a predetermined number of steps, to

provide services related to the local resources in the accelerator model. In similarity with the concept

applied to the OS environments, the HW system calls virtualize the accelerator through a specific set

of features, that allows the designer to structure an HW-Task. They are the Kernel Core fundamental

Chapter 3. First-class Hardware Components 91

interface, to handle the local resources and abstract away the complexity that the accelerator model

represents. Such level of abstraction, in turn, promotes the design reuse allowing it to be implemented

on different platforms, as long as the HW system calls have appropriate implementation. In doing so, we

organize the Kernel Core design trough an incremental set of programmable features. For simplicity, in

this section we will refer to the HW system calls as system calls and to the Kernel Core as kernel.

To implement a system call, the HW-Task uses procedures in the kernel package that establish the func-

tionality, the involved parameters and the connectivity between these and the kernel microprogram and

system-level datapath units. For this, the kernel provides entry and exit points in its interface that establish

the required signals. In Figure 3.11, we can see an excerpt of the kernel package that defines the system

call interface. Starting at lines 163, 206 and 213, the kernel package defines the sys_call_t type as the

subset of system calls that the kernel supports and are used in the input and output records to establish

the system call interface.

...
library hal_asos_v4_00_a; 6

use hal_asos_v4_00_a.hal_asos_configs_pkg.all; 7

use hal_asos_v4_00_a.hal_asos_utils_pkg.all; 8

...
type sys_call_t is (SYS_CALL_NONE, SYS_CALL_WAIT_EVENT_TIMEOUT, SYS_CALL_READ_LFIFO, 163

 SYS_CALL_WRITE_LFIFO, SYS_CALL_READ_MESSAGE, SYS_CALL_WRITE_MESSAGE, SYS_CALL_READ_LBUS,164

 SYS_CALL_WRITE_LBUS, SYS_CALL_MUTEX_LOCK, SYS_CALL_MUTEX_TRY_LOCK, SYS_CALL_MUTEX_UNLOCK, 165

 SYS_CALL_READ_MBUS, SYS_CALL_WRITE_MBUS, SYS_CALL_READ_LBUS_BURST, 166

 SYS_CALL_WRITE_LBUS_BURST, SYS_CALL_READ_MBUS_BURST, SYS_CALL_WRITE_MBUS_BURST, 167

SYS_CALL_YIELD); 168

...
type sys_call_input_t is 206

record 207

 this_call: std_ulogic;-- trigger sys_call 208

 sys_call_id :sys_call_t; 209

 parameters : std_logic_vector(C_MESSAGE_WIDTH-1 downto 0); --field for syscall parameters 210

end record; 211

 212

type sys_call_output_t is 213

record 214

 valid: std_logic; 215

 block_task: std_logic; 216

 sys_call_id : sys_call_t; 217

 return_arg : std_logic_vector (C_MESSAGE_WIDTH-1 downto 0); -- return sys_call data 218

end record; 219

...

Figure 3.11: HW-Kernel package - system call types, entry and exit records

When executing system calls, each procedure specifies its arguments according to the desired feature in

line 209, and links them to the input parameters according to line 210. It then activates the this_call flag

to signal the kernel for valid inputs and to proceed with the system call. In response, the microprogram

activates the block_task signal and transfers the received type of system call to the syscall_id member

according to line 216 and line 217, respectively. Over the course of execution, the kernel updates the

92 Chapter 3. First-class Hardware Components

return_arg output (line 218) with the processing results from the system-level datapath. In the last step

of the system call execution, the microprogram activates the signal on line 215, which indicates valid

parameters in the return register, and at completion, it disables the block_task output to release the HW-

Task control. The output fields hold their contents until the next system call execution, thus allowing the

HW-Task to re-use or test them to evaluate results.

It should be noted that the kernel HDL package is inserted in a hierarchy that starts in the tool’s configura-

tion package. This establishes, among others, the length of the system-level datapath that is determined

by the largest parameter it receives (lines 210 and 218). This parameter is the kernel-level control mes-

sage and it depends on the parameter target architecture of the host system. As result, the length of the

datapath is fixed on two words when the tool targets a 32-bit host, or three words for a 64-bit host. The

kernel control messages will be discussed in subsection 3.2.3.

Table 3.1 summarizes the features that the kernel provides through the system calls. The first column lists

the specific types that identifies each feature, the second column provides a short semantic description

about the service and the third column shows the number of steps required to complete the system call.

The first item in the table represents the idle operation for the states of inactivity in the microprogram.

Taking the second line as an example, the procedure that implements the system call can receive param-

eters that include an input signal, and a numeric integer specifying a timeout in clock cycles. In this case,

the duration of the system call will vary according to the HW context that has been associated with, but

the implementation is based on three valid steps. Here, the first step is used to configure the Time Event

device according to the received parameters. In the second step the microprogram waits for signal or

timeout events, and in the last valid step, the system call completes by returning the remaining timeout

clocks.

In lines three to six, the system calls read and write control-oriented data, to and from the HW-FIFOs,

using two valid steps. The first step establishes the control signals in case of read, or control signals and

output data in case of write, and waits on available data or space accordingly. In the second step, the

system calls handshake with the device and collect received data in case of a read. Similarly, to read or

write through the Local-BUS, it requires a fixed two-step implementation that uses one clock cycle in each

step. In the first step, the parameters are submitted to the bus and these include the target address and

the word to be transferred when the operation is a write. In the second step, the system call performs the

handshake operation and collects data when the operation is a read.

Chapter 3. First-class Hardware Components 93

Table 3.1: Kernel Core - HW system call summary description

System Call type Description Steps
SYS_CALL_NONE No operation - Idle system. -
SYS_CALL_WAIT_EVENT_TIMEOUT Wait for a hardware event during a 3

parameter number of system clocks.
SYS_CALL_READ_LFIFO Read control data from the Local FIFO 3

to the HW-Task control input.
SYS_CALL_WRITE_LFIFO Write from the HW-Task control data 3

output to the Local FIFO.
SYS_CALL_READ_MESSAGE Read from the Message Queue to the 3

parameter message.
SYS_CALL_WRITE_MESSAGE Write the parameter message to 3

the Message Queue.
SYS_CALL_READ_LBUS Read one word using the Local-BUS at 2

parameter offset.
SYS_CALL_WRITE_LBUS Write using the Local-BUS at parameter 2

offset and byte length in one word.
SYS_CALL_MUTEX_LOCK HW-Mutex Lock using the offset parameter. 4
SYS_CALL_MUTEX_TRY_LOCK HW-Mutex try-lock using the offset parameter. 4
SYS_CALL_MUTEX_UNLOCK HW-Mutex unlock using the offset parameter. 4
SYS_CALL_READ_MBUS Read one word from the system memory 4

at offset parameter.
SYS_CALL_WRITE_MBUS Write to system memory at offset 4

parameter and byte length in one word.
SYS_CALL_READ_LBUS_BURST Read using the Local-BUS at offset and byte 4

length parameters in burst format.
SYS_CALL_WRITE_LBUS_BURST Write using the Local-BUS at offset and byte 4

length parameters in burst format.
SYS_CALL_READ_MBUS_BURST Read the system memory at offset 4

parameter for burst length words.
SYS_CALL_WRITE_MBUS_BURST Write the system memory at offset 4

parameter for burst length words.
SYS_CALL_YIELD Kill the accelerator. 2

In the HW-Mutex lock, step zero evaluates the state of the resource and implements containment when

locked. Beyond this, step one acquires the resource and step two evaluates the final result of the operation.

If the locked by channel B flag is set, the final step releases the HW-Task, or otherwise, the concurrent race

for resource is lost and the microprogram re-attempts the system call until it achieves success. Algorithm 1

describes the implementation of this system call.

In step zero (i.e., Step0), the microprogram generates the block_task signal that stops the control unit

of the HW-Task until completion. At the same time, it generates the Local-BUS read signal to query the

94 Chapter 3. First-class Hardware Components

status of the HW-Mutex. The system-level datapath links a received address for the HW-Mutex with the

Local-BUS, and uses the received data to produce flags Locked by A and Locked by B at the inputs of the

microprogram. If the Locked by A flag is set, the microprogram will remain in this step until the status

is updated and the flag is cleared. On release, it proceeds to step one writing the resource with the task

ID using the Local-BUS. Here, no testing is required and the microprogram reinforces correct behavior

using a dummy true test. In doing so, the two possible flows of execution, through the true or false path

both lead to step two. In step two the algorithm tests the Locked by flag for success in acquiring the

resource. In the occurrence of failure, the microprogram will return to step zero to repeat the system call.

On success, it will proceed to step three where the execution completes by transferring the received status

to the return_arg register, activating the valid signal and releasing the HW-Task.

Algorithm 1 Microprogram to lock an HW-Mutex

1: pseudocode SYS_CALL_MUTEX_LOCK
2: Step0: produce block_task and lbus_rd_ce test mutex status Locked A flag.
3: if true then goto step 0.
4: Step1: produce block_task and lbus_wr_ce test true input.
5: if false then goto step 2.
6: Step2: produce block_task and lbus_rd_ce test mutex status Locked B flag.
7: if false then goto step 0.
8: Step3: produce valid
9: exit

To avoid containment for undetermined number of clock cycles, the procedures that deal with the HW-

Mutexes distinct modes of operation between lock and try-lock. In try-lock mode, the system call can fail

on step zero as result of locked resource. In this case, it proceeds to step three avoiding contention and

concluding by returning a false boolean parameter to the HW-Task. Otherwise, if the resource is free the

system call proceeds to step one, where it attempts the lock operation. In step two, in the occurrence

of a lost race for the resource, the system call proceeds to step three and a false return is established.

Otherwise, if the resource is locked the system call concludes with true as return parameter.

Reading or writing to the system bus is scheduled in four steps to allow the microprogram to handle

distinct platform or bus technologies. Algorithm 2 describes this system call implementation. In step zero

the system call tests if the kernel owns a valid memory address and if false, it proceeds to step three

and completes the execution with error. Once in step one, the system call sends the write transaction

to the M00 interface, providing parameters and activating a request signal. It expects to receive an

acknowledgment signal (i.e., CmdAck) that can occur after an undetermined number of clock cycles and,

Chapter 3. First-class Hardware Components 95

in the event of an error, a CmdErr signal will also be received. Such error indicates an abnormal transaction

handshake and can occur if for instance, the system bus does not accept the specified operation at the

provided address, or if the M00 interface is busy with a transaction in progress. In step two, the system call

waits for the completion signal (i.e., Cmplt) that will always be generated by the M00 interface. During this

step, a new error may be received if step one was completed successfully and it predicts a failure during

the write operation performed by the host system bus. Upon receiving the Cmplt signal, the system call

proceeds to step three to finalize the system call and release the HW-Task. The CmdErr signal is handled

at the system-level datapath where it is connected to the error flag input register.

Algorithm 2 Microprogram to write one word to the system bus

1: pseudocode SYS_CALL_READ_MBUS
2: Step0: produce block_task and test sysram address
3: if false then goto step 3
4: Step1: produce block_task and mbus_wr_req and test CmdAck.
5: if false then goto step 1.
6: Step2: produce block_task and test Cmplt.
7: if false then goto step 2.
8: Step3: produce valid
9: exit

The use of a similar system call for the burst transfer format requires in step zero to test the active burst

mode flag. Such flag is active when there is a valid systemmemory address in the kernel register and there

is burst capability on the interface. It then proceeds to step one or aborts the execution, by proceeding

to step three and completing with error. Step one is executed as previously while the step two is repeated

for each transferred word, until a burst done signal is set high. Here, the Cmplt signal is used at the

kernel runtime level to index the next input word. Similarly, in step three the microprogram completes the

execution by releasing the HW-Task context. The use of burst format system calls will be best discussed

in subsection 3.1.7.

In the last system call, the HW-Task kills the accelerator putting the kernel control in the dead state. This

system call is executed in one step and is generally used in case of task control errors, or to implement

a pre-programmed application shutdown. In each case, the procedure used by the HW-Task is a user

defined procedure that combines two operations to send a kernel control message before triggering the

dead signal. Such message is used at host level for notifying the application, and can be used to request

shutdown, or otherwise restart the accelerator to handle errors. The HW-Task message protocol and

related package procedures will be discussed in section 3.2.

96 Chapter 3. First-class Hardware Components

3.1.4 Microprogram

To implement the design of the micro-programmable unit, the accelerator model employs single address

microcode as design basis. Its operation is based on the flow of microinstructions that implement the

microprogram, where each opcode activates certain outputs, and selects one input for testing. As result,

a program counter advances into the next instruction or takes a jump based on the current address and an

implicit offset in the opcode. Depending on the microcode technique, the address of the next instruction

may also be defined in the opcode, for the two possible logical cases. This is the instruction format when

using a two-address microcode. Alternatively, using an N-bit adder logic element, the address of the next

instruction can result from the increment of one unit of the current address value. For the accelerator

model, an integer parameter of 5 in the settings package (i.e., CSYS_CALL_WIDTH) is applied to N to

establish the program counter address range. In this way, 25 four-step system calls or a 128-byte address

space is in use for the chosen microcode, and a 2-bit incremental counter with load input is used instead

of the traditional adder.

Figure 3.12 shows the opcode format for step two of the system call to lock a HW-Mutex. The value of the

program counter results from the address prefix corresponding to the system call, concatenated with the

output register from the step counter. In this example, the absolute address 0x22 is applied to the ROM

where the microprogram is defined. The resulting word determines that input 10 is used as a test source,

0x20 is the address of the next microinstruction in case of failure, and output 7 remains active as long

as the current microinstruction is valid. In the same figure, it is also possible to observe the value of the

outputs valid (V) and block task (B) which are transversal to all microinstructions, and for this reason they

are located at specific positions in the opcode.

The implicit offset in the opcode is used when the test result is false and for this reason, this field is called

’next step when false’ (NSF). Traditionally, it refers the next state of the microprogram, but the concept

has been adapted due to the hierarchy of states that the design implements. Such hierarchy begins in

the processing state of the Kernel Core, providing the system call services to the HW-Task, which in turn

translate to an execution state of the caller that each system call represents. Each state, in its turn, evolves

in micro-states that implement the necessary steps to complete a system call. As for the choice of jump

in case of test failure, we have adopted the concept of continuous execution in line with the program’s

normality. The opposite case could also be used but the emphasis would be reversed. Ultimately, the

choice must be aligned with the predominant default value of the inputs.

Chapter 3. First-class Hardware Components 97

sys_call_id Step Input NSF Output BV

SYS_CALL_MUTEX_LOCK (0x08)

“10” “01010” “00” “0111” ‘0’ ‘1’

Program counter

RAM/ROM data

opcode
“01000”

F

‘0’

(sequenced word)“0100010”
(0x22)

Figure 3.12: Microprogram - opcode format example in mutex lock step two.

To select a test input, the design of the microprogram uses a 5-bit field in the opcode to implement a

multiplexing function of 32 signals to 1. Up until now, 24 of these are in use and can be consulted in the

excerpt of HDL descriptions attached to this document, as shown in Listing C.16. In the same opcode, a

4-bit field allows the microprogram to activate outputs, by implementing a demultiplexer function from 1

to 16 signals. Listing C.17 attached to this document includes an excerpt from the HDL descriptions of

this component, where it can be seen that so far 10 outputs are in use.

Table 3.2 shows an excerpt from the microprogram that includes the microinstructions of two system

calls, the mutex lock and try-lock. The contents in this table are ordered according to the microinstruction

opcode in Figure 3.12, and for completeness, the microprogram description can be found in Listing C.18

attached to this document. In the first line of the mutex lock system call, the microinstruction selects the

input 12 for testing the Locked A flag. The microprogram should proceed to the next instruction only when

the resource is free. Since this flag indicates a contradictory state, in order to implement a continuous flow

of valid tests, it must be complemented before the mux input. In this way, when the Locked A flag is active,

the input selection will result in test failure, and the microprogram will jump to the current instruction until

the resource is released. On release, the true result increases the step counter, which will give rise to the

absolute address 0x21 as result of the concatenation using 0x08 and “01”. In this step, the microprogram

activates the output 6 to write in the HW-Mutex and implements the dummy test to proceed to step two

on any result. For this test, it selects input 31 which has the logic value ’1’ statically assigned to the

multiplexer input.

In the microprogram inputs, only the locked flags A and B are used in complemented value, and we use

the latter to test if the mutex has been released by the microprogram. As such, the same flag without the

reverse logic is received at input 10, which gives rise to a valid locked test. Such test is used in step two

of the lock system call to ensure success in the occurrence of a race condition for the resource. When

98 Chapter 3. First-class Hardware Components

Table 3.2: Microprogram - Binary excerpt from the Microprogram.

Sys Call ID Step Input NSF Output Valid Block

...

00 01100 00 0111 0 1
01 11111 10 0110 0 1
10 01010 00 0111 0 1

SYS_CALL_MUTEX_LOCK 0x08

11 11110 00 0000 1 0

00 01100 11 0000 0 1
01 11111 10 0110 0 1
10 01010 11 0111 0 1

SYS...MUTEX_TRY_LOCK 0x09

11 11110 00 0000 1 0

...

success, the microprogram reaches step three by incrementing the counter, or otherwise jumps to address

0x20 and repeats the system call. In step three, it activates the output to indicate valid data in the return

register and releases the HW-Task by disabling the Block output. At completion, the microprogram needs

to jump to step zero in the counter register, so that a new system call can start. Although the increment

of the counter gives rise to the similar behavior, the design applies a dummy test of a false input to favor

regularity, and jump back in the last step of each system call.

The following lines in the same table describe the implementation of the system call for the try-lock mode.

As described in subsection 3.1.3, it differs from the previous one in steps zero and two, where in the

first case it proceeds to the last step if the resource is locked, avoiding contention. In the step two, it

proceeds to the next step even though it might have lost the dispute for the resource, thus avoiding the

repetition of the system call. In this case, both test results lead to step three and a distinction is made at

the system-level datapath, which turns the denied Locked B flag into an error and a false logical value for

the system call return.

Although some system calls use fewer steps, a set of four microinstructions establish a state in the

microprogram. In the fewer steps case, the unused locations were filled with just-in-case corrections,

implementing jumps to the beginning of the system call where they are inserted. For this reason, only the

blocking output is set to active, the false input is used for testing and the NSF field defines ”00” as the

next step. Up until now, 18 system calls are mapped in the program memory that requires 72 memory

locations. For this purpose, we implement a 128 x 13-bit ROM with an overall usage of 56% of the capacity

and exhibiting 12% of memory footprint with self-corrections.

Chapter 3. First-class Hardware Components 99

Figure 3.13 describes the ROM-based microprogram architecture using a simplified block diagram where

U0 represents the combinational ROM, addressed using the 7-bit program counter (PC). For this signal, the

design uses the inputted i_sys_call as address prefix and to convert a system call element to an equivalent

number, it employs the VHDL position attribute. In doing so, it considers the logical description in the

signal by the enumeration value it represents. Then, we concatenate this number with the 2-bit output

Q of the counter C0 to form the absolute address used in U0. In order to synchronize the microprogram

execution with the system-level datapath, the absolute address is also forwarded to this unit using the

output control.

Input select Next step false Output select Valid Block

ROM word

addr

PC[N-1:0]i_sys_call

o_block

o_valid

test input

enable output

1

no output

o_levm_trigger

i_levm_ready

i_levm_signal

012OW+1OW+2OW+3OW+4IW+OW+3

LEN:= 128 , Input Width (IW) :=5 , Output Width (OW):=4

Microprogram
(ROM-based)

Parameters:

mutex_locked_B_i

mutex_nlocked_A_i
mutex_nlocked_B_i

0

1

10

11

12

o_lbus_wr_ce
o_lbus_rd_ce

0

1

6

7

1531

…
…

…
…

true (‘1’)

M0

M1

U0

i_this_call

N := SYS_CALL_WIDTH +2

reset

FF0

L0

1

clock

this_call_i

I2

I0

I1

…

LUT3
(8:1)

Out

X0 X1 X2 X3 … X7

0

i_sleep

Counter
Q[1:0]

EN

inc
load

D[1:0]

reset
clock

C0

clk

CE

reset

D Q

clk

reset

[N-1:2]

[1:0]

o_cresponse

cinput_bus coutput_bus

…
… …

…

Figure 3.13: Microprogram - ROM-based internal architecture.

The C0 counter is updated in the clock active transitions by incrementing whenever the output in M0 is

a logic ’1’, or loading the value in input D when the same is a logic ’0’. For a change in its output, the

counter must have the EN input active, which enables the clock signal in the output register Q. The EN

signal is connected to the output of the logic expression in L0 that evaluates the i_this_call input, this

signal in the previous cycle, and the sleep input. The combination of logic ’0’ at the input I2 and ’1’ at I1 or

I0, establishes a logic ’1’ at the output. The use of FF0 provides an additional clock pulse in C0, ensuring

that, on completion, the microprogram proceeds with step zero of the idle system call. To implement this,

L0 receives an 8-bit logic function ’X’ as parameter, that contains ’1’ in the positions 1, 2 and 3, and

’0’ in the remaining positions. This is an alternative representation of the logical expression after it has

been implemented in the FPGA configurable logic blocks (CLBs). Figure C.18 attached to this document,

100 Chapter 3. First-class Hardware Components

shows an excerpt from the HDL descriptions of the microprogram unit that include the U0 ROM, the PC

and the L0 logic. The sleep signal is activated by the Time Event unit operation during step one of the

wait system call (line 1 of Table 3.1). In this step, the inputs i_sys_call and i_this_call cannot change

since the HW-Task is already blocked, and by disabling the clock in C0 and FF0, the microprogram is

considered suspended. Within a signal detection or timeout events, the sleep signal is revoked, allowing

for the next active clock to update the C0 output. In doing so, the PC receives the absolute address for step

two and the microprogram resumes the execution. Specific points in the accelerator model that use this

hibernation signal include the HW-Task control, the kernel control and the sequential logic in the kernel’s

datapath.

The descriptions about each design unit will include the sleep feature. In the next subsection, we shall

discuss the Time Event unit operation using a wave plot that includes the microprogram signals, while

implementing the wait system call. Alternative RAM-based microprogram architecture uses true dual-port

RAM in U0 to allow filesystem-based updates in the microcode contents can be consulted attached in

Figure D.9. The binary code is loaded by the HAL-ASOS file system at start-up, and the storage resource

is mapped by the S00 interface at supplementary page 8 offset.

3.1.5 Time Events

In the proposed accelerator model, the time wait and event detection features are implemented using the

Time Event unit, which provides parametrized services using the wait system call (line 1 of Table 3.1).

Through this unit, the kernel provides synchronization services to the control of the HW-Task, being based

on internal events that it expects to receive. Such events may result from known and synchronous sources,

or asynchronous change in the logical signals that this entity receives from its design. Ultimately, waiting

for an asynchronous event has a degree of unpredictability, which can be complemented with a timeout

parameter in clock cycles.

With this unit, the accelerator model seeks to enclose waiting events in a single resource to avoid con-

sequent replication of counters. At the same time, it seeks to mitigate the energy waste associated with

these waiting cycles, by providing a sleep feature that disables the clock at strategic points in the HW-Task

and Kernel Core designs. In doing so, whenever the HW-Task enters a sleep state, the kernel will act in

accordance, disabling the clock sources of the functional units in its datapath. On the other hand, if the

Chapter 3. First-class Hardware Components 101

accelerator is not running, the kernel control uses this service to disable the same functional units, while

waiting for the host system to intervene in the control register.

Figure 3.14 describes the design of the Time Event unit through a simplified block diagram. The central

element in the datapath is the C0 that implements clock cycle counting until it achieves a timeout value

that receives on its input. For appropriate semantics, this timeout is converted using two’s complement

in A1, and in doing so, the count value starts from that result to zero.

1 result

ADD

ALU

TWO’S COMPLEMENT

Counter

Q[M-1:0]

EN

reset

clock

incload

D[M-1:0]

OV

i_timeout_val

timeout_i

o_remaining_time

increment_counter_i
load_counter_i

reset

clock

FF3*

o_timeout

clock

Control Unit

i_event

ALU

match
no_time_i

compare

0

1 result

ADD

ALU

TWO’S COMPLEMENT

i_trigger

reset

D Q

clk

reset

D Q

clk

reset

D Q

clk

o_event_signal

o_ready

o_sleep

FF2

FF1

FF0

C0

A0

A1
A2

Time Event

clock

reset

reset

reset

reset

reset

M :16-BIT (CEVENT_TIMEOUT_WIDTH)

enable_i

reset

D Q

clk

timeout_i

i_event

sleep_i

CE

CE

CE

sleep_i

clock

clock

sleep_i

clock

sleep_i

ready_i

ev…signal_i

Figure 3.14: Time Event unit - simplified architecture diagram.

Once in service, counting can be interrupted by detecting the event input, or ultimately by exhausting the

counter, which is signaled by the internal timeout. At completion, the remaining count is converted back

in A2 and returned to the HW-Task using the remaining time output. The overall design of the datapath is

equivalent to a down-counting circuit that can load absolute count intervals. The resource management

is supervised by the control unit that loads, activates and stops the C0 counter. At the same time, the

control is sensitive to the event and trigger inputs while establishing the ready, sleep and event signals on

the outputs.

The event input is connected to the HW-Task sourced signal by means of the system-level datapath in

the Kernel Core, and the trigger signal is activated by the microprogram to start counting. For this, the

ready output is used, informing the microprogram about the resource state. If the timeout value is null

at the input, the internal signal no_time_i is set to logical ’1’. The control unit reacts by disabling the

enable_i signal that suspends the C0 counter. At the same time, it will enable the sleep output and wait

102 Chapter 3. First-class Hardware Components

indefinitely for a signal rise at the input event. The sleep output is distributed by the accelerator design

to disable clock sources, and internally, this signal is directly applied to the logic elements FF1, FF2 and

FF3. Finally, the output that results from the event detection, is sent back to the microprogram so that it

can complete the system call.

Figure 3.15 describes the control of the Time Event unit using a logic state diagram. After an initial reset

signal the control logic reaches #0, where it activates the ready output and waits for a trigger signal to

initiate a new event. Once at #1, the control enables the clock in C0 using the internal enable signal and

together with load, enables the write of the timeout value received in its input.

#3
Sleeping

/sleep_i

#2
Counting

/incr.._counter_i
/enable_i

i_trigger/

#0
Ready

/ready_i

#1
Load

/load_counter_i
/enable_i

#4
Signal

/event_signal

no_time_i

i_event

i_event V timeout_i

i_trigger/

Figure 3.15: Time Event unit - control logic state diagram.

With a non-zero timeout, the control advances to #2, where it keeps the clock active and starts counting,

by activating the increment signal. The reception of a logic ’1’ in the event input, or the occurrence of a

timeout in the counter, completes the counting state and the control advances to #4. If the timeout value

at the input is null in #1, the control advances to #3, where it waits indefinitely for the event input while

keeping the sleep output active. With a logic ’1’ in the event input, the sleep state concludes and control

advances to #4. Once in #4, the unit activates the event output and synchronizes the operating mode,

waiting for the trigger input to be disabled. Upon disable, the control unit returns to #0 and signals that

it is ready for a new processing round.

Figure 3.16 shows a wave plot that results from the simulation of the Time Event unit using Vivado, in the

context of the accelerator design where it is implemented. For this purpose, the HW-Task implements a

system call to wait for an event and considers a timeout of 6 clock cycles. At the bottom of this diagram, it

can be seen the parameters in use, as well as the microprogram control signals. The system call starts at

Chapter 3. First-class Hardware Components 103

10,505.00 nanoseconds and in step 0, the microprogram evaluates the operationality of the Time Event

unit. A clock cycle later, the microprogram reaches step 1 and activates the trigger signal, staying in this

step until event detection.

Figure 3.16: Time Event unit - Wait for a signal event using a 6-clock timeout.

The control of the Time Event unit responds to the trigger signal stimulus and advances to state 1, loading

the counter with 6, and one clock cycle later, when state 2 is reached, it starts counting. After 6 clock

cycles, counter time is exhausted and the internal timeout signal is asserted. The control unit advances to

state 4 and signals the event detection through its output o_event_signal. Upon receiving this signal, the

microprogram proceeds to step 2 and releases the context of the HW-Task. At the same time, the system-

level datapath transfers the timeout result and the remaining count value to the return register. In the

context of the HW-Task, the system call concludes with a false boolean extracted from the return_arg regis-

ter at position 62 (PARAM_TIMEOUT_STATUS). And in the position range [15:0] (PARAM_TIMEOUT_VAL’

range) this unit can check for a remaining time value. For completeness, similar plot using event detection

can be consulted in Figure D.3 and Figure D.4 shows the same simulation using a zero-timeout parameter.

3.1.6 System-Level Datapath

The system-level datapath establishes correspondence between the system call interface, the micropro-

gram and the resources in the accelerator model. For this, it selects one of three interfaces that provide

104 Chapter 3. First-class Hardware Components

access to local resources as it was shown in Figure 3.4. Among these interfaces we can find the HW-FIFOs

input and output interfaces, the Local-BUS, and the M00-BUS. Alternatively, the system-level datapath

can select the TimeEvent internal peripheral while providing timing services. The design is predominantly

combinational and operates in conjunction with the microprogram, to exchange data between individual

resources and the members of the system call. In Figure 3.17 we can see the system-level datapath

architecture, described using a simplified diagram.

Local-BUS

Time Event

M00_BUS

1100101100100
0001001001001
0110010001001
0000110010101

1100101100100
0001001001001
0110010001001
0000110010101

pop_msgpush_msg

message_t message_t

parameters return_arg

Message Queue

… …

S00_Control

i_event

evm_trigger

i_timeout

event_signal sleep

o_remaining_time

o_timeout_signal

addr

lbus_rd_ce

txdata

lbus_wr_ce

be

cs

burst_target

maddr

mbus_rd_req

mtxdata

mbus_wr_req

mbe

burst_target

lbus_rd_ack

lbus_wr_ack

rxdata

mblen

Cmd_ack

Cmplt

mrxdata

BurstDone

cresponse.sys_call_i cresponse.sys_call_i

Kernel_Call.parameters Kernel_Response.return_arg

SYS..WRITE_MESSAGE SYS..READ_MESSAGE

SYS..WAIT.._TIMEOUT
SYS..WAIT.._TIMEOUT

SYS.._READ_LBUS

SYS.._WRITE_LBUS
SYS.._R..LBUS_BURST
SYS.._W..LBUS_BURST

SYS.._READ_LBUS

SYS.._WRITE_LBUS
SYS.._R..LBUS_BURST
SYS.._W..LBUS_BURST

SYS.._READ_MBUS

SYS.._WRITE_MBUS
SYS.._R..MBUS_BURST
SYS.._W..MBUS_BURST

SYS.._READ_MBUS

SYS.._WRITE_MBUS
SYS.._R..MBUS_BURST
SYS.._W..MBUS_BURST

SYS.._MUTEX..LOCK
SYS.._MUTEX..TLOCK
SYS.._MUTEX..UNLOCK

SYS.._MUTEX..LOCK
SYS.._MUTEX..TLOCK
SYS.._MUTEX..UNLOCK

CE

reset

D Q

clk

FF4
SYS_CALL_IDLE

valid

clock

reset

Microprogram control signals Datapath signals Sleep signal

M2 M3

data_ready

data_valid

ready_for_data

ack_data

evm_ready

Figure 3.17: System-Level datapath - system call signals and target resource.

At the top of the figure, we can see the system call interface signals that connect with this design, after

being selected by the kernel control state, as it was seen in Figure 3.10. Input parameters are received

at the M2 demultiplexer, which operates according to the type it receives from the microprogram control

output. As such, it extracts predetermined fields from a system call to connect with one of the four logical

elements visible in the center of the figure. Conversely, the signals received from each logic element are

inputs to the M3 multiplexer, which are selected by the same type as in M2 and concatenated to form the

fields in the return of the system call. To handle clock cycle transactions, the return member fields are

sent directly from M3 to the kernel output. At completion of each system call, these are stored in FF4,

Chapter 3. First-class Hardware Components 105

so that they are available beyond execution. For that, the microprogram must reach an idle state (i.e.,

SYS_CALL_IDLE), or otherwise a new system call will update these registers with new data.

The interface that the kernel provides with the HW-FIFOs, is used to submit or retrieve control words, that

the accelerator model distinguishes between committed to kernel or to the HW-Task. In these components,

the design is aligned with the transfer rate of a clock cycle and takes advantage of parallelism to exchange

data above the word length. Figure 3.17 shows a Message Queue used to exchange kernel messages,

which is implemented using two HW-FIFOs. In this logical element, the length of the data is specified by the

predefined type message_t, which in the standard configuration is using two words (64 bits). Whenever

the microprogram executes one of the two system calls that exchange messages, the receiving parameters

and return members are connected with the input or output of the Message Queue.

Similar resource is the Data-FIFO logical element that despite using the same design, it does not have

a pre-defined type. Instead, the length of data is based on a predefined number of words that can be

changed at the top-level of each accelerator. In doing so, different lengths between different accelerators

can be used in the same design, or even be different between sent and received in the same design. For

this reason, only the control signals are provided by the microprogram, and the datapath is not included

in the kernel design, being connected directly to the HW-Task.

With respect to control signals, three are used in each logical direction of transfer, one being input and two

outputs, as can be seen in the same figure. Depending on the direction, the first output signal indicates

to the microprogram that each device is ready to receive, or to provide available data. The input signal

triggers the exchange and is produced by the microprogram outputs, and the last control signal is used as

a handshake, indicating that the data has been received, or should be read at the output. Implementation

details will be discussed in section 4.4, and the type of messages that can be exchanged will be discussed

in section 3.2.

Figure 3.17 also shows the connection with the Time Event unit. Since it is a local resource, none of the

previous interfaces is used while executing the wait system call. For this purpose, three control signals

connect with the microprogram, and seventeen bits from the parameters and return members in the sys-

tem call records, connect with the inputs and outputs of the Time Event unit. In the parameters member,

sixteen bits specify the timeout value and the position of one bit is used to establish the connectivity be-

tween the received event and the input event in the device. In the returnmember, the same 16-bit position

is used to send back the remaining time, and one bit is used to indicate the occurrence of timeout. Once

106 Chapter 3. First-class Hardware Components

in execution, the microprogram waits for the ready signal before starting a new event. The new event is

set using the trigger signal which gives rise to the sleep output that suspends the microprogram execution

and strategic points across the accelerator model. Upon receiving an active input event, or an exhausted

timeout signal, the sleep output is cleared and the microprogram resumes the execution.

Figure 3.18, shows excerpts of two files containing Time Event related descriptions, used by the system-

level datapath. These are part of the configuration package, lines 12 to 47, and the kernel package,

lines 10 to 95. It is also possible to observe excerpt descriptions of the system-level datapath in the

Kernel Core design, lines 562 to 576. In the configuration package, we find two redefinable constants

that set the timeout bit width and the time interval before the kernel sleep state, as mentioned earlier in

subsection 3.1.2.

package hal_asos_configs_pkg is 12

...
constant C_EVENT_TIMEOUT_WIDTH :natural :=16; 46

constant C_KERNEL_TIME_TILL_SLEEP: 47

 std_logic_vector(C_EVENT_TIMEOUT_WIDTH-1downto0):= x"C0DE";
...
package hal_kernel_pkg is 10

...
subtype PARAM_TIMEOUT_VAL IS std_logic_vector(C_EVENT_TIMEOUT_WIDTH-1 downto 0);--[15:0] 93

constant PARAM_SIGNAL_SOURCE: natural:= (C_MESSAGE_WIDTH-1); 94

constant PARAM_TIMEOUT_STATUS: natural:= (C_MESSAGE_WIDTH-2); 95

...
architecture Behavioral of kernel_core is 126

...
case cresponse_i.sys_call_id is 562

 when SYS_CALL_WAIT_EVENT_TIMEOUT => 563

 time_event_selected_timeout <= sys_call_i.parameters(PARAM_TIMEOUT_VAL'RANGE);--[15:0] 564

 time_event_selected_event <= sys_call_i.parameters(PARAM_SIGNAL_SOURCE);--[63] 565

 dresponse_i.return_arg(PARAM_TIMEOUT_VAL'RANGE)<=time_event_remaining;--[15:0] 566

 dresponse_i.return_arg(PARAM_TIMEOUT_STATUS)<=time_event_timeout_signal;--[62] 567

...

Figure 3.18: System-Level datapath - Time event parameters and return signals.

In the kernel package, we find positions for the parameters used in the system call members. The timeout

received and returned parameters use the least significant bits (e.g., 15 down to 0) defined by the subtype

of line 93. The signal event position is defined in line 94 and the timeout status flag position in line 95.

Such positions are then used in Kernel Core descriptions to establish connectivity with the Time Event

unit. Lines 564 and 566 use the timeout bit range in the assignment, and lines 565 and 567 assign the

event status and the timeout flag using the above positions. The assignments are active when the system

call ID matches the value specified in line 562.

Similarly, Figure 3.19 shows excerpt descriptions of the same design, but this time focusing the con-

nections of two system calls that use the burst format, to exchange data across the Local-BUS and the

Chapter 3. First-class Hardware Components 107

M00-BUS interfaces. In this format, a consecutive number of words is exchanged, starting from an initial

offset and until a parameter number is achieved. These two resources follow a generic interface model

that aims to promote data exchange to a single format, and in doing so, similar descriptions are used to

implement the system-level datapath connections. Details about this generic interface will be discussed

in section 3.3.

architecture Behavioral of kernel_core is 126

...
case cresponse_i.sys_call_id is 608

...
when SYS_CALL_WRITE_LBUS_BURST=> 712

 task_status <= TASK_WRITING; 713

 lbus_burst_syscall_i <= '1'; 714

 o_lbus_cs <= '1'; 715

 o_lbus_addr<= sys_call_i.parameters(PARAM_LBUS_OFFSET'RANGE);--[53:36] 716

 o_lbus_be <= sys_call_i.parameters(PARAM_LBUS_BE'RANGE);--[35:32] 717

 o_lbus_dout<= sys_call_i.parameters(PARAM_LBUS_WORD'RANGE); --[31:0] 718

 target_i(target_i'high-1 downto 0) 719

 <=signed(sys_call_i.parameters(PARAM_LBUS_BURST_LEN'RANGE)); --[63:54]
 dresponse_i.return_arg(C_LBUS_DATA_WIDTH-1 downto 0) <= i_lbus_din; --[31:0] 720

 dresponse_i.return_arg(PARAM_LBUS_BURST_LEN'range) 721

 <= std_logic_vector(to_unsigned(cresponse_i.index,PARAM_LBUS_BURST_LEN'length));
 error_source <= not(i_lbus_wr_ack); 722

when SYS_CALL_READ_MBUS_BURST=> 723

 task_status <= TASK_READING; 724

 o_kernel2_mbus_addr(31 downto C_MBUS_OFFSET_WIDTH) 725

 <= sys_ram_addr_reg(31 downto C_MBUS_OFFSET_WIDTH);--[31:20]
 o_kernel2_mbus_addr(C_MBUS_OFFSET_WIDTH-1 downto C_PAGE_SHIFT)<= std_logic_vector (726

 UNSIGNED(sys_call_i.parameters(PARAM_MBUS_PAGE_PREFIX'RANGE))
 + UNSIGNED(sys_ram_addr_reg(C_MBUS_OFFSET_WIDTH-1 downto C_PAGE_SHIFT)));
 o_kernel2_mbus_addr(C_PAGE_SHIFT-1 downto 0) 727

 <= sys_call_i.parameters(PARAM_MBUS_PAGE_OFFSET'RANGE) & "00";--[11:0]<-[45:36]
 o_kernel2_mbus_tlen <= sys_call_i.parameters(PARAM_MBUS_BURST_LEN'RANGE) ; --[63:54] 728

 target_i(target_i'high-1 downto 0) 729

 <= signed(sys_call_i.parameters(PARAM_MBUS_BURST_LEN'RANGE))-1;
 dresponse_i.return_arg(PARAM_MBUS_WORD'RANGE) <= i_mbus2_kernel_data; 730

 dresponse_i.return_arg(PARAM_MBUS_BURST_LEN'RANGE) 731

 <= std_logic_vector(to_unsigned(cresponse_i.index,PARAM_LBUS_BURST_LEN'length));
 error_source <= i_mbus2_kernel_cmd_error or sys_ram_addr_reg(31); 732

...

Figure 3.19: System-Level datapath - Local-BUS and MBUS fields of system call.

As in the previous peripheral, the implementation is based on the settings that the configuration and

kernel packages establish, and can be consulted in Listing C.19 attached to this document. For this, the

system-level datapath implements connectivity with the inputs signals: word, offset, byte enable (BE) and

transfer length, and the system call parameters member. In the opposite direction, the output signals:

word and the effective number of words transferred, are connected with the return member. The latter

signal is part of the kernel index service which allows the HW-Task to manipulate data using array logical

structures at kernel-level, and it will be discussed in the next subsection.

In summary, the least significant 32-bit of the parameters and return members are used to exchange one

word in both directions (lines 718, 720 and 730). The most significant 32-bit are split into 18 bits to specify

108 Chapter 3. First-class Hardware Components

the word offset in the interface (lines 716, 725 to 727), 4-bit in the BE field to select bytes that are affected

during a word write operation (line 717), and lastly, the remaining 10-bit are used to specify the transfer

length (lines 719, 728 and 729). These are default settings that map 256 k-Words on each interface

and allow a maximum length of 1024 words (1 k-word) for sequential transfers. For completeness, the

next subsection demonstrates the interoperability in these two system calls while describing details of the

kernel run-time.

While implementing system calls, the kernel updates the status register with results of the execution. Such

register receives information from multiple sources in the kernel design that when combined describe the

accelerator state. Throughout the previous excerpts about the system-level datapath, we can find that a

task status is updated according to the system call in progress (lines 713 or 724), to reflect the logical state

of the kernel’s operation. Such information must be complemented with the blocked and sleep flags from

the microprogram and Time Event units, and the dead flag that results from the yield system call. Also,

an error source is established that can trigger the error flag if the system call is not completed properly.

All these flags are source of the status register that can be seen in Figure 3.20.

TASK_STATUSERROR RSTING BLOCKEDSLEEP
31 30 1

0

2
DONEDEAD

34
states

5
Status Register

cresponse.sys_call_id

cresponse.block_task
Authenticator.sw_reset

cresponse.sys_call_id

error_source

Kernel_Call
task_state task_done

TASK_READY

TASK_PROCESSING

TASK_READING

TASK_WRITING

reset

D Q
clk

ce

error_flag

cresponse.valid

cresponse.sys_call_id

0

1 sys…yield

TimeEvent.sleep

clock

sys…none

sys…none

…

lbus_rd_ack

lbus_wr_ack

Locked B

sysram_address

Burst_ready

CmdError clock

sys…lbus

sys…mutex

sys…mbus

sys…none

sys…mutex

sys…lbus

sys…mbus

…

…

M3.flag_dead
M3.task_status

M3.error_source

Figure 3.20: Kernel Core - status register signals.

In doing so, using the M3 multiplexer group, the system-level datapath implements the task status, the

error source and the dead flag. The task status, sleep and blocked bits, will be updated at the next active

clock transition, and the error flag will be triggered if a high logic value persists until completion of the

system call. The dead flag signals a control state that results from the yield system call, from which the

kernel can only return after a system reset or a software-demanded reset. In the latter case, the Resetting

bit is kept high for the number of clock cycles that this operation requires. Also, using the Kernel_Call

Chapter 3. First-class Hardware Components 109

interface, the HW-Task publishes its control state in the 29- down to 6-bit range of this register, and uses

the Done bit to signal the completion of its processing.

An error counter records the number of flag occurrences and can be read using the S00_Control interface

on the accelerator model. The same interface can be used to read the status register, and read or write

to the sysram_address register. The contents in the sysram_address register can activate the error flag in

M3 if it is used before receiving a memory address. For this, its value after the reset is negative and the

signal bit is used as an error source. Details of the S00_Control interface will be discussed in section 3.3.

3.1.7 Kernel Runtime

While executing system calls, the kernel may need to repeat a particular step of the microprogram in order

to manipulate data above the word length. On the other hand, if a local resource does not allow such an

exchange without prior handshake, the kernel is forced to repeat the system call in its entirety. To deal

with these execution variants, the kernel relies on index service to manipulate consecutive words, or the

procedure scheduler to establish a logical sequence in the execution of system calls. Figure 3.21 shows

a simplified diagram describing the resource logic used to implement the index service.

Counter

Q[10:0]

CEload
C0

clk

CE

reset

D Q

clk

FF5

subb

carry

ALU

A0

busrt_done

Index_d1 [9:0]

Index[9:0]

burst_target

enable_index

Kernel_call

CmdCmplt

Kernel_response

clock

clock

reset
D[10:0]

0
rst

inc
increment_index

reset

cresponse_i.valid

System-level datapath signals HW-Task signalsMicroprogram signals

Index Counterbusrt_done

lbus_burst_sys_call

mbus_burst_sys_call

G0

G1

G2
G3

G4G5

G6
G7

G8

increment

load

G9

Figure 3.21: System-Level datapath - Index management service.

Such functionality relies on the C0 counter, which a procedure can use to index elements in a logical

array. In similar way, the same index can also be used as offset that adds to a base parameter to

compute incremental addresses. To cope with reading operations in the next clock cycle, FF5 provides

the index value with the delay of one counting cycle. This allows the procedure to specify a new offset or

a new word using a new index value, while reading the current word from the return register and storing

it using the previous index.

110 Chapter 3. First-class Hardware Components

In its design, this logic provides means of internal control using the microprogram and the system-level

datapath signals, or explicit control in the procedure descriptions. While using internal control, the logic

combination G0, uses one of the burst signals from the system-level datapath, to enable the clock sources

of the C0 counter and the FF5 register. The increment of the index is activated by the same signals using

G7 or G8 depending on the system call. In this way, the output value will increase with the clock cycle

when using G7, or it will be postponed until a clock cycle in which a complete signal is active in G8. A

target length is subtracted from the current value of the index using A0 (i.e., index-target= carry), which

gives rise to a done signal when they are equal, disabling the increment signal using G6. In the burst

mode the kernel executes one system call and repeats the step in the microprogram where it exchanges

the new received word. At completion, the valid signal in G1 sets the counter and the delayed index to the

initial values, using one of the active inputs in G2.

A procedure can request this service through the kernel’s call and response interfaces by activating the

enable and increment signals. The increment signal is combined with the valid signal in G5 which gives

rise to the inc input at the completion of a system call. In doing so, when the procedure controls the index

service, the kernel repeats the system call in its entirety to submit a different word on each execution. In

the last word, the procedure disables the increment signal while keeping the clock active and the logical

combination in G3, G2 and G1 activates the load input that sets the outputs to its initial values.

To repeat a system call, the kernel can rely on the procedure scheduler that, when active, superimposes

the block signal from the microprogram. In this mode of operation, the kernel can repeat the system

call until the procedure descriptions suspend the scheduling service, or allow the advance to another

concurrent procedure that may be implemented in the same descriptions. This is usually the case when

the HW-Task implements user package procedures that are composed of kernel procedures. Details of

these procedures will be discussed in the following section.

With the scheduler service, concurrent procedures are executed according to a pre-established order

that aims to implement composite features in the accelerator model. The scheduler policy is based on

incremental counting used to select procedures for execution, multiplexing the kernel interfaces to each

procedure accordingly. In Figure 3.22, we can see a logical diagram that describes the implementation of

this service. The HW-Task can invoke this functionality using the kernel interface, by enabling the service

and setting the reschedule signal at each procedure completion. In doing so, it must establish a logic ’1’

in the enable signal, and in this instant, the zero value in the counter establishes a connection with the

Chapter 3. First-class Hardware Components 111

procedure in the corresponding sequence.

Counter

Q[p:0]

CEload
C0

clk
sched_progress

reschedule

Kernel_call Kernel_response

clock

D[p:0]0 rst

inc

reset

HW-Task signalsMicroprogram signals

enable_scheduler

procedure scheduler

microprogram.valid

CE

reset

D Q

clk
clock

FF0

G1

reset
G2

G3

block_task

microprogram.block

G4

G5

p – (C_SCHED_PROGRESS_WIDTH-1)

Figure 3.22: Kernel Core - execution progress service.

The enable signal activates the FF0 and C0 clocks using the logical combination in G1, and with a logic

’0’ at the output of G2, FF0 activates the Q output at the next clock transition superimposing the micro-

program’s block feature in G5. In this condition, the HW-Task cannot return from the procedure execution

and the kernel repeats the system call consecutively, until a logical combination of the reschedule and

the valid signals in G3, activate the inc input, which gives rise to a new value in the C0 output.

Each new count value will select a different kernel procedure for execution, and in the last step, a logic ’0’

in the enable signal, indicates that the scheduler service must conclude with the execution of the current

system call. For this, the logic combination in G2 activates the load input of C0 when the valid signal is

set high, by the last step of the microprogram execution. At that time, the input of FF0 receives a logic ’0’

and in the next active clock transition, the outputs in these two sequential units reload the initial values.

A logic ’0’ in FF0 will release the context of the HW-Task so that it proceeds to a new state in its logic

diagram.

3.1.8 Kernel Call and Response

From the kernel procedure’s point of view, the Call and Response interfaces are the representation of the

Kernel Core. Here, we can find the signals that establish correspondence with the components involved

in the system call execution. Other signals that connect to the indexing and scheduling services can also

be found on this interface, as well as signals that are intended to control the HW-Task. Figure 3.23 shows

an excerpt from the kernel package that establish these interfaces. In these descriptions, the record

members can be grouped by sub-levels of datapath or control. In the datapath sub-level, lines 247 and

112 Chapter 3. First-class Hardware Components

260, we can find the parameters and return_arg members that perform the effective exchange of data in

both directions. At the control level, we can find the this_call, line 248, and the system call ID, line 246,

that correspond to the microprogram inputs, and the signals that in response determine the execution

state, such as block_task, in line 266, or sleep_task, in line 267. A valid response must include the

sys-call id in the response field, line 259, together with an active valid signal, line 261, and the error flag,

line 268, that can also be used in the HW-Task context.

...
package hal_kernel_pkg is 10

...
type kernel_input_t is 244

 record 245

 sys_call_id :sys_call_t; 246

 parameters: std_logic_vector (C_MESSAGE_WIDTH-1 downto 0); 247

 this_call: std_ulogic; 248

 enable_scheduler: std_ulogic; 249

 reschedule: std_ulogic; 250

 enable_index: std_ulogic; 251

 increment_index: std_ulogic; 252

 task_state: std_logic_vector(23 downto 0); 253

 task_done: std_ulogic; 254

end record; 255

...
type kernel_output_t is 257

 record 258

 sys_call_id : sys_call_t; 259

 return_arg:std_logic_vector (C_MESSAGE_WIDTH-1 downto 0); 260

 valid:std_ulogic; 261

 kernel_progress: natural range 0 to (2**C_KERNEL_PROGRESS_WIDTH)-1; 262

 sched_progress: natural range 0 to (2** C_SCHED_PROGRESS_WIDTH)-1; 263

 index: natural range 0 to (2**C_KERNEL_INDEX_WIDTH)-1; 264

 index_d1: natural range 0 to (2**C_KERNEL_INDEX_WIDTH)-1; 265

 block_task: std_ulogic; 266

 sleep_task: std_ulogic; 267

 error_flag: std_ulogic; 268

 task_reset: std_ulogic; 269

 task_run : std_ulogic; 270

end record; 271

...

Figure 3.23: Kernel Core - input and output interface types using VHDL records.

To provide the scheduling and index services requests, lines 248 to 252 implement the corresponding

enable and trigger inputs, and in lines 263, 264 and 265, the kernel provides each service outputs.

Additionally, in line 262 the kernel output interface provides the execution step in the microprogram and

the HW-Task can use this value in its design when needed. The task_run in line 270 and a task_reset in

line 269, are used to synchronize the HW-Task with the control unit of the Kernel Core. In the opposite

direction, a task_done signal in line 254, informs the control that the HW-Task has completed a processing

round. The 24 bits of the task_state can be used by the HW-Task to publish its control state in the status

register of the accelerator.

To comply with the use of automated block design tools, these interfaces were striped-down to individual

Chapter 3. First-class Hardware Components 113

signals that can be found in the HW-Task and the Accelerator top-level descriptions. Such signals are

based on the equivalent standard logic and use appropriate XML descriptions to provide rules that prevent

erroneous connections, as well as support the validation features that can be found in today’s modern EDA

tools. For this reason, the new signals are logically grouped in the M00_Task and M00_Kernel interfaces

that have a corresponding S00_Task and S00_Kernel connection. To transverse between the kernel Call

and Response interfaces, and the standard logic representations, the kernel package provides import and

export procedures that can be seen attached in Listing C.20.

3.1.9 Kernel Procedures

To interface the set of system calls that the Kernel Core implements, the HAL-ASOS tool provides the

procedures in the kernel package that HW-Task can implement in its datapath. These procedures estab-

lish the fundamental interface of the system calls and in doing so, they define the type and number of

parameters required for each functionality. In essence, such procedures export the system calls to the

HW-Task design, while seeking to expose the distinct features that a given resource can have. Therefore,

the number of procedures that are used to invoke system calls is higher than the set of features that the mi-

croprogram implements. An excerpt from the kernel package that declares the most relevant procedures

in the accelerator model can be found in Listings C.21, C.22 and C.23 attached to this document.

In their implementation basis, the kernel procedures are distinguished by the exclusive use of kernel

design-imposed types, and in this way, the underlying model is limited to a connectivity between param-

eters and interface members. To address the uniqueness of the kernel interfaces and a four steps model

imposed by the microprogram, the calling entity can implement a kernel procedure for each state in its

control logic. In concurrent form, it can implement other procedures in the kernel package which aim

to obtain an adequate formatting of the parameters involved. For more complex and feature-oriented

procedures, the HW-Task can implement user package procedures. These will allow the use of more

elaborate types that ultimately seek to represent application memory objects or the Linux device model.

Implementation details of the user package procedures will be discussed in section 3.2.

Figure 3.24 outlines the connectivity between the HW-Task and the Kernel Core while it implementing

system calls. On the right side of the figure, we can see a representation of the Kernel Core that is

based on the functional units in the kernel runtime. On the left side of the figure, we can see a simplified

114 Chapter 3. First-class Hardware Components

example of the HW-Task design. It can also be seen the top-level interfacesM00_TASK andM00_KERNEL

discussed in the previous section.

HW-Task
Control Unit

system-call procedure
(wait_event)

system-call procedure
(mutex_lock)

system-call procedure
(write_reg)

S0
0

_K
ER

N
EL

M
0

0
_T

A
SK

M
0

0
_K

ER
N

EL
S0

0
_T

A
SK

HW-Kernel

Kernel Core

K
er

n
el

 C
al

l
K

er
n

el
 R

es
p

o
n

se

Microprogram

System-level
Datapath

Kernel Call

task_state_2

task_state_4

task_state_7

task_state_n

system-call procedure
(mutex_unlock)

system-call procedure
(write_lram_burst)

system-call procedure
(mutex_lock)

operation-oriented procedure

Kernel Response

Index

Scheduler

Status

sl
ee

p
b

lo
ck

ru
n

Figure 3.24: Kernel Core - execution runtime overview from the HW-Task perspective.

The control unit of theHW-Task is responsible to activate concurrent system call procedures in its datapath,

while it receives control signals to synchronize with the kernel execution. The moment a system call starts,

the control unit suspends, keeping the procedure active until completion of the microprogram execution.

Once active, the inputs and outputs of the procedure are updated by the execution of the microprogram

and the system-level datapath, and in this sense, it is considered that these signals are controlled by the

context of the kernel. To that extent, the procedure circuitry is seen as an HW extension of the Kernel

Core.

In the same figure, it can also be seen a user package procedure that is composed of three concurrent

kernel procedures. Similarly, only one user procedure can be used in each state of the HW-Task control,

and that particular state is repeated for each system call consecutive execution. For that, the user proce-

dure relies on the kernel scheduling service to select each procedure accordingly. The HW-Task design is

accountable for the additional logic inside a user procedure, to interconnect each kernel procedure with

the kernel interfaces. In that sense, the interconnect logic is considered an extension of the HW-Task’s

datapath.

In Figure 3.25 it can be seen the descriptions of the wait_event procedure in the kernel package. Such

procedure, interfaces the wait system call and can be used to put the HW-Task into a sleep state while

Chapter 3. First-class Hardware Components 115

waiting for a signal event in its design. For this, the HW-Taskmust connect the target signal with the event

input, and when required, specify a timeout value using the timeout_val parameter. Alternatively, it can

connect a logic ’0’ in the event input for using this service as time-based event. The descriptions in this

procedure specify the system call ID on line 1152, and provide the received timeout value, on line 1153.

In line 1154, it establishes a connection between the target signal and the system call parameter, and at

line 1155, the this_call signal is set, triggering the microprogram execution.

package hal_kernel_pkg is 10

...
--- 1144

procedure wait_signal_event(signal i_call : out kernel_input_t; 1145

 signal o_response : in kernel_output_t; 1146

 signal i_event : in std_logic; 1147

 signal is_event : out boolean; 1148

 constant timeout_val: in integer :=0) is 1149

-- 1150

begin 1151

 i_call.sys_call_id <= SYS_CALL_WAIT_EVENT_TIMEOUT; 1152

 i_call.parameters(PARAM_TIMEOUT_VAL'RANGE) 1153

 <= std_logic_vector(to_unsigned(timeout_val,C_EVENT_TIMEOUT_WIDTH));
 i_call.parameters(PARAM_SIGNAL_SOURCE) <= i_event; 1154

 i_call.this_call <= '1'; 1155

 is_event <= to_boolean(not(o_response.return_arg(PARAM_TIMEOUT_STATUS))); 1156

end procedure wait_signal_event; 1157

-- 1158

Figure 3.25: Kernel package procedures - wait signal event descriptions.

To exchange parameters, the procedure descriptions make use of the kernel’s input interface, that con-

nects with the output in this procedure, line 1145, using the HW-Task design. Likewise, the kernel output

interface connects to the corresponding procedure input in line 1146. In this case, the timeout occurrence

signal is used to stimulate the boolean output is_event, on line 1156. The procedure implementation re-

mains active until the microprogram completes its execution and releases control of the HW-Task. In these

descriptions, we can see that it completes without returning the remaining time value. As result, the HW-

Task receives the boolean parameter that indicates the event occurrence, and if desired, the remaining

time can be consulted using the return_arg member after the execution has completed. A simulation

wave plot that includes this procedure descriptions was discussed in subsection 3.1.5 and can be seen

in Figure 3.16.

In Figure 3.26 we can see a snippet from the kernel package, that describes a procedure which reads

from the local memory using the burst format. In the parameters of this procedure, we can also find the

kernel input and output interfaces, followed by input parameters, such as transfer length and offset in the

LRAM, and output data in the length of a word. In lines 1414 and 1415 the procedure specifies the system

call and triggers the execution in the microprogram. The descriptions forward the input parameters to the

116 Chapter 3. First-class Hardware Components

corresponding signals on the kernel Call interface, in lines 1416 to 1418, and in the opposite direction, in

line 1419, it forwards the received word to the output parameter data.

package hal_kernel_pkg is 10

...
-- 1405

procedure lram_read_word_burst (signal i_call : out kernel_input_t; 1406

 signal o_response: in kernel_output_t; 1407

 transfer_len:in natural; 1408

 lram_offset: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 1409

 data: out std_logic_vector(31 downto 0))is 1410

-- 1411

begin 1412

 1413

i_call.sys_call_id <= SYS_CALL_READ_LBUS_BURST; 1414

i_call.this_call <= '1'; 1415

i_call.parameters(PARAM_LBUS_BE'RANGE) <= "0000"; 1416

i_call.parameters(PARAM_LBUS_ADDR'RANGE) 1417

 <= '1'& std_logic_vector(to_unsigned(lram_offset,CLRAM_AWWIDTH));
i_call.parameters(PARAM_LBUS_BURST_LEN'RANGE) 1418

 <= std_logic_vector(to_unsigned(transfer_len,PARAM_LBUS_BURST_LEN'LENGTH));
data := o_response.return_arg(PARAM_LBUS_WORD'RANGE); 1419

 1420

end procedure lram_read_word_burst ; 1421

-- 1422

...
1 Figure 3.26: Kernel package procedures - read local-RAM in burst format descriptions.

Once in execution, the system call will use the system-level datapath in the Kernel Core, to activate the

index service and the microprogram will repeat the step two until it receives a burst done signal from the

index service. In doing so, a different word is sourced at the data output parameter, and the HW-Task

is responsible for implementing the path that consecutively distributes the received words by the distinct

destination registers. In this case the index_d1 field of the kernel interface will be used to select the target

register. Once again, the descriptions in this procedure can be translated into wires between the kernel

interfaces and the datapath of the HW-Task.

The kernel package includes more procedures beyond those that were seen until now. Due to the extensive

descriptions that these require, we’ve decided to include procedures that relate to the accelerator model

internal features. Other procedures target the synchronization and manipulation of software features in

the Linux OS or the target application. We shall discuss some of these in the following section.

3.2 HW-Task

In the HAL-ASOS accelerator model, the HW-Task represents an execution flow that is part of a Linux

application and was implemented using equivalent logic circuits that counterparts to a software-based

computation. In this way, the base concept of a Linux application is retransformed to a combination of

Chapter 3. First-class Hardware Components 117

hardware and software execution flows, dictated by the system requirements. When offloading software

computations via HW-Task(s), an application can benefit from the intrinsic parallel nature in the hardware

circuits, which were designed according to the system’s requirements and use just the right resources.

On the other hand, the boundary crossing between the HW and the SW implementations can overcome

the benefits in the mixed design architecture. To avoid multiple and consecutive design iterations, the

candidates to computation offload must be identified using the OProfile tool in the design methodology,

followed by a functional Co-Simulation as covered in Chapter 2.

In this section, we describe the HW-Task design and introduce the HAL-ASOS programming model through

examples. We then describe the HW-Task interaction with the Linux software application and the OS

services.

3.2.1 Programming Model

The HW-Task is the processing entity in the HAL-ASOS programming model that integrates FPGA-based

computation into Linux software applications. To ease development, the framework provides a template

design for the HW-Task that is independent from the HW-Kernel. It includes RTL descriptions with: (1)

a state machine structure for the control unit that is synchronized with the Kernel Core system calls; (2)

the sleep infrastructure where all sequential units subject to this state will be instantiated; and (3) the

connectivity between the HW-Task design and the kernel interfaces to and from the top-level signals in this

component. Figure 3.27 shows an example of the HW-Task template model and to better illustrate the

design and the internal connectivity of this component, two black boxed IPs were added to the datapath.

To comply with the traditional design of the logic circuits, such design is divided into a control unit and a

datapath. Here, the control unit implements the state logic that establishes the behavior of the HW-Task

by sensing specific signals from the datapath. Additionally, some of the HW-Kernel interface signals are

also considered, namely the task_run and the task_error. The first signal triggers the HW-Task activity

for the required processing rounds, and the latter signals a system call error that can be used to trigger

handling states at the HW-Task level.

In this model, the FF0 register establishes the current state of the control logic, where each state deter-

mines the set of active control signals and the value of the next state in M0. When a state requires a

procedure to implement a system call, the value of the next state can be set concurrently, as if it was a

one clock-cycle state. Once reaching such state, the control unit will activate the chosen procedure and

118 Chapter 3. First-class Hardware Components

0

1CE

reset

D Q

clk state

block_task

next_state

switch_state

Control Unit

HW-Task

Combinational
state logic

task_run

error_flag

S00_Kernel M00_Task

FF0

M0

task_restart

resetn

reset_i

user procedure Kernel Call

Kernel Call

Kernel
Response

select

state

parameters
return_args

sys_call_id

index

index_d1

valid

sched_progress

this_call

sys_call_id

enable_scheduler

enable_index

increment_index

reschedule

clock clock

user procedure

params_0

params_1

(import)
(export)

params_0

Black Box
IP

run done

reset

params_1

CE

reset_i

CE

G0

F0 M1XF1

UP0

UP1

U1

FF2 FF3

Datapath

Extended features

task_sleep

clock

task_sleep
reset_i

Black Box
IP

run done

reset

U0

CE

FF1

clock

task_sleep

error_u1

results_u0

ref_u0

results_u1

Figure 3.27: Hardware Task - simplified example architecture.

in response, the HW-Kernel interface will raise the block_task signal. In doing so, the current state will

be maintained for the necessary number clock-cycles, thus allowing the procedure to complete. Upon

completion, HW-Kernel lowers the block_task signal, enabling back the clock in FF0 and in the next active

clock transition the state register is updated with the next state value.

In its turn, the datapath provides the necessary resources for computing the set of data it receives as

input. Generally, a datapath consists of specific design logic functions to compute data and sequential

logic for storing results. Depending on the data-level parallelism, a datapath can achieve a fixed length

expressed in clock-cycles, usually referred as processing stages. Such stages are intended to promote

the throughput of the datapath by maximizing the usage of the logical units that it implements, following

a design structure usually referred as the execution pipeline. In the datapath of Figure 3.27, the two IPs

U0 and U1 are the implementation of this combinational logic and the registers FF1, FF2 and FF3 are the

sequential units that establish the progress of the data across the datapath.

Chapter 3. First-class Hardware Components 119

The proposed programming model implements an extended layer with application-based functionality,

that uses a mix of control and datapath signals. In this new design level, the kernel or user package

procedures are implemented concurrently and are primarily scheduled selecting each Kernel_Call at the

M1XF1 inputs, by use of the state register. Conversely, each procedure receives a connection with the

Kernel_Response in parallel with other procedures in the same level. For this, logic function F0 translates

signals from S00_Kernel to the Kernel_Response interface, and similarly, M1XF1 is composed of a logic

function that translates the selected Kernel_Call to the M00_Task interface. For this example, we have

included two user procedures, UP0 and UP1, where the topmost procedure outputs the received data to

FF1 which is input to the datapath, whereas the bottommost procedure receives data as arguments using

FF3 which is output from the datapath. As such, the simplified HW-Task example is using the two concur-

rent procedures to exchange application data using the accelerator model. For a better understanding,

Figure 3.28 shows an excerpt from the HW-Task that describes this implementation.

import_kernel_response(s00_kernel_sys_call_id, s00_kernel_return, s00_kernel_valid, 209

 s00_kernel_syscall_progress, s00_kernel_sched_progress, 210

 s00_kernel_index,s00_kernel_delayed_index, s00_kernel_block_task, 211

 s00_kernel_sleep_task, s00_kernel_error_flag, kernel_response); 212

 213

export_kernel_call(kernel_call, m00_task_sys_call_id, m00_task_parameters, 214

 m00_task_this_call,m00_task_enable_scheduler, m00_task_reschedule, 215

 m00_task_enable_index,m00_task_increment_index); 216

--- 217

EXTENDED:process(state,params_u0_q, params_u1_q, kernel_response, local_offset_q,218

 sys_offset_q)
--- 219

begin 220

params_u0_i <= params_u0_q; 221

 hal_asos_link_to_kernel(kernel_response,kernel_call); 222

 case state is 223

 when st1_read_data=> 224

 safe_read_lram_word32_burst(kernel_call,kernel_response,params_u0_i,4, local_offset_q); 225

 when st4_write_data=> 226

 safe_write_sysram_word32_burst(kernel_call,kernel_response,params_u1_q,8, sys_offset_q); 227

 when others=> null; 228

 end case; 229

end process EXTENDED; 230

---231

Figure 3.28: Task Model - concurrent user procedure description example.

To connect the top-level interfaces with the implemented user procedures, lines 209 and 214 implement

two concurrent kernel procedures. The first procedure receives as input the HW-Kernel slave top-level

signals and outputs the kernel_response record, which is the output of the Kernel Core’s defined interface.

In the opposite direction, the second procedure receives the kernel_call record as input and provides the

output signals that connect with the HW-Task master interface. The two procedure implementations use

only connect logic with the purpose of providing the Kernel Core interfaces locally. To implement the

extended features level, a combinational process in line 218, uses the state register in the sensitivity list,

120 Chapter 3. First-class Hardware Components

together with kernel_response record and the parameters that each procedure requires as input. In these

parameters, we can find the signals that connect with the datapath’s logic units (i.e., params_u0_q and

params_u1_q), and two address registers used in each procedure.

A case statement will activate the user procedures in lines 225 or 227, when the control logic reaches

the st1 or st4 states, respectively. In doing so, the kernel_call will be updated with signals from a specific

procedure implementation, while it senses the kernel_response received as argument. For as long as

the control unit remains in one of these logic states, the corresponding procedure will be set to active to

update the correspondent outputs according to the changes in the input parameters that it receives. In

response, it will generate the appropriate outputs using the kernel_response or the params_u0_i signals.

When the control logic is implementing the remaining states that are not considered in the enclosed cases,

a kernel procedure at the line 222 will keep the connectivity between the HW-Task and the kernel interface

in a consistent state, using the default logic signals. Similarly, the params_u0_i will be tied to the last

received results that were stored in the FF1 register, using in a self-closed loop design (line 221).

Figure 3.29 shows an excerpt with descriptions for implementing the sequential logic in the datapath and

control unit of the HW-Task example. In these, a logic function is used to establish the internal reset of

such logic, using the target platform or the kernel software reset sources (line 161). In the line 163, a

process describes the FF0 state register that is set to the initial state by the active rise in the clock signal

and a logic ’1’ in the internal reset (in line 168). If otherwise such reset is low, a logic ’0’ in block_task

signal will store the next state in the logic sequence. Using this description style, the blocking signal will

be source to the clock enable pin of this logic element by using the necessary logic function. In doing

so, the clock will be disable when executing kernel procedures, thus providing the necessary clock cycles

before storing the next state value and proceed in the state logic.

A similar style is used to describe the sequential elements in the datapath using the process at the line

175. The sleep task signal in the kernel interface is used to enable the clock in these logic elements. In

this way, the clock will be active while executing kernel procedures thus allowing the output arguments to

be stored in these elements. Once in sleep condition, the clock source is disabled in the logic described

by both processes and since such condition is the result of the wait system call, it also ensures a block

condition until the input event is detected. Nevertheless, a distinction must be made according to the

necessary instance in time where the provided source is available. A block condition will cease in the last

step of the system call execution, whereas the sleep condition will be completed in the next state in the

Chapter 3. First-class Hardware Components 121

1

reset_i <= s00_kernel_swrst or not(resetn); 161

-- 162

ff0:process(clock) 163

-- 164

begin 165

 if rising_edge(clock) then 166

 if reset_i = '1' then 167

 state <= st0_ready; 168

 elsif kernel_response.block_task = '0' then 169

 state <= next_state; 170

 end if; 171

 end if; 172

end process ff0; 173

-- 174

dpath_seq:process(clock) 175

-- 176

begin 177

 if rising_edge(clock) then 178

 if reset_i = '1' then 179

 params_u0_q <= (others=>(others=>'0')); --reset ff1 180

 result_u0_q <= (others=>(others=>'0')); --reset ff2 181

 params_u0_q <= (others=>(others=>'0')); --reset ff3 high 182

 u1_error_q <= (others=>(others=>'0')); --reset ff3 low 183

 elsif kernel_response.sleep_task = '0' then 184

 params_u0_q <= params_u0_i; --ff1 185

 result_u0_q <= result_u0_o; --ff2 186

 params_u1_q <= params_u1_o; --ff3 high 187

 u1_error_q <= u1_error_i; --ff3 low 188

 end if; 189

 end if; 190

end process dpath_seq; 191

-- 192

Figure 3.29: HW-Task Model - Sequential units descriptions using VHDL.

logic sequence after implementing the wait procedure.

3.2.2 User Procedures

User package procedures, or user procedures, are a subset of low-level operations, wrapped inside a VHDL

language procedure that can be instantiated when developing HW-Tasks for the HAL-ASOS accelerator

model. Such procedures operate at the extended level in HW-Task and can be seen as an auxiliary

subprogram, similar to a library used in software-based applications. In its essence, a user procedure

provides means to implement a specific feature that is based on more than one HW system call. Thus, they

establish interface with the required input and output parameters while implementing the correspondence

with the required system call procedures. In addition, user procedures are also distinguished by providing

advanced data formats, such as unconstrained arrays or multiple words, or user-defined types that are

not supported at kernel-level, and a semantic abstraction of the Linux programming interface.

Figure 3.30 shows a typical architecture of a user procedure that implements concurrent system calls

from the kernel package, and uses the scheduler service in the Kernel Core to ensure a proper execution.

122 Chapter 3. First-class Hardware Components

The scheduling service divides the procedure into n steps, and establishes a sequence in the concurrent

system calls, by sensing the reschedule signal that is provided internally. In doing so, the procedure

descriptions implement M0 that ensures an exclusive connection between the Kernel_Call interface and

the subset of outputs from each system call, where all inputs connect with the Kernel_Response and

receive input parameters in parallel.

Index_d1

system-call procedure

system-call procedure

system-call procedure

…

0

1

N-1

Kernel_Response Kernel_Call
enable_scheduler

reschedule

User-level procedure

compare

match

ALU

A1

target_1 enable_index

sched_progress

parameters

parameters

parameters
return_args

return_args

return_args

…

Index service
(optional)

Parameter_0 Parameter_1 Parameter_2

word_out

Index_d1

sel

1:M

valid

reschedule

M0

M1

offset

Figure 3.30: User package procedures - scheduling concurrent system calls.

From the bottom of the same figure, it can also be seen that the user procedure receives inputs and

provides outputs with the HW-Task context. Here, two inputs and one output parameters are used (i.e.,

Parameter_0, Parameter_1 and Parameter_2, respectively), where together the input parameters are

read-only signals and the output parameter represents HW-Task resources, handled by the execution in

the user procedure. A constant offset is also provided internally and connects with the top- and bottom-

most system calls. These two system calls are a common example of the mutual exclusion invocation,

using the HW-Mutex lock and unlock procedures in the kernel package.

The input parameters provided by the HW-Task context, are connected to the system call used in step 1,

and is a typical example of a multiple word read that expects an address offset and transfer length as

input, and where a consecutive number of words can be provided as output. In such case, the system

call implements a burst format transfer and the target length is used at kernel-level to repeat the word

exchange in the required number of times. If otherwise the involved resources do not allow such format,

Chapter 3. First-class Hardware Components 123

an alternative single word exchange system call can be selected to implement an equivalent operation.

For this reason, the target parameter will be used at the HW-Task level to implement repeated executions

of the same step, until the transfer length is completed. Optionally, to control the repetition process, ALU

A1 is used to compare the index register with the received target length.

To establish the desired scheduling, in step 0, the Valid flag is used to trigger the first scheduling operation.

Similarly, in step 1, the same flag can be used if the system call provides burst format, or alternatively, if

a system call repeat is in use, the reschedule signal can result from the match signal in A1. Considering

that an array of data is provided as output of the user procedure, a demultiplexer M1 is implemented

locally to connect each of the 32-bit words to the corresponding position in the array. Such component,

uses the index register in the delay of one clock cycle, to select the appropriate position of each word of

data that is received from the system call. In the last step, the scheduler service is deactivated, resulting

in the HW-Task context release with the completion of the system call, and therefore, the conclusion of

the user procedure.

For completeness, Figure 3.31 shows a user procedure description that implements similar architecture

to the diagram of Figure 3.30. Such procedure allows to safely read a consecutive number of words from

the SYSRAM memory region in the host system. For this, in steps 0 and 2, it invokes the system calls to

lock and unlock the required HW-Mutex, making use of the internal offset as parameter in each procedure

(e.g., lines 1775 and 1783, CSYSMUTEX_WOFFSET, defined externally in the configuration package).

In step 1 starting at line 1775, the procedure invokes the system call to read a consecutive number of

words, expressed by the input parameter word_len and starting at the specified input parameter offset,

while using the burst transfer format. In doing so, it requires the use of the index_d1 value to index the

correct position in the pbuff array, as shown in line 1779. To ensure a proper memory address that is

aligned with the host system, the received word-based offset is multiplied by four or by eight according to

the parameter C_HOST_ARCH defined in the configuration package. The resulting logic are simple wires

implementing a misaligned connection between input parameter offset and the variable param_woffs at

line 1760, which in turn is an input parameter of the system call at line 1778.

An if clause is used at line 1764 to prevent the procedure from running with transfer length zero. It

immediately disables the scheduler and releases the HW-Task, preventing any connection with the i_call

interface. If otherwise the word_len is greater than zero, the scheduler service is activated in line 1769,

blocking the HW-Task for multiple system calls. Once reaching step 2 starting at line 1781, the service

124 Chapter 3. First-class Hardware Components

package hal_asos_user_pkg is 10

...
-- 1752

procedure safe_read_sysram_word32_burst (signal i_call : out kernel_input_t; 1753

 signal o_response: in kernel_output_t; 1754

 signal pbuff: out t_array_slv_32; 1755

 constant word_len: in natural; 1756

 constant offset: in natural)is 1757

-- 1758

constant ALNMNT: natural:=POW2(C_HOST_ARCH/8); 1759

variable param_woffs: unsigned(C_HOST_ARCH-1 downto 0)1760

 := to_unsigned(offset,C_HOST_ARCH) rol ALNMNT;
variable rcvd_word: std_logic_vector(C_MACHINE_WIDTH-1 downto 0); 1761

 1762

begin 1763

if word_len = 0 then 1764

 i_call.enable_scheduler <= '0'; 1765

 i_call.reschedule <= '0'; 1766

 1767

else 1768

 i_call.enable_scheduler <= '1'; 1769

 i_call.reschedule <= '1'; 1770

 1771

case o_response.sched_progress is 1772

 when 0=> 1773

 mutex_lock(i_call,o_response,CSYSMUTEX_WOFFSET);1774

 when 1=> 1775

 i_call.reschedule<= o_response.valid; 1776

 1777

 mst_bus_read_word_burst(i_call, o_response, word_len,1778

 std_logic_vector(param_woffs),rcvd_word);
 pbuff(o_response.index_d1)<= rcvd_word; 1779

 when 2=> 1780

 mutex_unlock(i_call,o_response,CSYSMUTEX_WOFFSET); 1781

 i_call.enable_scheduler <= '0'; 1782

 when others=>null; 1783

end case; 1784

end if; 1785

end procedure; 1786

--1787

Figure 3.31: User package - VHDL procedure to burst read the sysram memory.

is disabled at the same time the mutex_unlock is invoked. In doing so, the microprogram will ensure a

blocked state until the completion of the current system call. Complementary procedure that uses multiple

repetitions of a single-word based system call, can be consulted in attached Listing C.30.

When implementing user package procedures, the HW-Task design scales using combinational logic that

consecutively selects each kernel procedure and connects it to the received parameters. The logic used

is considered an extension from the HW-Task datapath and in doing so, care must be taken in order to

avoid a critical path degradation. In some cases, to meet the performance requirements, the design must

be refactored to upgrade the system calls scheduling, by promoting them to the level of the HW-Task’s

Control unit while introducing the necessary state logic to efficiently select each required system call. An

excerpt of the most relevant user package procedures can be found attached in Listings C.24 to C.29.

They show procedures that relate to composite operations in the accelerator model, but most of all, the

Chapter 3. First-class Hardware Components 125

user procedures are intended to provide a semantic abstraction of the Linux programming interface.

3.2.3 Linux programming interface

The above user procedures implement composite operations that target local resources in the accelerator

model. Other procedures in this package, aim at composite operations to integrate the behavior of the

HW-Task in the target application, running on the Linux operating system. This integration explores a

mixed implementation between HW and SW, to provide a semantic abstraction on the Linux programming

interface, allowing indirect access from the HW-Task design to resources in the host system.

Generally speaking, the Linux programming interface brings together a set of functionalities that by them-

selves constitute a level of abstraction on resources installed on the host system. As a derivative of the

Unix system, the granularity in this abstraction is the file, and within this category we can highlight dif-

ferent types such as: regular files used for storing information; virtual files used in IPC, such as sockets,

shared memory, message queues, pipes or the standard IO; and virtual files used to represent HW re-

sources or devices that altogether are of particular interest to the HW-Task design. The handling of such

files is provided by the set of system calls implemented by the Linux Kernel, which allow the fundamental

operations of reading and writing, or control, namely in the opening and closing of files, or establishing

control flags.

With the inherent parallelism observed in the structure of today’s IT systems, and the consequent sharing

of resources between the various processing flows, synchronism and concurrency control become fun-

damental aspects in ensuring system performance, correctness and integrity of data. While some of the

above mechanisms implement FIFO-type data formats, which by ordering and uniqueness in the stream

of data provide some level of synchronism, others implement contention at kernel-level that is based on

the system calls behavior. For resources such as shared memory regions, auxiliary mechanisms are gen-

erally employed and can include mutual exclusion via mutex, or a state change using condition variables.

Alternatively, when these features are extended at the process-level, the use of named semaphores with

its counter structure, allows to reproduce functionalities equivalent to the mutex and condition variable.

The Linux programming interface allows a vast set of additional features that are of less relevance to the

HW-Task design, for the simple reason that their use in the HW does not translate into an increase in

benefits for the host system. Among these we can refer: the creation and handling of processing threads;

the memory subsystem; timing and sleep features; inter process signals; file system handling and others.

126 Chapter 3. First-class Hardware Components

While some of these functionalities are replaced by features in the accelerator model, others can still

be used in a complementary way through the SW programming model implemented by the HAL-ASOS

framework.

To abstract the HW-Task design from the Linux programming interface, the kernel package in the HAL-

ASOS framework provide a local representation of resources by using hardware descriptors as shown in

Figure 3.32. For that, it once again defines appropriate VHDL types, to describe a logical structure that is

aligned with the Linux descriptor approach, and is based on integer numbers. In these, positive non-null

values are used to index a file table that contains a list of files opened by the application, and negative

values are used to portray the occurrence of errors.

this_type: obj_type_t
virt_address[4]: byte_t
index: byte_t
control_flags: byte_t

HW-Descriptor

this_type : obj_type_t
pfile[4]: byte_t
index: byte_t
is_orwite: boolean
is_oread: boolean

file_descriptor_t

this_type : obj_type_t
psocket[4]: byte_t
index: byte_t
is_open: boolean

socket_descriptor_t

this_type : obj_type_t
pmutex[4]: byte_t
index: byte_t
is_owned: boolean

mutex_descriptor_t

…

…

Figure 3.32: Hardware descriptor - record composition and specialized types.

In addition to the indexing feature, the HW descriptor is extended with additional fields that promote

correct handling and attempt on minimizing interactions between the Kernel Core and the software in the

host system. Such fields include: a type qualifier, to distinguish between different types of resource, or

to identify an uninitialized or null descriptor; a Linux user-space memory address, associated with the

resource in the file descriptor; and a field of state control flags, such as open or closed status, read or

write permissions and whether it is blocked or free, among others, which can vary in format to comply

with the descriptor states.

In the HAL-ASOS framework, the hardware descriptors are bound to memory objects that were previously

instantiated in the target application, and submitted to the list of pooled resources in a specific Task

class. Each Task class can be a software-based processing resource or a hardware-based processing

Chapter 3. First-class Hardware Components 127

resource that represents an HAL-ASOS accelerator. The HW-Task design must also create the required

hardware descriptors as part of the local resources, to exchange information with the pooled object in the

software application. Figure 3.33 shows an excerpt of the kernel package that includes the records of two

hardware-descriptors used in the regular files and network socket files, respectively.

package hal_kernel_pkg is 10

...
type obj_type_t is (null_obj, mutex_obj, semaphore_obj, conditional_obj, 295

 array_obj, fifo_obj, fstream_obj, vfile_obj, file_obj, net_obj, 296

 shd_mem_obj, npipe_obj, custom_obj); 297

...
type file_descriptor_t is 365

record 366

 this_type: obj_type_t; 367

 pfile: signed(C_MACHINE_WIDTH-1 downto 0); 368

 index: integer range -128 to 127; 369

 is_owrite:boolean; 370

 is_oread: boolean; 371

end record; 372

...
type socket_descriptor_t is 383

record 384

 this_type: obj_type_t; 385

 psocket: signed(C_MACHINE_WIDTH-1 downto 0); 386

 index: integer range -128 to 127; 387

 is_Open: boolean; 388

end record; 389

...

