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Abstract

Multiprocessor Systems-on-Chip (MPSoCs) are pervading our lives, acquir-
ing ever increasing relevance in a large number of applications, including even
safety-critical ones. MPSoCs, are becoming increasingly complex and heteroge-
neous; the Networks on Chip (NoC) paradigm has been introduced to support
scalable on-chip communication, and (in some cases) even with reconfigurabil-
ity support. The increased complexity as well as the networking approach in
turn make security aspects more critical.

In this work we propose and implement a hierarchical multi-agent approach
providing solutions to secure NoC based MPSoCs at different levels of design. We
develop a flexible, scalable and modular structure that integrates protection of
different elements in the MPSoC (e.g. memory, processors) from different attack
scenarios. Rather than focusing on protection strategies specifically devised for
an individual attack or a particular core, this work aims at providing a compre-
hensive, system-level protection strategy: this constitutes its main methodolog-
ical contribution. We prove feasibility of the concepts via prototype realization
in FPGA technology.
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Chapter 1

Introduction and Motivation

In this Chapter we provide an introduction and motivation for the submitted
work. First of all, basic concepts concerning Multiprocessor Systems-on-Chip
(MPSoCs) and Networks-on-Chips - of fundamental importance for the present
thesis - are presented. An overview of NoC-based MPSoCs is given afterwards,
introducing at the same time the security challenges such systems face. The
specific problem addressed and the desired goals are briefly exposed. Finally,
the outline of the original contributions of the proposed solutions is given and
their relevance is discussed.

The use of MultiProcessor Systems-on-Chips (MPSoCs) is constantly increas-
ing, with reference to both number of fields where they are utilized in and di-
versity of applications involved. In particular these systems are widely used for
signal processing, packet processing in computer networks, multimedia process-
ing, in cell-phone processors (see, e.g. Wolf et al. [2008]). All these applications
in turn involve networking and Internet enabled access. Such developments are
posing many novel design challenges (as stated by Martin [2006]). One of the
notable trends in MPSoC design is constituted by shifting towards communica-
tion centric design (as shown by D. [2000]; Ogras et al. [2005]; Henkel and
Wolf [2004]; Grecu et al. [2004]).

With increased exposure of MPSoCs, we are experiencing an ever growing
number of attack techniques: a fact that brings additional challenges for system
designers.

Security risks caused by rapid penetration of MPSoCs in all segments of our
lives on the one side and increasing concern about the evolution of malicious
attack techniques on the other hand have created a global sensitivity to security
in MPSoC design, as well as an interest in finding adequate protection solutions.
Moreover, modern complex and sensitive embedded systems involve increasing

1



2 1.1 Multi-Processor Systems-on-Chip

numbers of actors and technologies, a fact which requires modular integration of
reliable and secure components. Therefore, there is a necessity to devise holis-
tic approaches to security protection strategies. Such strategies would consider
different aspects of system design and a variety of attack scenarios in order not
only to protect from ’infection’ but also to prevent the propagation of attacks
through the system. Aligned with such approach we consider a comprehensive
protection strategy which provides solid ground for system defense combining
both distributed (i.e. the protection of individual cores) and centralized protec-
tion approaches (i.e. system level). The proposed security framework is built
as a flexible, modular and scalable structure that incorporates different attack
specific protection methods and integrates them in a system-wide hierarchical
security system.

In the development of the solution we rely on Network-on-Chip communi-
cation architecture extending its components to host and support security en-
hancements.

1.1 Multi-Processor Systems-on-Chip

The steady technological evolution has enabled the adoption of many ad-
vanced architectural concepts and the integration of increasing numbers of cores
onto a single chip. Considering in particular processing architectures, the de-
velopment of the System-on-Chip (SoC) concept supports evolution towards
multiprocessor-based and reconfigurable design. In turn, this has led to the
Multi-Processor Systems-on-Chips (MPSoCs) solutions which group multiple stan-
dard CPUs together with customized IPs, DSPs, input-output interfaces and other
hardware subsystems in the same chip. In particular, when embedded systems
are considered, an MPSoC is not simply a traditional multiprocessor shrunk to a
single chip but rather an innovative solution that has been designed to fulfill the
unique requirements of embedded applications (see e.g. Wolf et al. [2008]).

Such scenario in turn requires innovative system design techniques, new
programming models and many other novel strategies to support rapid devel-
opment of many-core platforms and of the applications using them (Wolf et al.
[2008]; Martin [2006]). At the same time, the increasing complexity that will
be required in next generation’s SoCs pushes designers to research new on-chip
communication solutions due to limitations (in particular low scalability) of ex-
isting bus-based interconnecting means (Benini and De Micheli [2002]; Dally
and Brian [2001]).

In summary, researchers have identified as follows the most important issues
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regarding efficient MPSoC design (Martin [2006]; Patel et al. [2010]):

• The number and configuration(s) of processors required for the applica-
tion. How homogeneous should the architecture be, versus how heteroge-
neous?

• Interprocessor communication - choosing the right communication solu-
tion, taking into account emerging network on chip approaches

• Concurrency, synchronization, control and programming model(s). In
many instances, multiple models will be appropriate

• Memory hierarchy, types, amounts, and access methods, along with the
capacity of estimating with acceptable accuracy the required latency

• Power reduction and low energy consumption

• Application partitioning, use of appropriate APIs and communications mod-
els, and associated design space exploration

• Design and platform scalability

• Security and reliability of architectures especially due to the increased role
they play in modern society and to the growing attention payed by the
criminal community to these systems Diguet et al. [2007]; Ahmad and
Arslan [2005]; Wolf et al. [2008]; Zhou and Wu. T. snd Wu [2009]

In our work we focus on security aspects with special regard to Network-
on-Chip architectures (refer to Section 2.1) as communication medium among
MPSoC components. Our approach to protection of these systems relies mostly
on three basic ideas:

• Extension of NoC components to support security related services

• Adoption of multi-agent system strategies when designing the protecting
architecture

• Integration of different security aspects into one system level protection
mechanism

These methods represent an original contribution of this work to MPSoC
security. The validation of the proposed solutions is performed via design of
demonstrators making use of FPGA technology.
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1.2 Network-on-Chip based Multi-Processor Systems-on-
Chip

As previously stated, increased chip density has created many new design
challenges. Considering in particular on-chip communications, global wires,
connecting many different functional units, are likely to have propagation de-
lays exceeding the clock period, moreover, the arbitration process among grow-
ing numbers of units on the bus becomes very complex. The Network-on-Chips
(NoCs) concept (Benini and De Micheli [2002]; Dally and Brian [2001]) rep-
resents a promising solution to these issues. NoC has been proven as a solid
interconnection strategy that brings reliable, efficient, scalable and fast inter-
core communication, capable of to providing a satisfactory answer to a number
of issues in MPSoC design, including scalability, arbitration problems, power
management etc. Moreover, scalable and modular NoC design facilitates port-
ing at system level a number of advanced concepts not exclusively related to
communications such as system monitoring, security, fault tolerance etc.

We focus on MPSoCs architectures based on the Network-on-Chip (NoC)
paradigm, identifying their peculiar challenges insofar as security is concerned
and developing solutions as well as a complete approach to meet such chal-
lenges. NoC-based MPSoCs are basically composed of three kinds of cores:

• Processing cores (e.g. microprocessors, DSPs etc.)

• Data storage elements (i.e. shared memories)

• Communication elements (Routers and Network Interfaces)

The work presented here takes such composition of the system as its refer-
ence architectural template. The basic system structure is presented in Figure
1.1.

1.3 Security vulnerabilities and protection strategies for
NoC based Multi-Processor Systems-on-Chip

Increasing complexity of MPSoCs and increased networking possibilities make
systems more vulnerable to different kinds of attacks (Diguet et al. [2007]; Ah-
mad and Arslan [2005]; Wolf et al. [2008]; Zhou and Wu. T. snd Wu [2009]).
This problem acquires particular relevance as MPSoCs find increasing applica-
tion in critical systems (even mission-critical or safety-critical ones); this in turn
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Multi-Processor Systems-on-Chip

Figure 1.1. Network-on-Chip based Multi-Processor Systems-on-Chip - general
structure

makes security aspects more important. On the other hand, we experience rapid
growth of attack techniques and increasing flexibility of malicious software.

As a consequence, there is increased need of security-aware design solutions,
in particular in the design of reconfigurable SoCs that by their nature are even
more vulnerable (attacks can target not only the operation but even the very
configuration of the device). However, even though research on NoC-related
topics has been an emerging area of interest, security issues in this field have
been often shadowed by other topics and have not been explored to the same
extent, being only recently addressed by the research community (Diguet et al.
[2007]; Fiorin et al. [2008]).