Figure 3.33: Kernel package - VHDL excerpt of the file and socket descriptor records.

The descriptors manipulation is performed using a control message protocol implemented at kernel-level

in the accelerator model. Such protocol, is fundamentally based on three message formats, which are

classified as query, remote execution and data transfer. Each type of message provides the means for

the HW-Task to first make a query request about a certain descriptor. The query message returns an

updated descriptor according to previously specified parameters. Subsequently, the HW-Task will be able

to change the object’s state through remote call messages, which allow to open a descriptor for reading

or writing, or to increment a shared semaphore, among others. Finally, when applicable, the HW-Task will

use data transfer messages to exchange data through the descriptor. For the effective exchange, it can

use the LRAM or the SYSRAM storage, as the source or destination of data, according to the specified

operation field xcode.

Figure 3.34 shows a message hierarchy implemented in the HAL-ASOS framework that is based on the

three message types. A top of the hierarchy, stands a generic message that is composed of a xcode field

that specifies an operation using a kernel package specific type, and establishes a message structure

that includes a 3-byte control field and a 4-byte payload. The xcode field is common to all messages

and is primarily used at software-level to establish a received message format. For the implicit message

128 Chapter 3. First-class Hardware Components

semantic, distinct messages implements specific fields, in the control and payload areas, following space

limits dictated by the generic message.

xcode: exec_code_t
control[3]: byte_t
payload[4]: byte_t

Generic Message

xcode : exec_code_t
index: byte_t
obj_type: obj_type_t
obj_data: byte_t
virt_addess[4]: byte_t

Query

xcode : exec_code_t
index:byte_t
argm: func_param_t
return:byte_t
virt_address[4]: byte_t

Remote call

xcode : exec_code_t
index: byte_t
length[2]: byte_t
receiver_off[2]: byte_t
sender_off[2]: byte_t

Data Exchange

Figure 3.34: Kernel-level internal message hierarchy.

Regarding the query message, its structure matches the composition of the hardware descriptor and is

mostly used to update the descriptors in the HW-Task context. A remote call message provides additional

fields to update the descriptor status by using the appropriate xcode type and one additional function

parameter. The software in the Task class will provide a return code that indicates the execution result

of the internal handler. A data exchange message includes a 16-bit control field to specify the desired

transfer length and can be used to indicate number of bytes or words, according to the xcode provided. In

the payload fields, it provides a sender and a receiver offsets to be used when applicable, and one of them

will refer the local storage. As in the previous transfer parameter, the specified value can be interpreted

as word or byte offsets.

For efficient handling of the descriptors in the software application, the HAL-ASOS framework provides stor-

age resources in each Task class that include a local descriptor table, and auxiliary computing resources

used to respond to messages sent by the accelerator kernel and complete the requested operation. To

perform the effective transfer of data, the same class can explore the different memory models which

aim to minimize the impact on processing and on the memory footprint, by use of extended class profiles

such as shared memory, user-space IO and zero copy.

To prepare the hardware descriptor, HW-Task must initialize the local register with the expected descriptor

type and index. For this, the software application can provide the initial values using a task-level control

message, or the design can assume a pre-established order that corresponds to the behavior of the

Chapter 3. First-class Hardware Components 129

software application. Figure 3.35 shows a diagram that describes the sequence of operations involved in

a query message. The actions performed between Task class and Kernel Core simplify the joint operation

involving the class and the HAL-ASOS file system.

HW-Task Task<hwtask,…>

pooled_file_query(myfile)

(b
lo

ck
ed

)

Kernel Core

send_message(query)

file_descriptor
0xffffffff
3
False
False

myfile mq_size()

size=0

mq_pop()

gen

enable_interrupt(3)
interrupt(3)

notify(gen.xcode)

mq_push(gen)

space=7
query

file_descriptor
0x565a29e3
3
True
False

… (b
lo

ck
ed

)

alt

myfile
query =success

query

null_descriptor
0xffffffff
-77 (EBADFD)
False
False

myfile

query =error

mq_size()

size=0
enable_interrupt(3)

(b
lo

ck
ed

)

QUERY_POOLED
3
file_obj
0
0xffffffff

query

QUERY_POOLED
3
file_obj
2
0x565a29e3

QUERY_POOLED
-77
null_obj
0
0xffffffff

receive_message()

Figure 3.35: Query message - file descriptor query sequence diagram.

In the described example, HW-Task implements a hardware descriptor called myfile, used for handling

storage files, where it specifies an index value of 3. By invoking the appropriate user procedure, the HW-

Task submits the descriptor for status update. In its implementation, this procedure follows a synchronous

message model, where it executes a system call to send the descriptor fields through a query message and

suspends the HW-Task until it receives a return message. Alternatively, an asynchronous implementation

could be used. A representation of the query message sent confirms the descriptor values, where a xcode

field specifies the QUERY_POOLED command, followed by an index of 3 and a file_obj type is indicated.

The obj_data field is set to 0 and no virtual address is sent. For this purpose, it is assumed the Task

previously placed the processing resource on wait and activated the interrupt related to messages in the

Message Queue resource.

Writing a message in the Message Queue triggers an interrupt to the host system, that concludes at the

Linux kernel, with the reactivation of the processing resource. Once executing, it reads the message

using mq_pop and returns to user space to execute the notify command. At completing the execution,

the processing resource re-enters the kernel space to submit the response message, which contains the

updated values. By receiving a response message, the Kernel Core completes the read system call and

130 Chapter 3. First-class Hardware Components

returns the received data to the user procedure. In its turn, the user procedure concludes by copying the

message fields to the descriptor.

Depending on the result in the class execution, the descriptor can be returned with the updated values

in case of success, and in this alternative representation, it can be seen that the descriptor was found

in the class resources, at the specified index and is already open for reading. In case of error, the

descriptor is returned with a null type and the Index field contains the error extracted from the Linux error

standard. Implementation details of the user procedure can be seen in the excerpt of the user package,

in Figure 3.36.

package hal_asos_user_pkg is 10

...
-- 646

procedure pooled_file_query(signal i_call : out kernel_input_t; 647

 signal o_response: in kernel_output_t; 648

 signal ufile_q: in file_descriptor_t; 649

 signal ufile_d: out file_descriptor_t)is 650

-- 651

variable qmsg : kpool_query_m; 652

variable this_type:std_logic_vector(PARAM_OBJ_TYPE'range):= 653

 std_logic_vector(to_unsigned(obj_type_t'pos(file_obj),8)); 654

begin 655

i_call.reschedule<= '1'; 656

i_call.enable_scheduler <= '1'; 657

case o_response.sched_progress is 658

when 0 => 659

qmsg.xcode := std_logic_vector(to_unsigned(exec_code_t'pos(QUERY_POOLED),8)); 660

qmsg.obj_type := this_type; 661

qmsg.virt_address := (others=>'0'); 662

qmsg.index := std_logic_vector(to_signed(ufile_q.index,8)); 663

qmsg.obj_data := (others=>'0'); 664

 665

send_message(i_call,o_response,qmsg); 666

when 1 => 667

receive_message(i_call,o_response); 668

qmsg := cast_return_to_query_message(o_response); 669

 670

ufile_d.this_type<= file_obj; 671

ufile_d.pfile <= signed(qmsg.virt_address); 672

ufile_d.index <= to_integer(signed(qmsg.index)); 673

ufile_d.is_owrite<= std_logic_to_boolean(qmsg.obj_data(1)); 674

ufile_d.is_oread <= std_logic_to_boolean(qmsg.obj_data(0)); 675

 676

i_call.enable_scheduler<= '0'; 677

when others => null; 678

end case; 679

end procedure; 680

--681

Figure 3.36: User package - procedure to query for a file HW-based descriptor.

To receive the file descriptor data, the procedure uses the ufile_q parameter, as input on line 649, which

has a connection with the output of the register implemented in the datapath of the HW-Task. A query

message is implemented as internal variable on line 652, and on line 653 the file object type is translated

to the equivalent enumeration. As already seen in descriptions of other procedures, the implementation

Chapter 3. First-class Hardware Components 131

makes use of the scheduler service to split the execution into two steps. In step 0 starting at line 659,

the message is filled with the descriptor values, while at the same time, it is passed as a parameter in

the system call on line 666. With the completion of the system call, the execution returns from the Kernel

Core with the increment of the progress register in the scheduler service.

Upon returning, the scheduler service maintains the blocked state of the HW-Task, until completing the

next system call. As such, the query procedure is repeated in step 1 with the invocation of the system call

on line 668. The execution of the system call blocks until the reply message is received, and upon receiving

an update, the system call is resumed with a return register that contains fields of the received message.

The implementation makes use of a kernel function to extract the contents in the return register, as shown

at line 669, that establishes an ordered connection with the internal variable qmsg. An alternative function

that returns a descriptor of type file_obj could also be used.

The resulting connection is source of the ufile_d in lines 671 to 675, which is an output parameter

in the procedure top-level at line 650. As such, this VHDL formal mechanism must connect with the

descriptor register input that belongs to the HW-Task datapath, in order to provide the returning data.

Upon deactivating the scheduler service, at the line 667, the procedure concludes releasing the HW-Task,

that once active, writes the descriptor register with the values of ufile_d, and abandons the procedure by

executing the next state in its control logic.

At this moment, the datapath of HW-Task stores updated descriptor that is open for writing operations. To

proceed in the manipulation of such descriptor, the HW-Task must provide data from its processing using

the LRAM, and request for their transfer using procedures which for this purpose can also be found in

the user package. For a better use of computing resources, the design of the HW-Task can promote the

parallelism of operations, taking advantage of the wait states in the return messages to initiate processing

of the data used in the next write transaction.

In Figure 3.37, it can be seen a sequence diagram that describes the operations using a loop cycle,

in which the design of the HW-Task asynchronously transfers the processing results using the hardware

descriptor initialized in the previous diagram. In this example, the HW-Task starts with processing before

reaching the main loop. Once there, it implements an asynchronously aligned write operation that initiates

with the writing procedure and completes the cycle, by finalizing the write operation of the previously

processed data. For that, the write procedure is divided in two independent implementations which can

be distinguished by the async prefix, and the conclude suffix, respectively.

132 Chapter 3. First-class Hardware Components

HW-Task Task<hwtask,…>
(b

lo
ck

ed
)

Kernel Core

safe_write_lram_burst(lram_offs, len, pdata)

file_descriptor
0x565a29e3
3
True
False

myfile

interrupt(3)

handle(gen.xcode)
mq_pop()

process()

mutex_lock(lmutex_offs)

lram_write_w32_burst(lram_offs,wlen,pdata)

mutex_unlock(lmutex_offs)

pooled_file_async_write_conclude(myfile)

gen

lram_read(lmutex_offset + i)

mq_push(gen)

space=7

pooled_file_async_write(myfile,len,lram_offs)

word32

mq_size()

size=0

enable_interrupt(3)

…

loop

loop

i=wlen

rounds = M

send_msg(dmsg)

TRANSFER_TO_POOLED
3
tlen
0
lram_offset

Data exchange

receive_msg(dmsg)

TRANSFER_TO_POOLED
3
tlen
0+tlen
(lram_offset +tlen)

Data exchange

pooled_file_write(myfile,len,lram_offs)

process()

send_message(dmsg)

dmsg

…

…

Figure 3.37: Data transfer message - file descriptor write sequence diagram.

By invoking the first procedure, the HW-Task design provides the location in the LRAM containing the

previously processed data, which completes by sending a data transfer message. In the representation

of the message sent, it can be seen the xcode value, which indicates a transfer from the LRAM towards

the descriptor, and uses an 8-bit reference size in a tlen transfer length. The offset in the receiver is

zero since the file is manipulated continuously and the offset in the LRAM has a value that results from

previous processing states. Alternatively, a 32-bit word-based procedure could be used to maximize the

transfer length field.

To avoid a long sequence diagram, greater detail was only used in the steps that occur inside the loop

structure, where it can be observed that after completing the process stage, the HW-Task implements a

procedure composed of three system calls to write the results in the local storage. In parallel, Task class

will be able to read the LRAM data that was written before the HW-Task entering in the loop (not shown)

and, in doing so, avoid an address collision. For the read operation, the class implements a wlen based

loop without acquiring the LMutex exclusivity that at this moment may belong to the Accelerator’s kernel.

With the completion of the user procedure, the HW-Task returns from the kernel and initiates a new

Chapter 3. First-class Hardware Components 133

processing round, where it writes the results in new LRAM positions, and finishes the write procedure of

the previous data. In doing so, it implements the second part procedure to conclude the write operation,

which returns a response message used to align the HW-Task processing according to the results from the

software side. To minimize the number of operations, the Task class provides the offset values to use in

the next transfer through the arithmetic represented in the return message, that is based on the number

of bytes it was able to transfer. The HW-Task may abort in case of error, include partial results of delayed

processing in the next transfer, or start a new processing round that initiate with the transfer request of

the data processed in the previous iteration. After M processing cycles, the HW-Task design concludes

writing the remaining data with a synchronous procedure, as shown in Figure 3.37. For completeness,

the asynchronous procedures used in the main loop can be consulted attached in Listing C.31.

To conclude the descriptor manipulation, the HW-Task design can complete the sequence of logical op-

erations that ends closing of the descriptor in the Task class. For this, the HW-Task invokes the close

procedure in the user package, which is based on the exchange of remote call messages. Figure 3.38

shows the sequence diagram that describes the use of the close procedure.

HW-Task Task<hwtask,…>

pooled_file_close(myfile)

(b
lo

ck
ed

)

Kernel Core

send_message(remotecall)

file_descriptor
0x565a29e3
3
True
False

myfile mq_size()

size=0

mq_pop()

gen

enable_interrupt(3)

interrupt(3)

notify(gen.xcode)

mq_push(gen)

space=7
remotecall

file_descriptor
0x565a29e3
3
False
False

… (b
lo

ck
ed

)

myfile

mq_size()

size=0

enable_interrupt(3)

UPDATE_POOLED
3
POOLED_CLOSE
0
0x565a29e3

remotecall

receive_message()

Figure 3.38: Remote call message - file descriptor write data sequence diagram.

In the representation of the sent message, it can be seen the xcode field that indicates a descriptor

update. This xcode is complemented by the parameter POOLED_CLOSE to indicate the desired action,

and the response field is set to zero. The final result of the procedure can be extracted from the descriptor

representation, that updated the internal flags of read or write permissions to false, keeping the other

parameters valid. With this, it allows the HW-Task to implement a new procedure to open the file using

the descriptor it has or to reuse the descriptor to manipulate other files, by invoking a new query.

134 Chapter 3. First-class Hardware Components

For completeness, in Figure 3.39 it can be seen an excerpt of the kernel package that includes the

communication tokens used at kernel-level in the accelerator model. In line 108, the exec_code_t type is

defined to provide xcode tokens sent in all message formats. The first token is a null code used in case

of empty messages, the second is exclusively used in the query message, and the third token is used in

remote call messages. Most of the remaining tokens are used in data transfer messages with exception

of the last two tokens. A custom code is provided at line 111, for user definable features and must be

complemented by providing the appropriate handle to the Task class. The last code, at the end of line

111, is used by the yield system call, and sent using a generic message with empty control and payload

fields.

package hal_kernel_pkg is 10

...
type exec_code_t is (NULL_EXCODE, QUERY_POOLED, UPDATE_POOLED, TRANSFER_TO_POOLED, 106

TRANSFER_FROM_POOLED, TRANSFER_FROM_POOLED_W32, TRANSFER_TO_POOLED_W32, 107

TRANSFER_TO_POOLED_SYSRAM, TRANSFER_FROM_POOLED_SYSRAM, TRANSFER_FROM_POOLED_W32_SYSRAM, 108

TRANSFER_TO_POOLED_W32_SYSRAM, TRANSFER_TO_HOST_SWFIFO, TRANSFER_FROM_HOST_SWFIFO, 109

TRANSFER_CONTROL_TO_DDS_TOPIC, TRANSFER_CONTROL_FROM_DDS_SUBSCRIPTION, 110

TRANSFER_DATA_TO_DDS_TOPIC, TRANSFER_DATA_FROM_DDS_SUBSCRIPTION, 111

TRANSFER_SYSRAM_DATA_FROM_DDS_SUBSCRIPTION, TRANSFER_SYSRAM_DATA_TO_DDS_TOPIC, TRANSFER_TO_STDIO, 112

TRANSFER_FROM_STDIO, TRANSFER_TO_STDERR, CUSTOM_CODE, TASK_YIELD); 113

...
type func_param_t is (POOLED_RELEASE, POOLED_LOCK, POOLED_TRY_LOCK, POOLED_SIGNAL, 278

POOLED_FORCE_SIGNAL, POOLED_POST, POOLED_WAIT, POOLED_TRY_WAIT, POOLED_OPEN, 279

POOLED_CLOSE, POOLED_GET_LEN, POOLED_SEEK, POOLED_ERROR); 280

...

Figure 3.39: Kernel Package - Kernel-level communication tokens.

When using the third token, i.e., UPDATE_POOLED, a remote call message combines it with additional

func_param_t, that can also be seen at the bottom of Figure 3.39. Such additional parameters, in lines

278 to 280, instruct the Task’s processing resource about the required update feature, as it was seen in

the close file example of Figure 3.38.

3.3 Hardware Kernel Interfaces

The accelerator model provides three interfaces that integrate the underlying HW in the target platform.

In These: (1) the S00_Control interface is used in the control operations, (2) the S01_Data interface is

used to exchange data with local memory (LRAM), and (3) the M00_System interface is used to address

the system memory using the accelerator resources. Such interfaces are composed by a generalization of

signals, which implement the Generic Bus. Using the generic interface, we abstract the design from the

technology in the target platform and so promote design re-use. In doing so, distinct accelerator versions

Chapter 3. First-class Hardware Components 135

implement specific circuits that translate target platform bus to each interface. In addition to the top-level

interfaces, the generic definition can be found on the Local-BUS in the HW-Kernel design, and therefore,

on all peripherals that are accessed through this bus, promoting the exchange of data to a single format.

3.3.1 Generic Interface

In its conceptual model, the Generic Bus, or Gen-BUS, follows a Master-Slave model that allows several

slaves coupled to a single master, or to several masters using an arbiter. Figure 3.40 depicts a connection

between two generic interfaces, Master and Slave, illustrating an example of the signal distribution through

the Slave implementation. With respect to Slave addressing, we can see: a N-bit wide ADDR register, that

specifies the offset in bytes, as a parameter of the Slave interface; a 4-bit wide byte enable (BE) register

that enables writing in the bytes of one word; and two signals, WR_CE and RD_CE, which enable the clock

for data writing or reading operations. Typically, these two CE signals are common in the Slave interface

internal circuits and the distinction is made by the exclusive connection of the chip-select (CS) line, which

the Slave interface distributes according to the address map it implements.

CS
Master

WR_CE

RD_CE

ADDR[N-1:0]

BE[3:0]

TXDATA[31:0]

RXDATA[31:0]
WR_ACK

RD_ACK

N: address range (2𝑁)

clk

RESET

RESET
CLOCK

D[8] Q[8]

clk

D Q

clk

reset

LUT
D Q

clk

reset

CE

reset

D[8] Q[8]

clk

CE

reset

D[8] Q[8]

clk

CE

reset

D[8] Q[8]

clk

CE

reset

CS

ADDR

1

0

CS_0

WR_CE

RD_CE

RD_ACK

WR_ACK
RXDATA

TXDATA

BE[3:0]
0123

CS_8
CS_4

Slave (Simplified)

reset

FF0FF1FF2FF3

FF4
FF5

G3 G2 G1 G0

M0

L0

Figure 3.40: Generic Interface Master-Slave model

With regard to data exchange, two 32-bit buses are used, one in each direction to allow reading the written

value during a single transaction. All transactions are confirmed by a handshake protocol that involves

the corresponding WR_ACK and RD_ACK signals, both asserted for one clock period. The ACK signals,

indicate to the Master that it is safe to change the contents of the TXDATA bus since it has already been

written, or to read the contents of the RXDATA bus since it contains the stable data that results from the

read transaction. With respect to the Slave implementation, the internal design is illustrative and in line

136 Chapter 3. First-class Hardware Components

with the style used by the framework. Here, we can see the encoding of three words of 32-bit, and by

using L0, three select lines are extracted: CS_0, CS_4 and CS_8. The logical combination of CS_0 with

the WR_CE input and the four bits of the BE bus, selects the individual bytes in the word zero for a write

transaction, through G0 to G3 gating. The logic elements FF0 to FF3 represent 8-bit registers that receive

their input through the TXDATA bus, aligned in a Little-Endian ordering in which the first 8-bits (7:0) are

FF0 inputs, and consecutively the last 8-bits (31:24) are inputs at FF3. The next active clock transition,

stores the TXDATA input bytes in the registers that have the CE inputs asserted.

The same clock transition gives rise to the WR_ACK signal using FF4. With the CS_0 line active and by

using MUX M0, all bytes of word zero are placed on the RXDATA bus, following the same ordering as the

input. The combination of this signal with RD_CE input, gives rise to the RD_ACK signal in FF5, in the

next active clock transition. In more elaborate designs, where the interface implements several internal

offsets, usually the M0 inputs scale to the appropriate number, and each respective ACK signal can be

combined logically using OR gates that connect to the single outputs of the Slave interface.

3.3.2 Multi-clock design

With the increase in complexity and the demand for multifunctionality, the design of FPGA-based systems

evolved and grown into a multitude of systems that co-exist on a single chip, each representing an ab-

straction to a specific feature in the overall design. Distinct systems face specific time requirements and

as such, require specific clock sources forming isolated clock domains. Ultimately, a network of multi-

ple clock sources allows the designer to balance contradictory metrics such as computational power and

energy efficiency.

The exchange of signals between logic circuits implies some degree of synchronism, and whenever a

signal is sent to a logic circuit with a different clock source, this condition is known as clock domain

crossing (CDC). Clock domains can relate to each other in frequency and phase differences, and if they

belong to the same clock hierarchy in a design, they became synchronous and predictable. On the other

hand, when domains belong to different clock hierarchies, they have asynchronous relationships that can

be unpredictable. The CDC requires a set of precautions to ensure that time constraints of the logic

elements in the receiver circuit are satisfied.

In most cases, it is common to adapt the design with synchronizing circuits, which fundamentally aim

to contain the metastable state of the captured signal, for the appropriate time of stabilization. In a

Chapter 3. First-class Hardware Components 137

complementary way, it must also be ensured that signal events, especially of short duration, are detected

by the receiving logic circuit. For this purpose, handshake protocols such as the ACK signals are used, in

which the transmitter waits for a confirmation, before reading data or moving into a new exchange step.

As synchronizers are typically diluted in design, they are sometimes a source of bugs due to miss-use or

connection errors often motivated by the internal complexity with which they are associated, or due to the

condition of a closed proprietary design.

To address some of these problems, the accelerator model adopts an asynchronous-synchronous design

strategy to implement the generic interface. In such design, control signals are captured using synchro-

nizer circuits, and are later used to unlock stable vector signals using MUX (es). While sending data from

the Master circuit, the active control signals impose a steady value on vector signals which are only al-

lowed to change after the handshake protocol is completed. On the slave circuit, MUX inputs are locked to

prevent the propagation of unstable values, and are unlocked after the control signal capture time. In the

opposite direction of data, same rules are applied between data vectors and the ACK signals. To reduce

the possibility of miss-connection errors, the design applies the complete set of logical elements in a single

isolated component that allows configuring different cases of connectivity through specific architectures.

3.3.3 Synchronizer for generic interface

The implementation of the multi-clock design strategy for the accelerator model is concentrated on the

generic synchronizer component (Sync_gen) for the generic interface. To a better understanding of this

component, one can refer to synchronizer variants found in the community: (1) the conventional multi-

flop synchronizer and (2) a toggle synchronizer variant. The first one generally uses the receiver clock

to capture an external domain signal and refer it to the local domain. For signals with the duration of a

transmitter’s clock pulse, the conventional synchronizer is not suitable due to the lost data phenomenon.

For this reason, in the design of the synchronizer for the generic interface, we apply the (2) synchronizer

circuit while enforcing the ACK-based handshake protocol. Implementation details about these two circuits

can be found attached in Appendix B.

Figure 3.41 describes the architecture of the Sync_gen component using a logic element diagram. On

the left side we can see the layout of the Master interface and it’s set of signals, while the corresponding

layout of the Slave interface is represented on the right side. One must notice an extra a BUS_VALID

signal returning from the Slave circuit, that is used in the Hold circuits to store the control signals while

138 Chapter 3. First-class Hardware Components

waiting for availability on the interface. Normally, such signal is always active, except for the cases when

the design is operating in multi-master mode. In that case, the BUS_VALID signal is controlled by an

arbitrator device. We shall discuss this multi-master arbitration in the flowing section.

D Q

clk

D Q

clk
reset

D Q

clk

D Q

clk

SynchronizerD
(pulse)

CS

RD_CE

RXDATA

RD_ACK

M-Domain
Clock_S

Clock_M

Clock_M

D Q
clk

Clock_M

WR_ACK

RD_ACK

CS

WR_CE

SynchronizerD
(pulse)

Clock_SClock_M

SynchronizerD
(pulse)

Clock_SClock_M

SynchronizerD
(pulse)

Clock_SClock_M

SynchronizerD
(pulse)

Clock_SClock_M

SynchronizerD
(pulse)

Clock_SClock_M

HOLD
clk

clrreset
O_Sig I_Sig RD_CE

Clock_S
WR_CE

TXDATA

Clock_S

cs_set_s

WR_ACK

RXDATA

TXDATA

Clock_S

CS_S

BE

ADDR BE

ADDR

Synchronizer Generic S-Domain

Clock_S

N

N/8

M

N

N/8

M

FF0

FF3
FF4

Reset_S

clr

N: WORD WIDTH - M:ADDRESS WIDTH

0

1

0

1

0

1

FF2

FF1

D Q

clk

reset

CE

HOLD

1

HOLD
clk

clrreset
O_Sig I_Sig

Clock_S

Reset_S

cs_set_s

cs_set_s

reset

reset

0

1

Clock_S

Clock_S

Clock_S

Reset_S

U7

U8

U0

U1

U2

U3

U4

U5

U6

BUS_VALID(Simplified)

cs_set_s

cs_clr_s

cs_set_m

cs_clr_m

Reset_S

G0

G1
G3 G2

G4

M0

M1

M2
M3

set0

Reset_M

reset

reset

Figure 3.41: Synchronizer for the generic interface

In FF0 the CS signal from themaster is decomposed into set and clear pulses using the logical combination

with G0 and G1. The two pulses are referred to the Slave clock domain through the synchronizers_dual

in U0 and U1. The set pulse signals the start of a transaction by activating the CS_S output that remains

active through the Hold circuit. The same pulse is used in M0, M1 and M2, allowing to store the vector

inputs in FF1, FF2 and FF3. The content of these buses remained stable since the beginning of the

transaction and during the time of CS synchronization in U0. The corresponding clear signal at the

output of U1, can disable this CS_S signal in the following clock cycles, if the Master gives up on the bus

transaction.

When one of two CE pulses is received in the Slave circuit, the output of U2 or U3 is hold stable by circuits

U5 or U6. This allows to synchronize the CE signal with the CS_S signal if the latter has lost a clock pulse

in the metastability region, but mostly it implements a pending transaction waiting for the arbitration.

When the bus is available, the logic combination G2 determines the deactivation of the CE signals on

the next active clock transition. In response to one of the two active CE lines, the Slave interface reacts

Chapter 3. First-class Hardware Components 139

by activating the corresponding ACK signal. One of these signals will select the contents of the RXDATA

output through G4 and M3, being stored in FF4 until the next transaction, and G3 disables the CS_S

output which anticipates the end of the transaction. Furthermore, the Master expects to receive the same

signal through U7 or U8.

It should be noted that this type of connection does not meet the performance requirements of interfaces

where transactions occur at the rate of a clock cycle. In such cases, the chosen multi-clock strategy

establishes that the design accommodates the clock hierarchies to favor the performance of the interface.

For this, it merges the Slave interface with the Master’s clock domain. Therefore, this is a choice that

in some cases degrades the design’s clock cycle or energy efficiency metrics. When the Slave interface

belongs to the Master clock domain, it is possible to select a dedicated architecture that without making

changes to the established design, it suppresses the synchronizer circuits. The layout of this architecture

can be found attached in Figure B.5.

Alternatives to this merger would include to intermediate forms of asynchronous FIFO storage. These

components are more complex circuits, which take advantage of specific FPGA blocks such as true dual-

port RAM, using gray code numerical systems for address control. With these coding systems, the scalar

progression of the address register, varies at the rate of one bit and therefore, conventional synchronizers

can refer this value to the clock domain of the control unit in this component.

3.3.4 Multi-master design

In multi-master topologies the generic interface requires implementation as an active component. This

component, will handle synchronization, signal connectivity and schedule Master transactions to distribute

access to the Slave interface. For this, it makes use of an internal arbiter device that implements two

distinct scheduling policies. In Figure 3.42 we can see the Top-level of the Gen-BUS component for a

connection using two masters, A and B and the Slave interface Y. On the right side of the figure, one

can see the truth table that determines the scheduling between A and B. The conditions that determine

a scheduling action are the inputs: Priority, from priority bus; ReqB and ReqA, from each of the CS lines;

and the internal register BusMaster that establishes the active master on the bus. The output of the

schedule policy is the NextMaster register that is source of the BusMaster when the scheduling actually

takes place.

140 Chapter 3. First-class Hardware Components

B_BUS

B_BUS

B_RESET
A_CLOCK

B_RESET
B_CLOCK

Y_BUS
Y_RESET
Y_CLOCK

Priority_BUS

GEN_BUS

…CLOCK

Policy Priority ReqB ReqA BusMaster NextMaster

St
at

ic 1 X X X A

2 X X X B

3 X X X A

R
o

u
n

d
-R

o
b

in

0 0 0 X IDLE

0 0 1 IDLE A

0 1 0 IDLE B

0 1 1 IDLE A

0 0 1 A A

0 1 0 A B

0 1 1 A B

0 0 1 B A

0 1 0 B B

0 1 1 B A

A clock domain
B clock domain

Y clock domain

Figure 3.42: Generic Bus component - The top level and schedule policies

As it can be seen from the figure, the internal arbiter of this component, implements two scheduling policies

that are based on: (1) static priorities, and (2) round-robin. In doing so, the static priority replaces the

round-robin policy with the highest priority in the system. Here the least significant bit of the Priority Bus

determines the highest priority found regardless of the value in other inputs. Usually, priority sources are

extracted from external auxiliary components that implement mutual exclusion such as the HW-Mutex.

When no priority signals are active, the next master is determined by the round-robin policy. Therefore,

this new value depends on the ReqA and ReqB inputs and the value in the current BusMaster register.

This policy determines that a master can access the bus in consecutive transactions while it is the only

active master on the bus. When concurrency scenarios are observed, the arbiter distributes access to

each master alternately, putting the master that lost the dispute on hold. Each transaction is also subject

to a configurable time limit in number of clock cycles. If the bus master exceeds this time, an internal

timeout event is generated that interrupts the transaction. As response, the arbiter re-schedules the next

master and the one that was withdrawn will have to repeat the transaction.

In Figure 3.43 we can see a diagram that describes the internal implementation of the Arbiter for the

Generic Bus component (Gen-BUS). The request and priority inputs are the stimulus for the two schedul-

ing policies implemented using U0 and U1. Although in concurrent mode, the source selection in M0

determines that the value of next_master_i signal is established by the Round-Robin encoder, only if the

priority lines are at rest. Under this condition, the signal prx_activity_i from U1 has the logical value zero

that using M0, selects the source of U0 as the next master.

The design of the U0 encoder is purely combinational where the input is concatenated with the corre-

sponding numerical value of the current master to form a new address value. Such address, is then used

Chapter 3. First-class Hardware Components 141

LUT

0

1

CLOCK

RESET

next_master_i

schedule_i

lost_bus_i

i_request_bus[N]

ROM
ADDR DOUT

Round-Robin encoder

concat

(passive)

Control
Counter

OV
o_timeout

EN COUNTinc

round_valid_i

clear

prx_activity_i

o_master_sel[M]

CLOCK

RESET

Arbiter

i_trx_done

bus_master_i

prx_valid_i

lost_bus_i

LUT
(passive)

timeout_i

reschedule_i

reschedule_i

compare

CLOCK

(match)

ALU
lost_bus_i

next_master_i

i_trx_done

bus_idle_i

RESET

N: number of BUS masters M: select bus width (2𝑁 = 𝑀)

U0

A0

C0

FF0

FF1

E0

M0

trx_done_i

timeout_i

reset

RESET
U1

1 result

ADD

ALU

TWO’S COMPLEMENT
A0

LUT
(passive)

FF0

G0

L0

Priority encoder … G1

i_priority_bus[N]

… G2

round_valid_i

prx_valid_i

prx_activity_i

round_activity_i

schedule_i

1prx_activity_i

round_activity_i

timeout_i
i_trx_done

[M-1:0]

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

lost_bus_i

Figure 3.43: Generic Bus Arbiter - internal architecture

to determine the value for the next bus master using a program in ROM. Here, the LUT transformation

aims to convert the corresponding value of the FF0 register into a corresponding numerical value. De-

pending on the number of masters, this circuit can be removed during the implementation of the design,

since the advanced data type for the bus master results from an enumeration.

The implementation of the U1 encoder is also combinational and results from the AND logic using the

priority at the input with its equivalent two’s complement. The result returns the least significant active bit

in the input. Using an input register ensures the constant value of the priority_bus signal for at least one

clock cycle. If at least one input is active, the value of prx_activity_i is set to the logical one, which using

M0, selects the output from this encoder as the source for the next master.

The value of next_master is compared with the value of BusMaster using ALU A0. The result of this

comparison gives rise to the active lost_bus_i signal if the difference between the two is valid. With this

signal active, counter C0 starts, which may give rise to the timeout event if the current transaction does

not complete in 8 clock cycles. Such number of cycles is a parameter in the accelerator settings in the

hal_asos_configs package.

A scheduling action is only triggered after the transaction has completed, either in response to the

trx_done_i signal or the timeout event. At this moment, the logical combination E0 becomes active

142 Chapter 3. First-class Hardware Components

and forces the output mst_sel to assume idle state during a clock pulse, at FF1. In response, the Control

activates the schedule_i signal to trigger the scheduling of the next master. This next master can be the

same one when the bus reaches the idle state, between two consecutive transactions. Otherwise, the

combination of schedule_i with the lost_bus_i signal, gives rise to the reschedule_i signal that enables

writing to the BusMaster register, in FF0. Therefore, the same value will also be written in FF1 in the next

clock cycle, after completed the idle state.

The control unit for this component is divided in two distinct flows that represent scheduling policies. The

state logic that implements this control unit can be consulted in Figure 3.44. After a reset signal has

been asserted, the Control assumes state #0, where it activates the schedule_i signal to generate a bus

master. If the prx_activity_i input is active, the control assumes state #1 until it establishes synchronism

with the beginning of the transaction. As soon as the transaction starts, the control unit assumes state

#2 and remains in this state for consecutive transactions, until the lost_bus_i and trx_done_i signals are

asserted. It then completes the priority-based logic sequence by returning to state #0 which gives rise to

a new bus master. Alternatively, if the timeout_i signal is asserted, the control unit likewise leaves #2 to

originate a new master in #0. Such signal, is generated by the counter C0 in the datapath, which starts

counting when the lost_bus_i signal is asserted, and overflows before receiving a high value from the

schedule_i signal, which is asserted in state #0 (see also Figure 3.43).

/schedule_i

#0
idle

#1
priority_sync

#3
round_sync

round_activity/ Ʌ prx_activity’/

timeout_i timeout_i

prx_activity /

#2
bus_granted

/prx_valid_i

(lost_bus_i Ʌ /i_trx_done)
V

timeout_i

i_trx_done/

#4
bus_owned

i_trx_done/

/round_valid_i i_trx_done

Figure 3.44: Generic Bus Arbiter - internal architecture

State #3 is assumed when once in #0, there is no active priority and there is activity in the round-robin

encoder. Similarly, the control remains in state #3 for synchronism before switching to state #4. As

long as a concurrent transaction does not arise, control assigns the bus to the current master, until it

Chapter 3. First-class Hardware Components 143

terminates and abandons access, or another master initiates a transaction. In this scenario, the control

distributes the access among the active masters in a sequence of states of #0, #3 and #4, for each Master

transaction.

The arbiter architecture is extensible to multiple masters, but the accelerator model uses nomore than two.

Regarding scalability, the design of this component is made less efficient by the resource consumption of

the U0 encoder. The chosen alternative would be a synchronous ring architecture, using a binary token.

When compared, the limit of two masters in the design favored the combinational architecture that is

faster and still efficient.

In Figure 3.45, we can see a diagram that describes the internal architecture of the Gen-BUS device. The

two master-type inputs, A and B, are routed through components U0 and U1 for synchronization purposes,

giving rise to the internal signals that connect to M0 and M1. The MUX (es) establish the connectivity

between the Slave Y-BUS interface and the master chosen by the Arbiter. The result of this choice is

received via the mst_sel_i signal, which is also used in L0 to give rise to the BUS_VALID signals specific

to each master.

When no master is connected to Y, this slave interface receives zero values on all signals. This is an

idle state that is achieved whenever a master is disconnected and lasts at least one Y clock cycle, before

another master takes its place. The beginning of a new transaction is determined by the logical value zero

on the line trx_done_i, as result of the active CS line on the Y-BUS. The upward transition of this signal

gives rise to the cs_rise signal in the SynchTRX component, which in the next clock cycle disables trx_q

in FF1.

Upon receiving an ACK signal, the value of the trx_done_i assumes the high logic value through G2, and

the same signals are used to reset the logic value to FF1 in the next clock cycle. In response to this high

signal, the bus reaches the idle state, which by turning off the CS line establishes a low logic value in FF0

at the next active clock transition. If, on the other hand, there is a delay in the reception of ACK and a

timeout occurs, this signal resets the value FF1, at the same time that Y reaches the idle state again.

The different variants that can be found for the Gen-BUS, specify distinct architectures on the Synch_gen

component which aims to accommodate the relationships between the clocks of the Master and the Slave

interfaces. The available choices allow a design using a single clock domain, the Y domain belonging to A

or B, or ultimately, three distinct clock domains. In Figure 3.46 shows a timing simulation wave diagram of

144 Chapter 3. First-class Hardware Components

ARBITER

reset

Y_BUS

A_BUS

B_BUS

A

B

IDLE

B

A

IDLE

IDLE

trx_done_i

y_cs

time_out_i

{y_cs, y_rd_ce, y_wr_ce, y_be, y_addr, y_txdata}

{y_rd_ack, y_wr_ack, y_rxdata}

a_clock

a_reset

b_clock

b_reset

mst_sel_i

mst_sel_i

mst_sel_i

i_priority_bus
i_request_bus

I_PRIORITY [1:0]

A_CS

A_WR_CE

A_RD_CE

bus_valid_a

A_CS_i

A_RD_CE_i

A_WR_CE_i

b_clock

y_reset

y_clock

LUT
(passive)

bus_valid_b
bus_valid_a

A_CS_i

RESET

Y clock based signals

A clock based signals

B clock based signals

mst_sel_i

a_reset

M1:B

M1:A

M0

L0

GEN_BUS

Reset_S

clk_M clk_S

CS_M CS_S

Sync_Gen

U0

Reset_M

y_clocka_clock

WR_CE_M

RD_CE_M

WR_CE_S

RD_CE_S

RXDATA_S

RD_ACK_S

WR_ACK_S

TXDATA_S

ADDR_S

BE_S
A_TXDATA_i

A_ADDR_i

A_BE_i

RXDATA_M

RD_ACK_M

WR_ACK_M

TXDATA_M

ADDR_M

BE_M

A_ADDR

A_BE

A_TXDATA

bus_valid

A_WR_ACK_i

A_RD_ACK_i

A_RXDATA_i

A_WR_ACK

A_RD_ACK

A_RXDATA

reset

B_CS

B_WR_CE

B_RD_CE

B_CS_i

B_RD_CE_i

B_WR_CE_i

mst_sel_i

b_reset

Reset_S

clk_M clk_S

CS_M CS_S

Sync_Gen

U1

Reset_M

y_clock

WR_CE_M

RD_CE_M

WR_CE_S

RD_CE_S

RXDATA_S

RD_ACK_S

WR_ACK_S

TXDATA_S

ADDR_S

BE_S
B_TXDATA_i

B_ADDR_i

B_BE_i

RXDATA_M

RD_ACK_M

WR_ACK_M

TXDATA_M

ADDR_M

BE_M

B_ADDR

B_BE

B_TXDATA

bus_valid

B_WR_ACK_i

B_RD_ACK_i

B_RXDATA_i

A_WR_ACK

A_RD_ACK

A_RXDATA

B_CS_i

bus_valid_b

reset

D Q

clk

FF0

CED Q

clk

FF1

1

RESET

CLOCK

RESET

CLOCK

G0

G2G1

cs_rise

cs_q

trx_q

reset Q

cs_rise

SYNCH_TRX

y_wr_ack

y_rd_ack

Figure 3.45: Generic Bus component - internal architecture

the Gen-BUS component, using an architecture where the Y clock belongs to the Master B clock domain.

This diagram expresses a temporal simulation that is based on the resulting synthesis of the component.

Here, the clock of Master A has a period of 6.3 nanoseconds and the same clock of B and Y, have a period

of 10 nanoseconds.

The priority_bus input takes the value of “2” at time instant of 170 nanoseconds specifying B as the

priority master. At time instant of 197 nanoseconds, we can see that A and B compete simultaneously

for the bus, but B proceeds with two write transactions at offsets 0x00 and 0x04, with the duration of 2

clock cycles each. As Y belongs to the domain of B, and since the priority is established, the transaction

proceeds with no delay. The same priority is revoked at time instant of 240 nanoseconds, and B still

performs a read transaction of the offset zero. From the values in the mst_sel output, we can see that

source ”2” was selected three times in a row, alternating with source “0”, for an idle cycle between each

transaction.

Chapter 3. First-class Hardware Components 145

Fi
gu

re
3.
46

:
Ge
ne
ric

Bu
s
w
av
e
pl
ot
-t
im
in
g
si
m
ul
at
io
n
us
in
g
A
an
d
B
in
te
rfa

ce
s.

146 Chapter 3. First-class Hardware Components

At time instant of 286 nanoseconds, master A starts the Y reading transaction, with an 83 nanoseconds

delay. The transaction lasts two clock cycles from Y, while B is put on hold. At completion of A transaction,

B proceeds in a second read at offset ”4”, while A waits for confirmation. The acknowledge is received

at time instant of 326 nanoseconds, and Master A initiates a new read operation 6.3 nanoseconds later.

This transaction reaches interface Y at time instant of 350 nanoseconds and is committed at interface A

at time instant of 380 nanoseconds. At this moment Master A violates the protocol and keeps the CS line

active while delaying the CE line. This condition leads to a timeout that occurs at the time instant of 556

nanoseconds, interrupting the transaction.

3.3.5 S00 Control Interface

The S00_Control interface implements a control-oriented channel that allows the host system to access

the accelerator register area. This memory region maps all the HW resources in the accelerator model,

with exception of the local memory that qualifies itself as a data flow-oriented storage space. For this

reason, the local memory can be accessed using a dedicated channel provided by the S01 interface. This

design choice aims to differentiate data manipulation, and opens the possibility of mapping this address

space through a specific bus that is suitable for exchanging data using word-based transfers. In doing so,

the accelerator model can benefit from a dedicated control channel if and when supported by the target

platform. This condition allows flexible choices in the clock source of this interface in adequate ratio to

the clock used by the CPU cores in the host system, and at the same time deviate this control information

from the usual intense data flow of the main system bus.

Fundamentally, this control channel allows the accelerator to implement synchronization mechanisms at

the application and operating system levels. For this, the interface allows reading or writing operations that

target: the accelerator control and status registers; two FIFO-based bidirectional channels for exchanging

control messages; two HW-Mutexes that allow the operating system to implement exclusivity mechanisms;

and a local interrupt controller to establish the synchronization between the accelerator and other process-

ing entities in the host system. In addition to these, the S00 interface allows to initiate transfers using

the ZeroCopy unit, and access the performance metrics area of the accelerator. To map these resources,

the S00 interface demands for an address range of 512 bytes or 128 words, thus nine address lines are

required. To organize the design, we decided to split decoding in two levels that page the address range

Chapter 3. First-class Hardware Components 147

using 16-word memory blocks. Figure 3.47 describes such memory layout where it can be seen the 8

pages and their correspondence with the HW resources.

S00 Address space

0x00

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

0x40

0x80

0xC0

0x100

0x140

0x180

0x1C0

Accelerator model HW-Resources

ZeroCopy unit control registers

Task related performance metrics

{sleep, blocked and done}

Interrupt related performance metrics

M00 interface performance metrics

{read and write}
0x1FF

Figure 3.47: Slave decoder component- internal architecture.

In this two-level address design, each logical unit is responsible for page decoding in the range where

it is mapped, and so, page 0 decoding is implemented by the HW-Kernel to address all local resources

in the accelerator model. Similarly, the ZeroCopy unit is responsible for page 1 decoding to address its

internal registers. In the performance metrics (i.e., pages 2 to 7), we use the same design in the 6 pages

of memory, where identical offsets are used to address the internal registers that each unit implements.

Table 3.3 lists the offsets used in page 0 to map the accelerator model resources. To access this page,

the host system must compose an absolute address starting from the base address of the S00_Control

interface. This value usually results from the choices between bus types, bus hierarchies and ultimately

the technology in the target platform. Then it must add the page offset and the register offset within the

page. Although two offset fields can be seen in the table, the host system must always consider the byte

offset to compose the desired address. The word-based offset is used internally in the interface design to

select the target register.

Conceptually, all registers can be read and written, and the cases which only one operation applies are

referred in the description column. The read transactions involving write-only locations will be accepted by

148 Chapter 3. First-class Hardware Components

Table 3.3: The S00 interface - Page 0 internal register mapping.

Page Internal Word Byte
offset register offset offset Description

0x0

Kernel control 0x0 0x0 Kernel control register.
Kernel status 0x1 0x4 Kernel status register, read-only.
LINTC control 0x2 0x8 Local interrupt control register.
LINTC status 0x3 0xC Local interrupt status register.
MQueue space 0x4 0x10 Message Queue space and size registers,
MQueue size 0x5 0x14 read-only.
Data FIFO space 0x6 0x18 Data FIFO space and size registers,
Data FIFO size 0x7 0x1C read-only.
MQueue Output 0x8 0x20 Message Queue output register, read-only.
Data FIFO Output 0x9 0x24 Data FIFO output register, read-only.
MQueue Input 0xA 0x28 Message Queue input register, write-only.
Data FIFO input 0xB 0x2C Data FIFO input register, write-only.
Sysram address 0xC 0x30 Sysram base address register.
Sys.Call errors 0xD 0x34 HW system call error counter, read-only.
SysMutex status 0xE 0x38 Sysram dedicated HW-Mutex register.
LMutex status 0xF 0x3C Local RAM dedicated HW-Mutex.

the interface and return the control word 0xfe11dead. Read-only locations do not have connectivity with

the WR_CE signal at internal level, but the transactions are confirmed accordingly in the next clock cycle.

Table 3.4 lists the offsets used in page 1 to map the ZeroCopy unit internal registers. The ZeroCopy unit is

a component that provides services for the HAL-ASOS file system on Linux, in alignment with the zero-copy

strategy of Linux OS. Optionally, these services can be integrated into the accelerator model using this

unit in a shared mode. In order to avoid an access collision between host and Kernel Core, the internal

registers of this unit are accessed in protected mode. This mode imposes that it is only possible to write

in the register area after ensuring the exclusivity in the HW-Mutex of the accelerator model.

The description column, shows that only the status and error counters are not included in this register

class, as they are dedicated to the host system. After a successful exclusivity step, the host system will

be able to write the lock ID register, which will close this unit to other entities. Thus, it acquires writing

privileges in the parameters area and control register. The parameter area allows to configure the offset in

the LRAM, the length of a transfer and the physical address in the main memory. After this configuration

step, the host system will be able to initiate a transfer through the control register, and finish checking the

result in the status register. In the last area, the host system can check the total errors that may occur

during writing or reading transactions since the unit started operating. Details about the implementation

Chapter 3. First-class Hardware Components 149

Table 3.4: The S00 interface - Page 1 internal register mapping.

Page Internal Word Byte
offset register offset offset Description

0x40

ZCU Control 0x0 0x0 ZeroCopy unit control register (WP).
ZCU Status 0x1 0x4 ZeroCopy unit status register, read-only.
Lock ID 0x2 0x8 Lock ID register (WP).
LRAM offset 0x3 0xC LRAM offset register (WP).
Transfer Length 0x4 0x10 Transfer-length register (WP).
MBUS Address 0x5 0x14 Main bus address register (WP).
- 0x6 0x18
- 0x7 0x1C
M00 WR Errors 0x8 0x20 M00 write errors counter, read-only.
M00 RD Errors 0x9 0x24 M00 read errors counter, read-only.

(WP) - write-protected registers.

of this protected mode, as well as the internal architecture of the unit, will be discussed in section 4.6.

Table 3.5 describes the internal offsets used on pages 2 through 7 to map the registers in the performance

metrics area. This area allows the mapping of five event counters, used to measure performance metrics

such as: sleep or blocking time, or execution of the HW-Task, in total or in execution rounds; host system

latency in responding to accelerator interrupt events; or performances in accessing the system memory

interface while writing and reading data, respectively. The contents of these counters are exported to the

user space on Linux using the HAL-ASOS FS.

Each page is mapped using one of the offsets indicated in the first column, and implements the registers

that can be seen in the second column. The vast majority of these registers are 64-bit wide and as such,

they are mapped through word zero (W0) and word one (W1). Only the count totals register has a length

of 128-bit and as such, is mapped using 4 words. With the exception of the control, all remaining registers

are read-only. Writing to this register will activate or suspend the unit, or clear the stored contents, placing

them in the initial values. Optionally, the design of each unit can be configured without clock cycle metrics.

In this case, only the event counter and the control registers are implemented. Reading the remaining

registers will return the control word 0xfe11dead.

With the adoption of a single data exchange format, the addressing of hardware resources follows the

generic interface design considerations. As described above, the S00_Control interface splits the available

address range using 8 pages of 16 words length, and in pages 0 and 1, we can find resources that are at

the service of the Kernel Core and as so, they are also mapped in the Local-BUS address space. These

150 Chapter 3. First-class Hardware Components

Table 3.5: Performance Counter internal register offsets.

Page(s) Internal Word Byte
offset register offset offset Description

0x80
0xC0
0x100
0x140
0x180
0x1C0

Event Counter W0 0x0 0x0 Event counter register,
Event Counter W1 0x1 0x4 64-bit wide {W1,W0}, read-only.
Clock Counter W0 0x2 0x8 Event duration clock counter register,
Clock Counter W1 0x3 0xC 64-bit wide {W1,W0}, read-only.
Max Clock count W0 0x4 0x10 Maximum count achieved register,
Max Clock count W1 0x5 0x14 64-bit wide {W1,W0}, read-only.
Min Clock count W0 0x6 0x18 Minimum count obtained register,
Min Clock count W1 0x7 0x1C 64-bit wide {W1,W0}, read-only.
Total Clocks W0 0x8 0x20 Total clocks in successive events
Total Clocks W1 0x9 0x24 register, 128-bit wide {W3,W2,W1,W0}
Total Clocks W2 0xA 0x28 read-only.
Total Clocks W3 0xB 0x2C
Counter Control 0xC 0x30 Performance Counter control register.

resources, in turn, were designed for concurrent access of two distinct masters, and for that, they provide

specific interface connections labeled A and B. To implement resource addressing in the accelerator

model, this interface uses the Slave and Page decoder components as part of the HAL-ASOS framework.

These are associated with each other following a hierarchy from one Slave decoder to eight Page decoders.

Details about the resource addressing or the Slave and Page decoder design considerations can be found

attached in Appendix A.

In the multi-clock accelerator versions, a generic synchronizer component is used to connect the control

interface (i.e.,S00_Control) to the local resources in the HW-Kernel design. Since most of these are at the

service of the Kernel Core, they belong to the same clock domain of this unit. In doing so, output signals

from the synchronizer are connected to the Slave decoder forming a single-master bus at the service of

the host system.

3.3.6 S01 Data Interface

The S01 is the accelerator fundamental interface, characterized by the intensive use while exchanging

data between the main system memory and the local storage on the accelerator. With this interface, the

accelerator model distinguishes application-oriented data, such as the processing results, from control-

oriented data used for synchronizing and controlling the application or the accelerator model. In doing so,

Chapter 3. First-class Hardware Components 151

for the overall system performance, it is of utmost importance that S01 is implemented using adequate

connectivity with the system bus and a clock cycle that suits the target platform memory interface.

The S01 has a parameterizable address range that is used by the accelerator design to establish the

effective size of its local storage. Such parameter is the s01_addr_width and the default configuration

preset its value in 10 bits, which corresponds to 1 Kbyte of local storage. Optionally, this width can be

increased until 16 bits, or 64 Kbytes of storage, a limit established by the design of the Kernel Core. The

selected width maps the local memory (LRAM) as exclusive slave peripheral in this interface.

In the accelerator model the S01 interface is also used to establish connection between the ZCU and

the LRAM which can have distinct connectivity attributes in terms of clock domain crossings. For that,

specific accelerator versions target specific memory models that aim to balance the host CPU effort in

the task of data movements. In this way, the S01 operates in multi-master mode with the existing CPU

cores connecting as master A and the ZCU connecting as master B. Figure 3.48 shows a schematic that

exemplifies this connectivity.

Memory
Controller

)
CPU

Core 0 …

ZCU

LRAM
(dual port)

A

Y

B

S01
(generic Interface)

Accelerator design

(Indirect)

(local-BUS)

clock A

clock B

clock y

clock B

clock y

Figure 3.48: S01 interface - multi-master connectivity.

To consolidate each model requirements, the B, D, and E, F terminated string versions of the accelerator

are distinguished in the clock domains and interface capabilities. In the E versions, the accelerator design

extends the master A clock domain to slave Y, to favor the transfers performed by the CPU of the target

platform. And in the F versions, the accelerator design extends master B clock domain to slave Y, to favor

transfers performed by the ZCU. Ultimately, in version C and D, each master operates on equal terms and

using a single clock domain. In section 4.8 we shall discuss each accelerator version in more detail.

152 Chapter 3. First-class Hardware Components

3.3.7 M00 System Interface

When the accelerator model needs to manipulate data beyond the dimensions of the local storage, or

perform data movements between the application memory segment and the LRAM, the M00 interface

provides access to the system’s memory using the appropriate HW system calls. Each accelerator will be

able to manipulate a memory region designated as SYSRAM, and for that, its pre-allocation is required by

use of the numerical parameter sysram pages in the accelerator configuration interface.

Such parameters are evaluated by the HAL-ASOS file system during the host OS initialization phase. It then

identifies the accelerators that require access to this memory region and triggers the necessary operations

to carry out an appropriate memory allocation. Each allocation concludes by returning a valid memory

reference that the file system makes available through a specific entry file in its virtual structure. These

memory references are then translated to a physical address and the file system concludes by registering

each address in the correspondent accelerators.

The registry operation of the SYSRAM physical address on the accelerator activates an internal flag that

allows the microprogram to proceed in the execution of the correspondent HW system calls. All HDL

procedures that manipulate this memory, implement system calls that are based on offset parameters

within this region. During each operation, the Kernel Core composes the target address by adding the

offset parameter to the physical address using the SYSRAM_ADDRESS register. In practical terms, the

Parameters length in the system call HDL record establishes limits of 18-bit word offset parameter, and a

10-bit transfer word length parameter. In this way, the maximum addressable size in this memory region

is set to 1024 kB, and consecutive transfers are possible using a page range of 4 kB.

By choosing the appropriate accelerator version, it will allow the designer to improve this region throughput

against the overall consumed resources. The F terminated string version, provides specific implementa-

tion that interfaces this memory region using burst mode transfers. In this mode, the M00 interface

carries out sequential data transfers that require a base address and a transfer length. It takes on a

higher performance format since the handshaking steps on the bus are implemented for the first word

only. Depending on the target system a transfer of N sequential words may be fragmented into N / B bus

transfers, where B is the maximum number of words in the burst mode for the particular bus technology.

Despite the improved performance of burst transfer format, the M00 interface imposes latencies much

higher than LRAM, since it is connected to a more complex memory interface and can experience delays

Chapter 3. First-class Hardware Components 153

due to bus internal schedule. The overall advantage arises by combining this with the use of implementa-

tion profiles in the software side. These will allow to map this region in the application memory segment.

Under such condition, the application will be able to produce or reuse data in a memory region within

the range of the design in the accelerator. In similar way to the previous interface, the M00 is used in

multi-master mode where the Kernel Core is the master A and ZCU is the master B. Figure 3.49 depicts

a connection diagram of the M00 interface.

Memory
Controller

)
CPU

Core 0 …

ZCU

Kernel Core
y

A

B

M00
(generic Interface)

Accelerator design

clock Y

clock A

clock A clock A

clock A

Figure 3.49: M00 interface - multi-master connectivity.

In doing so, the M00 interface is implemented using the generic bus component and since these two

masters share the same clock domain, the same configuration is used in all accelerator versions. For

this, clock Y is the source of clock A that connects to the Kernel Core and ZCU units, and consequently

is distributed across the accelerator design. Fundamentally, the M00 interface follows the considerations

of the Generic interface and performs data exchange using this format. Additional signals required that

are beyond the generic interface definition are capability-based control signals that can be connected in

parallel on both masters.

To handle greater complexity in bus transfers, the M00 provides a control channel that trigger the transfer

on the system bus. Table 3.6 lists the top-level of the M00 interface, where two logical group of signals can

be seen. At top, the data channel contains the signals that regulate data exchange within the accelerator

model. These are configured to match the host architecture using 32- or 64-bit data and addressing

widths (M, N). At bottom, we can see the signals used for the transfer control channel. The connectivity

of this channel with the system bus is technology dependent and for this reason they are not listed.

Considering that writing and reading to this interface is implemented by means of multiple internal op-

erations that are technology or protocol dependent, the control signals that specify the direction of data

are suffixed by request (Req). The acceptance of each transfer by the M00 interface is later marked the

154 Chapter 3. First-class Hardware Components

Table 3.6: The M00 interface - signal description and generic interface mapping.

M00 Description Generic
interface Mapping

Da
ta
ch
an
ne
l

CS in CS
ADDR[M-1:0] in ADDR
BE[(N/8)-1:0] in Same signals specified by the generic interface. BE
TXDATA[N-1:0] in TXDATA
RXDATA[N-1:0] out RXDATA
WR_ACK out WR_ACK
RD_ACK out RD_ACK

Co
nt
ro
lc
ha
nn
el

WR_Req in Write transfer request. WR_CE
RD_Req in Read transfer request. RD_CE
TLEN[B-1:0] in Transfer length using word units. -
CMDACK out Transfer acceptance acknowledge signal. -
ERROR out Transfer request or transaction errors. -
CMPLT out Transaction complete. -
BURST_DONE out Burst transfer done. -
RESTART in Restart the interface. -

(N, M and B) - Host system definable architecture and burst length widths.

by CMDACK signal after host bus acceptance. When the interface implements transfers in the simplified

format, the BURST_DONE signal will have the constant high value in the output, which indicates to the

accelerator kernel that transfers are limited to transactions of a word of data. Each new transaction re-

quires the request for a new transfer and the end of transfer is always marked by the active complete

signal (Cmplt). In the event of errors, this signal is accompanied by the active ERROR signal. In the

multiple sequential byte format, the BURST_DONE signal will have the logical value ’0’ and the TLEN

parameter will specify the transfer length. The Cmplt signal is active at each word transaction and the

transfer completes with the BURST_DONE signal active for one clock period. In the event of persistent

anomalies, the design can optionally trigger a software reset on the M00 interface using the RESTART

signal. To handle transactions in this interface, the Kernel Core provides four HW system calls that allow

read or write transfers of single or multiple sequential words.

Algorithm 3 shows the pseudo-code describing the microprogram that requests a single write using the

M00 interface. Similarity to other system calls, the implementation is scheduled in four steps. In the

beginning, Step 0 suspends the context of the HW-Task using the block_task signal, while evaluating the

sysram_address_ok flag. This control flag indicates the initialized value of the address register. In case of

failure, the microprogram ends abruptly by advancing to Step 3 and releasing the HW-Task. If everything

is correct, it proceeds to Step 1, where it maintains the HW-Task blocked and produces the Wr_req signal

Chapter 3. First-class Hardware Components 155

to initiate the write transfer. At the same time, it waits on the CmdAck input that allows the microprogram

to proceed to Step 2. Once in Step 2, it waits for the transfer to complete, which concludes with the Cmplt

signal. By reaching the Step 3, the microprogram releases the HW-Task and signals the completion of

the system call with the valid flag. At the same time, the system-level datapath evaluates the inputs to

generate the error flag and increment the error counter. It expects a logical ’0’ that results from the ERROR

signal combined with the complemented control flag. When the kernel implements the HW-system call

in the multiple sequential words format, Step 0 evaluates a combination of the same control flag with the

complemented BURST_DONE signal, and in Step 3 the execution completes with the same signal active.

The system call procedure activates the index service which is incremented at the pace of the respective

ACK signals. Using this service, the procedure implementation manipulates the input data to generate

the word for the next transaction.

Algorithm 3 Microprogram to write word at M00 interface

1: pseudocode SYS_CALL_WRITE_MBUS
2: Step0: produce block_task and test sysram address flag.
3: if false then goto step 3.
4: Step1: produce block_task and test CmdACK input.
5: if false then goto step 1.
6: Step2: produce block_task and test Cmplt input.
7: if false then goto step 2.
8: Step3: produce valid
9: exit

Figure 3.50 shows a wave plot for the system call that implements a burst read transfer of four words. The

execution starts at time 12,465.00 nanoseconds with the kernel_progress equal to zero. One cycle later

(i.e., marker 12,475.00 nanoseconds), the microprogram activates the request signal i_mbus_rd_req.

The contents of the i_tlen input indicate a transfer length of four and the initial address 0x07044000

is used at the input i_mbus_addr. The interface acknowledges the transfer using the o_mbus_cmdack

signal at 12,535.00 nanoseconds, and the first transaction concludes at marker 12,625.00 nanoseconds.

The three remaining words are received using a two-clock cycle rate, accompanied by an increment of the

index register. The transfer concludes with the o_bdone signal active at 12,695.00 nanoseconds, and the

microprogram produces the valid signal for one clock period. At the bottom of the wave plot, we can also

see the array of registers bdata_out_i, in the context of the HW-Task, that receive the four consecutive

words that result from this transfer.

156 Chapter 3. First-class Hardware Components

Fi
gu

re
3.
50

:
M
00

in
te
rfa

ce
-R
ea
d
fo
ur

w
or
ds

in
SY
SR

AM
us
in
g
bu
rs
tf
or
m
at
.

Chapter 4

Auxiliary Hardware Components

The Accelerator Model implements a set of local resources to assist in the integration of the HW-Task, in

software applications for the Linux operating system. In these, we can find the synchronization at the OS

and application levels, the data exchange and local storage. In the previous chapter we have discussed the

HW-Kernel interfaces that provide means for the host system to exchange information with the accelerator

model. For this, it targets the set of local resources provided by the auxiliary components in the HW-Kernel.

To provide connection with the Kernel Core, the HW-Kernel implements the Local-BUS, that follows the

design considerations of the generic interface. In this way, specific interfaces are required to implement

the concurrent access of the host system and the Kernel Core.

In the following sections we discuss the implementation details in each resource starting with the Local-

BUS. For completeness, throughout these sections we have included examples of system calls that target

the correspondent resource. We then conclude this chapter by summarizing the distinct accelerator

versions and comparing them in the micro-architectural differences that each represents.

4.1 Local-Bus

To address resources that do not have a dedicated interface the Kernel Core makes use of the Local-BUS

(LBUS) In its internal structure, the address range is 1024 kB and is logically organized in two distinct

memory regions of equivalent size. The first area is the low-memory region and is intended for register-

based addressing. As such, this address range is divided in 16 words of 32-bit per page, and pages 0

and 1 are physically mapped. The second memory region is reserved for addressing the LRAM which can

157

158 Chapter 4. Auxiliary Hardware Components

scale up to 256 kB. Figure 4.1 depicts these two memory regions of the LBUS where the addressable

registers are visible.

SysRAM Address

SysCall Errors

LMutex

SysMutex

M00 Write Errors

M00 Read Errors

LRAM

0xF_FFFF

LRAM

(ro)

(ro)

(ro)

(ro)

(ro) – Read only

0xFF 0x1FF

0x48

0x12

- Word-based offset

0x8_0000

Low-memory region High-memory region

LINTC Control

LINTC Status

MQIN Space

MQOut Size

DataIN Space

DataOut Size

Page 0

(ro)

(ro)

(ro)

(ro)

(ro)

0x00

0x02

Control

Transfer Status

Lock ID

LRAM offset

Transfer length

M00 address

Page 1 (ZeroCopy)

(ro)

0x1000x40 0x_0000

max offset=0x4_0000

Figure 4.1: Local-BUS mapping - Low- and High-memory regions.

The low memory region maps the local resources in the HW-Kernel and to promote transparency in the

overall design, the same offsets of the S00 interface are used. Most of these are mapped as read-only

registers, and the Kernel Core is allowed to write: the status of the HW-Mutexes, to lock the resource; the

status of the local interrupt controller, to trigger user-definable interrupts; or in the ZeroCopy unit registers,

to trigger concurrent memory transfers. In the high-memory region, we can see the LRAM space whose

size is a parameter on the accelerator interface. To address this memory regions the Kernel Core executes

two system calls that implement the read and write transactions, and uses a 20-bit address field in the

parameters member of the system call.

The LBUS design follows the generic interface format and allows one master, which is the Kernel Core.

To map the resources on pages 0 and 1, as well as the LRAM memory range, this bus implements a two-

level partial address decoder using lines A19 and A6. In level zero, it combines a hierarchy of one slave

decoder to map four pages of asymmetric range. In level one, it implements two-page decoders for the

register area (i.e., pages 0 and 1) and the remaining two pages are merged into the LRAM interface using

appropriate line selection. Figure 4.2 describes the internal organization of this component showing three

Chapter 4. Auxiliary Hardware Components 159

interfaces dedicated to each memory location. Implementation details about the Slave or Page decoders,

as well as the design considerations for the resource addressing, are discussed in Appendix A.

LBUS_TO_MASTER_PORT

MASTER_TO_LBUS_PORT

PAGE0_TO_LBUS_PORT

PAGE1_TO_LBUS_PORT
LRAM_TO_LBUS_PORT

LBUS_TO_PAGE0_PORT

LBUS_TO_PAGE1_PORT

LBUS_TO_LRAM_PORT

Kernel
Core

(master)

LRAM_CS

Page 1
(ZCU)

Page 0
(KERNEL RESOURCES)

TXDATA

RD_CE

WR_CE

LRAM

ADDR[N-1:2]

N: LRAM address range (default 10)M: Master address range (20)

G1

{RXDATA,WR_ACK,RD_ACK}

Look-UP
Table
(LUT)
3:8

ADDR[M1-:2]

CS

A19
A6

EN

I0
I1

O0
O1
O2
O3

TXDATA

A19
A6

page_addr[5:2]

WR_ACK

RD_ACK

0

1

2

3

SLAVE_DECODER

N_WORDS=16
N_PAGES=4

WR_CE
RD_CE

page_wr_ce

RXDATA
page_rd_ce
page_txdata

L0

M0

AG0

AG1

RXDATA_3

RXDATA_2

RXDATA_1

RXDATA_0

page_select_0

page_select_1

page_select_2

page_select_3

[N-1:6]

[5:2]

Local-BUS

page_rd_ack[3:0]

p.._wr_ack[3:0]

Figure 4.2: Local-BUS architecture - slave interfaces and address decoding.

At the output of L0, the first two lines of page select are connected to the interfaces of pages 0 and

1, respectively. The remaining lines, 2 and 3, are logically combined to form the LRAM select signal

(LRAM_CS). Likewise, in M0 we can observe the connection with pages 0 and 1 in the corresponding

inputs, whereas the inputs 3 and 4 are connected using the same signals from LRAM. As a consequence,

the accesses to low memory using addresses above page 1, will hit pages 0 and 1 in alternate sequence.

To avoid possible memory collisions in the asymmetric ranges, the kernel package applies a static 7-bit

limit of the offset parameter (i.e., CLBUS_REG_WIDTH constant), in the procedures that access the low

memory region. An excerpt of the kernel package containing the write procedures that target the low and

high memory regions can be found attached in Listing C.15.

To expand the high-memory region beyond the two pages, the page address bus is extended with the

necessary bits from the absolute address. This connection uses the LRAM’s length parameter at the

top-level of the accelerator, to make the correct assignment in the page bus and in the interface with the

LRAM. In procedures that manipulate data using this local resource, accesses are always relative to offset

0x0000, and it is not possible to specify absolute addresses. An example of a procedure for writing one

word in the LRAM can also be seen in the attached Listing C.15.

For completeness, in Figure 4.3 we can see the excerpt from the resource consumption report in the

synthesis phase, using the target platform ZC702. These include the implementation of the slave decoder

parameterized using 4 pages of 16 words, and two-page decoders referring to pages 0 and 1.

160 Chapter 4. Auxiliary Hardware Components

Figure 4.3: Local-BUS - Resource usage for final design in Zynq ZC702.

4.2 HW-Mutex

The HW-Mutex implements exclusivity in the accelerator model in a similar way to the memory object

used by the C/C ++ language, which is a containment mechanism implemented through lock and unlock

operations. There are two HW-Mutex units in the accelerator model, the first is Local-Mutex (LMutex),

which ensures exclusivity in writing to the LRAM, and the second is the System-Mutex (SysMutex), to

implement exclusivity in the system memory region that may have been allocated by the HAL-ASOS file

system. Figure 4.4 shows a simplified diagram that describes the internal organization of this component.

This unit is based on two concurrent channels, A and B, that can read from, and write to, the status

register. The write operation can store a key that distinguishes the exclusive owner of the resource, while

keeping the device locked to one channel and ignoring successive attempts to write keys in the other

channel. Therefore, this resource can only be released by writing the same key that blocked the device

while using the same physical interface. Once in the locked state, it activates an output signal that can

be used to enable write operations on associated resources, such as the LRAM or the ZCU unit. In the

accelerator design, channel A is dedicated to the host and is connected to S00 interface, while channel

B is dedicated to the Kernel Core and is connected to the Local-BUS. In its internal control logic, the

HW-Mutex favors channel B in cases of concurrent lock attempts, on the assumption that the latency in

the operations to be carried out is much lower since it is a local resource in the design of the accelerator.

The key that identifies the owner is stored in the status register (FF4) and results from a 30-bit composition

(WID [29:0]), containing a unique numeric ID which is concatenated with 1-bit (CHID) that distinguishes

the channel where this key was presented. Using K0 and K1, the resulting composition prevents the B-lock

key from being equivalent to the A-Lock key, or vice versa. In turn, distinct WIDs allow the Host to have

Chapter 4. Auxiliary Hardware Components 161

CE

reset

D

clk

CE

reset

D

clk

match

ALU

CE

reset

D Q

clk

CE

reset

D Q

clk

0

1

select_i[1:0]

STATUS

status

lock_i

[31:0]

[31:0] LOCKED

[29:0]

[30]

concat

[29:0]

[30]

concat

[30:0]

[30:0]

B_CHANNEL_HW_ID

A_CHANNEL_HW_ID

1

0

DIN_B

DIN_A

HW-Mutex

write_a_i

write_b_i

CLOCK

WR_ACK_A

FF2

FF3

M0

K1

K0

Control signals Clock signal

31
Locked CHID

30
WID

29:0

RESET

Reset signal

RD_CE_A

WR_ACK_B

RD_ACK_B

write_b_q

RD_CE_B

write_a_q

CE

reset

D Q

clk

CS_B

RD_CE_B
FF6

write_a_i

WR_CE_A
write_a_q

CS_A

CE

reset

D Q

clk

write_b_i

WR_CE_B

CS_B

FF1

write_b_q

0

1

compare

select_i(0)

valid_i

[30:0]

[30:0]

[30:0]

[30:0]

M1

A1

CE

reset

D Q

clk

write_iFF4
[31:0]

2

3

[31:0]

[31:0]

[30:0]

[31]

[31:0]

concat

K2

[30:0]

concat

K3

lock_i

[31]

select_i[1:0]

write_i

lock_i

valid_i

write_a_i

write_b_i

write_b_q

clear_b_i

clear_a_i

clear_b_i

Control
CE

reset

D Q

clk

FF0

write_a_q

clear_a_i

G0

G1

G3

G6

G7

G9

[31]

[31:0]

G2

G4

G5

RD_ACK_A
CE

reset

D Q

clk
CS_ARD_CE_A

FF5

G8

G10

G11

Figure 4.4: HW-Mutex design architecture.

different entities competing for the same resource, while side B is accessed by a single entity, i.e., the

HW-Task using a WID extracted from its TaskName parameter.

Once in free state, the device keeps the status register closed on itself, by selecting input 3 of M0 and

disabling the CE input in FF4. At the same time, this choice places the contents of the status register in

the output of the device. A write operation performed in A or B, first reaches registers FF2 or FF3, which

are inputs 0 and 1 of M0, after being concatenated with the control signal lock_i (K2, K3), indicating the

status of the device. The writing in these registers is triggered by the logical combination G0 and G2 for

channel A or G1 and G3 for B, which enables clock signal for a single period. These write signals are also

inputs from the control unit and they can determine the subsequent forwarding of the chosen key to the

FF4 register. For this, the control unit selects the appropriate input in M0 and activates the write_i signal

in FF4 for one clock period. At the same time, depending on the selected channel, it activates the clear

signal in G6 or G7, thus clearing the accepted WID. In the next clock cycle, the control closes the status

register on itself again, selecting the inputs 2 or 3 in M0, accordingly to the chosen channel.

The least significant bit of the select_i signal (bit 0), is used in M1, to choose the channel that owns the

resource and to compare it with the current value of the status register in A1. This comparison indicates

162 Chapter 4. Auxiliary Hardware Components

to the control unit if the key that holds the exclusivity in the resource was presented again at the input. In

this context, a new write operation can only be enabled after FF0 or FF1 storing the logic’0’, using G2 and

G4 or G3 and G5, respectively. With the valid_i signal active, the control writes the new key in FF4, which

has the locked_i signal disabled in its composition. This action establishes the status register value as

free on the next active clock transition. For transaction handshake on the interfaces of the two channels,

S00 and Local-BUS, distinct signals are generated in the next clock cycle using FF0 and FF1 for write

acknowledge, and FF5 and FF6 for read acknowledge. The Status output is updated in response to the

write transactions, and depending on the lock flag, it uses one clock cycle when locking the device, or two

clock cycles if the device was previously locked.

Figure 4.5 shows a state logic diagram which describes the implementation of the HW-Mutex control

unit. The initial state, #0, is assumed after a reset signal and remains active as long as the resource is

free. During this state, the select_i output locks the Status register with the logical value ”11”. This unit

implements two independent flows that differentiate channel B from A in the sequence of states. The flow

on the right is triggered by the channel B write request independently of A request, and determines the

sequence of states #0, #1, #2 where it remains locked at the service of B. The flow on the left is triggered

by the channel A write request when channel write B is not asserted, and determines the sequence of

states #0, #4, #5 where it remains locked at the service of A.

0

#0
Free

/select_i ←”11”

#3
release_b

/select_i ←”01”
/write_i

/clear_b_i

#1
accept_b

/select ←”01”
/clear_b_i
/write_i
/lock_i

#2
owned_b

/select_i ←”11”
/lock_i

#6
release_a

/select_i ←”00”
/write_i

/clear_a_i

#4
accept_a

/select_i ←”00”
/clear_a_i
/write_i
/lock_i

#5
owned_a

/select_i ←”10”
/lock_i

write_b_i/

write_a_i/ &
write_b_i’/

write_b_q/
& valid_i/

write_a_q/
& valid_i/

Channel A lock-release sequence Channel B lock-release sequence

Figure 4.5: HW-Mutex control unit state diagram.

When A or B intend to release the resource, they re-write the ID in the device. In response, the control

unit evaluates the logical value of the write_a_q or write_b_q and valid_i inputs, before proceeding to the

release states, #3 or #6. Once in these states, the Control chooses the corresponding ID and produces

Chapter 4. Auxiliary Hardware Components 163

the write signal which updates the status register. In the next clock cycle, the control unit reaches the free

state where it remains until a new lock request.

In Figure 4.6 we can see a behavioral diagram that results from the simulation of this device using Vivado.

For simplicity some signals have been omitted. At simulation time instant of 45 nanoseconds, A and B

compete for the resource with the keys 0xace0 and 0xace1 respectively. Since the control design favors

the B channel, the state register assumes st1_accept_b value and in the next clock cycle, the output

o_locked is set high indicating that the device is locked. By analyzing the status_q output, we can see

that the channel B holds the resource exclusivity with the composition 0xc000ace1. At time instant of

85 nanoseconds, input A replicates the composition in Status register at the input A, but control is no

longer active on this channel and remains in the st2_owned_b state. At time instant of 125 nanoseconds,

channel A acquires the resource with the composition 0x8000ace0 after B release, and at time instant

of 175 nanoseconds releases the resource. The control unit reaches the free state two clock cycles later

and the Status register holds the composition ID that released the resource.

4.3 Local RAM

In the accelerator model, the local RAM (LRAM) implements the memory segment used for storing vari-

ables in the scope of the HW-Task. In its conceptual model, this storage space is largely similar to the

model of a cache, and ultimately is used by the accelerator kernel to exchange data with the host system’s

memory. In the accelerator design this storage space is addressable by means of the S01 interface and

as such, by specifying the address lines of S01, it establishes the size of LRAM. In the set of configurable

parameters, the C_S01_ADDR_WIDTH is by default set to 10-bit, thus resulting in a total LRAM storage

capacity of 1024 bytes. To promote parallelism the LRAM is implemented following the Synchronous True

dual port RAM design, where two concurrent interfaces, A and B, can be connected each using its own

clock source. In doing so, the channel A is connected to the S01 interface and channel B is connected

with the Local-BUS, allowing the host system and the Kernel Core to simultaneously access to the LRAM

contents. In order to avoid collisions, writing operations are allowed only to the channel that acquires the

HW-Mutex. Such resource is the LMutex, from which the CHID in the status register and the locked output

signal, are combined logically to establish write-enable (WE) signals for channels A and B in the LRAM.

In doing so, the write privileges will be established to channel A when logic zero CHID is in the locked

composition, or to channel B when logical one CHID.

164 Chapter 4. Auxiliary Hardware Components

Fi
gu

re
4.
6:

H
W
-M
ut
ex

w
av
e
di
ag
ra
m
:
co
nc
ur
re
nc
y
sc
en
ar
io
s.

Chapter 4. Auxiliary Hardware Components 165

In Figure 4.7, it can be seen the architectural design used to implement the LRAM component. For a 32-

bit target architecture, the design is internally organized in four 8-bit memories and follows a little-endian

ordering. In each of the channels, with the activation of the chip-select signal (CS), the next clock transition

updates the output (DOUT) with the contents in the position specified by the address bus (ADDR). Thus,

when reading this device, such operation always refers to the total number of bytes in a word and the BE

bus is not considered. If otherwise, the WR and WE inputs are active, the logical combination with the BE

bus, enables writing in the bytes of one word, at the position specified by the ADDR bus. In this case, the

next clock cycle will update DOUT with the new values received at the DIN input, and the existing ones that

were not affected. Both operations are confirmed using the correspondent acknowledge signals WR_ACK

and RD_ACK.

0123

B3 B2 B1 B0

B3 B2 B1 B0

CLK_BCLK_A

DIN_B

ADDR_B

WR_B

CS_B

DOUT_B

DIN_A

ADDR_A

WR_A

CS_A

DOUT_A

CS_A

CLOCK_A

CLK_BCLK_A

DIN_B

ADDR_B

WR_B

CS_B

DOUT_B

DIN_A

ADDR_A

WR_A

CS_A

DOUT_A

CLK_BCLK_A

DIN_B

ADDR_B

WR_B

CS_B

DOUT_B

DIN_A

ADDR_A

WR_A

CS_A

DOUT_A

CLK_BCLK_A

DIN_B

ADDR_B

WR_B

CS_B

DOUT_B

DIN_A

ADDR_A

WR_A

CS_A

DOUT_A

WE_A

BE_A[3:0]

WR_A

ADDR_A

RD_A

DOUT_A

RD_ACK_A

WR_ACK_A

DIN_A

D Q

CLK
D Q

CLK

B3 2431 B2 1623 B1 815 B0 07

B3 2431 B2 1623 B1 815 B0 07

ADDR_B

D Q

CLK
D Q

CLK

WR_B

RD_B

CS_B

CLOCK_B

WE_B

BE_B[3:0]

RD_ACK_B

WR_ACK_B

DOUT_B

DIN_B

Local-RAM

CLOCK_BCLOCK_BCLOCK_A
CLOCK_A

Figure 4.7: Local RAM - internal architecture for 32-bit accelerator design.

To access the contents of this memory, the HW-Task design implements the system calls that interact with

the Local-BUS. In its generic form, each read or write system call consumes two clock cycles, which allow

the microprogram to effectively exchange data and deal with the bus handshake signals. Alternatively,

for transactions that involve a consecutive number of words in memory, the HW-Task can implement the

system calls that provide a burst-like transfer mode. Usually, in this transfer mode, each word is exchanged

following one clock cycle rate, by the elimination the initial steps in each transfer. Given the simplicity of

the Local-BUS, all transfer steps can be implemented while exploring the parallelism in the design. For

that, the beginning of a new transfer overlaps the handshake of the transfer in progress, and in doing so,

each word can be exchanged at one clock cycle rate. The system call completes with an extra clock cycle

166 Chapter 4. Auxiliary Hardware Components

that handshakes the transfer of the last word. In Figure 4.8 it can be seen a wave diagram that describes

this transfer mode for a consecutive reading of four words.

Figure 4.8: Local-Ram wave diagram: burst read system call.

In the same figure, it can be seen the kernel call interface, the block_task signal from kernel response

interface, the locked signal in LMutex, the interface B in the LRAM and the internal variable lram_data_i

in the context of the HW-Task. At time instant of 8,185.00 nanoseconds, the HW-Task implements the

system call to read four words from the LRAM starting at address 0x4, and as response the kernel activates

the block_task signal. For this purpose, the exclusivity in the LMutex resource was not acquired and this

signal remains low for the entire system call. At each clock_b cycle, the interface B address is incremented

once, using a count based on the number of words.

The first read acknowledge occurs one clock cycle later, at time instant of 8,195.00 nanoseconds. At this

time, the LRAM makes the content of the word at address 0x04 available at DOUT_B, with the value of

0x0000000a. Simultaneously, it receives a new request to read the contents at address 0x5. For each

active cycle of RD_ACK, the lram_data_i is updated with the LRAM output using the correspondent posi-

tion. This pattern of operation repeats itself for three clock cycles and in the fifth cycle, at time instant of

8,225.00 nanoseconds, the system call receives acknowledge of the last word read. In response, it up-

dates the last position of the lram_data_i variable and completes the operation by clearing the block_task

signal.

Chapter 4. Auxiliary Hardware Components 167

4.4 Message-Queue

In the HAL-ASOS framework, the message-queue is the established interface for bi-directional and control-

oriented communication, used by the Kernel Core and HW-Task designs. At the Kernel Core level, the

accelerator programming model dictates that for each message sent there must be a return message, and

in doing so, the message-queue is reshaped into a bidirectional logical channel implemented using two

HW-FIFOs. The reduced number of control signals required by this component allows for the accelerator

model to implement a dedicated interface for each HW-FIFO, and thus providing an efficient and orderly

exchange of data that can handle multiple words per clock cycle. By its simplicity, it also minimizes the

impact on the microprogram and at the same time provides a containment mechanism which can be

used to synchronize the control logic in the HW-Task. At the HW-Task level, the use of this component

is optional and the designer should parameterize each component to meet the application requirements.

The HW-Task design is provided with a dedicated interface for each HW-FIFO that is resumed to the signals

that provide effective exchange of data. The control signals for each component are still managed by the

microprogram and are activated by the appropriate system calls invocation.

To map the specified settings into an efficient design, the accelerator model provides two distinct HW-FIFO

architectures in a single component, which are applied to the receive and transmit channels of the HW-

Task and Kernel Core units. In the receive channel, each HW-FIFO is written by the S00_Control interface

and, as such, the design establishes a fixed single word input and a parameterizable number of words

output, i.e., [1:M]. On the transmit channel, different number of words can be written in each HW-FIFO,

which connects the read output with the same generic interface, and in this way, the HW-FIFO design

establishes a parameterizable number of input words and a fixed one output word, i.e., [N:1].

To promote the efficiency while exchanging multiple words per clock cycle, each design exploits the FPGA’s

memory blocks by replicating the storage units according to the number of words it receives as a parameter.

Figure 4.9 shows the HW-FIFO architecture for the receive input. For the selected architecture, the HW-

FIFO component receives as parameters three output words and a storage space of eight words of 32-bit.

To provide the desired number of words, the design replicates the storage using three true-dual port

memory blocks. For computing the desired storage space, the received number of outputs is normalized

to the nearest value in the power of two range, as described at the bottom of the figure, which determines

a storage space of four words per Block RAM (BRAM). As a consequence, the effective storage scales to

twelve words, as result of three block RAMs using four words capacity.

168 Chapter 4. Auxiliary Hardware Components

To ensure concurrency and consistent access to storage resources, this design implements two indepen-

dent control units, A and B. Each unit controls an address register that is common to all memory blocks

which are incremented using counters C0 and C1 for address register A (addr_a) , and C2 for address

register B (addr_b). To avoid address collisions, the read address (B) can never exceed the write address

(A), and similarly, the write operation can never go further than the effective storage space over the read

address. For this purpose, each control unit senses a datapath flag that indicates the status of full, for

the writing operation, and empty, for the reading operation. The logical value of each flag results from the

arithmetic operations represented by ALUs A1 and A2.

…

Control Unit
(Channel A)

2
ALU

compare

match

word_count[1:0]

increment_addr_a

HW_FIFO[1:3]

[0][1][2]

Control Unit
(Channel B)

word cntr.
inc

0

load

i_val

count

clk

reset
address cntr.inc

i_val count

clk

reset
0

addr_a[1:0]

addr_b[1:0]

data_in

CE
CE

address cntr.inc

i_val count

clk

reset

CE

increment_addr_b

C2

C1

C0

fifo_full

C1

fifo_empty

C2

Size = 3 x (C1– C2) + C0

Empty = ((C1-C2)==0)
Space = 3 x (4 – C1 + C2) – C0

Full = ((C1-C2)== 4)

ALU

space

rdy_for_data

data_out[3]

[2] [1] [0]

reset

D Q
clk

FF4

ack_data

increment_addr_a

push_data

reset

D Q
clk

FF5

increment_addr_b

data_valid

pop_data

size

ALU

data_ready

C0
C1 C2

A0

A1
A2

0

1

clock
clock clock

clock

reset
reset reset

reset
clock

U2 U1 U0

din dout

we

i

j

wr

push_data

i i

j j

din dindout dout

we we

wr

push_data

wr

push_data

Ram_block_2 Ram_block_1

… …

Ram_block_0

WE

sel
012

reset

(Depth = M , N_OUTPUTS=O) : (8,3) –> Least_Pow2(3)=>2; RAM_SIZE = 8/2 =4 WORDS; ADDR_WIDTH=2 (N) –> Effective Size(E) = 4x3 = 12 WORDS

depth=8

0xCA1100000xCA1100010xCA110002

[0xCA110000]
[0xCA110001]
[0xCA110002]

M0

reset

D Q
clk

FF6*

resetclock

CE

update_out

update_out

[2:0] [2:0]

reset

D Q
clk

FF1*

reset
clock

reset

D Q
clk

FF3

reset

fifo_empty

Q

reset

D Q
clk

reset

Qclock

fifo_full

reset

D Q
clk

FF0*

reset
clock

FF2

C0

Figure 4.9: HW FIFO[1:3] - architecture using 3 and 8 configured parameters.

Due to the asymmetric number of input and output words, the control unit A uses C0 to select one of three

available RAM blocks, and C1 to control the write address. Writing a word to a specific RAM block depends

on the value of counter C0, which is used in M0 to establish connection with the active WE control signal.

The control unit authorizes writing by activating this signal, after evaluating the logical value of the full flag.

When the push_data signal is active, the din input is written in the RAM block that has the active WE input,

at the position indicated by the addr_a register. In response to the push_data signal, the control unit A

activates the increment_addr_a signal which advances C0, and reevaluates the fifo_full flag to produce

a consistent value for the WE signal. When the C0 count is equal to the number of output words minus

one (i.e.,2 in the provided example), the comparison in A0 activates the match flag, which enables the

Chapter 4. Auxiliary Hardware Components 169

inc input of C1. The next increment signal advances C1 thus producing a new write address, and loads

C0 with the value zero for a new word count.

When the difference between the C0, C1 and C2 reaches the existing storage space, the fifo_full flag

will be asserted. As consequence, the control unit A will deactivate the WE signal suspending the write

operation to all RAM blocks. Each RAM block will still receive theWR signal that requests a write operation,

but since none of them has the WE input active, the existing data will be preserved. Under this condition,

the write address will no longer be incremented until progress is registered in the read address.

Whenever the C1 advances beyond the number of output words above C2 (i.e., size equal to 3 in the

provided example), control unit B receives the zero value from the fifo_empty flag, and in response,

it activates the update_out signal, anticipating the received set of words to output register FF6*. This

register enforces a logical grouping between the three output words and prevents the information from

existing in an intermediate inconsistent state. In this mode of operation, the update in the output B occurs

at a rate of three words per clock cycle, and the read address is only incremented after the pop_data signal

has been activated and the data handshake on channel B has been completed. Beyond this handshake

phase, if there is no readable data, i.e., fifo_empty is active, the output values remain unchanged and the

output data_ready is disabled, signaling that the current data_out values have been read. Therefore, the

control unit B remains in a blocking state where it waits for a progress in the C1 to increment the C2 and

produce a new output value. For completion, in Figure 4.10 we have included two state logic diagrams of

the control units A and B that implement the behavior according to the descriptions above.

#2
Blocked

fifo_full_i

/push_data#0
ready

#1
increment

WE

inc_addr_a

#2
increment

fifo_empty_i

/pop_data

#0
Blocked

#1
ready

inc_addr_b

Channel A FSM Channel B FSM

update_output

Figure 4.10: HW FIFO[1:3] - architecture using 3 and 8 configured parameters.

A similar design is used in the transmit channels and allows the Kernel Core to write a configurable number

170 Chapter 4. Auxiliary Hardware Components

of words per clock cycle into each HW-FIFO. It also includes two independent control units and a word

counter is used to select each output word in similar way as in M0, but now using a 32-bit MUX that

connects its inputs to all memory blocks and the selected output is stored in the FF2* output register.

Figure 4.11 shows a wave plot diagram that results from the simulation of the HW-FIFO component using

a concurrent write and read scenario. For this purpose, the same parameters used for the previous

descriptions were considered, as can be seen in the last two lines. As consequence, an effective storage

space of 12 words is available, as shown in the o_space output value (line 3), after the reset signal has

reached the logic value ’0’. During the simulation, channel A receives 18 write requests, where consecutive

values from 0 to 17 are used in the i_data_port signal. For each valid push_data signal at the input, the

HW-FIFO responds with the o_ack_data signal, indicating that it has registered the received value. The

write operations conclude at the time 575 nanoseconds, indicated by the green marker, with the control

unit reaching the st2_blocked state due to lack of space. At this instant of time, the o_ready_for_data

signal has been disabled and the available space is 0.

Figure 4.11: HW-FIFO [1:3] - Wave plot simulation diagram using Vivado.

On channel B, the update_out signal is activated by the control unit when the value of o_size reaches the

number of outputs for the first time (i.e., 3). In the next clock cycle, the o_data_port output is updated

with the value of the first three words received, and the o_data_ready output goes to the active state.

In response to this signal, the pop_data input receives the logical value ’1’ and after a handshake cycle

involving the o_data_valid signal, the control advances to the st0_blocked state since the size registers

the value 1, which is less than the number of outputs. This cycle repeats every time o_size reaches the

value of 3 and only once the pop_data signal is received. The simulation concludes with the o_data_ready

Chapter 4. Auxiliary Hardware Components 171

signal active, indicating that the third group of words in the output has not yet been read. The value of

o_size registers 12 words available for reading, as the result of 18 words received minus 6 words read.

4.5 Local Interrupts

To establish synchronization between the accelerator model and the Linux operating system, the design

makes use of the LINTC. In summary, this component operates by multiplexing an interrupt line that it

receives from the target platform, by the set of interrupt sources that the accelerator model provides. In

this set, seven interrupt sources are considered native since they are directly related to the HW resources

in the design. Native interrupt sources are used to implement synchronization at the operating system

level, while exchanging data between the Host system and a particular HW resource. Additionally, the

accelerator’s top-level settings allow to specify interrupt sources dedicated to the context of the HW-Task.

Similarly, the user definable interrupt sources implement synchronization between the HW-Task design

and the target application. The Host system uses the S00 interface that maps the control and status

registers of this component, to mask each input source, enable the interrupt signal and acknowledge the

resulting flags. Figure 4.12 shows the composition of the control and status registers.

DFIFO
Size

DFIFO
Space

MQ
Size

31 7

0

1234 MQ
Space

Local
Mutex

Sys
Mutex

ZCU
56

EI User
30

DFIFO
Size

DFIFO
Space

MQ
Size

31 7

0

1234 MQ
Space

Local
Mutex

Sys
Mutex

ZCU
56

EI User
30

Control

(word offset: 0x4)

Native interrupt sources

Status

(word offset: 0x3)

Figure 4.12: Local Interrupt Controller - control and status register.

To mask an interrupt source, the host system activates the corresponding bit in the control register and

in the occurrence of a high value at the specified source, the status register is updated with the active

flag in the same position. When the most significant bit of the control register (EI) is active, the transition

from zero to one in a status flag, triggers the interrupt signal that is sent to the host platform.

Figure 4.13 describes the implementation of the local interrupt controller. In FF0 we can see the control

register used to mask interrupt sources. When the Host system writes to the control register, the S00

activates the CS line that selects the 0x03 word offset. Considering that the status register is used to flag

masked interrupt sources, the host system can write to the 0x04 offset to acknowledge such flags. In

doing so, it can activate bits in the handle register (FF1), that are used to clear the corresponding status

172 Chapter 4. Auxiliary Hardware Components

flags. When writing to the status register, the active bits in FF1 are used to clear the flags in FF8, FF12 or

FF15. The instant the write_status signal returns to zero, a logical combination with FF2 resets the FF1

bits. The contents of the control and status registers are made available using the 32-bit outputs that can

be read by the host system using the same interface, or by the HW-Task by means of adequate system

calls that use the Local-BUS. In the same way, the HW-Task can trigger user interrupt sources by writing to

the offset of the status register. For the occurrence of such interrupts, the corresponding bit in the control

register must be previously activated by the host system.

reset

D

clk
reset

D Q

clk

…

Synchronizer

Q

reset

D Q

clk

Debounce

reset

D Q

clk

CE

intr_mask(i)

reset

D Q

clk

CE

Debounce/hold

intr_mask(EI)

match

Compare

ALU

FF0*

X"0000000”

intr_raise

handle_status(i)

debounce
/hold

i_sources[6:0]

reset

D Q

clk

CE

intr_mask(n+u)

handle_status(n+u)

…

…

intr_mask(EI)

LBUS.TXDATA

Status[31:0]

LBUS.CS(4)

LBUS.WR_CE

i_user(u)

…

CE

reset

D Q

clk

S00.TXDATA[31:0]

S00.CS(3)

S00.WR_CE

intr_mask[EI & U+N-1:0] CE

reset

D Q

clk

S00.TXDATA[31:0]

S00.CS(4)

S00.WR_CE

handle_status[EI & U+N-1:0]

handle_status(EI)

reset

D Q

clk

reset

D Q

clk

irq_pulse

irq_signal

reset

D Q

clk

CE

intr_mask(EI)

Status[EI]

Status[N-1:0]Status[U-1:0] &

write_control_i write_status_i

reset

D Q

clk

wr_ackwrite_status_i

write_control_i

Status[EI]

reset

D Q

clk

rd_ack
S00.RD_CE

S00.CS(3)

S00.CS(4)

Local Interrupt Controller

… …

reset

D Q

clk

CE

reset

D Q

clk

lbus_write_i

lbus_write_i

Debounce

(i)

(u+n)

S00.CS(4)

(u)

reset

D Q

clk

lbus.wr_ack

lbus.rd_ack

lbus_write_i

reset

D Q

clklbus.rd_ce

lbus.cs(3)

lbus.cs(4)

LBUS.CS(3)

LBUS.RD_CE

clock

reset

A0

FF1*

FF3
FF4

FF5 FF6

FF7

FF8

FF9

FF10 FF11 FF12

U3

U0

FF13 FF14

FF15

FF16

FF17

Clock signals Reset signals Mask interrupts Clear interruptsInterrupt signal

intr_mask[EI & U+N-1:0]
Control[31:0]

(i)

reset

D Q

clk

FF2

write_status_i

N: native sources :=7
U: user sources

(i)

U1

U2[24:0]

Figure 4.13: Local Interrupt Controller - internal architecture diagram.

Native interrupt signals connect to the 7-bit input sources. Here, multi-flop synchronizers (FF5 and FF6)

can be activated to handle distinct clock domains in the overall design. The U0 debounce circuit allows the

source input at position ’i’ to be recognized during a clock period. As such, the same signal must reach

a logical zero during at least one clock period before generating a new interrupt source. If the bit in the ’i’

position of the control register is set, the CE input of FF8 allows to activate the flag in the corresponding

position of the status register. Such a flag will generate a high value at the input of A0 until the EI bit of

the control register is activated. A logic one in this bit will store the intr_raise signal in FF15 and at the

same time, the combination of FF8 and FF9 invalidates the signal at the input of A0, until the output of

FF8 reaches a new logical zero. In doing so, U1 prevents a status flag from giving rise to more than one

interrupt source, before being acknowledge by the host system. The output of FF15 corresponds to bit

31 of the status register, and the active state of this flag, is used to generate a persistent signal in FF16

that can be connected to the host interrupt line. In FF17 a pulse is generated that can be used as an

alternative in the same line.

Chapter 4. Auxiliary Hardware Components 173

The seven native sources use a similar datapath as described in the figure, were more flip-flops such as

in FF8 implement the status flags. Similarly, each bit in the TXDATA input from the Local-BUS, can be

captured in FF10 and FF11 to activate the corresponding flags in the same register, as depicted by FF12.

To handshake these interfaces, each read or write operation gives rise to acknowledge signals using FF3

and FF4 for S00, and FF13 and FF14 for the Local-BUS.

4.6 ZeroCopy Unit

When applying the HAL-ASOS programming model to a new design, or when refactoring an application, the

resulting memory layout will be distributed between the system memory and LRAMs on each accelerator.

Such layout will require a memory data movement that may translate into an increased processing and

contribute to a degradation of performance metrics. Any performance degradation will be closely linked

to the length of data that the application will handle, as well as the clock ratio of the existing CPU cores

and the different buses through which these memories are addressable.

In order to deal with the frequent movement of data in memory DMA devices are often used. This device

allows to free the CPU from the task of copying data between memories, so that they can be allocated

to operations that relate to their local segment or caches. Examples are data movements carried out

through the network subsystem, which require frequent transfers in both directions. In some cases, the

movements performed by the DMA are affected by the location of data and make access to the memory

temporarily unavailable to the CPU. Depending on such location it can establish connections between

different memory regions and as such, it may require two different bus interfaces. In doing so, the DMA

transactions generally involve more than one form of intermediate storage, either at the system level or at

the level of its the internal organization.

With the ZeroCopy unit (ZCU) we attempt on reducing the impact that the data movements represent, but

at the same time by embedding this feature in the accelerator model, we try to keep resource usage at

acceptable levels by re-using existing HW interfaces. In a broader perspective, this unit cooperates with

the zero-copy strategy, in the HAL-ASOS file system for Linux, being part of the set of services it provides.

Within this strategy, it aims to minimize the copy overhead at the operating system level. In doing so,

this unit provides services to the Host system by moving data between the system memory and the local

storage (i.e., the LRAM) on the accelerator where it is implemented. In addition, this functionality can

174 Chapter 4. Auxiliary Hardware Components

be extended to the application-level, promoting parallelism in the exchange of data by the initiative of the

HW-Task.

Figure 4.14 shows a simplified diagram of the ZCU connectivity with the host system, the Kernel Core and

the memory interfaces. As an integral part of the accelerator model, this unit benefits from the location of

the data and therefore, no additional interfaces are needed to perform the data movement. To access the

distinct memory locations, interfaces M00 and S01 are used, following a multi-master implementation

where connections A and B are the masters on the interface, and connection Y represents the target of

the operations to be carried out. In this way, each interface implements a scheduling policy through the

Gen-BUS component.

ZCU

LRAM

M00
interface

KernelCore

S00
interface

S01
interface

Local-BUSAccelerator scope

CPU
Core 0

Memory Controller

… …
System BUS

Host System

SysMutex LMutex

Priority bus

A B B

release release

Priority bus

status status

Y

Y A

Figure 4.14: ZeroCopy unit - Connectivity in the accelerator model.

To access the ZCU, the host system uses the S00 interface that maps all the registers in the accelerator

model. The set of registers for the ZCU unit includes a Control, Status, Lock ID and Transfer parameters.

On the accelerator side, the Kernel Core uses the Local-BUS to access the same registers. To avoid a col-

lision between these two interfaces, the unit imposes a containment model that establishes configuration

privileges to the entity that successfully acquired the exclusivity. Such model is based on the internal Lock

Chapter 4. Auxiliary Hardware Components 175

ID register and the external status of the HW-Mutexes, and provides access to the ZCU to initiate single

data transfers using the specified parameters.

When the ZCU needs to access the system memory, it uses the interface M00, and at the same time

to access the LRAM, it uses the interface S01. The priority source for each interface is managed by the

containment model which in idle, establishes priority to the master A on both interfaces. In doing so,

the slave Y is connected to the host system in S01, and to the Kernel Core in M00 for the time that

ZCU is not in use. Once in service, the priority changes to master B at the moment A completes the

current transaction. The ZCU will transfer the required data length and, on completion, automatically

remove the configuration privileges while releasing the HW-Mutexes. A new data transfer requires again

the exclusivity in the dedicated hardware resources, and the Host operating system can contribute with

scheduling policies that promote the distribution of ZCU services between the different processing entities

that it owns.

Figure 4.15 describes in simplified manner the internal organization of the ZCU. We can see the connec-

tions of the S00 and Local-BUS interfaces that allow access to the unit’s register area. In the accelerator

memory layout, these registers are mapped at the second memory page, and the displayed offsets are

aligned with the limits of such paging. The generality of the registers is shared using the containment

model and only the Status register is specific for each interface. This condition allows one interface to

initiate a new transfer before the other has consulted this register.

To control the data transfers, the ZCU datapath implements three counters of parameterizable dimension

namely C0, C1 and C2. These specify the offset for the interfaces M00 and S01, and the transfer length

using word units. Such counters are parametrized according to the LRAM (N) storage capacity on the

accelerator and the system memory page size (P) of the Linux OS. Although the transfer counter is using

words, a byte-based transfer length is the accepted parameter. When the specified length is not a sub-

multiple of the word, in the last transaction, the control unit adds an extra word to complete the transfer of

the remaining bytes. With regard to the effective data movement, the ZCU implements a cross exchange

between each interface, where the words from M00 are forwarded to the interface at S01 and vice versa.

The control signals for each interface are managed by the ZCU’s control unit, as it can be seen in the

same figure.

The control register allows to initiate a read (bit 16) or write (bit 17) transfer in the LRAM, or to trigger reset

operations (bit 30) and restart (bit 28), to the ZCU unit or M00 interface, respectively. Similarity to other

176 Chapter 4. Auxiliary Hardware Components

priority_bus[1:0]

M00_write_errors

M00_read_errors

M00 offset

S00_BUS

Local_BUS

Status

Q[P:2]D [P:2]

incenload

Counter
reset

clock

C0

Control

Status

Lock ID

LRAM offset

Transfer length

MBUS address

-

M00 Write Errors

M00 Read Errors

0x0

0x4

0x8

0xC

0x10

0x14

0x20

0x24

0x40

AUTH_KEY- SW_RST - RESTART
31 30 28 15 0

Registers

Control Register

WR_LRAM- RD_LRAM
1617

Authenticator

Lock Unit Control

S01 offsetword counter
Q[N:2]D[N:2]

incenload

Counter
reset

clock

C1

Q[N:2]D[N:2]

incenload

Counter
reset

clock

C2

ZCU_TO_S01S01_TO_ZCU

M00_TO_ZCU ZCU_TO_M00

SysMutex

LMutex

Control Reg

{wr_ack, rd_ack}

{CmdAck, Cmplt, BurstDone, CmdError, CmdTimeout}

{Wr_Req, Rd_Req, BurstLen}

{CS, RdCE, WrCE, BE}{rxdata[M:0]}

{rxdata[M:0]}

{txdata[M:0]}

{txdata[M:0]}

status[M:0]

status[M:0]

ZeroCopy Unit

trigger_interrupt
release_resources

fsm_locked

fsm_locked

fsm_locked fsm_locked

refresh_iteration

inc_m00_offset
inc_lram_offset

refresh_iteration

Q[M:0]D[M:0]

incenload

Counter
reset

clock

C4

Q[M:0]D[M:0]

incenload

Counter
reset

clock

C3

N:C_LRAM_ADDR_WIDTH-1M:C_MACHINE_WIDTH-1

refresh_iteration

[M:P+1]

refresh_iteration

fsm_locked

inc_wr_error

inc_rd_error

inc_wr_error

inc_rd_error

CLOCK

RESET

(x2)

P:C_PAGE_SHIFT

WR_ERR TRANSFERRED BYTESTRFR_DONE -
31 030

Status Register

N
RD_ERR

29

WR_LRAM
RD_LRAM

refresh_iteration

reset

Figure 4.15: ZeroCopy unit - architectural design.

control operations in the accelerator model, writing to this register requires authentication to protect the

unit from a control loss in the system. For this purpose, the same authentication unit that can be found

in the accelerator kernel is used. At transfer completion, in the status register it is possible to consult the

effective number of bytes transferred, or to check for the occurrence of errors. The most significant bit in

this register signals that the transfer is complete, as shown at the bottom left of the figure.

Since multiple processing entities that can exist in the host system, may compete with each other for

the ZCU resource, it is imposed that such entities can only write on the Lock ID register after having

successfully acquired the exclusivity through the HW-Mutexes. As such, writing to the transfer registers

will only be possible after providing the appropriate word to the Lock ID register. This register, along

with the two HW-Mutex status registers are source of the Lock unit. It is through this unit that the ZCU

implements the containment model and the diagram that describes its implementation can be seen in

Figure 4.16.

The Lock unit design encompasses the three input words: SysMutex status; LMutex status; and Lock ID,

and the two control signals that synchronize this datapath, fsm_locked_i and trfr_done_i. At the output,

the host_locked signal is used to grant writing privileges to the S00 interface or to the Local-BUS, and

the one_time_lock signal triggers the ZCU from idle to locked state, where it can receive the transfer

parameters. The locked flag (bit 31) and CHID flag (bit 30) in the status of the HW-Mutexes, are logically

Chapter 4. Auxiliary Hardware Components 177

clock

locked_i

compare

(match)

ALU

SysMutex.status[31.0]

LMutex.status[31.0]

Lock_ID_reg[29:0]
[29:0]

[29:0]

[29:0]

(31)

(31)

(30)

(30)

(30)

(30)

Lock Unit

CE

reset

D Q

clock reset

fsm_locked_i

CE

reset

D Q

trfr_done_i

1CE

reset

D Q

set_i

debounce

clear_i

one_time_lock

reset

FF1 FF2FF0

A0

host_locked

G1

G0

G2

G3

G4

G5

G6

G7
CE

reset

D Q

FF3

clock

Figure 4.16: ZeroCopy unit - Lock unit.

combined in G1 and G2 to ensure that the two mutexes have been acquired and are at the service of

the same interface: S00 or Local-BUS. Using G7, the active low CHD bit will set the host_locked signal

in FF3. The triple correspondence between the thirty least significant bits, activates the match signal in

A0, which combined logically in G3 allows to activate the locked_i signal. This combination must remain

valid for three clock cycles to give rise to the one_time_lock_i output. This signal is cleared automatically

with the transfer completion by using signal trfr_done_i in G6, or otherwise, by releasing the exclusivity

in HW-Mutexes, which gives rise to the signal clear_i in G5.

Finally, in figure 4.17 we can see a connection diagram that establishes the write privileges between the

S00 and Local-BUS interfaces. The clock enable signal (CE), activates the writing of one of the sources

A or B in the register. The logical combination of WR_CE with the zero value of the fsm_locked_i signal,

establishes the writing privileges to the Lock ID register (at left) depending on the logical value of the

host_locked signal.

Lock ID
CE_A

reset

D_A[N:0]

Q[N:0]
clock

Wr_CE_A(LOCK_ID_OFFSET) Wr_CE_B(LOCK_ID_OFFSET)

done_i

reset

S00_gen.tx_data

Lock_ID_q

fsm_locked_i

CE_B Local_BUS.tx_data

host_locked

D_B[N:0]

host_locked

fsm_locked_i

TRFR Len
CE_A

reset

D_A[N:0]

Q[N:0]
clock

Wr_CE_A(TRF_LEN_OFFSET) Wr_CE_B(TRF_LEN_OFFSET)

done_i

reset

S00_gen.tx_data

Transfer_length_q

fsm_locked_i

CE_B Local_BUS.tx_data

host_locked

D_B[N:0]

host_locked

fsm_locked_i

Figure 4.17: ZeroCopy unit - Write enable.

When the corresponding ID is supplied to the Lock ID register, the control unit activates the fsm_locked_i

signal, and prevents its change at least until the completion of one transfer. On the other hand, the same

signal enables writing in the parameter registers, as it can be seen in the diagram that represents the

178 Chapter 4. Auxiliary Hardware Components

transfer length register (at right). The corresponding CE signal is asserted by with the logical combina-

tion of the WR_CE, the fsm_locked, and according to the logical value of host_locked signal. Writing

to the control register is determined by the same signal dependence, but the written value first hits the

authentication unit, before being transferred to the control register.

The control of the ZCU is implemented according to a state logic that is divided into the two transfer

flows: from the LRAM to the system memory; or from the system memory to the LRAM. The control

actions include ensuring the one-time-lock transfer, and the subsequent interaction with the M00 and S01

interfaces. Figure 4.18 describes the implementation of the control unit according to a state diagram,

which depicts the writing to LRAM flow using the orange color, and the reading from the LRAM flow using

the blue color.

0

#0
Free

#1
Locked

/fsm_locked_i

#2
lram_read_first

/lram_rd_ce
/increment_tlen

#6
mbus_wr_bytes
/mbus_be_bytes

/Wr_req

#4
wait_wr_transfer

#5
lram_read_next

/increment_tlen
/lram_rd_ce

#3
m00_wr_words

/Wr_Req

#13
Done

/trfr_done_i

Cmplt/

Error/
len_bytes_i &
rd_ack/

len_bytes_i &
rd_ack

one_time_lock_i

#10
lram_wr_word

/lram_wr_ce

#9
wait_rd_transfer

/increment_tlen

#8
M00_rd_words

/Rd_Req

#11
wr_lram_bytes
/lram_be_bytes

/lram_wr_ce

Error/

Cmplt/

wr_ack
&trfr_len_done

Word-oriented LRAM write Byte-oriented LRAM write Word-oriented LRAM read Byte-oriented LRAM read

#12
m00_rd_error

/inc_rd_error

#7
m00_wr_error

/inc_wr_error

burst_mode_i

rd_ack/ &
burst_done_i/

wr_ack &
burst_done_i/

rd_ack/

burst_mode_i

Figure 4.18: ZeroCopy unit - Control unit FSM.

After a reset signal, or a reset operation triggered by software, the unit assumes state #0. During this

state it remains idle, turning off the clock sources in the sequential components that make up its datapath

by means of a low fsm_locked_i signal. With the exclusivity in the resources, the one_time_lock_i signal

allows the control to switch to #1, Locked, and enable writing privileges in the register area.

With the beginning of a new transfer, #2 or #8 are reached, according to the specified operation. State

two, #2, is distinguished by the initial assessment of the transfer length, in which, although not desirable,

can determine a length inferior to a word and complete the transfer with just one transaction on the M00

interface in #6. The analogous procedure for the write operation can later take place in #9, after the

Chapter 4. Auxiliary Hardware Components 179

control has read a complete word through the M00 interface, and complete #11 by writing the desired

number of bytes in the LRAM.

A transaction on the M00 interface is made in two phases that comprise an unpredictable number of clock

cycles. The number of clock cycles depends mainly on the bus technology and the level of congestion

to which it is subject to. As such, in the first phase, the desired operation and the address value are

specified, followed by the first word of data if the operation writes to this interface. For this, the #3 or

#8 is used. The interface responds with the CmdAck signal that determines the progress in the state

machine. During the second phase, the control waits for the result of the transaction, incrementing the

word count and keeping all signals steady, in #4 or #9. In the event of an error, a state that increments

the respective counter is assumed, #7 or #12. If otherwise a Cmplt signal is received, the control logic

initiates a new cycle of reading or writing in the LRAM, through #5 or #10, respectively. At the same time,

the address counters for the M00 and S01 interfaces are incremented, using a logical combination that

depends on the increment_tlen signal and the Cmplt signal input.

If the M00 interface allows burst mode transfers, the state machine submits or retrieves the consecutive

number of words that comprise the length of a burst. In doing so, it iterates between #5 and #4 when

the transaction reads, and #9 and #10 when the transaction writes in the LRAM. The burst_mode_i and

burst_done_i signals are used in burst capable interfaces and allow the control unit to fragment received

the transfer length in successive burst transfers on the M00 interface. If otherwise, the M00 interface does

not have this feature, the burst_done_i signal remains active, imposing the request of a new transaction

with every word. In such cases, control switches to #3 and #8 by the time it completes #5 and #10,

respectively. Upon reaching the specified transfer length, the control switches to #14 where it signals the

completion, giving rise to the interruption stimulus of this device. This state lasts only one clock cycle and

the control returns to #0 while releasing the hardware resources.

In Figure 4.19 we can see a wave diagram from a simulation performed on the accelerator V4_00_F,

using a burst capable AXI4 interface. In this diagram, the ZCU Control implements the flow of states

on the right, which reads data from the LRAM to write the system’s memory. For simplicity, most of the

visible signals are control while others were omitted. Also, the time in the diagram has been moved to

the moment when the ZCU receives the control operation. By analyzing the contents in the HW-Mutexes

(0x80ace103), we can see that the ZCU operates at the service of the host system with the ID 0xace103.

180 Chapter 4. Auxiliary Hardware Components

Fi
gu

re
4.
19

:
Ze
ro
Co
py

un
it
w
av
e
di
ag
ra
m
-R
ea
d
th
e
S0
1
in
te
rfa

ce
an
d
w
rit
e
to
th
e
sy
st
em

m
em

or
y
us
in
g
bu
rs
tf
or
m
at
.

Chapter 4. Auxiliary Hardware Components 181

The control remains in #1 until at time instant of 5,765.00 nanoseconds, when the content of control_q

is updated with the desired operation, concatenated with the authentication key. The datapath of the ZCU

receives the refresh iteration signal that reloads counters C0 to C3, and the control switches to #2. One

clock cycle is used to read the content of LRAM at the offset zero, which returns the first word 0x0000000a,

and with the receiving of the acknowledge (*rd_ack) the control switches to #3. In this state, the control

initiates the memory transaction through the signal *Wr_Req and waits for the acknowledge. The target

address is 0x07040000 and the first word received from interface S01 is present in the output signal

*Wr_d. With the *_CmdAck signal, #4 is achieved, and a clock cycle later the M00 interface is ready to

receive the second word. At time instant of 5,855.00 nanoseconds, control reaches #5 and the sequence

of states repeats itself through #4 and #5, following a three-clock cycle per transferred word rate.

At the bottom of the wave diagram, it is possible to see two AXI handshake signals, which regulate data

exchange with the M00 interface using a ready-to-receive vs data-write-valid model, which completes with

the signal indicating the last word written(*_WLAST). At time instant of 5,955.00 nanoseconds, the ZCU

is available for a new operation and waits for the ID of the next entity. In the status register we can

observe the indication of 16 transferred bytes (0x10), concatenated with the active bit done (bit 31). For

completeness, the wave plot diagram that resulted from the complementary operation, in reading the

system memory using and writing to the interface S01 can be found attached in Listing D.5.

4.7 Performance Counters

In the accelerator model, performance counters are a special purpose set of registers that target specific

performance metrics based on the activity of the assigned HW-Task. These metrics include: (1) sleep and

(2) blocked states, and (3) complete processing rounds in the HW-Task; (4) the interrupt latency in the

host system; and performance results while accessing the systemmemory (i.e., usingM00_System) in (5)

write and (6) read transactions. Each metric is based on a record of a particular event, in the duration and

number of occurrences, that are subsequently classified between minimum and maximum, and a total

duration of the various events. Since this logic resources do not perform any effective processing inside

the application scope, the performance counters are an optional feature that can be enabled through

corresponding selection in the accelerator’s top-level (see Figure 2.28b). In doing so, the HW-Kernel

instantiates six performance components and maps them in the S00_Control address range using specific

memory pages, as described in section 3.3.

182 Chapter 4. Auxiliary Hardware Components

In the six performance related events, a Sleep counter records the number of clock cycles that the HW-

Task spent while in a sleep state and another counter will record the number of times it went to sleep.

Similarly, a Blocked counter records clock cycles spent in the blocked state while executing in the Kernel

Core context. A Done counter records clock cycles required to complete each HW-Task processing round.

To access the performance impact while synchronizing with the host system, an Interrupt counter records

the clock cycles spent waiting for the interrupt status acknowledge. Additionally, distinct performance

counters record the clock cycles spent waiting for the write or read transactions in the M00_System

interface. Conducting a low-level performance analysis will allow the assessment of the three HW-Task

performance metrics, to extract the sleep or blocked results from the overall done results. In a similar

way, the blocked results may also be separated from an effective kernel execution or the waiting periods

that are mostly related to the synchronization or the M00_System transactions.

A single performance counter design is used, which internally relies on: (1) two clock cycle counters

for the number of occurrences and the duration of each event; and (2) three ALUs for classifying the

minimum and maximum values, and to compute a total of clock cycles from the intermediate results.

Figure 4.20 describes the architecture of this performance counter using a logic diagram, where it is

possible to observe, in FF0*, a 3-bit control register that allows the starting or stopping the performance

counter (run, bit 31), or clearing the current metrics (clear, bits 1 and 0 simultaneously).

The active run bit enables the clock signal in FF1 and counters C0 and C1 and through this register, i.e.,

FF1, the design creates two internal flags that signal the rise and fall states of the i_event input. Such

flags, are then used to trigger load and increment inputs on C0 and C1, respectively, or to enable the

clock in the FF2*, FF3* and FF4* registers. In this way, C0 will count the clock cycles for as long as

the input signal is asserted, and C1 will record the number of rise occurrences in the same signal. The

duration of each event is compared with the minimum (FF2*) and maximum (FF3*) registers using A0

and A1, respectively. The logic comparison flag is combined with the event_fall flag to enable the clock

signal and allow a write of a new value in one of these registers. Similarly, in A2 the current count value

is added with the total clock cycle count register (FF4*), and the result of the addition is stored with the

active event_fall flag.

Figure 4.21 shows a wave plot that results from the simulation diagram using an HW-Task that implements

six states (i.e., task_state in line 2) that allow: (st1_) to read a control message; (st2_) to process the

received message; (st3_) to process an array of four words; (st4_) to write the processing results to LRAM;

Chapter 4. Auxiliary Hardware Components 183

Counter

Q[63:0]

CE

inc
load

D[63:0]

C0

clk

clear1 clock counter

run
event_rise

i_event

clock

Counter

Q[63:0]

CE

inc
load

D[63:0]

C1

clk

clear0 event counter

run

clock

event_rise
0

CE

reset

D Q

clk

i_data[31:0]

WR_CE(*)

control

(31)

(0)
(1)

reset

reset_i
run

reset_i

FF0*

clock

reset_i

reset_i

CE

reset

D Q

clk

FF1
run

i_event

reset_i

clock
event_q

event_rise

event_fall

CE

reset

D Q

clk

reset_i

FF2*

clock

compare

(less)

ALU

A0
event_fall

clock counter

min_count[63:0]

CE

reset

D Q

clk

reset_i

FF3*

clock

compare

(greater)

ALU

A1
event_fall

max_count[63:0]

CE

reset

D Q

clk

reset_i

FF4*

clock

add

result

ALU

A2

event_fall
total_count[127:0]

control[31:0]

event_counter[63:0]

clock_counter[63:0]

Performance Counter

clear

Figure 4.20: Performance Counter - architecture simplified block diagram.

and (st5_) to signal the host that the data has been processed. In the same figure, it can be seen an

excerpt of the kernel response interface that includes the system call ID, the progress of the microprogram

and scheduler, the block_task and the valid signals. The bottom of the figure, also shows the internal

registers of the Blocked performance counter, and the event_counter and clock_counter registers of the

Done performance counter.

An analysis of the HW-Task execution, shows the processing distribution across the accelerator model,

that starts at the instant of time 1,985.00 nanoseconds when the HW-Task control receives the run signal

and transitions to the st1_ state. In st1_, the HW-Task invokes a system call to read the Control FIFO

in 3 clock cycles, where in the 3rd cycle the HW-Task stores the received message in its datapath and

sets the next state in the control logic as st2_. The execution of this system call results in 2 cycles of

blocked status, which are added as minimum, maximum and total of the first detected event. Since

the performance counters are based on the Kernel Core status register, the stimuli are received in the

performance counters one clock cycle after they have occurred and as such the results in the registers

reflect this delay. Simultaneously, the Done performance counter started counting with the run signal,

and records in st3_ the value of 4 clock cycles for the first detected event. During the course of HW-Task

processing this performance counter is kept active until completion.

184 Chapter 4. Auxiliary Hardware Components

Fi
gu

re
4.
21

:
Pe
rfo
rm

an
ce

co
un
te
rw

av
e
di
ag
ra
m
-B
lo
ck
ed

co
un
te
rm

et
ric
s
us
in
g
ex
am

pl
e
H
W
-Ta

sk
.

Chapter 4. Auxiliary Hardware Components 185

At time instant of 2,135.00 nanoseconds, the control reaches st4_ and it invokes a user procedure to safely

update the LRAM contents, that involves: (0) locking LMutex, (1) writing an array of data to LRAM, and (2)

unlocking LMutex. The execution of this procedure completes at instant of time 2,265.00 nanoseconds,

with a Blocked cycle count of 12 cycles, which are added to the total register that achieves 14 cycles.

At st5_, the Done counter registers an increase of 13 clock cycles over the 14 cycles registered in the

previous state (i.e., 27 cycles). During this state, the HW-Task invokes a system call that activates an

interrupt through LINTC, and lasts 2 clock cycles, thus registering the minimum Blocked event duration

with 1 cycle. At the instant of time 2,285.00 nanoseconds, the HW-Task completes the processing round

with 29 cycles, of which 15 were executed in kernel space, with the longest execution interval of 12 cycles.

It should be noted that the st0_ state is considered a synchronization state, where the kernel disconnects

the HW-Task from the microprogram while waiting for the host intervention, and for this reason, the

performance counters remain disabled.

4.8 Accelerator Versions

The HAL-ASOS framework provides two main versions of the proposed accelerator model that aim at spe-

cific bus technologies, most frequent on today’s FPGA platforms. The purpose of each version is to provide

a flexible design choice, favoring different communication channels and to ease the accelerator connec-

tivity with the specifics of each bus topology. Although a single HW-Kernel design fits in the accelerator

model, distinct accelerator implementations exist and can be distinguished by the mapping of special

purpose interface capabilities with the host system. Up until now, the framework allows to select acceler-

ators based on IBM CoreConnect bus architecture, using Processor Local Bus (PLB) and Device Control

Register (DCR) bus in the V3 based versions , or the competing Advanced Microcontroller Bus Architecture

(AMBA), using AXI4 bus for the V4 based versions. In each of the versions, the termination letters distinct

specific of the bus interfaces. Examples are the use of AXI4 with and without burst capabilities in the

data-oriented interfaces, besides providing distinct clock domains in each interface design.

Table 4.1 lists the accelerator features in each of the two numbered versions. Both versions are split

between multi- or single-clock designs. The first column, refers to the ’A’ terminated version, only avail-

able through the HDL sources, describing a tightly coupled design which includes the HW-Task on the

accelerator model. The ’A’ terminated versions are selected for advanced use and to promote changes

186 Chapter 4. Auxiliary Hardware Components

in the accelerator model. As opposed to ’A’, the ’B’ to ’F’ terminated string versions are eligible from an

IP-XACT repository, and they implement loosely coupled designs that plug into an HW-Task component.

These can also be divided according to a single- or multi-clock design strategy. The ’B’ versions provide

the simplest design of the accelerator model, that targets low resources in the interface components while

providing a single-clock design that eases validation.

Table 4.1: HAL-ASOS accelerator versions V3 and V4 features.

Single-clock Multi-Clock
Sources IP-XACT repository IP-XACT repository

Versions 3 V3_00_A V3_00_B V3_00_C V3_00_D V3_00_E V3_00_F
M00_System PLB v4.6 PLB v4.6 FSL 2.1 PLB v4.6 DCR v2.9
S01_Data PLB v4.6 PLB v4.6 PLB v4.6 PLB v4.6 PLB v4.6
S00_Control PLB v4.6 PLB v4.6

Co-Simulation
PLB v4.6 PLB v4.6 PLB v4.6

Versions 4 V4_00_A V4_00_B V4_00_C(_V) V4_00_D V4_00_E V4_00_F
M00_System AXI4-Lite AXI4-Lite AXI4-Lite AXI4-Lite AXI4-Lite
S01_Data AXI4-Lite AXI4-Lite AXI4 AXI4 AXI4-Lite
S00_Control AXI4-Lite AXI4-Lite

Co-Simulation
AXI4 AXI4-Lite AXI4

The ’C’ versions are used for the Co-Simulation and implement a connectivity through the network service

of the operating system where the RTL simulation tool is running. For this, distinct implementations rely on

the framework software API and a proxy component connects with the HW-Kernel interfaces to exchange

data with the target application. To provide a simple validation in the early design stages a single-clock

design is provided. In the Co-Simulation mode, the framework supports two RTL simulation tools: (1)

ModelSim and (2) Vivado Simulator. Since different tools implement specific programming technologies,

in ModelSim the accelerator model uses VHDL FLI, which allows a dynamic library to be loaded as a target

architecture of a component in the design. With Vivado, the DPI interface for SystemVerilog is used, which

similarly allows the calling of functions implemented in a static software library. To distinguish these two

versions, we extend a suffix ’_V’ in the specific versions for Co-Simulation using the Vivado tool.

The ’D’ terminated versions allow the application to scale in performance by providing the full capabilities in

the data-oriented interfaces. In the CoreConnect based accelerator versions, the V3_00_D was intended

to explore the Fast Simplex Link (FSL) interface when targeting the MicroBlaze soft-core processor, but

it was abandoned mostly due to performance limitations and resource usage in the overall design. In

the AMBA-AXI4 based accelerator versions the design uses the same clock domain in S01 and M00, and

provides the full capabilities in both interfaces.

Chapter 4. Auxiliary Hardware Components 187

To ease the design timing constrains, the multi-clock version will allow an improvement of the design

critical path at the expense of a balance in the interface feature capabilities. Each interface has a specific

clock domain which include the generic synchronizers as discussed in section 3.3. The design strategy

accommodates clock domains to provide the burst format compatible performance. Therefore, a choice

can be made between ’E’, a host-dependent data movement model relying on the Host system CPU

to exchange data between the LRAM and the system memory, or ’F’, an accelerator-dependent data

movement model relying on the HW-Task or the ZCU for the same data exchange. For this reason, the

’E’ and ’F’ terminated string versions are distinguished by an exclusive burst format in S01 or M00,

respectively.

For harmonizing each specific interface capabilities, theHW-Kernel design employs configuration concepts

using VHDL language features, which establish the appropriate binding between entity descriptions and

a specialized target architecture in strategic components. Figure 4.22 shows an excerpt from the HW-

Kernel descriptions that lists configurations for the V4_00_B and V4_00_F accelerators. In line 1651,

the configuration descriptions instruct the syntheses tool to use a blank and a single_clock architecture

descriptions in the XS00, XS01 and XM00 components. In this way, the design is configured for a single-

clock domain and using arbiters to schedule the concurrent transactions that may occur in S01 and M00

interfaces.

Line 1707, shows the configuration for the multi-clock design that instructs the synthesis tool to bind the

XS00 component to the dual_clock architecture, as depicted in Figure 3.41, and the XS01 and XM00

components to the multi-clock architectures of the gen_bus as depicted in Figure 3.45. In this case,

the chosen architectures merge the Slave Y clock domain with the Master B clock domain to promote

burst transfers format in the M00 interface. As consequence, the burst format transfers must only be

used in the arbiter priority scheduling policy, enforced by the HW-Mutexes in the accelerator model. A

complementary configuration is used in the V4_00_E variant that promoted Slave Y to the Master A clock

domain. In this case, the burst transfer capability is used by the host system to exchange application data

using the S01 interface. The remaining configurations for the V4 variants can be seen in the attached

Listing C.32.

188 Chapter 4. Auxiliary Hardware Components

architecture V4_00_b of hal_asos_accelerator is 167

...168

for acc_kernel:xhal_kernel use configuration hal_kernel_v4_00_b_config; 167

...168

begin 357

...358

M01_CONTRL:entity axi_lite_ipif_master 369

 generic map (C_M_AXI_ADDR_WIDTH=> C_M00_AXI_ADDR_WIDTH, 370

...371

S01_DATA:entity axi_lite_slave_ram_ifif 416

 generic map(C_S_AXI_DATA_WIDTH => C_S01_AXI_DATA_WIDTH, 417

...418

S00_CNTRL:entity axi_lite_slave_regs_ipif 501

 generic map (C_S_AXI_DATA_WIDTH=> C_S00_AXI_DATA_WIDTH, 502

... 503

ACC_KERNEL: xhal_kernel 504

 generic map(C_PEFORMANCE_COUNTER=>C_PEFORMANCE_COUNTERS, 505

...506

end V4_00_b; 625

architecture V4_00_f of hal_asos_accelerator is 193

... 194

for acc_kernel:xhal_kernel use configuration hal_kernel_v4_00_f_config; 315

...316

begin 383

...384

M01_CONTRL: entity axi_full_master_ipif 392

 generic map (C_M_AXI_ADDR_WIDTH=> C_M00_AXI_ADDR_WIDTH, 393

...394

S01_DATA: entity axi_lite_slave_ram_ifif 480

 generic map(C_S_AXI_DATA_WIDTH => C_S01_AXI_DATA_WIDTH, 481

...482

S00_CNTRL: entity axi_lite_slave_regs_ipif 521

 generic map (C_S_AXI_DATA_WIDTH=> C_S00_AXI_DATA_WIDTH, 522

...523

ACC_KERNEL: xhal_kernel 568

 generic map(C_PEFORMANCE_COUNTER=>C_PEFORMANCE_COUNTERS, 569

...570

end V4_00_f;695

Figure 4.22: HW kernel - architecture configurations for b and f variants.

Figure 4.23 shows an excerpt of the HAL-ASOS accelerator architecture descriptions for ’B’ and ’F’ ter-

minated versions using the AMBA AXI4 bus, while promoting the use of the configurations listed in Fig-

ure 4.22. At the top of the figure, line 167 specifies the configuration applied to the acc_kernel compo-

nent, indicating that the configuration ’B’ should be used, and includes the architectures for each of the

unresolved components in the HW-Kernel design that perform the appropriate binding.

In lines 369, 416 and 501, the components that connect to each of the HW-Kernel interfaces are in-

stantiated, providing the functionalities as specified in Table 4.1 for version V4_00_B. In this case, all

components implement a correspondence with AXI4-Lite bus, to connect the distinct generic interfaces

with the host system. In line 504, the HW-Kernel component is instantiated to finalize the design of the

accelerator model. It must be said that in the loosely coupled design approach, the HW-Task is an external

Chapter 4. Auxiliary Hardware Components 189

component that connects with the HW-Kernel through the M00_Kernel and S00_Task interfaces of the

accelerator.

Similar descriptions are used for the accelerator component in the ’F’ version, as can also be seen at

the bottom of the same figure. Likewise, in line 315 the configuration of the acc_kernel component is

specified, and in lines 392, 480 and 521, the components that establish the correspondence between the

host system and the HW-Kernel interfaces are instantiated. These provide the functionality according to

Table 4.1 for the V4_00_F version. In this case, the M00_SYSTEM component is based on the AXI4 bus,

allowing the generic interface to perform burst format transfers while accessing the main system memory.

The remaining components implement a correspondence with the interfaces according to the AXI4-Lite

bus specification and in line 568, the HW-Kernel instantiation completes the accelerator description.

architecture V4_00_b of hal_asos_accelerator is 167

...168

for acc_kernel:xhal_kernel use configuration hal_kernel_v4_00_b_config; 167

...168

begin 357

...358

M01_CONTRL:entity axi_lite_ipif_master 369

 generic map (C_M_AXI_ADDR_WIDTH=> C_M00_AXI_ADDR_WIDTH, 370

...371

S01_DATA:entity axi_lite_slave_ram_ifif 416

 generic map(C_S_AXI_DATA_WIDTH > C_S01_AXI_DATA_WIDTH, 417

...418

S00_CNTRL:entity axi_lite_slave_regs_ipif 501

 generic map (C_S_AXI_DATA_WIDTH=> C_S00_AXI_DATA_WIDTH, 502

... 503

ACC_KERNEL: xhal_kernel 504

 generic map(C_PEFORMANCE_COUNTER=>C_PEFORMANCE_COUNTERS, 505

...506

end V4_00_b; 625

architecture V4_00_f of hal_asos_accelerator is 193

... 194

for acc_kernel:xhal_kernel use configuration hal_kernel_v4_00_f_config; 315

...316

begin 383

...384

M01_CONTRL: entity axi_full_master_ipif 392

 generic map (C_M_AXI_ADDR_WIDTH=> C_M00_AXI_ADDR_WIDTH, 393

...394

S01_DATA: entity axi_lite_slave_ram_ifif 480

 generic map(C_S_AXI_DATA_WIDTH > C_S01_AXI_DATA_WIDTH, 481

...482

S00_CNTRL: entity axi_lite_slave_regs_ipif 521

 generic map (C_S_AXI_DATA_WIDTH=> C_S00_AXI_DATA_WIDTH, 522

...523

ACC_KERNEL: xhal_kernel 568

 generic map(C_PEFORMANCE_COUNTER=>C_PEFORMANCE_COUNTERS, 569

...570

end V4_00_f;695

Figure 4.23: HAL-ASOS accelerator - architecture components and configuration clause.

Chapter 5

Experimental Results

In this chapter, we will evaluate different versions of the HAL-ASOS accelerator synchronous and asyn-

chronous design models that can be applied to HW-Task, using appropriate procedures from the HDL

packages. Some of the accelerator versions will be evaluated considering metrics in the overall perfor-

mance of the target application, by varying resource usage through data size and clock frequencies. To

fit different accelerators into the overall performance, the results from the Linux time command and the

performance counters in the HAL-ASOS file system will be combined and analyzed. The chapter concludes

with a gap analysis by evaluating different implemented versions of accelerators and comparing the top

performance design with similar state-of-the-art implementations.

To stimulate the design of the HW-Task, a feature detection algorithm was selected as the case study. It

is often used as an initial step in many computer vision applications to detect corners of objects in image

frames or live video streams. A large number of feature detectors exist in the literature, however, it is still

true that when processing live video streams at full frame rate, most of them leave little time for further

processing. For better understanding and functional validation, the chosen algorithm was embedded into

a test application that locates an object in image frames. The following two sections describe the structure

of this application and the chosen detection algorithm.

5.1 Object detection a case study

For a case study, the developed application employs algorithms from the OpenCV library [29] to detect and

extract image features that will be used to match a known object in the target image frame. Therefore,

attributes that characterize specific points (corners) for the chosen object are previously collected and

190

Chapter 5. Experimental Results 191

stored using appropriate binary descriptors. These points will be compared with points of interest found

in the target images. The application is divided into four different processing steps: (1) the entire image

is analyzed to extract the points of interest; (2) a set of binary descriptors is created for the detected

points; (3) these points are compared with descriptors of the chosen object, and if a match is found; (4)

the located object is circumscribed in the image. Figure 5.1 represents this sequence of steps through a

block diagram, where it is possible to observe which of the OpenCV library algorithms were selected.

Feature
Detection
(FAST + NMS)

Extraction
(SURF)

Matching
(Brute Force or Flann)

Suppression
and

Circumscription

CAM

iFrame.pgm

or

Known objects

Object location

Figure 5.1: Object Detector application block diagram.

The first step uses the FAST+NMS algorithm, and the second step, use SURF algorithm format to generate

binary descriptors for the corners found. Using the Brute Force matcher [30] algorithm, the third step

establishes a match between descriptors of the chosen object and those from the target image. In doing

so, it compares each corner of the chosen object with all corners from the target image and returns the

closest classified value using the Euclidean distance. The final step operates on the set of established

matches and excludes values with a distance above a specified threshold. Once excluded, the application

seeks to delimit the image region described by the remaining matches. It draws a four-point geometric

shape defined by the farthest coordinates that can be found in the set of matches.

The above block diagram was implemented following a distributed approach, where the first step (i.e., the

feature detection) is deployed into a Xilinx ZC702 platform capable of implementing the HW acceleration

models provided by the HAL-ASOS framework. Using the Linux network subsystem, corner points are

detected and uploaded while traversing the target image. The receiver of this data is a server system that

proceeds with the implementation of the remaining steps, providing the final representation of the image

containing the circumscribed object. For the performed tests, different image resolutions and different

objects were previously tested under different scenarios, ensuring applicability and compatibility between

the algorithms. In Figure 5.2 we can see the application output for an image frame with 1080p resolution.

The upper left corner shows the target object image that was used in the match step. On the right side,

it is image frame that was analyzed by the feature extraction step, which includes the target object. After

192 Chapter 5. Experimental Results

Figure 5.2: Object Detector application test.

establishing probable matches and excluding those with a higher distance, the application draws lines

between the corners on the object and scene images, and completes by circumscribing the object with

the square in green. In the lower left corner, the terminal window of the ZC702 platform is also visible,

which in this example is using a software-based Task class (i.e., SW-Task FeatureDetector1) to detect

and extract corners on the entire scene image. In this software-only version, two adjacent SW-Tasks (i.e.,

FileReader and CornerUploader) are used to read image pixels and send the detected corners to the server

application, respectively.

Consecutive iterations of the application show stable quantitative results, in which the FileReader pro-

cesses 2,073,600 bytes, representing 1080 blocks (same as image lines) of 1920 pixels. FeatureDetec-

tor1 extracts 9,980 corners in the scene image and finally, CornerUploader converts the corners found in

a block of 39,920 bytes that it transmits to the server system. This block is composed of a two-dimensional

coordinate, x and y for each 32-bit corner. To complement these results, the command time was used to

measure the execution duration, which records an average time of 3.81 seconds

5.2 Feature detection stage

For the Feature Detection stage, the FAST algorithm (accelerated segment test features) [31] was selected.

Purposed by Rosten, E. and Drummond, T. [32], is based on pixel intensity comparison using an 8-bit

black and white color scale. Such comparison aims to detect corners by selecting the darkest or brightest

pixels and extract their location using xy image coordinates. To delimit the brightest or darkest region,

Chapter 5. Experimental Results 193

the FAST algorithm employs a geometric shape described by a Bresenham circle, which establishes a

comparison periphery and places the pixel under test in the central position, Ip. Figure 5.3 shows an

example of this geometric shape considering a three-pixel radius, which results in a comparison of bright

and dark with 16 pixels.

16 1 2

15 3

14 4

13 p 5

12 6

11 7

10 9 8

Figure 5.3: Image mapping to Bresenham circle example.

If the intensity of the central pixel (Ip) is higher (darker) or lower (brighter) than the intensity of the pixels in

its periphery, and verifies at least 9 consecutive pixels in the arc described by the circle (i.e., Fast9-16), the

Ip pixel is considered a key point. To eliminate cases of proximity between pixels, the absolute difference

between intensities must be greater than or equal to a threshold value, t, which is a parameter in the

FAST algorithm. In such way, the pixel on the periphery (Ip→n) is darker or brighter than the central pixel

if one of the following expressions is satisfied:

x is brighter : Ip→x < Ip − t (5.1)

x is darker : Ip→x > Ip − t (5.2)

Smaller radius-based versions of FAST exist, where it tests for a darker or brighter contiguity at 5 of 8 pixels

(i.e., Fast5-8), or at 7 of 12 pixels (i.e., Fast7-12). In the proposed use case, we selected the FAST9-16

which is the most robust of the three algorithm versions.

For a key point to be considered a corner, first the absolute difference must be quantized through a score

function (V), and it also must have a maximum V in its region of adjacent pixel scores. Three forms of

computation are possible and these are based: (1) on the maximum number of pixels in the circle, for

which p remains corner: (2) on the maximum value of t for which p remains corner; and (3) the sum of the

194 Chapter 5. Experimental Results

absolute differences between the pixels in the contiguity arc and the center pixel. Definitions (1) and (2)

are highly quantized measures but many pixels share the same value of them. For speed of computation,

a slightly modified version of (3) can also be used. For the Feature detection stage, we have selected (3)

since it provides a wither score range. Equation 5.3 represents the modified speed version used in this

work. Subsequently, a non-maximum suppression (NMS) rule is applied to eliminate candidates that have

adjacent key points with a higher score value. The final set consists of the central pixels that are corners

in the image.

V = max

 ∑
xϵSbright

|Ip→x − Ip| − t,
∑

xϵSdark

|Ip − Ip→x| − t

 (5.3)

In its original form, the FAST algorithm establishes two acceleration techniques: (1) a high-speed test that

pre-examines pixels 1,5, 9, and 13 (the four compass directions). Pixel p will never be a key point if it

does not check at least three of the previous pixels as brighter or darker simultaneously, in which case it

will be excluded avoiding the consequent processing. The full test with all 16 pixels on the periphery is

applied to the candidates who have passed this first test.

Alternatively, (2) is based on machine learning, and for this case the algorithm in format (1) is used to

previously analyze images similar to the chosen scenery. From this analysis, a set of key points should be

obtained containing the result of the 16 auxiliary pixels, classified into three categories: brighter, darker

and similar. These three data subsets are applied recursively using the ID3 (decision tree classifier)

algorithm to create a decision tree that can be used to analyze the scenery or other similar images. The

acceleration in (2) restricts the application to a specific image type and for this reason it was discarded.

The FAST algorithm provided by the OpenCV software libraries and a C/C++ implementation provided

by the author of the algorithm are based in (1). Both options were tested and used as a performance

comparison term with distinct HW accelerated implementations that will be discussed in this chapter. We

will refer these implementations as OpenCV and Ed.Rosten-C, respectively.

A software algorithm that employs the full dataset test and uses the performance-optimized score function

of equation 5.3, was also implemented. Its design is based on the C/C++ language and serves as a

starting point for the development of the HW accelerated feature detection. The scoring function was

selected based on the dimension and precision of produced results. When compared with OpenCV and

Chapter 5. Experimental Results 195

Ed.Rosten-C algorithms, the suppression of maximums considers 11-bit of dimension of scores against

8-bit of the previous ones. As such, it allows greater precision in the exclusion of non-maximum, and when

used in real life images, it demonstrated increased corner location accuracy.

Fundamentally, the software implementation of the full dataset test establishes the starting point in the

development of HW-Task’s datapath. In doing so, it provides means to validate its internal structure

before offloading the computation to specialized hardware circuitry. In its final version, the implementation

mirrors the datapath behavior used in the different HW-Tasks that will be analyzed in this chapter. The

following section outlines the software implementation for the full dataset test.

5.3 Software-only Accelerated Feature Detection

Both algorithms, OpenCV or Ed.Rosten-C, are characterized by a test dataset that operates on a complete

image frame. Such condition implies that the scene image must be completely loaded in the application’s

memory before processing. Another implementation detail of the previous algorithms is related to the fact

that the first three and last three lines of each frame are not considered, as well as the first three and last

three columns of the same frame. On the other hand, results will only be obtained when completing the

processing of the entire frame.

Unlike the previous ones, the new full dataset test software is centered on seven lines of the frame, and

with each new line, the oldest received line is discarded and the processing is repeated for this new set of

seven lines. Although it has not received the first seven lines, the implementation proceeds using white

pixel lines provided internally, which are later replaced by the lines received from the target image. All

frame rows and columns are considered and the first three pixels of each row are processed with the last

three pixels in the same rows to form a circle of radius 3. Within this design structure it is also possible

to start processing a new image frame while the algorithm processes the last five lines of the previous

frame. If, on the other hand, the algorithm receives the last line that completes a frame and there is no

new frame to process, the processing is considered complete, leaving 3 lines that did not reach the center

of the circle. Figure 5.4 describes the internal architecture for this processing step.

To form a Bresenham circle over the seven lines of the image, a 7x7 pixel matrix structure is used.

Each pixel that occupies the center of the matrix is the central pixel p, and together with the 16 pixels

in its periphery, they undergo through three processing stages, namely: Classifilter, Contiguity check ,

196 Chapter 5. Experimental Results

Classifilter
Contiguity

check
Scoring

Image Lines
submit()

read_scores()

Pixel matrix [7x7]
Software FAST Detector

0 0 0 0 0 0 0

0 0 D2 79 14 0 0

0 7D 145 1FC 7D 0 0

0 0 78 CD C8 7B 7F

0 0 20 34 F 51 46

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Scored matrix [7x7]
0 4F00 9A81 7B81 0 0 0 0 3684 83 0 0 0 82DE 0 0

0 8130 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9B86 5A84 82 0 0 0 0 0 0 0 0 0 0 821E 0 0

0 0 0 0 0 0 0 0 0 0 824F 0 0 81 0 7200

0 0 0 0 0 0 0 0 0 0 0 8E00 0 0 0 0

0 0 0 0 0 0 0 0 80F9 0 0 81F2 0 5084 83 0

0 0 0 0 0 0 0 0 0 0 9B00 82 0 0 0 0

8881 80A4 0 0 0 0 0 0 840D 0 0 0 0 0 0 0

Scored Lines 0 0 0 0 0 0 0 0 82 8C00 F382 83 0 0 0 0

drop_line()

Figure 5.4: Block Diagram for the Software Full dataset test.

and Scoring. The Classifilter stage calculates the absolute differences to each of the 16 pixels on the

periphery and checks whether each of them is brighter or darker than the central pixel p. The Contiguity

check stage evaluates whether p is darker or brighter for a contiguity of 9 consecutive pixels in the arc

describing the circle. If contiguity is verified, pixel p is classified as a key point in the image. The last

stage, Scoring, calculates the score of the central pixels that have been classified as key points. For each

calculated central pixel, the matrix advances one column in the image lines, and the processing resumes

with a new circle of pixels for the new central pixel p until this position reaches the end of the line. At this

point, a new image line is required for further processing.

The result of the first traversal of the scenery image transforms each line of pixels, into lines of 16-

bit scores, where pixels that were not considered key points received a null score. Further processing

implements a new traverse over this new image representation and applies non-maximum suppression

to discard key points that are not considered corners. In this step, only 3 score lines are considered

and the algorithm operates in a similar way to the previous step, discarding the oldest line for each new

line received. Processing starts by receiving the second line while considering an internal third line of

null scores. Because these operations are independent, the non-maximum suppression stage competes

with the previous stages, allowing early memory release and producing results before the entire frame is

processed. Figure 5.5 describes the structure and memory layout used for the NMS stage.

The 3x3 matrix of scores uses a 16-bit dimension that shifts across the entire length of lines, while being

input parameters to the suppress stage. Such stage will determine if the central score in the position

(1,1) is the maximum value between the 8 scores in the proximity. When the condition is verified, the

coordinates of the pixel that occupies the center of the input matrix are stored in a FIFO of corners. For

this, the algorithm implements counting of lines and columns, which starts with zeros upon receiving

the first line. The count is incremented with advances in the matrix position and whenever a new line is

sent for processing, until the number of lines in the image is reached. When the last center line score is

compared, processing stops until a new line is submitted, starting a new processing iteration. As in the

Chapter 5. Experimental Results 197

previous algorithm, the first and last center line scores are compared using the last and first values in

each of the three lines, to favor regular execution while analyzing all values.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 8474 0

8464 85F0 845D 0 0 0 0 0 0 0 0 0 0 2900 81 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7382 82 0 4400 0 0 0 0 0 0 0 0 0 0 0 0

8881 80A4 0 0 0 0 0 0 840D 0 0 0 0 0 0 0

0 0 0

8464 85F0 845D

0 0 0

Score matrix [3x3]

Suppress
center 0 0 0

0 85f0 0

0 0 0

{23,20}
{15,19}

{37,16}

Corners FIFO

{5,35}

pop_corner()

Non-Maximum Suppressionsubmit_line()

drop_line()

{x,y}

Scored Lines

Corner coordinates

Figure 5.5: Block Diagram for the Software Non-maximum suppression.

As previously mentioned, the software feature detection was parallelized using three processing threads,

to take advantage of the dual-core architecture on the target platform CPU. The implementation makes

use of the Task class in the HAL-ASOS C/C++ framework and applies the SwTask template qualifier to

specify the desired computational resource. In this way, the first Task class, FileReader, manipulates

the input image by fragmenting data into memory blocks with the dimension of the image width. Such

blocks are then published in a topic called ImageLines that this task creates using the DDS of the HAL-

ASOS framework. The second Task class, FeatureDetector, subscribes to the topic of the previous task

to receive the target image lines, and in its turn, creates a topic called Corners to publish the results

of its processing. In its implementation, this task stimulates the FAST+NMS algorithms with the image

lines it receives from the subscription, exchanging score lines between these two algorithms. When the

storage in the corners FIFO reaches the topic length, the execution publishes the intermediate results in

the Corners topic and resumes processing until a new length is achieved or its subscription is terminated

by the FileReader task.

Two implementations are available for the third Task class which subscribes to the topic Corners in both

cases. The first one, CornerUploader, uploads data through the network subsystem so that the execution

can proceed in the server system computational resources. The second, CornerDump, stores the pro-

cessing results locally using a file in binary format. In doing so, it allows for further comparison of results

between hardware and software implementations of the FAST+NMS algorithm. On the other hand, it al-

lows for multiple and repeated iterations to measure the average execution times, while excluding delays

of the network handshake phase and uploading of corners. Figure 5.6 shows source excerpts in C/C++

language used to implement these two software applications using the HAL-ASOS framework.

198 Chapter 5. Experimental Results

On the right side, Figure 5.6a, is represented the code excerpt of the network-based application. In this

excerpt, the three SW-based Task class instantiations are visible in lines 928 to 930. The T2 instantiation

specializes the class using the configurations of the TCornerUploader structure, and therefore, it is com-

piled and linked to the specialized the run member that implements the corner upload using the network

service. On the left side, line 953 specializes the Task class T2 for the configurations of the TCorner-

Dump structure, and specialized run member that dumps the detected corners in the binary output file.

The configurations of each Task class as well as each specialized run members can be consulted in the

attached Listing C.34 to Listing C.36.
10

...

void hal_asos_demo:: 925

feature_detector::sw_mxthread_network(void) { 926

 using namespace hal_asos; 927

 928

 Task<SwTask, TFileRead> T0; 929

 Task<SwTask, TFeatureDetector> T1; 930

 Task<SwTask, TCornerUploader > T2; 931

 p_Detector_Task = &T1; 932

 933

 T0.start(); 934

 T1.start(); 935

 T2.start(); 936

 T0.join(); 937

 T1.join(); 938

 T2.join(); 939

} 940

 941
(a) Network-based source code.

 941

 942

 943

 944

 945

 946

void hal_asos_demo:: 947

feature_detector::sw_mxthread_dump(void){ 948

 using namespace hal_asos; 949

 950

 Task<SwTask, TFileRead> T0; 951

 Task<SwTask, TFeatureDetector> T1; 952

 Task<SwTask, TCornerDump> T2; 953

 p_Detector_Task = &T1; 954

 955

 T0.start(); 956

 T1.start(); 957

 T2.start(); 958

 T0.join(); 959

 T1.join(); 960

 T2.join(); 961

} 962

(b) File dump-based source code.

Figure 5.6: Hardware accelerated feature detection application using HAL-ASOS framework.

Conceptually, this software application could be structured with a single thread that entirely reads the

image, implements the FAST+NMS algorithms and publishes the results of found corners. In terms of

compatibility with OpenCV and the Ed.Rosten-C, this would be the preferable option since these algorithms

demands for the full image acquisition in a single shot. On the other hand, the Ed.Rosten-C implementation

requires the complete image at consecutive virtual memory addresses. As such, the HAL-ASOS and

OpenCV based detectors will be evaluated in both formats, multi-threaded and single-threaded, while the

Ed.Rosten-C version will only be evaluated in the single-threaded format. In Figure 5.7 we can see the

results of tests performed on detectors based on HAL-ASOS full dataset test, OpenCV, and Ed.Rosten-C

implementations.

Figure 5.7a shows that the detector was executed with the parameters 0 and path to a test image with

1080p resolution. The first parameter selects the multi-threaded version of the HAL-ASOS tool, and the

second parameter indicates the image to process. The time command was used to measure the execution

of the application for three consecutive executions. The total execution time varies between 3.62 and 3.64

Chapter 5. Experimental Results 199

2020 armv7l GNU/Linux

time ./feature_detector 0 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetector0<SwTask>]finished...(1080,89573)

[CornerWriter<SwTask>]finished...(89573)

real 0m 3.63s

user 0m 3.81s

sys 0m 0.09s

time ./feature_detector 0 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetector0<SwTask>]finished...(1080,89573)

[CornerWriter<SwTask>]finished...(89573)

real 0m 3.62s

user 0m 3.82s

sys 0m 0.06s

time ./feature_detector 0 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetector0<SwTask>]finished...(1080,89573)

[CornerWriter<SwTask>]finished...(89573)

real 0m 3.64s

user 0m 3.79s

sys 0m 0.12s

#

(a) software multi-threaded full dataset test detection.

2020 armv7l GNU/Linux

time ./feature_detector 2 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetectorCV0<SwTask>]finished...(1080,89828)

[CornerDump<SwTask>]finished...(89828)

real 0m 0.92s

user 0m 0.88s

sys 0m 0.09s

time ./feature_detector 2 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetectorCV0<SwTask>]finished...(1080,89828)

[CornerDump<SwTask>]finished...(89828)

real 0m 0.96s

user 0m 0.83s

sys 0m 0.15s

time ./feature_detector 2 1080p/1920_1080_jean_16_9.pgm

[FileReader<SwTask>]finished...(1080, 2073600)

[FeatureDetectorCV0<SwTask>]finished...(1080,89828)

[CornerDump<SwTask>]finished...(89828)

real 0m 0.95s

user 0m 0.89s

sys 0m 0.10s

#

(b) software multi-threaded OpenCV-based detection.

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

time ./feature_detector 7 1080p/1920_1080_jean_16_9.pgm

[OpenCV]:finished!...(2073600, 89828) ->CornersOpenCV.txt

real 0m 0.85s

user 0m 0.79s

sys 0m 0.06s

time ./feature_detector 7 1080p/1920_1080_jean_16_9.pgm

[OpenCV]:finished!...(2073600, 89828) ->CornersOpenCV.txt

real 0m 0.85s

user 0m 0.80s

sys 0m 0.05s

time ./feature_detector 7 1080p/1920_1080_jean_16_9.pgm

[OpenCV]:finished!...(2073600, 89828) ->CornersOpenCV.txt

real 0m 0.85s

user 0m 0.80s

sys 0m 0.05s

time ./feature_detector 7 1080p/1920_1080_jean_16_9.pgm

[OpenCV]:finished!...(2073600, 89828) ->CornersOpenCV.txt

real 0m 0.86s

user 0m 0.81s

sys 0m 0.04s

#

(c) software single-threaded OpenCV-based detection.

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

time ./feature_detector 6 1080p/1920_1080_jean_16_9.pgm

[EdRosten-C]:finished!...(2073600, 89828)

real 0m 0.63s

user 0m 0.57s

sys 0m 0.02s

time ./feature_detector 6 1080p/1920_1080_jean_16_9.pgm

[EdRosten-C]:finished!...(2073600, 89828)

real 0m 0.59s

user 0m 0.56s

sys 0m 0.03s

time ./feature_detector 6 1080p/1920_1080_jean_16_9.pgm

[EdRosten-C]:finished!...(2073600, 89828)

real 0m 0.59s

user 0m 0.55s

sys 0m 0.04s

time ./feature_detector 6 1080p/1920_1080_jean_16_9.pgm

[EdRosten-C]:finished!...(2073600, 89828)

real 0m 0.59s

user 0m 0.55s

sys 0m 0.04s

#

(d) software single-threaded Ed.Rosten/C-based detection.

Figure 5.7: Software-only feature detection: application performances when using input and
output files and time command on the target platform Xilinx ZC-702.

seconds, and in all tests the user + sys processing time exceeds the real time since the two cores were at

the service of the application. From the messages sent by each of the tasks, we can see that FileReader

published 1080 blocks of data in a total of 2,073,600 bytes. The FeatureDetector0 task received 1080

blocks of data representing the image lines and was able to detect 89,600 corners that it publishes in the

Corners topic. Finally, the task CornerDump received the same number of corners that it submits in the

binary file for further analysis.

In Figure 5.7b, it can be seen the tests performed to OpenCV multi-threaded version using the Task class

from the HAL-ASOS framework. The same file was used as input image and the test was repeated three

times wrapped in the Linux time command. The processing results differ in the number of corners found

since the OpenCV scoring function is based on the maximum threshold as mentioned in the section 5.2.

The total execution time varies between 0.92 and 0.96 seconds for 89,928 corners. Results of OpenCV

200 Chapter 5. Experimental Results

single-threaded software can be seen in Figure 5.7c with a total time of 0.85 seconds for the same input

image. Finally, Figure 5.7d shows the results of the Ed.Rosten-C software test where a total time of 0.59

seconds was needed for an execution that detected the same number of corners as OpenCV.

When compared, we can say that OpenCV’s execution times are aggravated by multithreading since this

algorithm, despite allowing adding lines to the image matrix, cannot start processing until obtaining the

entirety of the image. Despite this condition, a better performance is observed in all three versions when

compared to the full dataset test software. The tests used an input file that produces a high number of

corners, which means that the SW accelerated algorithms are suited to image-controlled environments

where the number can be contained. As expected, the performance of the full dataset test version is much

lower than the two algorithms with software accelerations, and its implementation helps to translate the

costs of this algorithm when using a dual core A9 ARM architecture. For a better understanding of the

performance of each application when influenced by the number of detected corners, the tests were

repeated with different images at the same resolution, the results can be seen in the graph of Figure 5.8.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 4.6k 33.7k 61.7k 90k

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Corners per Frame

SwFullSet
(3.28)

(3.40)
(3.52)

(3.67)

(3.85)

MxSwFullSet(3.16) (3.16) (3.18)

(3.38)

(3.64)

MxOpenCV

(0.21) (0.26)
(0.37)

(0.51)

(0.94)

OpenCV

(0.16) (0.21)
(0.31)

(0.44)

(0.85)

E.Rosten-C

(0.08) (0.12) (0.17)
(0.27)

(0.59)

Application performances: Software-only Detectors[1080P]

Figure 5.8: Software-Only feature detection performances using 1080p test images.

With zero detected corners, the application based on the Ed.Rosten-C algorithm traverses the entire image

in 80 milliseconds. Single-threaded OpenCV takes an average execution time of 160 milliseconds and

suffers a 40-millisecond slump in multi-threaded version for the same image conditions. The execution

times of the full dataset are in great number superior, about 19 and 39 times higher to the two previous

algorithms when the target image does not present too many number of corners. The differences are

reduced to 4 and 6 times with an increase in the number of corners for the last mark (90k) as previously

Chapter 5. Experimental Results 201

shown in Figure 5.7. The tests performed applied a threshold parameter of 30 to scan the four images

that can be consulted in the attached Figure D.10. For the zero corners test, the threshold parameter was

raised to the maximum value (i.e., 255), and the table.pgm image file was used.

5.4 Asynchronous-synchronous datapath

Traditional FPGA IPs use only synchronous design style due to a rapid development and eased functional

verification. In this approach, all state holding elements update their values upon arriving of an active

and global clock edge and the pipeline operates like a giant shift-register. Generically, this type of designs

suffers penalties in the power consumption metrics by using dynamic power. Also, they face performance

limitations due to unbalanced pipelines that result in all stages typically having roughly balanced delays.

Asynchronous designs inherently provide elasticity by allowing a variable number of data items to appear in

the pipeline at any time. If there is no congestion, data items are injected at wide intervals, widely spaced in

the pipeline and travel rapidly through it. Instead of clock-driven data movement, asynchronous pipelines

use some form of handshaking protocol where items travel to the pipeline in availability fashion. Such

design inherently offers underflow and overflow protection in the local storage resources and automatic

flow control. Since switching activity occurs on data items being processed, asynchronous pipelines

consume dynamic power only on demand.

In the HAL-ASOS design, we have been using asynchronous-synchronous design approach that ensures

that synchronous circuits are used for computation only and asynchronous circuits ensure that functional

units maintain their clock input actives only when it is necessary. By design choice, the HW-Task already

provides the kernel control signals sleep and blocked that can be used to disable synchronous functional

units on its datapath. Such signals are generally assigned to clock-enable inputs of the synchronous

elements when disabling them not in required, such as when the HW-Task enters kernel space to execute

system calls, or when the HW-Task control achieves the sleep or dead states. Conversely, some of these

functional units operate concurrently with the HW-kernel execution and in these cases, datapath-level

signals must be used to ensure that required synchronous elements remain active for the desired clock

pulses. Such signals, implement a local bidirectional interstate communication, that typically includes

both data and control. Practical example is the Generic Bus handshake protocol.

202 Chapter 5. Experimental Results

In HW accelerated Feature detector design, we implement an asynchronous-synchronous datapath that

is also concurrent to the kernel-level execution. Therefore, the bidirectional handshake protocol is based

on data-valid and ready-to-receive signals, keeping the logical units active for the duration that such input

signals remain valid. Figure 5.9 provides an abstract overview of both designs considering the Classifilter

block. Details about the asynchronous-synchronous datapath can be consulted attached in Appendix F.

CE

reset

D Q

clk

CE

reset

D Q

clk
result

ALU
result

ALU

Pixel_i

Center pixel

threshold

[7:0]

prescore_i

STAGE 0 STAGE 1 STAGE 2
EN

…
[7:0]

[7:0] [7:0]

ADD ADD

CE

reset

D Q

clk

CE

reset

D Q

clk
result

ALU
result

ALU

Pixel_i

Center pixel

threshold

[7:0]

prescore_i

…
[7:0]

[7:0] [7:0]

ADD ADD

i_data_valid o_data_valid

i_rdy_for_datao_rdy_to_rcv

i_data_valid o_data_valid

i_rdy_for_datao_rdy_to_rcv

a)

b)

ce ce

Figure 5.9: An abstract overview of synchronous (a) versus asynchronous (b) pipeline in the
Classifilter block design.

In the synchronous example, data moves to the subsequent stage by enable-disable control. Such signal

is usually handled by a control unit that implements pipeline stall when no data is available at input(s).

On the other hand, in asynchronous design, a data-valid versus ready-for-data signals pair is feed across

internal designs to move data across each pipeline stage, even when it is a single data in the complete

pipeline chain.

To implement hardware-accelerated corner detection, the full dataset test algorithm that was fully deployed

into an HDL design, dividing the implementation in two IPs: one for the detection of key points and

another for the suppression of non-maximum. These two IPs were used in the datapath of the HW-

Task and two initial versions where developed. The first one is based on the execution of the multi-

threaded application exchanging data using the HAL-ASOS DDS. The second version is based on the

single-threaded implementations that operates in a standalone mode reading the image file, processing

pixels and writing corners in the output file. These two versions use the same datapath that will also

Chapter 5. Experimental Results 203

be used in the subsequent HW-Tasks discussed in this chapter. Figure 5.10 shows a block diagram that

describes such datapath.

FAST NMS

clock clock

write_control

control_words[4][32]

pixel_word[32]

write_pixels

ready_to_receive

write_control

control_words[4][32]

score_word[12]

write_score

fast_done

score_word[12]

data_valid

fast_done

ready_for_data

corner_word[32]

pop_corner

corners_found[16]

pixel_space[10]

U0 U1

pixel_cntr

read_offset

corner_cntr

write_offset

C0

C2

C1

C3

clock

clock

clock

clock

CE

CE

CE CE CE

CE

KernelCall.parameters[31:0]

KernelResponse.return_arg[31:0]

task_sleep

task_sleep

task_sleep

task_sleep

task_sleep

task_reset
reset reset

task_reset

reset

reset

reset

resettask_reset

task_reset

task_reset

inc count

inc count
inc count

inc count

S00_KERNEL.RX_DATA
control.write_config
control.write_pixels

control.read_corner

control.fast_space control.corners_size

HW-Task’s datapath

Figure 5.10: Hardware Accelerated Feature detection feature datapath.

To write pixels into the U0 detector (here called FAST), or read the corners found at the U1 suppressor

(here called NMS) the HW-Task uses a set of packages from the HAL-ASOS framework. It will provide the

necessary subset of HW-system calls to exchange data with the DDS subsystem in the target application,

or manipulate files that were mapped into the application virtual space. As such, the pixel_word input will

be connected to the output of the kernel HW-system call interface. In doing so, four pixels can be written

in U0 at one clock cycle when the intermediate storage is the LRAM, or two cycles when the intermediate

storage is the system memory.

Similarly, the corner_word will be connected to the input of the HW-Kernel system call interface, thus

allowing the control unit in the HW-Task to write one corner per clock cycle in the LRAM, or two cycles in

the system memory. Such connectivity is rewired by the Extended Features design level in the Hardware

Task model, and is established when the corresponding procedures are set to active state by the control

unit. Parametrizable counters C0 to C3 are used to increment memory offsets, account for the computing

progress and issue messages about the total number of pixels processed, or the corresponding corners

found. Each counter control signal is also rewired to the extended features level, and connected with

appropriate HW-system call signals to handshake with results from the kernel-level execution.

204 Chapter 5. Experimental Results

5.5 Multi-threaded Synchronous design

In this preliminary design phase, the HW-Task was implemented following a processing contention strategy

with the control unit describing synchronous behavior. This version is distinguished by control actions that

write pixels in the datapath, after all operations to be performed by the Host system are positively confirmed

during the HW system call execution. In doing so, the control unit for the HW-Task gets simplified, since

the containment implicit in the model allows to significantly reduce the number of control states. The

state diagram that results from this control strategy can be consulted in Figure 5.11.

s0_ready

s2_config

s4_read_block

s7_write_pixels

s8_check_crnrs

s9_check_block_target

block_target > 0

s11_read_corners

s13_check_corner_target

s14_write_block

s23_stop_fast

s90_write_stdout

s99_task_exit

s00_kernel_run/

p
ix

el
_c

n
tr

=
 b

lo
ck

_
ta

rg
et

corner_size<256

ret = 0

corner_cntr >= target

Synchronous mode Control FSM

S22_write_block_last

s19_read_corners_last

Figure 5.11: Simplified synchronous control unit for HW feature detection.