The presence on the chip of different kinds of data-processing cores as well
as of various storage elements constitutes a common ground for a number of
attacks. A variety of attack models have been detected so far as shown in Section
4.2 and accordingly a number of techniques have been devised to fight them as
presented in Chapter 2. However, most of these protection strategies consider
only specific types of attacks or specific architectures - a fact that represents a
major obstacle for their wide adoption. Therefore, a need for comprehensive
approach to security design emerges: the aim of this work is to develop such an
approach.
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1.4 Problem, objectives and contributions of the thesis

Integrating and coordinating all security-related aspects in an MPSoC re-
quires flexible (i.e. modular and scalable) solutions to be devised. Rather than
targeting ad-hoc solutions for specific system architectures, an approach valid
for the widest spectrum of NoC-based architectures is needed. Developing of an
efficient system-level protection mechanism for MPSoCs is the main challenge
we are tackling. For this reason we propose a security framework based on a hi-
erarchical multi-agent structure, capable of being specialized for a large variety
of architectures and of attacks.

The proposed solution relies on the implementation of a multi-agent system,
based on a hierarchy of agents: at the lowest level, there are - Local Security
Agents (LSAs) employed locally on the individual cores and integrated in a hier-
archical system by means of Cluster Security Agents, that are in turn coordinated
by a Central Security Agent - CSA. The system architecture is shown in Figure 1.2.
It can be noted from this figure that LSAs represent logical encapsulations of lo-
cally deployed protection mechanisms (that actually are Attack Specific Agents -
ASAs). The solution is highly modular, so that ASAs can be individually devised
and optimized without requiring an overall re-design.

Figure 1.2. Architecture of the fully secured system (security related elements
are denoted in red)
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Given the general framework proposed, in our work we then focus on pro-
tection from software-based attacks to processing and memory cores as these
emerge to be the most common type of problems when security of embedded
systems - and especially of networked ones (Internet-enabled) - is considered.
In order to prove the viability of the solution one of the most common types
of attacks ’code-injection’- a type of attack that actually exercises in an very ex-
tended way our proposed solution is emulated. It is actually a technique to
redirect execution of a trusted application to the malicious code by taking over
the instructions’ control flow. This is usually done by exploiting buffer overflows
and smashing parts of the stack in which the correct return address has been
saved. Another major security threat that is considered in this work is related
to the Denial-of-Service attack type. This attack is widely present in computer
networks and it mostly exploits limitations of communication channels through-
puts which are prone to congestion in case of massive data transmission (this
is usually done by initiating different kinds of irregular traffic). To validate our
approach with real-world experiments we address here such type of problems in
an NoC-based MPSoC system implemented in FPGA. As a demonstrator for the
attack scenarios and the proposed protection concepts we use a system based
on MicroBlaze CPUs (available on the Xilinx FPGAs) running uClinux embedded
operating system. Considering individual characteristics of each type of core,
autonomous protection solutions able to secure single core from targeted attack
should be designed. Accordingly, in the scope of this work and bearing in mind
the system composition exposed in the Section 4.1.1 we propose appropriate
protection techniques, developed and integrated in the wider security frame-
work in form of Attack Specific Agents. More specifically:

• MemPROT is based on Data Protection Unit (DPU), a firewall-like structure
that filters unauthorized memory access requests. DPU is employed in the
Network Interface attached to a shared memory block (Fiorin, Palermo,
Lukovic and Silvano [2007]; Fiorin et al. [2008]). The solution which
represent one type of Attack Specific Agent (ASA) is explained in details
in Section 6.3.1

• InjectPROT is a set of combined SW/HW units replicating functions’ return
addresses and providing protection from buffer-overflow code-injection
types of attacks. Stack Protection Unit (SPU), as a central part of Inject-
PROT, is employed directly at each processing core (Lukovic et al. [2010];
Lukovic and Christianos [2010a]) and represents another ASA, explained
in details in Section 6.3.2.
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• DoSPROT is a Denial-of-Service detecting system that is embedded in the
security framework based on traffic monitoring units (deployed in form of
ASAs in each core) and detecting algorithms employed in the CSA. The
solution has been implemented in a form of ASA, the detailed description
is given in Section 6.3.3.

• A dedicated secure NoC (SNoC) (Lukovic and Christianos [2010b]) is im-
plemented in parallel with the ’nominal’ (regular) one, connecting security
elements embedded in NIs with a central security manager. It is imple-
mented as a simplified version of the regular NoC and it is probably more
efficient than a virtual channel based structure, at least for systems with a
limited number of cores as suggested by Yoon et al. [2010]

The general system representation containing these components is given in
Figure 1.2, that shows also the place of all aforementioned components inside
the architecture. Based on such core-level protection structure we further build,
in bottom-up fashion, a system-level security architecture which in fact relies on
coordination of all security related actions by CSA.

In order to prove the feasibility of the concept we have adapted and syn-
chronized with each other a number of different Attack Specific Agents encap-
sulated in Local Security Agents (one per each core). Protections against code
injection type of attacks, unauthorized memory access and Denial-of-Service are
combined in the prototype being integrated in appropriate LSAs. Both, LSA for
MicroBlaze processor and LSA for shared memory cores are designed and imple-
mented. Moreover, all the security related elements of the system are intercon-
nected by means of a dedicated secure NoC. Monitoring and coordination of all
agents is done through defined policies implemented by CSA. The experimental
evaluation of the model is provided in described in details in Chapter 7.

In summary, the main contribution of the work lays in the novel approach
to system level security, based on multi-agent technology, which integrates in
hierarchical fashion, a variety of protection strategies establishing in such a way
as to provide a system wide, comprehensive security framework.

The rest of the document is organized as follows: Chapter 2, provides an
overview of ongoing research on security protection techniques in MPSoCs and
NoCs. In Chapter 3, fundamental problems and challenges tackled are exposed;
while Chapter 4 describes reference architecture and attack models, Chapter 5
shows the proposed conceptual solution. Chapter 6 provides detailed informa-
tion on the solution implementation, and Chapter 7 shows synthesis and testing
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results. Chapter 8 discusses the costs introduces by the proposed solution and
provides comparison with other relevant related solutions. Finally, Chapter 9
presents conclusions and future work of the present thesis.
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Chapter 2

Background and Related Work

Over the last decades the number of transistors integrated on a chip has been
steadily increasing more or less according to Moore’s Law. Intel 4004 introduced
in 1971 had 2300 transistors and was running at 106KHz, while the first Intel
Pentium introduced in 1992 had 3.1 million transistors running at 66MHz. The
transistor count for modern processors is in a order of few billion transistors
and operating frequencies can reach up to 5GHz. Still, it might be worth noting
that while transistor count has kept increasing following forecasts made in the
’90s, since the early 2000’s frequency increase has slowed down, due to exces-
sive power consumption problems, heating and increased impact of wire-delay
on the communication. The exponentially increasing number of transistors has
since then been invested in ever larger on-chip caches, but even there we have
reached the point of saturation (Duato [2008]; De Bosschere et al. [2007]).
Such trends urged for a massive paradigm shift towards multi-core architectures.
Improvements in performance are now achieved by putting multiple cores on a
single chip, effectively integrating a complete multiprocessor on one chip. Since
the total performance of a multi-core is improved without increasing the clock
frequency, multi-cores offer a better performance/Watt ratio than a single core
solution with similar performance (De Bosschere et al. [2007]).

The many-core paradigm poses new challenges for researchers, including
such aspects as (according to De Bosschere et al. [2007]):

• new design complexity issue (as special-purpose computing nodes can
have a significant impact on the memory hierarchy of the system)

• on-chip communication (that requires more scalability and flexibility)

• low power design strategies

11
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• security in different aspects

• new programming paradigms (programming environments supporting het-
erogeneous multi-core systems enabling the user to manually express con-
currency as

Today, heterogeneous processing units such as dedicated units as DSPs, dif-
ferent kinds of accelerators or application specific processors might be integrated
in the same system. This introduces problems of application mapping and opti-
mizations. Architectures like this require tools for fast and efficient prototyping
and testing of the design. Moreover, design trends in MPSoCs design go in the
direction of blurring the traditional distinction between SW and HW elements of
a system Vahid [2003]; modern system design is actually HW/SW co-design, so
that designer decides based on cost-performance analysis on how specific func-
tionality can be realized.

In the scope of this work we focus our attention on Network-on-Chip inter-
connection solutions and on security issues relevant for MPSoC design.

2.1 On-chip interconnecting strategies - Networks-on-
Chips

As the number of cores per chip is growing, followed by increased cores
heterogeneity, many challenges for the architecture designer derive from the
interconnection solutions. Chip size will scale up slightly while gate delays de-
crease compared to wiring delays. A simple computation shows that delays on
wires that span the chip could extend longer than the clock period ((Sylvester
and Keutzer [2000]; Ho et al. [2001])) which is already the case, e.g., for In-
tel multicore chips (buses are pipelined, for that reason). Synchronization of
future chips with a single clock source and negligible skew will be extremely dif-
ficult; energy and device reliability concerns will impose small logic swings and
power supplies. Electrical noise due to crosstalk, electromagnetic interference,
and radiation-induced charge injection will likely produce data errors. Thus,
transmitting digital values on global wires will be inherently unreliable (Benini
and De Micheli [2002]).

The Network-on-Chip (NoC) concept (Benini and De Micheli [2002]; Dally
and Brian [2001]) has emerged as a promising solution for the communica-
tion needs initiated by aforementioned trends. NoCs scale well, eliminate the
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need for arbitration when accessing the communication medium, provide well-
defined interfaces for the cores to be attached and, due to their flexibility, pro-
vide fertile soil for deployment of many auxiliary services. Researchers have
proposed enhancements of NoC architectures for supporting system monitoring
(Ciordas et al. [2006]; Fiorin et al. [2009]) as well as security services (Diguet
et al. [2007]; Fiorin et al. [2008]).

In general the trend of paradigm shift from bus-centric toward core-centric
interconnection design has been well documented and advocated by the re-
search community (D. [2000]; Grecu et al. [2004]). The main differences be-
tween the two can be summarized as follows:

• Bus-Centric Protocol Interface

– Cores are forced to interface to the particular bus facing all the limi-
tation such bus may bring

– Interfaces to a different buses may cause incompatibilities

• Core-Centric Protocol Interface

– Facilitates unrestricted delivery of all core signals

– Enables unconstrained interface bridge to any interconnect

– Number of gates in interface is typically lower than for bus interface

One of the most widespread open core protocols is OCP (Open Core Protocol
[2000]), that is aimed at defining a common standard for intellectual property
(IP) core interfaces, or sockets, capable of facilitating ’plug and play’ SoC de-
sign. Its foundation is strongly supported by leading industrial and academic
institutions targeting at facilitating design of complex SoC so as to make it more
efficient for wider audiences. Moreover, OCP defines a set of standard signals
for test and debugging. A number of NoCs implement the OCP communica-
tion interface (Bjerregaard et al. [2005]; Dall’Osso et al. [2005]; Fiorin et al.
[2008]).

Fundamental NoC advantages over traditional bus solutions are considered
to be (according to Benini and De Micheli [2002]; Bjerregaard and Mahadevan
[2006]):

• Only point-to-point wires are used in NoCs (as compared to buses where
each attached unit adds parasitic capacitance)
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• NoCs are layered structures that separate and encapsulate different issues
at different levels (e.g. transaction and transport) leaving more space to
deal with problems like timing and Quality of Service.

• Bus arbiter delays grow with the number of masters while in NoCs routing
decisions are distributed

• While bus bandwidth is shared by all units attached, in the case of NoCs
aggregated bandwidth scales with network size

Surely there are also NoC shortcomings, such as (according to Guerrier and
Greiner [2000]):

• Internal network congestion may introduce latencies

• Network introduces significant area overhead

• Cores need wrappers to adapt to NoC

• The concept is novel and requires acquisition of new skills by the designer

In general Network-on-Chip architectures are characterized by (Benini and
De Micheli [2002]; Benini and Bertozzi [2005]): Network topology; Switching
and Routing strategies; Flow control mechanism.

Network topology (Pande et al. [2005]; Bartic et al. [2005]) denotes the phys-
ical interconnection structure of the network graph (e.g. mesh, torus, binary
tree or irregular, see e.g. DeMicheli and Benini [2006]). It may be: direct (each
node is connected to every switch) - or indirect - nodes are connected to specific
subsets of switches.

Routing represents determination of an optimal source-destination path while
switching describes a way the data is actually transferred through the switching
elements (Hu and Marculescu [2004b]; Bjerregaard and Mahadevan [2006];
Palesi et al. [2006]). Several different aspect can be considered for these strate-
gies (according to Bjerregaard and Mahadevan [2006] and DeMicheli and Benini
[2006]):

• Circuit vs packet switching. In the first strategy, the link from source to des-
tination is established and reserved until the transport of data is complete.
Packet switched traffic, on the other hand, is performed on a per-hop basis,
each packet contains routing information as well as data.
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• Connection-oriented vs connectionless. Connection-oriented mechanisms
involve a dedicated (logical) connection path established prior to data
transport. The connection is then terminated upon completion of com-
munication. In connectionless mechanisms, the communication occurs in
a dynamic manner with no prior arrangement between the sender and
the receiver. Thus circuit switched communication is always connection-
oriented, whereas packet switched communication may be either connection-
oriented or connectionless.

• Deterministic vs adaptive routing. In a deterministic (static) routing strat-
egy, the traversal path is determined by its source and destination alone.
Adaptive schemes involve dynamic arbitration mechanisms which results
in more complex design.

• Central vs distributed control. In centralized control mechanisms, routing
decisions are made globally. In distributed control, the routing decisions
are made locally.

As for packet switching several forwarding strategies which show how the
packets are passed from one to another router are present. Three main strategies
are defined (Bjerregaard and Mahadevan [2006]):

• Store-and-forward is a packet switched protocol in which the node stores
the complete packet and forwards it based on the information within its
header. Thus the packet may stall if the router in the forwarding path does
not have sufficient buffer space.

• Wormhole routing combines packet switching with the data streaming qual-
ity of circuit switching to minimize packet latency. The node looks at the
header of the packet to determine its next hop and immediately forwards
it. The subsequent flits are forwarded as they arrive. This causes the
packet to move in ’worm’ fashion through the network, hence the name.

• Virtual cut-through routing has a forwarding mechanism similar to that of
wormhole routing. But before forwarding the first flit of the packet, the
node waits for a guarantee that the next node in the path will accept the
entire packet. Thus if the packet stalls, it aggregates in the current node
without blocking any links.

There are variety of popular routing algorithms with different properties (e.g.
table-based routing, source routing, node-table routing, ’hot potato’ etc.).
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Flow Control Mechanism is defined as the mechanism that determines the
packet movement along the network path by Dally and Brian [2001]. Flow con-
trol addresses the issue of ensuring correct operation of the network. It also
encompass issues on optimal utilization of network resources optimally Bjerre-
gaard and Mahadevan [2006]. A concept of Virtual Channels VCs implements
flow control in a particular way, in that it relies on the sharing of a physical
channel by several logically separate channels with individual and independent
buffer queues.

A number of NoC related topics have been raised in recent years and have
attracted remarkable attention from both academic and industrial community.
In essence, main research topics includes:

• Architecture and design flow (Kumar et al. [2002]; Benini and Bertozzi
[2005]; Goossens, Dielissen and Radulescu [2005])

• Programming models (e.g. message passing vs. shared memory) Bjerre-
gaard and Mahadevan [2006]; Benini and De Micheli [2006]; Goossens,
Dielissen and Radulescu [2005]

• Low power design (Silvano et al. [2011]; Lee et al. [2006]; Shacham et al.
[2007])

• Fault-tolerance (Pullini et al. [2005]; Tamhankar et al. [1297–1310]; De-
rin et al. [2011])

• Cache coherence (Petrot et al. [2006]; Bolotin et al. [2007]; Kurian et al.
[2010]; Seiculescu, Volos, Khosro, Falsafi and De Micheli [2011])

• Buffer sizing and queue management (Marculescu et al. [2005]; Hu and
Marculescu [2004a])

• QoS and Security (Guz et al. [2006]; Harmanci et al. [2005]; Faruque
et al. [2006]; Rijpkema et al. [2003])

The most recent NoCs research trends go in the direction of design of pho-
tonic Network-on-Chips (Shacham et al. [2007]; Gu et al. [2009]; Kurian et al.
[2010]) and also introducing 3D design (Pavlidis and Friedman [2007]; Kim
et al. [2007]; Feero and Pande [2009]; Seiculescu, Murali, Benini and De Micheli
[2011]). Nevertheless, the solutions we propose are independent of specific in-
terconnect technology so that their validity will keep.

In the following we will provide an outlook on security with special regard
on the most common attacks and on-chip protection solutions.
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2.2 Security overview - basic terms and taxonomies

Security is, broadly speaking, considered to be a composite of the attributes
of confidentiality, integrity, and availability, requiring the concurrent existence
of 1) availability for authorized actions only, 2) confidentiality, and 3) data in-
tegrity (according to Avizienis et al. [2004]).

The increasing pervasiveness of computer science and spreading of comput-
ers through practically all segments of modern life were followed by steady in-
crease of criminal activities directed to data theft of proprietary information,
financial frauds, virus attacks, sabotage etc. The dimensions of computer crime
have been investigated in time span of thirteen years involving hundreds of
computer security practitioners and reported by Computer Security Institute
(CSI) in (Richardson [2003]). The most expensive computer security incidents
were those involving financial fraud with an average reported cost of close to
$500,000. The second-most expensive, on average, was dealing with ’bot’ com-
puters within the organization’s network, reported to cost an average of nearly
$350,000 per respondent. The overall average annual loss reported was just
under $300,000. Virus incidents occurred most frequently, being reported at
almost half (49 percent) of the respondents’ organizations.