Upon receiving the run bit in its control register, the HW-Kernel wakes up from the sleep event and signals

the control unit of theHW-Task to initiate processing, by asserting the s00_kernel_run flag. The first control

action queries the target application for the existence of control data for the HW-Task. The retrieved data

is used to configure the image format, the threshold value and optimize transfers for a specific block

size. The block size is directly linked to the dimension of local storage and main memory resources,

whose influence on the final performance will be studied during the tests carried out. For this purpose, a

maximum size of 32 kB was established, which represents a 64 kB required storage to allow concurrent

transfers in subsequent versions. The destination of such configuration is the block_len register in the

Chapter 5. Experimental Results 205

HW-Task datapath and three control registers of U0 and U1. These, in turn, are set using appropriate

control signals (see Figure 5.10).

Once configured, in s2, the control unit requests the first block of data into the local storage zero offset,

which when received sets the block_target parameter. Upon reaching s4, distinct HW-Task versions will

use the system bus or the Local-BUS to transfer bursts of 256 words into the datapath. When the block

target is set to the maximum value, i.e., 32 kB, the control unit will iterate between s7, s8 and s9 to

implement 32 consecutive burst transfers. At the completion of each burst transfer, the control checks

the NMS internal storage for corners. It moves to s11 to transfer the output corners to local storage using

the 32 kB high memory region. In s13 it checks for at least 2 kB of stored data, and in s14 requests a

transfer to the DDS topic. If it fails, from there the control proceeds to s9 and resumes previous cycle.

Consecutive blocks of pixels will be requested until a zero-block target is received. Control then moves to

s19 to read the remaining corners and in s22 it commands the upload of any existing block size into the

DDS topic. The processing is concluded by stopping the U0 and U1 IPs and writing a result message in

the stdout. In doing so, it uses s23 and s99 respectively, and upon reaching s99 a task exit system call

will put the accelerator into a dead state. Detailed block diagram of the synchronous control unit for the

HW accelerated feature detection can be consulted in the attached Figure D.11. A complete description

of this FSM can also be consulted in the attached Listings C.38 and C.39.

To exchange data with resources in the accelerator model, the extended features design implements at

least four system calls. These are used to interact at application-level using the DDS services and to read

from, or write to, the HW-Task datapath using intermediate storage resources, such as the LRAM or the

SYSRAM. Figure 5.12 shows an excerpt of the extended features for theHW-Task that targets the LRAM. The

resulting HW-Task can be used with any accelerator version, but is best used in the V4_00_E or V4_00_B

for an appropriate use of the specific memory interfaces as well and each distinct clock domains. In the

Zynq7000 SoC of the ZC702 platform, the V4_00_E accelerator design is not fully supported since only

AXI4-Lite interface is available for the processing system to address the processing logic area. For this

reason, the V4_00_B accelerator version was selected to target this HW-Task design version.

When an HW-Task connects to accelerator version V4_00_B, it generally targets the LRAM to exchange

data in the application memory segment. In doing so, in line 474, it requests a block transfer from the

DDS to the LRAM at zero offset and length expressed by the block_len register. At line 483, it writes

consecutive four-pixel words to the datapath, that it receives from the procedure call in line 481. The

206 Chapter 5. Experimental Results

-- 441

EXTENDED_FEATURES: process(task_state,...442

...
hal_asos_link_to_kernel(kernel_response,kernel_call); 456

case task_state is457

...
when s4_read_block=> 473

 transfer_data_from_dds(kernel_call,kernel_response,0, block_len); 474

 pixels_target_d <= cast_return_to_transfer_len(kernel_response);475

 when s7_write_pixels=> 480

 lram_read_word_burst(kernel_call,kernel_response,in_burst_q,index_read_q,RAM_DATA); 481

 write_pixel_word <= cast_return_to_push_data(kernel_response); 482

 pixels_word_d<=RAM_DATA;483

...
when s11_read_crnrs=> 486

lram_write_word_burst(kernel_call,kernel_response,out_burst_q, 487

index_write_q,corners_word_i);
inc_windex_i<=kernel_response.block_task;488

...
when s14_write_block=> 492

transfer_data_to_dds(kernel_call, kernel_response, 32768, count_crnrs_bytes_q); 493

trfr_len_d <= cast_return_to_transfer_len(kernel_response); 494

...
end case; 524

end procedure EXTENEDED_FEATURES; 525

--526

Figure 5.12: Extended features for the multi-threaded HW-Task that targets LRAM resource when
using the V4_00_B accelerator.

concurrent procedure on line 482 establishes connectivity for a one-way handshake between the read

acknowledge (RD_ACK) of the LRAM and the write pixels signal of the IP U0

In the opposite direction, line 487 writes corners from the datapath to the LRAM using the address range

above 32768. Here, the out_burst_q register specifies the transfer length and results from a balance

between the number of existing corners, a parameter to limit the burst transfer, and the space in words

available on this high region of the LRAM. In design terms no such limit exists, but to avoid starvation

of concurrent datapath writing procedures, a 256-word limit was established. To control the write offset

it relies on counter C1, which is incremented by the inc_windex_i signal at line 488. The same signal

asserts the pop_corners input of U1 to provide the next corner at the output of this IP.

To complete the exchange, line 493 requests a block transfer of corners that already copied to the LRAM,

to the corresponding topic in the DDS. The transfer length is triggered by the write offset of at least 2 kB

and the value of counter C1 is used as transfer length, after being shifted two positions to the left. The

descriptions for this design region of the HW-Task can be consulted in the attached Listings C.40 and

C.41.

For comparison, the same HW-Task design was refactored to use the SYSRAM memory region, while burst

transferring pixels to the datapath and writing corners in the opposite direction. For this, the states s4,

Chapter 5. Experimental Results 207

s7, s11 and s14 where replaced with the corresponding procedures and the new HW-Task was attached

to an accelerator version V4_00_F. Complete descriptions of this extended features design can also be

found in the attached Listings C.42 and C.43.

At this stage, the developed application operates in a multi-threaded format, and each of HW-Tasks can

interact with the FileRead and CornerDump Tasks through the DDS subsystem. The application was

updated to use each design according to a parameter passed as argument and distinct versions of the

same application were implemented. Figure 5.13 shows changes required to reconfigure the application

to use the accelerator that targets the LRAM.

hal_asos::TaskConfig_t 51

 TFeatureDetectorMx = { "FeatureDetectorMx0", 52

{ "Corners",CORNER_LEN,1,1 }, 53

{ "Imagelines",BLOCK_LEN,1,1 }, 54

{ 1,1,1,1 } 55

};
...
void hal_asos_demo::feature_detector:: 2223

 test_fast_detector_std_mx_single(void){ 2224

 using namespace hal_asos; 2225

 2226

 Task<SwTask, TFileReadBlock> T0; 2227

 Task<HwTask, TFeatureDetectorMx, 2228

segment_len<(BLOCK_LEN<<1)>> T1;
 Task<SwTask, TCornerDump> T2; 2229

 p_Detector_Task = (hal_asos::Task<> *)&T1; 2230

 2231

 T0.start(); 2232

 T1.start(); 2233

 T2.start(); 2234

 T0.join(); 2235

 T1.join(); 2236

 T2.join(); 2237

} 2238

Figure 5.13: Excerpt of the multi-threaded application source that targets the LRAM resource
using the V4_00_B accelerator.

Lines 51 to 55 implement the Taskconfig_t structure that specify the desired task-name, the required

DDS subscription used to receive pixel blocks, and the output Topic used to publish the detected corners.

Line 2228 implements the Task class and by receiving the previous structure as template qualifier, while

binding the processing to the accelerator mapped to the HAL-ASOS file system using the same task-name.

At the same time, it also receives the HwTask and segment_len qualifiers that altogether, specialize the

class for a HW-Task based computing resource, optimizing memory allocation to use twice the maximum

block size.

208 Chapter 5. Experimental Results

Both accelerators were deployed to the Zynq ZC702 platform targeting a clock frequency of 50 MHz.

A tag-name FeatureDetectorMX0 was set to the design that targets the LRAM and similar tag, Feature-

DetectorMX1, was set to the design that targets the SYSRAM. Figures 5.14a and 5.14b show the best

performance results obtained when using the table.pgm image on each application version. The tests

performed considered a block size of 8 kB and a threshold of 30, and the output resulted in a binary file

containing 4,622 corners.

uname -a

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

ls /hal-asos/

FeatureDetectorMx0 hal_asos_resources

time ./feature_detector 4 1080p/1920_1080_table_i.pgm 8192

[FileReaderBlock<SwTask>]finished...(254, 2073600)

[FeatureDetectorMx0<HwTask>]:finished...(253,4622)

[CornerDump<SwTask>]finished...(4622)

real 0m 0.13s

user 0m 0.05s

sys 0m 0.07s

cat /hal-asos/FeatureDetectorMx0/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 01

Counter value: 05939811

Maxim event duration:05939811 [BusClks]

Minimum event duration:05939811 [BusClks]

Total events duration:0005939811 [BusClks]

(a) Tests using V4_00_B accelerator.

uname -a

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

ls /hal-asos/

FeatureDetectorMx1 hal_asos_resources

time ./feature_detector 5 1080p/1920_1080_table_i.pgm 8192

[FileReaderBlock<SwTask>]finished...(254, 2073600)

[FeatureDetectorMx1<HwTask>]:finished...(254,4622)

[CornerDump<SwTask>]finished...(4622)

real 0m 0.10s

user 0m 0.02s

sys 0m 0.06s

cat /hal-asos/FeatureDetectorMx1/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 01

Counter value: 04271516

Maxim event duration:04271516 [BusClks]

Minimum event duration:04271516 [BusClks]

Total events duration:0004271516 [BusClks]

#

(b) Tests using V4_00_F accelerator.

Figure 5.14: Performances for the multi-threaded HW accelerated feature detention using
V4_00_B and V4_00_F accelerators at 50 MHz and 8 kB and 2 kB block sizes.

On the left-side image, the application using the FeatureDetectorMx0 accelerator achieved the best exe-

cution time of 130 milliseconds. The stdout messages show that the block size has been fixed at 8,192

bytes, giving rise to 254 image fragments which represent a total of 2,073,600 pixels. Analyzing the

done performance counter, it can be seen that the HW-Task used 5,939,811 clock cycles to process all

pixels, and this value can be translated to a 119-millisecond execution time (i.e., 5,939,811/50MHz) or

an average processing rate of 2.87 clocks per pixel.

On the right-side image, the application using the FeatureDetectorMX1 accelerator achieved the best exe-

cution time of 100 milliseconds for the same input parameters. The done performance counter registers

4,271,516 clocks to process the same image, which translates to an execution time of 82.5 milliseconds,

or a 2.06 clocks per pixel rate. As expected, the total execution time of both applications differs from the

times of each HW-Task as a result of allocation and consequently freeing the software required resources.

When comparing these results with the software full dataset execution, the hardware accelerated versions

are 24 times (i.e., 3.16/0.13) and 31 times (i.e., 3.16/0.1) faster.

Chapter 5. Experimental Results 209

To compare the HW accelerated versions with the OpenCV and the Ed.Rosten-C applications Figure 5.15

plots the execution time when using the four input files in the test dataset. The application based in the

FeatureDetectionMX1 HW-task outperforms both of the software accelerated versions. On the other hand,

the FeatureDetectionMX0 outperforms the OpenCV, but it exceeds the execution time of the Ed.Rosten-C

in 10 milliseconds in the 4.6k corner mark. With the increase in the number of corners per image, the

accelerator performance suffers a marginal deterioration when compared to software implementations.

The processing performed in the detection and suppression of non-maximum is the same but a greater

number of corners needs to be written into the output file.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 4.6k 33.7k 61.7k 90k

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Corners per Frame

OpenCV

(0.16)

(0.21)

(0.31)

(0.44)

(0.85)

E.Rosten-C

(0.08)

(0.12)

(0.17)

(0.27)

(0.59)

Mx.Syn-4.00.b

(0.13)
(0.13) (0.15)

(0.17)
(0.19)

Mx.Syn-4.00.f

(0.09)
(0.10) (0.11)

(0.13)
(0.15)

Application performances synchronous design: using 8 kB transfers [1080P][50MHz]

 0.05

 0.1

 0.15

 0.2

 0.25

 0 4.6k

(0.16)

(0.21)

(0.08)

(0.12)(0.13)

(0.13)

(0.09)
(0.10)

Figure 5.15: Application performances between software and synchronous HW accelerated fea-
ture detection.

Although, both software-only applications inherently require more memory than the 8 kB and 2 kB block

allocations can achieve, such block sizes can be considered a low value to fit in the performance provided

by the CPU architecture on the target platform. As such, it can introduce some degree of computation

overhead with rescheduling operations that fundamentally result from a low CPU usage in the number of

transfers performed. An increased variance is observed in the files that provide greater number of corners

in the output file. By varying the frequency applied to the design and the size of the transfer block at the

input, the performance results show significant improvements. Figure 5.16a shows the best execution

results in the tests performed using images of 4,622 and 89,600 corners. Each of the accelerators was

stimulated with a clock frequency of 142.8 MHz and a block size of 32 kB at the input.

Tests performed to the FeatureDetectorMx0 application showed execution times of 70 milliseconds for the

210 Chapter 5. Experimental Results

[FeatureDetectorMx0<HwTask>]:finished...(64,4622)

[CornerDump<SwTask>]finished...(4622)

real 0m 0.07s

user 0m 0.02s

sys 0m 0.04s

time ./feature_detector 4 1080p/1920_1080_jean_16_9.pgm 32768

[FileReaderBlock<SwTask>]finished...(64, 2073600)

[FeatureDetectorMx0<HwTask>]:finished...(63,89600)

[CornerDump<SwTask>]finished...(89600)

real 0m 0.12s

user 0m 0.05s

sys 0m 0.10s

cat /hal-asos/FeatureDetectorMx0/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 02

Counter value: 015340295

Maxim event duration:015340295 [BusClks]

Minimum event duration:08135832 [BusClks]

Total events duration:0023476127 [BusClks]

#

(a) Tests using V4_00_B accelerator.

[FeatureDetectorMx1<HwTask>]:finished...(64,4622)

[CornerDump<SwTask>]finished...(4622)

real 0m 0.06s

user 0m 0.03s

sys 0m 0.03s

time ./feature_detector 5 1080p/1920_1080_jean_16_9.pgm 32768

[FileReaderBlock<SwTask>]finished...(64, 2073600)

[FeatureDetectorMx1<HwTask>]:finished...(64,89600)

[CornerDump<SwTask>]finished...(89600)

real 0m 0.11s

user 0m 0.03s

sys 0m 0.11s

cat /hal-asos/FeatureDetectorMx1/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 02

Counter value: 010233899

Maxim event duration:010233899 [BusClks]

Minimum event duration:07114283 [BusClks]

Total events duration:00017348182 [BusClks]

#

(b) Tests using V4_00_F accelerator.

Figure 5.16: Performances for the multi-threaded HW accelerated feature detention using accel-
erator versions V4_00_B/F at 142 MHz and 32 kB and 2 kB block sizes.

4,622 corners image and 120 milliseconds for the 89,600 corners image. Compared to the results of

the same design in the previous conditions, the performance improves 1.84 times or 46.1 % in the file

with the fewest corners and 1.58 times or 36.8 % for the largest number of corners in the output files.

Regarding the results of OpenCV (210 and 850 milliseconds) and Ed.Rosten-C (120 and 590 milliseconds)

this new mark outperforms both by 2 and 4 times in the lower number of corners, and 5 and 7 times for

the image with more corners. The done performance counter shows minimum and maximum numbers

of clock per execution of 8,135,832 and 15,340,295 respectively. Those can be translated to HW-Task

execution times of 57.3 milliseconds and 108 milliseconds.

Similar results were observed for the FeatureDetectorMX1-based application, in the figure on the right,

which surpasses the previous accelerator by 10 milliseconds and therefore, the two applications based

on software accelerated algorithms. For the lower number of corners, it achieved an execution time of

60 milliseconds while 110 milliseconds was measured for the image with more corners. The results in

the done performance counter, show execution times of 50.1 and 70.07 milliseconds for the HW-Task.

In summary, we can say that with increasing design frequency the difference in performance of both HW

accelerated designs is purely marginal (i.e., about 10 milliseconds). The LRAM transfers have become

about 3 times faster and with that, it compensates for the low performance interface provided by the

target platform.

Chapter 5. Experimental Results 211

5.6 Stand-alone Synchronous Single-task

To mitigate the influence of the scheduling operations, the software application was refactored to a single

HW-Task implementing a stand-alone design. This application version has a similar behavior to the single-

threaded version used in the previous software tests. To simplify the design of the HW-Task the input

file was previously parsed to extract the image parameters and provide a configuration structure for the

datapath IPs. Then, together with the output file, these two files were pooled to the Task class to be

handled by the accelerator design. Figure 5.17 shows an excerpt of the necessary changes to the software

application to implement the standalone synchronous feature detection.

hal_asos::TaskConfig_t 136

TFastDetectorSA = { "FastDetectorSA1", 137

{ "",0 }, 138

{ "",0 }, 139

{ 4,1,1,1 } 140

};141

...
void hal_asos_demo::feature_detector:: 2409

test_fast_detector_std_alone_single_sysram(void) { 2410

 using namespace hal_asos; 2411

...
 std::shared_ptr<StreamData> Conf; 2419

Task<HwTask, TFastDetectorSA, segment_len<(BLOCK_LEN << 1)>> T1; 2420

 CFstream<std::ifstream> Input_file(scene_img.c_str()); 2421

 Input_file.set_flags(std::ios::in | std::ifstream::binary); 2422

 CFstream<std::ofstream> Output_file("Corners_std_single_sysrsam.txt"); 2423

 Output_file.set_flags(std::ios::out |std::ios::trunc|std::ios::binary); 2424

 2425

 Conf = std::make_shared<StreamData>(16); 2426

 detector::config_words* p_config = (detector::config_words*) Conf.get(); 2427

...
 Input_file.get_line(header1); 2443

...
 ss.str(header1); 2451

 ss >> p_config->image_width >> p_config->image_height; 2452

 ss.clear(); 2453

...
 p_config->threshould = threshould; 2463

 p_config->block_len = block_size; 2464

 2465

 T1.submit_to_pool(Input_file); 2466

 T1.submit_to_pool(Output_file); 2467

 2468

 T1.submit_data(Conf); 2469

 2470

 T1.start(); 2471

 T1.join(); 2472

}2473

Figure 5.17: Excerpt from the source to implement standalone application using synchronous
design and the V4_00_F accelerator.

In that Figure, lines 136 to 141 show the Task configuration structure that binds the class to the acceler-

ator. Such configuration is used by the application that targets the SYSRAM memory region in line 2409.

212 Chapter 5. Experimental Results

The Task class is declared in line 2420 and the following four lines open the two files using the necessary

control flags. Lines 2443 to 2453 parse the input file to fill the parameters in the config_words structure.

The application proceeds by submitting these three memory objects to the T1 class and issuing the start

member to initiate processing at the accelerator side. The join member in line 2472 will put the main

thread on hold until the HW-Task executes the yield system call. A similar source list was implemented for

the application version that uses the LRAM-based design. A distinction is made by providing a task config-

uration structure that binds the class with the accelerator that matches the task name. For completeness,

the full source of this application version that fit both designs, can be seen attached in Listing C.37.

The previous HW-Task designs where refactored to implement a standalone design. Thus, the design

demands for use of hardware file descriptors from the HAL-ASOS framework, which provide means for the

HW-Task to exchange data with the input and output files. Fundamentally, the control unit maintains its

sequence of states if the input and output files are previously prepared by the software side of the applica-

tion. Therefore, the extended features region has been updated with the proper procedures for handling

the two files. The required changes can be seen in Figure 5.18. This excerpt shows the procedures that

target the SYSRAM memory region, and to obtain the maximum transfer performance, the correspondent

HW-Task was attached to the accelerator V4_00_F version.

In lines 350 and 352, the procedure calls exchange information with the Task class to update the local

descriptors i_file_q and o_file_q respectively. Lines 369 and 380 exchange data with the input and output

files using the main system memory. In these, the _sysram suffix distinguishes the memory resource

in use. The corresponding data is copied to and from its system memory region in lines 372 and 376.

In these states (i.e., s11 and s14), the concurrent cast procedure handshakes the write_pixel_word and

pop_crnrs_i with the acknowledge signals of the M01_System interface. As such, they are asserted at a

two clock per word rate which is two times slower than the LRAM resource, but also two times faster than

the datapath pixel rate. The complete HDL description for the extended features region can be consulted

in the attached Listings C.44 and C.45.

Tests performed demonstrate an overall application performance improvement of 10 milliseconds for

the same conditions as the previous version, i.e., 50MHz clock frequency, and 8kB and 2kB for block

sizes. Figure 5.19 shows the results for applications based on these two HW-Task designs. On the right-

side image, the application based on the accelerator V4_00_B is using tag-name FastDetectorSA0 and

completed its processing for the input file with 4,622 corners in 120 milliseconds. On the left-side image,

Chapter 5. Experimental Results 213

-- 330

EXTENDED_FEATURES: process(task_state, ifile_q, ofile_q,...331

...
hal_asos_link_to_kernel(kernel_response,kernel_call); 347

case task_state is 348

 when s1_query_ifile=> 349

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 350

 when s2_query_ofile=> 351

 pooled_fstream_query(kernel_call,kernel_response,ofile_q, ofile_d); 352

 when s3_query_conf=> 353

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 354

...
 when s6_read_file=> 368

 pooled_fstream_read_sysram(kernel_call,kernel_response, ifile_q, block_len,0); 369

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 370

 when s11_push_pixels=> 371

 safe_safe_read_sysram_word32_burst(kernel_call,kernel_response, pixels_word_d, 372

fifo_in_burst_q,index_read_q);
 write_pixel_word <= cast_return_to_push_data(kernel_response); 373

 inc_rindex_i<=cast_return_to_push_data(kernel_response); 374

 when s14_write_block=> 375

 safe_write_sysram_word32_burst(kernel_call,kernel_response,corners_word_i, 376

fifo_out_burst_q,index_write_q);
 pop_crnrs_i <= cast_return_to_pop_data(kernel_response); 377

 inc_windex_i <= cast_return_to_pop_data(kernel_response); 378

 when s18_fstream_write=> 379

 pooled_fstream_write_sysram(kernel_call, kernel_response,ofile_q, 380

count_crnr_bytes_q, 32768);
 ofile_len_d <= cast_return_to_transfer_len(kernel_response); 381

...
end case; 400

end procedure EXTENEDED_FEATURES; 401

--402

Figure 5.18: Extended features for the standalone HW-Task that targets SYSRAM resource when
using the V4_00_F accelerator.

the application based on accelerator V4_00_F is using the tag-name FastDetectorSA1 and completed its

processing in 90 milliseconds under the same input conditions.

uname -a

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

ls /hal-asos/

FastDetectorSA0 hal_asos_resources

time ./feature_detector 8 1080p/1920_1080_table_i.pgm 8192

[FastDetectorSA0<HwTask>]:finished...(254,4622)

real 0m 0.12s

user 0m 0.02s

sys 0m 0.07s

cat /hal-asos/FastDetectorSA0/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 01

Counter value: 05464933

Maxim event duration:05464933 [BusClks]

Minimum event duration:05464933 [BusClks]

Total events duration:0005464933 [BusClks]

(a) Tests using V4_00_B accelerator.

uname -a

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST

2020 armv7l GNU/Linux

ls /hal-asos/

FastDetectorSA1 hal_asos_resources

time ./feature_detector 9 1080p/1920_1080_table_i.pgm 8192

[FastDetectorSA1<HwTask>]:finished...(254,4622)

real 0m 0.09s

user 0m 0.03s

sys 0m 0.03s

cat /hal-asos/FastDetectorSA1/performance-counters/done_counter

--

- Performance Counter: done_counter Results

--

Control Register:0x0

Number of events: 01

Counter value: 03840548

Maxim event duration:03840548 [BusClks]

Minimum event duration:03840548 [BusClks]

Total events duration:0003840548 [BusClks]

(b) Tests using V4_00_F accelerator.

Figure 5.19: Performances for the stand-alone synchronous control using V4_00_B/F accelera-
tors at 50 MHz and 8 kB and 2 kB block sizes.

Regarding the performance of the HW-Tasks, the FeatureDetectorSA0 completes its processing using

214 Chapter 5. Experimental Results

5,464,933 clock cycles, which represents an execution time of 109.3 milliseconds. On average, the value

of the clock per pixel improves to 2.64 when compared to the previous 2.87. The FeatureDetectorSA1

completes its processing with 69.61 milliseconds using 3,480,548 clock cycles. In this case, the average

value of the clock per pixel rate improves to 1.68, when compared to the previous 2.06.

Figure 5.20 shows the execution results of the four developed HW accelerated applications, when the

input file varies the number of detected corners from 0 to 90k while the input block size is maintained at

8 kB. The multi-threaded versions (i.e., Mx.) are less regular than standalone due to scheduling delays.

This approach aggravates results since synchronization between software threads consumes extra time

and lacks determinism. At this point, the standalone single Task applications (i.e., Sin.) will benefit from

kernel-level operations while executing the HAL-ASOS file system code. In these, execution threads are

usually driven by hardware interrupts that can have a higher priority than most threads in the system.

Lastly, a performance degradation is observed by increasing the number of detected corners, but when

compared to pure software executions such degradation is almost imperceptible.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 4.6k 33.7k 61.7k 90k

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Corners per Frame

Mx.Syn-4.00.b

(0.13) (0.13)

(0.15)

(0.17)

(0.19)

Sing.Syn-4.00.b

(0.12) (0.12)

(0.13)
(0.14) (0.15)

Mx.Syn-4.00.f

(0.09)

(0.10)

(0.11)

(0.13)

(0.15)

Sin.Syn-4.00.f

(0.09)
(0.10)

(0.11)
(0.12)

Application performances: multi-threaded vs single-threaded HW accelerators[8kB][1080P][50MHz]

Figure 5.20: Performance comparison of the synchronous design HW-accelerated applications
using 8 kB block and 50 MHz clock frequency.

In the same figure, it can be seen that the applications based in the V4_00_B accelerator versions, require

more time due to the low bandwidth interface provided by the platform. In terms of performance achieve-

ment, the V4_00_F accelerated designs showed that an improvement would be possible by increasing

the block sizes. In functional terms, the HAL-ASOS framework establishes a limit for this memory region

at 64 k-words, i.e., 256 kB. For this, the HW-Task would have to change the control metrics to be based

Chapter 5. Experimental Results 215

on word rate transfers, where 16-bit are used to specify the required transfer lengths. Appropriate user

procedures are available to implement such word-rated transfers and are generally suffixed by _word32.

Such a memory region will put greater strain on resources at the HAL-ASOS file system level, with a per-

manent allocation of 64 pages of 8 kB from the kernel space region. On the other hand, such degree

of transfers length could congest the main system memory. At this point, there are other possibilities to

explore and for that reason this option was not considered beyond the 64 kB, which are intended to be

used as 2 blocks of 32 kB for concurrent transfers.

Last but not least, choosing the fastest accelerator design, we evaluated the influence exerted by the

input block size while using four possible design frequencies and considering the extreme scenario of

90k corners. Figure 5.21 shows the execution time results of the various tests performed. From this

analysis, we can see that increasing block size is more beneficial to the application performance using

design frequencies above 50 MHz and has little influence beyond 16 kB. Performance differences bounce

around 10 milliseconds between the three highest frequencies. The accelerator gets 20 milliseconds

faster at 50 MHz when the block size ranges from 8 kB to 32 kB, and 10 milliseconds faster at 142 MHz

for the same range. Lastly, and as purely qualitative metric, the application using the V4_00_F accelerator

with a design frequency of 50 MHz and 32 kB input block, or using 142 MHz and a 16 kB input block, is

36 times and 45 times faster than the equivalent software running solely on the ARM A9 dual core of the

ZC702 platform.

 0

 0.05

 0.1

 0.15

 0.2

2kB 4kB 8kB 16 kB 32 kB

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Data block size

Sing.Syn-4.00.f:25MHz

(0.19)

(0.16)

(0.15)

(0.14) (0.14)

Sing.Syn-4.00.f:50MHz

(0.16)

(0.13)

(0.12)

(0.11)

(0.10)

Sing.Syn-4.00.f:100MHz

(0.14)

(0.11)

(0.10)

(0.09) (0.09)

Sing.Syn-4.00.f:142MHz

(0.13)

(0.11)

(0.09)

(0.08) (0.08)

Application performances synchronous single-threaded 4.00.f: block rising 90k Corners [1080P]

Figure 5.21: Performance of the standalone synchronous application using the V4_00_F accel-
erator and 90,000 corners and varying the input block size and design frequency.

216 Chapter 5. Experimental Results

At this point, it is considered that the design reaches a performance stagnation and that improvements will

have to be implemented based on other assumptions that are not memory and clock frequency increases.

In the next section, we will cover design changes to the HW-Task that outline an asynchronous control unit

behavior using the same accelerators versions.

5.7 Stand-alone Asynchronous Dual-task

To improve the performance of the HW-Task, the control unit design was refactored to implement an

asynchronous behavior strategy. Consequently, the extended features level has been updated with the

corresponding procedures, which can be found in the user-level packages provided by the HAL-ASOS

framework. To lower the level of complexity, the previous design was divided into distinct HW-Tasks by

splitting the control unit in (1) reading blocks of pixels from the input file and subsequent writing to the

datapath, and (2) handling the corners found and the corresponding writing in the output file. To conform

with this new control strategy, the datapath was also split between the two HW-Task designs. In addition,

this change also aims to improve throughput in data transfers, exploring the dual-core architecture at

kernel-level together with the duplicated transfer interfaces in each of the HW-Kernels. Figure 5.22 shows

this new dual task design using a task-level block diagram.

Control Unit

HW-Task

Full Segment test

user procedure

user procedure

user procedure

user procedure

Extended features

X X

statestate

Datapath

S00_Kernel M00_Task

Control Unit

HW-Task

Non Maximal supp.

user procedure

user procedure

user procedure

user procedure

Extended features

X X

statestate

Datapath

S00_Kernel M00_Task

o_datavalid

is_keypoint
o_score

is_keypoint

i_score

i_datavalid

o_ready_for_datai_ready_to_receive

FastSA0 NonmaxSA0

pixel_word

corner_word

pixel_space
corners_foundo_fast_done i_done

Figure 5.22: Dual task hardware accelerated feature detection block diagram.

On the left side is shown the HW-Task that reads the input file in parameterizable block sizes and therefore

implements the hardware of the full dataset segment test. As in the previous design, for each pixel

Chapter 5. Experimental Results 217

submitted to the feature detection, there is an output score that refers the intensity of the central pixel

to the intensity of the sixteen pixels on the periphery of the Bresenham circle. This 16-bit value remains

in the score output while the datapath handshakes with the non-maximum suppression in the HW-Task

on the right. The handshake is performed using the data_valid and ready_to_receive signals, which in

this design were promoted to top-level signals for each HW-Task, together with the keypoint and fast_done

flags.

The control unit implements a purely asynchronous behavior semantics, that aims to interact with the

host system at the same time it interacts with the datapath. In this control strategy, the datapath must

follow a purely data flow-oriented design, capable of dealing with the invariability of data at the input or

space availability at the output. The datapath design discussed in the previous section already fulfills

this requirement, since it was implemented following an asynchronous-synchronous design, making it

compatible with each of the control strategies used.

In general terms, this asynchronous control strategy anticipates transfers between memory regions to

raise the CPU-usage on the host-side. For greater efficiency, the control unit must avoid the exclusivity

on the shared memory regions, thus preventing any blocking caused by the mutual exclusion resources.

For that purpose, it implements a memory layout of multiple blocks of memory, that are accessed using a

message-based handshake protocol. Furthermore, a lazy confirmation of message reception is followed,

as control postpones the confirmation until the precise moment it reaches an unconfirmed memory block.

At that time, if the host system did not complete the corresponding transfer, the control unit will inevitably

enter a blocking stage, but ensuring that the CPU was already instructed to proceed into the next block of

pixels. On the host system side, such laziness approach promotes continuous transfer tasks because there

is always a pending request at the time the CPU acknowledges the current transfer. By doing this, it also

reduces scheduling workload by minimizing the number of interrupt events thrown by each accelerator.

Figure 5.23 shows the refactored state diagrams for the control units of each HW-Task according to this

asynchronous design strategy.

Figure 5.23a shows the sequence diagram for the control unit of the HW-Task FastSA. In this diagram,

an initialization phase is implemented using states s0 and s4, where the control updates the datapath

settings by storing the input file descriptor, image format and input block size. In s5 it requests the transfer

of the first block and initiates a cyclic behavior, where it requests a new block before confirming that the

previous one is ready. Thus, s6 and s7 must ensure a response message containing the number of bytes

218 Chapter 5. Experimental Results

transferred, to establish the new pixel target for the current cycle. In s8, the control checks this value

before starting the copy of the pixel block to its datapath.

FastSA control FSM
s0_ready

s1_query_ofile

s3_read_config

s00_kernel_run/

s2_query_conf

s4_config_run

s14_exhausted_file

s15_stop_fast

s16_write_message

s90_print_stdio

s99_exit

s5_async_read_fstream_0

s6_async_read_fstream

s7_fin_fstream_read

s9_handshake_datapath

pixel_target > 0

space_avail_q

s10_write_datapath

s12_wait_ready

s11_check_pixel_target

s8_eval_fread

space=ram_width

pixel_cntr =target_q

s13_update_index

space=0

file_done

(a) Asynchronous control unit for the HW-Task FastSA.

NonmaxSA control FSM

s0_ready

s1_query_ofile

s5_check_crnrs_size

s3_read_config

s00_kernel_run/

s2_query_conf

s4_config_run

s6_lock_rsrc_mutex

s7_write_corners

s14_wait_corners

s8_unlock_rsrc_mutexc
rn

rs
_

s
iz

e
 <

 w
le

n
_

q

s13_check_done

s10_fstream_async_write

s11_fstream_finalz_write

s12_eval_fstream_write

cr
n

rs
_

co
u

n
te

r
>
ta

rg
e

t_
q

s9_check_upld_tgt

s15_fstream_finwrite

s16_stop_nms

s17_write_message

s90_print_stdio

s99_exit

pending = 2

pending = 1

ret > 0

i_done /

wake_q

p
e

n
d

in
g

<
 2

(b) Asynchronous control unit for the HW-Task NonmaxSA.

Figure 5.23: Asynchronous control for hardware accelerated feature detection.

Once in s9, it handshakes with the space available signal on the datapath, to assert the burst transfer

register and proceeds to s10 for the effective copy. If otherwise this signal is low, it proceeds to s12

and enters a sleep state. The same signal is forwarded to the HW-Kernel to wake the accelerator when

available space allows for a new burst transfer. In s11, the control checks for the pixel counter value (C2

in Figure 5.10) to handle the copy progress. If not completed, it will fall back to s9 to assert a new burst

transfer or it can be forced into a sleep state, s12, if the datapath space is less than the optimized length

of 256 words. At target completion, it proceeds to s13 to prepare the new block address and begin a new

cycle. A file_done flag can be established by an incomplete block size in the pixel target. It will break

the cycle in s13 for the last confirmation using s7 and s8. The control unit will move to s14 to ensure

completion of the datapath before proceeding to s15 and stopping U0. It will conclude by preparing the

results message in s16 and writing to the stdout in s90. In s99 the control will issue a task exit system

call that puts the accelerator into a dead state. Excerpt containing the HDL descriptions of this state logic

can be found attached in Listing C.46 and Listing C.47.

Chapter 5. Experimental Results 219

The control unit for the NonmaxSA, Figure 5.23b), assumes the complementary behavior, by writing

corners from the datapath to the physical memory and demanding block transfers to the output file.

Similar s0 to s4 states are used and the control unit will wait for the first processing results in s14, after

having evaluated: the absence of corners in s5; a copied length less than the block size in s9; and a

false fast_done flag in s13. When the number of corners reaches 256 words, the control wakes up in

s14 and proceeds to s5 for a handshake with the datapath. At s5, it asserts the burst length register

before proceeding to s6 and write corners in the physical memory. States s6 and s8 are only used when

the storage resource is LRAM, and are forced by a design requirement to enable write operations on the

channel that holds the exclusivity in the LMutex. Such condition can compromise performance on the host

system by blocking the mutual exclusion mechanism and forcing the software to reschedule the execution.

Once in s7, the control transfers 256 corners to the storage resource in the current block of data, and in

s9, it evaluates the copied length using C3 to see if it has achieved the pre-set block target (here 2 kB).

When the block is not completed, it proceeds to s13 to check if the FastSA is still active and resumes the

wait state in s14. If otherwise a block target is ready, it proceeds to s10 to transfer the current block to the

output file. When there are at least two blocks pending for confirmation, it switches to s11 and evaluates

the transfers results in s12. If no error is received, it resumes the wait state before initiating a new transfer

block, or otherwise it aborts processing by moving to s16.

Upon completing a block, in s13, an active fast_done input will break this cyclic behavior and force control

to finalize the transfer of any existing corners in s15. The same flag can also awake the control unit in

s13 to complete current block and finalize the transfer. It will ultimately conclude by stopping U1 in s16,

writing the results message in the stdout using s17 and s90, and issuing a task exit system call.

To complete each HW-Task design, the extended features level was also refactored and divided according

each of to the previous control FSMs in each design. Figure 5.24 shows a VHDL excerpt of the extended

features for the FastSA. In this excerpt, the design targets the system memory to asynchronously transfer

pixel blocks from the input file and in this case, it should be connected with accelerator V4_00_F for an

optimized performance. To distinguish this design from the equivalent HW-Task that uses the LRAM, the

accelerator’s tag-name was prefixed with the letter ’M’, in association with the M00_System interface or

the role of a bus master. This tag-name convention was also applied to the NonmaxSA design.

In line 457, the control requests the first block of pixels for the zero offset of the SYSRAM region at the

main system memory. In line 459, the same procedure repeats the operation, using the offset specified

220 Chapter 5. Experimental Results

-- 423

EXTENDED_FEATURES: process(task_state,...424

...
hal_asos_link_to_kernel(kernel_response,kernel_call); 437

case task_state is438

...
when s5_async_read_fstream_0=> 456

 async_pooled_fstream_read_sysram(kernel_call,kernel_response, ifile_q,blen_param_q,0); 457

when s6_async_fstream_read=> 458

 async_pooled_fstream_read_sysram(kernel_call,kernel_response, 459

 ifile_q,blen_param_q,w_address_offset_q);
when s7_fin_fstream_read=> 460

 async_finalize_pooled_fstream_read_sysram(kernel_call,kernel_response); 461

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 462

when s10_write_datapath=> 463

 unsafe_safe_read_sysram_word32_burst(kernel_call,kernel_response, 464

 pixels_word_d, burst_target_q,index_read_q);
 write_pixel_word_i <= cast_return_to_push_data(kernel_response); 465

 inc_rindex_i<=cast_return_to_push_data(kernel_response); 466

when s12_wait_space=> 467

 wait_signal_event(kernel_call,kernel_response,space_available_q,is_event_d,0);468

...
end case; 479

end if; 480

end procedure EXTENEDED_FEATURES; 481

--482

Figure 5.24: Extended Features design-level for the HW-Task MFastSA that targets the SYSRAM
resource and uses de V4_00_F accelerator version

by the w_address_offset_q register, which may have a value between 2 kB and 32 kB depending on

configuration received. At line 461, the procedure finalizes the transfer of the current block, by storing the

return value in the pixel target register. Multiple 256-word burst transfers will then copy the received pixels

to the datapath by repeating the procedure in line 464. Finally, in line 468, the wait system call will put

the control unit and the Kernel Core into a sleep state, leaving strategic functional units in the Datapath

with the clock inputs active. The wake condition will be asserted when the datapath space reaches 256

words or 1024 kB.

The remainder of procedures that complete this design-level are related to exchanging control information

and printing processing results. The complete source can be consulted attached in the attached List-

ing C.48. To target the alternative LRAM resource, appropriate procedures were implemented and the

same control logic was used. The details of such design can also be consulted attached in Listing C.49.

Similar implementation was used to describe the extended features design of the NonmaxSA, that target

the SYSLRAM or the LRAM storage resources. We will not introduce those designs to limit the descriptions

in this chapter, but they can still be consulted in the attached Listings C.50 to C.53.

In line with the tests performed in the previous section, each application was tested separately to distin-

guish the storage resource used in the data exchange. The accelerator that reads the input file requires a

Chapter 5. Experimental Results 221

memory size of 64 kB divisible to a maximum of two 32 kB blocks. The accelerator that writes the output

results uses 4 kB of memory, split into two fixed-size 2 kB blocks. The tests performed vary the block size

at the input and the best execution times obtained for the intermediate size of 8 kB and 50 MHz clock

frequency can be seen in Figure 5.25.

On the right side, Figure 5.25a show the results of two consecutive tests using the file with 4,622 cor-

ners on the accelerator versions V4_00_B. The two consecutive testes obtained a total execution time of

80 milliseconds. When compared with the synchronous stand-alone design (i.e., 120 milliseconds, Fig-

ure 5.19a) the asynchronous design is 33.3% milliseconds faster. In the same figure, it can also be seen

the results of the performance counter that registers the execution time of the HW-Task. Such counter

registered 3,633,909 clock cycles and 3,641,112 clock cycles for minimum and maximum durations,

respectively. These numbers can be translated to 72.68 milliseconds and 72.82 milliseconds execution

times respectively and a 1.75 ratio of clocks per pixel.

ls /hal-asos/
FastSA0 NonmaxSA0 hal_asos_resources
time ./feature_detector a 1080p/1920_1080_table_i.pgm 8192
[FastSA0<HwTask>]:finished...(254,2073600)
[NonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.08s
user 0m 0.01s
sys 0m 0.08s
time ./feature_detector a 1080p/1920_1080_table_i.pgm 8192
[FastSA0<HwTask>]:finished...(254,2073600)
[NonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.08s
user 0m 0.02s
sys 0m 0.07s
cat /hal-asos/FastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 03633909
Maxim event duration:03641112 [BusClks]
Minimum event duration:03633909 [BusClks]
Total events duration:0007275021 [BusClks]

(a) Tests using V4_00_B accelerators at 50 MHz and 8 kB.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.03s
sys 0m 0.02s
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.01s
sys 0m 0.04s
cat /hal-asos/MFastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 02311726
Maxim event duration:02311726 [BusClks]
Minimum event duration:02174807 [BusClks]
Total events duration:0004486533 [BusClks]
#

(b) Tests using V4_00_F accelerators at 50 MHz and 8 kB.

Figure 5.25: Performance of asynchronous designs using V4_00_B and V4_00_F accelerators.

On the left side, Figure 5.25b show the same tests performed to the application based on the system

memory, i.e., through accelerator V4_00_F. The execution time took 50 milliseconds for each consecutive

run in two tests. When compared to the standalone accelerator with the synchronous control unit (i.e.,

90 milliseconds, figure 323) and the same accelerator version, the asynchronous design results are

44% faster. The done performance counter registers execution times of 43.50 milliseconds and 46.23

milliseconds for the MFastSA0. In turn, these translate into a processing ratio of 1.05 clocks per pixel.

222 Chapter 5. Experimental Results

The previous tests were repeated using the same conditions in order to evaluate the interrupt events

triggered to the host system. Figure 5.26 shows the performances of both applications using the inter-

rupt_latency counter. On the right, Figure 5.26a shows the tests run in the application based on V4_00_B

accelerators. As in the previous tests, a block size of 8 kB was used, fragmenting the input image in 254

blocks which require equal number of transfers to the LRAM. Results demonstrate equivalent execution

times and the FastSA interrupt latency counter is showing two interrupt events from the two executions.

The least latency time observed was 774 clock cycles (i.e., 0.0155 milliseconds), and comprises the time

interval since the interrupt signal was activated until the instant when the host system acknowledges the

event by clearing the status of interrupt controller.

ls /hal-asos/
FastSA0 NonmaxSA0 hal_asos_resources
time ./feature_detector a 1080p/1920_1080_table_i.pgm 8192
[FastSA0<HwTask>]:finished...(254,2073600)
[NonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.08s
user 0m 0.03s
sys 0m 0.06s
time ./feature_detector a 1080p/1920_1080_table_i.pgm 8192
[NonmaxSA0<HwTask>]:finished...(4622)
[FastSA0<HwTask>]:finished...(254,2073600)
real 0m 0.08s
user 0m 0.03s
sys 0m 0.06s
cat /hal-asos/FastSA0/performance-counters/interrupt_latency_counter
--
- Performance Counter: interrupt_latency_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 0905
Maxim event duration:0905 [BusClks]
Minimum event duration:0774 [BusClks]
Total events duration:0001679 [BusClks]
#

(a) Tests using V4_00_B accelerators at 50 MHz and 8 kB block size.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.01s
sys 0m 0.04s
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.02s
sys 0m 0.03s
cat /hal-asos/MFastSA0/performance-counters/interrupt_latency_counter
--
- Performance Counter: interrupt_latency_counter Results
--
Control Register:0x0
Number of events: 0126
Counter value: 0714
Maxim event duration:01366 [BusClks]
Minimum event duration:054 [BusClks]
Total events duration:00055863 [BusClks]
#

(b) Tests using V4_00_F accelerators at 50 MHz and 8 kB block size.

Figure 5.26: Performance of the interrupt latency of V4_00_B and V4_00_F accelerators.

Figure 5.26b shows the results of the design based on V4_00_F accelerators, for the same two runs and

8kB block size. The MFastSA performance counter registers 126 interrupt events for the two runs, with a

response of 54 cycles as the best time. The impairment related to the interrupt events between the two

versions is closely linked to the performance observed at the host system. Although in the first case the

total execution time is higher (i.e., 80 milliseconds compared to 50 milliseconds), the HW-Task surpasses

the performance of the host system that is using a low-bandwidth bus to exchange data. For this reason,

the control unit waited for the new block before starting processing, practically in every transfer performed

by the host system.

On the other hand, when the design uses the system memory to exchange data, the performance on the

host system increases significantly and the accelerator is overtaken in some transfers. To find out how

these two parameters influence the application that uses system memory, the tests were repeated by (1)

Chapter 5. Experimental Results 223

raising the frequency to 100 MHz and maintaining the block size, and (2) using the new design frequency

and raising the block size to 16 kB. Figure 5.27 shows the results for these two tests performed with

accelerators V4_00_F.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.02s
sys 0m 0.02s
time ./feature_detector b 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.05s
user 0m 0.01s
sys 0m 0.04s
cat /hal-asos/MFastSA0/performance-counters/interrupt_latency_counter
--
- Performance Counter: interrupt_latency_counter Results
--
Control Register:0x0
Number of events: 00
Counter value: 00
Maxim event duration:00 [BusClks]
Minimum event duration:-1-1 [BusClks]
Total events duration:0000 [BusClks]
#

(a) Tests using V4_00_F accelerators at 100 MHz and 8 kB block size.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector b 1080p/1920_1080_table_i.pgm 16384
[MFastSA0<HwTask>]:finished...(127,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.04s
user 0m 0.01s
sys 0m 0.03s
time ./feature_detector b 1080p/1920_1080_table_i.pgm 16384
[MFastSA0<HwTask>]:finished...(127,2073600)
[MNonmaxSA0<HwTask>]:finished...(4622)
real 0m 0.04s
user 0m 0.01s
sys 0m 0.03s
cat /hal-asos/MFastSA0/performance-counters/interrupt_latency_counter
--
- Performance Counter: interrupt_latency_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 01044
Maxim event duration:01066 [BusClks]
Minimum event duration:01044 [BusClks]
Total events duration:0002110 [BusClks]

(b) Tests using V4_00_F accelerators at 100 MHz and 16 kB block size.

Figure 5.27: Performance of the interrupt latency of V4_00_F accelerators.

The results in Figure 5.27a, show that raising the design frequency to 100MHz while maintaining the

block size does not improve the performance of the application, i.e., achieving the same 50 milliseconds

mark. On the other hand, the results of the interrupt latency counter indicate that the V4_00_F acceler-

ator outperforms the host system since zero interrupt events were required. For the current application

parameters, the block size in use introduces an already mentioned degree of scheduling computation over-

head, thus preventing the decrease of the total execution time. As so, it is fair to say that the accelerator

outperforms host system due to preemption and delays in the rescheduling operations.

Figure 5.27b shows the test performed to the same design, using 100 MHz clock frequency and raising

the input block size. The two tests show the same application reducing its the total execution time to

40 milliseconds. In the two consecutive executions, two interrupts were sent to the host system with

very similar response times, which in the expected balance between both computing resources, it can be

attributed to writing on the Linux stdout. To confirm, the design was connected to Vivado’s logic analyzer

and the results can be seen in Figure 5.28.

In this test, the trigger event was configured for the occurrence of an interrupt through the accelerator’s

interrupt_pin signal, with position 20000 in a trigger window of 32768 samples. In addition, MFastSA0

internal signals were added to include: the control state register; available space in the datapath register;

six control signals from the M00_System interface; the SysMutex locked signal; and the trigger source

224 Chapter 5. Experimental Results

signal. As it can be seen on the ’T’ marker in red, the interrupt signal was activated after the MFastSA0

control reached the s90_print_stdio state.

Looking back in the plot window, it can also be seen that the control reaches s7 in sample 6,365 while

waiting 4,312 clock cycles from the confirmation of the current block. In the 7,860 sample marker, the

datapath completes the processing of the data stored in the line zero ram with an available space of 512

words. The effective space is based on the approximate size of the line (2048 bytes for 1920 pixels). The

active sysmutex_locked signal indicates the instant when the host system transfers the last memory block

and in the sample marker 10,677, the control receives transferred block confirmation.

Figure 5.28: Logic Analyzer using interrupt as trigger in the V4_00_F accelerator.

The datapath resumes processing for the remaining pixels of the image, and from the AXI bus signals

it can be seen that three consecutive bursts, transfer data from the SYSRAM memory to the datapath ,

which quickly runs out of space. From this moment on, transfers are interspersed with sleep states and

while the last 9,216 pixels of the image are copied in 9 bursts of 256 words of 4 pixels (i.e., 2,073,600

pixels are fragmented in 126 complete 16 kB blocks, plus 9216 pixels in the last incomplete block). At

s14 (i.e., beyond sample 18,100), the control waits for the last pixel on line zero RAM to enter the pixel

matrix, before proceeding until s90 to print results to the stdout.

5.8 Stand-alone Asynchronous Single-task

Once the functionality of the asynchronous design is proven, the next step considers a HW-Task that

merges the two state machines of Figure 5.23 into a Single-task design. Previous tests carried out showed

that the pixel reading is crucial for the application’s performance, and for this reason, the design maintains

the use of system memory to manipulate the input file. To maximize the use of resources, the writing

Chapter 5. Experimental Results 225

of the output file uses the LRAM memory to store the detected corners, allowing the control to keep

concurrent transfers in the two storage resources. The equivalent dual-task design is implemented using

two accelerators V4_00_F and V4_00_B, and the previous HW-Tasks. For completeness, such design

will be used for a performance comparison.

The control unit for this accelerator is divided into three logical level stages. In the first stage, the control

promotes maximum performance at the input while monitoring the existence of corners at the output of

the datapath. Whenever this storage space holds a number of at least 64 corners, control transfers them

to LRAM while trying to keep reading at maximum performance. This copy frees the output space in the

datapath to avoid congestion, and it can occur whenever the control finishes an input burst transfer of

256 words. When this stage completes an input data block, the control evaluates the need to transfer

the corners to the output file. If there are at least 512 words in the LRAM, the control advances to level 2

stage, otherwise it resumes processing for another block of pixels.

Once in the second stage, the control implements corner transfer while continuing to transfer pixels to the

input of the datapath at the rate of 64-word bursts. This duality divides the control actions between the two

operations, in an effort to maintain the input of data while writing to the output file. All existing corners

in LRAM are transferred and the worst-case scenario can occur when the input block exhausts during

this stage. In this case, the control completes the current transfer and returns to the previous stage.

To avoid the contention implicit in the transfer handshake, the control monitors the size of the input

message_queue, allowing it to enter the finalize transfer state after the host system provide a response.

For most of the operating time, the control of the datapath is ensured by the first two stages. The final

stage is achieved when the input file has been completely transferred. The control unit focuses the entire

operation on the output file while the datapath finishes processing the last received line. Due to the great

complexity of this control system, the analysis of its FSM was not considered, but it can be consulted in

the attached Figure D.14.

To promote simultaneous performance on both interfaces, accelerator V4_00_A was used to modify the

configurations of the S01_Data and M00_System interfaces to a single-clock design (see section 4.8).

Also, to store a large number of corners per block while the input block is totally transferred, the LRAM

storage space was raised to equal the input storage (i.e., 2x 32 kB). The resulting HW-Task was configured

with the tag-name FastDetectorSA2, similar to previous accelerators. Figure 5.29 shows the best results

of the performed tests using the 4,622 corners input file, an 8 kB input block size and a design frequency

226 Chapter 5. Experimental Results

of 50 MHz, for the two equivalent designs. The left side of Figure 5.29a, shows the tests carried out

on the single-task asynchronous control that uses the accelerator version V4_00_A. Although the control

task is heavily conditioned by concurrent data reading and writing operations, the test performed records

a total time of 50 milliseconds in each execution, and the done performance counter records a total of

2,161,332 clock cycles for the best HW-Task execution.

Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST
2020 armv7l GNU/Linux
ls /hal-asos/
FastDetectorSA2 hal_asos_resources
time ./feature_detector e 1080p/1920_1080_table_i.pgm 8192
[FastDetectorSA2<HwTask>]:finished...(254,4622)
real 0m 0.05s
user 0m 0.03s
sys 0m 0.02s
time ./feature_detector e 1080p/1920_1080_table_i.pgm 8192
[FastDetectorSA2<HwTask>]:finished...(254,4622)
real 0m 0.05s
user 0m 0.01s
sys 0m 0.04s
cat /hal-asos/FastDetectorSA2/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 02161332
Maxim event duration:02169054 [BusClks]
Minimum event duration:02161332 [BusClks]
Total events duration:0004330386 [BusClks]

(a) Tests using V4_00_A accelerator at 50 MHz.

ls /hal-asos/
MFastSA0 NonmaxSA0 hal_asos_resources
time ./feature_detector f 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[NonmaxSA0<HwTask>]:finished...(4862)
real 0m 0.05s
user 0m 0.02s
sys 0m 0.04s
time ./feature_detector f 1080p/1920_1080_table_i.pgm 8192
[MFastSA0<HwTask>]:finished...(254,2073600)
[NonmaxSA0<HwTask>]:finished...(4862)
real 0m 0.05s
user 0m 0.01s
sys 0m 0.05s
cat /hal-asos/MFastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 02167760
Maxim event duration:02171980 [BusClks]
Minimum event duration:02167760 [BusClks]
Total events duration:0004339740 [BusClks]
#

(b) Tests using V4_00_F/B accelerators at 50 MHz.

Figure 5.29: Performances of asynchronous V4_00_A and V4_00_F/B accelerators.

On the right side, Figure 5.29b shows the tests performed to the design that uses the two accelerators

V4_00_F and V4_00_B. In equivalent way, such design reads the input file using the SYSRAM storage,

and writes the output file using the LRAM. The same datapath is in use but it was split between the two

HW-Tasks, as in the previous asynchronous designs. In the two consecutive tests the application executed

in 50 milliseconds and the done performance counter shows the best execution for the MFastSA0 of

2,167,760 clock cycles.

5.9 Performance Comparison

To better distinguish between the four asynchronous designs, Figure 5.30 plots the average performance of

the application, when the file is varied to increase the number of corners detected. In the same graph, it is

possible to see the performance results of the application when using the software accelerated algorithms.

Compared to HW accelerators in asynchronous design, all accelerators outperform software-only versions

using 50 MHz clock frequency and input block size limited to 8 kB.

Chapter 5. Experimental Results 227

A comparison between the four asynchronous versions confirms a dependence of the detection algorithm

for the final performance of the application. When raising the number of corners, the designs that use

the V4_00_B accelerators show a slight performance degradation. The design that uses two accelerators

V4_00_F have a dedicated system memory interface for each accelerator to minimize bus transaction

delays. For that reason, the application’s overall performance remains stable with increasing corners in

the output file. For completeness, Figure D.13 shows detailed block diagram connections of the design

that targets the Zynq7000 on the ZC702 platform, when using V4_00_F version accelerators.

 0

 0.1

 0.2

 0.3

0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 4.6k 33.7k 61.7k 90k

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Corners per Frame

OpenCV

(0.16)

(0.21)

(0.31)

(0.44)

(0.85)

E.Rosten-C

(0.08)
(0.12)

(0.17)

(0.27)

(0.59)

DTask-4.00.b

(0.08)
(0.08) (0.09) (0.10) (0.11)

Sin.Task-4.00.a

(0.05) (0.05)

(0.06) (0.06) (0.07)

DTask-4.00.f

(0.05) (0.05) (0.05) (0.05) (0.05)

Application performances: using 8 kB transfers [1080P][50MHz]

Figure 5.30: Performances for the asynchronous designs varying the input file.

To assess the effects of input block size and frequency applied to the design, Figures 5.31 plots the

performance results for the fastest design, (i.e., Dual-Task based on V4_00_F accelerators) using four

frequencies while varying the input block size. In all tests, the file with the largest number of corners was

used, i.e., jean.pgm file with 90,000 corners. With a clock frequency of 25 MHz, the application perfor-

mance drops to 100 milliseconds and it is not influenced by the increase in block size. For frequencies

beyond 50 MHz, the overall application performance raises with the input block size, and the frequency

increase has an effect on the overall performance for block sizes larger than 8 kB. Tests performed at 142

MHz did not reflect a performance increase when compared to the previous 100 MHz mark, and the 16

kB block size was sufficient to maintain the performance level.

Table 5.1 summarizes the distinct hardware accelerators discussed in this chapter, categorized by asyn-

chronous and synchronous design strategy. It considers the target platform ZC702 from Xilinx at 100

MHz as target frequency and 16 kB as optimized block sizes for transferring input pixels. The first column

228 Chapter 5. Experimental Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2kB 4kB 8kB 16 kB 32 kB

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Data block size

DTask-4.00.f:25MHz

(0.10) (0.10) (0.10) (0.10) (0.10)

DTask-4.00.f:50MHz

(0.08)

(0.06)

(0.05) (0.05) (0.05)

DTask-4.00.f:100MHz

(0.08)

(0.06)

(0.05)

(0.04) (0.04)

DTask-4.00.f:142MHz

(0.08)

(0.06)

(0.05)

(0.04) (0.04)

Application performances Dual-task 4.00.f:block rising 90k Corners [1080P]

Figure 5.31: Performances using dual-task V4_00_F accelerators and 90,000 corners.

identifies the accelerator by the HW-Task name and the second column shows the accelerator version to

which it was connected to. The third and fourth columns show the performance obtained and establish

the order between the accelerators placing, the fastest ones at the top.

At top stand the designs that rely on the SYSRAM memory region to read the input file. Compared to

the LRAM based design (line 4), the performance difference is marginal (i.e., 10 milliseconds) when both

designs are stimulated at 100 MHz. Due to a low, or null number of interrupt events in the system, the

FastDetectorSA2 design is the most interesting and it also consumes the least logical resources. On the

other hand, this is the most complex design and thus more difficult to update, maintain and functionally

verify.

In terms of resource usage, we can say that consumption does not increases drastically when the design

scales using two accelerators. From the two topmost rows (right side of the table) it can be seen that

the consumption of LUTS and FFS goes up 6.6% and 4.6% respectively. In contrast, the required RAM

and BRAM logic goes down by 2.6% and 8.2% respectively. Is fair to say that the second accelerator

logic overhead is neglectable when compared to the resource consumed by the overall single accelerator

design.

To distinguish the two control strategies discussed, we can say that the application performance improves

about 30% with the asynchronous strategy. Beyond this point, the asynchronous model is more beneficial

to the system because it reduces the number of interrupt events to less than half, or completely as in line

Chapter 5. Experimental Results 229

2. Compared to synchronous examples, the difference between the two fastest designs is 33%, but in

contrast, the synchronous design is simpler, faster to develop and verify, and can be implemented using

half of the memory resources. For the above reasons we can say that the design that is best positioned to

integrate the final application is the asynchronous dual-task using two accelerators in version V4_00_F.

Lastly, the software and hardware accelerated application versions were compared in similar scenarios

that can be found in the literature. Usually, these evaluate performance on a frame-per-second (FPS) rate

using resolutions of 512x512, or 640x480, connected with digital cameras at the input of the datapath.

An alternative test consists of reproducing this frame rate in numerous frames, by converting the files from

the test dataset into the two above resolutions and replicated them in two input files. The files containing

the lowest and highest number of corners were selected. Figure 5.32 shows results of tests performed

using these two files.

On the left side, Figure 5.32a shows the tests carried out using the table.pgm file converted to the

640x480 resolution and replicated 245 times in the input file. For this frame length, the software ap-

plication lasted 4.32 seconds which is equivalent to 56 FPS. The application using the MFastSA0 and

MNonmaxSA0 accelerators, an input block size of 32 kB and a design frequency of 142 MHz, takes 1

second to process the same input, which is equivalent to 245 FPS. The done performance counter shows

that the execution of the MFastSA0 accelerator lasted 993.63 milliseconds.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector e 640_480_table_if245.pgm
[EdRosten-C]:finished!...(75264000, 475055)
real 0m 4.34s
user 0m 4.17s
sys 0m 0.17s
time ./feature_detector b 640_480_table_if245.pgm
[MNonmaxSA0<HwTask>]:finished...(390277)
[MFastSA0<HwTask>]:finished...(2297,75264000)
real 0m 1.00s
user 0m 0.28s
sys 0m 0.86s
cat /hal-asos/MFastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 01
Counter value: 0141094839
Maxim event duration:0141094839 [BusClks]
Minimum event duration:0141094839 [BusClks]
Total events duration:000141094839 [BusClks]
#

(a) Tests using V4_00_F accelerators and 640x480 resolution.

ls /hal-asos/
MFastSA0 MNonmaxSA0 hal_asos_resources
time ./feature_detector e 512_512_jeanf270.pgm
[EdRosten-C]:finished!...(70778880, 3353940)
real 0m 36.04s
user 0m 35.13s
sys 0m 0.91s
time ./feature_detector b 512_512_jeanf270.pgm
[MFastSA0<HwTask>]:finished...(2160,70778880)
[MNonmaxSA0<HwTask>]:finished...(2229600)
real 0m 0.99s
user 0m 0.26s
sys 0m 1.39s
cat /hal-asos/MFastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 01
Counter value: 0141605982
Maxim event duration:0141605982 [BusClks]
Minimum event duration:0141605982 [BusClks]
Total events duration:000141605982 [BusClks]

(b) Tests using V4_00_F accelerators and 512x512 resolution.

Figure 5.32: Full frame-rate operation using 100 MHz clock and 32 kB input block size.

On the right side, Figure 5.32b shows the test based on the jean.pgm file, with a resolution of 512x512

in and input file containing 270 frames. For this frame-rate the software-based application lasted 38.04

seconds which equates to 7 FPS. The same hardware accelerated application lasted 0.99 seconds which

230 Chapter 5. Experimental Results

H
W
-Task(s)

Accelerator
Tim

e
AVG

LIN
TC

RAM
LRAM

LU
Ts

LU
TRAM

s
FFs

B
RAM

(version)
(m

s)
(Clocks)

(Evts.)
(kB)

(kB)
cnt.

(%)
cnt.

(%)
cnt.

(%)
cnt.

(%)

Asynchronous
design

100
M
H
z
16

kB
block

transfers
Zynq7000-Soc

(Xilinx
ZC702

platform
)

M
FastSA0

V4_00_F
40

2978000
1

64
1

12113
(22.77)

804
(4.62)

12564
(11.81)

10
(7.14)

M
N
onm

axSA0
V4_00_F

2954773
9

4
1

FastDetectorSA2
V4_00_A

40
3255000

0
64

64
8160

(16.18)
1262

(7.25)
8027

(7.54)
21.50

(15.36)
M
FastSA0

V4_00_F
40

3311000
1

64
1

11804
(22.19)

834
(4.79)

12576
(11.86)

10
(7.14)

N
onm

axSA0
V4_00_B

2878388
73

-
4

FastSA0
V4_00_B

50
4015000

1
-

64
10982

(20.64)
784

(4.51)
12010

(11.29)
24

(17.14)
N
onm

axSA0
V4_00_B

3782638
37

-
64

Synchronous
design

100
M
H
z
16

kB
block

transfers
Zynq7000-Soc

(Xilinx
ZC702

platform
)

FastDetectorSA1
V4_00_F

60
5437404

136
64

1
7786

(14.64)
722

(4.15)
7783

(7.40)
7.50

(5.36)
M
xFastDetectorSA1

V4_00_F
70

5817009
136

64
1

7708
(14.49)

722
(4.15)

7856
(7.38)

7.50
(5.36)

FastDetectorSA0
V4_00_B

70
6203700

135
-

64
7255

(13.64)
720

(4.14)
7642

(7.18)
21.50

(15.36)
M
xFastDetectorSA0

V4_00_B
80

7151521
133

-
64

7269
(13.66)

712
(4.09)

7559
(7.10)

21.50
(15.36)

Table
5.1:

H
ardw

are
Accelerated

Feature
detection

designs
com

parison.

Chapter 5. Experimental Results 231

equates to 270 FPS, and the result of the performance counter shows a duration of 997.23 milliseconds

for the MFastSA0.

While in previous tests, the hardware accelerated designs achieved a processing rate of one pixel per clock,

this level of performance cannot be permanent when operating in an OS environment such as Linux. This

OS has a base scheduling policy that ensures a fair distribution of the CPU resource to the other tasks in

the system. From the tests carried out on the hardware, we can say that the design on the FPGA allows

a frame-rate of 460 FPS for a resolution of 640x480, and a frame-rate of 541 FPS for a resolution of

515x512. In the Linux environment, such performance can only be achieved by providing a video stream

locally, using a digital camera connected at the input of its datapath. Example of such connectivity is the

DCMI parallel interface from STMicroelectronics [33] used in some digital cameras with this resolution

ranges.

To the best of our knowledge no tests have been found in the literature that consider the Linux OS and

achieve the experimental performances of our designs. In most cases, the target image is already available

in the design local storage consuming all RAM-based logic in the FPGA and do not consider the transfer

time. Table 5.2 lists publications that can be compared to this design.

SOA Target Frame fps f Platform FFs LUTs BRAMs
resource size MHz

[34] FPGA 512x512 500 130 XC3S200-4 1547 2638 12
[35] FPGA 515x512 310 100 XC72K325T 112166 80472 35
[36] FPGA 640x480 55 100 Zynq-7000 3187 4257 576

512x512 541
FPGA 640x480 460 142

(a) 1080p 68 Zynq-7000 12564 12935 10
CPU+FPGA 512x512 270 (ZC-702)
(Linux OS) 640x480 245 142

1080p 36

Table 5.2: HW-Accelerated FAST using HAL-ASOS (a) compared to the literature.

Finally, to integrate the Feature Detection stage in the application, the MNonmaxSA0 was refactored to

handle network TCP sockets instead of the output binary files. Changes to extended features are minimal

since both resources arise from Linux virtual file model. Required changes can be seen in the attached

Listing C.54. The application was also refactored and changes can be seen in the attached Listing C.55.

Performed tests demonstrated a consistent total execution time of 40 milliseconds using 142 MHz, a

232 Chapter 5. Experimental Results

threshold parameter of 20 and an input block size of 32 kB. Experimental results can be seen in Fig-

ure 5.33.

In similar conditions, the application using software Ed.Rosten-C was adapted to upload data using the

network subsystem. Changes to the software application can be seen attached in Listing C.56 and List-

ing C.57. For the same conditions the software-only application achieved a total execution time of 140

milliseconds. Experimental results can be found in Figure 5.34.

The software accelerated version is 3.5 times the duration of the hardware accelerated version. Qualita-

tively speaking, the difference between both is imperceptible. Both applications shown similar erroneous

matches that are result of the same Brute-Force algorithm in use. A distinction can be made in terms of

the number of successful matches which is higher when using the hardware accelerator.

MFastSA0 MNonmaxNet0 hal_asos_resources
time ./feature_detector n table_i1080p.pgm 32768 20 192.168.1.71
[MNonmaxNet0<HwTask>]:finished...(9980)
[MFastSA0<HwTask>]:finished...(64,2073600)
real 0m 0.04s
user 0m 0.02s
sys 0m 0.02s
time ./feature_detector n table_i1080p.pgm 32768 20 192.168.1.71
[MFastSA0<HwTask>]:finished...(64,2073600)
[MNonmaxNet0<HwTask>]:finished...(9980)
real 0m 0.04s
user 0m 0.01s
sys 0m 0.03s
cat /hal-asos/MFastSA0/performance-counters/done_counter
--
- Performance Counter: done_counter Results
--
Control Register:0x0
Number of events: 02
Counter value: 04269257
Maxim event duration:04281926 [BusClks]
Minimum event duration:04269257 [BusClks]
Total events duration:0008551183 [BusClks]

Figure 5.33: Hardware accelerated object detection application results.

Chapter 5. Experimental Results 233

uname -a
Linux buildroot 4.9.0-xilinx #9 SMP PREEMPT Wed Jul 22 16:08:43 WEST
2020 armv7l GNU/Linux
time ./feature_detector t table_i1080p.pgm 32768 20 192.168.1.71
[EdRosten-C Network]:finished!...(2073600, 9803)
real 0m 0.14s
user 0m 0.12s
sys 0m 0.02s
time ./feature_detector t table_i1080p.pgm 32768 20 192.168.1.71
[EdRosten-C Network]:finished!...(2073600, 9803)
real 0m 0.14s
user 0m 0.11s
sys 0m 0.03s
time ./feature_detector t table_i1080p.pgm 32768 20 192.168.1.71
[EdRosten-C Network]:finished!...(2073600, 9803)
real 0m 0.14s
user 0m 0.12s
sys 0m 0.02s

Figure 5.34: Software accelerated object detection application results.

Chapter 6

Conclusions and Future work

This thesis proposes the HAL-ASOS framework and its accelerator model to ease the development of

Linux based embedded systems using hardware acceleration in CPU+FPGA platforms. Throughout this

document we have demonstrated how the HAL-ASOS framework is positioned as an integrated design

solution that provides means to design systems that fit in the requirements of the target application. By

use of its design methodology, the framework promotes the reuse of legacy software, where strategic

pieces can be offloaded to FPGA computation. In a controlled way, the advance in the methodology

stages, promotes design scalability guided by the achievement of the system performance metrics. The

proposed accelerator model integrates the Linux OS and its programming models into a unified design

that was usually and independently split between hardware and software layers. At the same time, this

model benefits from the existing computational resources, placing the CPU of the target platform and the

FPGA resource at the service of the application.

In Chapter 2 we have applied the design methodology to a case study application that deals with file

encryption using the 128-bit AES algorithm. It was possible to modify the application, guided by a perfor-

mance achievement that was based on the CPU workloads, observed in its original software-only format.

This chapter demonstrates the applicability as well as each of the development stages when using the

HAL-ASOS framework.

In Chapter 3 the main components in the accelerator model were discussed. We introduced some of the

features implemented by the microprogram and the Kernel Core design that ultimately support the pro-

posed programming model. The Extended Layer in the HW-Task concept and the HAL-ASOS programming

model were also discussed. Using the HDL procedure packages and the corresponding hardware system

calls, it was possible to extend the Linux programming models to the HW-Task design. The chapter ends

234

Chapter 6. Conclusions and Future work 235

describing the fundamental interfaces provided to the surrounding hardware. With a single format in data

exchange proposed by the Generic Bus, the design becomes more flexible, partitioned into multiple clock

domains that connected through a bidirectional handshake protocol.

From the design discussed in this chapter resulted a journal publication entitled: HAL-ASOS accelerator

model: evolutive elasticity by design.

In chapter 4, singularities of the accelerator model that specialize the design in the different existing ver-

sions were discussed. The indispensable components that sustain the local storage and the synchronism

in the proposed model were also evaluated. Other optional components, such as the performance coun-

ters and the ZeroCopy units were also discussed. The chapter concludes by distinguishing the specific

versions of the accelerator model, implemented from a single description and using HDL configurations

to instruct the synthesis and implementation phases of each design.

In chapter 5, we put the different versions of the accelerator to a test, using a case study that falls within

the scope of computer vision applications. In this chapter, we were able to summarize the different

characteristics and application details that target each accelerator version. The design was explored to

its limit in the application performance when targeting the Xilinx Zynq-7000 SoC in the ZC702 platform.

Following a synchronous design topology for FPGA-based circuits, the application was implemented and

tested on the target platform. The performance results were compared with algorithms that use software-

based acceleration and can be found in the literature.

Subsequently, the asynchronous programming paradigm supported by the HAL-ASOS accelerator model

was applied. This design change improved performance results, dropping the execution times by 33%

to 45% within the different accelerator versions used. On the other hand, it also proved the ability to

mitigate the number of interrupt events launched by each accelerator, turning its behavior into a purely

asynchronous entity. In turn, the final design was compared with designs that can be found in the litera-

ture under the similar test conditions. We considered that the performance gains were significant when

compared to state-of-the-art implementations and due to its uniqueness in the application of asynchronous

circuits, this chapter results in a publication that is under revision.

When compared to other accelerator models in the literature, the HAL-ASOS model provides an easy and

complete integration of the design in the Linux operating system, promoting the accelerator to a first-class

computation entity, in which Linux is the target operating system of this model. No other accelerator allows

236 Chapter 6. Conclusions and Future work

an HW-Task design with this level of programmability. With the microprogram features, the accelerator

model becomes more flexible, a deterministic design that is easy to modify and validate. In this sense,

future changes will expand the microprogram concept to the design of the HW-Task, allowing it to be reused

and reconfigured by the HAL-ASOS file system. This kind of changes would allow a behavior modifiable

control unit, or a change in the extended features level, and thus providing means for a single HW-Task

design to be used in the different scenarios discussed in Chapter 5.

The early-stage Co-Simulation and late-stage Full system simulation supports, allow first to achieve initial

expectations about what the application needs to be before commitment to hardware, and later, the

complete validation of the target system. It considers the distinct technological stacks, starting from the

software application, and moving towards a complete system that includes the HAL-SOS file system, the

Linux operating system and the design of the accelerator(s). To the best of our knowledge, there is no tool

that integrate this level of support to a single DSE. On the other hand, its availability strongly depends on

the QEMU tool and the target platforms that this software makes available.

In the current implementation, the proposed accelerator model lacks a native memory region within the

Linux OS. Currently the HAL-ASOS file system allocates all required memory from the kernel space region.

This condition will limit the accelerator model applicability when the design requires storage with magni-

tudes in the megabytes order and establishes a continuous memory allocation as a condition. Possibly

the memory layout observed in graphic chipsets would be a better approach, but this hypothesis was

not considered because it is strongly dependent on the operating system evolutive nature and also in the

memory hierarchies in distinct target platforms. Alternatively, this region could be redesigned through

multiple memory blocks, facilitating its allocation in different memory locations, leaving the design of the

HW-Kernel and its microprogram in charge of virtualizing the resulting blocks, through a single continuous

memory space.

Once recognized the benefits of a flexible design that results from the easily modifiable microprogram, this

design-level lacks ways to interact with more than one entity in the HW-Task design. This singularity rep-

resents a limiting factor when the design scales concurrently through independent control flows. Usually,

this condition forces a partitioning of the design using two or more accelerators. This was the scenario of

the first phase of asynchronous implementation in Chapter 5, while attempting to containing complexity

in the resulting design. The final design encompassed all possible states in the concurrency between

the two independent flows, while establishing an unbalanced processing that leans towards reading the

Chapter 6. Conclusions and Future work 237

input file. We consider that a multi-task interface could be implemented using an arbitration similar to

that existing in the Generic Bus. The two scheduling policies present will allow the HW-Kernel to handle

execution requests from more than one control unit.

The elasticity that the microprogram provides in the model accelerator can, at the same time, be a weak

point if proper precautions are not ensured. The occurrence of runtime errors, either due to incorrect

matching between system call invocation and accelerator version, or software changes in the host sys-

tem, will ultimately cause a microprogram failure and consequently abort the execution, rendering the

design to an unusable state. On the other hand, the framework does not support the development and

compilation of new system calls which can lead to incorrect representations of the microprogram. A re-

sponse system call was planned, to interact at the file system level, reporting this malfunction condition

and, therefore, issuing a microprogram update. This condition was tested and revealed to be a sensitive

requirement that overexposes Kernel Core to the level of correct functioning and security. As such, it

requires a broader response to the system’s technological stack level to handle erroneous microprogram

updates while ensuring some level of security against abnormal operation.

Last but not least, all word transfers are one clock cycle rated, with the exception of the system bus. This

is a design limitation that results from an abstraction for this interface alongside with the resource shared

condition between Kernel Core and ZeroCopy units. Being a significant interface in the accelerator model,

it should be improved as it can compromise its effective performance.

Summing up, this work was driven by the following design principles, (1) evolutive elasticity, (2) deep

semantic integration, (3) mixed asynchronous–synchronous approach and, (4) performance and power

efficiency as a sort of by-product, leveraged through event-driven, laziness and microcode dynamicity

approaches. Comparing to the state-of-art on FPGA assisted acceleration, the main contributions of this

work are:

1. The elasticity by design is tightly coupled with the evolutive nature of the Linux OS and uses

microcode updates to prevent changes from impacting synchronization, memory, or ABIs.

2. A deep semantic integration with Linux, promoting transparency and the HW-Task programma-

bility towards an accelerator model as first-class computing unit.

3. To handle complexity, we provide a methodology and tools to fully support the technology

stack design, including verification and deployment of complete solutions that fit in the application

238 Chapter 6. Conclusions and Future work

requirements using just the right resources.

4. A novel mixed asynchronous–synchronous design that is event-driven, communicates by

means of handshake protocols and provides a fast design capable of real-time operation.

5. Performance and power efficiency as a sort of by-product, offloading software com-

putation to specialized hardware circuitry and minimizing the energy consumption by enabling

clocks only when there is computation to be performed. As such, we believe that this mixed

asynchronous–synchronous approach will be widely used in the future.

Appendix A

Resource Addressing

In the accelerator model, we can find three distinct areas of resource addressing, when using the S00

and S01 interfaces, and in the Local-BUS. Since in S01 all addressing is implemented by the FPGA

memory blocks, the design challenge was concentrated on the S00 and on the Local-BUS. To implement

transparency between memory layouts, the accelerator design adopts a unique page format in the register

area. In this way, the Local-BUS uses the same page formats and offsets as the S00 interface, despite

only mapping the first two pages and the LRAM. With respect to LRAM, it uses the addressing capability in

this peripheral, in similar way to S01 interface. Therefore, the addressing task is more demanding in the

case of the S00 interface, since it maps a register area four times larger. With that in mind, throughout

this section we consider the layout of the S00 memory as a reference for the design, while ensuring that

the final format must be applicable to the Local-BUS.

Generically, address decoding is known to be resource-greedy and so we tried to keep the consumed

resources under acceptable levels. In this design we implement a two-level address decode, that in level

0 uses the 3 most significant bits (A8:A6) to divide the address range in 8 pages. The remaining 4 bits

(A5:A2) are routed to the level 1 altogether with a new 8-line page select bus. This subgroup of address

lines is distributed over the 8 pages in the address range. The target address is now specified by the

value of this subgroup alongside with the individual selection line on each page. Figure A.1 shows a block

diagram that describes this design.

To decode the target page, the component implements a LUT of 4 inputs (L0) that gives rise to the page

select bus, by using the three address bits together with the CS line in its inputs. The next decoding level

follows the same approach and implements LUTs of five inputs (L1 to L8), using the four address bits that

239

240 Appendix A. Resource Addressing

Look-UP
Table
(LUT)
4:16

A8
A7

EN

I2
I3 O0

O1

O7

I1A6 …

page_select[0:7]

ADDR[8:2]

CS
page_addr[5:2]

L0

Look-UP
Table
(LUT)
5:32

word_select[0:15]

0

A5
A4

EN

I2
I3 O0

O1

O15

Page0 decoding

I1
I0

A3
A2

…

L1

Slave address decoding

Look-UP
Table
(LUT)
5:32

word_select[112:127]

7

A5
A4

EN

I2
I3 O0

O1

O15

Page7 decoding

I1
I0

A3
A2

…

L8

…

Level 1

Level 0

Figure A.1: S00 interface - Two-level address decoding design.

it receives together with each individual page select. The output from this level is a word select bus that

identifies one of the 16-word within a target page.

To assess the impact on the consumed resources of this two-level address decoding approach, we have

selected a Xilinx platform ZC702 and a synthesis of the HDL description was generated. In Figure A.2 we

can see an excerpt from the resource report obtained at synthesis stage from, given by Vivado 2019.03.

In the first line of the report cell usage, we can identify the 8-bit LUT4 used to implement L0, and in

the second line, we can see 128 LUT5 used to implement L1 to L8. At this stage, the design is using

7 address lines together with 1 CS line as inputs to provide 8 buses of 16 word select lines as outputs.

According to the Slice Logic results, we can conclude that the design maps to this FPGA device using 68

slices where only LUT logic elements are used.

Figure A.2: S00 interface - Two-level address resource usage in Zynq7000.

Appendix A. Resource Addressing 241

For comparison, the same ratio of inputs and outputs was applied to a single level of address decoding

design. This HDL description seeks to implement a single LUT of 8 inputs for 128 outputs. The excerpt of

consumed resources after synthesis stage can be seen in Figure A.3. From the report cell usage, we can

see that in the absence of such LUT, the strategy on the Vivado led to a similar two-level address decoding

using 3-input and 6-input LUTs, thus producing equivalent implementation.

Figure A.3: S00 interface - Single-level address resource usage in Zynq7000.

A similar result was obtained using a combination of LUT4 and LUT5 in 136 slices consumed, using the

ML507 target platform from the Virtex5 family. For compatibility reasons, the Xilinx ISE 14.7 tool was

selected and the excerpt of this report can be found attached in Figure A.4. When analyzing the overall

results, we can conclude that the 16-word page addressing model is suitable for mapping registry-based

resources in FPGA devices. With the LUT6 logic element available in the ZC702 platform, it would be

possible to efficiently implement 32-word pages, although this choice is not suitable for the previous

platforms in the HAL-ASOS tool.

When looking back at the basics of parallel data buses, we can define the TXDATA bus as input for all words

in the address range. The write operation can be determined by the word selection line in combination

with the WR_CE line active during a clock pulse. To read the content of each word, we can implement an

equivalent design, where all words are connected in parallel forming the RXDATA bus. The word that has

the active selection line establishes the output signals equivalent to its logical content, while all the others

remain in the high impedance state. This uniqueness condition determines a single active logical group

of signals that sources the 32-bit RXDATA output.

Traditionally, this output circuit is implemented using tri-state buffers in all signals, where the value in each

bit can be alternated between its corresponding logical value or an intermediate state of high impedance

242 Appendix A. Resource Addressing

Figure A.4: S00 Interface - Two-level address resource usage in Virtex 5 family.

Appendix A. Resource Addressing 243

denoted as ’Z’. To apply this approach in the slave decoder, the design evolves to the simplified architecture

that can be seen in Figure A.5. In that figure, the LUTs that implement the two level-address decode and the

resulting select lines are visible using blue color. For simplicity only the pages 0 and 7 are represented,

and we can see 16 words attached to each page decoder. These words are purely figurative and are

intended to describe the association in parallel using arrays of tri-state buffers, ATR0 to ATR127, of 32

lines each.