Remarkable research efforts, mostly done in general purpose computing and
communications, have resulted in robust protection solutions involving sophis-
ticated cryptographic algorithms, communication protocols, anti-virus programs
etc. Security in MPSoCs, that is the focus of this work, represents a fairly spe-
cific case, and because of that it has been separately highlighted and detailed in
Section 2.3. Prior to going into the details of security in this particular field we
will expose basic definitions and later in Section 2.2.1 security taxonomies.

We briefly list here the definitions of key terms regarding security (according
to Howard and Longstaff [1998]):

• vulnerability represents a weakness in a system allowing unauthorized ac-
tion

• tool - a means of exploiting a computer or network vulnerability

• event is an action directed at a target which is intended to result in change
of state (status) of the target

• attack represents a series of steps taken by an attacker to achieve an unau-
thorized result
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• incident denotes a group of attacks that can be distinguished from other
attacks because of the distinctiveness of the attacker, attack, objectives,
sites and timing

• unauthorized result - an unauthorized consequence of an event (e.g. disclo-
sure if information, corruption of information, denial of service, recourses
theft and so forth)

These terms represent basic ’building blocks’ of the security theory and tax-
onomies shown in Section 2.2.1.

2.2.1 Security taxonomies

A taxonomy is a classification scheme (a structure) that partitions a body
of knowledge and defines the relationship of the pieces (Howard and Longstaff
[1998]). Security related taxonomies are commonly organized as attacks’ and
countermeasures’ ones (Ramanauskaite and Cenys [2011]; Igure and Williams
[2008]). Still, there are several ways to derive a taxonomy as for instance action-
based security taxonomy presented in (Stallings [1995]). A more comprehensive
incident taxonomy is developed by (Howard and Longstaff [1998]). It correlates
all the actors, their interactions, actions and objectives as presented in Figure
2.1.

General overview of computer attack specification is given in (Paulauskas
and Garsva [2006]). The taxonomy of the attacks on embedded systems is pre-
sented in (Ravi et al. [2004]). In general it groups all the attacks in two disjoint
groups namely, physical and logical attacks (refer to Figure 2.2).

In this work we focus on software attacks and we do not consider any kind
of physical or side-channel attacks. In the general case, software attacks address
existing (i.e. installed) software applications in the targeted system. They mostly
aim at redirecting regular application’s control flow to inserted malicious code
by means of ’code injection’ or similar techniques. Usually these attacks are
fought off by diverse software countermeasures. Unfortunately, this approach
is restricted to known attack scenarios and it cannot protect from an unknown
threat that avoids the existing protection.

In this work we consider, without diminishing the general validity, a case
study targeted on the most usual software attacks such as unauthorized memory
access, Code Injection and Denial of Service (as they are the most widespread
according to Patel et al. [2010] and the most expensive as stated in Richardson
[2003]).
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Figure 2.1. Computer and Network incident taxonomy by (Howard and
Longstaff [1998])
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Figure 2.2. Taxonomy of security attacks on embedded systems according to
(Ravi et al. [2004]; Hardware-software design methods for security and relia-
bility of MPSoCs [2009])

2.3 Security aspects and on-chip systems

Protection against malicious attacks is considered at different levels and from
various points of view. Although security has been so far often neglected by em-
bedded system designers, it is in fact, a new dimension that designers should
consider in the design process, along with other metrics such as area cost, per-
formance, and power. The challenges unique to embedded systems require new
approaches to security covering all aspects of embedded system design from ar-
chitecture to implementation (Ravi et al. [2004]). Many solutions employed
in general purpose computing and communication systems (e.g cryptography
strategies, anti-virus programs etc.) introduce relevant communication and com-
putation overhead, which in turn impacts on performance and power consump-
tion in a measure that is not tolerable in systems with limited resources, such
as MPSoCs. Hence, custom solutions for protecting such systems by enhancing
existing architecture (communication structures) have been proposed by various
researchers (Coburn et al. [2005]; Fiorin et al. [2008]; Porquet et al. [2011]).
Commercial solutions are present as well. Trusted Platform Module (TPM) (see
Trusted Platform Module (TPM) Specifications [2011]) introduces secure gener-
ation of cryptographic keys, in addition to a hardware pseudo-random number
generator. It is implemented by some Dell BIOS settings.Several other designs
appear, such as: Mobile Trusted Modules (MTM) (Ekberg and Kylanpaa [2007])
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by Nokia; M-Shield (Srage and Azema [2008]) by Texas Instruments for security
on mobile handsets, which are either hardware agnostic (e.g., MTM), or designs
that augment the processing core for increased security (Ekberg and Asokan
[2010]; Alves and Rudeli [2007]).

ARM has developed the TrustZone system (refer to Alves and Felton [2004]),
described in details in Section 2.3.1 of the thesis. In (Schellekens et al. [2008])
authors present a protocol by which an external component containing non-
volatile memory, some logic, additional write-once memory for shared keys, and
an integrated HMAC primitive can be used to provide external authenticated
non-volatile memory (EANVM) sufficient to support the required protection of
secure state. A similar solution has been used for Intel Authenticated Memory
developed to complement ARM TrustZone (Ekberg and Asokan [2010]); Sonics
introduced its’ own protection system (SonicsMX SMART Interconnect Datasheet
[2008]) (also explained in details in Section 2.3.1 of the thesis). It is expected
that Intel will experiment with on-chip anti-virus security solutions in light of
recent acquisition of McAfee (refer to Greenberg [2011]).

Regarding the protection of MPSoCs against malicious attacks, recently pro-
posed solutions can be mostly classified in two groups, namely:

1. Establishment of different security domains being defined as applications’
execution environments used to confine their operation effects and re-
sources utilization (usually related to the level of the trust or importance
that is assigned to certain application). Access to system resources is then
allowed/restricted accordingly to the ’trustiness’ of the domain to which
the application belongs. Considerable numbers of solution based on such
approach have been implemented in general purpose computing, but their
cost in terms of resources consumption may represent a serious obsta-
cle for wider adoption in MPSoCs. So far, in this sense two different ap-
proaches have been adopted in the case of embedded systems:

• Implementation of virtual security domains (Inoue et al. [2005]; Hi-
roaki et al. [2008]). Dedicated execution environments are estab-
lished for execution of untrusted applications in a way that sepa-
rates them from the system itself (Gong and Ellison [2003]). This
approach is usually very costly in terms of resources utilization and
performance degradation.

• Implementation of specific structures separately dedicated to differ-
ent application execution environments. One of such approaches con-
sists in introduction of different compartments with dedicated identi-
fiers and accordingly assigned privileges. For instance, the NoC-MPU
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(Memory Protection Unit by Porquet et al. [2009]) aims at defining a
set of access rights on various address regions for different compart-
ments at platform level.

2. Monitoring of application execution and validation of behavior correct-
ness (Patel and Parameswaran [2008]; Arora et al. [2005]; Patel et al.
[2010]). The method relies on defining ’permissible behavior’ by identi-
fying suitable or expected program properties in run-time execution. The
application code is instrumented by inserting special instructions so that
control flow can be monitored in desired ’resolution’. An additional pro-
cessing core is usually employed as system monitor and verification unit.
The drawbacks of this strategy are in problems with code insertion which
imposes additional design efforts and performance degradation. More-
over, ’permissible behavior’ is usually fairly difficult to be precisely defined
and verified.

Our work can be roughly classified in the second group, even thought it does
not fully implements system monitoring and on the other hand it still imple-
ments some aspects of security domains approach. A portion of the proposed
security framework (see for instance MemPROT described in Section 6.3.1) re-
lies on a firewall-like protection mechanism, that filters access to the shared
memory according to assigned rights following a philosophy not far from the
security domains concept (actually different privileges establishment and veri-
fication of the access rights prevent access to resources in a similar fashion as
security domains do). In that sense this particular solution can be classified
in the first class of protection strategies listed above. Still, the proposed work
differs from the aforementioned solutions in the general approach to system se-
curity. In other words, we target system-level protection rather then ’localized’
IP custom solutions. In that sense the proposed solution is platform-oriented
rather than processor oriented.

The architectural framework for security and reliability of MPSoCs proposed
by (Patel et al. [2010]) represents in a way a solution similar to ours since it
targets security at the level of MPSoC by employing a dedicated security proces-
sor and tests it against buffer overflow type of attack. Nevertheless, there are
several considerable differences in methodology and implementation between
their work and our envisioned solution. In (Patel et al. [2010]) the customized
implementation for an Application Specific Instruction set Processor (ASIP)is
presented; the solution there presented does not consider NoC architectures but
relies on application code instrumentation which is not needed in our case. A
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detailed comparison of the two solutions in terms of performance, power and
area overhead is given in Section 7.3 and Chapter 8.

A proposal for establishment of a trustworthy system based on a set of dy-
namically reconfigured firewalls embedded in NoC is presented in (Sepulveda
et al. [2011]). They propose a security architecture similar to (Fiorin, Palermo
and Silvano [2007]) system with additional support for dynamical reconfigura-
tion of security policies. The implementation allows the MPSoC protection by
means of communication management. The security mechanism uses the in-
formation embodied in the packets that flow through the NoC to enforce the
different security policies. This work has been recently enhanced (Sepulveda
et al. [2012]) so that they introduce QoSS (quality of security service) exploit-
ing the NoC components to detect and prevent a wide range of attacks. They
present the implementation of a layered dynamic security NoC architecture that
integrates dynamic security firewalls in order to detect attacks based on different
security rules. They provide SystemC-TLM cycle-accurate model of the architec-
ture and no hardware implementation has been provided. Comparison with this
solution is discussed in Section 8.

2.3.1 Protection against specific attacks

Considering specific attacks and protection solutions for specific platforms,
many efforts have been invested in research in general purpose computing and
recently in embedded systems design. In this section we review the most rele-
vant work concerning attacks of greatest relevance for us, namely on-chip mem-
ory protection, ’code injection’ and Denial-of-Service attacks.

On-chip memory protection

Data protection in MPSoCs is one of the relevant topics for our work (Fiorin
et al. [2008]). An implementation of a protection unit for data stored in memory
is described in (Coburn et al. [2005]). The proposed module enforces access
control rules that specify how a component can access a device in a particular
context. AMBA bus transactions are monitored and a lookup table (indexed by
the concatenation of the master identifier signals and the system address bus)
is employed to store and check access rights for the addressed memory location
and to stop potential not-allowed initiators.

As mentioned above, similar problems have been addressed as well in in-
dustrial solutions. The on-chip memory protection unit developed by ARM, in
systems adopting the ARM TrustZone technology (Alves and Felton [2004]),
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provides the possibility of including a specific module - the AXI TrustZone mem-
ory adapter - to support secure-aware memory blocks. A single memory cell
can be shared between secure and nonsecure storage areas. Transactions on the
bus are monitored to detect the addressed memory region and security mode
in order to cancel nonsecure accesses to secure regions and accesses outside the
maximum address memory size. The module is configured by the TrustZone Pro-
tection Controller, which manages the secure mode of the various components
of the TrustZone-based system and provides the software interface to set up the
security status of the memory areas.

The SMART Interconnect solution by Sonics (refer to SonicsMX SMART Inter-
connect Datasheet [2008]), introduces on-chip programmable security ’firewall’
which is employed to protect the system integrity and the media content passed
among on-chip processing blocks, various I/Os, and the memory subsystem. The
firewall is implemented through an optional access protection mechanism to
designate protection regions within the address space of specified targets. The
mechanism can be dynamic, with protection region sizes and locations that can
be programmed at runtime. It can also be role dependent, with permissions de-
fined as a function not only of which initiator is attempting to access but also
which processing role the initiator is playing at that time. Protection regions
subdivide a target’s address space, where each target can have up to eight pro-
tection regions. Each protection region is assigned to one of the four levels of
priority.

NoC-MPU described in (Porquet et al. [2011]) is a dedicated Memory Pro-
tection Unit allowing to support the secure and flexible co-hosting of multiple
native software stacks running in multiple protection domains, on any shared
memory MP-SoC using a NoC.

Our solutions goes a step farther than previous implementations of data pro-
tection techniques in the sense that, for the first time, it addresses the problem
of the data protection on an NoC-based MPSoC. The details of the solution for
this particular type of the attackis given in Section 6.3.1.

Code insertion

A Code Injection attack exploits a vulnerability or an error in a program
injecting or introducing malicious code into a program execution. The Code In-
jection attack could inject some malicious code or some code that points to a
malicious code that may already be present in a system. Executing the mali-
cious code aims to change the control flow of the main program and may have
unpredictable consequences (Hardware-software design methods for security and
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Figure 2.3. A taxonomy of code injection attacks according to (Mitropoulos
et al. [2011])

reliability of MPSoCs [2009]).

Weaknesses in system implementation inevitably remain and are often ex-
ploited by the attackers in the form of either physical, software or side-channel
attacks. Software attacks that exploit vulnerabilities in software code or weak-
nesses in the system design are the most common type of attacks (Coburn et al.
[2005]). Stack and heap based buffer overflows are the most common type of
Code Injection attacks (Pincus and Baker [2004]).

A variety of forms of code injection attack have been determined and a tax-
onomy of this kind of attack has been developed and presented by (Mitropoulos
et al. [2011]) as shown in Figure 2.3. Appropriate countermeasures have been
designed as well, these are presented in form of taxonomy (Mitropoulos et al.
[2011]) in Figure 2.4.

In the present work we consider the buffer overflow (also known as ’stack
smashing’) type of the attack, actually constituting a special form of binary code
injection group of attacks: therefore, we analyze it here in particular detail.
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Figure 2.4. A taxonomy of code insertion attack countermeasures according to
(Mitropoulos et al. [2011])

Binary code injection - Buffer overflow Binary code injection involves the in-
sertion of binary code in a target application to alter its execution flow and
execute inserted compiled code (Mitropoulos et al. [2011]).

Buffer overflow represents one of the most widespread types of software at-
tacks, and CERT reports that nearly 11% of discovered vulnerabilities pertain
to this type of the code injection attacks (Pincus and Baker [2004]; Patel et al.
[2010]). The attack scenario is rather simple: the attack is performed by writing
an array to the stack without checking its upper bound (e.g. using C function
strcopy(), one can overwrite the data of the valid stack frames). Even if the stack
memory is not executable, and/or separated, overwriting the return address of
the caller and saved registers is still possible. This means that the attacker can
redirect the control flow by giving to the targeted return function the corrupted
values. The simple scenario is presented in Figure 2.5

Protection strategies

Several related works on the topic of buffer-overflow protection focus on
proposing a variety of static methods for detecting code injection, to be applied
at design or at compilation time (Dor et al. [2003]; Wagner and Dean [2001]).
However, due to the increased portability and networking of MPSoC devices,
very often these systems are exposed to threats that become manifest during run
time execution of untrusted applications (usually downloaded from Internet).
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Figure 2.5. A stack based buffer overflow attack by overwriting the return
address register (a) Vulnerable code (b) Layout of the stack before an attack (c)
Layout of the stack after an attack, from (Hardware-software design methods
for security and reliability of MPSoCs [2009])

StackGuard by (Cowan et al. [1998]), a compiler-based solution, inserts a ran-
domly generated value in the stack position next to the return address as well
as in a general purpose register. These two values are compared, at the time the
execution is returned to the caller function, in order to detect buffer overflow
occurrence. While this solution is simple (in hardware terms) and elegant, some
techniques to overcome this protection have been devised (e.g. by Bulba and
Kil3r [2000]).

StackGhost (presented by Frantzen and Shuey [2001]) proposes an approach
that partially protects from corruption of return addresses having stack space al-
located in register windows, without requiring re-compilation of the application
source code. This technique is developed for Sun Microsystems SPARC archi-
tectures and relies on its specific features. Secure Return Address Stack (SRAS)
(presented by Lee et al. [2004]) represents a combination of hardware and soft-
ware supports. It introduces a special hardware unit that keeps track of all return
addresses of callee functions and compares them with actual ones. Some kernel
modifications are needed to support this model.

In this thesis we will focus on the aforementioned type of attack. In the
implemented prototype, the proposed protection strategies are tuned to combat
aforementioned threats. The solution for the attack specific protection that we
propose is based on a concept similar to that proposed in (Lee et al. [2004]).
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Denial-of-Service Attack

Denial-of-Service (DoS) attacks represent one of the most widespread and
also financially the most expensive security incidents on Internet (Richardson
[2003]). The most general taxonomy of these methods is presented by (Ra-
manauskaite and Cenys [2011]) and it is shown in Figure 2.6. DoS may appear
in a number of different forms but in general the main goal is always the same -
jeopardizing normal operation of the system in some of following ways (Blazek
et al. [2001]):

Figure 2.6. Denial-of-Service attacks taxonomy, from (Ramanauskaite and
Cenys [2011])

• flooding the network in order to disturb the legitimate network traffic

• disturbing the (point-to-point) connection between two machines (users)

• preventing a regular client from accessing the service

• disrupting the service to a specific system or service
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In line with such goals three basic ways of attack performing can be identi-
fied:

• consumption of scarce, limited resources

• destruction or alteration of configuration information

• physical destruction or alteration of network components

We particularly focus on the first type of the attacks listed above, concen-
trating on the attacks that invoke the network traffic congestion. Therefore our
security framework provides protection against the two most relevant represen-
tatives of this kind - vulnerable and flooding DoS attacks.

Vulnerable attacks are software specific. They commonly rely on packet mal-
formation exploiting certain security weaknesses in the application which cause
excessive memory consumption, CPU performance degradation and general sys-
tem slowdown. Popular examples include: Neptune or Transmission Control Pro-
tocol synchronization (TCP SYN) flag, ping ’o death and the targa3 attacks (Carl
et al. [2006]).