Word 0

Word 1

Word 15

Page 0 decoder
word_select[0:15]

0

1

15

… …

…

RXDATA[31:0]

LUT
5:32

LUT
4:16ADDR[8:2]

CS

A5:A2

page_select[0:7]

0 7

L0

L1

ATR0

Slave Decoder

A8:A6

[31:0]

[31:0]

[31:0]

ATR7

Word 0

Word 1

Word 15

Page 7 decoder
word_select[0:15]

0

1

15

… …

LUT
5:32

L8

ATR120
[31:0]

[31:0]

[31:0]

ATR127

A5:A2

[31:0]

Figure A.5: Slave decoder internal architecture block diagram.

Similar excerpt from the resource usage of this design can be seen in Figure A.6. It must be said that

since the 128 words are not part of the design, the tri-state buffers were connected to top-level inputs of

the slave decoder. In doing so, we expect to see an additional use of 4096 input buffers (IBUF) that will

not be part of the final design.

Figure A.6: S00 interface - Resource usage for tri-state datapath design in Zynq7000.

An analysis of the report cell usage shows that this design does not qualifies for implementation using FPGA

devices. The parallel word associations have been transformed into equivalent LUT-based circuits, and we

can notice that only 32 tri-state buffers (OBUFT) are in use. This transformation resulted in a dispersion

244 Appendix A. Resource Addressing

in the number of LUT inputs, with a predominance in LUT6 and LUT2. In summary, it can negatively

impact the quality factor of the design, since the use of LUT1 to LUT4 are implemented by reusing LUT5

or LUT6 available in each slice. As a result, the use of resources reaches a total consumption of 3176

slices, which represents 5.97% of the available resources.

A viable alternative is to apply multiplexing and take advantage of the MUX (F7 and F8) that can be found

in each slice. Applying the same principle of the two-level addressing, the page-level can multiplex the 16

words into a 32-bit output. The decoder-level can multiplex the 8 inputs from each page, to give rise to

the 32-bit RXDATA of the slave interface. To ease design mapping, each 32-bit word is connected using a

parallel of 4 MUX with 16 inputs of 8 bits, and each page word is connected to a parallel of 4 MUX with

8 inputs of 8 bits. In Figure A.7 we can see the resource usage for this alternative.

Figure A.7: S00 interface - Resource usage for MUX datapath design in Zynq ZC702.

From the report cell usage, we can conclude that the design is using the desired logical elements. The use

of LUTs is significantly lower and is influenced by the slice level organization. Here, each MUXF7 allows

an 8:1 multiplexing function but it receives bits from LUT6 or LUT5 in its inputs. In turn, the outputs of

these are connected to the MUXF8 inputs which together allow a 16:1 multiplexing function. The final

result of the design translates into a total use of 2.17% of the available slices.

To implement the first level of address decoding, the HAL-ASOS design uses the Slave decoder compo-

nent, that follows the above design considerations. To promote design reuse, this component allows a

parameterized number of pages and words per page. In Figure A.8 we can see a block diagram that

describes its internal architecture.

On the left side, the component implements the generic interface and is usually connected to top-level

signals. On the right side, the component implements the page-level signals that may vary in number and

Appendix A. Resource Addressing 245

Look-UP
Table
(LUT)
4:16

A8
A7

EN

I2
I3 O0

O1

O7

WR_ACK_7

WR_ACK_1

WR_ACK_0

0

1

…

7

N_WORDS= 16 I1A6 …

…

Rd_ACK_7

RD_ACK_1

RD_ACK_0

…

page_select[0:7]

page0_rxdata[31:0]

ADDR[8:2]

CS

TXDATA[31:0]
page1_rxdata[31:0]

page7_rxdata[31:0]

page_addr[5:2]

WR_ACK

RD_ACK

page_wr_ack[0:7]

page_rd_ack[0:7]

SLAVE_DECODER

N_PAGES= 8

WR_CE

RD_CE
page_wr_ce

RXDATA[31:0]

page_rd_ce

page_txdata[31:0]

…

A8 7 6

L0

M0

AG0

AG1

Figure A.8: Slave decoder internal architecture block diagram.

length, as a result of the chosen parameters. This degree of variability was implemented using advanced

types of unconstrained number of elements, where we apply mathematical functions that are based on

the received parameters, to establish the appropriate number of input and output signals in the design.

For better organization, the component extends the remaining signals from the generic interface to the

page-level using appropriate nomenclature. Since each data exchange demands two handshake signals,

the decoder expects to receive two page-level acknowledge buses. These signals are combined internally

using logic OR gates that give rise to the WR_ACK and RD_ACK signals. For completeness, the VHDL

description of this component can be seen in Listing A.1 and in Listing A.2 we’ve included the VHDL

description for its architecture.

In the second level of the address decoding, the HAL-ASOS design implements the page decoder compo-

nent. Here, we follow the same approach as in the previous level but using page-level inputs and word-level

outputs. In Figure 3.47 we can see a diagram that describes its internal design. The main difference lies

in the connection at the M0 control inputs being closed by the address bus, instead of being extended

in sub-levels. As result of the single parameter, the implementation uses twice as many resources when

comparing the 16 inputs with the first level of decoding.

To address the local resources in the S00 interface, the design of the accelerator implements a hierarchy

of one slave decoder to eight page decoder components. The resource consumption of the final version

in the synthesis stage can be seen in Figure A.10. It is worth noting that, in order to assess this level of

246 Appendix A. Resource Addressing

Look-UP
Table
(LUT)
5:32 word_select[0:15]

rxword_0[31:0]

page_address[5:2]

page_select

A5
A4

EN

I2
I3 O0

O1

O15

page_txdata[31:0]
rxword_1[31:0]

rxword_15[31:0]

page_wr_ack

page_rd_ack

wr_ack_bus[0:15]

rd_ack_bus[0:15]

WR_ACK_15

WR_ACK_1

WR_ACK_0

0

1

…

15

PAGE_DECODER

N_WORDS= 16

page_wr_ce
page_rd_ce

word_wr_ce

page_rxdata[31:0]

word_rd_ce

txword[31:0]

I1
I0

A3
A2

…

…

Rd_ACK_15

RD_ACK_1

RD_ACK_0

…

L0

M0

AG0

AG1

Figure A.9: Page decoder component - internal architecture.

detail, the design of the interface decoder was isolated from the remaining accelerator circuits. With the

insertion of OR logic in both components, the implementation slightly increases the consumption of LUT6

and LUT3.

Figure A.10: S00 interface - Resource usage final design using ZC702 platform.

The Slice Logic utilization shows a total consumption of 2.27% of available slices, and by this number,

we can consider this two-level addressing is suitable for mapping in FPGAs. This value is an indicator of

preliminary consumption that may vary in the final stages of implementation, being affected by the time

constraints that the accelerator model faces. These can lead to the merging of combinational logic that

aims to decrease the critical path, or to reuse partial resources in other slices closer in the design.

Appendix A. Resource Addressing 247

Alternatives to this addressing model could include the use of FPGA memory blocks, programmed with

a binary address map. This can be particularly advantageous in asymmetric memory layouts, where the

decoder aims to accommodate the distinct address ranges of the target resources.

Listing A.1: Page decoder component - entity declaration using VHDL.

library IEEE; 20

use IEEE.STD_LOGIC_1164.ALL; 21

use IEEE.NUMERIC_STD.ALL; 22

library hal_asos_v4_00_a; 23

use hal_asos_v4_00_a.hal_asos_configs_pkg.C_MACHINE_WIDTH; 24

use hal_asos_v4_00_a.hal_asos_utils_pkg.t_array_slv_32; 25

use hal_asos_v4_00_a.hal_asos_utils_pkg.POW2; 26

use hal_asos_v4_00_a.MUX32; 27

 28

entity SLAVE_DECODER is 29

 GENERIC(N_PAGES: natural:=8; 30

 N_WORDS: natural:=16); 31

 Port (CS : in STD_LOGIC; 32

 WR_CE : in STD_LOGIC; 33

 RD_CE : in STD_LOGIC; 34

 ADDR : in STD_LOGIC_VECTOR ((POW2(N_PAGES)+ POW2(N_WORDS)+2-1 downto 2); 35

 RXDATA : in STD_LOGIC_VECTOR (C_MACHINE_WIDTH-1 downto 0); 36

 TXDATA : out STD_LOGIC_VECTOR (C_MACHINE_WIDTH-1 downto 0); 37

 WR_ACK: out STD_LOGIC; 38

 RD_ACK: out STD_LOGIC; 39

 PAGE_SELECT : out STD_LOGIC_VECTOR (0 to N_PAGES-1); 40

 PAGE_WR_CE : out STD_LOGIC; 41

 PAGE_RD_CE : out STD_LOGIC; 42

 PAGE_ADDR: out STD_LOGIC_VECTOR(POW2(N_WORDS)+2-1 DOWNTO 2); 43

 PAGE_TXDATA : out STD_LOGIC_VECTOR (C_MACHINE_WIDTH-1 downto 0); 44

 PAGE_RXDATA: in t_array_slv_32 (0 to N_PAGES-1); 45

 PAGE_WR_ACK: in STD_LOGIC_VECTOR(0 to N_PAGES-1); 46

 PAGE_RD_ACK: in STD_LOGIC_VECTOR(0 to N_PAGES-1); 47

end SLAVE_DECODER;48

248 Appendix A. Resource Addressing

Listing A.2: Slave decoder component - architecture description using VHDL.

architecture Behavioral of SLAVE_DECODER is 49

CONSTANT ADDR_WIDTH: NATURAL:= POW2(N_PAGES) + POW2(N_WORDS)+2; 50

signal page_address : std_logic_vector (ADDR_WIDTH-1 downto POW2(N_WORDS)+2); 51

signal page_cs_i : std_logic_vector (0 to N_PAGES-1); 52

signal page_wr_ack_i: std_logic_vector (0 TO N_PAGES-1); 53

signal page_rd_ack_i: std_logic_vector (0 TO N_PAGES-1); 54

 55

begin 56

PAGE_WR_CE <= WR_CE; 57

PAGE_RD_CE <= RD_CE; 58

PAGE_TXDATA <= RXDATA; 59

page_address <= ADDR(ADDR_WIDTH-1 downto POW2(N_WORDS)+2); 60

-- 61

PG_CS:process(page_address,CS) 62

-- 63

variable index: natural; 64

begin 65

 index := to_integer(unsigned(page_address)); 66

 page_cs_i<= (others=>'0'); 67

 if (cs = '1') then 68

 page_cs_i(index)<= '1'; 69

 end if; 70

end process PG_CS; 71

-- 72

PAGE_SELECT <= page_cs_i; 73

PAGE_ADDR <= addr(POW2(N_WORDS)+2-1 downto 2); 74

-- 75

MUX: entity MUX32 76

-- 77

 GENERIC MAP(N_INPUTS=>N_PAGES) 78

 Port MAP(ADDR=> page_address, 79

 DIN=> PAGE_RXDATA, 80

 DOUT=>TXDATA); 81

-- 82

RD_ACK <= page_rd_ack_i(0); 83

WR_ACK <= page_wr_ack_i(0); 84

--- 85

GEN_OR:FOR I IN 0 TO N_PAGES-2 GENERATE 86

--- 87

 BEGIN 88

 page_rd_ack_i(I) <= PAGE_RD_ACK(I) OR page_rd_ack_i(I+1); 89

 page_wr_ack_i(I) <= PAGE_WR_ACK(I) OR page_wr_ack_i(I+1); 90

 END GENERATE; 91

--- 92

page_rd_ack_i(N_PAGES-1) <= PAGE_RD_ACK(N_PAGES-1); 93

page_wr_ack_i(N_PAGES-1) <= PAGE_WR_ACK(N_PAGES-1); 94

--- 95

end Behavioral;96

Appendix B

Clock Synchronizers

Fundamentally, all flip-flops with a clock signal have time constraints such as the setup time (tsu) and hold

time (th), dictating that the input signal must remain stable in order to produce a stable output, after an

expected time interval (tdq in the case of D flip-flop). Figure B.1 describes, in the form of a time diagram,

a satisfactory input for this flip-flop. Here, the input signal at D, remains stable for the time constraints

and thus produce a stable output at Q after the tdq interval.

D Q

clk

clk
T

D

Q

𝑡𝑠𝑢 𝑡ℎ

𝑡𝑑𝑞

Figure B.1: Flip-Flop D time constraints setup, hold and propagation delay

The violation of time constraints produces failures in the signal capture, which can lead to: (1) the meta-

stability of the flip-flop, or (2) the signal loss or data inconsistency when using vector signals. Figure B.2

describes in the form of a time diagram, an occurrence of meta-stability and two common examples

of data loss or data inconsistency. In the temporal diagram on the left of the image, it is possible to

observe that the input D violates the configuration constraint and this violation gave rise to an oscillating

output. This condition is maintained for an undetermined time interval tosc, also known as metastable

signal time (tmeta). If propagated to the other logical units of a design, this state of oscillation may trigger

undetermined control states or excessive current consumption in the design.

249

250 Appendix B. Clock Synchronizers

T

D

Q

𝑡𝑠𝑢 𝑡ℎ

𝑡𝑑𝑞

clkT
𝑡𝑠𝑢 𝑡ℎ

D

Q

clk

Lost updateMetastable

𝑡𝑑𝑞

𝑡𝑜𝑠𝑐

Figure B.2: Flip-Flop D time constraints violation

On the right side we can observe two phenomena of lost update, or lost data, in which the two events at

input D result in loss either due to the occurrence between the active transitions of the clock, or because it

has violated the hold time. In the latter case, the result of output Q evolves to the previous value and when

this failure occurs in vector-type signals, different bits may have different tmeta durations and unpredictably

evolve to the input or to their previous values. Altogether, these failures can become intermittent, difficult

to debug or reproduce, which often only occurs on the final hardware, being pointed out as the second

biggest cause of product respin.

The synchronizer variants found in the community can be distinguished in two types of functionality: (1)

the conventional multi-flop synchronizer and (2) a toggle synchronizer variant. Figure B.3 describes the

implementation of the conventional multi-flop synchronizer, where the transmitter and receiver are marked

by the letters A and Y, and only the clock and reset signals from the receiver circuit are used.

Synchronizer (Comb)

reset

D Q

clk

reset

D Q

clk

clock_rcvr

reset_rcvr

FF1FF0
Metastability region

META_REGION = 1

i_Sig_sndr o_Sig_rcvrA Y

Figure B.3: Multi-Flop D synchronizer circuit

The input i_Sig_sndr receives the control signal sent from A to Y, and the output o_Sig_rcvr produces the

signal captured by this component. The metastable state of the captured signal can occur at output Q of

FF0, being contained by the input D of FF1 until the next active clock transition, time that it is allowed to

stabilize. The probability of a meta-stable signal at the output of FF1 is very low or practically zero, but

Appendix B. Clock Synchronizers 251

even so, for extreme high frequency scenarios, it is possible to scale the meta-stability region with more

flip-flops using the META_REGION parameter.

For signals with the duration of a transmitter’s clock pulse, we cannot use the conventional synchronizer

for the reasons already mentioned in the lost data example. Instead, the pulse synchronizer (2) is applied

since this circuit is not dependent on the duration of the event, but on the active transitions of the signal.

Figure B.4 describes the implementation of this synchronizer where the clock and reset signals from both

circuits are used.

reset

D Q

clk

reset

D Q

clk

clock_rcvr
reset_rcvr

reset_sndr

clock_sndr

reset

D Q

clk

FF1 FF2

Reset_A

Clock_A Clock_Y
reset

D Q

clk

FF0

FF3

SynchronizerDual (pulse)

Reset_y

Metastability region
i_Pulse_sndr

o_Pulse_rcvr YA

META_REGION = 1

Figure B.4: Multi-Flop D pulse synchronizer circuit

The active transition of the pulse in the input sets the value of output Q in FF0 to its complementary value

(toggle). This signal keeps the logic value stable until the next active transition of the input. Two Y clock

cycles allow to deal with metastability using the conventional multi-flop scheme, which reproduces the

stable value at the output of FF2. Then, a logical combination between this output and FF3 produces a

high logic value at the output during a Y clock pulse.

It should be noted that this synchronization can only be applied to clock pulse signals, and in situations

where the meta-region signals evolved to its previous value, this pulse can suffer an additional clock

cycle Y delay. For signals active for more than one clock cycle, the design of the accelerator employs a

decomposition in set and clear pulses, which occur in the upward and downward transitions of the original

signal.

252 Appendix B. Clock Synchronizers

CS

RD_CE

M-Domain

Clock_M

WR_ACK

RD_ACK

CS

WR_CE

HOLD
clk

clrreset
O_Sig I_Sig RD_CE

WR_CE

TXDATA

RXDATA

TXDATA

CS_S

BE

ADDR BE

ADDR

Synchronizer Generic (Single Clock) S-Domain

Clock_M

N

N/8

M

Reset_S

N: WORD WIDTH - M:ADDRESS WIDTH

HOLD
clk

clrreset
O_Sig I_Sig

Reset_S

U5

U6

BUS_VALID

G2

D Q

clk

FF4

0

1

Reset_S

G4

M3

reset

RXDATA

RD_ACK

WR_ACK
Clock_M

Clock_M

Clock_M

Figure B.5: Synchronizer Generic: single clock ACK-based handshake circuit.

Appendix C

Source Listings

Listing C.1: ’Encryptor’ task ’run()’ member specialization (Figure 2.7).

template<> 81

void hal_asos::Task<hal_asos::SwTask, TEncrypt>::run(void) { 82

 std::shared_ptr<dds::Publication> pLocal; 83

std::shared_ptr<char[HLEN]> p_cyphered; 84

std::shared_ptr< const char[]> p_plain; 85

int pcount = 0; 86

size_t ret = 1; 87

uint8_t round = 0; 88

 89

set_cypher_key(key); 90

key_expansion(); 91

 92

 while (this->StatusRunning && ret > 0) { 93

 ret = this->p_Subscription->take_publication(pLocal); 94

 if (ret) { 95

 pcount++; 96

 p_plain = pLocal->get_reference(); 97

 p_cyphered = std::shared_ptr<char[HLEN]>(new char[HLEN]); 98

 std::copy_n(p_plain.get(),HLEN,p_cyphered.get()); 99

 100

 p_current_state = (state_t*)p_cyphered.get(); 101

 add_round_key(0); 102

 for (round = 1; round < NROUNDS; ++round){ 103

 subst_bytes(); 104

 shift_rows(); 105

 mix_columns(); 106

 add_round_key(round); 107

 } 108

 subst_bytes(); 109

 shift_rows(); 110

 add_round_key(NROUNDS); 111

 ret = this->p_Topic->publish(p_cyphered); 112

 } 113

 } 114

 this->StatusRunning = false; 115

 this->p_Topic->close_topic(); 116

 this->p_Subscription->close_subscription(); 117

 LOG_MSG << this->TaskTag << "finished.(" << pcount << ")\n"; 118

253

254 Appendix C. Source Listings

Listing C.2: ’File reader’ task ’run()’ member specialization(Figure 2.6).

template <> 26

void hal_asos::Task <hal_asos::SwTask, TFRead> ::run(void) { 27

 std::ifstream input_file; 28

 std::shared_ptr<char[HLEN]> p_buff; 29

 char* p_local_buff; 30

 int InputFileSize, Read_len, i, count = 0; 31

 long copy_len; 32

 input_file.open(target_file.c_str(), std::ios::in | std::ifstream::binary); 33

 if (!input_file.is_open()) { 34

 LOG_MSG << this->TaskTag << ":error opening input file!\n"; 35

 this->shutdown_unconditional(); 36

 return; 37

 } 38

 39

 p_local_buff = new char[BLOCK_LEN]; 40

 if (p_local_buff == nullptr) { 41

 input_file.close(); 42

 LOG_MSG << this->TaskTag << ":failed memory allocation!\n"; 43

 this->shutdown_unconditional(); 44

 errno = ENOMEM; 45

 return; 46

 } 47

 48

 input_file.seekg(0, std::ios::end); 49

 InputFileSize = (long)input_file.tellg(); 50

 input_file.seekg(0, std::ios::beg); 51

 ((int)(p_local_buff)) = InputFileSize; 52

 input_file.read(p_local_buff + sizeof(int), (BLOCK_LEN - sizeof(int))); 53

 Read_len = (int)input_file.gcount() + sizeof(int); 54

 55

 while (this->StatusRunning && Read_len > 0) { 56

 for (i = 0; i < Read_len; i += HLEN) { 57

 p_buff = std::shared_ptr<char[HLEN]>(new char[HLEN]); 58

 copy_len = mmin(HLEN, (int)(Read_len - i)); 59

 std::copy_n(p_local_buff + i, copy_len, p_buff.get()); 60

 this->p_Topic->publish(p_buff); 61

 count++; 62

 } 63

 input_file.read(p_local_buff, BLOCK_LEN); 64

 Read_len = (long)input_file.gcount(); 65

 } 66

 input_file.close(); 67

 this->p_Topic->close_topic(); 68

 LOG_MSG << this->TaskTag << "finished...(" << count << ")\n"; 69

 delete[] p_local_buff; 70

} 71

Appendix C. Source Listings 255

Listing C.3: ’Uploader’ task ’run()’ member specialization (Figure 2.8).

template <> 134

void hal_asos::Task<hal_asos::SwTask, TUpload>::run(void) { 135

using namespace hal_asos::networking; 136

int ret = 1, count = 0, index=0; 137

 char* p_local_buff; 138

std::shared_ptr<const char[]>p_buff; 139

std::shared_ptr<dds::Publication> pLocal; 140

CSocket<Client> Soc; 141

 142

 p_local_buff = new char[BLOCK_LEN]; 143

 if (p_local_buff == nullptr) { 144

 LOG_MSG << this->TaskTag << ":failed memory allocation\n"; 145

 this->shutdown_unconditional(); 146

 errno = ENOMEM; 147

 return; 148

 } 149

 150

Soc.set_ip_address(ip); 151

Soc.set_sock_family(AF_INET); 152

Soc.set_sock_type(SOCK_STREAM); 153

Soc.set_sock_port(PORT_NO); 154

 155

 156

 this->StatusRunning = Soc.open_connection(); 157

 while (this->StatusRunning && ret > 0) { 158

 while (index < BLOCK_LEN && ret > 0) { 159

 ret = this->p_Subscription->take_publication(pLocal); 160

 if (ret) { 161

 p_buff = pLocal->get_reference(); 162

 std::copy_n(p_buff.get(),pLocal->get_len(), p_local_buff + index); 163

 index += pLocal->get_len(); 164

 count++; 165

 } 166

 } 167

 if (index > 0) { 168

 ret = Soc.safe_write(p_local_buff, index); 169

 index = 0; 170

 } 171

 } 172

 Soc.close_connection(); 173

 this->p_Subscription->close_subscription(); 174

 delete[] p_local_buff; 175

 LOG_MSG<<this->TaskTag<<"finished...("<<count<<")\n"; 176

} 177

256 Appendix C. Source Listings

Listing C.4: Machine 1:Encryptor HW Task:(back to Figure 2.24).

FSM_CONTROL: process(task_state, s00_kernel_run, s00_kernel_rxdata, index_q, count_len_q, 94

target_len_q, resetn_i, kernel_response, p_cypher_i, total_len_q, p_current_q, aes_done_i, 95

p_cypher_i,kernel_call) 96

-- 97

begin 98

task_done_i <= '0'; 99

index_d <= index_q; 100

count_len_d <= count_len_q; 101

total_len_d <= total_len_q; 102

target_len_d <= target_len_q; 103

p_current_d <= p_current_q; 104

trigger_aes_i <= '0'; 105

task_state_next<= task_state; 106

if resetn_i = '0' then 107

 index_d <= 0; 108

 total_len_d<=0; 109

 reset_sys_call(kernel_call); 110

else 111

 hal_asos_link_to_kernel(kernel_response,kernel_call); 112

 case task_state is 113

 when s0_ready=> 114

 if s00_kernel_run = '1' then 115

 task_state_next <= s1_transfer_from_dds; 116

 end if; 117

 total_len_d<=0; 118

 when s1_transfer_from_dds=> 119

 transfer_data_from_dds(kernel_call,kernel_response,0, C_BLOCK_LEN); 120

 target_len_d <= cast_return_to_transfer_len(kernel_response); 121

 index_d <= 0; 122

 count_len_d<=0; 123

 task_state_next <= s2_evaluate_transfer; 124

 when s2_evaluate_transfer=> 125

 task_state_next <= s8_write_message; 126

 if(target_len_q >0) then 127

 task_state_next <= s3_read_lram; 128

 end if; 129

 when s3_read_lram=> 130

 safe_read_lram_word32(kernel_call, kernel_response,p_current_d,(C_PLAIN_LEN/4),index_q); 131

 count_len_d <= count_len_q + C_PLAIN_LEN; 132

 task_state_next <= s4_trigger_aes; 133

 when s4_trigger_aes=> 134

 trigger_aes_i<= '1'; 135

 task_state_next<= s5_wait_aes; 136

 when s5_wait_aes=> 137

 wait_signal_event(kernel_call, kernel_response,aes_done_i,Done_d); 138

 task_state_next <= s6_write_lram; 139

 when s6_write_lram=> 140

 safe_write_lram_word32(kernel_call, kernel_response,p_cypher_i,(C_PLAIN_LEN/4),index_q); 141

 index_d <= index_q + (C_PLAIN_LEN/4); 142

 total_len_d <= total_len_q + 1; 143

 task_state_next <= s7_transfer_to_dds; 144

 if(count_len_q < target_len_q) then 145

 task_state_next <= s3_read_lram; 146

 end if; 147

 when s7_transfer_to_dds=> 148

 transfer_data_to_dds(kernel_call, kernel_response,0, count_len_q); 149

 task_state_next<= s1_transfer_from_dds; 150

 when s8_write_message=> 151

 safe_write_lram(kernel_call, kernel_response, fmessage, 152

 std_logic_vector(to_unsigned(total_len_q,32)),0);
 task_state_next <= s90_print_stdio; 153

 when s90_print_stdio=> 154

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 155

 task_state_next <= s99_exit; 156

 when s99_exit=> 157

 task_exit(kernel_call, kernel_response); 158

 task_state_next <=s99_exit; 159

 when others=> null; 160

 end case; end if; end process FSM_CONTROL; 161

Appendix C. Source Listings 257

Listing C.5: Machine 1:Encryptor HW Task datapath:(back to text 2.7.3).

-- 241

plain_data_i <= array_32_to_slv(p_current_d); 242

-- 243

ip_aes: entity aes128 244

-- 245

port map (clock => clock, 246

 reset => reset_i, 247

 i_run => trigger_aes_i, 248

 i_sleep => s00_kernel_sleep_task, 249

 i_key_expand => initial_it, 250

 o_done => aes_done_i, 251

 i_plain_data => plain_data_i, 252

 i_cipher_key => cipher_key_i, 253

 o_ciphered_data => ciphered_data_i); 254

-- 255

p_cypher_i <= slv_to_array_32(ciphered_data_i); 256

-- 257

TASK_REGS:process(clock) 258

-- 259

begin 260

 if rising_edge(clock) then 261

 262

 if resetn_i = '0' then 263

 index_q <= 0; 264

 total_len_q <= 0; 265

 count_len_q <= 0; 266

 target_len_q <= 128; 267

 initial_it <= '1'; 268

 p_current_q<= (others=>(others=>'0')); 269

 else 270

 271

 if kernel_response.sleep_task = '0' then 272

 p_current_q<= p_current_d; 273

 end if; 274

 275

 if kernel_response.block_task = '0' then 276

 index_q <= index_d; 277

 total_len_q <= total_len_d; 278

 count_len_q <= count_len_d; 279

 target_len_q <= target_len_d; 280

 end if; 281

 282

 if kernel_response.block_task = '0' and aes_done_i = '0' then 283

 initial_it <= '0'; 284

 end if; 285

 286

 end if; 287

 end if; 288

end process TASK_REGS; 289

-- 290

258 Appendix C. Source Listings

Listing C.6: Encryptor SA - control path (1/2):(back to Figure 2.25).

-- 94

FSM_CONTROL:process(task_state,s00_kernel_run,status_ret_q,file_len_d,buff_len_q, 95

 count_blocks_q, index_q, reset_i, kernel_response, ciphered_data_i, file_len_q, ifile_q, 96

done_i, tsocket_q, target_read, p_current_q,p_result_q,kernel_call) 97

-- 98

begin 99

task_state_next <= task_state; 100

inc_index <= '0'; 101

inc_count_blocks <='0'; 102

clr_index <= '0'; 103

trigger_aes_i <= '0'; 104

status_ret_d <= status_ret_q; 105

 p_current_d <= p_current_q; 106

p_result_d <= p_result_q; 107

ifile_d <= ifile_q; 108

tsocket_d <= tsocket_q; 109

file_len_d <= file_len_q; 110

buff_len_d <= buff_len_q; 111

task_done_i <= '0'; 112

 113

if reset_i = '1' then 114

 reset_sys_call(kernel_call); 115

else 116

 hal_asos_link_to_kernel(kernel_response,kernel_call); 117

 case task_state is 118

 when s0_ready=> 119

 if s00_kernel_run = '1' then 120

 task_state_next <= s1_query_file; 121

 end if; 122

 when s1_query_file=> 123

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 124

 task_state_next <= s2_query_socket; 125

 when s2_query_socket=> 126

 pooled_socket_query(kernel_call,kernel_response,tsocket_q,tsocket_d); 127

 task_state_next<= s3_open_file; 128

 when s3_open_file=> 129

 pooled_fstream_open(kernel_call,kernel_response,ifile_q,ifile_d); 130

 status_ret_d <= cast_return_to_transaction_ret(kernel_response); 131

 task_state_next <= s4_evaluate_file; 132

 if(status_ret_q < 0)then 133

 task_state_next <= s17_write_string_lram; 134

 end if; 135

 when s4_evaluate_file=> 136

 pooled_fstream_read_len(kernel_call,kernel_response,ifile_q,file_len_d); 137

 p_current_d(0) <= std_logic_vector(to_unsigned(file_len_q,32)); 138

 task_state_next <= s16_close_file; 139

 if(file_len_d >0) then 140

 task_state_next <= s5_set_word_len; 141

 end if; 142

 when s5_set_word_len=> 143

 safe_write_lram_word32(kernel_call, kernel_response, p_current_q,1,0); 144

 inc_index <= '1'; 145

 task_state_next<= s6_open_socket; 146

 when s6_open_socket=> 147

 pooled_socket_open(kernel_call,kernel_response,tsocket_q,tsocket_d); 148

 status_ret_d <= cast_return_to_transaction_ret(kernel_response); 149

 task_state_next <= s7_read_file; 150

 if(status_ret_q < 0)then 151

 task_state_next <= s15_close_socket; 152

 end if153

94

Appendix C. Source Listings 259

 when s7_read_file=> 154

 pooled_fstream_read_word32(kernel_call,kernel_response, ifile_q,target_read,index_q); 155

 buff_len_d <= cast_return_to_transfer_len(kernel_response); 156

 clr_index <= '1'; 157

 task_state_next <= s8_evaluate_read; 158

 when s8_evaluate_read=> 159

 task_state_next <= s15_close_socket; 160

 if(buff_len_q > 0) then 161

 task_state_next <= s9_load_plain; 162

 end if; 163

 when s9_load_plain=> 164

 safe_read_lram_word32(kernel_call, kernel_response, p_current_d,4,index_q); 165

 task_state_next <= s10_trigger_encrypt; 166

 when s10_trigger_encrypt=> 167

 trigger_aes_i <='1'; 168

 task_state_next <= s11_wait_done; 169

 when s11_wait_done=> 170

 wait_signal_event(kernel_call, kernel_response,done_i,event_done_d); 171

 p_result_d <= slv_to_array_32(ciphered_data_i); 172

 task_state_next <= s12_update_lram; 173

 when s12_update_lram=> 174

 inc_count_blocks<= '1'; 175

 inc_index <= '1'; 176

 safe_write_lram_word32(kernel_call, kernel_response, p_result_q,4,index_q); 177

 task_state_next <= s13_update_index; 178

 when s13_update_index=> 179

 task_state_next<=s14_write_socket; 180

 if(index_q < buff_len_q) then 181

 task_state_next <= s9_load_plain; 182

 end if; 183

 when s14_write_socket=> 184

 clr_index<= '1'; 185

 pooled_socket_write_word32(kernel_call, kernel_response, tsocket_q,index_q,0); 186

 task_state_next <= s7_read_file; 187

 when s15_close_socket=> 188

 pooled_socket_close(kernel_call, kernel_response, tsocket_q,tsocket_d); 189

 task_state_next <= s16_close_file; 190

 when s16_close_file=> 191

 pooled_fstream_close(kernel_call, kernel_response, ifile_q,ifile_d); 192

 task_state_next<= s17_write_string_lram; 193

 when s17_write_string_lram=> 194

 safe_write_lram(kernel_call,kernel_response,fmessage, 195

 std_logic_vector(to_unsigned(count_blocks_q,32)),128);
 task_state_next <= s90_print_stdio; 196

 when s90_print_stdio=> 197

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,128); 198

 task_state_next <= s99_exit; 199

 when s99_exit=> 200

 task_done_i <= '1'; 201

 task_exit(kernel_call, kernel_response); 202

 task_state_next <=s99_exit; 203

 when others=> null; 204

 end case; 205

 end if; 206

end process FSM_CONTROL; 207

--208

Listing C.7: Encryptor SA - control path (2/2):(back to Figure 2.25).

260 Appendix C. Source Listings

Listing C.8: Encryptor SA - synchronous control path:(Figure 2.25).

target_read <= INIT_WBLOCK_LEN when initial_it = '1' else WBLOCK_LEN; 209

increment_val <= 1 when initial_index else 4; 210

-- 211

process(index_q,increment_val) 212

-- 213

begin 214

 next_index <= index_q + increment_val; 215

end process; 216

-- 217

FSM_SYNC:process(clock) 218

-- 219

begin 220

 if rising_edge(clock) then 221

 222

 if reset_i = '1' then 223

 p_current_q <= (others=>(others=>'0')); 224

 p_result_q <= (others=>(others=>'0')); 225

 file_len_q <= 0; 226

 event_done_q <= false; 227

 228

 buff_len_q <= 0; 229

 status_ret_q <=0; 230

 ifile_q <=(fstream_obj,(others=>'0'),0,false); 231

 tsocket_q <=(net_obj,(others=>'0'),1,false); 232

 task_state <= s0_ready; 233

 234

 else 235

 if kernel_response.sleep_task = '0' then 236

 p_current_q <= p_current_d; 237

 p_result_q <= p_result_d; 238

 file_len_q <= file_len_d; 239

 event_done_q <= event_done_d; 240

 end if; 241

 242

 if kernel_response.block_task = '0' then 243

 task_state <= s0_ready; 244

 buff_len_q <= buff_len_d; 245

 status_ret_q <=status_ret_d; 246

 ifile_q <= ifile_d; 247

 tsocket_q <= tsocket_d; 248

 end if; 249

 end if; 250

 end if; 251

end process FSM_SYNC; 252

--253

Appendix C. Source Listings 261

Listing C.9: Encryptor SA - synchronous datapath:(Figure 2.25).

-- 254

plain_data_i <= array_32_to_slv(p_current_q); 255

-- 256

ip_aes: entity aes128 257

-- 258

 port map (clock => clock, 259

 reset => reset_i, 260

 i_run => trigger_aes_i, 261

 i_sleep => kernel_response.sleep_task, 262

 i_key_expand => initial_it, 263

 o_done => done_i, 264

 i_plain_data => plain_data_i, 265

 i_cipher_key => ciper_key_i, 266

 o_ciphered_data => ciphered_data_i); 267

-- 268

p_result_d <= slv_to_array_32(ciphered_data_i); 269

-- 270

TASK_DPATH: process(clock) 271

-- 272

begin 273

 if rising_edge(clock) then 274

 if reset_i = '1' then 275

 initial_it <= '1'; 276

 initial_index <= true; 277

 count_blocks_q <= 0; 278

 else 279

 if clr_index = '1' and kernel_response.block_task= '0' then 280

 initial_index <= false; 281

 end if; 282

 283

 if done_i = '0' and kernel_response.sleep_task = '0' then 284

 initial_it <= '0'; 285

 end if; 286

 287

 if inc_count_blocks = '1' and kernel_response.block_task = '0' then 288

 count_blocks_q <= count_blocks_q + 1; 289

 end if; 290

 291

 end if; 292

 end if; 293

end process TASK_DPATH; 294

-- 295

counter_index: process(clock) 296

-- 297

begin 298

 if rising_edge(clock) then 299

 if (clr_index = '1' and kernel_response.block_task = '0') or reset_i = '1' then 300

 index_q <= 0; 301

 elsif inc_index = '1' and kernel_response.block_task = '0' then 302

 index_q <= next_index; 303

 end if; 304

 end if; 305

end process counter_index; 306

-- 307

end encrypter_sa_level; 308

262 Appendix C. Source Listings

Listing C.10: Co-Simulation Encryptor - SystemVerilog test-bench file:(sec. 2.7.5).

`timescale 1ns / 1ps 1

 2

module tb_design(); 3

 4

 logic interrupt_pin_0; 5

 logic o_heart_bit_0; 6

 logic s00_axi_aclk_0=0; 7

 logic s00_axi_aresetn_0=0; 8

 9

 always #5ns s00_axi_aclk_0=~s00_axi_aclk_0; 10

 11

 design_1_wrapper DUT(12

 .s00_axi_aclk_0(s00_axi_aclk_0), 13

 .s00_axi_aresetn_0(s00_axi_aresetn_0), 14

 .o_heart_bit_0(o_heart_bit_0), 15

 .interrupt_pin_0(interrupt_pin_0)); 16

 17

//-- 18

 initial 19

//-- 20

 begin 21

 s00_axi_aresetn_0=0; 22

 #100ns; 23

 s00_axi_aresetn_0=1; 24

 #200ns; 25

 DUT.design_1_i.hal_asos_accelerator_0.u0.ubus.start_proxy(); 26

 #100ns; 27

 end 28

//------------------- 29

endmodule 30

Appendix C. Source Listings 263

Listing C.11: Full Simulation - SystemVerilog testbench for QEMU.
`timescale 1ns / 1ps 1

 2

import hal_asos_sv_pkg::*; 3

module tb_qemu(); 4

 5

 const int C_BASE_ADDRESS = 32'h043C00000; 6

 AcceleratorInfo acc0 = { "HwEncrypter0" ,C_BASE_ADDRESS,32'h20000,0}; 7

 AcceleratorInfo acc1 = { "HwEncrypterSA0" ,C_BASE_ADDRESS + 32'h20000,32'h20000,1}; 8

 simulation_status_t status= DEAD_SIM; 9

 logic clock = 0; 10

 logic resetn = 0; 11

 12

 always #5ns clock=~clock; 13

 14

 //-- 15

 task timestamp(output int x); 16

 //-- 17

 x = $time; 18

 endtask; 19

 20

 //-- 21

 task delay(input int x); 22

 //-- 23

 int count = x; 24

 while(count > 0)begin 25

 #10 count--; 26

 end 27

 endtask; 28

//--- 29

 export "DPI-C" task delay; 30

 export "DPI-C" task timestamp; 31

 32

 design_2_wrapper DUT(33

 .m00_axi_aclk_0(clock), 34

 .m00_axi_aresetn_0(resetn)); 35

//-- 36

 initial 37

//-- 38

 begin 39

 resetn=0; 40

 #200ns; 41

 resetn=1; 42

 #50ns 43

 DUT.design_2_i.hal_asos_link_cv_0.inst.u0.register_accelerator(acc0); 44

 #10ns 45

 DUT.design_2_i.hal_asos_link_cv_0.inst.u0.register_accelerator(acc1); 46

 #10ns 47

 DUT.design_2_i.hal_asos_link_cv_0.inst.u0.start_simulation(status); 48

 49

// #20ns; 50

//DUT.design_1_i.Host_0.inst.u0.read_bus_w32(C_BASE_ADDRESS + 51

MQUEUE_IN_SPACE_REG_OFFSET,data); 52

 ; 53

 54

 end 55

endmodule 56

264 Appendix C. Source Listings

Listing C.12: Machine 1 Application - receive parameters from command line.

#include <iostream> 1

#include "aes_128_client_code/client_machine.h" 2

 3

extern std::string target_file; 4

int main(int argc, char** argv){ 5

 6

char select = -1; 7

 if (argc > 2) { 8

 select = *argv[1]; 9

 target_file = std::string(argv[2]); 10

 } 11

 12

 switch (select) { 13

 case '0': 14

 hal_asos_demo::test_aes128_file_sw_threads(); 15

 break; 16

 case '1': 17

 hal_asos_demo::test_aes128_file_hw_thread_cypher_3(); 18

 break; 19

 case '2': 20

 hal_asos_demo::test_aes128_file_hw_thread_cypher_sa(); 21

 break; 22

 case '3': 23

 hal_asos_demo::test_aes128_file_hw_thread_cypher_3_user_io(); 24

 break; 25

 case '4': 26

 hal_asos_demo::test_aes128_file_hw_thread_cypher_sa_uio(); 27

 break; 28

 default: 29

 break; 30

 } 31

 return 0; 32

} 33

Listing C.13: Machine 1 Application - HW Encryptor software refactoring.

void hal_asos_demo::test_aes128_file_hw_thread_cypher_3(void) { 226

using namespace hal_asos; 227

 228

Task<SwTask, TFRead> T0; 229

Task<HwTask, THwEncrypter, semantic<dds::Restricted>> T1; 230

Task<SwTask, TUpload> T2; 231

 232

T0.start(); 233

T1.start(); 234

T2.start(); 235

 236

T0.join(); 237

T1.join(); 238

T2.join(); 239

}240

Appendix C. Source Listings 265

Listing C.14: Machine 1 Application - HW Encryptor SA software refactoring.
336

void hal_asos_demo::test_aes128_file_hw_thread_cypher_sa(void) { 336

using namespace hal_asos; 337

 338

Task<HwTask, THwEncrypterSA> T1; 339

hal_asos::networking::CSocket<hal_asos::networking::Client> Soc; 340

 341

CFstream<std::ifstream> Input_file(target_file.c_str()); 342

Input_file.set_flags(std::ios::in | std::ifstream::binary); 343

 344

Input_file.open_file(); 345

Input_file.get_file_len(); 346

 347

 348

Soc.set_ip_address(ip); 349

Soc.set_sock_family(AF_INET); 350

Soc.set_sock_type(SOCK_STREAM); 351

Soc.set_sock_port(PORT_NO); 352

 353

T1.submit_to_pool(Input_file); 354

T1.submit_to_pool(Soc); 355

 356

T1.start(); 357

T1.join(); 358

} 359

266 Appendix C. Source Listings

Listing C.15: Kernel Package - LBUS register and LRAM write procedures.

library IEEE; 2

use IEEE.STD_LOGIC_1164.ALL; 3

use IEEE.NUMERIC_STD.ALL; 4

library hal_asos_v4_00_a; 5

use hal_asos_v4_00_a.hal_asos_configs_pkg.all; 6

 7

 8

package hal_kernel_pkg is9

...

-- 1356

procedure lbus_write_reg (signal i_call : out kernel_input_t; 1357

 signal o_response: in kernel_output_t; 1358

 reg_offset: in natural range 0 to (2**CLBUS_REG_WIDTH)-1; 1359

 data: in std_logic_vector(31 downto 0)) is 1360

-- 1361

begin 1362

 i_call.sys_call_id <= SYS_CALL_WRITE_LBUS; 1363

 i_call.this_call <= '1'; 1364

 i_call.parameters(PARAM_LBUS_WORD'RANGE)<=data; 1365

 i_call.parameters(PARAM_LBUS_BE'RANGE) <= "1111"; 1366

 i_call.parameters(PARAM_LBUS_ADDR'RANGE)1367

 <=std_logic_vector(to_unsigned(reg_offset,CLBUS_AWWIDTH));
end procedure lbus_write_reg; 1368

-- 1369

...
-- 1389

procedure lram_write_word (signal i_call : out kernel_input_t; 1390

 signal o_response: in kernel_output_t; 1391

 lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 1392

 data: in std_logic_vector(31 downto 0))is 1393

-- 1394

begin 1395

 i_call.sys_call_id <= SYS_CALL_WRITE_LBUS; 1396

 i_call.this_call <= '1'; 1397

 i_call.parameters(PARAM_LBUS_BURTS_LEN'RANGE)1398

 <=std_logic_vector(to_unsigned(1, PARAM_LBUS_BURTS_LEN'length));
 i_call.parameters(PARAM_LBUS_WORD'RANGE)<=data; 1399

 i_call.parameters(PARAM_LBUS_BE'RANGE) <= "1111"; 1400

 i_call.parameters(PARAM_LBUS_ADDR'RANGE) 1401

 <= '1'& std_logic_vector(to_unsigned(lram_address,CLRAM_AWWIDTH));
 1402

end procedure lram_write_word; 1403

-- 1404

=> back to Figure 4.2

Appendix C. Source Listings 267

Listing C.16: Microprogram - VHDL description for the test input MUX.

-- 92

--INPUT_MUX_SEL 93

-- 94

CONSTANT LEV_EVM_READY_SEL :natural:=0;--00000 95

CONSTANT LEV_EVM_SIGNAL_SEL :natural:=1;--00001 96

CONSTANT LFIFO_DATA_READY_SEL :natural:=2;--00010 97

CONSTANT LFIFO_DATA_VALID_SEL :natural:=3;--00011 98

CONSTANT LFIFO_READY_FOR_DATA_SEL :natural:=4;--00100 99

CONSTANT LFIFO_ACK_DATA_SEL :natural:=5;--00101 100

CONSTANT MQ_LINK_DATA_READY_SEL :natural:=6;--00110 101

CONSTANT MQ_LINK_DATA_VALID_SEL :natural:=7;--00111 102

CONSTANT MQ_LINK_READY_FOR_DATA_SEL:natural:=8;--01000 103

CONSTANT MQ_LINK_ACK_DATA_SEL :natural:=9;--01001 104

CONSTANT MUTEX_STATUS_B_LOCKED_SEL :natural:=10;--01010 105

CONSTANT MUTEX_STATUS_B_LOCKED_NOT_SEL:natural:=11;--01011 106

CONSTANT MUTEX_STATUS_A_LOCKED_NOT_SEL:natural:=12;--01100 107

CONSTANT LBUS_WR_ACK_SEL :natural:=13;--01101 108

CONSTANT LBUS_RD_ACK_SEL :natural:=14;--01110 109

CONSTANT MBUS2_KERNEL_CMD_ACK_SEL :natural:=15;--01111 110

CONSTANT MBUS2_KERNEL_CMD_CMPLT_SEL :natural:=16;--10000 111

CONSTANT SYSRAM_ADDRESS_OK_SEL :natural:=17;--10001 112

CONSTANT BURST_MODE_ACTIVE_SEL :natural:=18;--10010 113

CONSTANT BURST_DONE_SEL :natural:=19;--10011 114

CONSTANT MBUS2_KERNEL_CMD_BURST_COMPLT:natural:=20;--10100 115

CONSTANT MBUS2_KERNEL_CMD_BURST_DONE :natural:=21;--10101 116

CONSTANT MBUS2_KERNEL_CMD_BURST_READY:natural:=22;--10110 117

-- 118

CONSTANT FALSE_SEL :natural:=2**(input_sel_t'LENGTH)-2;--(32-2)--11110 119

CONSTANT TRUE_SEL :natural:=2**(input_sel_t'LENGTH)-1;--(32-1)--11111 120

--- 121

-- 298

INPUT_MUX: process(input_sel, i_time_event_ready,i_time_event_signal, 299

...
i_mbus2_kernel_burst_done, i_mbus2_kernel_burst_mode) 322

-- 323

begin 324

inc_load_not <= '0'; 325

 case to_integer(unsigned(input_sel)) is 326

 when LEV_EVM_READY_SEL =>inc_load_not <= i_time_event_ready; 327

 when LEV_EVM_SIGNAL_SEL =>inc_load_not <= i_time_event_signal; 328

 when LFIFO_DATA_READY_SEL =>inc_load_not <=i_lfifo_data_ready; 329

 when LFIFO_DATA_VALID_SEL =>inc_load_not <=i_lfifo_data_valid; 330

 when LFIFO_READY_FOR_DATA_SEL =>inc_load_not <=i_lfifo_ready_for_data; 331

 when LFIFO_ACK_DATA_SEL =>inc_load_not <=i_lfifo_ack_data; 332

 when MQ_LINK_DATA_READY_SEL =>inc_load_not <=i_msg_queue_data_ready; 333

 when MQ_LINK_DATA_VALID_SEL =>inc_load_not <=i_msg_queue_data_valid; 334

 when MQ_LINK_READY_FOR_DATA_SEL=>inc_load_not<=i_msg_queue_ready_for_data; 335

 when MQ_LINK_ACK_DATA_SEL =>inc_load_not <=i_msg_queue_ack_data; 336

 when MUTEX_STATUS_B_LOCKED_SEL =>inc_load_not <=mutex_chb_locked; 337

 when MUTEX_STATUS_B_LOCKED_NOT_SEL=>inc_load_not <= mutex_chb_locked_not; 338

 when MUTEX_STATUS_A_LOCKED_NOT_SEL=>inc_load_not <= mutex_cha_locked_not; 339

 when LBUS_WR_ACK_SEL =>inc_load_not <=i_lbus_wr_ack; 340

 when LBUS_RD_ACK_SEL =>inc_load_not <=i_lbus_rd_ack; 341

 when MBUS2_KERNEL_CMD_ACK_SEL =>inc_load_not <=i_mbus2_kernel_cmd_ack; 342

 when MBUS2_KERNEL_CMD_CMPLT_SEL =>inc_load_not <=i_mbus2_kernel_cmd_cmplt; 343

 when SYSRAM_ADDRESS_OK_SEL =>inc_load_not <=i_sysram_buffer_address_ok 344

 when BURST_MODE_ACTIVE_SEL => inc_load_not<=i_burst_mode; 345

 when MBUS2_KERNEL_CMD_BURST_COMPLT => inc_load_not <=i_mbus2_kernel_burst_complt; 346

 when MBUS2_KERNEL_CMD_BURST_DONE => inc_load_not <=i_mbus2_kernel_burst_done; 347

 when MBUS2_KERNEL_CMD_BURST_READY => 348

 inc_load_not <= i_mbus2_kernel_burst_mode AND i_sysram_buffer_address_ok;
 -- 349

 when BURST_DONE_SEL =>INC_LOAD_NOT <= i_burst_done; 350

 when FALSE_SEL =>inc_load_not <='0'; 351

 when TRUE_SEL =>inc_load_not <='1'; 352

 when others => null; 353

 end case; 354

end process INPUT_MUX; 355

--356

268 Appendix C. Source Listings

Listing C.17: Microprogram - VHDL description for the outputs DEMUX..
322

--- 123

-- OUTPUT MUL SET 124

--- 125

CONSTANT NO_OUPTUT : natural:=0; 126

CONSTANT LEVM_TRIGGER : natural:=1; 127

CONSTANT POP_DATA : natural:=2; 128

CONSTANT PUSH_DATA : natural:=3; 129

CONSTANT POP_MQUEUE : natural:=4; 130

CONSTANT PUSH_MQUEUE : natural:=5; 131

CONSTANT LBUS_WRITE : natural:=6; 132

CONSTANT LBUS_READ : natural:=7; 133

CONSTANT MBUS_WRITE : natural:=8; 134

CONSTANT MBUS_READ : natural:=9; 135

-- 136

...
-- 322

out_puts:process(output_sel) 323

-- 324

variable select_out: natural; 325

begin 326

 327

select_out := to_integer(unsigned(output_sel)); 328

o_levm_trigger_evm<='0'; 329

o_lfifo_pop_data<='0'; 330

o_lfifo_push_data<='0'; 331

o_msg_queue_pop_data<='0'; 332

o_msg_queue_push_data<='0'; 333

o_lbus_wr<='0'; 334

o_lbus_rd<='0'; 335

o_kernel2_mbus_wr_req<='0'; 336

o_kernel2_mbus_rd_req<='0'; 337

case select_out is 338

 when LEVM_TRIGGER => o_levm_trigger_evm <= '1'; 339

 when POP_DATA => o_lfifo_pop_data <= '1'; 340

 when PUSH_DATA => o_lfifo_push_data <= '1'; 341

 when POP_MQUEUE => o_msg_queue_pop_data <= '1'; 342

 when PUSH_MQUEUE => o_msg_queue_push_data <= '1'; 343

 when LBUS_WRITE => o_lbus_wr <= '1'; 344

 when LBUS_READ => o_lbus_rd <= '1'; 345

 when MBUS_WRITE => o_kernel2_mbus_wr_req <= '1'; 346

 when MBUS_READ => o_kernel2_mbus_rd_req <= '1'; 347

 when others => NULL; 348

 end case; 349

end process out_puts; 350

--351

back to Figure 3.12

Appendix C. Source Listings 269

Listing C.18: Microprogram - VHDL description for program in ROM.

architecture Behavioral of control_logic is 8

...
----------------------- 147

-- kernel mcode 148

----------------------- 149

signal program: rom :=(150

0=>"1111000000010", 151

1=>"1111000000000", 152

2=>"1111000000000", 153

3=>"1111000000000", 154

4=>"0000000000001", 155

5=>"0000101000101", 156

6=>"1111000000010", 157

7=>"1111000000010", 158

8=>"0001000000001", 159

9=>"0001101001001", 160

10=>"1111000000010", 161

11=>"1111000000010", 162

12=>"0010000000001", 163

13=>"0010101001101", 164

14=>"1111000000010", 165

15=>"1111000000010", 166

16=>"0011000000001", 167

17=>"0011101010001", 168

18=>"1111000000010", 169

19=>"1111000000010", 170

20=>"0100000000001", 171

21=>"0100101010101", 172

22=>"1111000000010", 173

23=>"1111000000010", 174

24=>"0111101011101", 175

25=>"1111000000010", 176

26=>"1111100000010", 177

27=>"1111100000010", 178

28=>"1111101011001", 179

29=>"1111000000010", 180

30=>"1111100000010", 181

31=>"1111100000010", 182

32=>"0110000011101", 183

33=>"1111110011001", 184

34=>"0101000011101", 185

35=>"1111000000010", 186

36=>"0110011000001", 187

37=>"1111110011001", 188

38=>"0101011011101", 189

39=>"1111000000010", 190

40=>"0101010011101", 191

41=>"0110101011001", 192

42=>"1111000000010", 193

43=>"1111000000010", 194

44=>"1000111000001", 195

45=>"0111101100101", 196

46=>"1000010000001", 197

47=>"1111000000010", 198

48=>"1000111000001", 199

49=>"0111101100001", 200

50=>"1000010000001", 201

51=>"1111000000010", 202

52=>"1001010011101", 203

53=>"1001101011101", 204

54=>"1111000000010", 205

55=>"1111000000010", 206

56=>"1001010011001", 207

57=>"1001101011001", 208

58=>"1111000000010", 209

59=>"1111000000010", 210

60=>"1011011000001", 211

61=>"0111101100101", 212

62=>"1010110000001", 213

63=>"1111000000010", 214

64=>"1011011000001", 215

65=>"0111101100001", 216

66=>"1010110000001", 217

67=>"1111000000010", 218

68=>"1111000000001", 219

69=>"1111000000001", 220

70=>"1111000000001", 221

71=>"1111000000001"); 222

--------------------- 223

...
this_call_i <= (call_d1 or i_this_call) and not(i_sleep); 261

load_i<= not(inc_load_not); 262

-- 263

uc: entity counter_load 264

-- 265

 generic map(COUNT_WIDTH => C_KERNEL_PROGRESS_WIDTH) 266

 Port map(i_clock => clock, 267

 i_clear => reset, 268

 i_load => load_i, 269

 i_increment => inc_load_not, 270

 i_enable => this_call_i, 271

 i_val => to_integer(unsigned(dout(load_addr_t'range))), 272

 o_count => temp_control_progress); 273

 274

control_progress_i <= to_unsigned(temp_control_progress,control_progress_i'length); 275

-- 276

-- ROM_ADDRESSING 277

-- 278

PC:process(i_sys_call_id, control_progress_i) 279

begin 280

 program_counter(CSYS_CALL_LEN+1 downto 2) 281

 <=to_unsigned(sys_call_t'pos(i_sys_call_id),CSYS_CALL_LEN); 282

 program_counter(1 downto 0) <= unsigned(control_progress_i); 283

end process; 284

-- 285

LOCAL_ROM:process(program_counter,program) 286

-- 287

begin 288

 dout <= program(to_integer(program_counter)); 289

end process LOCAL_ROM; 290

-- 291

... 292

back to Table 3.2 or back to Figure 3.13.

270 Appendix C. Source Listings

Listing C.19: Local-BUS - System call configuration descriptions.

package hal_asos_configs_pkg is 12

...
--- 74

--lbus 75

--- 76

constant C_LBUS_DATA_WIDTH : natural := C_MACHINE_WIDTH;--32 77

constant C_LBUS_AWIDTH : natural := 20; --512KB + 512KB 78

constant C_LBUS_PAGE_SIZE : natural := (16*C_MACHINE_WIDTH/8);--16 WORDS 79

constant C_LBUS_PAGE_WIDTH : natural := POW2(C_LBUS_PAGE_SIZE);--7 80

constant C_LBUS_REG_WIDTH : natural := C_LBUS_PAGE_WIDTH+1;--[P0:P1] 81

constant C_LBUS_BE_WIDTH : natural := C_MACHINE_WIDTH/8; 82

constant C_LBUS_AWWIDTH : natural := C_LBUS_AWIDTH-POW2(C_LBUS_BE_WIDTH); --18 BITS 83

constant C_LBUS_BUSRT_WIDTH : natural 84

 := C_MACHINE_WIDTH - C_LBUS_BE_WIDTH - C_LBUS_AWWIDTH; --10bits(1kW)
-- 85

--mbus 86

-- 87

constant C_PAGE_SIZE : natural := 4096; 88

constant C_PAGE_SHIFT : natural := POW2(C_PAGE_SIZE);--12 89

constant C_MBUS_DATA_WIDTH : natural := C_HOST_ARCH;--32 90

constant C_MBUS_BE_WIDTH : natural := C_HOST_ARCH/8; --4 91

constant C_MBUS_OFFSET_WIDTH : natural := 20; 92

constant C_MBUS_OFFSET_WWIDTH: natural := C_MBUS_OFFSET_WIDTH-POW2(C_HOST_ARCH/8);--18 93

constant C_MBUS_BUSRT_WIDTH : natural 94

 := C_MACHINE_WIDTH-C_MBUS_BE_WIDTH-C_MBUS_OFFSET_WWIDTH; 95

...
package hal_kernel_pkg is 10

...
subtype PARAM_LBUS_WORD is std_logic_vector(C_MACHINE_WIDTH-1 downto 0);--[31:0] 81

subtype PARAM_LBUS_BE is 82

std_logic_vector(PARAM_LBUS_WORD'high+C_LBUS_BE_WIDTHdowntoPARAM_LBUS_WORD'high+1);--[35:32] 83

subtype PARAM_LBUS_OFFSET is 84

 std_logic_vector(PARAM_LBUS_BE'high+C_LBUS_AWWIDTH downto PARAM_LBUS_BE'high+1);--[53:36]
subtype PARAM_LBUS_BURST_LEN is 85

 std_logic_vector(C_MESSAGE_WIDTH-1 downto PARAM_LBUS_ADDR'high+1);--[63:54]
 86

subtype PARAM_MBUS_WORD is std_logic_vector(C_MACHINE_WIDTH-1 downto 0);--[31:0] 87

subtype PARAM_MBUS_BE is 88

 std_logic_vector(PARAM_MBUS_WORD'HIGH+C_MBUS_BE_WIDTH downto PARAM_MBUS_WORD'HIGH+1);
 --[35:32]
subtype PARAM_MBUS_OFFSET is 89

 std_logic_vector(PARAM_MBUS_BE'HIGH+C_MBUS_OFFSET_WWIDTH downto PARAM_MBUS_BE'HIGH+1);
 --[53:36]
subtype PARAM_MBUS_PAGE_OFFSET is 90

 std_logic_vector(PARAM_MBUS_BE'HIGH+C_PAGE_SHIFT-2 downto PARAM_MBUS_BE'HIGH+1);--[45:36]
subtype PARAM_MBUS_PAGE_PREFIX is 91

 std_logic_vector(PARAM_MBUS_OFFSET'HIGH downto PARAM_MBUS_PAGE_OFFSET'HIGH+1); --[53:46]
subtype PARAM_MBUS_BURST_LEN is 92

 std_logic_vector(C_MESSAGE_WIDTH-1 downto PARAM_MBUS_OFFSET'HIGH+1); --[63:54]
...

back to Figure C.19.

Appendix C. Source Listings 271

Listing C.20: Kernel Package - import and export Kernel Core interfaces.
... 814

package body hal_kernel_pkg is 815

-- 816

procedure import_kernel_call(817

 signal sys_call_id: in std_logic_vector(CSYS_CALL_LEN-1 downto 0); 818

 signal parameters: in std_logic_vector ((C_MACHINE_WIDTH*2)-1 downto 0); 819

 signal this_call: in std_logic; 820

 signal enable_scheduler: in std_logic; 821

 signal reschedule: in std_logic; 822

 signal enable_index:in std_logic; 823

 signal increment_index: in std_logic; 824

 signal task_state: in std_logic_vector(23 downto 0); 825

 signal task_done: in std_ulogic; 826

 signal kernel_call: out kernel_input_t) is 827

-- 828

begin 829

 830

 kernel_call.sys_call_id <= sys_call_values(to_integer(unsigned(sys_call_id))); 831

 kernel_call.parameters <= parameters ; 832

 kernel_call.this_call <= this_call; 833

 kernel_call.enable_scheduler <= enable_scheduler; 834

 kernel_call.reschedule <= reschedule ; 835

 kernel_call.enable_index <= enable_index; 836

 kernel_call.increment_index <= increment_index; 837

 kernel_call.task_state <= task_state; 838

 kernel_call.task_done <= task_done; 839

 840

end procedure import_kernel_call; 841

-- 842

...843

---888

procedure export_kernel_response(signal i_system_response: in kernel_output_t; 889

 signal sys_call_id : out std_logic_vector(CSYS_CALL_LEN-1 downto 0); 890

 signal return_parameter: out std_logic_vector ((C_MACHINE_WIDTH*2)-1 downto 0); 891

 signal valid: out std_logic; 892

 signal syscall_progress: out std_logic_vector(C_KERNEL_PROGRESS_WIDTH-1 downto 0); 893

 signal sched_progress: out std_logic_vector(C_SCHED_PROGRESS_WIDTH-1 downto 0); 894

 signal index: out std_logic_vector(C_KERNEL_INDEX_WIDTH-1 downto 0); 895

 signal index_d1: out std_logic_vector(C_KERNEL_INDEX_WIDTH-1 downto 0); 896

 signal block_task: out std_ulogic; 897

 signal sleep_task: out std_ulogic; 898

 signal error_flag: out std_ulogic; 899

 signal task_reset: out std_ulogic; 900

 signal task_run: out std_ulogic) is 901

--- 902

begin 903

sys_call_id <=std_logic_vector(to_unsigned(904

 sys_call_t'pos(i_system_response.sys_call_id),CSYS_CALL_LEN));
return_parameter <= i_system_response.return_arg; 905

valid <= i_system_response.valid; 906

syscall_progress <= std_logic_vector(907

 to_unsigned(i_system_response.kernel_progress,C_KERNEL_PROGRESS_WIDTH));
sched_progress <= std_logic_vector(908

 to_unsigned(i_system_response.sched_progress,C_SCHED_PROGRESS_WIDTH));
index <= std_logic_vector(909

 to_unsigned(i_system_response.index,C_KERNEL_INDEX_WIDTH));
index_d1 <= std_logic_vector(910

 to_unsigned(i_system_response.index_d1,C_KERNEL_INDEX_WIDTH));
block_task <= i_system_response.block_task; 911

sleep_task <= i_system_response.sleep_task; 912

error_flag <= i_system_response.error_flag; 913

task_reset <= i_system_response.task_reset; 914

task_run <= i_system_response.task_run; 915

 916

end procedure export_kernel_response; 917

--918

272 Appendix C. Source Listings

Listing C.21: Kernel Package - VHDL procedures declaration (part 1/3).

package hal_kernel_pkg is10

...
procedure reset_record_event_in (signal obj: inout leventm_inputs_t); 622

 623

procedure raise_interrupt(signal i_call : out kernel_input_t; 624

 signal o_response: in kernel_output_t; 625

 interrupt_number: integer range 1 to 25); 626

 627

procedure condition_from_hw_event(signal i_event: in std_logic; 628

 signal condition_id: in std_logic_vector; 629

 signal obj: out t_condition); 630

 631

procedure condition_wait(signal i_call : out kernel_input_t; 632

 signal o_response: in kernel_output_t; 633

 signal sucess: out boolean; 634

 constant task_id: in std_logic_vector; 635

 signal obj: inout t_condition); 636

 637

procedure condition_wait_for(signal i_call : out kernel_input_t; 638

 signal o_response: in kernel_output_t; 639

 signal sucess: inout boolean; 640

 constant task_id: in std_logic_vector; 641

 signal obj: inout t_condition; 642

 timeout_val: integer:=2**C_EVENT_TIMEOUT_WIDTH -1); 643

 644

procedure wait_event_timeout(signal i_call : out kernel_input_t; 645

 signal o_response: in kernel_output_t; 646

 timeout_val: integer :=2**C_EVENT_TIMEOUT_WIDTH -1); 647

 648

procedure wait_signal_event (signal i_call : out kernel_input_t; 649

 signal o_response: in kernel_output_t; 650

 signal i_event: in std_logic; 651

 signal is_event: out boolean; 652

 constant timeout_val: in integer :=0); 653

 654

procedure control_from_word(signal word: in std_logic_vector(31 downto 0); 655

 signal control: out control_register_t); 656

 657

procedure word_from_control(signal control: in control_register_t; 658

 signal word: out std_logic_vector(31 downto 0)); 659

 660

procedure status_from_word(signal word: in std_logic_vector(31 downto 0); 661

 signal status: out status_register_t); 662

 663

procedure word_from_status(signal status: in status_register_t; 664

 signal word: out std_logic_vector(31 downto 0)); 665

 666

procedure lfifo_pop_data (signal i_call : out kernel_input_t; 667

 signal o_response: in kernel_output_t); 668

 669

procedure lfifo_push_data (signal i_call : out kernel_input_t; 670

 signal o_response: in kernel_output_t); 671

 672

procedure receive_message (signal i_call : out kernel_input_t; 673

 signal o_response: in kernel_output_t); 674

 675

procedure receive_message (signal i_call : out kernel_input_t; 676

 signal o_response: in kernel_output_t; 677

 msg: out message_t); 678

 679

procedure receive_message (signal i_call : out kernel_input_t; 680

 signal o_response: in kernel_output_t; 681

 msg: out kremote_call_m); 682

 683

procedure send_message (signal i_call : out kernel_input_t; 684

 signal o_response: in kernel_output_t; 685

 msg: in message_t); 686

...

Appendix C. Source Listings 273

Listing C.22: Kernel Package - VHDL procedures declaration (part 2/3).
...
procedure send_message (signal i_call : out kernel_input_t; 688

 signal o_response: in kernel_output_t; 689

 tmsg: in kremote_call_m); 690

 691

procedure send_message (signal i_call : out kernel_input_t; 692

 signal o_response: in kernel_output_t; 693

 rmsg: in kpool_query_m); 694

 695

procedure send_message (signal i_call : out kernel_input_t; 696

 signal o_response: in kernel_output_t; 697

 dmsg: in kdata_transfer_m); 698

 699

procedure mutex_lock (signal i_call : out kernel_input_t; 700

 signal o_response: in kernel_output_t; 701

 mutex_addr: in natural range 0 to (2**C_LBUS_AWWIDTH)-1); 702

 703

procedure mutex_try_lock (signal i_call : out kernel_input_t; 704

 signal o_response: in kernel_output_t; 705

 mutex_addr: in natural range 0 to (2**C_LBUS_AWWIDTH)-1; 706

 signal sucess : out boolean); 707

 708

procedure mutex_unlock(signal i_call : out kernel_input_t; 709

 signal o_response: in kernel_output_t; 710

 mutex_addr:in natural range 0 to (2**C_LBUS_AWWIDTH)-1); 711

 712

procedure lbus_read_reg (signal i_call : out kernel_input_t; 713

 signal o_response: in kernel_output_t; 714

 reg_offset: in natural range 0 to (2**C_LBUS_REG_WIDTH)-1; 715

 data: out std_logic_vector(31 downto 0)); 716

 717

procedure lbus_write_reg (signal i_call : out kernel_input_t; 718

 signal o_response: in kernel_output_t; 719

 reg_offset: in natural range 0 to (2**C_LBUS_REG_WIDTH)-1; 720

 data: in std_logic_vector(31 downto 0)); 721

 722

procedure lram_read_word (signal i_call : out kernel_input_t; 723

 signal o_response: in kernel_output_t; 724

 lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 725

 data: out std_logic_vector(31 downto 0)); 726

 727

procedure lram_write_word (signal i_call : out kernel_input_t; 728

 signal o_response: in kernel_output_t; 729

 lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 730

 data: in std_logic_vector(31 downto 0)); 731

 732

procedure lram_read_word_burst (signal i_call : out kernel_input_t; 733

 signal o_response: in kernel_output_t; 734

 transfer_len:in natural; --len 735

 lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 736

 data: out std_logic_vector(31 downto 0)); 737

 738

procedure lram_write_word_burst (signal i_call : out kernel_input_t; 739

 signal o_response: in kernel_output_t; 740

 transfer_len:in natural; --len-1 741

 lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1; 742

 data: in std_logic_vector(31 downto 0)); 743

 744

procedure lram_read_byte (signal i_call : out kernel_input_t; 745

 signal o_response: in kernel_output_t; 746

 lram_address8: in natural range 0 to (2**(CLRAM_AWWIDTH+2))-1; 747

 data: out std_logic_vector(7 downto 0)); 748

 749

procedure lram_write_byte (signal i_call : out kernel_input_t; 750

 signal o_response: in kernel_output_t; 751

 lram_address8: in natural range 0 to (2**(CLRAM_AWWIDTH+2))-1; 752

 data: in std_logic_vector(7 downto 0)); 753

...

274 Appendix C. Source Listings

Listing C.23: Kernel Package - VHDL procedures declaration (part 3/3).
...
procedure byte_to_lbus_word(signal data: in std_logic_vector(7 downto 0); 755

 signal be: in std_logic_vector(3 downto 0); 756

 signal lbus_data: out std_logic_vector(31 downto 0)); 757

 758

procedure byte_from_lbus_word(signal lbus_data: in std_logic_vector(31 downto 0); 759

 signal be: in std_logic_vector(3 downto 0); 760

 signal data: out std_logic_vector(7 downto 0)); 761

 762

procedure sysram_get_virt_address (signal i_call : out kernel_input_t; 763

 signal o_response: in kernel_output_t; 764

 signal sysram_address: out unsigned(31 downto 0)); 765

 766

procedure mst_bus_read_word (signal i_call : out kernel_input_t; 767

 signal o_response: in kernel_output_t; 768

 bus_address: in std_logic_vector(31 downto 0); 769

 data: out std_logic_vector(31 downto 0)); 770

 771

procedure mst_bus_write_word (signal i_call : out kernel_input_t; 772

 signal o_response: in kernel_output_t; 773

 bus_address: in std_logic_vector(31 downto 0); 774

 data: in std_logic_vector(31 downto 0)); 775

 776

procedure mst_bus_read_word_burst (signal i_call : out kernel_input_t; 777

 signal o_response: in kernel_output_t; 778

 burst_len:in natural; --len-1 779

 bus_address: in std_logic_vector(31 downto 0); 780

 data: out std_logic_vector(31 downto 0)); 781

 782

procedure mst_bus_write_word_burst (signal i_call : out kernel_input_t; 783

 signal o_response: in kernel_output_t; 784

 burst_len:in natural; --len-1 785

 bus_address: in std_logic_vector(31 downto 0); 786

 data: in std_logic_vector(31 downto 0)); 787

 788

procedure task_yield(signal i_call : out kernel_input_t; 789

 signal o_response: in kernel_output_t); 790

 791

procedure sys_call_return(signal kernel_response: in kernel_output_t; 792

 signal ret: out boolean); 793

... 794

Appendix C. Source Listings 275

Listing C.24: User Package - VHDL procedures declaration (part 1/6).

package hal_asos_user_pkg is 11

-- 12

procedure reset_pooled_object(signal umutex: out pooled_mutex_t); 13

 14

procedure reset_pooled_object(signal usem: out pooled_semaphore_t); 15

 16

procedure reset_pooled_object(signal ucond: out pooled_condition_t); 17

 18

procedure reset_pooled_object(signal ubuff: out pooled_array_t); 19

 20

procedure reset_pooled_object(signal udev: out pooled_device_t); 21

 22

procedure reset_pooled_object(signal ufile: out pooled_file_t); 23

 24

procedure reset_pooled_object(signal uobj: out pooled_object_t); 25

-- 26

procedure pooled_mutex_query(signal i_call : out kernel_input_t; 27

 signal o_response: in kernel_output_t; 28

 signal umutex_q: in pooled_mutex_t; 29

 signal umutex_d: out pooled_mutex_t); 30

-- 31

procedure pooled_semaphore_query(signal i_call : out kernel_input_t; 32

 signal o_response : in kernel_output_t; 33

 signal usem_q: in pooled_semaphore_t; 34

 signal usem_d: out pooled_semaphore_t); 35

-- 36

procedure pooled_condition_query(signal i_call : out kernel_input_t; 37

 signal o_response : in kernel_output_t; 38

 signal ucond_q: in pooled_condition_t; 39

 signal ucond_d: out pooled_condition_t); 40

-- 41

procedure pooled_buffer_query(signal i_call : out kernel_input_t; 42

 signal o_response : in kernel_output_t; 43

 signal pbuff_q: in pooled_array_t; 44

 signal pbuff_d: out pooled_array_t); 45

-- 46

procedure pooled_file_query(signal i_call : out kernel_input_t; 47

 signal o_response : in kernel_output_t; 48

 signal ufile_q: in pooled_file_t; 49

 signal ufile_d: out pooled_file_t); 50

-- 51

procedure pooled_device_query(signal i_call : out kernel_input_t; 52

 signal o_response : in kernel_output_t; 53

 signal udev_d: in pooled_device_t; 54

 signal udev_q: out pooled_device_t); 55

-- 56

procedure pooled_mutex_lock(signal i_call : out kernel_input_t; 57

 signal o_response: in kernel_output_t; 58

 signal umutex_d: in pooled_mutex_t; 59

 signal umutex_q: out pooled_mutex_t); 60

-- 61

procedure pooled_fstream_query(signal i_call : out kernel_input_t; 62

 signal o_response : in kernel_output_t; 63

 signal ustream_q: in pooled_fstream_t; 64

 signal ustream_d: out pooled_fstream_t); 65

-- 66

procedure pooled_socket_query(signal i_call : out kernel_input_t; 67

 signal o_response : in kernel_output_t; 68

 signal usock_q: in pooled_socket_t; 69

 signal usock_d: out pooled_socket_t); 70

-- 71

procedure pooled_mutex_unlock(signal i_call : out kernel_input_t; 72

 signal o_response: in kernel_output_t; 73

 signal umutex_d: in pooled_mutex_t; 74

 signal umutex_q: out pooled_mutex_t)75

276 Appendix C. Source Listings

Listing C.25: User Package - VHDL procedures declaration (part 2/6).

-- 76

procedure pooled_semaphore_wait(signal i_call : out kernel_input_t; 77

 signal o_response: in kernel_output_t; 78

 signal usem_d: in pooled_semaphore_t; 79

 signal usem_q: out pooled_semaphore_t); 80

-- 81

procedure pooled_semaphore_post(signal i_call : out kernel_input_t; 82

 signal o_response: in kernel_output_t; 83

 signal usem_q: in pooled_semaphore_t; 84

 signal usem_d: out pooled_semaphore_t); 85

-- 86

procedure pooled_condition_signal(signal i_call : out kernel_input_t; 87

 signal o_response: in kernel_output_t; 88

 signal ucond_q: in pooled_condition_t; 89

 signal ucond_d: out pooled_condition_t); 90

-- 91

procedure pooled_condition_wait(signal i_call : out kernel_input_t; 92

 signal o_response: in kernel_output_t; 93

 signal ucond_q: in pooled_condition_t; 94

 signal ucond_d: out pooled_condition_t); 95

-- 96

procedure transfer_control_to_dds (signal i_call : out kernel_input_t; 97

 signal o_response: in kernel_output_t; 98

 constant len: in natural); 99

-- 100

procedure transfer_control_from_dds(signal i_call : out kernel_input_t; 101

 signal o_response: in kernel_output_t; 102

 constant len: in natural); 103

-- 104

procedure transfer_data_to_dds(signal i_call : out kernel_input_t; 105

 signal o_response: in kernel_output_t; 106

 constant lram_address:in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1); 107

 constant len: in natural); 108

-- 109

procedure transfer_data_from_dds(signal i_call : out kernel_input_t; 110

 signal o_response: in kernel_output_t; 111

 constant lram_address:in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1); 112

 constant len: in natural); 113

-- 114

procedure transfer_to_host_swfifo(signal i_call : out kernel_input_t; 115

 signal o_response: in kernel_output_t; 116

 constant len: in natural); 117

-- 118

procedure transfer_from_host_swfifo(signal i_call : out kernel_input_t; 119

 signal o_response: in kernel_output_t; 120

 constant len: in natural); 121

-- 122

procedure safe_write_lram_word32 (signal i_call : out kernel_input_t; 123

 signal o_response: in kernel_output_t; 124

 signal pbuff: in t_array_slv_32; 125

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 126

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 127

-- 128

procedure safe_read_lram_word32 (signal i_call : out kernel_input_t; 129

 signal o_response: in kernel_output_t; 130

 signal pbuff: out t_array_slv_32; 131

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 132

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 133

-- 134

procedure safe_write_lram_word32_burst (signal i_call : out kernel_input_t; 135

 signal o_response: in kernel_output_t; 136

 signal pbuff: in t_array_slv_32; 137

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 138

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 139

Appendix C. Source Listings 277

Listing C.26: User Package - VHDL procedures declaration (part 3/6).

-- 140

procedure safe_read_lram_word32_burst (signal i_call : out kernel_input_t; 141

 signal o_response: in kernel_output_t; 142

 signal pbuff: out t_array_slv_32; 143

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 144

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 145

-- 146

procedure unsafe_read_lram_word32_burst (signal i_call : out kernel_input_t; 147

 signal o_response: in kernel_output_t; 148

 signal pbuff: out t_array_slv_32; 149

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 150

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 151

-- 152

procedure safe_write_sysram_word32 (signal i_call : out kernel_input_t; 153

 signal o_response: in kernel_output_t; 154

 signal pbuff: in t_array_slv_32; 155

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 156

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 157

-- 158

procedure safe_read_sysram_word32 (signal i_call : out kernel_input_t; 159

 signal o_response: in kernel_output_t; 160

 signal pbuff: out t_array_slv_32; 161

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 162

 constant lram_address: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 163

-- 164

procedure safe_write_lram (signal i_call : out kernel_input_t; 165

 signal o_response: in kernel_output_t; 166

 signal pbuff: in t_array_slv_8; 167

 constant len: in natural range 1 to 2**(CLRAM_AWWIDTH+2)-1; 168

 constant lram_address: in natural range 0 to 2**(CLRAM_AWWIDTH+2)-1); 169

-- 170

procedure safe_read_lram (signal i_call : out kernel_input_t; 171

 signal o_response: in kernel_output_t; 172

 signal pbuff: out t_array_slv_8; 173

 constant len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)-1); 174

 constant lram_address: in natural range 0 to 2**(CLRAM_AWWIDTH+2)-1); 175

-- 176

procedure safe_write_lram (signal i_call : out kernel_input_t; 177

 signal o_response: in kernel_output_t; 178

 constant fmessage: in string; 179

 constant parameters: in std_logic_vector; 180

 constant lram_address: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 181

-- 182

procedure safe_write_sysram_word32_burst (signal i_call : out kernel_input_t; 183

 signal o_response: in kernel_output_t; 184

 signal pbuff: in t_array_slv_32; 185

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 186

 constant offset: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 187

-- 188

procedure safe_read_sysram_word32_burst (signal i_call : out kernel_input_t; 189

 signal o_response: in kernel_output_t; 190

 signal pbuff: out t_array_slv_32; 191

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 192

 constant offset: in natural range 0 to (2**CLRAM_AWWIDTH)-1); 193

-- 194

procedure pooled_buffer_write (signal i_call : out kernel_input_t; 195

 signal o_response: in kernel_output_t; 196

 signal shd_buff: in pooled_array_t; 197

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 198

 constant buff_offset: in natural range 0 to 65535; 199

 constant lram_address:in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 200

278 Appendix C. Source Listings

Listing C.27: User Package - VHDL procedures declaration (part 4/6).
-- 201

procedure pooled_buffer_read(signal i_call : out kernel_input_t; 202

 signal o_response: in kernel_output_t; 203

 signal shd_buff: in pooled_array_t; 204

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 205

 constant buff_offset: in natural range 0 to 65535; 206

 constant lram_address:in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 207

-- 208

procedure pooled_file_write (signal i_call : out kernel_input_t; 209

 signal o_response: in kernel_output_t; 210

 signal ufile: in pooled_file_t; 211

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 212

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 213

-- 214

procedure pooled_file_read(signal i_call : out kernel_input_t; 215

 signal o_response: in kernel_output_t; 216

 signal ufile: in pooled_file_t; 217

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 218

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 219

-- 220

procedure pooled_device_write (signal i_call : out kernel_input_t; 221

 signal o_response: in kernel_output_t; 222

 signal udevice: in pooled_device_t; 223

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 224

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 225

-- 226

procedure pooled_device_read(signal i_call : out kernel_input_t; 227

 signal o_response: in kernel_output_t; 228

 signal udevice: in pooled_device_t; 229

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 230

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 231

-- 232

procedure pooled_file_close(signal i_call : out kernel_input_t; 233

 signal o_response : in kernel_output_t; 234

 signal ufile: inout pooled_file_t); 235

-- 236

procedure pooled_file_open(signal i_call : out kernel_input_t; 237

 signal o_response : in kernel_output_t; 238

 signal ufile: inout pooled_file_t); 239

--- 240

procedure pooled_fstream_open(signal i_call : out kernel_input_t; 241

 signal o_response : in kernel_output_t; 242

 signal ufstream_q: in pooled_fstream_t; 243

 signal ufstream_d: out pooled_fstream_t); 244

-- 245

procedure pooled_fstream_close(signal i_call : out kernel_input_t; 246

 signal o_response : in kernel_output_t; 247

 signal ufstream_q: in pooled_fstream_t; 248

 signal ufstream_d: out pooled_fstream_t); 249

-- 250

procedure pooled_fstream_write (signal i_call : out kernel_input_t; 251

 signal o_response: in kernel_output_t; 252

 signal ustream: in pooled_fstream_t; 253

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 254

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 255

-- 256

procedure pooled_fstream_read(signal i_call : out kernel_input_t; 257

 signal o_response: in kernel_output_t; 258

 signal ustream: in pooled_fstream_t; 259

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 260

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 261

Appendix C. Source Listings 279

Listing C.28: User Package - VHDL procedures declaration (part 5/6).