A flooding attack forces the unbounded sending of the packets and can be
either a single-source attack originating only in one host or multi-source attack
where multiple hosts flood the victim with a barrage of attack packets. Such an
attack does not require any software vulnerability. The naive single-source DoS
attack is relatively easier to detect than a Distributed multi-source DoS attack
(Mirkovic and Reiher [2004]).

In our work we emulate an event similar to Internet DoS flooding attack
assuming that the intruder will use our own on-chip resource to stimulate the
distributed unregulated traffic on the network by executing the malicious appli-
cation or by sending a large amount of useless packets through the NoC. The
result is consumption of total network bandwidth and sabotage of regular trans-
actions.

DoS detection techniques

There have been attempts to classify DoS protection strategies in differ-
ent fields. The most general taxonomy of these methods is presented by (Ra-
manauskaite and Cenys [2011]) and it is shown in Figure 2.7. In the present
work we consider pattern/anomaly detection at a victim machine in different
cooperation degrees.
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Figure 2.7. Denial-of-Service countermeasure classification scheme, from (Ra-
manauskaite and Cenys [2011])

All the detection techniques against this kind of attacks face the same prob-
lem - how to distinguish a network flooding attack from sudden increase in
legitimate activity or burst (flash events) in regular applications’ data exchange.
Clearly, some statistics of network traffic must be involved. Several techniques
can be seen as efficient and all of them include an evaluation of different net-
work traffic statistic (Carl et al. [2006]):

• Activity profiling - An activity profile of the network is created by observing
the packet headers. In this way the average packet rate is determined
since these packets usually consists of similar data like destination and
source address, protocol information and so on. By measuring the elapsed
time between these packets the average packet rate of the network can be
determined. In order to determine the attack some statistics tests should
be performed.

• Sequential Change-Point Detection - This detection technique is based on
the determining traffic statistic’s change caused by the attack. Total traf-
fic is tracked by the appropriate methods and the resultant flow is stored
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as the time series. Any unusual phenomenon illustrated by the sudden
large increase in network flow can be a possible DoS attack. Some al-
gorithms like CUSUM (cumulative sum control chart, see Blazek et al.
[2001]) identify the deviations in original versus expected local average
in the time series. If the difference exceeds some upper bound, CUSUM
statistics increases. If during time intervals containing only normal traffic
the difference is bellow this bound and the CUSUM decreases until reaches
zero. The disadvantage of this algorithm lies in difficulties in defining the
appropriate parameters like initial conditions or upper statistical bound,
although it gives opportunity for achieving a good trade-off between real
and false alarms.

• Wavelets Analysis - Wavelet analysis describes an input signal in terms of
spectral components. It provides concurrent time and frequency descrip-
tion, and can thus determine the time at which certain frequency compo-
nents are present. Analyzing each spectral window’s energy determines
the presence of anomalies As proved in (Barford [2002]) the expected
time series results in mid- and high-band spectral energies. To identify
anomalies they weight the combination of these two spectral domains and
than threshold its variability.

Obviously all the aforementioned techniques face the same major challenge
namely, distinction between legitimate user activity and flooding attack. All the
strategies shows limited success. A combination of various approaches will most
likely produce the best result. For the purpose of our work we have adopted
Sequential Change-Point Detection technique based on CUSUM algorithm as de-
tailed in Section 6.3.3.

2.3.2 Trusted Systems, Trusted Computing and Trusting Policy

A trusted system is conceived as a distributed system in which security is
achieved partly through the physical separation of its individual components
and partly through mediation of trusted functions performed within some of
these components (Rushby [1981]). In trusted systems the subject of security
policy is assigned to the private and physically separated units which are able
to communicate through secure and trusted network which also resides in a
separate and isolated environment. Achieving this kind of the system solves
many security problems and makes them considerably simpler. Systems must
be designed to constrain access to confidential data and to confine any damage
resulting from malicious software.
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Developing of highly trusted computing systems is becoming a fundamental
concern. The goal of decoupling trusting from the applications and putting trust
entirely in the OS kernel of the systems turned out to be unfeasible. The first
step to implement HW trust components began in the late 1990s and it was
proposed by the Trusted Computing Group (TCP) that made the extension of the
common computing platforms by implementation of the specific HW unit - the
Trusted Platform Module (TCP) (see Mitchell [2005]).

It is a common case that nodes also communicate with each other, so differ-
ent kind of trusting policies were also developed. The main purpose of these
policies is to verify the reliability of the nodes determining and assigning proper
trusting values to them. These are checked prior to executing any application on
the node. The trusting value of the node can be determined in different ways:
as an example, it can be computed, according to the ability of the node to exe-
cute the task within some time limits given constrained resources (Ferrante et al.
[2008]).

Different applications of trusting policies have been proposed in variety of
fields (Gallery and Mitchell [2009]). In the case of embedded systems, a de-
sign technique for security and trust has been proposed by (Verbauwhede and
Schaumont [2007]). Still, secure isolation between security critical and non-
security critical task on a single embedded device represents one of major con-
cerns (Gehrmann and Lofvenberg [2011]) together with devising an efficient
light-weighted trusting protocol (see Ferrante et al. [2008]). The concept of
trust could be applied also in multi-core systems security, since efficient deter-
mination of certain types of attacks (e.g. DoS) may require wider system inter-
action and coordination among nodes. In our work we rely on an elegant and
straight-forward trusting policy (as presented in Ferrante et al. [2008]), com-
bining information obtained from different kinds of agents deployed in various
cores (as explained in Section 5.3).

2.4 Multiple-agent systems

Multiple-agent systems (MAS) engineering strategies have emerged as a promis-
ing solution to tackle various problems in complex, distributed and highly dy-
namic systems (Wooldridge [1997]). An agent-based system is one in which the
key abstraction used is that of an agent. By an agent, we mean a system that
enjoys the following properties (according to Wooldridge [1997]):

• autonomy: agents encapsulate some state, and make decisions about what
to do based on this state;
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• reactivity: agents are situated in an environment, which they are able to
perceive, and are able to respond in a timely fashion to changes that occur
in it;

• pro-activeness: agents do not simply respond to inputs from the environ-
ment, they are able to perform in goal-directed fashion by taking the ini-
tiative;

• interactivity: agents interact with other agents, and typically have the abil-
ity to engage in social activities (such as cooperative problem solving or
negotiation) in order to achieve their goals.

Being so generally defined and on the other hand offering great flexibility
and portability, agents have found the way to application in many fields. Proba-
bly the most well-established use of agents can be found in complex, distributed
software systems (Jennings [2001]). More recently multiple agent systems have
been actively employed in medicine (Xiao et al. [2007]); mobile communica-
tions (Borselius [2003]); power systems (McArthur et al. [2007]), in particu-
lar for condition monitoring and diagnostics (Davidson et al. [2006]; McArthur
et al. [2004]), power system restoration (Nagata and Sasaki [2002]), market
simulation (Zhou et al. [2011]), network control (Dimeas and Hatziargyriou
[2011]) and so-forth.

Just recently, applicability of MAS strategies for security has been attracted
researchers attention in particular in the framework of information systems se-
curity applied to telecommunication infrastructures (Bonhomme et al. [2010];
Feltus et al. [2010]). On the other hand, as MAS are used in open, distributed
and heterogeneous applications, the security issues may endanger the success of
the application. Different research studies have addressed security issues in var-
ious MAS application fields (Wong and Sycara [1999]; Cavalcante et al. [2012];
Borselius [2003]; Rashvand et al. [2010]).

Considering the necessity for flexibility, portability and scalability of our ap-
proach, we have adopted the MAS approach to MPSoC security; to the best of
our knowledge this is the first utilization of this strategy for that purpose.

2.5 FPGA technologies and their utilization for design
of Multi-Processor Systems-on-Chip

FPGA technologies are considered as very suitable for rapid prototyping in
hardware-software co-design; in fact they have been proposed for this purpose
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since their introduction (Benner et al. [1994]). FPGA-based prototyping for
IP cores simulation and evaluation has been presented in (Siripokarpirom and
Mayer-Lindenberg [2004]), where an approach that enables the user to inte-
grate hardware-implemented IP cores into a software-based simulation environ-
ment is realized using FPGA technology.

Use of FPGAs to prove design concepts in NoC-based system implementa-
tion has been adopted by a number of authors. One the first implementations
of NoC concept in FPGA technology (using Xilinx Virtex2Pro board) has been
presented by (Bartic et al. [2003]). In (Hecht et al. [2005]) an FPGA archi-
tecture employing NoC as interconnection medium is discussed. The system
proposed is implemented on top of the communication infrastructure, providing
a cost-efficient statically and dynamically reconfigurable architectural solution.
Circuit-switched PNoC has been presented by (Hilton and Nelson [2006]), im-
plemented again in Virtex2Pro. An FPGA based open source NoC architecture
has been described in (Ehliar and Liu [2007]).

In (Bobda and Ahmadinia [2005]), the communication problem among mod-
ules dynamically placed on a reconfigurable device is approached using a dy-
namic NoC, through which the components placed at run-time on the device can
mutually communicate. A run-time resource management scheme that is able to
efficiently manage a NoC containing fine grain reconfigurable hardware tiles is
proposed in (Nollet et al. [2005]), while in (Ahmad et al. [2006]) a dynamically
reconfigurable NoC architecture is proposed for reconfigurable Multiprocessor
System-on-Chip (MPSoC), with the aim of satisfying increased communication
needs, low cost silicon implementation, Quality of Service and scalability.

The problem of IP-core automated generation from VHDL description was
addressed by Ferrandi et al. [2006]. This work has been extended for a partial
dynamic reconfiguration workflow; the IP-core Generator framework for EDK
was realized and presented in Murgida et al. [2006]. Automation of processing
nodes generation for multiprocessor SoCs has been discussed in Collin et al.
[2001]; Rowen and Leibson [2004]. In Bartic et al. [2004] and Goossens,
Dielissen, Gangwal, Pestana, Radulescu and Rijpkema [2005], automation of
Network-on-Chip implementation has been presented.

To the best of our knowledge, our work represents the first solution propos-
ing a complete comprehensive and scalable hardware-based security structure;
to prove its viability we have implemented it in FPGA technology.
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Refined Problem Statement

In this Chapter the specific problems addressed by the thesis work are pre-
sented. We focus here on security challenges posed by modern trends in MP-
SoC design whose evolution results in increased security vulnerabilities. More-
over, we list fundamental issues concerning the proposed security framework
discussed in the thesis. Finally, the specific attack models that are considered as
the greatest threats are listed and their choice is justified.

While recently several very relevant works concerning this problem area ap-
peared in the literature (as discussed in Chapter 2), the lack of a comprehensive
and flexible solution capable of tackling heterogeneous architectures of MPSoCs
at different levels has been a basic inspiration for the present work. We aim at
providing a holistic, system-level protection strategy which relies on collecting
and processing security related information coming from different components
of the system. Our goal is to achieve security-related ’data fusion’ by extract-
ing and relating useful information from different sources and different aspects.
A modular and scalable, agent-based security framework constitutes its main
methodological contribution. We aim at proving feasibility of the concepts via
prototype realization in FPGA technology.

The modern trends that have motivated the work for the thesis are exposed
in the sequel.

3.1 Security vulnerabilities of Multi-Processor Systems-
on-Chip

Several modern design trends have led to increasing vulnerabilities of MP-
SoCs to security attacks. Among them the most important are:
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• Increased complexity of the systems that are performing a wider range of
applications employing increasing numbers of HW/SW components (Wolf
et al. [2008])

• Increased networking and exposure to Internet (Zhou and Wu. T. snd Wu
[2009])

• Introduction of dynamically reprogrammable and reconfigurable elements
in MPSoC design (Diguet et al. [2007]; Ahmad and Arslan [2005])

If these trends are combined within the same system, vulnerabilities to at-
tacks become a real concern. It should moreover be noticed that, most security
attacks are focused on exploiting implementation weaknesses rather than break-
ing cryptographic algorithms (Coburn et al. [2005]). Therefore, security must
be carefully considered in all phases and at all levels of system design, taking
into account solutions targeted at both design-time and at run-time.

3.2 Main challenge addressed - Security from a system
wide perspective

As shown in Chapter 2, most research on MPSoC security is oriented towards
protecting some elements of the system from specific types of the attack. On the
other hand, NoC-based MPSoCs are complex systems integrating heterogeneous
resources into a single entity performing a variety of tasks. Therefore, a system-
wide security strategies are needed in order to foster reliability of the entire
system.

In our work we aim at preserving scope and coverage of each specific security
solution (adopting them to particular individual cores in the system) boosting at
the same time overall efficiency of system protection. Therefore, development of
a framework that would integrate, coordinate and correlate a variety of security
approaches from core level up to system level represents a main challenge of the
present thesis. In achieving that goal we face three main research challenges:

• Is it possible to enhance Networks-on-Chip by adding new structures ca-
pable of building protection mechanism?

• How would it be possible to correlate security related information obtained
from different sources and on different aspects in order to improve each
individual security aspect considered as well as security of the system as a
whole?
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• What should be an optimal overall system design (in terms of architec-
ture, policies etc.) that would enable efficient and inexpensive solution for
system level protection?

The approach adopted in this work has been organized towards solving prob-
lems in bottom-up fashion. In other words, security strategies and solutions for
securing individual cores from the NoC side, have been addressed first, while
their integration and the subsequent system level protection has been developed
in later stages of the work. In addition to architectural structures some addi-
tional techniques, such as system protection policies and desig of the related
supporting system elements (as for instance Secure NoC and Central Security
Agent) have been developed as well.

In general, the framework aims at enlarging the coverage and boosting effi-
ciency of the MPSoC protecting mechanism. We have identified the key require-
ments that such a security framework must fulfill:

• Considering that MPSoCs are increasingly heterogeneous, the framework
must be capable of embracing the widest span of processing cores, shared
memories and other system elements. On the other hand it should take
care of the widest variety of security threats - in other words it must be
comprehensive to the largest extent

• Due to the steady evolution of threats in terms of both targeted devices
and of new forms of attacks, the framework must be easily expandable
(i.e. modular) so that new protection techniques and solutions can be
efficiently accommodated in existing architecture

• As the number of the integrated cores and of the applications they run is
constantly growing, the framework must be very scalable so that it can
sustain further evolution of MPSoCs in terms of increased number of IPs
as well as tasks they execute

• The solution should be as much portable and platform independent as
possible

• The deployment of the framework should not be too demanding in terms
of design efforts: this leads to consider that some suitable well-know and
elegant technology such as Multi-Agent Systems should be used. More-
over, the framework should not burden processing resources: therefore,
an elegant solution for hosting it should be found - e.g. by enhancing NoC
components



38 3.2 Main challenge addressed - Security from a system wide perspective

• Finally, the solution must be capable of processing and correlating in an
intelligent manner the gathered data carrying information on various se-
curity aspects and providing a trustful estimation of the security state of
the system

These fundamental requirements have been used as an orientation and guide-
lines through the entire process of thesis development. On the other hand, based
on analysis presented in Section 2 we have determined the realistic scenarios for
challenging MPSoC security. Accordingly, appropriate attack models have been
developed to validate our approaches. They are based on the identified the most
widespread threats to embedded systems security:

• Unauthorized memory access

• Code injection attacks

• Denial-of-Service attacks

The detailed description of these attack models is given in Section 4.2. Ac-
cording to identified challenges and system requirements when considering the
given attack models, we base our solution on the adoption of the multiple-agent
systems concept, as a consequence of which our final architecture is built as a
hierarchical centralized structure. The design of such an agent architecture rep-
resent one of central issues tackled by the present thesis and it is addressed in
the Chapter 5.



Part I

Research Approaches and Conceptual
Solution
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Chapter 4

Reference Architecture and Attack
Models

Prior to presenting in detail the proposed solutions and their implementation
we briefly introduce the reference model of the architecture developed to serve
as a host to envisioned security framework. In this work, development, testing
and validation of all conceived and proposed solutions have been performed on
prototyped implementations in FPGA technology.

The experimental setup represents an FPGA implementation of an MPSoC us-
ing MicroBlaze processors (provided on the Xilinx devices) and shared memory
blocks. We have implemented a custom-built NoC architecture as a communica-
tion medium among these components.

The proposed security upgrade implementation will be detailed in Section
6.3. A fairly large portion of the proposed framework is embedded in Network
Interface components present in the NoC, described in the sequel.

4.1 Reference architecture

In this Section, we detail the architecture of our reference NoC-based system,
giving a short overview of the general system implementation and providing
architectural information about the basic NoC components, i.e., the Network
Interface (NI) and the Router. We highlight also the challenges and design issues
related to their implementation on FPGA.

The described NoC has been customized for implementation on a Xilinx
Virtex-II Pro FPGA board (Xil [2005]). The final system implemented is shown
in Figure 4.1. It is composed of four MicroBlazes, shown in the Figure as uBlaze,
and a block of shared memory implemented using part of the BRAM available in
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Figure 4.1. Overview of the multiprocessor system implemented to serve as
experimental platform

the XIlinx board. MicroBlaze is the soft-core RISC processor provided by Xilinx,
while BRAM is the on-chip Block RAM synthetisable using board resources. In
this setup we experiment with four processing cores as it reflects current trends
in architecture design - quad-core processors are employed in majority of newly
released lap-tops and smart-phones on the market. The interconnection infras-
tructure is composed of a three-port router and the NIs, providing a custom
interface to the two type of IP blocks present in the system. As shown in Figure
4.1, MicroBlazes are connected to the NoC through the interface to the Fast Sim-
plex Link (FSL), an uni-directional point-to-point communication channel bus
available on Xilinx FPGAs to perform fast communication between any two de-
sign elements. A detailed description of the single blocks of the NoC is given in
the next subsections.