-- 268

procedure pooled_fstream_write_word32 (signal i_call : out kernel_input_t; 269

 signal o_response: in kernel_output_t; 270

 signal ustream: in pooled_fstream_t; 271

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 272

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 273

-- 274

procedure pooled_fstream_read_word32(signal i_call : out kernel_input_t; 275

 signal o_response: in kernel_output_t; 276

 signal ustream: in pooled_fstream_t; 277

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 278

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 279

-- 280

procedure pooled_fstream_read_len(signal i_call : out kernel_input_t; 281

 signal o_response: in kernel_output_t; 282

 signal ustream: in pooled_fstream_t; 283

 signal flen:out integer); 284

-- 285

procedure pooled_socket_open(signal i_call : out kernel_input_t; 286

 signal o_response : in kernel_output_t; 287

 signal usock_q: in pooled_socket_t; 288

 signal usock_d: out pooled_socket_t); 289

-- 290

procedure pooled_socket_close(signal i_call : out kernel_input_t; 291

 signal o_response : in kernel_output_t; 292

 signal usock_q: in pooled_socket_t; 293

 signal usock_d: out pooled_socket_t); 294

-- 295

procedure pooled_socket_write (signal i_call : out kernel_input_t; 296

 signal o_response: in kernel_output_t; 297

 signal usocket: in pooled_socket_t; 298

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 299

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 300

-- 301

procedure pooled_socket_read(signal i_call : out kernel_input_t; 302

 signal o_response: in kernel_output_t; 303

 signal usocket: in pooled_socket_t; 304

 constant byte_len: in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 305

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 306

-- 307

procedure pooled_socket_write_word32 (signal i_call : out kernel_input_t; 308

 signal o_response: in kernel_output_t; 309

 signal usocket: in pooled_socket_t; 310

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 311

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 312

-- 313

procedure pooled_socket_read_word32(signal i_call : out kernel_input_t; 314

 signal o_response: in kernel_output_t; 315

 signal usocket: in pooled_socket_t; 316

 constant word_len: in natural range 1 to (2**CLRAM_AWWIDTH); 317

 constant source_laddress: in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 318

-- 319

procedure pooled_device_close(signal i_call : out kernel_input_t; 320

 signal o_response : in kernel_output_t; 321

 signal udev: inout pooled_device_t); 322

-- 323

procedure pooled_device_open(signal i_call : out kernel_input_t; 324

 signal o_response : in kernel_output_t; 325

 signal udev: inout pooled_device_t); 326

280 Appendix C. Source Listings

Listing C.29: User Package - VHDL procedures declaration (part 6/6).

-- 327

procedure write_stdio(signal i_call : out kernel_input_t; 328

 signal o_response : in kernel_output_t; 329

 constant slen:in natural range 1 to (2**(CLRAM_AWWIDTH+2)); 330

 constant mlen:in natural range 0 to (2**(CLRAM_AWWIDTH+2)); 331

 constant lram_address:in natural range 0 to (2**(CLRAM_AWWIDTH+2)-1)); 332

-- 333

procedure task_exit(signal i_call : out kernel_input_t; 334

 signal o_response: in kernel_output_t); 335

-- 336

Listing C.30: User package - VHDL procedure to read the sysram memory.

package hal_asos_user_pkg is 11

...
-- 1641

procedure safe_read_sysram_word32 (signal i_call : out kernel_input_t; 1642

 signal o_response: in kernel_output_t; 1643

 signal pbuff: out t_array_slv_32; 1644

 constant word_len: in natural; 1645

 constant offset: in natural)is 1646

-- 1647

constant ALNMNT: natural:=POW2(C_MACHINE_WIDTH/8); 1648

variable waddr: natural :=offset + o_response.index; 1649

variable param_woffs: unsigned(C_MACHINE_WIDTH-1 downto 0)1650

 := to_unsigned(waddr, C_MACHINE_WIDTH) rol ALNMNT;
variable word: std_logic_vector(31 downto 0); 1651

begin 1652

if word_len = 0 then 1653

 i_call.enable_scheduler <= '0'; 1654

 i_call.reschedule <= '0'; 1655

else 1656

 i_call.enable_scheduler <= '1'; 1657

 i_call.reschedule <= '1'; 1658

 1659

case o_response.sched_progress is 1660

 when 0=> 1661

 mutex_lock(i_call,o_response,CSYSMUTEX_WOFFSET);1662

 when 1=> 1663

 i_call.enable_index <= '1'; 1664

 i_call.increment_index<= '1'; 1665

 i_call.reschedule<= '0'; 1666

 mst_bus_read_word(i_call,1667

 o_response,std_logic_vector(param_woffs),word);
 pbuff(o_response.index) <= word; 1668

 if o_response.index = word_len-1 then 1669

 i_call.reschedule<= '1'; 1670

 i_call.increment_index<= '0'; 1671

 end if; 1672

 when 2=> 1673

 mutex_unlock(i_call,o_response,CSYSMUTEX_WOFFSET); 1674

 i_call.enable_scheduler <= '0'; 1675

 when others=>null; 1676

end case; 1677

end if; 1678

end procedure; 1679

--1680

back to Figure 3.31.

Appendix C. Source Listings 281

Listing C.31: Data transfer message - file descriptor write sequence diagram.

package hal_asos_user_pkg is 11

...
-- 3215

procedure pooled_file_async_write (signal i_call : out kernel_input_t; 3216

 signal o_response: in kernel_output_t; 3217

 signal ufile_q: in file_descriptor_t; 3218

 constant byte_len: in natural range 1 to (2**(C_LRAM_AWWIDTH+2)); 3219

 constant source_laddress: in natural range 0 to (2**(C_LRAM_AWWIDTH+2)-3220

1))is 3221

-- 3222

variable dmsg: kdata_transfer_m; 3223

begin 3224

dmsg.xcode := std_logic_vector(to_unsigned(exec_code_t'pos(TRANSFER_TO_POOLED),8)); 3225

dmsg.index := std_logic_vector(to_signed(ufile_q.index,8)); 3226

dmsg.transfer_len:= std_logic_vector(to_unsigned(byte_len,dmsg.transfer_len'length)); 3227

dmsg.receiver_offset:= (others=>'0'); 3228

dmsg.sender_offset 3229

 := std_logic_vector(to_unsigned(source_laddress,dmsg.sender_offset'length));
send_message(i_call,o_response,dmsg); 3230

end procedure; 3231

-- 3232

 3233

-- 3234

procedure pooled_file_async_write_complete (signal i_call : out kernel_input_t; 3235

 signal o_response: in kernel_output_t; 3236

 signal ufile_q: in file_descriptor_t; 3237

 signal byte_len: out natural range 1 to (2**(C_LRAM_AWWIDTH+2)); 3238

 signal source_laddress: out natural range 0 to (2**(C_LRAM_AWWIDTH+2)-1))is 3239

-- 3240

variable dmsg : kdata_transfer_m; 3241

variable received_index: integer range -128 to 127; 3242

begin 3243

 3244

receive_message(i_call,o_response); 3245

dmsg := cast_return_to_kdata_transfer_message(o_response); 3246

received_index:=to_integer(signed(dmsg.index)); 3247

 3248

byte_len <= 0; 3249

source_laddress<= 0; 3250

if received_index = ufile_q.index then 3251

 byte_len <= to_integer(unsigned(dmsg.transfer_len)); 3252

 source_laddress<= to_integer(unsigned(dmsg.sender_offset)); 3253

end if; 3254

end procedure; 3255

--3256

back to Figure 3.37.

282 Appendix C. Source Listings

Listing C.32: HAL-ASOS Accelerator - HW-Kernel configurations for the a, c, d and e variants.

architecture hwkernel of hal_kernel is 157

...158

end hwkernel 1635

 1636

configuration hal_kernel_v4_00_a_config of hal_kernel is 1637

for hwkernel 1638

 for XS00:xsync_gen 1639

 use entity hal_asos_v4_00_A.sync_gen(blank); 1640

 end for; 1641

 for XS01:xsgen_bus 1642

 use entity hal_asos_v4_00_A.gen_bus(single_clock); 1643

 end for; 1644

 for XM00: xmgen_bus 1645

 use entity hal_asos_v4_00_a.gen_bus(single_clock); 1646

 end for; 1647

end for; 1648

end configuration hal_kernel_v4_00_a_config; 1649

...
 1664

configuration hal_kernel_v4_00_c_config of hal_kernel is 1665

for hwkernel 1666

 for XS00:xsync_gen 1667

 use entity hal_asos_v4_00_A.sync_gen(blank); 1668

 end for; 1669

 for XS01:xsgen_bus 1670

 use entity hal_asos_v4_00_A.gen_bus(single_clock); 1671

 end for; 1672

 for XM00: xmgen_bus 1673

 use entity hal_asos_v4_00_a.gen_bus(single_clock); 1674

 end for; 1675

end for; 1676

end configuration hal_kernel_v4_00_c_config; 1677

 1678

configuration hal_kernel_v4_00_d_config of hal_kernel is 1679

for hwkernel 1680

 for XS00:xsync_gen 1681

 use entity hal_asos_v4_00_A.sync_gen(dual_clock); 1682

 end for; 1683

 for XS01:xsgen_bus 1684

 use entity hal_asos_v4_00_A.gen_bus(single_clock); 1685

 end for; 1686

 for XM00: xmgen_bus 1687

 use entity hal_asos_v4_00_a.gen_bus(single_clock); 1688

 end for; 1689

end for; 1690

end configuration hal_kernel_v4_00_d_config; 1691

 1692

configuration hal_kernel_v4_00_e_config of hal_kernel is 1693

for hwkernel 1694

 for XS00:xsync_gen 1695

 use entity hal_asos_v4_00_A.sync_gen(dual_clock); 1696

 end for; 1697

 for XS01:xsgen_bus 1698

 use entity hal_asos_v4_00_A.gen_bus(mxclock_a_is_y); 1699

 end for; 1700

 for XM00: xmgen_bus 1701

 use entity hal_asos_v4_00_a.gen_bus(single_clock); 1702

 end for; 1703

end for; 1704

end configuration hal_kernel_v4_00_e_config; 1705

...

back to Figure 4.22.

Appendix C. Source Listings 283

Listing C.33: File reader software Task run member.

hal_asos::TaskConfig_t 41

TFileRead = { "FileReader", //TaskTag 42

 { "Imagelines",BLOCK_LEN,1,1 },//Topic 43

 { "",0 }// No Subscription 44

}; 45

...
hal_asos::Task<>* p_Detector_Task; 151

template<> 152

void hal_asos::Task <hal_asos::SwTask, TFileRead> ::run(void) { 153

 std::ifstream input_file; std::string s; std::stringstream ss; 154

 std::string header0 = ""; std::string header1= ""; std::string header2= ""; 155

 std::string version, width, height; 156

 std::shared_ptr<char[BLOCK_LEN]> p_line; 157

 std::shared_ptr<StreamData> Conf = std::make_shared<StreamData>(16); 158

 detector::config_words *p_config = (detector::config_words*)Conf.get(); 159

 int file_length, Read_len=0, count = 0, pixel_len = 0; 160

 input_file.open(hal_asos_demo::feature_detector::scene_img.c_str(), std::ios::in | 161

 std::ifstream::binary);
 if (!input_file.is_open()) { 162

 LOG_MSG << this->TaskTag << ":error opening input file!\n"; 163

 this->shutdown_unconditional(); 164

 return; 165

 }// First line : version 166

 getline(input_file, header0); 167

 if (delimiter.compare("P5") != 0) { 168

 LOG_MSG << "Wrong file format or version\n"; 169

 this->shutdown_unconditional(); 170

 return; 171

 } 172

 // secondline: wxh 173

 getline(input_file, header1); 174

 ss.str(header1); 175

 ss >> p_config->image_width >> p_config->image_height; 176

 if (p_config->image_width > BLOCK_LEN) { 177

 this->StatusRunning = false; 178

 LOG_MSG <<this->TaskTag<< "Topiclen is smaller than image width\n"; 179

 this->shutdown_unconditional(); 180

 return; 181

 } 182

 //third line 183

 getline(input_file, header2); 184

 p_config->threshould = hal_asos_demo::feature_detector::th; 185

 file_length = p_config->image_width * p_config->image_height; 186

 Read_len = p_config->image_width; 187

 if (p_Detector_Task) { 188

 p_config->block_len = hal_asos_demo::feature_detector::block_size; 189

 p_Detector_Task->submit_data(Conf); 190

 } 191

 while (this->StatusRunning && Read_len > 0) { 192

 p_line = std::shared_ptr<char[BLOCK_LEN]>(new char[p_config->image_width], [](char* p) 193

 { delete[] p; });
 input_file.read(p_line.get(), p_config->image_width); 194

 Read_len = (int)input_file.gcount(); 195

 if (Read_len) { 196

 file_length -= Read_len;pixel_len += Read_len; 197

 this->p_Topic->publish(p_line, Read_len); count++; 198

 p_line = nullptr; 199

 } 200

 else p_line = nullptr; 201

 } 202

 input_file.close(); 203

 this->p_Topic->close_topic(); 204

 LOG_MSG << this->TaskTag << "finished...(" << count << "," << " " << pixel_len << ")\n"; 205

} 206

back Figure 5.6.

284 Appendix C. Source Listings

Listing C.34: CornerDump and CornerUploader software run members.

hal_asos::TaskConfig_t 87

TCornerDump = { "CornerDump", 88

{ "",0}, 89

{ "Corners",CORNER_LEN,1,1 }, 90

{ 1,1,1,1 }};91

...
template<> 790

void hal_asos::Task <hal_asos::SwTask, TCornerDump> ::run(void) { 791

 std::ofstream CornersFile; 792

 int ret = 1, count = 0; 793

 std::shared_ptr<const char[]> p_char; 794

 std::shared_ptr<dds::Publication> pLocal; 795

 std::stringstream lines; 796

 CornersFile.open("Corners.bin", std::ios::out | std::ios::trunc|std::ios::binary); 797

 this->StatusRunning = true; 798

 while (this->StatusRunning && ret > 0) { 799

 ret = this->p_Subscription->take_publication(pLocal); 800

 if (ret) { 801

 p_char = pLocal->get_reference(); 802

 ret = pLocal->get_len(); 803

 CornersFile.write(p_char.get(), ret); 804

 count+=(ret>>2); 805

 } 806

 } 807

 CornersFile.close(); 808

 this->p_Subscription->close_subscription(); 809

 LOG_MSG << this->TaskTag << "finished...(" << count << ")\n"; 810

} 811

...
template<> 837

void hal_asos::Task <hal_asos::SwTask, TCornerUploader> ::run(void) { 838

 using namespace hal_asos::networking; 839

 int ret = 1, index = 0, count = 0; FrameControl iFrame; 840

 std::shared_ptr<const char[]> p_block; 841

 std::shared_ptr<dds::Publication> pLocal; 842

 hal_asos::networking::CSocket<hal_asos::networking::Client> Soc; 843

 844

 Soc.set_ip_address(hal_asos_demo::feature_detector::image_ip); 845

 Soc.set_sock_type(SOCK_STREAM); Soc.set_sock_family(AF_INET); 846

 Soc.set_sock_port(IMAGE_PORT_NO); 847

 848

 this->StatusRunning = Soc.open_connection(); 849

 if (!this->StatusRunning) { 850

 Soc.get_error_message(hal_asos_demo::feature_detector::image_ip); 851

 LOG_MSG << hal_asos_demo::feature_detector::image_ip << "\n"; 852

 return;} 853

 iFrame.top = TOPSYMBOL; iFrame.delimitor = CONTROLSYMBOL; 854

 std::copy_n(scene_img.c_str(),scene_img.length(), iFrame.filename); 855

 iFrame.filename[hal_asos_demo::feature_detector::scene_img.length()] = 0; 856

 iFrame.th = FEATURE_THRESHOLD; iFrame.block_len = CORNER_LEN; 857

 858

 this->StatusRunning = true; 859

 Soc.safe_write((char*)&iFrame, sizeof(struct FrameControl)); 860

 while (this->StatusRunning && ret > 0) { 861

 ret = this->p_Subscription->take_publication(pLocal); 862

 index += ret; 863

 if (ret){ 864

 p_block = pLocal->get_reference(); 865

 count = Soc.safe_write(p_block.get(), ret); 866

 if (count < ret) { 867

 LOG_MSG << "socket write failed to transfer " << (index - count) << "bytes\n"; 868

 }}} 869

 this->p_Subscription->close_subscription(); 870

 LOG_MSG << this->TaskTag << "finished...(" << index << ")\n"; 871

 Soc.safe_read((char*)&ret, 4); Soc.close_connection(); 872

} 873

 874

back Figure 5.6.

Appendix C. Source Listings 285

Listing C.35: Full Feature detector software thread run member(1/2).

hal_asos::TaskConfig_t TFeatureDetector = { "FeatureDetector0", 62

{ "Corners",CORNER_LEN,1,1 }, 63

{ "Imagelines",BLOCK_LEN,1,1 }, 64

{ 1,1,1,1 } }; 65

...
template<> 340

void hal_asos::Task <hal_asos::SwTask, TFeatureDetector> ::run(void) { 341

 detector::config_words *p_config_local; 342

 std::shared_ptr<StreamData> p_Config; 343

 bool fast_line; uint16_t* p_uint16; 344

 int block_size = 0, count_blocks = 0, count_corners = 0; 345

 int index = 0, line = 0, target = 0, corner_index = 0; 346

 std::shared_ptr<uint16_t[]> p_score_line; 347

 std::shared_ptr<const char[]> p_block; 348

 std::shared_ptr<char[]> p_line; 349

 std::shared_ptr<char[CORNER_LEN]> p_corner_block; 350

 std::shared_ptr<detector::corner_t> p_corner; 351

 std::shared_ptr<dds::Publication> pLocal; 352

 353

 detector::fast::Fast F1; 354

 detector::nonmaximal::NonMaxSupression N1; 355

 356

 block_size = this->p_Subscription->take_publication(pLocal); 357

 if (block_size <= 0) { 358

 this->StatusRunning = false; 359

 this->shutdown_unconditional(); 360

 this->p_Topic->kill_topic(); 361

 LOG_MSG <<this->TaskTag<< "Failed reading subscription\n"; 362

 return; } 363

 364

 count_blocks++; 365

 this->pop_data_in(p_Config); 366

 p_config_local = (detector::config_words*) p_Config->get(); 367

 F1.start_fast(p_config_local); 368

 N1.start_nms(p_config_local); 369

 370

 target = p_config_local->image_width; 371

 372

 p_score_line = std::shared_ptr<uint16_t[]>(new uint16_t[target]); 373

 p_corner_block = std::shared_ptr<char[CORNER_LEN]>(new char[CORNER_LEN]); 374

 if (p_score_line == nullptr || p_corner_block == nullptr) { 375

 this->StatusRunning = false; 376

 this->shutdown_unconditional(); 377

 this->p_Topic->kill_topic(); 378

 LOG_MSG << this->TaskTag << "Failed reading subscription\n"; 379

 return;} 380

 p_block = pLocal->get_reference(); 381

 block_size = pLocal->get_len(); 382

 383

 if ((unsigned)block_size < target) { 384

 this->StatusRunning = false; 385

 this->shutdown_unconditional(); 386

 this->p_Topic->kill_topic(); 387

 LOG_MSG << this->TaskTag << "Failed - topic len is lower\n"; 388

 return; } 389

 390

 p_line = std::shared_ptr<char[]>(std::const_pointer_cast<char[]>(p_block)); 391

 this->StatusRunning = true; 392

continue...

286 Appendix C. Source Listings

Listing C.36: Full Feature detector software thread run member(2/2).

while (this->StatusRunning && block_size > 0) { 393

 fast_line = F1.submit_line(p_line); 394

 if (fast_line) { 395

 F1.pop_scores(p_score_line); 396

 N1.submit_line(p_score_line); 397

 while (N1.corners_found()) { 398

 N1.pop_corners(p_corner); 399

 p_uint16 = (uint16_t*)&p_corner_block[corner_index]; 400

 p_uint16[0] = p_corner->x_coord; 401

 p_uint16[1] = p_corner->y_coord; 402

 corner_index += 4; count_corners++; 403

 if (corner_index == CORNER_LEN) { 404

 this->p_Topic->publish(p_corner_block, corner_index); 405

 corner_index = 0; 406

 p_corner_block = std::shared_ptr<char[CORNER_LEN]>(new char[CORNER_LEN]); 407

 if (!p_corner_block) { 408

 this->StatusRunning = false; 409

 block_size = 0;line = 0; 410

 LOG_MSG << "Failed memory allocation\n";} 411

 } 412

 } 413

 if (p_score_line == nullptr) 414

 p_score_line = std::shared_ptr<uint16_t[]>(new uint16_t[target]); 415

 } 416

 block_size = this->p_Subscription->take_publication(pLocal); 417

 if (block_size) { 418

 p_block = pLocal->get_reference(); 419

 p_line = std::shared_ptr<char[]>(std::const_pointer_cast<char[]>(p_block)); 420

 count_blocks++;} 421

 } 422

 if (corner_index) 423

 this->p_Topic->publish(p_corner_block, corner_index); 424

 this->p_Subscription->close_subscription(); 425

 this->p_Topic->close_topic(); 426

 LOG_MSG << this->TaskTag << "finished...("<<count_blocks<<","<<count_corners<<")\n"; 427

}428

back to Figure 5.6.

Appendix C. Source Listings 287

Listing C.37: Software application for the synchronous standalone feature detection.

hal_asos::TaskConfig_t 136

TFastDetectorSA = { "FastDetectorSA1", 137

{ "",0 }, 138

{ "",0 }, 139

{ 4,1,1,1 } 140

};141

...
void hal_asos_demo::feature_detector:: 2409

test_fast_detector_std_alone_single_sysram(void) { 2410

 using namespace hal_asos; 2411

 2412

 std::string s; 2413

 std::string header0 = ""; 2414

 std::string header1 = ""; 2415

 std::string header2 = ""; 2416

 std::string version, width, height; 2417

 std::stringstream ss; 2418

 std::shared_ptr<StreamData> Conf; 2419

Task<HwTask, TFastDetectorSA, segment_len<(BLOCK_LEN << 1)>> T1; 2420

 2421

 Conf = std::make_shared<StreamData>(16); 2422

 detector::config_words* p_config = (detector::config_words*) Conf.get(); 2423

 2424

 2425

 CFstream<std::ifstream> Input_file(scene_img.c_str()); 2426

 Input_file.set_flags(std::ios::in | std::ifstream::binary); 2427

 2428

 CFstream<std::ofstream> Output_file("Corners_std_single.txt"); 2429

 Output_file.set_flags(std::ios::out |std::ios::trunc|std::ios::binary); 2430

 2431

 2432

 if (Output_file.open_file() < 0) { 2433

 LOG_MSG << "[" << __FUNCTION__ << "]:error opening output file!\n"; 2434

 return; 2435

 } 2436

 2437

 if (Input_file.open_file() < 0) { 2438

 LOG_MSG << "[" << __FUNCTION__ << "]:error opening input file!\n"; 2439

 return; 2440

 } 2441

 2442

 Input_file.get_line(header0); 2443

 if (header0.compare("P5") != 0) { 2444

 LOG_MSG << "[" << __FUNCTION__ << "]:Wrong file format or version\n"; 2445

 return; 2446

 } 2447

 2448

 Input_file.get_line(header1); 2449

 2450

 ss.str(header1); 2451

 ss >> p_config->image_width >> p_config->image_height; 2452

 ss.clear(); 2453

 2454

 if (p_config->image_width > BLOCK_LEN) { 2455

 LOG_MSG << "[" << __FUNCTION__ << "Topiclen is smaller than image width\n"; 2456

 return; 2457

 } 2458

 2459

 2460

 Input_file.get_line(header2); 2461

 2462

 p_config->threshould = th; 2463

 p_config->block_len = block_size; 2464

 2465

 T1.submit_to_pool(Input_file); 2466

 T1.submit_to_pool(Output_file); 2467

 2468

 T1.submit_data(Conf); 2469

 2470

 T1.start(); 2471

 T1.join(); 2472

}2473

back to Figure 5.17.

288 Appendix C. Source Listings

Listing C.38: Synchronous control for HW accelerated feature detection(1/2).

read_corners_i <= '1' when fifo_size_block_q >= fifo_out_burst_q and fifo_out_burst_q > 167

0 else '0'; 168

write_block_i <= '1' when count_crnr_bytes_q >=C_TRGT_UPLOAD else '0'; 169

line0_exausted_i <= '1' when to_integer(unsigned(line0_in_size_Q)) = 0 else '0'; 170

read_inblock_i <= '1' when pixel_counter_q >= pixels_target_q else '0'; 171

-- 172

CONTROL_FSM: process(task_state,s00_kernel_run,resetn_i, kernel_response, 173

line0_in_burst_q,line0_exausted_i,line0_in_word_space,line0_in_size_q,count_crnr_bytes_q, 174

pixels_target_q,read_inblock_i, pixel_counter_q, fifo_size_block_q,trfr_len_q, 175

read_corners_i, write_block_i) 176

-- 177

begin 178

task_done_i<= '0'; task_state_next <= task_state; WR_CE_i <= '0'; inc_rindex_i<='0' 179

clr_pixel_counter_i <= '0'; load_rindex_i<='0'; load_windex_i<='0'; 180

inc_pixel_block_counter<='0'; 181

case task_state is 182

 when s0_ready=> 183

 if s00_kernel_run = '1' then 184

 task_state_next <= s1_read_config; 185

 end if; 186

 when s1_read_config=> 187

 task_state_next <= s2_write_config; 188

 when s2_write_config=> 189

 WR_CE_i <= '1'; 190

 if kernel_response.index = (C_CONF_LEN/4)-1 then 191

 task_state_next <=s3_config_run; 192

 end if; 193

 when s3_config_run=> 194

 WR_CE_i <= '1'; 195

 load_windex_i <= '1'; 196

 task_state_next <=s4_read_block; 197

 when s4_read_block=> 198

 clr_pixel_counter_i <='1'; 199

 load_rindex_i<='1'; 200

 task_state_next <= s5_eval_read; 201

 when s5_eval_read=> 202

 task_state_next <= s16_exhausted_file; 203

 inc_pixel_block_counter<= '1'; 204

 if(pixels_target_q > 0) then 205

 task_state_next <= s6_recheck_burst_in; 206

 end if; 207

 when s6_recheck_burst_in=> 208

 task_state_next <= s8_check_crnrs; 209

 if(line0_in_burst_q > 1) then 210

 task_state_next <= s7_write_pixels; 211

 elsif (line0_in_burst_q = 1) then 212

 task_state_next <=s7_write_pixel; 213

 end if; 214

 when s7_write_pixel=> 215

 inc_rindex_i<='1'; 216

 task_state_next <= s8_check_crnrs; 217

 when s7_write_pixels=> 218

 inc_rindex_i<='1'; 219

 task_state_next <= s8_check_crnrs; 220

 when s8_check_crnrs=> 221

 task_state_next <= s9_check_block_target; 222

 if read_corners_i= '1' then 223

 task_state_next <= st10_lock_rsrc_mutex; 224

 end if; 225

 when s9_check_block_target => 226

 task_state_next <= s6_recheck_burst_in; 227

 if(read_inblock_i = '1') then 228

 task_state_next <= s4_read_block; 229

 end if; 230

...

Appendix C. Source Listings 289

Listing C.39: Synchronous control unit for the HW accelerated feature detection(2/2).

 when st10_lock_rsrc_mutex=> 231

 task_state_next <=s11_read_crnrs; 232

 when s11_read_crnrs=> 233

 task_state_next <=s12_unlock_rsrc_mutex; 234

 when s12_unlock_rsrc_mutex=> 235

 task_state_next <=s13_check_crnrs_target; 236

 when s13_check_crnrs_target=> 237

 task_state_next <= s9_check_block_target; 238

 if write_block_i = '1' then 239

 task_state_next <= s14_write_block; 240

 end if; 241

 when s14_write_block=> 242

 task_state_next<= s15_eval_write_block; 243

 when s15_eval_write_block=> 244

 load_windex_i <= '1'; 245

 task_state_next <= s9_check_block_target; 246

 if trfr_len_q = 0 then 247

 task_state_next <= s23_stop_fast_nms; 248

 end if; 249

 when s16_exhausted_file=> 250

 task_state_next <= s16_exhausted_file; 251

 if(line0_exausted_i = '1') then 252

 task_state_next <= s17_check_fifo_last; 253

 end if; 254

 when s17_check_fifo_last=> 255

 task_state_next <= s21_recheck_corners_last; 256

 if fifo_size_block_q >0 then 257

 task_state_next <= s18_lock_rsrc_mutex_last; 258

 end if; 259

 when s18_lock_rsrc_mutex_last=> 260

 task_state_next <=s19_read_corner_last; 261

 if fifo_size_block_q> 1 then 262

 task_state_next <=s19_read_corners_last; 263

 end if; 264

 when s19_read_corner_last=> 265

 task_state_next <=s20_unlock_rsrc_mutex_last; 266

 when s19_write_corners_last=> 267

 task_state_next <=s20_unlock_rsrc_mutex_last; 268

 when s20_unlock_rsrc_mutex_last=> 269

 task_state_next <= s21_recheck_corners_last; 270

 when s21_recheck_corners_last=> 271

 task_state_next <= s23_stop_fast_nms; 272

 if count_crnr_bytes_q > 0 then 273

 task_state_next <= s22_write_block_last; 274

 end if; 275

 when s22_write_block_last=> 276

 task_state_next<= s23_stop_fast_nms; 277

 when s23_stop_fast_nms => 278

 WR_CE_i <= '1'; 279

 task_state_next <= s24_write_message; 280

 when s24_write_message=> 281

 task_state_next <= s90_print_stdio; 282

 when s90_print_stdio=> 283

 task_state_next <= s99_exit; 284

 when s99_exit=> 285

 task_done_i<= '1'; 286

 task_state_next <=s99_exit; 287

 when others=> null; 288

 end case; 289

end process CONTROL_FSM; 290

--291

back to Figure 5.11.

290 Appendix C. Source Listings

Listing C.40: Extended features synchronous Control unit for the HW accelerated feature detec-

tion using the LRAM(1/2).

-- 441

EXTENEDED_FEATURES: process(task_state, resetn_i, kernel_response, 442

line0_in_burst_q,block_len,count_crnr_bytes_q,pixel_block_counter,pixels_target_q, 443

index_read_q,index_write_q,fifo_out_burst_last_q,fifo_out_burst_q, 444

count_crnrs_q,corners_word_i,trfr_len_q,data_in_i) 445

-- 446

variable RAM_DATA:STD_LOGIC_VECTOR(31 DOWNTO 0); 447

begin 448

RAM_DATA:=(OTHERS=>'0'); pixels_target_d <= pixels_target_q; 449

config_d<= (others=>(others=>'0'));OFFSET_i<= (others=>'0'); 450

pixels_word_d <= (OTHERS=>'0');pop_crnrs_i <= '0';trfr_len_d <= trfr_len_q; 451

inc_windex_i <='0';write_pixel_word <= '0'; 452

if resetn_i = '0' then 453

 reset_sys_call(kernel_call); 454

else 455

 hal_asos_link_to_kernel(kernel_response,kernel_call); 456

case task_state is 457

 when s1_read_config=> 458

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 459

 when s2_write_config=> 460

 kernel_call.enable_index <= '1'; 461

 kernel_call.increment_index <= '1'; 462

 config_d(0)<=data_in_i(0); 463

 config_d(1)<=data_in_i(1); 464

 config_d(2)<=data_in_i(2); 465

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 466

 if kernel_response.index = (C_CONF_LEN/4)-1 then 467

 kernel_call.increment_index <= '0'; 468

 end if; 469

 when s3_config_run=> 470

 config_d(0)<= x"00000080"; 471

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 472

 when s4_read_block=> 473

 transfer_data_from_dds(kernel_call,kernel_response,0, block_len); 474

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 475

 when s7_write_pixel=> 476

 lram_read_word(kernel_call, kernel_response,index_read_q,RAM_DATA); 477

 write_pixel_word <= cast_return_to_push_data(kernel_response); 478

 pixels_word_d<=RAM_DATA; 479

 when s7_write_pixels=> 480

 lram_read_word_burst(kernel_call,kernel_response, 481

line0_in_burst_q,index_read_q,RAM_DATA);
 write_pixel_word <= cast_return_to_push_data(kernel_response); 482

 pixels_word_d<=RAM_DATA; 483

 when st10_lock_rsrc_mutex=> 484

 mutex_lock(kernel_call,kernel_response,CLMUTEX_WOFFSET); 485

 when s11_read_crnrs=> 486

 lram_write_word_burst(kernel_call, kernel_response, fifo_out_burst_q, 487

 index_write_q,corners_word_i);
 pop_crnrs_i<=kernel_response.block_task; 488

 inc_windex_i<=kernel_response.block_task; 489

 when s12_unlock_rsrc_mutex=> 490

 mutex_unlock(kernel_call,kernel_response,CLMUTEX_WOFFSET); 491

 when s14_write_block=> 492

 transfer_data_to_dds(kernel_call, kernel_response,32768/4, count_crnr_bytes_q); 493

 trfr_len_d <= cast_return_to_transfer_len(kernel_response); 494

 when s18_lock_rsrc_mutex_last=> 495

 mutex_lock(kernel_call,kernel_response,CLMUTEX_WOFFSET); 496

 when s19_read_corner_last=> 497

 lram_write_word(kernel_call, kernel_response,index_write_q,corners_word_i); 498

 pop_crnrs_i<=kernel_response.block_task; 499

 inc_windex_i <= kernel_response.block_task;500

back to Figure 5.12.

Appendix C. Source Listings 291

Listing C.41: Extended features synchronous Control unit for the HW accelerated feature detec-

tion using the LRAM(2/2).

 when s19_read_corners_last=> 505

 lram_write_word_burst(kernel_call,kernel_response,fifo_out_burst_last_q, 506

 index_write_q,corners_word_i);
 inc_windex_i <=kernel_response.block_task; 507

 pop_crnrs_i<=kernel_response.block_task; 508

 when s20_unlock_rsrc_mutex_last=> 509

 mutex_unlock(kernel_call,kernel_response,CLMUTEX_WOFFSET); 510

 when s22_write_block_last=> 511

 transfer_data_to_dds(kernel_call, kernel_response,32768/4, count_crnr_bytes_q); 512

 trfr_len_d <= cast_return_to_transfer_len(kernel_response); 513

 when s23_stop_fast_nms=> 514

 config_d(0)<=(others=>'0'); 515

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 516

 when s24_write_message=> 517

 safe_write_lram(kernel_call,kernel_response,fmessage, 518

std_logic_vector(to_unsigned(count_crnrs_q,32) & to_unsigned(pixel_block_counter,32)),0);
 when s90_print_stdio=> 519

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 520

 when s99_exit=> 521

 task_exit(kernel_call, kernel_response); 522

 when others=> null; 523

 end case; 524

end if; 525

end process EXTENEDED_FEATURES; 526

--527

back to Figure 5.12.

Listing C.42: Extended features synchronous Control unit for the HW accelerated feature detec-

tion using the SYSRAM(1/2).
-- 337

EXTENEDED_FEATURES: process(task_state, resetn_i, kernel_response, 338

line0_in_burst_q,block_len,count_crnr_bytes_q,pixel_block_counter,pixels_target_q, 339

index_read_q,index_write_q,fifo_out_burst_last_q,fifo_out_burst_q, 340

count_crnrs_q,corners_word_i,trfr_len_q,data_in_i) 341

-- 342

variable RAM_DATA:STD_LOGIC_VECTOR(31 DOWNTO 0); 343

begin 344

RAM_DATA:=(OTHERS=>'0'); pixels_target_d <= pixels_target_q; 345

config_d<= (others=>(others=>'0'));OFFSET_i<= (others=>'0'); 346

pixels_word_d <= (OTHERS=>'0');pop_crnrs_i <= '0';trfr_len_d <= trfr_len_q; 347

inc_windex_i <='0';write_pixel_word <= '0'; 348

if resetn_i = '0' then 349

 reset_sys_call(kernel_call); 350

else 351

 hal_asos_link_to_kernel(kernel_response,kernel_call); 352

case task_state is 353

 when s1_read_config=> 354

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 355

 when s2_write_config=> 356

 kernel_call.enable_index <= '1'; 357

 kernel_call.increment_index <= '1'; 358

 config_d(0)<=data_in_i(0); 359

 config_d(1)<=data_in_i(1); 360

 config_d(2)<=data_in_i(2); 361

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 362

 if kernel_response.index = (C_CONF_LEN/4)-1 then 363

 kernel_call.increment_index <= '0'; 364

 end if; 365

 when s3_config_run=> 366

 config_d(0)<= x"00000080"; 367

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length));368

292 Appendix C. Source Listings

Listing C.43: Extended features synchronous Control unit for the HW accelerated feature detec-

tion using the SYSRAM(2/2).

 when s4_read_block=> 505

 transfer_data_from_dds_sysram(kernel_call,kernel_response,0, block_len); 506

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 507

 when s7_write_pixels=> 508

 sysram_read_word_burst(kernel_call,kernel_response, 509

line0_in_burst_q,index_read_q,RAM_DATA);
 write_pixel_word <= cast_return_to_push_data(kernel_response); 510

 pixels_word_d<=RAM_DATA; 511

 when st10_lock_rsrc_mutex=> 512

 mutex_lock(kernel_call,kernel_response, CSYSMUTEX_WOFFSET); 513

 when s11_read_crnrs=> 514

 sysram_write_word_burst(kernel_call, kernel_response, fifo_out_burst_q, 515

 index_write_q,corners_word_i);
 pop_crnrs_i<=kernel_response.block_task; 516

 inc_windex_i<=kernel_response.block_task; 517

 when s12_unlock_rsrc_mutex=> 518

 mutex_unlock(kernel_call,kernel_response, CSYSMUTEX_WOFFSET); 519

 when s14_write_block=> 520

 transfer_data_to_dds_sysram(kernel_call, kernel_response,32768/4, 521

 count_crnr_bytes_q);
 trfr_len_d <= cast_return_to_transfer_len(kernel_response); 522

 when s18_lock_rsrc_mutex_last=> 523

 mutex_lock(kernel_call,kernel_response, CSYSMUTEX_WOFFSET); 524

 when s19_read_corners_last=> 525

 sysram_write_word_burst(kernel_call, kernel_response,index_write_q,corners_word_i); 526

 pop_crnrs_i<=kernel_response.block_task; 527

 inc_windex_i <= kernel_response.block_task; 528

when s20_unlock_rsrc_mutex_last=> 529

 mutex_unlock(kernel_call,kernel_response, CSYSMUTEX_WOFFSET); 530

 when s22_write_block_last=> 531

 transfer_data_to_dds_sysram(kernel_call, kernel_response,32768/4, 532

count_crnr_bytes_q); 533

 trfr_len_d <= cast_return_to_transfer_len(kernel_response); 534

 when s23_stop_fast_nms=> 535

 config_d(0)<=(others=>'0'); 536

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 537

 when s24_write_message=> 538

 safe_write_lram(kernel_call,kernel_response,fmessage, 539

std_logic_vector(to_unsigned(count_crnrs_q,32) & to_unsigned(pixel_block_counter,32)),0);
 when s90_print_stdio=> 540

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 541

 when s99_exit=> 542

 task_exit(kernel_call, kernel_response); 543

 when others=> null; 544

 end case; 545

end if; 546

end process EXTENEDED_FEATURES; 547

--548

back to Figure 5.12.

Appendix C. Source Listings 293

Listing C.44: Extended features for the standalone synchronous Control unit of the HW acceler-

ated feature detection using the SYSRAM(1/2).

-- 330

EXTENEDED_FEATURES: process(task_state, resetn_i, kernel_response, line0_in_burst_q, 331

block_len, count_crnr_bytes_q,pixel_block_counter,pixels_target_q, index_read_q, 332

index_write_q,fifo_out_burst_last_q,fifo_out_burst_q, count_crnrs_q, 333

corners_word_i,trfr_len_q,data_in_i, ifile_q, ofile_q) 334

-- 335

variable RAM_DATA:STD_LOGIC_VECTOR(31 DOWNTO 0); 336

begin 337

RAM_DATA:=(OTHERS=>'0');pixels_target_d<= pixels_target_q; 338

config_d<= (others=>(others=>'0')); OFFSET_i<= (others=>'0'); 339

pixels_word_d <= (OTHERS=>'0'); pop_crnrs_i <= '0'; 340

ofile_len_d <= ofile_len_q; 341

inc_rindex_i<='0';write_pixel_word<='0'; 342

ifile_d<=ifile_q; ofile_d<=ofile_q; 343

 if resetn_i = '0' then 344

 reset_sys_call(kernel_call); 345

 else 346

 hal_asos_link_to_kernel(kernel_response,kernel_call); 347

 case task_state is 348

 when s1_query_ifile=> 349

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 350

 when s2_query_ofile=> 351

 pooled_fstream_query(kernel_call,kernel_response,ofile_q, ofile_d); 352

 when s3_query_conf=> 353

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 354

 when s4_read_config=> 355

 kernel_call.enable_index <= '1'; 356

 kernel_call.increment_index <= '1'; 357

 config_d(0)<=data_in_i(0); 358

 config_d(1)<=data_in_i(1); 359

 config_d(2)<=data_in_i(2); 360

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 361

 if kernel_response.index = (C_CONF_LEN/4)-1 then 362

 kernel_call.increment_index <= '0'; 363

 end if; 364

 when s5_config_run=> 365

 config_d(0)<= x"00000080"; 366

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 367

 when s6_read_file=> 368

 pooled_fstream_read_sysram(kernel_call,kernel_response, ifile_q, block_len,0); 369

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 370

 when s11_push_pixels=> 371

 safe_safe_read_sysram_word32_burst(kernel_call,kernel_response, pixels_word_d, 372

fifo_in_burst_q,index_read_q);
 write_pixel_word <= cast_return_to_push_data(kernel_response); 373

 inc_rindex_i<=cast_return_to_push_data(kernel_response); 374

 when s14_write_block=> 375

 safe_write_sysram_word32_burst(kernel_call,kernel_response,corners_word_i, 376

fifo_out_burst_q,index_write_q);
 pop_crnrs_i <= cast_return_to_pop_data(kernel_response); 377

 inc_windex_i <= cast_return_to_pop_data(kernel_response); 378

 when s18_fstream_write=> 379

 pooled_fstream_write_sysram(kernel_call, kernel_response,ofile_q, 380

count_crnr_bytes_q,32768);
 ofile_len_d <= cast_return_to_transfer_len(kernel_response); 381

 when s21_ write_block _last=> 382

 safe_write_sysram_word32_burst (kernel_call,kernel_response, corners_word_i, 383

fifo_out_burst_last_q,index_write_q);
 pop_crnrs_i <= cast_return_to_pop_data(kernel_response); 384

 inc_windex_i <= cast_return_to_pop_data(kernel_response); 385

back to Figure 5.18.

294 Appendix C. Source Listings

Listing C.45: Extended features for the standalone synchronous Control unit of the HW acceler-

ated feature detection using the SYSRAM(2/2).

 when s25_fstream_write_last=> 386

 pooled_fstream_write_sysram(kernel_call, kernel_response, ofile_q, 387

count_crnr_bytes_q,32768);
 ofile_len_d <= cast_return_to_transfer_len(kernel_response); 388

 when s26_stop_fast_nms => 389

 config_d(0)<=(others=>'0'); 390

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 391

 when s27_write_message=> 392

 safe_write_lram(kernel_call,kernel_response,fmessage, 393

std_logic_vector(to_unsigned(count_crnrs_q,32) & to_unsigned(pixel_block_counter,32)),0);
 when s90_print_stdio=> 394

 write_stdio(kernel_call, kernel_response, fmessage'high,m_len,0); 395

 when s99_exit=> 396

 task_exit(kernel_call, kernel_response); 397

 when others=> null; 398

 end case; 399

 end if; 400

 end process EXTENEDED_FEATURES; 401

-- 402

back to Figure 5.18.

Listing C.46: Control FSM VHDL description for the FastSA HW-Task (1/2).

-- 307

CONTROL_FSM: process(fast_state,s00_kernel_run ,blen_param_q, kernel_response, 308

file_done_q, line0_space_Q, w_address_offset_q, space_available_q,pixels_target_q, 309

pixel_counter_q, hw_fast_done_q) 310

-- 311

begin 312

task_done_i<= '0'; task_state_next <= fast_state; WR_CE_i <= '0'; 313

w_address_offset_d <= w_address_offset_q; hw_fast_done_d <= hw_fast_done_q; 314

inc_pixel_block_counter<='0';clr_pixel_counter_i <= '0'; load_rindex_i<='0'; 315

case fast_state is 316

 when s0_ready=> 317

 hw_fast_done_d <= '0'; 318

 task_state_next <= s0_ready; 319

 if s00_kernel_run = '1' then 320

 task_state_next <= s1_query_ifile; 321

 end if; 322

 when s1_query_ifile=> 323

 task_state_next <= s2_query_conf; 324

 when s2_query_conf=> 325

 task_state_next <= s3_read_config; 326

 when s3_read_config=> 327

 task_state_next <=s3_read_config; 328

 WR_CE_i <= '1'; 329

 if kernel_response.index = C_CONF_LEN/4-1 then 330

 task_state_next <=s4_config_run; 331

 end if; 332

 when s4_config_run=> 333

 WR_CE_i <= '1'; 334

 inc_pixel_block_counter<= '1'; 335

 task_state_next <=s5_async_read_fstream_0; 336

 when s5_async_read_fstream_0=> 337

 w_address_offset_d <= blen_param_q; 338

 task_state_next <= s6_async_fstream_read; 339

 when s6_async_fstream_read=> 340

 task_state_next <= s7_fin_fstream_read; 341

 when s7_fin_fstream_read=> 342

 clr_pixel_counter_i <='1'; 343

 task_state_next <= s8_eval_fread; 344

Appendix C. Source Listings 295

Listing C.47: Control FSM VHDL description for the FastSA HW-Task (2/2).

 when s8_eval_fread=> 347

 inc_pixel_block_counter<= '1'; 348

 task_state_next <= s9_handshake_dpath; 349

 if (pixels_target_q = 0) then 350

 task_state_next <=s14_exhausted_file; 351

 end if; 352

 when s9_handshake_dpath=> 353

 task_state_next <= s12_wait_space; 354

 if space_available_q = '1' then 355

 task_state_next <= s10_write_pixels; 356

 end if; 357

 when s10_write_pixels=> 358

 task_state_next <= s11_check_pixel_target; 359

 when s11_check_pixel_target => 360

 task_state_next <= s12_wait_space; 361

 if(pixel_counter_q >= pixels_target_q) then 362

 task_state_next <= s13_update_index; 363

 elsif space_available_q = '1' then 364

 task_state_next <= s9_handshake_dpath; 365

 end if; 366

 when s12_wait_space=> 367

 task_state_next <=s11_push_pixels; 368

 when s13_update_index => 369

 load_rindex_i<='1'; 370

 task_state_next <= s6_async_fstream_read; 371

 if file_done_q = '1' then 372

 task_state_next <= s7_fin_fstream_read; 373

 end if; 374

 when s14_exhausted_size=> 375

 if(to_integer(unsigned(line0_space_Q)) = CRAM_WIDTH) then 376

 task_state_next <= s15_stop_fast_nms; 377

 end if; 378

 when s15_stop_fast_nms => 379

 hw_fast_done_d <= '1'; 380

 task_state_next <= s16_write_message; 381

 when s16_write_message=> 382

 task_state_next <= s90_print_stdio; 383

 when s90_print_stdio=> 384

 task_state_next <= s99_exit; 385

 when s99_exit=> 386

 task_done_i<= '1'; 387

 task_state_next <=s99_exit; 388

 when others=> null; 389

end case; 390

end process CONTROL_FSM; 391

-- 392

 393

400

back to Figure 5.23.

296 Appendix C. Source Listings

Listing C.48: Extended features VHDL description for the MFastSA HW-Task.

-- 423

EXTENEDED_FEATURES: process(fast_state, data_in_i, blen_param_q, ifile_q, 424

kernel_response, w_address_offset_q, burst_target_q, space_available_q, kernel_call, 425

pixel_block_counter, pixels_target_q, index_read_q, total_pixel_counter_q) 426

-- 427

begin 428

is_event_d <= false; pixels_target_d<= pixels_target_q; 429

config_d<= (others=>(others=>'0')); pixels_word_d <= (OTHERS=>'0'); 430

OFFSET_i<= (others=>'0'); inc_rindex_i<='0'; 431

write_pixel_word_i <= '0';ifile_d<=ifile_q; 432

if resetn_i = '0' then 433

 reset_sys_call(kernel_call); 434

else 435

 hal_asos_link_to_kernel(kernel_response,kernel_call); 436

case fast_state is 437

 when s1_query_ifile=> 438

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 439

 when s2_query_conf=> 440

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 441

 when s3_read_config=> 442

 kernel_call.enable_index <= '1'; 443

 kernel_call.increment_index <= '1'; 444

 config_d(0)<=data_in_i(0); 445

 config_d(1)<=data_in_i(1); 446

 config_d(2)<=data_in_i(2); 447

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 448

 if kernel_response.index = C_CONF_LEN/4-1 then 449

 kernel_call.increment_index <= '0'; 450

 end if; 451

 when s4_config_run=> 452

 config_d(0)<= x"00000080"; 453

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 454

 when s5_async_read_fstream_0=> 455

 async_pooled_fstream_read_sysram(kernel_call,kernel_response, ifile_q, 456

blen_param_q,0);
 when s6_async_fstream_read=> 457

 async_pooled_fstream_read_sysram(kernel_call, kernel_response, ifile_q, 458

blen_param_q, w_address_offset_q);
 when s7_fin_fstream_read=> 459

 async_finalize_pooled_fstream_read_sysram(kernel_call,kernel_response); 460

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 461

 when s10_push_pixels=> 462

 unsafe_safe_read_sysram_word32_burst(kernel_call,kernel_response,pixels_word_d, 463

burst_target_q,index_read_q);
 write_pixel_word_i <= cast_return_to_push_data(kernel_response); 464

 inc_rindex_i<=cast_return_to_push_data(kernel_response); 465

 when s12_wait_space=> 466

 wait_signal_event(kernel_call,kernel_response,space_available_q,is_event_d,0); 467

 when s15_stop_fast_nms => 468

 config_d(0)<=(others=>'0'); 469

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 470

 when s16_write_message=> 471

 safe_write_lram(kernel_call,kernel_response,fmessage, 472

 std_logic_vector(to_unsigned(total_pixel_counter_q,32) &
 to_unsigned(pixel_block_counter,32)),0);
 when s90_print_stdio=> 473

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 474

 when s99_exit=> 475

 task_exit(kernel_call, kernel_response); 476

 when others=> null; 477

end case; 478

end if; 479

end process EXTENEDED_FEATURES; 480

-- 481

back to Figure 5.24.

Appendix C. Source Listings 297

Listing C.49: Extended features VHDL description for the FastSA HW-Task.

-- 387

EXTENEDED_FEATURES: process(fast_state, data_in_i, blen_param_q, ifile_q, 388

kernel_response, w_address_offset_q, burst_target_q, space_available_q, kernel_call, 389

pixel_block_counter, pixels_target_q, index_read_q, total_pixel_counter_q) 390

-- 391

variable RAM_DATA:STD_LOGIC_VECTOR(31 DOWNTO 0); 392

begin 393

RAM_DATA:=(OTHERS=>'0');is_event_d <= false; pixels_target_d<= pixels_target_q; 394

config_d<= (others=>(others=>'0')); pixels_word_d <= (OTHERS=>'0'); 395

OFFSET_i<= (others=>'0'); inc_rindex_i<='0'; 396

write_pixel_word_i <= '0';ifile_d<=ifile_q; 397

if resetn_i = '0' then 398

 reset_sys_call(kernel_call); 399

else 400

 hal_asos_link_to_kernel(kernel_response,kernel_call); 401

case fast_state is 402

 when s1_query_ifile=> 403

 pooled_fstream_query(kernel_call,kernel_response,ifile_q, ifile_d); 404

 when s2_query_conf=> 405

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 406

 when s3_read_config=> 407

 kernel_call.enable_index <= '1'; 408

 kernel_call.increment_index <= '1'; 409

 config_d(0)<=data_in_i(0); 410

 config_d(1)<=data_in_i(1); 411

 config_d(2)<=data_in_i(2); 412

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 413

 if kernel_response.index = C_CONF_LEN/4-1 then 414

 kernel_call.increment_index <= '0'; 415

 end if; 416

 when s4_config_run=> 417

 config_d(0)<= x"00000080"; 418

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 419

 when s5_async_read_fstream_0=> 420

 async_pooled_fstream_read(kernel_call,kernel_response, ifile_q, 421

blen_param_q,0);
 when s6_async_fstream_read=> 422

 async_pooled_fstream_read(kernel_call, kernel_response, ifile_q, 423

blen_param_q, w_address_offset_q);
 when s7_fin_fstream_read=> 424

 async_finalize_pooled_fstream_read(kernel_call,kernel_response); 425

 pixels_target_d <= cast_return_to_transfer_len(kernel_response); 426

 when s10_push_pixels=> 427

 lram_read_word_burst(kernel_call,kernel_response,RAM_DATA, burst_target_q, 428

index_read_q);
 pixels_word_d<= RAM_DATA; 429

 write_pixel_word_i <= cast_return_to_push_data(kernel_response); 430

 inc_rindex_i<=cast_return_to_push_data(kernel_response); 431

 when s12_wait_space=> 432

 wait_signal_event(kernel_call,kernel_response,space_available_q,is_event_d,0); 433

 when s15_stop_fast_nms => 434

 config_d(0)<=(others=>'0'); 435

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 436

 when s16_write_message=> 437

 safe_write_lram(kernel_call,kernel_response,fmessage, 438

 std_logic_vector(to_unsigned(total_pixel_counter_q,32) &
 to_unsigned(pixel_block_counter,32)),0);
 when s90_print_stdio=> 439

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 440

 when s99_exit=> 441

 task_exit(kernel_call, kernel_response); 442

 when others=> null; 443

end case; 444

end if; 445

end process EXTENEDED_FEATURES; 446

-- 447

back to Figure 5.24.

298 Appendix C. Source Listings

Listing C.50: Asynchronous control unit for the NonmaxSA HW-Task(1/2).

-- 371

CONTROL_FSM: process(nms_state,s00_kernel_run ,Run_q,kernel_response, count_crnr_bytes_q, 372

fifo_size_block_q,fifo_out_burst_q, ofile_len_q,i_fast_done,pending_transfer_q, 373

wake_control_q) 374

--- 375

begin 376

task_done_i<= '0';task_state_next <= nms_state;WR_CE_i <= '0'; 377

pop_crnrs_i <= '0';load_windex_i<='0';Run_d <= Run_q; 378

pending_transfer_d <= pending_transfer_q; 379

case nms_state is 380

 when s0_ready=> 381

 task_state_next <= s0_ready; 382

 load_windex_i <= '1'; 383

 if s00_kernel_run = '1' then 384

 task_state_next <= s2_query_ofile; 385

 end if; 386

 when s1_query_ofile=> 387

 task_state_next <=s2_query_conf; 388

 when s2_query_conf=> 389

 task_state_next <= s3_read_config; 390

 when s3_read_config=> 391

 WR_CE_i <= '1'; 392

 if kernel_response.index = C_CONF_LEN/4-2 then 393

 task_state_next <=s4_config_run; 394

 end if; 395

 when s4_config_run=> 396

 Run_d <= '1'; 397

 WR_CE_i <= '1'; 398

 task_state_next <=s10_fifo_out_check_size; 399

 when s5_check_crnrs_size=> 400

 task_state_next <= s9_check_upld_tgt; 401

 if fifo_size_block_q >= fifo_out_burst_q and fifo_out_burst_q > 0 then 402

 task_state_next <= s7_write_corners; 403

 end if; 404

 when s7_write_corners=> 405

 task_state_next <= s15_check_corners; 406

 when s9_check_upld_tgt=> 407

 task_state_next <= s13_check_done; 408

 if count_crnr_bytes_q >= upload_crnr_bytes_q then 409

 task_state_next <= s10_fstream_async_write; 410

 end if; 411

 when s10_fstream_async_write=> 412

 load_windex_i <= '1'; 413

 inc_pending <= '1'; 414

 if pending_transfer_q = 1 then 415

 task_state_next <= s11_fstream_finalz_write; 416

 else 417

 task_state_next<= s13_check_done; 418

 end if; 419

 when s11_fstream_finalz_write=> 420

 task_state_next <= s12_eval_fstream_write; 421

 when s12_eval_fstream_write=> 422

 task_state_next <= s13_check_done; 423

 dec_pending <= '1'; 424

 if ofile_len_q = 0 then 425

 task_state_next <= s17_stop_fast_nms; 426

 end if; 427

 when s13_check_done=> 428

 if i_fast_done = '1' and fifo_size_block_q = 0 then 429

 task_state_next <= s15_check_corners_last; 430

 elsif wake_control_q = '1' then 431

 task_state_next <= s5_check_crnrs_size; 432

 else 433

 task_state_next <= s14_wait_corners; 434

 end if; 435

 when s14_wait_corners=> 436

 task_state_next <= s5_check_crnrs_size;437

Appendix C. Source Listings 299

Listing C.51: Asynchronous control unit for the NonmaxSA HW-Task(2/2).

 when s15_fstream_finwrite=> 436

 dec_pending<='1'; 437

 task_state_next <= s16_stop_fast_nms; 438

 when s16_stop_fast_nms => 439

 WR_CE_i <= '1'; 440

 task_state_next <= s17_write_message; 441

 when s17_write_message=> 442

 task_state_next <= s90_print_stdio; 443

 when s90_print_stdio=> 444

 task_state_next <= s99_exit; 445

 when s99_exit=> 446

 task_done_i<= '1'; 447

 when others=> null; 448

end case; 449

end process CONTROL_FSM; 450

--451

back to Figure 5.23

Listing C.52: Asynchronous Extended Features the NonmaxSA HW-Task(1/2).
-- 482

EXTENDED_FEATURES: process(nms_state, data_in_i,kernel_response, remaining_space_q, 483

count_crnr_bytes_q, fifo_out_burst_q, index_write_q, count_crnrs_q, ofile_q, 484

corners_word_i,wake_control_q, upload_crnr_bytes_q, kernel_call) 485

--- 486

begin 487

config_d <= (others=>(others=>'0'));pixels_word_d <= (OTHERS=>'0'); 488

OFFSET_i<= (others=>'0');pop_crnrs_i <= '0'; 489

ofile_d <= ofile_q; 490

if resetn_i = '0' then 491

 reset_sys_call(kernel_call); 492

else case nms_state is 493

 when s1_query_ofile=> 494

 pooled_fstream_query(kernel_call,kernel_response,ofile_q, ofile_d); 495

 when s2_query_conf=> 496

 transfer_from_host_swfifo(kernel_call,kernel_response,C_CONF_LEN); 497

 when s3_read_config=> 498

 kernel_call.enable_index <= '1'; 499

 kernel_call.increment_index <= '1'; 500

 config_d(0)<=data_in_i(0); 501

 config_d(1)<=data_in_i(1); 502

 config_d(2)<=data_in_i(2); 503

 OFFSET_i<= std_logic_vector(to_unsigned(kernel_response.index,3)); 504

 if kernel_response.index = C_CONF_LEN/4-2 then 505

 kernel_call.increment_index <= '0'; 506

 end if; 507

 when s4_config_run=> 508

 config_d(0)<= x"00000080"; 509

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 510

 when s7_write_corners=> 511

 unsafe_write_sysram_word32_burst(kernel_call,kernel_response,corners_word_i, 512

fifo_out_burst_q,index_write_q);
 pop_crnrs_i <= cast_return_to_pop_data(kernel_response); 513

 inc_windex_i <= cast_return_to_pop_data(kernel_response); 514

 when s11_fstream_finalz_write=> 515

 async_finalize_pooled_fstream_write_sysram(kernel_call, kernel_response); 516

 ofile_len_d <= cast_return_to_transfer_len(kernel_response); 517

 when s14_wait_corners=> 518

 wait_signal_event(kernel_call,kernel_response,wake_control_q,is_event_d,0); 519

 when s15_fstream_finwrite=> 520

 async_finalize_pooled_fstream_write(kernel_call, kernel_response); 521

 ofile_len_d <= cast_return_to_transfer_len(kernel_response);522

300 Appendix C. Source Listings

Listing C.53: Asynchronous Extended Features the NonmaxSA HW-Task(2/2).
 when s16_stop_fast_nms => 522

 config_d(0)<=(others=>'0'); 523

 OFFSET_i<= std_logic_vector(to_unsigned(CONTROL_OFFSET,OFFSET_i'length)); 524

 when s17_write_message=> 525

 safe_write_lram(kernel_call,kernel_response,fmessage, 526

std_logic_vector(to_unsigned(count_crnrs_q,32)),0);;
 when s90_print_stdio=> 527

 write_stdio(kernel_call, kernel_response,fmessage'high,m_len,0); 528

 when s99_exit=> 529

 task_exit(kernel_call, kernel_response); 530

 when others=> null; 531

end case; end if; 532

end process EXTENDED_FEATURES; 533

--534

back to Figure 5.24

Listing C.54: Network changes to asynchronous Extended Features the NonmaxSA.

-- 522

EXTENDED_FEATURES: process(nms_state, ..., trfr_len_q , psocket_q ,kernel_call) 523

--- 524

begin 525

...
psocket_d<=psocket_q; 529

trfr_len_d<= trfr_len_q;530

...
 when s1_query_ofile=> 533

 pooled_socket_query (kernel_call,kernel_response, psocket_d, psocket_q);534

...
 when s11_fstream_finalz_write=> 551

 async_finalize_pooled_socket_write_sysram (kernel_call, kernel_response); 552

 trfr_len_d <= cast_return_to_transfer_len(kernel_response);553

...
 when s15_fstream_finwrite=> 556

 async_finalize_pooled_socket_write_sysram(kernel_call, kernel_response); 557

 ofile_len_d <= cast_return_to_transfer_len(kernel_response);558

...
end process EXTENDED_FEATURES; 571

--572

Appendix C. Source Listings 301

Listing C.55: Standalone Dual-Task network-based Feature Detection.

void hal_asos_demo::feature_detector:: 1186

test_fast_detector_std_alone_dual_master_net(void){ 1187

 using namespace hal_asos; 1188

 bool status; int ret; FrameControl iFrame; 1189

 std::string s, header0, header1, header2, version, width, height; 1190

 std::stringstream ss; 1191

 hal_asos::networking::CSocket<hal_asos::networking::Client> Soc; 1192

 Task<HwTask, MTFastSA,segment_len<(BLOCK_LEN << 1)>>T1; 1193

 Task<HwTask, MTNonmaxNet>T2; 1194

 Soc.set_ip_address(hal_asos_demo::feature_detector::image_ip); 1195

 Soc.set_sock_type(SOCK_STREAM); 1196

 Soc.set_sock_family(AF_INET); 1197

 Soc.set_sock_port(IMAGE_PORT_NO); 1198

 status = Soc.open_connection(); 1199

 if (!status) { 1200

 Soc.get_error_message(hal_asos_demo::feature_detector::image_ip); 1201

 Soc.close_connection(); 1202

 LOG_MSG << hal_asos_demo::feature_detector::image_ip << "\n"; 1203

 return; 1204

 } 1205

 std::shared_ptr<StreamData> Conf = std::make_shared<StreamData>(16); 1206

 detector::config_words* p_config = (detector::config_words*) Conf.get(); 1207

 1208

 iFrame.top = TOPSYMBOL; 1209

 std::copy_n(scene_img.c_str(),scene_img.length(), iFrame.filename); 1210

 iFrame.filename[hal_asos_demo::feature_detector::scene_img.length()] = 0; 1211

 iFrame.th = FEATURE_THRESHOLD; 1212

 iFrame.block_len = CORNER_LEN; 1213

 iFrame.delimitor = CONTROLSYMBOL; 1214

 Soc.safe_write((char*)&iFrame, sizeof(struct FrameControl)); 1215

 1216

 CFstream<std::ifstream> Input_file(scene_img.c_str()); 1217

 Input_file.set_flags(std::ios::in | std::ifstream::binary); 1218

 if (Input_file.open_file() < 0) { 1219

 LOG_MSG << "[" << __FUNCTION__ << "]:error opening input file!\n"; 1220

 return; 1221

 }// First line : version 1222

 Input_file.get_line(header0); 1223

 if (header0.compare("P5") != 0) { 1224

 LOG_MSG << "[" << __FUNCTION__ << "]:Wrong file format or version\n"; 1225

 return; 1226

 } 1227

 Input_file.get_line(header1); 1228

 ss.str(header1); 1229

 ss >> p_config->image_width >> p_config->image_height; 1230

 Input_file.get_line(header2); 1231

 ss.clear(); 1232

 p_config->threshould = FEATURE_THRESHOLD; 1233

 p_config->block_len = block_size; 1234

 T1.submit_to_pool(Input_file); 1235

 T2.submit_to_pool(Soc); 1236

 T1.submit_data(Conf); 1237

 T2.submit_data(Conf); 1238

 T1.start(); 1239

 T2.start(); 1240

 T1.join(); 1241

 T2.join(); 1242

 Input_file.close_file(); 1243

 Soc.safe_read((char*)&ret, 4); 1244

 Soc.close_connection(); 1245

}1246

back to Figure 5.33.

302 Appendix C. Source Listings

Listing C.56: Ed.Rosten-C network-based Feature Detection (1/2).

void hal_asos_demo::feature_detector:: 1701

test_feature_detector_edrosten_c_mframe_net(void) { 1702

 edrosten::xy* nonmax; 1703

 int nonmax_len, index_pos = 0, ret = 1, coord_i, Read_len, pixel_len = 0; 1704

 std::string TaskName = "[EdRosten-C Network]"; 1705

 bool status; 1706

 hal_asos::networking::CSocket<hal_asos::networking::Client> Soc; 1707

 std::ifstream input_file; 1708

 std::string s, header0,header1, header2, version; 1709

 FrameControl iFrame; 1710

 std::stringstream lines, ss; 1711

 int width, height, threshould, imlen; 1712

 int file_pos , count_corners=0; 1713

 std::shared_ptr<uint16_t[]> p_coord; 1714

 std::shared_ptr<char[]> p_buff; 1715

 1716

 Soc.set_ip_address(hal_asos_demo::feature_detector::image_ip); 1717

 Soc.set_sock_type(SOCK_STREAM); 1718

 Soc.set_sock_family(AF_INET); 1719

 Soc.set_sock_port(IMAGE_PORT_NO); 1720

 status = Soc.open_connection(); 1721

 if (!status) { 1722

 Soc.get_error_message(hal_asos_demo::feature_detector::image_ip); 1723

 Soc.close_connection(); 1724

 LOG_MSG << hal_asos_demo::feature_detector::image_ip << "\n"; 1725

 return; 1726

 } 1727

 iFrame.top = TOPSYMBOL; 1728

 std::copy_n(scene_img.c_str(),scene_img.length(), iFrame.filename); 1729

 iFrame.filename[scene_img.length()] = 0; 1730

 iFrame.th = FEATURE_THRESHOLD; 1731

 iFrame.block_len = CORNER_LEN; 1732

 iFrame.delimitor = CONTROLSYMBOL; 1733

 Soc.safe_write((char*)&iFrame, sizeof(struct FrameControl)); 1734

 1735

 input_file.open(scene_img.c_str(), std::ios::in | std::ifstream::binary); 1736

 if (!input_file.is_open()) { 1737

 LOG_MSG << TaskName << ":error opening input file!\n"; 1738

 return; 1739

 } 1740

 1741

 getline(input_file, header0); 1742

 if (header0.compare("P5") != 0) { 1743

 LOG_MSG << TaskName << "Wrong file format or version\n"; 1744

 return; 1745

 } 1746

 getline(input_file, header1); 1747

 ss.str(header1); 1748

 ss >> width >> height; 1749

 imlen = width * height; 1750

 getline(input_file, header2); 1751

 ss.clear(); 1752

 p_buff = std::shared_ptr<char[]>(new char[imlen]); 1753

 Read_len = imlen; index_pos = 0; 1754

 file_pos = 0; 1755

 input_file.read(p_buff.get(), imlen); 1756

 Read_len = (int)input_file.gcount(); 1757

 file_pos = Read_len; 1758

 while (Read_len > 0) { 1759

 nonmax = fast9_detect_nonmax((const edrosten::byte*)p_buff.get(), width, height,
width, th, &nonmax_len);
 if (nonmax_len) { 1760

 p_coord = std::shared_ptr<uint16_t[]>(new uint16_t[nonmax_len << 1]); 1761

 for(index_pos = 0,coord_i = 0; index_pos < nonmax_len; index_pos++, coord_i += 2) { 1762

 p_coord[coord_i] = (uint16_t)nonmax[index_pos].x; 1763

 p_coord[coord_i + 1] = (uint16_t)nonmax[index_pos].y; 1764

 count_corners++; 1765

 }1766

Appendix C. Source Listings 303

Listing C.57: Ed.Rosten-C network-based Feature Detection (1/2).

 Soc.safe_write((char*)p_coord.get(), nonmax_len << 2); 1767

 free(nonmax); 1768

 1769

 } 1770

 input_file.read(p_buff.get(), imlen); 1771

 Read_len = (int)input_file.gcount(); 1772

 file_pos += Read_len; 1773

 } 1774

 1775

 lines.str(""); 1776

 1777

 input_file.close(); 1778

 Soc.safe_read((char*)&ret, 4); 1779

 Soc.close_connection(); 1780

 LOG_MSG << TaskName << ":finished!...(" << file_pos << ", " << count_corners << ")\n"; 1781

 return; 1782

} 1783

151

back to Figure 5.34.

Appendix D

Auxiliary Figures

Figure D.1: Platform Deployment - Machine 1 block design using ZC702 board (Back to Fig-
ure 2.36).

304

Appendix D. Auxiliary Figures 305

Fi
gu

re
D
.2
:
Co
-S
im
ul
at
io
n
-S
ta
nd
al
on
e
H
W
En
cr
yp
to
rs
ig
na
ls
us
in
g
Vi
va
do

si
m
ul
at
or
(b
ac
k
to
Fi
gu
re
2.
35

)

306 Appendix D. Auxiliary Figures

Figure D.3: Time Event unit - Wait for a signal event using 6 as timeout parameter, not exhausted.

Figure D.4: Time Event unit - Wait for a signal event using no timeout.

Appendix D. Auxiliary Figures 307

Fi
gu

re
D
.5
:
Ze
ro
Co
py

un
it
w
av
e
di
ag
ra
m
-R
ea
d
sy
st
em

m
em

or
y
an
d
w
rit
e
S0
1
in
te
rfa

ce
in
bu
rs
tf
or
m
at
.

308 Appendix D. Auxiliary Figures

0
#0

ready

#1
processing

#2
sleeping

#5
dead

#3
restarting_task

timeout_i/
status.dead

task_done_i/

run_i/

run_i/

restart_hwtask_i

wait_event_timeout(run_i, CKERNEL_TIME_TILL_SLEEP)

wait_signal_...

/task_run

sys_call_yieldsys_call_none
/task_restart

run_i/

On-line states

restart_hwtask_i

/task_sleep

#4
Fault

fault_i

/mcode_WE

control.resume’

Figure D.6: Kernel Core - FSM state diagram for the RAM-based microprogram.

AUTH_KEYRUN SW_RST RUN_IT TASK_RST
31 30 29 28 15 0-

Control Register

TASK_STATUSERROR RSTING BLOCKEDSLEEP
31 30 1

0

2
DONEDEAD

34
-

5

Status Register

RESUME
27

FAULT --
27

MC.ADDR
15 8

Figure D.7: Kernel Core - Control and status registers for the RAM-based microprogram.

wait_event_timeout()

Kernel_Call

sys_call_i

core_state
core_state

Kernel_Response

ready

processing

sleeping

dead

restartingsyscall_none()
return_dead()

return_blocked()

return_sleeping()

ready

processing

sleeping

restarting

dead

cinput_bus[N:0]

sys_call

sleep

coutput_bus[M:0]

cresponse

block_task

validthis_call Microprogram
(microcode)

core_sleep_i
return_i

parameters[X:0] return_arg[X:0]

System-Level Datapath

cresponsecontrol_inputs control_ouputs

syscall_yield()

wait_event()

M0

M1

X – (C_MESSAGE_WIDTH-1) := 63 N – (C_MICROPROGRAM_INPUT_WIDHT-1) := 31 M – (C_MICROPROGRAM_OUTPUT_WITDH -1) := 15

fault
fault

return_dead()

return_ blocked()

mcode_we

WE

S00.wr_ce
S00.txdata

S00.page_cs(3)

prog_word WR CS

Figure D.8: Kernel Core - system-level datapath and microprogram interaction for the RAM-based
microprogram.

Appendix D. Auxiliary Figures 309

Input select Next step false Output select Valid Block

RAM word

Addr_B

PC[N-1:0]i_sys_call

o_block

o_valid

test input

enable output

1

no output

o_levm_trigger

i_levm_ready

i_levm_signal

012OW+1OW+2OW+3OW+4IW+OW+3

LEN:= 128 , Input Width (IW) :=5 , Output Width (OW):=4

Microprogram
(RAM-based)

Parameters:

mutex_locked_B_i

mutex_nlocked_A_i
mutex_nlocked_B_i

0

1

10

11

12

o_lbus_wr_ce
o_lbus_rd_ce

0

1

6

7

1531

…
…

…
…

true (‘1’)

M0

M1

U0

i_this_call

reset

FF0

L0

1

clock

this_call_i

I2

I0

I1

…

LUT3
(8:1)

Out

X0 X1 X2 X3 … X7

0

i_sleep

Counter
Q[1:0]

EN

inc
load

D[1:0]

reset
clock

C0

clk

CE

reset

D Q

clk

reset

[N-1:2]

[1:0]

o_cresponse

cinput_bus coutput_bus

…
… …

…

S00.WR_CE

S00.CS(3)

S00.TXDATA[15:0]

Addr_A

S00.ADDR

Din_A

WR CS WE

Control.mcode_we

WR_ACK_A
RD_ACK_A

S00.WR_ACK

S00.RD_ACK

Figure D.9: Microprogram - RAM-based internal architecture.

(a) filename:table.pgm 4600 corners. (b) filename:turkey.pgm 33700 corners.

(c) filename:london.pgm 61700 corners. (d) filename:jean.pgm 90000 corners.

Figure D.10: Feature detection test images dataset.

310 Appendix D. Auxiliary Figures

Synchonous control FSM

s0_ready

s1_read_config

s00_kernel_run = '1'

s2_write_config

s3_config_run

kernel_response.index = (C_CONF_LEN/4)-1

s4_read_block

s5_eval_read

s6_recheck_burst_in

pixels_target_q > 0

s16_exhausted_file

s7_write_pixel

line0_in_burst_q = 1

s7_write_pixels

line0_in_burst_q > 1

s8_check_crnrs

s9_check_block_target

st10_lock_rsrc_mutex

read_corners_i= '1'

read_inblock_i = '1'

s11_write_crnrs

s12_unlock_rsrc_mutex

s13_check_crnrs_target

s14_write_block

write_block_i = '1'

s15_eval_write_block

s23_stop_fast_nms

trfr_len_q = 0

s17_check_fifo_last

line0_exausted_i = '1'

s18_lock_rsrc_mutex_last

fifo_size_block_q >0

s21_recheck_corners_last

s19_write_corner_lasts19_write_corners_last

fifo_size_block_q> 1

s20_unlock_rsrc_mutex_last

s22_write_block_last

count_crnr_bytes_q > 0

s24_write_message

s90_print_stdio

s99_exit

Figure D.11: Synchronous control unit for the multithread-based HW-Task design.

Appendix D. Auxiliary Figures 311

s0_ready

s1_query_ifile

s00_kernel_run = '1'

s5_query_conf

s6_read_config

s7_config_run

kernel_response.index = C_CONF_LEN/4-1

s8_read_file

s9_eval_fread

s10_async_fstream_read

pixels_target_q > 0

s18_stop_fast_nms

s11_push_pixels

space_available_q = '1'

s13_wait_space

s12_check_pixel_target

space_available_q = '1'

s14_fin_fstream_read

pixel_counter_q >= pixels_target_q

s15_eval_fstream_read

s16_exhausted_size

pixels_target_q = 0

s17_stop_fast_nms

to_integer(unsigned(fifo_in_size_Q)) = 0

s90_print_stdio

s99_exit

FastSA Control FSM

Figure D.12: Synchronous control unit for the FastSA HW-Task.

312 Appendix D. Auxiliary Figures

Fi
gu

re
D
.1
3:

Bl
oc
k
de
si
gn

fo
rt
he

Du
al
-Ta

sk
As
yn
ch
ro
no
us

de
si
gn

ta
rg
et
in
g
ZC

70
2
pl
at
fo
rm

.

Appendix D. Auxiliary Figures 313

Asynchronous control single Task Feature detection

s0_ready

s1_query_ifile

s00_kernel_run = '1'

s2_query_ofile

s5_query_conf

s6_read_config

s7_config_run

kernel_response.index = C_CONF_LEN/4-1

s8_read_file

s9_eval_fread

s10_async_fstream_read

pixels_target_q > 0

s45_write_message

s11_push_pixels

space_available_q = '1'

s12_check_output_fifo

s13_check_pixel_target

st17_lock_rsrc_mutex

fifo_size_block_q >= fifo_out_burst_q and fifo_out_burst_q > 0

space_available_q = '1'

not (pixel_counter_q >= pixels_target_q)
not (space_available_q = '1')

s15_fin_fstream_read

pixel_counter_q >= pixels_target_q

s16_eval_fstream_read

s17_check_crnrs_target

s33_recheck_corners

pixels_target_q = 0

s21_async_fstream_write

count_crnr_bytes_q >=C_TARGET_UPLOAD

s18_write_crnrs

s19_unlock_rsrc_mutex

s23_push_pixels

space_available_q = '1'

s24_check_pixel_target

s25_read_mq_sizes29_fin_fstream_write

pixel_counter_q >= pixels_target_q

s26_test_mq_size

space_available_q = '1'

not (msg_space_q <= 6)
not (space_available_q = '1')

s27_fin_fstream_write

msg_space_q <= 6

s28_eval_fstream_write

s44_stop_fast_nms

ofile_len_q = 0

s30_eval_fstream_write

s31_fstream_read

ofile_len_q = 0

st32_eval_fstream_read

pixels_target_q = 0

s34_fstream_write

count_crnr_bytes_q >= C_TARGET_UPLOAD

s36_fifo_out_check_size

s35_eval_fstream_write

ofile_len_q = 0

s37_lock_rsrc_mutex

fifo_size_block_q >= fifo_out_burst_q and fifo_out_burst_q > 0

s40_exhausted_size

s38_write_corners38_write_corners

fifo_size_block_q> 1

s39_unlock_rsrc_mutex

s39_check_fifo_last

to_integer(unsigned(fifo_in_size_Q)) = 0

s40_lock_rsrc_mutex_last

fifo_size_block_q >0

s43_recheck_corners_last

s41_write_corner_lasts41_write_corners_last

fifo_size_block_q>1

s42_unlock_rsrc_mutex_last

s44_fstream_write_last

count_crnr_bytes_q > 0

s90_print_stdio

s99_exit

Figure D.14: Asynchronous control unit for the single Task feature detection.

Appendix E

AES Implementation

In this appendix, the Advanced Encryption Standard (AES) citeAES2011 is described together with dis-

cussion on implementation details of AES algorithm, as part of the applications used in Chapter 2. The

chapter starts with a brief motivation and a moderate description introduces the AES structure and pro-

vides a simplified view about the several layers that implement the encryption and decryption processes.

Among the different AES variants, the 128-bit using the Electronic Code Book (ECB) mode was selected,

and proceed in the comprehensive description, while comparing it with details of this thesis. The de-

scription is supported with software in C/C++ language examples, for the encryption and decryption

processes, and then complemented with the similar implementation for the hardware encryption using

VHDL. The appendix concludes describing two implementation strategies for the hardware AES. The first

is constrained by moderate use of logic resources, while the second is more throughput concerned and

uses a full pipelined design strategy.

Up until 1977 the digital encryption was accomplished using the Digital Encryption Standard (DES) that

was introduced as U.S. federal standard in 1976. Conceptually, DES is a block cipher that operates

on 64-bit words and uses a 56-bit cipher which represents 256 possible keys. Although a large number

(72.057.594.037.927.936), a so-called DES challenges, with sufficient number of computational resources

connected to the internet and exhaustively searching the key space, demonstrated this weakness dramati-

cally. In 1997 the U.S. National Institute of Standards and Technology (NIST) created a public competition

in order to find a replacement algorithm for the DES. The original requirements demanded for a block

cipher supporting cipher key lengths of 128, 192 e 256 bits, and in August of 1999, 15 algorithms were

accepted. In April 2000, the Rijndael algorithm was selected and six months later the NIST announced

that the cipher was chosen as the Advanced Encryption Standard (AES). The NIST standard specifies

314

Appendix E. AES Implementation 315

five operation modes for the AES: Electronic CodeBook mode (ECB); Cipher Block Chaining mode (CBC);

Cipher FeedBack mode (CFB); Output FeedBack mode (OFB); and Counter mode. Only two of these re-

quire the Inverse AES operation for decryption, the ECB and the CBC. The reminder modes use the same

stream of pseudo-random sequence to encrypt and decrypt the plain data.

E.1 Computations in the AES

In this section we provide a mathematical overview of the numeric systems used in the AES. The de-

scription is limited to the computations that need to be implemented. In mathematics, the Finite Field or

Galois Field (GF), is a field that contains a finite number of elements. Like any regular field (such as R

or C), finite or not, it must define the four arithmetical operations: addition, subtraction, multiplication

and inverse (or division). By definition, the finite field GF (pm), is a field defined by p, a prime number,

and m a positive integer. When m is 1, the GF (p), is a prime field by definition, where the elements

are integers numbers in the finite range {0, 1, ..., p− 1}. The four arithmetic operations are defined by

the following axioms. Let a, b ∈ GF (p) = {0, 1, ..., p− 1},

Addition : a+ b = c mod p (D.1)

Subtraction : a− b = d mod p (D.2)

Multiplication : a.b = e mod p (D.3)

Inverse : a.a−1 = 1 mod p (D.4)

The final results c, d and e, are numbers in the field, and result from the modulo reduction using p, the

prime number. Example : GF (7): 5 + 6 = 4 modulo 7 , where 4 = 11%7 (reminder in division).

The first three operations are easily computed in any microcontroller. The most complex is the inverse of

a, or (a−1), that can be computed using the Extended Euclidean algorithm.

In the AES the fields p = 2 are of particular interest, and one important field is theGF (2) with (m = 1),

316 Appendix E. AES Implementation

the prime field that contains the two elements {0, 1}. The particular case of prime field GF (2) is that

the addition and subtraction operations produce the same result:

{1}+ {1} = {0} and {1} − {1} = {0}

In reality {1} + {1} = {10}, but the result is not in the field of GF (2). We then apply a modulo

reduction using the prime 2 (in binary {10}) and the result is 0.

When compared, the above results are equivalent to the XOR operation, and so it can be used instead:

{1}+ {0} = {0} − {1} = {1}mod{10} ⇔ {1} ⊕ {0} = {0} ⊕ {1} = {1}

In the multiplication, {0} is the element zero and we multiply {1} with simple rotate left, and apply the

modulo reduction using the prime {10}. Similarly, the division can be implemented by a rotate right.

The extended finite fields occur whenm > 1, where the elements are polynomials defined by the expres-

sion:

GF (2m) = a(m−1).X
(m−1) + ...+ a1.X

1 + a0, ai ∈ GF (2) = {0, 1} (D.5)

The AES uses the extended finite field set withm = 8, theGF (28), and therefore 256 polynomials exist.

In each of the polynomials, the coefficients ai are the elements in the GF (2) (e.g. {0, 1}), and so they

are written using the following expression:

Let A(x) ∈ GF (28),

A(x) = a7X
7 + a6X

6 + a5X
5 + a4X

4 + a3X
3 + a2X

2 + a1X + a0 (D.6)

and {a7, ..., a0} ∈ {0, 1}

To compute the four arithmetic operations described above, the AES uses the (m + 1) irreducible poly-

nomial P (x):

P (x) = X8 +X4 +X3 +X + 1 (D.7)

Equivalent prime field number is {100011011} in binary or {01}{1B} in hexadecimal notations. This

polynomial, among other constants, is part of the AES formal specifications (m(x) in the AES specifica-

tions).

Appendix E. AES Implementation 317

Let us now consider a smaller finite field, with p = 2 and m = 3, the GF (23). This finite field is

composed of 8 polynomials, significantly less than the ones used the AES, and contains some of the

GF (28) elements. Since the coefficients are in the GF(2), the finite field set is transcribed as:

GF (23) = {0, 1, X,X + 1, X2, X2 + 1, X2 +X,X2 +X + 1}

As an example, taking two elements from this set, where denoted as A(x) and B(x):

A(x) = X2 +X + 1

B(x) = X2 + 0X + 1

For every field GF (2m) there are several irreducible polynomials of degree m + 1. One must be used

in all arithmetic operations, and of course results will depend on the irreducible polynomial used. For the

example we will consider Q(x) as an irreducible polynomial in the GF (23):

Q(x) = X3 +X + 1

When performing the addition of A(x) and B(x):

C(x) = A(x) + B(x) mod Q(x)

C
′
(x) = A(x) + B(x) = (1 + 1)X2 + (1 + 0)X + (1 + 1) = X

C(x) = C
′
(x) mod Q(x)

The C
′
(x) denotes the intermediate result of the addition, before we apply a modulo reduction. But since

C
′
(x) is in the field of GF (23), no reduction is needed and the final result C(x) is equal to C

′
(x).

If considering the same elements and applying the multiplication:

D(x) = A(x).B(x) mod Q(x)

D
′
(x) = A(x).B(x) = (X2 +X + 1).(X2 + 1)

D
′
(x) = X4 +X3 + (1 + 1)X2 +X + 1

D
′
(x) = X4 +X3 +X + 1

Since D
′
(x) is not on the field of GF (23), a modulo reduction is required.

D(x) = D
′
(x) mod Q(x)

(X4 +X3 +X + 1)÷ (X3 +X + 1) = X + 1

318 Appendix E. AES Implementation

+X4 + 0X3 + X2 + 0X + 1

0X4 + X3 + X2 + 0X + 1

+ X3 + 0X2 + X + 1

X2 + X = D(x)

In doing so the remainder of the polynomial division is the result of the multiplication modulo, and thus

equal to D(x).

As for the inverse multiplication, the inverse of A(x) in the GF (23) is the polynomial that verifies the

axiom D.4. While the computation is more elaborated the verification is much simple:

A(x) = X2 +X + 1

A−1(x) = X2 +X (= D(x))

A.A−1 = (1 + 1)X2 + (1 + 1)X + 1 = 1

The result is 1, a polynomial in the setGF (23) and so theA−1(x) is the inverse of the polynomialA(x).

E.2 Overview of the AES

Generically, the AES is a symmetric encryption algorithm, meaning that the encryption and decryption

processes are performed by essentially the same steps. It is a block cipher where data is manipulated in

blocks of 128 bits, and each block is modified by several rounds of processing. In Figure E.1 is depicted a

simplified block representation for the AES encryption. The plain data is submitted to the AES calculation

block using the input x, and a cipher key that uses one of three supported lengths is set at the input k.

Three different lengths are supported, namely: 128 bits, 192 bits or 256 bits and for each distinct length,

AES
x y

k

128128

128 /196 /256

Figure E.1: The AES block interface.

a specific number of rounds, 10, 12, and 14 rounds respectively, is required to complete the AES. After

the predetermined number rounds, the ciphered block can be found in the output y.

Appendix E. AES Implementation 319

To conform with the purpose of this appendix, the following descriptions will be limited to the 128-bit key

length and describe the design of the AES-128 ECB that uses 10 encryption rounds to compute the cipher

block.

E.3 Structure of the AES

Each of the AES rounds is composed of four steps named: SubBytes, ShiftRows, MixColumns, and Ad-

dRoundKey. In Figure E.2 it can be seen the algorithmic structure of the AES when the encryption and

decryption processes occur. The cipher rounds (xNr) are identical and each uses a distinct cipher key.

In the last round, the final round, it skips the MixColumns in both processes. An equivalent inverse cipher

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

AddRoundKey

AddRoundKey

InvSubBytes

InvShiftRows

K
ey

 E
xp

an
si

o
n

K
ey

 E
xp

an
si

o
n

*

PLAINTEXT

CIPHERTEXT PLAINTEXT

CIPHERTEXTCIPHER CIPHER

EN
C

R
YP

TI
O

N

D
EC

R
YP

TI
O

N

k10

k1...9

k10

k9...1

k0

k0

xN
r-

1

xN
r-

1

Final Round

Cipher Rounds Cipher Rounds

Final Round

Figure E.2: The AES-128 algorithmic structure.

is used in the decryption process, where the mathematical inverse of each step takes place in the cipher

rounds, with certain constants changed.

The SubBytes step is the source of non-linearity in the cipher. It provides confusion by replacing each

byte in the input with the application of a sbox function. The ShiftRows and MixColumns together provide

diffusion in the algorithm using linear operations. The AddRoundKey is the addition operation in the

320 Appendix E. AES Implementation

algorithm. It increases security in the cipher by combining the 128 bits with portions of the cipher key. It

implements a key whitening technique in the most common form, XOR-Encrypt-XOR, and for this reason,

an initial AddRoundKey is used prior to the AES cipher rounds. Since the input key is pseudo random,

the AddRoundKey step can be considered source of confusion in the cipher. The confusion and diffusion

levels are the strength of the AES against differential attacks.

In the AES internal structure, the 128-bit block is treated on a byte-level, and is stored using a state a

matrix that consists of four rows and four columns (Sr,c). A four-byte column is considered one word,

and in some cases, the state is considered an array of 4 words (W0, ...,W3). Figure E.3 shows the

state matrix and highlights the byte- and word-oriented uses. The state matrix is the datapath of the AES

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

𝐵3 B7 B11 B15

B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0

128-bit plain data

State

Word 0 Word 1 Word 2 Word 3

𝑠00 𝑠01 𝑠02 𝑠03

𝑠10 𝑠11 𝑠12 𝑠13

𝑠20 𝑠21 𝑠22 𝑠23

𝑠30 𝑠31 𝑠32 𝑠33

𝑆𝑟,𝑐

Figure E.3: The AES block cipher matrix - The state S matrix.

structure, and is used for storing the input plain data, exchange data between rounds, and after the final

round, store the resulting ciphered data.

E.4 Cipher Round

An important aspect of the AES is that in one round, the algorithm operates on the entire 128 bits in

the datapath, while other ciphers need more rounds to achieve this level of operation. Such strong en-

cryption level is accomplished using the four steps that implement the AES round: SubBytes, ShitRows,

MixColumns and AddRoundKey. In all the four steps, computations are performed usingGF (28) numeric

system and use P (x) (equation D.7) irreducible polynomial to apply modulo reduction.

Appendix E. AES Implementation 321

SubBytes step

The SubBytes, from substitute bytes, is the first step in the AES round. It implements a non-linear sub-

stitution in which the individual 8-bit values in the input, are replaced by the result of applying the sbox

function, using the value they form. This first layer implements confusion in the AES, since bit-flips in

will occur in a non-linear sequence. Figure E.4 shows a parallel implementation block diagram for the

SubBytes step.

B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0

state

B15
′B14

′B13
′B12

′B11
′B10

′B9
′B8

′B7
′B6

′B5
′B4

′B3
′B2

′B1
′B0

′

state'

Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox Sbox

8

8

𝑤0 𝑤1 𝑤2 𝑤3

Figure E.4: The AES parallel SubBytes block diagram.

The sbox derives from the multiplicative inverse over GF (28), which is known to have good non-linearity

properties. It considers each byte in the input as a polynomial in in the field, and computes two separate

transformations: the multiplicative inverse and the affine mapping. Figure E.5 shows the block diagram

for the sbox function.

Multiplicative
Inverse

𝐴𝑖(𝑥) 𝐵𝑖(𝑥)

8 8

Affine
Mapping

𝐵𝑖
′(𝑥)

8

Figure E.5: The sbox function internal blocks.

First, the multiplicative inverse of each byte is computed using the Extended Euclidean algorithm, and then

the affine transformation overGF (28) is applied to the resulting byte. In the affine transformation, every

bit in one byte is added (XOR) with bits from the same byte, and finally added with the C(x) polynomial.

The bit XOR sequence can be expressed by the following axiom:

b
′

[i] = b[i] ⊕ b[(i+4) mod 8] ⊕ b[(i+5) mod 8] ⊕ b[(i+6) mod 8] ⊕ b[(i+7) mod 8] ⊕ c[i] (D.8)

322 Appendix E. AES Implementation

and i = {0, 1, ..., 7}

Where i, is the ith bit in the input byte, and the C(x), is the constant polynomial X6 +X5 +X + 1,

or {63} in hexadecimal representation, or in binary {01100011}. A formal representation is described

using the following matrix multiplication:

B
′
x

b
′
0

b
′
1

b
′
2

b
′
3

b
′
4

b
′
5

b
′
6

b
′
7

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

.

Bx

b0

b1

b2

b3

b4

b5

b6

b7

+

Cx

1

1

0

0

0

1

1

0

(D.9)

The sbox function is not a trivial calculation and, for this reason, it is common to use the pre-calculated

values that result from the sbox. Such values assume a table form, where the input byte is used as index

to fetch the corresponding result.

Figure E.6 outlines the source code in C language for the SubBytes step. As an example, let us assume

that the state matrix, in the column 0 row 0, contains de byte 0x13. Such byte is used to fetch the 0x7d,

as an integer index in the SBox array (line 72). A common way of reading this value is to split the 0x13

byte and select the row 1 and column 3 in the SBox array. The decryption process uses the InvSubBytes

step in similar manner, but the inverse of the sbox function is selected (or rsbox).

Figure E.7 depicts the array that contains the 256 pre-calculated values in rSBox table. The InvSubBytes

step is implemented using similar structure and can be seen in line 361. The main difference is the source

of data that uses the rSBox array (lines 364 to 367), as opposed to the SBox array of the SubBytes step.

A similar implementation can be used in the hardware SubBytes step, and is depicted in Figure E.8. Such

an SBOX table requires 256 bytes of storage, along with the circuitry to address and fetch the correspond-

ing values. But larger tables translate into more complex implementations with longer propagation delays.

Also, if one considers that the input bytes can go into the sbox independently, they should be processed

in parallel. In doing so, the SubBytes step demands for the 16 sbox copies. To fully pipeline the AES,

Appendix E. AES Implementation 323

static const uint8_t SBox[256] = { 70

//0 1 2 3 4 5 6 7 8 9 A B C D E F 71

0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, //0 72

0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, //173

...
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16}; //F87

...
#define sbox(x) SBox[x]107

...
void SubBytes(matrix_t* p_State) { 177

 int i; 178

 for (i = 0; i < 4; ++i) { 179

 p_State->column[i].row[0] = sbox(p_State->column[i].row[0]); 180

 p_State->column[i].row[1] = sbox(p_State->column[i].row[1]); 181

 p_State->column[i].row[2] = sbox(p_State->column[i].row[2]); 182

 p_State->column[i].row[3] = sbox(p_State->column[i].row[3]); 183

 } 184

}185

Figure E.6: The software SubBytes function using C language.

static const uint8_t rSBox[256] = { 90

//0 1 2 3 4 5 6 7 8 9 A B C D E F 91

0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb, //0 92

0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb, //193

...
0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d}; //F106

...
void InvSubBytes(matrix_t* p_State) { 361

 int i; 362

 for (i = 0; i < 4; ++i) { 363

 p_State->column[i].row[0] = rSBox[p_State->column[i].row[0]]; 364

 p_State->column[i].row[1] = rSBox[p_State->column[i].row[1]]; 365

 p_State->column[i].row[2] = rSBox[p_State->column[i].row[2]]; 366

 p_State->column[i].row[3] = rSBox[p_State->column[i].row[3]]; 367

 } 368

}369

Figure E.7: The software InvSubBytes function using C language.228

entity sbox is 11

 port (i_data : in byte_t; 12

 o_data : out byte_t); 13

end entity sbox; 14

 15

architecture lut of sbox is 16

 17

 type byte_array_t is array (0 to 255) of std_logic_vector(7 downto 0); 18

 19

 constant SBOX : byte_array_t := (20

 0=>x"63, 1=>x"7c", 2=>x"77", 3=>x"7b", 21

 4=>x"f2", 5=>x"6b", 6=>x"6f", 7=>x"c5", 22

 8=>x"30", 9=>x"01", 10=>x"67", 11=>x"2b", 23

 12=>x"fe", 13=>x"d7", 14=>x"ab", 15=>x"76", 24

 16=>x"ca", 17=>x"82", 18=>x"c9", 19=>x"7d", 25

...
 248=>x"41", 249=>x"99", 250=>x"2d", 251=>x"0f", 249

 252=>x"b0", 253=>x"54", 254=>x"bb", 255=>x"16"); 250

 251

begin 252

 o_data <= SBOX(to_integer(unsigned(i_data))); 253

end architecture lut; 254

Figure E.8: The hardware SubBytes step using VHDL language.

324 Appendix E. AES Implementation

each of the ten rounds requires one SubBytes step, meaning that 10 SubBytes are needed. Since and

additional of 40 sbox functions will be needed in a pipelined key expansion step, the final design requires

200 sbox units, a significant allocation of hardware resources that usually dictates the performance of the

hardware AES.

The alternative solution is to compute the SubBytes step. The most challenging part is the Extended

Euclidean algorithm that is known to be ”resource greedy”. A viable solution is to apply arithmetic de-

composition in the GF (28), using GF (24) and GF (22) operations. D. Canright [37] implemented a

software algorithm that maps seamlessly to hardware descriptions using VHDL and can be seen in the

Listing E.8.

ShiftRows step

The ShiftRows step, processes the state matrix row-by-row, applying a rotation to the left in increasing

rotate lengths. One can say that the first row uses a ”rotation left by zero” positions, meaning that it

remains unchanged, the second row uses rotation left of one position, the third row uses rotation left of

two positions and the last row uses rotation left of three positions. Despite the data being treated in rows,

in reality this is just a byte permutation between the column words. Such transformation provides the first

form of diffusion, where the bit-flips produced by the sbox function are now propagated horizontally in the

matrix. Figure E.9 depicts the byte positions at the input and output of the ShiftRows step.

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

𝐵3 B7 B11 B15

State

B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

𝐵15 B3 B7 B11

ShiftRows (<<n)

0

1

2

3

InvShiftRows (>>n)

n State’

Figure E.9: The ShiftRows step in the AES.

At the left-side of the figure, stands the state matrix prior to the ShiftRows step, and at the right-side, it

can be seen the results from such byte permutation. In the decryption process, the InvShiftRows is used,

in the inverse order of rotation, reverting the matrix layout to its original form.

Appendix E. AES Implementation 325

The software code to compute the ShiftRows can be seen in Figure E.10. The row zero remains unchanged,

and a per-row left rotation is performed in sequence from row 1 to row 3.

void ShiftRows (matrix_t* p_State) { 187

 uint8_t temp; 188

 189

 temp = p_State->column[0].row[1]; 190

 p_State->column[0].row[1] = p_State->column[1].row[1]; 191

 p_State->column[1].row[1] = p_State->column[2].row[1]; 192

 p_State->column[2].row[1] = p_State->column[3].row[1]; 193

 p_State->column[3].row[1] = temp; 194

 195

 temp = (p_State->column[0]).row[2]; 196

 p_State->column[0].row[2] = p_State->column[2].row[2]; 197

 p_State->column[2].row[2] = temp; 198

 temp = (p_State->column[1]).row[2]; 199

 p_State->column[1].row[2] = p_State->column[3].row[2]; 200

 p_State->column[3].row[2] = temp; 201

 202

 temp = (p_State->column[0]).row[3]; 203

 p_State->column[0].row[3] = p_State->column[3].row[3]; 204

 p_State->column[3].row[3] = p_State->column[2].row[3]; 205

 p_State->column[2].row[3] = p_State->column[1].row[3]; 206

 p_State->column[1].row[3] = temp; 207

} 208

Figure E.10: The software ShiftRows function using C language.

The InvShiftRows is implemented similarly and is depicted in the Figure E.11. The step starts using rows

1 to 3 in the inverse column order, and assign the bytes to its original position.

void InvShiftRows(matrix_t* p_State){ 358

 uint8_t temp; 359

 360

 temp = p_State->column[3].row[1]; 361

 p_State->column[3].row[1] = p_State->column[2].row[1]; 362

 p_State->column[2].row[1] = p_State->column[1].row[1]; 363

 p_State->column[1].row[1] = p_State->column[0].row[1]; 364

 p_State->column[0].row[1] = temp; 365

 366

 temp = p_State->column[0].row[2]; 367

 p_State->column[0].row[2] = p_State->column[2].row[2]; 368

 p_State->column[2].row[2] = temp; 369

 temp = p_State->column[1].row[2]; 370

 p_State->column[1].row[2] = p_State->column[3].row[2]; 371

 p_State->column[3].row[2] = temp; 372

 373

 temp = p_State->column[0].row[3]; 374

 p_State->column[0].row[3] = p_State->column[1].row[3]; 375

 p_State->column[1].row[3] = p_State->column[2].row[3]; 376

 p_State->column[2].row[3] = p_State->column[3].row[3]; 377

 p_State->column[3].row[3] = temp; 378

}379

Figure E.11: The software inverse of ShiftRows function using C language.

A similar implementation is used in the hardware ShiftRows and can be seen in Figure E.12. Each byte

in the datapath is rotated using assignments. Those translate into wirings, and so no logic elements are

326 Appendix E. AES Implementation

required. The implemented circuit is just a path that links the outputs of the SubBytes step, to the correct

inputs of the next step, the MixColumns.

-- 110

 function ShiftRows (111

 data_i : matrix_t) 112

 return matrix_t is 113

--- 114

 variable data_o : matrix_t; 115

 begin 116

 -- row 0 --row 1 117

 data_o(0)(0) := data_i(0)(0); data_o(0)(1) := data_i(1)(1); 118

 data_o(1)(0) := data_i(1)(0); data_o(1)(1) := data_i(2)(1); 119

 data_o(2)(0) := data_i(2)(0); data_o(2)(1) := data_i(3)(1); 120

 data_o(3)(0) := data_i(3)(0); data_o(3)(1) := data_i(0)(1); 121

 122

 -- row 2 --row3 123

 data_o(0)(2) := data_i(2)(2); data_o(0)(3) := data_i(3)(3); 124

 data_o(1)(2) := data_i(3)(2); data_o(1)(3) := data_i(0)(3); 125

 data_o(2)(2) := data_i(0)(2); data_o(2)(3) := data_i(1)(3); 126

 data_o(3)(2) := data_i(1)(2); data_o(3)(3) := data_i(2)(3); 127

 128

 return data_o; 129

 end function ShiftRows; 130

 --- 131

Figure E.12: The hardware ShiftRows function using VHDL.

MixColumns step

The MixColumns step operates on the state matrix vertically, or column-by-column. It provides a second

form of diffusion, where the bit-flips that were spread horizontally, are now spread to the entire state matrix.

The transformation treats each column as a four-term polynomial over theGF (28), and multiplies modulo

M(x) = {01}X4 + {01}, with a fixed polynomial A(x) given by:

A(x) = {03}X3 + {01}X2 + {01}X + {02} (D.10)

S
′
(x) = A(x)⊗ S(x) (D.11)

The numbers in between the braces of D.10 represent the polynomial coefficients using hexadecimal

notation. The multiplication in D.11, between the polynomial A(x) and the state (S), can be written

using a matrix notation and applied column-by-column, as it can be seen in D.12. For completeness,

Appendix E. AES Implementation 327

in D.13, it can also be seen the same multiplication using adequate polynomial notation in the GF (28).

S

′
0,c

S
′
1,c

S
′
2,c

S
′
3,c

 =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 .

S0,c

S1,c

S2,c

S3,c

 (D.12)

S

′
0,c

S
′
1,c

S
′
2,c

S
′
3,c

 =

X X + 1 1 1

1 X X + 1 1

1 1 X X + 1

X + 1 1 1 X

 .

S0,c

S1,c

S2,c

S3,c

 (D.13)

The multiplication can then be decomposed in byte terms, using the following expressions:

S
′

0,c = ({02}.S0,c)⊕ ({03}.S1,c)⊕ S2,c ⊕ S3,c (D.14)

S
′

1,c = S0,c ⊕ ({02}.S1,c)⊕ ({03}.S2,c)⊕ S3,c (D.15)

S
′

2,c = S0,c ⊕ S1,c ⊕ ({02}.S2,c)⊕ ({03}.S3,c) (D.16)

S
′

3,c = ({03}.S0,c)⊕ S1,c ⊕ S2,c ⊕ ({02}.S3,c) (D.17)

Once again, in the coefficient multiplication, the AES irreducible polynomial M(x) is used to apply a

modulo reduction. For the {02} multiplication modulo, a xtime function can be applied, and the imple-

mentation is described by the following pseudo-code:

if B(7) = {1} then

B
′ ⇐ B(6 downto 0)&{0} ⊕ {1B}

else

B
′ ⇐ B(6 downto 0)&{0}

Here B represents any byte in the input, and the numeric description (6 downto 0) means the six right-

most bits in the same byte. If the 7th bit is zero, second entry, B
′
is replaced by the 6 left-most bits at

the input concatenated with 0. If otherwise, first entry, the 6 left-most bits are XORed with {1B} before

the assignment to B
′
.

328 Appendix E. AES Implementation

In similar manner, the multiplication by {03} can be decomposed into the xtime(B) resulted added/XOR

with B:

{03}.B = ({02} ⊕ {01}).B (D.18)

The following pseudo-code, describes an efficient way to implement D.14 to D.17. It considers one col-

umn in each iteration and is using the xtime function. These descriptions are part of the AES design

recommendations.

Tmp ⇐ b0 ⊕ b1 ⊕ b2 ⊕ b3

Tm ⇐ b0 ⊕ b1; Tm ⇐ xtime(Tm); b
′
0 ⇐ b0 ⊕ Tm⊕ Tmp

Tm ⇐ b1 ⊕ b2; Tm ⇐ xtime(Tm); b
′
1 ⇐ b1 ⊕ Tm⊕ Tmp

Tm ⇐ b2 ⊕ b3; Tm ⇐ xtime(Tm); b
′
2 ⇐ b2 ⊕ Tm⊕ Tmp

Tm ⇐ b3 ⊕ b0; Tm ⇐ xtime(Tm); b
′
3 ⇐ b3 ⊕ Tm⊕ Tmp

The intermediate value Tmp is the transformation that results from adding (XOR) the 4 bytes in one

column. The intermediate value Tm is the transformation that results from adding and two consecutive

bytes and multiplying xtime by Tmp. The final b
′
n is the result from adding each input byte bn width the

Tm and the Tmp values in each column.

The block diagram of Figure E.13 illustrates the resulting datapath in implementing the above descriptions.

b0

b1

b2

b3

xtime

xtime

xtime

xtime

Tmp

b0

b1

b2

b3

Tm_0

Tm_1

Tm_2

Tm_3

MixWordSc, c= {0..3} S’c, c={0..3}

Figure E.13: The MixWord (or MixColumn) block in the AES MixColumns step.

Appendix E. AES Implementation 329

The inverse of the MixColumns step is performed in similar manner, but the multiplication uses the

polynomial of A−1(x):

A−1(x) = {0B}X3 + {0D}X2 + {09}X + {0E} (D.19)

Such computation demands for higher logic resources in multiplying the input word by the coefficients

{0B, 0D, 09, 0E}. The multiplication can be implemented similarly, by using the xtime function repeat-

edly to obtain the higher powers of X .

The software implementation of the MixColumns step, follows a column-by-column loop and uses the

algorithm depicted above. Figure E.14 outlines this source code using C language. Here the xtime function

is a macro and is enforcing constant computation where both results are always computed, but only one is

non-zero. Such computation strategy is in compliance to recommendations in defending the block cipher

against side-channel attacks. Since these are executed in sequence, the byte 0 (i.e., the p_word->row[0])

is pre-stored before any computation, and is used in the last line. A temporary storage is used in the

variable Tm, and the result Tmp is used column-wide. The four loops that result from the NCOLUMS

symbol, use the p_word pointer in reapplying this computation to the four columns of the state matrix.

#define xtime(x) ((x << 1) ^ (((x >> 7) & 1) * 0x1b))10

...
void MixColumns (matrix_t* p_State) { 210

 uint8_t i, Tmp, Tm, w_row0; 211

 word* p_word = &(p_State->column[0]); 212

 213

 for (i = 0; i < NCOLUMNS; p_word = &(p_State->column[++i])) { 214

 215

 w_row0 = p_word->row[0]; 216

 Tmp = p_word->row[0] ^ p_word->row[1] ^ p_word->row[2] ^ p_word->row[3]; 217

 218

 Tm = p_word->row[0] ^ p_word->row[1]; Tm = xtime(Tm); p_word->row[0] ^= Tm ^ Tmp; 219

 Tm = p_word->row[1] ^ p_word->row[2]; Tm = xtime(Tm); p_word->row[1] ^= Tm ^ Tmp; 220

 Tm = p_word->row[2] ^ p_word->row[3]; Tm = xtime(Tm); p_word->row[2] ^= Tm ^ Tmp; 221

 Tm = p_word->row[3] ^ w_row0; Tm = xtime(Tm); p_word->row[3] ^= Tm ^ Tmp; 222

 } 223

}224

Figure E.14: The AES MixColumns - software implementation using C language.

Figure E.15 outlines the software source of the InvMixComluns step. A simplification was introduced

that uses mulGF16 instead of mulG265. Here x is the input byte from the state columns, and y is the

polynomial coefficient (line 13). Since the four leftmost bits in the polynomial coefficients are zero, it is

treated as four bit operation and so the use of the mulGF16. In doing so, the full 8-bit rotation is avoided

and consequent computation due to the re-use of the xtime function.

330 Appendix E. AES Implementation

#define mulGF16(x, y) \ 13

 (((y & 1) * x) ^ \ 14

 ((y>>1 & 1) * xtime(x)) ^ \ 15

 ((y>>2 & 1) * xtime(xtime(x))) ^ \ 16

 ((y>>3 & 1) * xtime(xtime(xtime(x)))))17

...
void InvMixColumns(matrix_t* p_State) { 381

 int i; 382

 char a,b,c,d; 383

 unsigned char* p_row; 384

 for (i = 0; i < 4; ++i) { 385

 386

 p_row = &p_State->column[i].row[0]; 387

 388

 a = p_row[0]; b = p_row[1]; c = p_row[2]; d = p_row[3]; 389

 390

 p_row[0]=mulGF16(a,0x0e)^mulGF16(b,0x0b)^mulGF16(c,0x0d)^mulGF16(d,0x09); 391

 p_row[1]=mulGF16(a,0x09)^mulGF16(b,0x0e)^mulGF16(c,0x0b)^mulGF16(d,0x0d); 392

 p_row[2]=mulGF16(a,0x0d)^mulGF16(b,0x09)^mulGF16(c,0x0e)^mulGF16(d,0x0b); 393

 p_row[3]=mulGF16(a,0x0b)^mulGF16(b,0x0d)^mulGF16(c,0x09)^mulGF16(d,0x0e); 394

 } 395

}396

Figure E.15: The AES InvMixWord - software source using C language.

The hardware MixColumns step design is based on four mixWord units implementing the algorithm in Fig-

ure E.13. Figure E.16 outlines themixWord entity using a VHDL description. The MixColumns architecture

operates using parallel mixWords and can be consulted attached in Listing E.9.210

entity mixWord is 9

 port (10

 i_word : in word_t; 11

 o_word : out word_t); 12

end entity mixWord; 13

architecture Structural of mixWord is 14

 15

signal byte0_d1, tm_0: std_logic_vector(7 downto 0); 16

signal byte1_d1, tm_1: std_logic_vector(7 downto 0); 17

signal byte2_d1, tm_2: std_logic_vector(7 downto 0); 18

signal byte3_d1, tm_3: std_logic_vector(7 downto 0); 19

signal Tmp : std_logic_vector(7 downto 0); 20

begin 21

 22

Tmp <= i_word(0) xor i_word(1) xor i_word(2) xor i_word(3); 23

 24

byte0_d1 <= i_word(0) xor i_word(1); 25

byte1_d1 <= i_word(1) xor i_word(2); 26

byte2_d1 <= i_word(2) xor i_word(3); 27

byte3_d1 <= i_word(3) xor i_word(0); 28

 29

tm_0 <=(byte0_d1(6downto0)&'0')xorx"1B" when byte0_d1(7)='1'else byte0_d1(6 downto 0) & '0'; 30

tm_1 <=(byte1_d1(6downto0)&'0')xorx"1B" when byte1_d1(7)='1'else byte1_d1(6 downto 0) & '0'; 31

tm_2 <=(byte2_d1(6downto0)&'0')xorx"1B" when byte2_d1(7)='1'else byte2_d1(6 downto 0) & '0'; 32

tm_3 <=(byte3_d1(6downto0)&'0')xorx"1B" when byte3_d1(7)='1'else byte3_d1(6 downto 0) & '0'; 33

 34

o_word(0) <= i_word(0) xor Tm_0 xor Tmp; 35

o_word(1) <= i_word(1) xor Tm_1 xor Tmp; 36

o_word(2) <= i_word(2) xor Tm_2 xor Tmp; 37

o_word(3) <= i_word(3) xor Tm_3 xor Tmp; 38

 39

end architecture Structural; 40

 41

Figure E.16: The AES MixWord - hardware description using VHDL.

Appendix E. AES Implementation 331

In line 23 the Tmp result is computed using a triple XOR that uses the four input bytes. The XOR operation

between consecutive byte-pairs in the word is lines 25 to 26, and in lines 30 to 33 the xtime function

is implemented using these results as input. After all independent terms are computed, the output is

assigned using the XOR operations that consider the input bytes, the result form the xtime functions and

the Tmp value (lines 35 to 38).

AddRoundKey step

The final step in the AES cipher round is the AddRoundKey step. The implementation is a XOR operation

that uses the 16 bytes in the datapath and each distinct round key. This step also creates some form

of confusion, since bit-flips will occur depending on the cipher key that is pseudo-random. Just like

in the previous steps, all input bytes can be handled independently, and the AddRoundKey step can

be implemented in a sequential or parallel byte XOR. Figure E.17 depicts this AddRoundKey step block

diagram.

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

𝐵3 B7 B11 B15

B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0

Round Key n

State 𝐒

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

𝐵3 B7 B11 B15

AddRoundKey

𝑺′

Figure E.17: The AES AddRoundKey step block diagram.

It can be seen that each of the input bytes in the state matrix, is XORed with the bytes in the same position

in the n round key. The results are stored back to the original positions of the state matrix.

In Figure E.18 the software code that implements this step is listed. A word-based addition, or column-

based addition, is using a state matrix pointer in the application scope. The XOR operator of the word

type is being overloaded to perform 32-bit arithmetic (lines 25 and 32). In doing so, the add_round_key

function is performing a 4-column sequential XOR using a round indexed key. The RoundKey variable is

332 Appendix E. AES Implementation

an array that contains the 10+1 keys that were generated from the original key, and it will be discussed

in the next section. Since XOR is an involutory operation that results in its own inverse, the AddRoundKey

step is used in both, the encryption and decryption processes.

word word::operator^(const word& operand_b){ 25

 word rc; 26

 ((int)&rc) = *((int*)(this)) ^ *((int*)&operand_b); 27

 return rc; 28

} 29

 30

word& word::operator^=(const word& operand_b){ 31

 ((int)this->row) ^= *((int*)operand_b.row); 32

 return *this; 33

}34

...
void AddRoundKey(matrix_t* p_State, int round){ 226

 p_State->column[0] ^= RoundKey[round].column[0]; 227

 p_State->column[1] ^= RoundKey[round].column[1]; 228

 p_State->column[2] ^= RoundKey[round].column[2]; 229

 p_State->column[3] ^= RoundKey[round].column[3]; 230

}231

Figure E.18: The AES AddRoundKey step - software implementation using C language.

The hardware AddRoundKey description is depicted in Figure E.19. It can be seen a VHDL function that

implements a parallel byte-oriented XOR, between the state matrix and a round key. In the hardware

implementation phase, such description is translated to the original 128 bits, and 128 XOR logic gates

are selected using the available resources.

E.5 The Key Schedule

The ten keys used in the AES rounds result from the application of the key expansion algorithm to the

input key, and for this reason they are often called subkeys. The AES takes the input key and computes an

expansion routine that generates a key schedule. The same routine is computed by the inverse cipher, but

the key schedule is used in the inverse order of keys. Such schedule consists in one array of 44 words(4

bytes each), here denoted byWi. Figure E.20 depicts the block diagram of a 10 round expansion routine

that uses the cipher key as input and outputs the eleven resulting keys.

The first four words are filled with the entry cipher key, that is the RoundKey[0], and the expansion performs

according to the following rules:

Appendix E. AES Implementation 333

--- 249

 function AddRoundKey(250

--- 251

 state_i : matrix_t; 252

 key_i : std_logic_vector) 253

 return matrix_t is 254

--- 255

 variable state_o : matrix_t; 256

 begin 257

 258

 state_o(0)(0) := state_i(0)(0) xor key_i(127 downto 120); 259

 state_o(0)(1) := state_i(0)(1) xor key_i(119 downto 112); 260

 state_o(0)(2) := state_i(0)(2) xor key_i(111 downto 104); 261

 state_o(0)(3) := state_i(0)(3) xor key_i(103 downto 96); 262

 263

 state_o(1)(0) := state_i(1)(0) xor key_i(95 downto 88); 264

 state_o(1)(1) := state_i(1)(1) xor key_i(87 downto 80); 265

 state_o(1)(2) := state_i(1)(2) xor key_i(79 downto 72); 266

 state_o(1)(3) := state_i(1)(3) xor key_i(71 downto 64); 267

 268

 state_o(2)(0) := state_i(2)(0) xor key_i(63 downto 56); 269

 state_o(2)(1) := state_i(2)(1) xor key_i(55 downto 48); 270

 state_o(2)(2) := state_i(2)(2) xor key_i(47 downto 40); 271

 state_o(2)(3) := state_i(2)(3) xor key_i(39 downto 32); 272

 273

 state_o(3)(0) := state_i(3)(0) xor key_i(31 downto 24); 274

 state_o(3)(1) := state_i(3)(1) xor key_i(23 downto 16); 275

 state_o(3)(2) := state_i(3)(2) xor key_i(15 downto 8); 276

 state_o(3)(3) := state_i(3)(3) xor key_i(7 downto 0); 277

 278

 return state_o; 279

 end AddRoundKey; 280

--- 281

Figure E.19: The AES AddRoundKey step - hardware implementation using VHDL.

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

RotWord

SubWord

RCon[10] 0

RotWord

SubWord

1

RotWord

SubWord

2

RotWord

SubWord

9

…
…
…
…

Cipher key
𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝟎 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝟏𝟎𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝟐𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝟏

RoundKey[11]

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 𝑤40 𝑤41 𝑤41 𝑤43

𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝟗…

…

…

Figure E.20: The AES Key Schedule Algorithm- pipeline-based block diagram.

1. Every following Wi word is equal to XOR result between the previous word, W(i−1), and the word

that is 4 positions earlier, W(i−4). This rule can be rewritten using the following equation:

Wi = W(i−1) ⊕W(i−4) (D.20)

334 Appendix E. AES Implementation

2. For the Words in the positions that are multiple of 4, the preceding wordW(i−1) suffers a transfor-

mation, followed by a XOR with a round constant RCon[k], before applying rule (1). The transfor-

mation consists of a word rotation, using a RotWord function, followed by a substitute bytes step,

using a SubWord function. The RotWord function implements one rotation to the word, and the

SubWord function is a substitute bytes step applied to 4 bytes in the word. The following equation

describes the complete transformation, and includes rule (1):

W4k = SubWord[RotWord(W(4k−1))]⊕Rcon[k − 1]⊕W(i−4) (D.21)

As an example, if k = 1 the above expression translates to:

W4 = SubWord[RotWord(W3)]⊕Rcon[0]⊕W0

E.5.1 Sequential Key Expansion

The key expansion routine can be implemented using two design strategies: a pipeline-based design, com-

posed by independent functional units as depicted in the Figure E.20; or a sequential-based design that

computes each subkey inside a processing loop, and shares the computing resources between expansion

rounds. Figure E.21 includes the software implementation of the sequential key expansion routine in C

programming language.

In the listing of Figure E.21, the first four lines copy the 128-bit input key to the position zero in the schedule

(k0 in lines 29 to 32), and then, the for loop implements ten sequential expansion rounds. Once again,

columns are same as words, and so the transformation starts using the 3rd word (column) of the previous

subkey (k − 1), that is used in the 1st word of the new subkey, (k). It applies the rotWord and subWord

”functions”, and completes the transformation by adding the RoundConstant to the resulting word (lines

36 to 46). Each word is then consecutively XORed using the w(i−1) word in the current subkey, and

w(i−4) word from the previous subkey (lines 48 to 51). The cycle restarts with a new subkey and repeats

the processing until all the 10+1 subkeys are in the schedule.

A similar implementation can be used for the sequential hardware key expansion. Figure E.22 outlines

such implementation and the complete description can be consulted in Listing E.4.

A single FSM with three states starts in the s0_Ready state, uses the s1_SchedRounds 9 times, and

completes the key schedule in the s2_FinalRound state (line 112). In doing so, it requires 1+9+1=11

Appendix E. AES Implementation 335

 void key_expansion(char* key;){ 25

 state_t word_t W3, * p_cipher = (state_t*) key; 26

 27

 //k0 28

 RoundKey[0].column[0] = p_cipher->column[0]; 29

 RoundKey[0].column[1] = p_cipher->column[1]; 30

 RoundKey[0].column[2] = p_cipher->column[2]; 31

 RoundKey[0].column[3] = p_cipher->column[3]; 32

 33

 for (int k = 1; k < 10 + 1; ++k) { 34

 //RotWord() 35

 W3.row[0] = RoundKey[k - 1].column[3].row[1]; 36

 W3.row[1] = RoundKey[k - 1].column[3].row[2]; 37

 W3.row[2] = RoundKey[k - 1].column[3].row[3]; 38

 W3.row[3] = RoundKey[k - 1].column[3].row[0]; 39

 //SubWord() 40

 W3.row[0] = sbox(W3.row[0]); 41

 W3.row[1] = sbox(W3.row[1]); 42

 W3.row[2] = sbox(W3.row[2]); 43

 W3.row[3] = sbox(W3.row[3]); 44

 //Add RoundConstant 45

 W3.row[0] ^= RCon[k - 1]; 46

 47

 RoundKey[k].column[0] = W3 ^ RoundKey[k - 1].column[0]; 48

 RoundKey[k].column[1] = RoundKey[k].column[0] ^ RoundKey[k - 1].column[1]; 49

 RoundKey[k].column[2] = RoundKey[k].column[1] ^ RoundKey[k - 1].column[2]; 50

 RoundKey[k].column[3] = RoundKey[k].column[2] ^ RoundKey[k - 1].column[3]; 51

 } 52

 NeedsExpand = false; 53

 } 54

 55

 Figure E.21: The AES Key Expansion - software C sequential implementation.

clocks to complete the key schedule. The implementation of such FSM can be seen in lines 128 to 148

of Listing E.4.

In Figure E.22, an input MUX is used to select the k(i−1) key in the schedule registry, from sched_words_q,

and assigned to a sub_key_i array of words (lines 190 to 193). The sub_key_i is input to the single expand

round in the datapath, and this round starts by applying the subWord computation to the third column of

sub_key_i (line 197). The output is XORed with RCON(key_sel) and uses the rotWord positioned sequence

{1, 2, 3, 0} (lines 201 to 204). A cascade of consecutive XORs concludes the schedule round, leaving

the resulting subkey in the sub_key_o word array (line 206 to 209). The FSM assigns such words to the

next position in the schedule registry (line 214 to 217), and the next round will use this new words for

expanding the next subkey.

E.5.2 Pipelined Key Expansion

When following a pipeline design strategy, the ten expansion rounds are implemented as independent

functional units. Each round is similar in structure, as seen in the sequential design, which translates

to a resource demand of 4x10 sbox functions, used in the each subWord unit, and 10x10 32-bit XOR

336 Appendix E. AES Implementation

...
type StateType is (s0_Ready,s1_SchedRounds,s2_FinalRound); 112

...
type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0);115

...
constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 125

...
-- 186

-- Key Round 187

-- 188

 --Input Mux 189

 subkey_i(0) <= sched_words_q(key_sel*4); 190

 subkey_i(1) <= sched_words_q(key_sel*4+1); 191

 subkey_i(2) <= sched_words_q(key_sel*4+2); 192

 subkey_i(3) <= sched_words_q(key_sel*4+3); 193

 ------------------------------------- 194

 SubWord3: entity SubWord(Parallel) 195

 ------------------------------------- 196

 port map (i_word => subkey_i(3),o_word => subword_o); 197

 ------------------------------------- 198

 --rcon[k] xor rotWord() 199

 ------------------------------------- 200

 rcon_i(0) <= subword_o(1) xor RCON(key_sel); 201

 rcon_i(1) <= subword_o(2); 202

 rcon_i(2) <= subword_o(3); 203

 rcon_i(3) <= subword_o(0); 204

 205

 subkey_o(0) <= rcon_i xor subkey_i(0) ; 206

 subkey_o(1) <= rcon_i xor subkey_i(0) xor subkey_i(1) ; 207

 subkey_o(2) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) ; 208

 subkey_o(3) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) xor subkey_i(3); 209

 -- 210

 out_mux:process(key_next_sel,subkey_o) 211

-- 212

 begin 213

 sched_words_d(key_next_sel*4) <= subkey_o(0); 214

 sched_words_d(key_next_sel*4 + 1) <= subkey_o(1); 215

 sched_words_d(key_next_sel*4 + 2) <= subkey_o(2); 216

 sched_words_d(key_next_sel*4 + 3) <= subkey_o(3); 217

 end process out_mux; 218

-- 219

 RoundKeys_o : for k in 0 to 10 generate 220

-- 221

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k),... 222

...

Figure E.22: The AES Key Expansion - hardware sequential-based description using VHDL.

logic operations. Such a design description can be consulted in the Listing E.3. In lines 34 to 40, the

input key is assigned to the schedule words 0 to 3, and is also input to the expansion rounds pipeline

using sched_word_q(0) register. A for generate description implements the 10 expansion rounds, that

are connected with the schedule registry using sched_words_q as input, and sched_words_d as output,

that is stored in the next clock rising. A similar description style is used in lines 43 to 50 to generate the

10 subWord units used in each round (lines 58 to 61). To enable the round operation, the input i_run

signal is forwarded across the pipeline using the round_enable registry, in line 84, and is used in lines

64, 66, 68, and 70. Once in each round all operations are concurrent, and the consecutive XOR between

Appendix E. AES Implementation 337

words should not use the preceding word results. The result is a growing cascade XOR where the next

word repeats the operations that compute the words behind (lines 63, 65, 66, 67 and 69). A for generate

concludes the design description by connecting the output of the schedule registry to o_rounk_keys (line

102), an output at the top-level of the Key Expansion unit.

E.6 The Software AES

The software AES follows a sequential implementation of the algorithm depicted in the Figure E.2. The

user provides a cipher key in the appropriate size, and a key schedule algorithm expands this key to

generates a key schedule. The same key expansion can be used in the encrypt and decrypt processes,

by use of the inverse key sequence. The first key in the schedule is added to the input block, and for

a pre-determined number of rounds, the input block undergoes in four consecutive transformations that

use one of the ten keys generated. Such rounds use the steps described in the above sections and are

also depicted in the block diagrams of the same figure.

E.6.1 Encrypt process

In the 128-bit AES encryption, after 10 rounds the input block is fully encrypted and its decryption is

pending for the key used. Figure E.23 outlines a software function using C programming language that

implements the AES encryption process.

The encrypt_block function, receives a pointer that specifies the memory location of the input data to

be encrypted. The same location is used throughout the encryption rounds for storing the intermediate

values. The key schedule is generated once using the KeyExpansion function, and the resulting keys can be

used in successive encryption iterations. Whenever a new key is defined in the system, the state variable

NeedsExpansion is modified, and the next use incurs in a new scheduling operation before implementing

the cipher rounds. The InitialAdd step adds the input key, round key 0, to the received block (in line

232). The nine ”regular” cipher rounds are executed using a for-loop and use the consecutive key in the

schedule (lines 238 to 241). The final round is executed before the function completes (lines 243 to 245).

At this point, the Mixcolumns function is skipped and the last round key is used, replacing the input data

with the final result for the encrypted block.

338 Appendix E. AES Implementation

#define NROUNDS 10
int encrypt_block(char* p_block) { 226

 matrix_t* p_State = (matrix_t*)p_block; 227

 int round = 0; 228

 229

 if (!p_State) return -EFAULT; 230

 231

 AddRoundKey(p_State,0); 232

 233

 if (NeedsExpansion) 234

 KeyExpansion(); 235

 236

 for (round = 1; round < NROUNDS; ++round) { 237

 SubBytes(p_State); 238

 ShiftRows(p_State); 239

 MixColumns(p_State); 240

 AddRoundKey(p_State, round); 241

 } 242

 SubBytes(p_State); 243

 ShiftRows(p_State); 244

 AddRoundKey(p_State, NROUNDS); 245

 246

 return round; 247

}248

Figure E.23: The AES software encrypt process - sequential implementation.

E.6.2 Decrypt process

The decryption process follows a similar sequence to the encryption, using the inverse operations and

key schedule that was generated by the same input key in the inverse order. In the particular case of

ECB mode, the decryption does not represent a pure symmetric sequence, since the AddRounKey step

must be used before the InvMixColumns step. To cope with a pure symmetric sequence, the order can

be reversed since both operations are linear. As a consequence, the InvMixColmuns step needs to be

applied to both, the state matrix and the round key. The expressions below exemplify the required change.

InvMixColumns(State⊕RoundKey[k]) ⇔

⇔ [InvMixColumns(State)] ⊕ [InvMixColumns(RoundKey[k])]

Due to this change, it is common to perform the transformation on the key side in the key schedule

step. The cipher round can then assume a pure symmetrical structure as depicted in Figure E.2. The

consequence of this transformation is an increased processing that is often avoided, and the order of

operations maintains the non-symmetric sequence.

In Figure E.24 the software C function that implements the AES decryption process, following the non-

pure symmetric structure is depicted. Typically, the encryption and decryption processes are executed

in different systems, meaning that each one performs its own key scheduling using the same cipher key

Appendix E. AES Implementation 339

value. To cope with the inverse key sequence, the AddRoundKey starts with the last key in the schedule,

and the reverse sequence proceeds to the ten rounds that implement the AES decryption (line 475). The

decryption rounds, where the AddRoundKey step precedes the InvMixColumns are implemented in lines

478 to 481. The final round is executed using the input key (lines 484 to 486) that can be found in the index

0 of the key schedule and the function concludes replacing the encrypted block with the corresponding

plain data.

int decrypt_block(char* p_block){ 466

 int round = 0; 467

 matrix_t* p_State = (matrix_t*)p_block; 468

 469

 if (!p_State)return -EFAULT; 470

 471

 if (NeedsExpansion) 472

 KeyExpansion(); 473

 474

 AddRoundKey(p_State, NROUNDS); 475

 476

 for (round = (NROUNDS - 1); round > 0; --round) { 477

 InvSubBytes(p_State); 478

 InvShiftRows(p_State); 479

 AddRoundKey(p_State, round); 480

 InvMixColumns(p_State); 481

 482

 } 483

 InvSubBytes(p_State); 484

 InvShiftRows(p_State); 485

 AddRoundKey(p_State,0); 486

 487

 return NROUNDS; 488

}489

Figure E.24: The AES software decrypt process - sequential implementation.

E.7 Hardware Architecture for AES

The hardware architecture for the AES can follow the two distinct design strategies: sequential- or pipelined-

based designs. Since all bytes should be treated independently, the search for the computational perfor-

mance can push designers into the adopt the pipeline-based designs. As discussed above, the demand

for logic resource can be a limiting condition and a sequential design can use significantly less logic

resources, at the expense of lowering the overall throughput.

E.7.1 Sequential Encryption

The sequential design strategy used in the hardware AES encryption is depicted in Figure E.25. In this

approach, the four layers that implement the AES cipher round can be reused in all the 10+1 rounds. It

340 Appendix E. AES Implementation

can also use a sequential Key Expansion as described in the previous section.

128

plain data

A
d

d
R

o
u

n
d

K
ey

Su
b

B
yt

es

Sh
if
tR
o
w
s

M
ix

C
o

lu
m

n
s

2
:1

3
:1

cipher key

cipher data

128

128
RoundKeys

11:1

128

Control

run

sleep

S
t
a
t
e

EN

clock

Initial Round Cipher Rounds Final Round

128

Key Expansion

Common path

Figure E.25: The hardware AES - sequential design.

To analyze this block diagram, is better to begin with an initial clock pulse that stores the input plain data

using the appropriate source in the 2:1 MUX. The purple line in the datapath will be followed to compute

the initial AddRoundKey, placing the results at the second input of the same MUX. The next clock pulse

stores this result and the blue path will be followed in the subsequent nine clocks pulses. In this path,

the design completes nine regular cipher rounds and in the 11th clock pulse, the red line will be followed

to avoid the MixColumns step. In the 12th clock cycle, the computed results will be stored in the state

matrix that receives the encrypted data block. The Control unit is responsible for synchronizing the inputs

in this datapath, and it must also select the appropriate subkey for each of the 10+1 rounds. Each of the

AES round layers is implemented using the VHDL descriptions described above.

The sequential architecture descriptions that implement the block diagram of Figure E.25, can be con-

sulted attached in the Listing E.2. In this Listing, in line 117 the states for the Control FSM are defined,

and the description of this unit can be seen in lines 127 to 149. Four states are used, namely: s_ready;

s_init_round; s_cipher_rounds; s_final_round; and the FSM repeats the third state for nine clock pulses.

The Control stays in state s_ready until it receives the i_run signal, at which it stores the input plain data

(lines 117 and 221) and proceeds to the s_init_round state. During these two states, the Add_Mux de-

scription (MUX 3:1) in lines 195 to 208, keeps the cipher_state_q register selected, where the input block

Appendix E. AES Implementation 341

is stored. The output from this MUX is received as an argument on the AddRoundKey function on line

212, which uses round_counter to select the appropriate key in the round_keys_o array. This condition

computes the initial round of the AES, using the input state and the key 0 in the schedule. For that,

the round_counter value is kept in 0 by means of the condition in lines 231 and 232. The return from

AddRoundKey function is sent via the cipher_round_o signal to the MUX 2:1 on line 177, and the result

is stored in the next clock pulse on line 221.

For the next nine clock pulses, the Control Unit implements the nine regular rounds of the AES using the

s_cipher_rounds state. During this state, the datapath forwards the value of the cipher_state_q register

to the SubBytes entity in line 182, and the output of this unit links with the ShiftRows function in line

187. The return from the ShitRows is received at the input of the MixColumns unit in line 192, and the

successive computing steps end once again in the line 212, using the AddRoundKey function. For that,

during the s_cipher_rounds state, the Add_Mux maintains selected the signal from the MixColumns (line

204).

After 9 clock pulses, the Control switches to the s_final_round state and Add_Mux selects the input from

ShiftRows, thus removing the MixColumns unit from the processing chain. Upon reaching this final state,

the matrix value is stored in the final_cipher_q register, allowing the Control Unit to start a new block

encryption before this value has been read (lines 226 and 227). The contents of this register links with

the top-level o_ciphered_data output on line 241 and its reading must be triggered after the o_done signal

rises.

After this last clock pulse, the control is once again in the s_ready state and the MUX 2:1 already selected

the input i_plain_data. Twelve clock cycles were used by the Control FSM to complete the 10+1 AES

encryption Rounds.

E.7.2 Pipelined Encryption

The pipelined AES architecture is based on the replication of the hardware resources involved in the

sequential description. The state matrix is replicated in 1+10+1 units, interspersed with 9 units of regular

cipher rounds, and 1 final round unit that skips the MixColumns step. The last matrix closes the pipeline’s

processing chain and makes the encrypted data stable at the output of the AES architecture. It will

hold this value for at least one clock pulse when operating continuously, or until a new received block

reaches the final stage. Figure E.26 describes this pipeline architecture using a simplified block diagram.

342 Appendix E. AES Implementation

Simultaneously, the key schedule is triggered in the Key Expansion unit that is also implemented using a

pipeline-based architecture. It will provide the sub-keys used in each of the 10 + 1 AddRoundKey steps.

In the same figure, it can also be seen a feed-forward of the run signal that combined with the input sleep

Round 9

Su
b

B
yt

es

A
d

d
R

o
u

n
d

K
ey

Sh
if

tR
o

w
s

M
ix

C
o

lu
m

n
s

plain data

S
t
a
t
e

EN

D EN Q

S
t
a
t
e

EN

D EN Q

𝑆1

S
t
a
t
e

EN

D EN Q

S
t
a
t
e

EN

D EN Q

𝑆2 3 𝑆10

S
t
a
t
e

EN

𝑆11
…

…

…

…

…

𝑘1

𝑘2 𝑘9 𝑘10

𝑘0

Initial Add

cipher key

sleep

run

clock

cipher data

Key Expansion

clock

run

sleep

clk clk clk clk

A
d

d
R

o
u

n
d

K
ey

Su
b

B
yt

es
Sh

if
tR

o
w

s
M

ix
C

o
lu

m
n

s

Round 1

A
d

d
R

o
u

n
d

K
ey

Su
b

B
yt

es
Sh

if
tR

o
w

s
M

ix
C

o
lu

m
n

s

Round 2

A
d

d
R

o
u

n
d

K
ey

Su
b

B
yt

es
Sh

if
tR

o
w

s

Final Round

S
t
a
t
e

EN

𝑆0

D EN Q

clk

Figure E.26: The hardware AES - pipeline design.

signal, enables or suspends the propagation of the encryption block throughout the eleven stages of the

pipeline. At least twelve clock pulses are needed to fully encrypt the input plain data. A steady high sleep

signal suspends the processing for a necessary number of clock pulses, or it can be used periodically to

lower the overall throughput.

The pipeline-based architecture descriptions for the AES can be seen in the attached Listing E.1. Lines

40 to 47, implement the connections between the AES pipeline and the key Expansion unit, and it is

possible to observe that the entity was selected to bind with the pipeline-based architecture. In line 50,

the description of the Initial Round uses the round key 0 and plain_data_q register to compute the first

AddRoundKey step. This register stores the value of the input block if it receives a clock rise pulse and

the sleep signal is not active (line 94). The return of this function feeds the first element in the array

of state matrices, cipher_state_q, which divides the cipher_rounds in the stages of the pipeline. These

rounds are implemented using the for generate descriptions, on lines 52 to 60, where each unit uses the

input matrix index one position behind of the output it produces, so as to produce interlacing. The internal

composition of these regular rounds include the four steps described in the AES structures and can be

consulted in the Listing E.5.

The output of the 9th regular round, uses the index 9 in the array of matrices, to feed the final round of the

pipeline (line 65). This final round completes the AES encryption process on line 68, by computing the

AddRoundKey step. This function is using the results from the SubBytes step (line 66), in the appropriate

Appendix E. AES Implementation 343

positions linked by the ShiftRows step, and selects the subkey 10 in the key schedule. The last state matrix

in the array, stores the return value from this function on line 106, where it remains steady for at least

one clock pulse. In line 112, the value of this register links to the output o_ciphered_data, that belongs

to the top-level to AES unit. In Similarity width the sequential architecture, the reading of this data must

be made after the rising edge of the o_done signal.

Twelve clock pulses are needed to encrypt the input block using the pipeline hardware AES. After the first

encryption is completed, the one block encryption per clock pulse rate can be maintained continuously.

The remainder of this appendix includes the listings that describe the hardware AES sequential- and

pipeline-based architectures.

344 Appendix E. AES Implementation

Listing E.1: The hardware AES - Pipeline architecture (back to Figure E.26).

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

 4

library aes_128_v1_00_a; 5

use aes_128_v1_00_a.aes128Pkg.all; 6

use aes_128_v1_00_a.KeyExpansion; 7

use aes_128_v1_00_a.SubBytes; 8

use aes_128_v1_00_a.MixColumns; 9

use aes_128_v1_00_a.CipherRound; 10

 11

entity aes128 is 12

 port (clock : in std_logic; 13

 reset : in std_logic; 14

 i_run : in std_logic; 15

 i_sleep : in std_logic; 16

 i_key_expand : in std_logic; 17

 o_done : out std_logic; 18

 i_plain_data : in std_logic_vector(127 downto 0); 19

 i_cipher_key : in std_logic_vector(127 downto 0); 20

 o_ciphered_data : out std_logic_vector(127 downto 0)); 21

end entity aes128; 22

 23

architecture Pipeline of aes128 is 24

 25

 type state_array_t is array (0 to 9) of matrix_t; 26

 signal plain_data_q : std_logic_vector(127 downto 0); 27

 signal key_expand_i : std_logic; 28

 signal sleep_i : std_logic; 29

 signal cipher_states_d, cipher_states_q : state_array_t; 30

 signal ciphered_data_d, ciphered_data_q : matrix_t; 31

 signal stage_en_d, stage_en_q : std_logic_vector(0 to 10); 32

 signal round_keys_o : roudkey_array_t; 33

 signal subBytes_r10_o : matrix_t; 34

 35

begin 36

 37

 key_expand_i <= i_run and i_key_expand; 38

 -- 39

 k0 : entity keyExpansion(Pipeline) 40

 -- 41

 port map (clock => clock, 42

 reset => reset, 43

 i_sleep => i_sleep, 44

 i_run => key_expand_i, 45

 i_cipher_key => i_cipher_key, 46

 o_round_keys => round_keys_o); 47

 -- 48

 --Initial Round 49

 cipher_states_d(0) <= conv_state(round_keys_o(0) xor plain_data_q); 50

 -- 51

 Rounds : for I in 1 to 9 generate 52

 -- 53

 begin 54

 Round_i : entity cipherRound 55

 port map (56

 i_state => cipher_states_q(I-1), 57

 i_round_key => round_keys_o(I), 58

 o_state => cipher_states_d(I)); 59

 end generate Rounds; 60

 -- 61

 --Last Round 62

 s10_sub : entity SubBytes(Parallel) 63

 port map (64

 i_state => cipher_states_q(9), 65

 o_state => subBytes_r10_o); 66

 67

ciphered_data_d <= AddRoundKey(ShiftRows(subBytes_r10_o), round_keys_o(10)); 68

--- 69

sleep_logic : process (stage_en_q) is 70

-- 71

 variable tmp : std_logic; 72

 begin 73

 tmp := stage_en_q(0); 74

 for i in 1 to 10 loop 75

 tmp := tmp or stage_en_q(i); 76

 end loop; 77

 sleep_i <= (not tmp); 78

end process sleep_logic; 79

-- 80

stage_en_d <= i_run & stage_en_q(0 to 9); 81

-- 82

 sync_datapath : process (clock) 83

-- 84

 begin 85

 if rising_edge(clock) then 86

 if reset = '1' then 87

 plain_data_q <= (others =>'0'); 88

 stage_en_q <= (others =>'0'); 89

 cipher_states_q <= (others =>(others=>(others =>'0'))); 90

 ciphered_data_q <= (others =>(others=>(others =>(others =>'0')))); 91

 else 92

 if i_sleep = '0' then stage_en_q <= stage_en_d; end if; 93

 if i_sleep = '0' then plain_data_q <= inverted(i_plain_data); end if; 94

 95

 if stage_en_q(0) = '1' then cipher_states_q(0) <= cipher_states_d(0); end if; 96

 if stage_en_q(1) = '1' then cipher_states_q(1) <= cipher_states_d(1); end if; 97

 if stage_en_q(2) = '1' then cipher_states_q(2) <= cipher_states_d(2); end if; 98

 if stage_en_q(3) = '1' then cipher_states_q(3) <= cipher_states_d(3); end if; 99

 if stage_en_q(4) = '1' then cipher_states_q(4) <= cipher_states_d(4); end if; 100

 if stage_en_q(5) = '1' then cipher_states_q(5) <= cipher_states_d(5); end if; 101

 if stage_en_q(6) = '1' then cipher_states_q(6) <= cipher_states_d(6); end if; 102

 if stage_en_q(7) = '1' then cipher_states_q(7) <= cipher_states_d(7); end if; 103

 if stage_en_q(8) = '1' then cipher_states_q(8) <= cipher_states_d(8); end if; 104

 if stage_en_q(9) = '1' then cipher_states_q(9) <= cipher_states_d(9); end if; 105

 if stage_en_q(10) = '1' then ciphered_data_q <= ciphered_data_d; end if; 106

 107

 end if; 108

 end if; 109

end process sync_datapath; 110

-- 111

o_ciphered_data <= conv_std_logic_vector_inverted(ciphered_data_q); 112

o_done <= sleep_i; 113

end architecture Pipeline; 114

Appendix E. AES Implementation 345

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

 4

library aes_128_v1_00_a; 5

use aes_128_v1_00_a.aes128Pkg.all; 6

use aes_128_v1_00_a.KeyExpansion; 7

use aes_128_v1_00_a.SubBytes; 8

use aes_128_v1_00_a.MixColumns; 9

use aes_128_v1_00_a.CipherRound; 10

 11

entity aes128 is 12

 port (clock : in std_logic; 13

 reset : in std_logic; 14

 i_run : in std_logic; 15

 i_sleep : in std_logic; 16

 i_key_expand : in std_logic; 17

 o_done : out std_logic; 18

 i_plain_data : in std_logic_vector(127 downto 0); 19

 i_cipher_key : in std_logic_vector(127 downto 0); 20

 o_ciphered_data : out std_logic_vector(127 downto 0)); 21

end entity aes128; 22

 23

architecture Pipeline of aes128 is 24

 25

 type state_array_t is array (0 to 9) of matrix_t; 26

 signal plain_data_q : std_logic_vector(127 downto 0); 27

 signal key_expand_i : std_logic; 28

 signal sleep_i : std_logic; 29

 signal cipher_states_d, cipher_states_q : state_array_t; 30

 signal ciphered_data_d, ciphered_data_q : matrix_t; 31

 signal stage_en_d, stage_en_q : std_logic_vector(0 to 10); 32

 signal round_keys_o : roudkey_array_t; 33

 signal subBytes_r10_o : matrix_t; 34

 35

begin 36

 37

 key_expand_i <= i_run and i_key_expand; 38

 -- 39

 k0 : entity keyExpansion(Pipeline) 40

 -- 41

 port map (clock => clock, 42

 reset => reset, 43

 i_sleep => i_sleep, 44

 i_run => key_expand_i, 45

 i_cipher_key => i_cipher_key, 46

 o_round_keys => round_keys_o); 47

 -- 48

 --Initial Round 49

 cipher_states_d(0) <= conv_state(round_keys_o(0) xor plain_data_q); 50

 -- 51

 Rounds : for I in 1 to 9 generate 52

 -- 53

 begin 54

 Round_i : entity cipherRound 55

 port map (56

 i_state => cipher_states_q(I-1), 57

 i_round_key => round_keys_o(I), 58

 o_state => cipher_states_d(I)); 59

 end generate Rounds; 60

 -- 61

 --Last Round 62

 s10_sub : entity SubBytes(Parallel) 63

 port map (64

 i_state => cipher_states_q(9), 65

 o_state => subBytes_r10_o); 66

 67

ciphered_data_d <= AddRoundKey(ShiftRows(subBytes_r10_o), round_keys_o(10)); 68

--- 69

sleep_logic : process (stage_en_q) is 70

-- 71

 variable tmp : std_logic; 72

 begin 73

 tmp := stage_en_q(0); 74

 for i in 1 to 10 loop 75

 tmp := tmp or stage_en_q(i); 76

 end loop; 77

 sleep_i <= (not tmp); 78

end process sleep_logic; 79

-- 80

stage_en_d <= i_run & stage_en_q(0 to 9); 81

-- 82

 sync_datapath : process (clock) 83

-- 84

 begin 85

 if rising_edge(clock) then 86

 if reset = '1' then 87

 plain_data_q <= (others =>'0'); 88

 stage_en_q <= (others =>'0'); 89

 cipher_states_q <= (others =>(others=>(others =>'0'))); 90

 ciphered_data_q <= (others =>(others=>(others =>(others =>'0')))); 91

 else 92

 if i_sleep = '0' then stage_en_q <= stage_en_d; end if; 93

 if i_sleep = '0' then plain_data_q <= inverted(i_plain_data); end if; 94

 95

 if stage_en_q(0) = '1' then cipher_states_q(0) <= cipher_states_d(0); end if; 96

 if stage_en_q(1) = '1' then cipher_states_q(1) <= cipher_states_d(1); end if; 97

 if stage_en_q(2) = '1' then cipher_states_q(2) <= cipher_states_d(2); end if; 98

 if stage_en_q(3) = '1' then cipher_states_q(3) <= cipher_states_d(3); end if; 99

 if stage_en_q(4) = '1' then cipher_states_q(4) <= cipher_states_d(4); end if; 100

 if stage_en_q(5) = '1' then cipher_states_q(5) <= cipher_states_d(5); end if; 101

 if stage_en_q(6) = '1' then cipher_states_q(6) <= cipher_states_d(6); end if; 102

 if stage_en_q(7) = '1' then cipher_states_q(7) <= cipher_states_d(7); end if; 103

 if stage_en_q(8) = '1' then cipher_states_q(8) <= cipher_states_d(8); end if; 104

 if stage_en_q(9) = '1' then cipher_states_q(9) <= cipher_states_d(9); end if; 105

 if stage_en_q(10) = '1' then ciphered_data_q <= ciphered_data_d; end if; 106

 107

 end if; 108

 end if; 109

end process sync_datapath; 110

-- 111

o_ciphered_data <= conv_std_logic_vector_inverted(ciphered_data_q); 112

o_done <= sleep_i; 113

end architecture Pipeline; 114

Listing E.2: The hardware AES - Sequential architecture (back to Figure E.25).

architecture Sequential of aes128 is 116

 type control_state_t is (s_ready, s_init_round, s_cipher_rounds,s_final_round); 117

 signal state, next_state: control_state_t; 118

 signal init_i,key_expand_i,store_i: std_logic; 119

 signal round_counter: integer range 0 to 10; 120

 signal roundkeys_o : roudkey_array_t; 121

 signal cipher_state_d,cipher_state_q: matrix_t; 122

 signal sub_matrix_o,shift_matrix_o,mix_matrix_o,add_matrix_i,cipher_round_o: matrix_t; 123

 signal final_cipher_q: std_logic_vector(127 downto 0); 124

begin 125

-- 126

CONTROL_FSM:process(state,i_run,round_counter) 127

-- 128

begin 129

init_i <= '0'; 130

store_i<= '0'; 131

next_state <= state; 132

 case state is 133

 when s_ready=> 134

 init_i <= '1'; 135

 if(i_run = '1') then 136

 next_state <= s_init_round; 137

 end if; 138

 when s_init_round=> 139

 next_state <= s_cipher_rounds; 140

 when s_cipher_rounds=> 141

 if(round_counter = 9) then 142

 next_state<= s_final_round; 143

 end if; 144

 when s_final_round=> 145

 store_i<='1'; 146

 next_state<= s_ready; 147

 end case; 148

end process CONTROL_FSM; 149

-- 150

-- 151

fsm_regs:process(clock) 152

-- 153

begin 154

 if rising_edge(clock) then 155

 if reset = '1' then 156

 state <= s_ready; 157

 elsif i_sleep = '0' then 158

 state <= next_state; 159

 end if; 160

 end if; 161

end process fsm_regs; 162

-- 163

key_expand_i <= i_run and i_key_expand; 164

-- 165

k0: entity keyExpansion(Sequential) 166

-- 167

 Port map(clock => clock, 168

 reset => reset, 169

 i_sleep => i_sleep, 170

 i_run=> key_expand_i, 171

 i_cipher_key=> i_cipher_key, 172

 o_round_keys => roundkeys_o); 173

-- 174

--Inp_Mux: 175

-- 176

cipher_state_d<=conv_state_inverted(i_plain_data) when init_i = '1' else cipher_round_o; 177

-- 178

SubBytes0 : entity SubBytes(Parallel) 179

-- 180

 port map (181

 i_state => cipher_state_q, 182

 o_state => sub_matrix_o); 183

-- 184

--ShifRows 185

-- 186

shift_matrix_o <= ShiftRows(sub_matrix_o); 187

-- 188

 MixColumns0 : entity MixColumns 189

-- 190

 port map (191

 i_state => shift_matrix_o, 192

 o_state => mix_matrix_o); 193

-- 194

Add_mux:process(state,cipher_state_q,mix_matrix_o,shift_matrix_o) 195

-- 196

begin 197

case state is 198

 when s_ready=> 199

 add_matrix_i <= cipher_state_q; 200

 when s_init_round=> 201

 add_matrix_i <= cipher_state_q; 202

 when s_cipher_rounds=> 203

 add_matrix_i <= mix_matrix_o; 204

 when s_final_round=> 205

 add_matrix_i <= shift_matrix_o; 206

 end case; 207

end process Add_mux; 208

-- 209

-- AddRoundKey 210

-- 211

cipher_round_o<= AddRoundKey(add_matrix_i,roundkeys_o(round_counter)); 212

-- 213

DPATH_REGS:process(clock) 214

-- 215

begin 216

 if rising_edge(clock) then 217

 if reset = '1' then 218

 cipher_state_q <= (others=>(others=>(others=>'0'))); 219

 elsif i_sleep = '0' then 220

 cipher_state_q <= cipher_state_d; 221

 end if; 222

 223

 if reset = '1' then 224

 final_cipher_q <= (others=>'0'); 225

 elsif store_i = '1' and i_sleep = '0' then 226

 final_cipher_q <= conv_std_logic_vector_inverted(cipher_round_o); 227

 end if; 228

 229

 230

 if reset = '1' or init_i = '1' or store_i = '1'then 231

 round_counter <= 0; 232

 elsif i_sleep = '0' then 233

 round_counter <= round_counter + 1; 234

 end if; 235

 236

 end if; 237

end process DPATH_REGS; 238

-- 239

o_ciphered_data <= final_cipher_q; 240

o_done <= init_i; 241

end Sequential;242

346 Appendix E. AES Implementation

architecture Sequential of aes128 is 116

 type control_state_t is (s_ready, s_init_round, s_cipher_rounds,s_final_round); 117

 signal state, next_state: control_state_t; 118

 signal init_i,key_expand_i,store_i: std_logic; 119

 signal round_counter: integer range 0 to 10; 120

 signal roundkeys_o : roudkey_array_t; 121

 signal cipher_state_d,cipher_state_q: matrix_t; 122

 signal sub_matrix_o,shift_matrix_o,mix_matrix_o,add_matrix_i,cipher_round_o: matrix_t; 123

 signal final_cipher_q: std_logic_vector(127 downto 0); 124

begin 125

-- 126

CONTROL_FSM:process(state,i_run,round_counter) 127

-- 128

begin 129

init_i <= '0'; 130

store_i<= '0'; 131

next_state <= state; 132

 case state is 133

 when s_ready=> 134

 init_i <= '1'; 135

 if(i_run = '1') then 136

 next_state <= s_init_round; 137

 end if; 138

 when s_init_round=> 139

 next_state <= s_cipher_rounds; 140

 when s_cipher_rounds=> 141

 if(round_counter = 9) then 142

 next_state<= s_final_round; 143

 end if; 144

 when s_final_round=> 145

 store_i<='1'; 146

 next_state<= s_ready; 147

 end case; 148

end process CONTROL_FSM; 149

-- 150

-- 151

fsm_regs:process(clock) 152

-- 153

begin 154

 if rising_edge(clock) then 155

 if reset = '1' then 156

 state <= s_ready; 157

 elsif i_sleep = '0' then 158

 state <= next_state; 159

 end if; 160

 end if; 161

end process fsm_regs; 162

-- 163

key_expand_i <= i_run and i_key_expand; 164

-- 165

k0: entity keyExpansion(Sequential) 166

-- 167

 Port map(clock => clock, 168

 reset => reset, 169

 i_sleep => i_sleep, 170

 i_run=> key_expand_i, 171

 i_cipher_key=> i_cipher_key, 172

 o_round_keys => roundkeys_o); 173

-- 174

--Inp_Mux: 175

-- 176

cipher_state_d<=conv_state_inverted(i_plain_data) when init_i = '1' else cipher_round_o; 177

-- 178

SubBytes0 : entity SubBytes(Parallel) 179

-- 180

 port map (181

 i_state => cipher_state_q, 182

 o_state => sub_matrix_o); 183

-- 184

--ShifRows 185

-- 186

shift_matrix_o <= ShiftRows(sub_matrix_o); 187

-- 188

 MixColumns0 : entity MixColumns 189

-- 190

 port map (191

 i_state => shift_matrix_o, 192

 o_state => mix_matrix_o); 193

-- 194

Add_mux:process(state,cipher_state_q,mix_matrix_o,shift_matrix_o) 195

-- 196

begin 197

case state is 198

 when s_ready=> 199

 add_matrix_i <= cipher_state_q; 200

 when s_init_round=> 201

 add_matrix_i <= cipher_state_q; 202

 when s_cipher_rounds=> 203

 add_matrix_i <= mix_matrix_o; 204

 when s_final_round=> 205

 add_matrix_i <= shift_matrix_o; 206

 end case; 207

end process Add_mux; 208

-- 209

-- AddRoundKey 210

-- 211

cipher_round_o<= AddRoundKey(add_matrix_i,roundkeys_o(round_counter)); 212

-- 213

DPATH_REGS:process(clock) 214

-- 215

begin 216

 if rising_edge(clock) then 217

 if reset = '1' then 218

 cipher_state_q <= (others=>(others=>(others=>'0'))); 219

 elsif i_sleep = '0' then 220

 cipher_state_q <= cipher_state_d; 221

 end if; 222

 223

 if reset = '1' then 224

 final_cipher_q <= (others=>'0'); 225

 elsif store_i = '1' and i_sleep = '0' then 226

 final_cipher_q <= conv_std_logic_vector_inverted(cipher_round_o); 227

 end if; 228

 229

 230

 if reset = '1' or init_i = '1' or store_i = '1'then 231

 round_counter <= 0; 232

 elsif i_sleep = '0' then 233

 round_counter <= round_counter + 1; 234

 end if; 235

 236

 end if; 237

end process DPATH_REGS; 238

-- 239

o_ciphered_data <= final_cipher_q; 240

o_done <= init_i; 241

end Sequential;242

Appendix E. AES Implementation 347

architecture Sequential of aes128 is 116

 type control_state_t is (s_ready, s_init_round, s_cipher_rounds,s_final_round); 117

 signal state, next_state: control_state_t; 118

 signal init_i,key_expand_i,store_i: std_logic; 119

 signal round_counter: integer range 0 to 10; 120

 signal roundkeys_o : roudkey_array_t; 121

 signal cipher_state_d,cipher_state_q: matrix_t; 122

 signal sub_matrix_o,shift_matrix_o,mix_matrix_o,add_matrix_i,cipher_round_o: matrix_t; 123

 signal final_cipher_q: std_logic_vector(127 downto 0); 124

begin 125

-- 126

CONTROL_FSM:process(state,i_run,round_counter) 127

-- 128

begin 129

init_i <= '0'; 130

store_i<= '0'; 131

next_state <= state; 132

 case state is 133

 when s_ready=> 134

 init_i <= '1'; 135

 if(i_run = '1') then 136

 next_state <= s_init_round; 137

 end if; 138

 when s_init_round=> 139

 next_state <= s_cipher_rounds; 140

 when s_cipher_rounds=> 141

 if(round_counter = 9) then 142

 next_state<= s_final_round; 143

 end if; 144

 when s_final_round=> 145

 store_i<='1'; 146

 next_state<= s_ready; 147

 end case; 148

end process CONTROL_FSM; 149

-- 150

-- 151

fsm_regs:process(clock) 152

-- 153

begin 154

 if rising_edge(clock) then 155

 if reset = '1' then 156

 state <= s_ready; 157

 elsif i_sleep = '0' then 158

 state <= next_state; 159

 end if; 160

 end if; 161

end process fsm_regs; 162

-- 163

key_expand_i <= i_run and i_key_expand; 164

-- 165

k0: entity keyExpansion(Sequential) 166

-- 167

 Port map(clock => clock, 168

 reset => reset, 169

 i_sleep => i_sleep, 170

 i_run=> key_expand_i, 171

 i_cipher_key=> i_cipher_key, 172

 o_round_keys => roundkeys_o); 173

-- 174

--Inp_Mux: 175

-- 176

cipher_state_d<=conv_state_inverted(i_plain_data) when init_i = '1' else cipher_round_o; 177

-- 178

SubBytes0 : entity SubBytes(Parallel) 179

-- 180

 port map (181

 i_state => cipher_state_q, 182

 o_state => sub_matrix_o); 183

-- 184

--ShifRows 185

-- 186

shift_matrix_o <= ShiftRows(sub_matrix_o); 187

-- 188

 MixColumns0 : entity MixColumns 189

-- 190

 port map (191

 i_state => shift_matrix_o, 192

 o_state => mix_matrix_o); 193

-- 194

Add_mux:process(state,cipher_state_q,mix_matrix_o,shift_matrix_o) 195

-- 196

begin 197

case state is 198

 when s_ready=> 199

 add_matrix_i <= cipher_state_q; 200

 when s_init_round=> 201

 add_matrix_i <= cipher_state_q; 202

 when s_cipher_rounds=> 203

 add_matrix_i <= mix_matrix_o; 204

 when s_final_round=> 205

 add_matrix_i <= shift_matrix_o; 206

 end case; 207

end process Add_mux; 208

-- 209

-- AddRoundKey 210

-- 211

cipher_round_o<= AddRoundKey(add_matrix_i,roundkeys_o(round_counter)); 212

-- 213

DPATH_REGS:process(clock) 214

-- 215

begin 216

 if rising_edge(clock) then 217

 if reset = '1' then 218

 cipher_state_q <= (others=>(others=>(others=>'0'))); 219

 elsif i_sleep = '0' then 220

 cipher_state_q <= cipher_state_d; 221

 end if; 222

 223

 if reset = '1' then 224

 final_cipher_q <= (others=>'0'); 225

 elsif store_i = '1' and i_sleep = '0' then 226

 final_cipher_q <= conv_std_logic_vector_inverted(cipher_round_o); 227

 end if; 228

 229

 230

 if reset = '1' or init_i = '1' or store_i = '1'then 231

 round_counter <= 0; 232

 elsif i_sleep = '0' then 233

 round_counter <= round_counter + 1; 234

 end if; 235

 236

 end if; 237

end process DPATH_REGS; 238

-- 239

o_ciphered_data <= final_cipher_q; 240

o_done <= init_i; 241

end Sequential;242

Listing E.3: AES Key Expansion - Pipeline architecture (back to E.5.2).

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.all; 5

use aes_128_v1_00_a.SubWord; 6

 7

entity keyExpansion is 8

 port (clock : in std_logic; 9

 reset : in std_logic; 10

 i_sleep : in std_logic; 11

 i_run : in std_logic; 12

 i_cipher_key : in std_logic_vector(127 downto 0); 13

 o_round_keys : out roudkey_array_t); 14

end entity keyExpansion; 15

 16

architecture Pipeline of keyExpansion is 17

 18

type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0); 19

type word_array_t is array (0 to 9) of word_t; 20

type rcon_array_t is array (0 to 9) of word_t; 21

type key_array_t is array (0 to 43) of word_t; 22

signal subWord_i, subWord_o : word_array_t; 23

signal rcon_i : rcon_array_t; 24

signal sched_words_d, sched_words_q : key_array_t; 25

signal sleep_i : std_logic; 26

signal round_en_d, round_en_q : std_logic_vector(0 to 9); 27

constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 28

 29

begin 30

-- 31

--Input cipher key 32

-- 33

 sched_words_d(0) <= conv_word(i_cipher_key(127 downto 96)) 34

 when i_run = '1' else sched_words_q(0); 35

 sched_words_d(1) <= conv_word(i_cipher_key(95 downto 64)) 36

 when i_run = '1' else sched_words_q(1); 37

 sched_words_d(2) <= conv_word(i_cipher_key(63 downto 32)) 38

 when i_run = '1' else sched_words_q(2); 39

 sched_words_d(3) <= conv_word(i_cipher_key(31 downto 0)) 40

 when i_run = '1' else sched_words_q(3); 41

-- 42

 SubWords : for w4k in 0 to 9 generate 43

-- 44

 begin 45

 SubWord_4k : entity SubWord(Parallel) 46

 port map (47

 i_word => subWord_i(w4k), 48

 o_word => subWord_o(w4k)); 49

 end generate SubWords; 50

-- 51

 ScheduleRounds : for k in 0 to 9 generate 52

-- 53

--SubWord() 54

subWord_i(k) <= sched_words_q(4*k+3); 55

 56

--Rcon[k] xor rotWord(1) 57

rcon_i(k)(0) <= subWord_o(k)(1) xor RCON(k); 58

rcon_i(k)(1) <= subWord_o(k)(2); 59

rcon_i(k)(2) <= subWord_o(k)(3); 60

rcon_i(k)(3) <= subWord_o(k)(0); 61

 62

sched_words_d(4*(k+1)+0)<=rcon_i(k) xor sched_words_q(4*k) 63

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+0); 64

sched_words_d(4*(k+1)+1)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) 65

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+1); 66

sched_words_d(4*(k+1)+2)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 67

 sched_words_q(4*k+2)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+2); 68

sched_words_d(4*(k+1)+3)<= rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 69

 sched_words_q(4*k+2) xor sched_words_q(4*k+3)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+3); 70

end generate ScheduleRounds; 71

-- 72

 sleep_logic : process (round_en_q) is 73

-- 74

 variable tmp : std_logic; 75

 begin 76

 tmp := round_en_q(0); 77

 for I in 1 to 9 loop 78

 tmp := tmp or round_en_q(I); 79

 end loop; 80

 sleep_i <= (not tmp); 81

 end process sleep_logic; 82

-- 83

 round_en_d <= i_run & round_en_q(0 to 8); 84

-- 85

 DPATH_REGS : process (clock, reset) is 86

-- 87

 begin 88

 if rising_edge(clock) then 89

 if reset = '1' then 90

 sched_words_q <= (others =>(others=>(others=>'0'))); 91

 round_en_q <= (others => '0'); 92

 else 93

 sched_words_q <= sched_words_d; 94

 round_en_q <= round_en_d; 95

 end if; 96

 end if; 97

 end process DPATH_REGS; 98

-- 99

 RoundKeys_o : for k in 0 to 10 generate 100

-- 101

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k), 102

 sched_words_q(4*k+1), 103

 sched_words_q(4*k+2), 104

 sched_words_q(4*k+3)); 105

 end generate RoundKeys_o; 106

-- 107

end architecture Pipeline; 108

-- 109

 110

 111

348 Appendix E. AES Implementation

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.all; 5

use aes_128_v1_00_a.SubWord; 6

 7

entity keyExpansion is 8

 port (clock : in std_logic; 9

 reset : in std_logic; 10

 i_sleep : in std_logic; 11

 i_run : in std_logic; 12

 i_cipher_key : in std_logic_vector(127 downto 0); 13

 o_round_keys : out roudkey_array_t); 14

end entity keyExpansion; 15

 16

architecture Pipeline of keyExpansion is 17

 18

type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0); 19

type word_array_t is array (0 to 9) of word_t; 20

type rcon_array_t is array (0 to 9) of word_t; 21

type key_array_t is array (0 to 43) of word_t; 22

signal subWord_i, subWord_o : word_array_t; 23

signal rcon_i : rcon_array_t; 24

signal sched_words_d, sched_words_q : key_array_t; 25

signal sleep_i : std_logic; 26

signal round_en_d, round_en_q : std_logic_vector(0 to 9); 27

constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 28

 29

begin 30

-- 31

--Input cipher key 32

-- 33

 sched_words_d(0) <= conv_word(i_cipher_key(127 downto 96)) 34

 when i_run = '1' else sched_words_q(0); 35

 sched_words_d(1) <= conv_word(i_cipher_key(95 downto 64)) 36

 when i_run = '1' else sched_words_q(1); 37

 sched_words_d(2) <= conv_word(i_cipher_key(63 downto 32)) 38

 when i_run = '1' else sched_words_q(2); 39

 sched_words_d(3) <= conv_word(i_cipher_key(31 downto 0)) 40

 when i_run = '1' else sched_words_q(3); 41

-- 42

 SubWords : for w4k in 0 to 9 generate 43

-- 44

 begin 45

 SubWord_4k : entity SubWord(Parallel) 46

 port map (47

 i_word => subWord_i(w4k), 48

 o_word => subWord_o(w4k)); 49

 end generate SubWords; 50

-- 51

 ScheduleRounds : for k in 0 to 9 generate 52

-- 53

--SubWord() 54

subWord_i(k) <= sched_words_q(4*k+3); 55

 56

--Rcon[k] xor rotWord(1) 57

rcon_i(k)(0) <= subWord_o(k)(1) xor RCON(k); 58

rcon_i(k)(1) <= subWord_o(k)(2); 59

rcon_i(k)(2) <= subWord_o(k)(3); 60

rcon_i(k)(3) <= subWord_o(k)(0); 61

 62

sched_words_d(4*(k+1)+0)<=rcon_i(k) xor sched_words_q(4*k) 63

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+0); 64

sched_words_d(4*(k+1)+1)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) 65

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+1); 66

sched_words_d(4*(k+1)+2)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 67

 sched_words_q(4*k+2)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+2); 68

sched_words_d(4*(k+1)+3)<= rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 69

 sched_words_q(4*k+2) xor sched_words_q(4*k+3)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+3); 70

end generate ScheduleRounds; 71

-- 72

 sleep_logic : process (round_en_q) is 73

-- 74

 variable tmp : std_logic; 75

 begin 76

 tmp := round_en_q(0); 77

 for I in 1 to 9 loop 78

 tmp := tmp or round_en_q(I); 79

 end loop; 80

 sleep_i <= (not tmp); 81

 end process sleep_logic; 82

-- 83

 round_en_d <= i_run & round_en_q(0 to 8); 84

-- 85

 DPATH_REGS : process (clock, reset) is 86

-- 87

 begin 88

 if rising_edge(clock) then 89

 if reset = '1' then 90

 sched_words_q <= (others =>(others=>(others=>'0'))); 91

 round_en_q <= (others => '0'); 92

 else 93

 sched_words_q <= sched_words_d; 94

 round_en_q <= round_en_d; 95

 end if; 96

 end if; 97

 end process DPATH_REGS; 98

-- 99

 RoundKeys_o : for k in 0 to 10 generate 100

-- 101

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k), 102

 sched_words_q(4*k+1), 103

 sched_words_q(4*k+2), 104

 sched_words_q(4*k+3)); 105

 end generate RoundKeys_o; 106

-- 107

end architecture Pipeline; 108

-- 109

 110

 111

Appendix E. AES Implementation 349

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.all; 5

use aes_128_v1_00_a.SubWord; 6

 7

entity keyExpansion is 8

 port (clock : in std_logic; 9

 reset : in std_logic; 10

 i_sleep : in std_logic; 11

 i_run : in std_logic; 12

 i_cipher_key : in std_logic_vector(127 downto 0); 13

 o_round_keys : out roudkey_array_t); 14

end entity keyExpansion; 15

 16

architecture Pipeline of keyExpansion is 17

 18

type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0); 19

type word_array_t is array (0 to 9) of word_t; 20

type rcon_array_t is array (0 to 9) of word_t; 21

type key_array_t is array (0 to 43) of word_t; 22

signal subWord_i, subWord_o : word_array_t; 23

signal rcon_i : rcon_array_t; 24

signal sched_words_d, sched_words_q : key_array_t; 25

signal sleep_i : std_logic; 26

signal round_en_d, round_en_q : std_logic_vector(0 to 9); 27

constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 28

 29

begin 30

-- 31

--Input cipher key 32

-- 33

 sched_words_d(0) <= conv_word(i_cipher_key(127 downto 96)) 34

 when i_run = '1' else sched_words_q(0); 35

 sched_words_d(1) <= conv_word(i_cipher_key(95 downto 64)) 36

 when i_run = '1' else sched_words_q(1); 37

 sched_words_d(2) <= conv_word(i_cipher_key(63 downto 32)) 38

 when i_run = '1' else sched_words_q(2); 39

 sched_words_d(3) <= conv_word(i_cipher_key(31 downto 0)) 40

 when i_run = '1' else sched_words_q(3); 41

-- 42

 SubWords : for w4k in 0 to 9 generate 43

-- 44

 begin 45

 SubWord_4k : entity SubWord(Parallel) 46

 port map (47

 i_word => subWord_i(w4k), 48

 o_word => subWord_o(w4k)); 49

 end generate SubWords; 50

-- 51

 ScheduleRounds : for k in 0 to 9 generate 52

-- 53

--SubWord() 54

subWord_i(k) <= sched_words_q(4*k+3); 55

 56

--Rcon[k] xor rotWord(1) 57

rcon_i(k)(0) <= subWord_o(k)(1) xor RCON(k); 58

rcon_i(k)(1) <= subWord_o(k)(2); 59

rcon_i(k)(2) <= subWord_o(k)(3); 60

rcon_i(k)(3) <= subWord_o(k)(0); 61

 62

sched_words_d(4*(k+1)+0)<=rcon_i(k) xor sched_words_q(4*k) 63

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+0); 64

sched_words_d(4*(k+1)+1)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) 65

 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+1); 66

sched_words_d(4*(k+1)+2)<=rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 67

 sched_words_q(4*k+2)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+2); 68

sched_words_d(4*(k+1)+3)<= rcon_i(k) xor sched_words_q(4*k) xor sched_words_q(4*k+1) xor 69

 sched_words_q(4*k+2) xor sched_words_q(4*k+3)
 when round_en_q(k) = '1' else sched_words_q(4*(k+1)+3); 70

end generate ScheduleRounds; 71

-- 72

 sleep_logic : process (round_en_q) is 73

-- 74

 variable tmp : std_logic; 75

 begin 76

 tmp := round_en_q(0); 77

 for I in 1 to 9 loop 78

 tmp := tmp or round_en_q(I); 79

 end loop; 80

 sleep_i <= (not tmp); 81

 end process sleep_logic; 82

-- 83

 round_en_d <= i_run & round_en_q(0 to 8); 84

-- 85

 DPATH_REGS : process (clock, reset) is 86

-- 87

 begin 88

 if rising_edge(clock) then 89

 if reset = '1' then 90

 sched_words_q <= (others =>(others=>(others=>'0'))); 91

 round_en_q <= (others => '0'); 92

 else 93

 sched_words_q <= sched_words_d; 94

 round_en_q <= round_en_d; 95

 end if; 96

 end if; 97

 end process DPATH_REGS; 98

-- 99

 RoundKeys_o : for k in 0 to 10 generate 100

-- 101

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k), 102

 sched_words_q(4*k+1), 103

 sched_words_q(4*k+2), 104

 sched_words_q(4*k+3)); 105

 end generate RoundKeys_o; 106

-- 107

end architecture Pipeline; 108

-- 109

 110

 111

Listing E.4: AES Key Expansion - Sequential architecture (back to E.5.1).

architecture Sequential of keyExpansion is 112

type StateType is (s0_Ready,s1_SchedRounds,s2_FinalRound); 113

type sub_key_t is array (0 to 3) of word_t; 114

type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0); 115

type key_schedule_t is array (0 to 43) of word_t; 116

 117

signal state, nextstate: StateType; 118

signal key_sel : integer range 0 to 9; 119

signal key_next_sel : integer range 1 to 10; 120

signal count_i,stoped_i : std_logic; 121

signal subkey_i,subkey_o:sub_key_t; 122

signal subword_o,rcon_i :word_t; 123

signal sched_words_d,sched_words_q : key_schedule_t; 124

constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 125

begin 126

-- 127

FSM:process(state,i_run,key_sel) 128

-- 129

begin 130

 stoped_i <= '0'; 131

 nextstate <= state; 132

 count_i <= '1'; 133

 case state is 134

 when s0_Ready=> 135

 stoped_i <= '1'; 136

 if(i_run = '1') then 137

 nextstate <= s1_SchedRounds; 138

 end if; 139

 when s1_SchedRounds=> 140

 if(key_sel = 8) then 141

 nextstate <= s2_FinalRound; 142

 end if; 143

 when s2_FinalRound=> 144

 count_i <= '0'; 145

 nextstate <= s0_Ready; 146

 end case; 147

end process FSM; 148

-- 149

DPATH_REGS:process(clock) 150

-- 151

begin 152

 if rising_edge(clock) then 153

 154

 if reset= '1' then 155

 state <= s0_Ready; 156

 elsif i_sleep = '0' then 157

 state <= nextstate; 158

 end if; 159

 160

 if reset= '1' then 161

 sched_words_q <= (others=>(ZERO_WORD)); 162

 else 163

 if i_sleep = '0' and i_run = '1' then 164

 sched_words_q(0) <= conv_word(i_cipher_key(127 downto 96)); 165

 sched_words_q(1) <= conv_word(i_cipher_key(95 downto 64)); 166

 sched_words_q(2) <= conv_word(i_cipher_key(63 downto 32)); 167

 sched_words_q(3) <= conv_word(i_cipher_key(31 downto 0)); 168

 end if; 169

 170

 if i_sleep = '0' and stoped_i = '0' then 171

 sched_words_q(4 to 43) <= sched_words_d(4 to 43); 172

 end if; 173

 174

 end if; 175

 176

 if reset= '1' or stoped_i = '1' then 177

 key_sel <= 0; 178

 key_next_sel <= 1; 179

 elsif i_sleep = '0' and count_i = '1' then 180

 key_sel <= key_sel +1; 181

 key_next_sel <= key_next_sel +1; 182

 end if; 183

 end if; 184

end process DPATH_REGS; 185

-- 186

-- Key Round 187

-- 188

 --Input Mux 189

 subkey_i(0) <= sched_words_q(key_sel*4); 190

 subkey_i(1) <= sched_words_q(key_sel*4+1); 191

 subkey_i(2) <= sched_words_q(key_sel*4+2); 192

 subkey_i(3) <= sched_words_q(key_sel*4+3); 193

 ------------------------------------- 194

 SubWord3: entity SubWord(Parallel) 195

 ------------------------------------- 196

 port map (i_word => subkey_i(3),o_word => subword_o); 197

 ------------------------------------- 198

 --rcon[k] xor rotWord() 199

 ------------------------------------- 200

 rcon_i(0) <= subword_o(1) xor RCON(key_sel); 201

 rcon_i(1) <= subword_o(2); 202

 rcon_i(2) <= subword_o(3); 203

 rcon_i(3) <= subword_o(0); 204

 205

 subkey_o(0) <= rcon_i xor subkey_i(0) ; 206

 subkey_o(1) <= rcon_i xor subkey_i(0) xor subkey_i(1) ; 207

 subkey_o(2) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) ; 208

 subkey_o(3) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) xor subkey_i(3); 209

 -- 210

 out_mux:process(key_next_sel,subkey_o) 211

-- 212

 begin 213

 sched_words_d(key_next_sel*4) <= subkey_o(0); 214

 sched_words_d(key_next_sel*4 + 1) <= subkey_o(1); 215

 sched_words_d(key_next_sel*4 + 2) <= subkey_o(2); 216

 sched_words_d(key_next_sel*4 + 3) <= subkey_o(3); 217

 end process out_mux; 218

-- 219

 RoundKeys_o : for k in 0 to 10 generate 220

-- 221

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k), 222

 sched_words_q(4*k+1), 223

 sched_words_q(4*k+2), 224

 sched_words_q(4*k+3)); 225

 end generate RoundKeys_o; 226

-- 227

end Sequential; 228

350 Appendix E. AES Implementation

architecture Sequential of keyExpansion is 112

type StateType is (s0_Ready,s1_SchedRounds,s2_FinalRound); 113

type sub_key_t is array (0 to 3) of word_t; 114

type byte_array_t is array (0 to 9) of std_logic_vector(7 downto 0); 115

type key_schedule_t is array (0 to 43) of word_t; 116

 117

signal state, nextstate: StateType; 118

signal key_sel : integer range 0 to 9; 119

signal key_next_sel : integer range 1 to 10; 120

signal count_i,stoped_i : std_logic; 121

signal subkey_i,subkey_o:sub_key_t; 122

signal subword_o,rcon_i :word_t; 123

signal sched_words_d,sched_words_q : key_schedule_t; 124

constant RCON:byte_array_t:=(x"01",x"02",x"04",x"08",x"10",x"20",x"40",x"80",x"1B", x"36"); 125

begin 126

-- 127

FSM:process(state,i_run,key_sel) 128

-- 129

begin 130

 stoped_i <= '0'; 131

 nextstate <= state; 132

 count_i <= '1'; 133

 case state is 134

 when s0_Ready=> 135

 stoped_i <= '1'; 136

 if(i_run = '1') then 137

 nextstate <= s1_SchedRounds; 138

 end if; 139

 when s1_SchedRounds=> 140

 if(key_sel = 8) then 141

 nextstate <= s2_FinalRound; 142

 end if; 143

 when s2_FinalRound=> 144

 count_i <= '0'; 145

 nextstate <= s0_Ready; 146

 end case; 147

end process FSM; 148

-- 149

DPATH_REGS:process(clock) 150

-- 151

begin 152

 if rising_edge(clock) then 153

 154

 if reset= '1' then 155

 state <= s0_Ready; 156

 elsif i_sleep = '0' then 157

 state <= nextstate; 158

 end if; 159

 160

 if reset= '1' then 161

 sched_words_q <= (others=>(ZERO_WORD)); 162

 else 163

 if i_sleep = '0' and i_run = '1' then 164

 sched_words_q(0) <= conv_word(i_cipher_key(127 downto 96)); 165

 sched_words_q(1) <= conv_word(i_cipher_key(95 downto 64)); 166

 sched_words_q(2) <= conv_word(i_cipher_key(63 downto 32)); 167

 sched_words_q(3) <= conv_word(i_cipher_key(31 downto 0)); 168

 end if; 169

 170

 if i_sleep = '0' and stoped_i = '0' then 171

 sched_words_q(4 to 43) <= sched_words_d(4 to 43); 172

 end if; 173

 174

 end if; 175

 176

 if reset= '1' or stoped_i = '1' then 177

 key_sel <= 0; 178

 key_next_sel <= 1; 179

 elsif i_sleep = '0' and count_i = '1' then 180

 key_sel <= key_sel +1; 181

 key_next_sel <= key_next_sel +1; 182

 end if; 183

 end if; 184

end process DPATH_REGS; 185

-- 186

-- Key Round 187

-- 188

 --Input Mux 189

 subkey_i(0) <= sched_words_q(key_sel*4); 190

 subkey_i(1) <= sched_words_q(key_sel*4+1); 191

 subkey_i(2) <= sched_words_q(key_sel*4+2); 192

 subkey_i(3) <= sched_words_q(key_sel*4+3); 193

 ------------------------------------- 194

 SubWord3: entity SubWord(Parallel) 195

 ------------------------------------- 196

 port map (i_word => subkey_i(3),o_word => subword_o); 197

 ------------------------------------- 198

 --rcon[k] xor rotWord() 199

 ------------------------------------- 200

 rcon_i(0) <= subword_o(1) xor RCON(key_sel); 201

 rcon_i(1) <= subword_o(2); 202

 rcon_i(2) <= subword_o(3); 203

 rcon_i(3) <= subword_o(0); 204

 205

 subkey_o(0) <= rcon_i xor subkey_i(0) ; 206

 subkey_o(1) <= rcon_i xor subkey_i(0) xor subkey_i(1) ; 207

 subkey_o(2) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) ; 208

 subkey_o(3) <= rcon_i xor subkey_i(0) xor subkey_i(1) xor subkey_i(2) xor subkey_i(3); 209

 -- 210

 out_mux:process(key_next_sel,subkey_o) 211

-- 212

 begin 213

 sched_words_d(key_next_sel*4) <= subkey_o(0); 214

 sched_words_d(key_next_sel*4 + 1) <= subkey_o(1); 215

 sched_words_d(key_next_sel*4 + 2) <= subkey_o(2); 216

 sched_words_d(key_next_sel*4 + 3) <= subkey_o(3); 217

 end process out_mux; 218

-- 219

 RoundKeys_o : for k in 0 to 10 generate 220

-- 221

 o_round_keys(k) <= conv_std_logic_vector(sched_words_q(4*k), 222

 sched_words_q(4*k+1), 223

 sched_words_q(4*k+2), 224

 sched_words_q(4*k+3)); 225

 end generate RoundKeys_o; 226

-- 227

end Sequential; 228

Appendix E. AES Implementation 351

Listing E.5: AES Cipher Round - architecture description using VHDL.

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

library ieee; 4

use ieee.std_logic_1164.all; 5

library aes_128_v1_00_a; 6

use aes_128_v1_00_a.aes128Pkg.all; 7

use aes_128_v1_00_a.SubBytes; 8

use aes_128_v1_00_a.MixColumns; 9

 10

entity CipherRound is 11

 port (i_state : in matrix_t; 12

 i_round_key : in std_logic_vector(127 downto 0); 13

 o_state : out matrix_t); 14

end entity CipherRound; 15

 16

architecture Pipeline of CipherRound is 17

 signal sub_bytes_o : matrix_t; 18

 signal shift_rows_o : matrix_t; 19

 signal mix_columns_o : matrix_t; 20

begin 21

 22

SubBytes_i : entity SubBytes(Parallel) 23

 port map (24

 i_state => i_state, 25

 o_state => sub_bytes_o); 26

 27

 shift_rows_o <= ShiftRows(sub_bytes_o); 28

 29

MixColumns_i : entity MixColumns 30

 port map (31

 i_state => shift_rows_o, 32

 o_state => mix_columns_o); 33

 34

o_state <= AddRoundKey(mix_columns_o, i_round_key); 35

 36

end architecture Pipeline; 37

Listing E.6: AES SubBytes - architecture description using VHDL.

library ieee; 1

use ieee.std_logic_1164.all; 2

library aes_128_v1_00_a; 3

use aes_128_v1_00_a.aes128Pkg.all; 4

use aes_128_v1_00_a.SubWord; 5

 6

entity SubBytes is 7

 port (8

 i_state : in matrix_t; 9

 o_state : out matrix_t); 10

end entity SubBytes; 11

 12

architecture Parallel of SubBytes is 13

begin 14

SubWord0 : entity SubWord(Parallel) 15

 port map (16

 i_word => i_state(0), 17

 o_word => o_state(0)); 18

SubWord1 : entity SubWord(Parallel) 19

 port map (20

 i_word => i_state(1), 21

 o_word => o_state(1)); 22

SubWord2 : entity SubWord(Parallel) 23

 port map (24

 i_word => i_state(2), 25

 o_word => o_state(2)); 26

SubWord3 : entity SubWord(Parallel) 27

 port map (28

 i_word => i_state(3), 29

 o_word => o_state(3)); 30

end architecture Parallel; 31

 32

 33

architecture Lut of SubBytes is 34

begin 35

SubWord0 : entity SubWord(Lut) 36

 port map (37

 i_word => i_state(0), 38

 o_word => o_state(0)); 39

SubWord1 : entity SubWord(Lut) 40

 port map (41

 i_word => i_state(1), 42

 o_word => o_state(1)); 43

SubWord2 : entity SubWord(Lut) 44

 port map (45

 i_word => i_state(2), 46

 o_word => o_state(2)); 47

SubWord3 : entity SubWord(Lut) 48

 port map (49

 i_word => i_state(3), 50

 o_word => o_state(3)); 51

end architecture Lut; 52

352 Appendix E. AES Implementation

library ieee; 1

use ieee.std_logic_1164.all; 2

library aes_128_v1_00_a; 3

use aes_128_v1_00_a.aes128Pkg.all; 4

use aes_128_v1_00_a.SubWord; 5

 6

entity SubBytes is 7

 port (8

 i_state : in matrix_t; 9

 o_state : out matrix_t); 10

end entity SubBytes; 11

 12

architecture Parallel of SubBytes is 13

begin 14

SubWord0 : entity SubWord(Parallel) 15

 port map (16

 i_word => i_state(0), 17

 o_word => o_state(0)); 18

SubWord1 : entity SubWord(Parallel) 19

 port map (20

 i_word => i_state(1), 21

 o_word => o_state(1)); 22

SubWord2 : entity SubWord(Parallel) 23

 port map (24

 i_word => i_state(2), 25

 o_word => o_state(2)); 26

SubWord3 : entity SubWord(Parallel) 27

 port map (28

 i_word => i_state(3), 29

 o_word => o_state(3)); 30

end architecture Parallel; 31

 32

 33

architecture Lut of SubBytes is 34

begin 35

SubWord0 : entity SubWord(Lut) 36

 port map (37

 i_word => i_state(0), 38

 o_word => o_state(0)); 39

SubWord1 : entity SubWord(Lut) 40

 port map (41

 i_word => i_state(1), 42

 o_word => o_state(1)); 43

SubWord2 : entity SubWord(Lut) 44

 port map (45

 i_word => i_state(2), 46

 o_word => o_state(2)); 47

SubWord3 : entity SubWord(Lut) 48

 port map (49

 i_word => i_state(3), 50

 o_word => o_state(3)); 51

end architecture Lut; 52

Listing E.7: AES SubWord - architecture description using VHDL.

library IEEE; 1

use IEEE.std_logic_1164.all; 2

library aes_128_v1_00_a; 3

use aes_128_v1_00_a.aes128Pkg.all; 4

use aes_128_v1_00_a.sbox; 5

 6

entity SubWord is 7

 port (8

 i_word : in word_t; 9

 o_word : out word_t); 10

end entity SubWord; 11

 12

architecture Parallel of SubWord is 13

begin 14

 sbox_b0 : entity sbox(DCanright) 15

 port map (16

 i_data => i_word(0), 17

 o_data => o_word(0)); 18

 sbox_b1 : entity sbox(DCanright) 19

 port map (20

 i_data => i_word(1), 21

 o_data => o_word(1)); 22

 sbox_b2 : entity sbox(DCanright) 23

 port map (24

 i_data => i_word(2), 25

 o_data => o_word(2)); 26

 sbox_b3 : entity sbox(DCanright) 27

 port map (28

 i_data => i_word(3), 29

 o_data => o_word(3)); 30

end architecture Parallel; 31

Listing E.8: AES Sbox - architecture description using VHDL (back to Figure E.8).

library IEEE; 1

use IEEE.std_logic_1164.all; 2

use IEEE.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.byte_t; 5

 6

entity sbox is 7

 port (i_data : in byte_t; 8

 o_data : out byte_t); 9

 10

end entity sbox; 11

 12

architecture DCanright of SBox is 13

 type byte_array_t is array (0 to 7) of byte_t; 14

 15

-- to convert between polynomial (A^7...1) basis A & normal basis X 16

-- or to basis S which incorporates bit matrix of Sbox 17

 constant A2X : byte_array_t := (x"98", x"F3", x"F2", x"48", x"09", x"81", x"A9", x"FF"); 18

 constant X2S : byte_array_t := (x"58", x"2D", x"9E", x"0B", x"DC", x"04", x"03", x"24"); 19

 --multiply in GF(2^2), using normal basis (Omega^2,Omega) 20

 function G4_mul (21

 x : std_logic_vector(1 downto 0); 22

 y : std_logic_vector(1 downto 0)) 23

 return std_logic_vector is 24

 variable a, b, c, d, e, p, q : std_logic; 25

 begin 26

 a := x(1); b := x(0); 27

 c := y(1); d := y(0); 28

 e := (a xor b) and (c xor d); 29

 p := (a and c) xor e; 30

 q := (b and d) xor e; 31

 return p & q; 32

 end function G4_mul; 33

 34

 --scale by N = Omega^2 in GF(2^2), using normal basis (Omega^2,Omega) 35

 function G4_scl_N (36

 x : std_logic_vector(1 downto 0)) 37

 return std_logic_vector is 38

 begin 39

 return (x(0) & (x(0) xor x(1))); 40

 end function G4_scl_N; 41

 42

 --scale by N^2 = Omega in GF(2^2), using normal basis (Omega^2,Omega) 43

 function G4_scl_N2 (44

 x : std_logic_vector(1 downto 0)) 45

 return std_logic_vector is 46

 begin 47

 return ((x(0) xor x(1)) & x(1)); 48

 end function G4_scl_N2; 49

 50

-- square in GF(2^2), using normal basis (Omega^2,Omega) 51

-- NOTE: inverse is identical 52

 function G4_sq (53

 x : std_logic_vector(1 downto 0)) 54

 return std_logic_vector is 55

 begin 56

 return (x(0) & x(1)); 57

 end function G4_sq; 58

 59

--multiply in GF(2^4), using normal basis (alpha^8,alpha^2) 60

 function G16_mul (61

 x : std_logic_vector(3 downto 0); 62

 y : std_logic_vector(3 downto 0)) 63

 return std_logic_vector is 64

 variable a, b, c, d, e, p, q : std_logic_vector(1 downto 0); 65

 begin 66

 a := x(3 downto 2); b := x(1 downto 0); 67

 c := y(3 downto 2); d := y(1 downto 0); 68

 e := G4_mul(a xor b, c xor d); 69

 e := G4_scl_N(e); 70

 p := (G4_mul(a, c) xor e); 71

 q := (G4_mul(b, d) xor e); 72

 return p & q; 73

 end function G16_mul; 74

 75

--square & scale by nu in GF(2^4)/GF(2^2), normal basis (alpha^8,alpha^2) 76

--nu = beta^8 = N^2*alpha^2, N = w^2 77

 function G16_sq_scl (78

 x : std_logic_vector(3 downto 0)) 79

 return std_logic_vector is 80

 variable p, q : std_logic_vector(1 downto 0); 81

 begin 82

 p := G4_sq(x(3 downto 2) xor x(1 downto 0)); 83

 q := G4_scl_N2(G4_sq(x(1 downto 0))); 84

 return p & q; 85

 end function G16_sq_scl; 86

 87

--inverse in GF(2^4), using normal basis (alpha^8,alpha^2) 88

 function G16_inv (89

 x : std_logic_vector(3 downto 0)) 90

 return std_logic_vector is 91

 variable a,b,c,d,e,p,q : std_logic_vector(1 downto 0); 92

 begin 93

 a := x(3 downto 2); b := x(1 downto 0); 94

 c := G4_scl_N(G4_sq(a xor b)); 95

 d := G4_mul(a, b); 96

 e := G4_sq(c xor d); 97

 p := G4_mul(e, b); 98

 q := G4_mul(e, a); 99

 return p & q; 100

 end function G16_inv; 101

 102

 --inverse in GF(2^8), using normal basis (d^16,d) 103

 function G256_inv (104

 x : std_logic_vector(7 downto 0)) 105

 return std_logic_vector is 106

 variable a,b,c,d,e,p,q : std_logic_vector(3 downto 0); 107

 begin 108

 a := x(7 downto 4); b:= x(3 downto 0); 109

 c := G16_sq_scl(a xor b); 110

 d := G16_mul(a, b); 111

 e := G16_inv(c xor d); 112

 p := G16_mul(e, b); 113

 q := G16_mul(e, a); 114

 return p & q; 115

 end function G256_inv; 116

 117

--convert to new basis in GF(2^8), i.e., bit matrix multiply 118

 function G256_newbasis (119

 x : byte_t; 120

 b : byte_array_t) 121

 return byte_t is 122

 variable y : byte_t; 123

 begin 124

 y := (others=>'0'); 125

 for i in 7 downto 0 loop 126

 if x(7-i) = '1' then 127

 y := y xor b(i); 128

 end if; 129

 end loop; 130

 return y; 131

 end function G256_newbasis; 132

 133

 signal t0 : byte_t; 134

 signal t1 : byte_t; 135

 signal t2 : byte_t; 136

 137

begin 138

 139

 t0 <= G256_newbasis(i_data, A2X); 140

 t1 <= G256_inv(t0); 141

 t2 <= G256_newbasis(t1, X2S); 142

 143

 o_data <= t2 xor x"63"; 144

end architecture DCanright; 145

Appendix E. AES Implementation 353

library IEEE; 1

use IEEE.std_logic_1164.all; 2

use IEEE.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.byte_t; 5

 6

entity sbox is 7

 port (i_data : in byte_t; 8

 o_data : out byte_t); 9

 10

end entity sbox; 11

 12

architecture DCanright of SBox is 13

 type byte_array_t is array (0 to 7) of byte_t; 14

 15

-- to convert between polynomial (A^7...1) basis A & normal basis X 16

-- or to basis S which incorporates bit matrix of Sbox 17

 constant A2X : byte_array_t := (x"98", x"F3", x"F2", x"48", x"09", x"81", x"A9", x"FF"); 18

 constant X2S : byte_array_t := (x"58", x"2D", x"9E", x"0B", x"DC", x"04", x"03", x"24"); 19

 --multiply in GF(2^2), using normal basis (Omega^2,Omega) 20

 function G4_mul (21

 x : std_logic_vector(1 downto 0); 22

 y : std_logic_vector(1 downto 0)) 23

 return std_logic_vector is 24

 variable a, b, c, d, e, p, q : std_logic; 25

 begin 26

 a := x(1); b := x(0); 27

 c := y(1); d := y(0); 28

 e := (a xor b) and (c xor d); 29

 p := (a and c) xor e; 30

 q := (b and d) xor e; 31

 return p & q; 32

 end function G4_mul; 33

 34

 --scale by N = Omega^2 in GF(2^2), using normal basis (Omega^2,Omega) 35

 function G4_scl_N (36

 x : std_logic_vector(1 downto 0)) 37

 return std_logic_vector is 38

 begin 39

 return (x(0) & (x(0) xor x(1))); 40

 end function G4_scl_N; 41

 42

 --scale by N^2 = Omega in GF(2^2), using normal basis (Omega^2,Omega) 43

 function G4_scl_N2 (44

 x : std_logic_vector(1 downto 0)) 45

 return std_logic_vector is 46

 begin 47

 return ((x(0) xor x(1)) & x(1)); 48

 end function G4_scl_N2; 49

 50

-- square in GF(2^2), using normal basis (Omega^2,Omega) 51

-- NOTE: inverse is identical 52

 function G4_sq (53

 x : std_logic_vector(1 downto 0)) 54

 return std_logic_vector is 55

 begin 56

 return (x(0) & x(1)); 57

 end function G4_sq; 58

 59

--multiply in GF(2^4), using normal basis (alpha^8,alpha^2) 60

 function G16_mul (61

 x : std_logic_vector(3 downto 0); 62

 y : std_logic_vector(3 downto 0)) 63

 return std_logic_vector is 64

 variable a, b, c, d, e, p, q : std_logic_vector(1 downto 0); 65

 begin 66

 a := x(3 downto 2); b := x(1 downto 0); 67

 c := y(3 downto 2); d := y(1 downto 0); 68

 e := G4_mul(a xor b, c xor d); 69

 e := G4_scl_N(e); 70

 p := (G4_mul(a, c) xor e); 71

 q := (G4_mul(b, d) xor e); 72

 return p & q; 73

 end function G16_mul; 74

 75

--square & scale by nu in GF(2^4)/GF(2^2), normal basis (alpha^8,alpha^2) 76

--nu = beta^8 = N^2*alpha^2, N = w^2 77

 function G16_sq_scl (78

 x : std_logic_vector(3 downto 0)) 79

 return std_logic_vector is 80

 variable p, q : std_logic_vector(1 downto 0); 81

 begin 82

 p := G4_sq(x(3 downto 2) xor x(1 downto 0)); 83

 q := G4_scl_N2(G4_sq(x(1 downto 0))); 84

 return p & q; 85

 end function G16_sq_scl; 86

 87

--inverse in GF(2^4), using normal basis (alpha^8,alpha^2) 88

 function G16_inv (89

 x : std_logic_vector(3 downto 0)) 90

 return std_logic_vector is 91

 variable a,b,c,d,e,p,q : std_logic_vector(1 downto 0); 92

 begin 93

 a := x(3 downto 2); b := x(1 downto 0); 94

 c := G4_scl_N(G4_sq(a xor b)); 95

 d := G4_mul(a, b); 96

 e := G4_sq(c xor d); 97

 p := G4_mul(e, b); 98

 q := G4_mul(e, a); 99

 return p & q; 100

 end function G16_inv; 101

 102

 --inverse in GF(2^8), using normal basis (d^16,d) 103

 function G256_inv (104

 x : std_logic_vector(7 downto 0)) 105

 return std_logic_vector is 106

 variable a,b,c,d,e,p,q : std_logic_vector(3 downto 0); 107

 begin 108

 a := x(7 downto 4); b:= x(3 downto 0); 109

 c := G16_sq_scl(a xor b); 110

 d := G16_mul(a, b); 111

 e := G16_inv(c xor d); 112

 p := G16_mul(e, b); 113

 q := G16_mul(e, a); 114

 return p & q; 115

 end function G256_inv; 116

 117

--convert to new basis in GF(2^8), i.e., bit matrix multiply 118

 function G256_newbasis (119

 x : byte_t; 120

 b : byte_array_t) 121

 return byte_t is 122

 variable y : byte_t; 123

 begin 124

 y := (others=>'0'); 125

 for i in 7 downto 0 loop 126

 if x(7-i) = '1' then 127

 y := y xor b(i); 128

 end if; 129

 end loop; 130

 return y; 131

 end function G256_newbasis; 132

 133

 signal t0 : byte_t; 134

 signal t1 : byte_t; 135

 signal t2 : byte_t; 136

 137

begin 138

 139

 t0 <= G256_newbasis(i_data, A2X); 140

 t1 <= G256_inv(t0); 141

 t2 <= G256_newbasis(t1, X2S); 142

 143

 o_data <= t2 xor x"63"; 144

end architecture DCanright; 145

354 Appendix E. AES Implementation

library IEEE; 1

use IEEE.std_logic_1164.all; 2

use IEEE.numeric_std.all; 3

library aes_128_v1_00_a; 4

use aes_128_v1_00_a.aes128Pkg.byte_t; 5

 6

entity sbox is 7

 port (i_data : in byte_t; 8

 o_data : out byte_t); 9

 10

end entity sbox; 11

 12

architecture DCanright of SBox is 13

 type byte_array_t is array (0 to 7) of byte_t; 14

 15

-- to convert between polynomial (A^7...1) basis A & normal basis X 16

-- or to basis S which incorporates bit matrix of Sbox 17

 constant A2X : byte_array_t := (x"98", x"F3", x"F2", x"48", x"09", x"81", x"A9", x"FF"); 18

 constant X2S : byte_array_t := (x"58", x"2D", x"9E", x"0B", x"DC", x"04", x"03", x"24"); 19

 --multiply in GF(2^2), using normal basis (Omega^2,Omega) 20

 function G4_mul (21

 x : std_logic_vector(1 downto 0); 22

 y : std_logic_vector(1 downto 0)) 23

 return std_logic_vector is 24

 variable a, b, c, d, e, p, q : std_logic; 25

 begin 26

 a := x(1); b := x(0); 27

 c := y(1); d := y(0); 28

 e := (a xor b) and (c xor d); 29

 p := (a and c) xor e; 30

 q := (b and d) xor e; 31

 return p & q; 32

 end function G4_mul; 33

 34

 --scale by N = Omega^2 in GF(2^2), using normal basis (Omega^2,Omega) 35

 function G4_scl_N (36

 x : std_logic_vector(1 downto 0)) 37

 return std_logic_vector is 38

 begin 39

 return (x(0) & (x(0) xor x(1))); 40

 end function G4_scl_N; 41

 42

 --scale by N^2 = Omega in GF(2^2), using normal basis (Omega^2,Omega) 43

 function G4_scl_N2 (44

 x : std_logic_vector(1 downto 0)) 45

 return std_logic_vector is 46

 begin 47

 return ((x(0) xor x(1)) & x(1)); 48

 end function G4_scl_N2; 49

 50

-- square in GF(2^2), using normal basis (Omega^2,Omega) 51

-- NOTE: inverse is identical 52

 function G4_sq (53

 x : std_logic_vector(1 downto 0)) 54

 return std_logic_vector is 55

 begin 56

 return (x(0) & x(1)); 57

 end function G4_sq; 58

 59

--multiply in GF(2^4), using normal basis (alpha^8,alpha^2) 60

 function G16_mul (61

 x : std_logic_vector(3 downto 0); 62

 y : std_logic_vector(3 downto 0)) 63

 return std_logic_vector is 64

 variable a, b, c, d, e, p, q : std_logic_vector(1 downto 0); 65

 begin 66

 a := x(3 downto 2); b := x(1 downto 0); 67

 c := y(3 downto 2); d := y(1 downto 0); 68

 e := G4_mul(a xor b, c xor d); 69

 e := G4_scl_N(e); 70

 p := (G4_mul(a, c) xor e); 71

 q := (G4_mul(b, d) xor e); 72

 return p & q; 73

 end function G16_mul; 74

 75

--square & scale by nu in GF(2^4)/GF(2^2), normal basis (alpha^8,alpha^2) 76

--nu = beta^8 = N^2*alpha^2, N = w^2 77

 function G16_sq_scl (78

 x : std_logic_vector(3 downto 0)) 79

 return std_logic_vector is 80

 variable p, q : std_logic_vector(1 downto 0); 81

 begin 82

 p := G4_sq(x(3 downto 2) xor x(1 downto 0)); 83

 q := G4_scl_N2(G4_sq(x(1 downto 0))); 84

 return p & q; 85

 end function G16_sq_scl; 86

 87

--inverse in GF(2^4), using normal basis (alpha^8,alpha^2) 88

 function G16_inv (89

 x : std_logic_vector(3 downto 0)) 90

 return std_logic_vector is 91

 variable a,b,c,d,e,p,q : std_logic_vector(1 downto 0); 92

 begin 93

 a := x(3 downto 2); b := x(1 downto 0); 94

 c := G4_scl_N(G4_sq(a xor b)); 95

 d := G4_mul(a, b); 96

 e := G4_sq(c xor d); 97

 p := G4_mul(e, b); 98

 q := G4_mul(e, a); 99

 return p & q; 100

 end function G16_inv; 101

 102

 --inverse in GF(2^8), using normal basis (d^16,d) 103

 function G256_inv (104

 x : std_logic_vector(7 downto 0)) 105

 return std_logic_vector is 106

 variable a,b,c,d,e,p,q : std_logic_vector(3 downto 0); 107

 begin 108

 a := x(7 downto 4); b:= x(3 downto 0); 109

 c := G16_sq_scl(a xor b); 110

 d := G16_mul(a, b); 111

 e := G16_inv(c xor d); 112

 p := G16_mul(e, b); 113

 q := G16_mul(e, a); 114

 return p & q; 115

 end function G256_inv; 116

 117

--convert to new basis in GF(2^8), i.e., bit matrix multiply 118

 function G256_newbasis (119

 x : byte_t; 120

 b : byte_array_t) 121

 return byte_t is 122

 variable y : byte_t; 123

 begin 124

 y := (others=>'0'); 125

 for i in 7 downto 0 loop 126

 if x(7-i) = '1' then 127

 y := y xor b(i); 128

 end if; 129

 end loop; 130

 return y; 131

 end function G256_newbasis; 132

 133

 signal t0 : byte_t; 134

 signal t1 : byte_t; 135

 signal t2 : byte_t; 136

 137

begin 138

 139

 t0 <= G256_newbasis(i_data, A2X); 140

 t1 <= G256_inv(t0); 141

 t2 <= G256_newbasis(t1, X2S); 142

 143

 o_data <= t2 xor x"63"; 144

end architecture DCanright; 145

Appendix E. AES Implementation 355

Listing E.9: AES MixColumns description using VHDL (Figure E.16).

library ieee; 1

use ieee.std_logic_1164.all; 2

use ieee.numeric_std.all; 3

library ieee; 4

use ieee.std_logic_1164.all; 5

library aes_128_v1_00_a; 6

use aes_128_v1_00_a.aes128Pkg.all; 7

use aes_128_v1_00_a.mixWord; 8

 9

entity MixColumns is 10

 port (11

 i_state : in matrix_t; 12

 o_state : out matrix_t); 13

end entity MixColumns; 14

 15

architecture Structural of MixColumns is 16

begin 17

Column0: entity mixWord(Structural) 18

 port map (i_word => i_state(0), 19

 o_word => o_state(0)); 20

 21

Column1: entity mixWord(Structural) 22

 port map (i_word => i_state(1), 23

 o_word => o_state(1)); 24

 25

Column2: entity mixWord(Structural) 26

 port map (i_word => i_state(2), 27

 o_word => o_state(2)); 28

 29

Column3: entity mixWord(Structural) 30

 port map (i_word => i_state(3), 31

 o_word => o_state(3)); 32

end architecture Structural;33

Appendix F

Features from Segment Test

In this appendix, we describe some of the hardware accelerated FAST datapath design considerations,

while applying the concept of asynchronous-synchronous design. Such datapath is fundamentally com-

posed of two IPS, which implement the detection of key points, here referred as FAST for simplicity, and

the corresponding non-maximum suppression here referred as NMS. Storing of the output results of this

datapath uses a 32-bit HW-FIFO, and for this reason, it’s not discussed in this Appendix, as it was already

discussed in Chapter 4. To allow operating over distinct image sizes and experimental conditions, the de-

veloped IPs provide a configuration interface composed of three parameter registers, and a device control

register. Figure F.1 shows a logic diagram that describes this interface.

CE

reset

D Q

clk

CE

reset

D Q

clk

FF0

FF1

CE

reset

D Q

clk

FF2

CE

reset

D Q

clk

FF3

clock
reset

clock
reset

clock
reset

clock

reset

WR_CE

CS_i[3:0]

i_data[16:0]

with_q

height_q

treshold_q

run_q
(RUN_BIT)

SUBB

result

ALU

1
CE

reset

D Q

clk

FF4

clock

reset

end_of_line

SUBB

result

ALU

1
CE

reset

D Q

clk

FF5

clock

reset

end_of_image

(width_bit)

(height_bit)

(treshold_bit)

(ctrl_bit)

debounced_ce_with

debounced_ce_height

ce_width

ce_height

WR_CE

WR_CE

debounced_ce_width

reset

clk
clock

reset

G0

G1

G2

G3

A0

A1

U0

U1

CE

reset

D Q

clk

clock
reset

CE

reset

D Q

clkclock

FF6 FF7

reset

Debounce_CE

debounced_ce_height
cs_i(height_bit)

Debounce_CE
cs_i(width_bit)

D

Q

CE

Figure F.1: HW-Fast or HW-NMS parameter registers.

356

Appendix F. Features from Segment Test 357

To write in the register area, the chip select bus (CS_i) selects one of the four existing registers defining:

the image resolution, through the with_q (FF0) and height_q (FF1) registers; the threshold value (FF2)

used as a parameter in FAST; and finally, the control register (FF3) that allows starting and stopping the

IP operation by asserting the run_q bit. When the write enable clock signal (WR_CE) is active for at least

one clock pulse, the combination of G0 to G3, selects the CE input in the corresponding register, and

therefore stores the value of the i_data input. Writing to FF0 and FF1 establishes the image parameters,

and in response, using U0 and U1, it establishes the read and write address limits for the 6 lines (lines 1

to 6) of the IP FAST local storage. Similar operation is observed in the NMS but in this time used only in

lines 1 and 2 of the local storage.

F.1 Feature Detection

Feature Detection implements the FAST algorithm up to the scoring and contiguity checking stages. Such

design operates on seven image lines provided locally which are replaced by new lines as the Line zero

pixels advance in the datapath. For this purpose, it implements seven true dual-port RAMs, U0 to U6, as

it can be seen in the logic diagram of Figure F.2. To control the flow of image lines, the design implements

the address controller, U7 in the figure, which generates the read and write addresses according to the

handshakes it performs between: the operations of writing pixels on the line 0; and the advancement the

data in the Bresenham to the classifilter unit.

To form a Bresenham circle, the FAST’s datapath implements a matrix of registers with seven rows and

seven columns, which operates as a shift register of seven positions per row. The pixel in the center of the

matrix, marked in green, is the target of the FAST algorithm and will be compared with the sixteen pixels

on the circle periphery, marked in orange, to determine whether the center is darker or brighter than each

of the pixels in orange.

The comparison step is implemented by the classifilter unit, U8 in Figure F.2. Beyond this point data

flow is divided between the light and dark comparisons, being distributed concurrently by the contiguity

checking and scoring units that implement the two final steps of the feature detection. The output result

of each unit converges to a single data stream that determines the final score of the central pixel, using

U11 for handshake, and A0 and M0 for choosing one of the two flows, and FF49 for storing the chosen

score.

358 Appendix F. Features from Segment Test

p
6

p
1

2

p
1

3
p

5

U
0

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
1

p
1

6

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
3

p
1

5

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
2

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
4

p
1

4

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
c

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
7

p
1

1

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k p
9

p
1

0

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

C
E

re
se

t

D
Q

cl
k

p
8

Li
n

e
 0

TD
P

R

A
M

Li
n

e
 1

TD
P

R

A
M

TD
P

R

A
M

Li
n

e
 2

Li
n

e
 3

TD
P

R

A
M

Li
n

e
 4

TD
P

R

A
M

TD
P

R

A
M

Li
n

e
 5

TD
P

R

A
M

Li
n

e
 6

U
1

U
2

U
3

U
4

U
5 U
6

p
ix

el
_w

o
rd

[3
2

]
[7

:0
]

[7
:0

]

A
d

d
re

ss

C
o

n
tr

o
lle

r

[7
:0

]

[7
:0

]

[7
:0

]

[7
:0

]

[7
:0

]

ce
n

te
r_

va
lid

w
ri

te
_p

ix
el

s

re
ad

y_
to

_r
ec

ei
ve

cl
as

si
fi

lt
er

o
_r

ea
d

y_
fo

r_
d

at
a

i_
w

ri
te

_d
at

a

sc
o

ri
n

g

co
n

ti
gu

it
y

d
at

a_
va

lid
_a

i_
w

ri
te

_d
at

a

i_
w

ri
te

_d
at

a

o
_r

ea
d

y_
fo

r_
d

at
a

i_
re

ad
y_

to
_r

ec
ei

ve
_a

o
_d

at
a_

va
lid

d
at

a_
va

lid

o
_r

ea
d

y_
to

_r
ec

ei
ve

is
_c

o
n

ti
gu

o
u

s

is
_k

ey
p

o
in

t

Li
n

e
0

Li
n

e
1

Li
n

e
2

Li
n

e
3

Li
n

e
4

Li
n

e
5

Li
n

e
6

p
1

p
2

p
1

6

p
3

p
1

5
p

4

p
1

4
p

5

p
1

3
p

ce
n

te
r

p
6

p
1

2

p
7

p
1

1

p
8

p
9

p
1

0

w
ri

te
_a

d
d

r
re

ad
_a

d
d

r
w

ri
te

_p
ix

el
_c

e

i_
rt

r

i_
w

r
o

_c
e

o
_d

va
lid

o
_d

at
a_

va
lid

_b

i_
re

ad
y_

to
_r

ec
ei

ve
_b

o
_a

rr
_d

ar
k_

co
ef

[1
6

][
8

]

o
_a

rr
_b

ri
gh

t_
co

ef
[1

6
][

8
]

o
_a

rr
ay

_i
s_

d
ar

ke
r[

1
6

]

o
_a

rr
ay

_i
s_

b
ri

gh
te

r[
1

6
]

o
_r

fd
rd

y_
fo

r_
d

at
a

i_
ar

ra
y_

is
_d

ar
ke

r[
1

6
]

i_
ar

ra
y_

is
_b

ri
gh

te
r[

1
6

]

i_
ar

r_
d

ar
k_

co
ef

[1
6

][
8

]

i_
ar

r_
b

ri
gh

t_
co

ef
[1

6
][

8
]

as
yn

c_
n

o
d

e
(m

er
ge

)o
_d

at
a_

va
lid

o
_r

ea
d

y_
fo

r_
d

at
a_

a

o
_r

ea
d

y_
fo

r_
d

at
a_

b

i_
w

ri
te

_d
at

a_
a

i_
re

ad
y_

to
_r

ec
ei

ve

i_
w

ri
te

_d
at

a_
b

i_
re

ad
y_

to
_r

ec
ei

ve

o
_w

r_
sc

o
re

o
_c

e

i_
re

ad
y_

to
_r

ec
ei

ve
i_

rd
y_

fo
r_

d
at

a

o
_b

ri
gh

t_
sc

o
re

[1
2

]

o
_d

ar
k_

sc
o

re
[1

2
]

ca
rr
y

A
LUSU

B
B

0 0

0
0

0
1

1
0

1
1

C
E

re
se

t

D
Q

cl
k

o
_s

co
re

[1
2

]

cl
o

ck re
se

t

H
W

-F
A

ST
 d

at
ap

at
h

re
se

t
re

se
t

re
se

t
re

se
t

re
se

t
re

se
t

re
se

tre
se

t

re
se

t
re

se
t

cl
k

cl
o

ck

cl
k

cl
o

ck

cl
k

cl
o

ck

cl
k

cl
o

ck

U
7

U
8

U
9

U
1

0

U
1

1

A
0

M
0

FF
4

9

Fi
gu

re
F.
2:

H
ar
dw

ar
e
Fe
at
ur
e
de
te
ct
io
n
da
ta
pa
th
.

Appendix F. Features from Segment Test 359

F.1.1 Address Controller

The address controller synchronizes the FAST input pixel stream with the image size, by receiving 4-pixel

words at the input (32-bit) and copying the received pixels across the seven lines of local storage. This

component is also used in the NMS IP to synchronize the input scores and distribute the received values

over the two lines of local storage. For better understanding, the descriptions about the address controller

refer to its use in the FAST datapath, and a similar operation can be observed in the NMS datapath.

Figure F.3 shopws a simplified diagram of the address controller.

Q[9:0]
D[9:0]

increment

load

Counter
(16-bit)

reset
clock

reset

Q[9:0]
D[9:0]

increment

load

Counter
(16-bit)

reset
clock

ce

ce

Q[9:0]
D[9:0]

increment

load

Counter
(16-bit)

reset
clock

reset

ce

line_number

write_addr

read_addr

CE

reset

D Q

clk

FF0

reset

load_write

CE

reset

D Q

clk

FF1

reset

CE

reset

D Q

clk

FF5

reset

…

…

(1) (2)

(6)

…

ram_we_i[1:6]

MATCH

ALU

load_write

load_read

COMP

MATCH

ALU

COMP

end_of_line

0

0

run

0

run

load_write

done_q

end_of_image

done_i
MATCH

ALU

COMP

CE

reset

D Q

clk

FF7

reset

Address Controller

run_q

Asyncnode

U1o_data_valid_0

ready_for_data_1

o_data_valid

CE_1

i_rdy_to_rcv

CE_1

CE_1CE_1

CE_1

CE_1

C2

C3

C4

CE_1

U0i_write_pixels

o_rdy_for_data

CE_0

Asyncnode

Q[7:0]
D[7:0]

increment

load

Counter
(16-bit)

reset
clock

reset

ce

0

CE_0

C0

line0_write_addr

run_q

match

ALU

line0_write_addr[9:2]
COMP

space_available

line0_read_addr[9:2]

space_available

run_q

Q[9:0]
D[9:0]

increment

load

Counter
(16-bit)

reset
clock

reset

ce

0

CE_1

C1

run_q

line0_read_addr

CE_0
line0_we_i

A2

A3

[9:2]

A1

A4

CARRY

ALU
line0_write_addr[9:0]

SUBB

data_available

line0_read_addr[9:0] A0

data_available

done_i done_q

Figure F.3: Address controller hardware block diagram.

While writing to line zero, the ready for data flag is mandatory, and with the logic value ’1’ in the write

pixels input, U0 enables the CE_O signal at the input of the C0 counter, for at least one clock pulse. The

same signal is used to enable writing to RAM U0 of the FAST datapath (be means of line0_we_i), and

in the next clock cycle, four pixels are written to line zero and C0 advances one unit. The output of this

counter is then shifted two positions to the left to generate the next write address that advances at the

rate of four bytes, in response to the writing of four pixels.

At the same time, the data valid output of U0 is asserted, that triggers the handshake with U1, when

the flag ready for data is also asserted. In response, U1 activates the CE_1 signal that increments the

read address (i.e., line0_read_addr) in C1. This address is used to send data from the line L0 to the

datapath matrix, thus reducing the stream of data from 4 bytes to 1 byte. For this reason, the absolute

360 Appendix F. Features from Segment Test

read address in L0 is divided into bits [9:2] to form the word address, and at bits [1:0] to select byte 0

to 3 at the output (not represented). When read address reaches the value of the write address counter,

the data available flag in A0 is deasserted, thus stopping pixel read operations in U1. If otherwise the

writing address reaches the reading address with one line in advance, the space available flag in A1 is

deasserted, to prevent writing in addresses that where not yet read.

Similarly, counters C2 and C3 are used to copy 1-byte pixels from line ’i’ to line ’i+1’ before a new pixel

takes the line ’i’ space at the current read address. In this way, the read address is always one position

ahead of the write address, and to avoid propagating pixels that where not yet written, the ram_we_i signal

uses the six-position shift register, (FF0 to FF5), which enables writing to line ’i+1’ whenever the previous

line ’i’ reaches the value of end_of_line register. These registers keep write enabled in all RAMs after the

first seven lines of the image. At each increment in counters C2 and C3 , A2 and A3 compare the output

values with the end of line register, activating the load signal of the respective counter, when reaching the

end of the line. Whenever the writintg address reaches the end of a line, the load_write signal is also used

to increment C4 which counts the number of lines processed. This counter is reset to zero whenever the

count value reaches the end of image register in A4 and the done output is asserted. Ultimately, the read

address and line number counters are used to generate the x and y coordinates of the center pixel.

F.1.2 Classifier Filter

The classifilter block operates on data from the Bresenham circle in the FAST datapath and tests whether

the central pixel is brighter or darker than each of the sixteen pixels. For this, it implements a parallel

of bright and dark comparisons using sixteen classifilter_i modules. Figure F.4 shows the block diagram

of this component. The comparison between the central pixel and the adjacent pixel is obtained by

subtracting their intensities, in A0 and A1, for darker or brighter respectively. To eliminate proximity

cases, the difference value is further subtracted from the threshold parameter, in A2 and A3. Finally, the

resulting values are compared with zero in A4 and A5, being nulled in the output whenever the value is

less than zero.

Three active clock cycles are required to complete the computation between the 16 pixels and the central

pixel, and at the output of this component it can be seen a data stream that is distinguished by the values

of brighter and darker. Each of the streams includes an array of coefficients composed by the differences

between center and circle pixels, and an array of flags that indicate whether the center is brighter or darker

Appendix F. Features from Segment Test 361

than each pixel in the circle. To control the data flow, three asynchronous nodes are used, U0 to U2. At the

classifilter output, the data flow is divided between contiguity testing and score calculation, and as such,

U2 implements a split architecture that provides two distinct handshakes. In these, the data advance is

only signaled at the output, when the handshake of A and B channels has been performed.

p_center[7:0]

p_0[7:0]

SUBB

SUBB

CE

reset

D Q

clk

clock

reset

CE

reset

D Q

clk

clock

reset

Asyncnode

result

ALU

result

ALU

U0

A0

A1

SUBB

SUBB

CE

reset

D Q

clk
clock

reset

CE

reset

D Q

clk
clock

reset

Asyncnode

result

ALU

result

ALU

U1

A2

A3

threshold[7:0]

COMP

CE

reset

D Q

clk
clock

CE

reset

D Q

clkclock

reset

Asyncnode
(split)

GREATHER

ALU

U2

A5

COMP

GREATHER

ALU
A4

CE

reset

D Q

clkclock

reset

CE

reset

D Q

clk
clock

reset

1

0

1

0

reset

CE_0

CE_0

CE_1

CE_1

CE_2

i_write_pixels

o_rdy_for_data ready_for_data_1

data_valid_0

classifilter_i[0]

ready_for_data_2

data_valid_1
o_data_valid_a

o_data_valid_b
i_rdy_to_rcv_a

i_rdy_to_rcv_b

dark_coef[0]

is_darker[0]

is_brighter[0]

bright_coef[0]

…

dark_coef[15]

is_darker[15]

is_brighter[15]
bright_coef[15]

p_15[7:0]

classifilter_i[15]

classifilter

o_arr_dark_coef[16][8]

……

o_arr_bright_coef[16][8]

o_array_is_brighter[16]

o_array_is_darker[16]

CE_2

CE_2

CE_2

…

0

Figure F.4: Classifier filter hardware block diagram.

F.1.3 Contiguity Checking

The block contiguity check marks whether the central pixel is a key point in the image, in a continuity of 9

in 16 pixels (i.e., using FAST9_16). This calculation is performed simultaneously on both bright and dark

streams, using sixteen comparisons per stream, composed of nine consecutive elements extracted from

each flag array. It starts at the subset of elements 0 to 8 and advances one position for each comparison,

ending with flag subset 15 concatenated with subset 0 to 7. Figure F.5 describes the architecture of this

component using a diagram of logical elements.

The result of the sixteen comparisons, A0 to A15, is stored in register FF0, and in the next cycle, this

value is compared with zeros. If there is at least one comparison flag active, which signals a contiguity of

9 out of 16 pixels, the is_contiguous signal is asserted at the output two clock cycles later. The two delay

cycles implement data alignment with the scoring unit, which operates concurrently on the data stream,

and requires four active clock cycles.

362 Appendix F. Features from Segment Test

match

ALU

match

ALU

A0

A1

Asyncnode

U0

Asyncnode

U1

Asyncnode

U2
i_write_pixels

o_rdy_for_data ready_for_data_1

data_valid_0

ready_for_data_2

data_valid_1 data_valid_2

i_rdy_to_rcv_a
ready_for_data_3 Asyncnode

U3
o_data_valid

CE_0 CE_1 CE_2 CE_3

i_array_is_darker
“11111111”

[8:0]

[1:9]

match

ALU

match

ALU

A2

A3

[2:10]

[3:11]

[0:15]

COMP

COMP

COMP

COMP

[0]

[1]

[2]

[3]

match

ALU

match

ALU

A15

[14:15][0:6]

[15][0:7]]

COMP

[14]

[15]

A14

… … …

CE

reset

D Q

clk

FF0

CE_0

[0:15]

match

ALU

A16 COMP

X“0000” CE

reset

D Q

clk

FF1

CE_1

clock

reset

clock

reset

Contiguity_i

Contiguity_i

COMP

CE

reset

D Q

clk

FF2

CE_2

clock

reset

CE

reset

D Q

clk

FF3

CE_3

clock

reset

G0

i_array_is_brighter
[0:15]

o_is_contiguous

Contiguity

U4

U5

Figure F.5: Contiguity check hardware block diagram.

F.1.4 Scoring

The scoring unit operates on the set of differences between center and pixel in the circle to implement the

sum of the elements for the bright and dark data streams. Figure F.6 describes the internal implementation

of this unit through a diagram of logic elements. Each data stream is composed of sixteen elements of 8-

bit, which in the first clock cycle, require eight sums that are stored in 9-bit registers FF0 to FF7. In the next

clock cycle, four sums are required to receive the previous data, and results are stored in 10-bit registers

FF9 to FF11. In the third cycle only two sums are required, with results stored in 11-bit registers FF12 and

FF13, and lastly, the final sum is stored in the fourth cycle in the 12-bit register FF14. Components U0 to

U3 handshake between the four phases, and two scoring_i units, U4 and U5, compute the coefficients

of the bright and dark data streams.

F.1.5 Final Score

The last processing phase converges the two data streams to a single output, producing the final score for

the pixel in the center of the bresenham circle. Figure F.7 shows the logical diagram of this final computing

phase. To receive the two data streams from the contiguity and scoring units, this phase handshakes using

a merge architecture in U0, which only confirms the reception of data on channels A and B after both

inputs are simultaneously available. The final score will be set to the highest value between the bright and

Appendix F. Features from Segment Test 363

Asyncnode

U0

Asyncnode

U1

Asyncnode

U2
i_write_pixels

o_rdy_for_data
ready_for_data_1

data_valid_0

ready_for_data_2

data_valid_1 data_valid_2

i_rdy_to_rcv_b

Scoring

ready_for_data_3 Asyncnode

U3
o_data_valid

bright_coef[0]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A0

FF0

bright_coef[1]

[7:0]

[7:0]

[8:0]

bright_coef[2]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A1

FF1

bright_coef[3]

[7:0]

[7:0]

[8:0]

CE_0

CE_0

bright_coef[4]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A2

FF2

bright_coef[5]

[7:0]

[7:0]

[8:0]

bright_coef[6]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A3

FF3

bright_coef[7]

[7:0]

[7:0]

[8:0]

CE_0

CE_0

bright_coef[8]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A4

FF4

bright_coef[9]

[7:0]

[7:0]

[8:0]

bright_coef[10]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A5

FF5

bright_coef[11]

[7:0]

[7:0]

[8:0]

CE_0

CE_0

bright_coef[12]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A6

FF6

bright_coef[13]

[7:0]

[7:0]

[8:0]

bright_coef[14]

ADD

CE

reset

D Q

clk
clock

reset

result

ALU

A7

FF7

bright_coef[15]

[7:0]

[7:0]

[8:0]

CE_0

CE_0

ADD

CE

reset

D Q

clk
clock

result

ALU

A8

FF8
[8:0]

[8:0]

[9:0]

CE_1

ADD

CE

reset

D Q

clk
clock

result

ALU

A9

FF9
[8:0]

[8:0]

[9:0]

CE_1

ADD

CE

reset

D Q

clk
clock

result

ALU

A10

FF10
[8:0]

[8:0]

[9:0]

CE_1

ADD

CE

reset

D Q

clk
clock

result

ALU

A11

FF11
[8:0]

[8:0]

[9:0]

CE_1

ADD

CE

reset

D Q

clk
clock

result

ALU

A12

FF12
[9:0]

[9:0]

[10:0]

CE_2

ADD

CE

reset

D Q

clk
clock

result

ALU

A13

FF13
[9:0]

[9:0]

[10:0]

CE_2

ADD

CE

reset

D Q

clk
clock

result

ALU

A14

FF14
[10:0]

[10:0]

[11:0]

CE_3

bright_score

scoring_i

CE_0 CE_1 CE_2 CE_3

i_arr_bright_coef[16][8]

scoring_ii_arr_dark_coef[16][8]
dark_score

U0

U1

Figure F.6: Scoring hardware block diagram.

is_keypoint

async_node
(merge)

o_data_valid
o_ready_for_data_a

o_ready_for_data_b

i_write_data_a

i_write_data_b

o_wr_score

o_ce
i_ready_to_receive

i_rdy_for_data

carry

ALU

SUBB

0

0

00

01

10

11

CE

reset

D Q

clk

o_score[12]

clock
reset

reset

reset

bright_score

dark_score

is_contiguous

scoring_data_valid

contiguity_data_valid

o_ready_to_receive_a

o_ready_to_receive_b

FF0

A0

U0

M0

Figure F.7: Feature detection final score.

364 Appendix F. Features from Segment Test

dark scores if the center pixel is considered a key point, otherwise the output will be set to null. For this,

the M0 is used for the selection of four inputs to one output, and A0 compares which of the two scores is

the highest absolute value.

F.2 Non-maximum Suppression

The NMS datapath shows similarities with the FAST design, by reusing the same local storage model, here

only considering three lines, and the matrix of registers that aligns the central score to the adjacent values,

before submitting to the suppression computation. The address controller U3, is generally used with the

same image parameters as the FAST datapath, and in this case, the value of the read and line addresses

are used to produce the x and y coordinates, respectively. Figure F.8 shows the logical element diagram

that describes the NMS datapath.

U0

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

CE

reset

D Q

clk

Line 0

TDP
RAM

Line 1

TDP
RAM

TDP
RAM

Line 2

U1

U2

i_score[31:0] [11:0]

[11:0]

Address
Controller

[11:0]

i_wr_scoresi_write_scores

ready_to_receive

Line 0

Line 1

Line 2

write_addr read_addr wr_score_ce

i_rtr

i_wr

o_ce

o_dvalid

o_rfd
rdy_for_data

HW-NMS datapath

reset
reset

clock

clk

clock

score1

score0
score7
score2

score_center

score3

score4
score5

score6

clk

o_ready_for_data
o_y
o_x

center_valid

o_centre_y

i_centre_x

centre_x
centre_y

suppressor

o_x_coord

o_y_coord

o_is_corner

i_rdy_to_receive

o_data_valid o_fifo_write_crnr

i_fifo_rdy_for_data

o_corner_wrd[31:0]
[15:0]

[31:16]

[31:0]

U3 U4

FF0 FF1 FF2

FF3 FF4 FF5

FF6 FF7 FF8

Figure F.8: Non-Maximum suppression datapath.

In that figure, it can be seen the three lines of local storage, U0 to U2, that feed the matrix of registers

composed by FF0 to FF8. When the source of scores is connected to the FAST IP, as opposed to the

system bus, the L0 line can be suppressed and the input i_scores is reduced to 12-bit range. In such

case, it can be forwarded directly to the matrix of registers without passing by L0. Upon reaching the

center position in the matrix of scores, the center_valid signal is asserted at the input of U4, and the

suppressor initiates the computation of the first set of scores.

Appendix F. Features from Segment Test 365

F.2.1 Suppressor

In Figure F.9 it can be seen the logic diagram that describes the suppressor used in the NMS datapath.

Here, the input of scores is forwarded to the ALUs A0 to A7, to subtract each adjacent score with the value

of the central score. Upon receiving the write_scores signal at the input of U0, the CE_0 signal activates

the writing of the carry flags in the FF0 to FF7 registers.

Asyncnode

U0

Asyncnode

U1
i_write_scores

o_rdy_for_data
ready_for_data_1

data_valid_0

i_rdy_to_receive

o_data_valid

suppressor

CE_0 CE_1

score_0

SUBB

CE

reset

D Q

clk
clock

reset

CARRY

ALU

A0

FF0

score_center

[11:0]

[11:0]

CE_0

[0]

SUBB

CE

reset

D Q

clk
clock

reset

CARRY

ALU

A1

FF1
[11:0]

[11:0]

CE_0

[1]

score_1
…

SUBB

CE

reset

D Q

clk
clock

reset

CARRY

ALU

A7

FF7
[11:0]

[11:0]

CE_0

[7]

score_7

… …

COMP

CE

reset

D Q

clk
clock

reset

MATCH

ALU

A8

FF8
[7:0]

[7:0]

CE_1

“11111111”…

is_corner

Figure F.9: Suppression hardware block diagram.

When the score of the central pixel is higher than the adjacent scores, in each ALU the carry flag that

results from the subtraction becomes asserted. If all flags are set at the input of A8, the match flag is

asserted and with the logical value ’1’ of CE_1, the is_corner output is set in the next clock cycle. In such

case, the central score is considered a corner in the image. If otherwise, a single carry flag is deasserted

as result of a higher adjacent score, the comparison in A8 will fail, and the center score is not considered

a corner.

F.3 Design Co-simulation

In the first design phase, the HAL-ASOS methodology proposes a functional simulation, to anticipate the

first contact with the application to be developed, before commitment to the underlying hardware. During

this phase, decisions can be made with less risk of compromising qualitative results, since it is in the

366 Appendix F. Features from Segment Test

best position to implement the necessary changes. Simulations performed where carried out within the

development phases of the application discussed in Chapter 5. On the software side, the Task classes

where parameterized with appropriate qualifiers for the co-simulation and the application was compiled

to execute in the host development system.

On the synthesis tool, a block design was created using the required accelerator for the co-simulation

environment, while using the Vivado tool (i.e., V4_00_C_v). Figure F.10 shows this block design, where

it can be seen two HW-Tasks connected to each other, and in its turn each attached to an HAL-ASOS

accelerator

Figure F.10: Feature Detection co-simulation - Block design using Vivado.

In the top-level of the HW-Tasks, one can notice additional interconnect signals that allow the FAST task

to write calculated scores in the NMS task, while implementing bidirectional data handshake according

to the asynchronous model. For a better comprehension of the simulation results, a simplified image file

was created using a 16x16 resolution and containing only one corner. The contents of such file can be

seen in Figure F.11.

The first 15 bytes compose the ’pgm’ file header, which includes the version (i.e., P5), the image resolution

(i.e., 016x016), and the maximum pixel intensity (i.e., 255). A new line character (0x0A) precedes the

first image pixel that occupies the position 0x0F in the file. The image contained in the file represents a

grayscale square that darkens by an intensity level for each pixel. To insert a corner, the value 0x80 has

been replaced by the maximum value ’0xFF’ (squared red in the figure). The coordinate of this pixel in

the image is given by X:0x0F and Y:0x07, and differs from the file by the space required for the header. If

removing the first line, the pixel Y coordinate is updated to 0x07 instead of 0x08, and by advancing the

first pixel in line 0 (’0x01’) by one position to start in 0 at the X coordinate, the ’0xFF’ pixel also advances

one position, moving to the 0x0F coordinate.

Appendix F. Features from Segment Test 367

Figure F.11: Feature Detection co-simulation - Single corner input file.

Figure F.12 shows the wave plot that results from the co-simulation of the application while using the block

design of Figure F.10. In this simulation we have considered a clock period of 10 nanoseconds, and it can

be observed that the input achieves a pixel rate of four pixels every seven clock cycles. In this way, it is

possible to observe that while no new pixels enter the datapath, those that have already been accepted

advance in the processing until they reach the output.

In the sixth line of the signal column, it is possible to observe the arrangement that makes up the ma-

trix of registers from which the Bresenham circle is obtained, has highlighted in red. At the 14,275.00

nanosecond marker, the pixel with 0xFF intensity reaches the center line in the matrix. At the 14,335.00

nanoseconds marker, the same pixel reached the center of the matrix, and is sent to the classifilter unit

together with the pixels that are on the periphery of the circle. Three clock cycles later, at the 14,365.00

nanoseconds of simulation time , despite only one pixel entered the datapath, the array_class_is_dark

shows all flags marked as active (i.e., 0xFFFF). Four clock cycles later, the value 0x610 appears in the

output of the score unit (i.e., dark_score[11:0]), accompanied by the flag is_contiguous. In the next clock

cycle, the highest score is presented in the output together with the is_keypoint flag asserted.

From the instant in time when the pixel reached the center position in the matrix (i.e., at the 14,335.00

nanoseconds marker), eight clock cycles were required to compute the FAST algorithm using the current

circle and present the final score in the output (i.e., at the 14,415.00 nanoseconds marker).

368 Appendix F. Features from Segment Test

A wave plot that results from the same simulation and includes additional signals from the NMS datapath

can be seen in Figure F.13. The blue and black markers denote the same events of the FAST datapath

that were discussed above, and the final marker in green shows the instant in time when the 0x613

score was selected maximum and thus the pixel was considered a corner. The signals column shows the

score_matrix contents, and it can be observed that while no other score was received, the current values

were preserved for the next four clocks, but processing beyond the matrix kept on going. At the same

time, processing beyond the matrix kept on going in the NMS datapath and two clock cycles later, the

is_corner flag is asserted at the output. The outputs y_coord and x_coord, provide the corner location in

the image that corresponds with the coordinates deduced from the input file contents i.e., Y:0x0007 and

X:0x000F.

From the instant in time that such score value was presented at the output of the FAST datapath, thirty

two clock cycles were required until it reached the output of the NMS suppression. Although only six-

teen memory positions (Line L1) exist between these two places, other scores are required to build the

adjacent values in the 3x3 matrix, and so it was delayed in the local storage waiting for input pixels and

correspondent scores produced by the previous IP.

For completeness, Figure F.14 shows the log of the software application running on the host system, and

the console log of the Vivado simulator. In Figure F.14a it can be seen the command issued to launch

the application in the Linux terminal console. It receives the character ’c’ as first argument, to select the

application with co-simulation qualifiers, and also receives the string ’double.pgm’ as argument, to specify

the name of the input file. The next five messages notify about the progress in the handshake performed

between the tools involved, and the next two messages indicate the processing results of each Task class.

The MFastSA0 message indicates that a 256-byte block of data was transferred. In its turn, the message

from MNonmaxSA0 indicates that a corner was found.

In Figure F.14 it can be see then parameters of each HW-Task in the generic list. These include the

accelerator tag, and the IP and port used to handshake with the software application. Following these,

some messages are emitted that relate to the accelerator setup, where it receives some parameters such

as memory addresses in the system. The last set of messages indicate the instants in time when each

accelerator launched interrupts to the host system, and the simulation concludes with the exit of each

HW-Task that closes the connectivity.

Appendix F. Features from Segment Test 369

Fi
gu

re
F.
12

:
Fe
at
ur
e
De
te
ct
io
n
co
-s
im
ul
at
io
n
-W

av
e
pl
ot
of
th
e
FA
ST

da
ta
pa
th
.

370 Appendix F. Features from Segment Test

Fi
gu

re
F.
13

:
Fe
at
ur
e
De
te
ct
io
n
co
-s
im
ul
at
io
n
-W

av
e
pl
ot
of
th
e
FA
ST
+N

M
S
da
ta
pa
th
s.

Appendix F. Features from Segment Test 371

(a) Host application output.

(b) Vivado simulator output log.

Figure F.14: Feature Detection co-simulation output logs.

References

[1] G. E. Moore, “Progress in digital integrated electronics [technical literature, copyright 1975 ieee.

reprinted, with permission. technical digest. international electron devices meeting, ieee, 1975, pp.

11-13.],” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 36–37, Sep. 1975.

[2] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,

ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967, pp. 483–485. [Online]. Available:

http://doi.acm.org/10.1145/1465482.1465560

[3] IEEE. (2015) IEEE/IEC 62014-4-2015 - IEEE/IEC International Standard - IP-XACT, Standard

Structure for Packaging, Integrating, and Reusing IP within Tool Flows. [Online]. Available:

https://standards.ieee.org/standard/62014-4-2015.html

[4] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz, E. Komp, and P. Ashenden,

“Programming models for hybrid FPGA-cpu computational components: a missing link,” IEEE Micro,

vol. 24, no. 4, pp. 42–53, 2004.

[5] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, and J. Sparsø, “Using dynamic partial reconfiguration

of FPGAs in real-time systems,” Microprocessors and Microsystems, vol. 61, pp. 198–206, 2018.

[6] H.-G. Vu, T. Nakada, and Y. Nakashima, “Efficient hardware task migration for heterogeneous FPGA

computing using HDL-based checkpointing,” Integration, vol. 77, pp. 180–192, 2021. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0167926020302984

[7] H. So and R. Brodersen, “A unified hardware/software runtime environment for FPGA-based recon-

figurable computers using BORPH,” ACM Trans. Embedded Comput. Syst., vol. 7, 02 2008.

[8] A. Ismail and L. Shannon, “FUSE: Front-End User Framework for O/S Abstraction of Hardware Ac-

celerators,” in 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom

Computing Machines, 2011, pp. 170–177.

372

http://doi.acm.org/10.1145/1465482.1465560
https://standards.ieee.org/standard/62014-4-2015.html
https://www.sciencedirect.com/science/article/pii/S0167926020302984

REFERENCES 373

[9] L. Gantel, A. Duc, L. Steiner, F. Vannel, A. Upegui, and F. Gluck, “A FPGA-Based Post-Processing

and Validation Platform for Random Number Generators,” in 2020 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2020, pp. 123–126.

[10] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong, “SPREAD: A Streaming-Based

Partially Reconfigurable Architecture and Programming Model,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 21, pp. 2179–2192, 12 2013.

[11] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner, and C. Plessl, “ReconOS: An

Operating System Approach for Reconfigurable Computing,” IEEE Micro, vol. 34, no. 1, pp. 60–71,

2014.

[12] Z. Zhu, J. Zhang, J. Zhao, J. Cao, D. Zhao, G. Jia, and Q. Meng, “A Hardware and Software Task-

Scheduling Framework Based on CPU+FPGA Heterogeneous Architecture in Edge Computing,” IEEE

Access, vol. 7, pp. 148 975–148 988, 2019.

[13] A. Vaishnav, K. Pham, J. Powell, and D. Koch, “FOS: A Modular FPGA Operating System for Dynamic

Workloads,” ACM Trans. Reconfigurable Technol. Syst., vol. 13, pp. 20:1–20:28, 2020.

[14] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense on FPGAs?” in 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX

Association, Nov. 2020, pp. 991–1010. [Online]. Available: https://www.usenix.org/conference/

osdi20/presentation/roscoe

[15] P. Yuan, Y. Guo, L. Zhang, X. Chen, and H. Mei, “Building application-specific operating systems: a

profile-guided approach,” Science China Information Sciences, vol. 61, pp. 1–17, 2017.

[16] B. Kollenda, P. Koppe, M. Fyrbiak, C. Kison, C. Paar, and T. Holz, “An Exploratory Analysis

of Microcode as a Building Block for System Defenses,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, ser. CCS ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 1649–1666. [Online]. Available:

https://doi.org/10.1145/3243734.3243861

[17] R. Sharifi and A. Venkat, CHEx86: Context-Sensitive Enforcement of Memory Safety

via Microcode-Enabled Capabilities. IEEE Press, 2020, p. 762–775. [Online]. Available:

https://doi.org/10.1109/ISCA45697.2020.00068

https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3243734.3243861
https://doi.org/10.1109/ISCA45697.2020.00068

374 REFERENCES

[18] K. Nam, B. Fort, and S. Brown, “FISH: Linux system calls for FPGA accelerators,” in 2017 27th

International Conference on Field Programmable Logic and Applications (FPL), 2017, pp. 1–4.

[19] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration framework for FPGA accelerators,”

in 2013 23rd International Conference on Field programmable Logic and Applications, 2013, pp.

1–8.

[20] C. Vatsolakis and D. Pnevmatikatos, “RACOS: Transparent access and virtualization of reconfig-

urable hardware accelerators,” in 2017 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), 2017, pp. 11–19.

[21] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, T. Arslan, and J. Perez, “R3TOS:

A Novel Reliable Reconfigurable Real-Time Operating System for Highly Adaptive, Efficient, and De-

pendable Computing on FPGAs,” IEEE Transactions on Computers, vol. 62, no. 8, pp. 1542–1556,

2013.

[22] S. E. Ong, S. C. Lee, N. B. Z. Ali, and F. A. B. Hussin, “SEOS: Hardware Implementation of Real-

Time Operating System for Adaptability,” in 2013 First International Symposium on Computing and

Networking, 2013, pp. 612–616.

[23] Q. community. (2017) QEMU a generic and open source machine emulator and virtualizer. [Online].

Available: https://www.qemu.org/

[24] B. team. (2021) Buildroot Making Embedded Linux Easy. [Online]. Available: https://docs.opencv.

org/4.x/dc/dc3/tutorial_py_matcher.html

[25] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, Roback, and

J. F. D. Jr, “Advanced Encryption Standard (AES),” Nov 2001. [Online]. Available: https:

//www.nist.gov/publications/advanced-encryption-standard-aes

[26] OProfile, “OProfile - A System Profiler for Linux.” Jul 2017. [Online]. Available: http:

//oprofile.sourceforge.net/news/

[27] GNU, “GNU gprof,” Jul 2015. [Online]. Available: https://sourceware.org/binutils/docs/gprof/

[28] O. team. (2021) OpenEmbedded. [Online]. Available: http://www.openembedded.org/wiki/Main_

Page

https://www.qemu.org/
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
https://sourceware.org/binutils/docs/gprof/
http://www.openembedded.org/wiki/Main_Page
http://www.openembedded.org/wiki/Main_Page

REFERENCES 375

[29] ——. (2021) O]pen Source Computer Vision Library. [Online]. Available: https://docs.opencv.org/

4.x/dc/dc3/tutorial_py_matcher.html

[30] ——. (2021) OpenCV feature matching. [Online]. Available: https://opencv.org/

[31] O. Team. (2021) FAST algorithm for corner detection. [Online]. Available: https://docs.opencv.org/

4.x/df/d0c/tutorial_py_fast.html

[32] E. Rosten and T. Drummond, “Fusing points and lines for high performance tracking,” in Tenth IEEE

International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, 2005, pp. 1508–1515 Vol.

2.

[33] STMicroeletronics. (2017) Digital camera interface (DCMI) on STM32 MCUs. [Online]. Available:

https://www.qemu.org/

[34] M. Kraft, A. Schmidt, and A. Kasi�ski, “High-Speed Image Feature Detection Using FPGA Imple-

mentation of Fast Algorithm.” in Third International Conference on Computer Vision Theory and

Applications., vol. 1, 01 2008, pp. 174–179.

[35] J. Huang, G. Zhou, X. Zhou, and R. Zhang, “A new FPGA architecture of FAST and BRIEF algorithm

for on-board corner detection and matching,” Sensors, vol. 18, p. 1014, 03 2018.

[36] H. Heo, J.-y. Lee, K.-y. Lee, and C.-h. Lee, “FPGA based implementation of FAST and BRIEF algorithm

for object recognition,” in 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013),

2013, pp. 1–4.

[37] D. Canright, “A Very Compact S-Box for AES,” in Cryptographic Hardware and Embedded Systems

– CHES 2005, J. R. Rao and B. Sunar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,

pp. 441–455.

https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://opencv.org/
https://docs.opencv.org/4.x/df/d0c/tutorial_py_fast.html
https://docs.opencv.org/4.x/df/d0c/tutorial_py_fast.html
https://www.qemu.org/

	Resumo
	Abstract
	List of Listings
	Introduction
	Research questions and Methodology
	Scope
	State of the Art
	Native FPGA Acceleration
	Operating systems for FPGA
	Application-specific operating systems
	Microcode-level customizations

	Conclusions
	Thesis Structure

	Design Methodology
	Design flow
	Programming model
	Application Development
	Software refactoring
	The File reader task
	The Encryptor task
	The Uploader task
	Functional validation

	Application profiling
	Profile tools
	Profiling Results
	Conclusions

	Accelerator model
	Hardware Kernel model
	Hardware Task model
	Linux Integration
	 Emulator Model

	Computational offloading
	Hardware specification
	Emulating Hardware Accelerators
	Hardware description
	Co-Simulation model
	Encryptor co-simulation
	Encryptor SA co-simulation

	Platform deployment
	Hardware selection
	Full simulation Model
	Full system simulation

	System Implementation
	Conclusions

	 First-class Hardware Components
	Kernel Core
	Authentication
	Control Unit
	Hardware System Calls
	Microprogram
	Time Events
	System-Level Datapath
	Kernel Runtime
	Kernel Call and Response
	Kernel Procedures

	HW-Task
	Programming Model
	User Procedures
	Linux programming interface

	Hardware Kernel Interfaces
	Generic Interface
	Multi-clock design
	Synchronizer for generic interface
	Multi-master design
	S00 Control Interface
	S01 Data Interface
	M00 System Interface

	Auxiliary Hardware Components
	Local-Bus
	HW-Mutex
	Local RAM
	Message-Queue
	Local Interrupts
	ZeroCopy Unit
	Performance Counters
	Accelerator Versions

	Experimental Results
	Object detection a case study
	Feature detection stage
	Software-only Accelerated Feature Detection
	Asynchronous-synchronous datapath
	Multi-threaded Synchronous design
	Stand-alone Synchronous Single-task
	Stand-alone Asynchronous Dual-task
	Stand-alone Asynchronous Single-task
	Performance Comparison

	Conclusions and Future work
	Resource Addressing
	Clock Synchronizers
	Source Listings
	Auxiliary Figures
	AES Implementation
	Computations in the AES
	Overview of the AES
	Structure of the AES
	Cipher Round
	The Key Schedule
	Sequential Key Expansion
	Pipelined Key Expansion

	The Software AES
	Encrypt process
	Decrypt process

	Hardware Architecture for AES
	Sequential Encryption
	Pipelined Encryption

	Features from Segment Test
	Feature Detection
	Address Controller
	Classifier Filter
	Contiguity Checking
	Scoring
	Final Score

	Non-maximum Suppression
	Suppressor

	Design Co-simulation

	References