4.1.1 MPSoC components

As previously mentioned we have used as core MPSoC components the Xilinx-
provided soft-core processor MicroBlaze (Xil [2005]) and BRAM (Block RAM)
memory block. We briefly expose here their basic properties.
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Processing elements

MicroBlaze is a reduced-instruction set computer (RISC) optimized for im-
plementation on Xilinx FPGAs. The core is highly configurable, allowing users
to select a specific set of features required by their design (e.g. cache size, Mem-
ory Management Unit, pipeline depth etc.). In our system, processing nodes
include data and instruction memories, connected to the CPU through the ded-
icated Local Memory Bus (LMB) and whose dimension can be specified as the
input of the the design flow. We connect MicroBlazes to the rest of the system
through their interface to the Fast Simplex Link (FSL), an uni-directional point-
to-point communication channel bus available on Xilinx FPGAs to perform fast
communication between any two design elements (see Xil [2005]).

Memory elements

Shared memory blocks in our system are implemented using part of the
BRAM available on-chip in Xilinx boards. Memory cores are fully synchronous
and support three write mode options: Read-After-Write, Read-Before-Write, and
No-Read-On-Write. A controller is associated with the BRAM component, in or-
der to manage data transfers from and to the memory bus.

4.1.2 NoC architecture

In this Section, we detail the implementation of the NoC-based system on
FPGA giving a short overview of the general system implementation and provid-
ing architectural information about the basic NoC components, i.e., the Network
Interface (NI) and the Router. We highlight also the challenges and design issues
related to their implementation on FPGA.

Routers

We design a router with variable length of the input and output queues and
implementing a table-based routing algorithm. The router can be automatically
generated with a variable number of input and output ports (see Figure 4.2).
The needed information for the routing is extracted from the first flit of the
packet. The destination address in the header of the packet (DestID) is looked
up and the related output port is calculated. A request of utilization is therefore
raised to the arbiter associated to the selected port. The arbiter, in case of non
utilization of the associated port, assigns in Round Robin fashion the use of the
queue to the input port requesting it and sets up the switch fabric in order to
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Figure 4.2. Architecture of the Router

directly connect the selected input port with the output port. We implemented
the switch fabric in FPGA using a combination of multiplexers. When the last
flit of the packet is received, the arbiter releases the queue and assigns it to the
next input port requesting its use.

Network Interfaces

The Network Interface is employed to adapt a communicating core to the
on-chip network. The module, acting as interface between the core and the
communication subsystem, hides to the processing elements all the issues related
to a reliable and efficient transmission of the data through the network. The NI
is in charge of structuring data as packets, and of managing transmission of
necessary control flow information. It is in charge of providing an interface to
the transmission protocol implemented in the core and an efficient packetization
of the data to be transmitted. Moreover, among the other tasks, it is also has
to guarantee the necessary bandwidth and latency for the transmission and to
provide additional services, such as security (DeMicheli and Benini [2006]).

In our proposed solution, the NI implements basic transmission services, sup-
porting Best Effort (BE) type of traffic; a wormhole control flow strategy is imple-
mented. As shown in Figure 4.3, NI embeds two FIFOs, one per each direction
of the data flow, together with control logic implementing the basic services pre-
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viously described. The NI takes data and control signals from the Fast Simplex
Link (FSL) interfaces of the soft-core processor. The FIFO-like structure of the
FSL allows its easy integration in the NI, adapting the control signals of the in-
ternal queues to those of the FSL interface. Any other type of core (e.g. a shared
memory block) requires a dedicated attached NI that bridges communication
standards between the core and the NoC.

Interface to the MicroBlaze

Figure 4.3 shows the internal structure of the NI connected to the MicroB-
laze. As shown in the figure, the NI consists of two FIFOs, one for each direction
of the data flow, and control logic that implements the basic services previously
described. The NI takes data and control signals from the FSL interfaces of the
soft-core processor. In fact, the FIFO-like structure of the FSL allows its easy
integration in the NI, adapting the control signals of the internal queues to those
of the FSL interface. The MicroBlaze drives the Master FSL interface (FSL - M)
to transmit information to the NI, where we implemented a Slave interface (FSL
- S). Transmission of data from the NI is driven through the Master FSL interface
implemented in the NI.

In order to distinguish between control signals and data sent by the MicroB-
laze, we define the following protocol. As first step, the processing element
sends information on the communication (see Figure 4.4), such as the destina-
tion address (DestAddr), the data length (DLength) and the type of operation to
be performed on the destination (i.e. load (L) or store (S)). IDKey is added for
future implementation of identification techniques for the IP, while the Opt can
be used for some extra tasks.

A control bit is provided by the FSL to indicate whether the transmitted in-
formation is a control or data word. The control bit is set to high (1) if the word
is a control one (as shown in Figure 4.4, it contains destination address, length,
type of operation and other optional information bits). When transmitting data,
this control bit is set to 0. A number of data words, equal to the value specified
in DLength, follows the control word. Furthermore, transitions of the control bit
indicate that a new packet is to be sent to the network.

In the NI, we implemented a memory-mapped protocol in which the oper-
ations are expressed in terms of read and write to memory addresses. The NI
translates a range of memories in the related identifier of the node in the net-
work. The transaction-based protocol implemented is shown in Figure 4.5. A
store request from the initiator of the transaction, directed to the desired target,
is immediately followed by the data that have to be transfered. The target an-
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Figure 4.3. Internal implementation of the Network Interface to the MicroBlaze

Figure 4.4. Control and data words sent by the MicroBlaze to the Network
Interface through the Fast Simplex Link interface
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Figure 4.5. Transaction based protocol implemented between Initiators and
Targets

swers with an positive acknowledgment in case of successful transaction; with a
negative acknowledgment in case of unsuccessful ones. A load request from the
initiator of the transaction is followed as positive acknowledgment by data trans-
mitted by the target. A negative acknowledgment is sent in case of problems in
the transaction. In our discussion we focus on the network level. Therefore, we
assume no signal loss in the transmission of the packets through the NoC.

Structure of packets in NoC

The packets’ structure used within the network is shown in Figure 4.6. We
adopted a wormhole control flow in the transmission of the packets. Therefore,
our packet is divided in flits, which in our case represent the smallest information
logically and physically transmitted through the network. As shown in the Figure
4.6, there are different types of flits.In order to distinguish which type of flit is
transmitted, two control bits are used (Flit Type in Figure 4.6 - bus width is
therefore of 34 bits: 32 of data plus 2 of control).

As shown in Figure 4.6(a), the first flit of a packet is labeled setting the Flit
Type control bits to ’10’. The last flits, closing the packets, are labeled with ’01’,
while intermediate flits are identified with Flit Type set to ’00’. Packets composed
of just one flit are labeled setting Flit Type equal to ’11’ (Figure 4.6(b)).

The first flit of each packet contains the header, which carries information
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Figure 4.6. Structure of the packet used within the NoC

Figure 4.7. Structure of the acknowledgment packets

about the network layer (bit 0 to bit 9) and about the transaction-based proto-
col implemented. We grouped the two information in the same flit, in order to
reduce the overhead associated with the header of the packet. DestID identifies
the target node and its value is calculated translating the DestAddr send by the
processing element. SourceID univocally identifies the source node of the trans-
action and its value is given by a hard-wired register in the NI. The register is
necessary in order to be able to identify the initiator of the transmission. Length
represents, in number of words, the length of the data that follows the header
of the packet. The type of access requested, i.e. load or store (L/S), is also
sent, as well as the role (Role) assumed by the processing element (super-user or
user) and some optional bits. Role has been included for future improvements
of the system, allowing an identification of the operative mode of the processing
elements.

The structure of the packet used for positive and negative acknowledgments
(ACK and NACK) is shown in Figure 4.7. As previously said, acknowledgments
are sent in case of successful/allowed writing (ACK) or unsuccessful/rejected
read or write (NACK). Acknowledgments are sent directly back to the NI of the
processing element issuing the request. Acknowledgment packets are composed
only of the header and therefore of just one flit. The fields containing informa-
tion related to the routing are equivalent to those present in packets transferring
data, while the following bits are set to one to notify an ACK and to zero for a
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NACK.

4.2 Attack models

We consider the general case and, in order to bring the solution onto a spe-
cific use case, we target several widely present types of attacks. These include:
unauthorized memory access, buffer overflow and Denial-of-Service. The con-
sidered attacks are listed as major security threats by a number of reports such as
(Namestnikov [2011]; Trends in IT Security Threats: Executive Summary [2007]).
In Section 2.3.1 we describe specific attack models considered in the present
work. We show what specific scenarios, actually simulations, we have built to
test provided solutions.

4.2.1 Unauthorized memory access

Protection of critical data stored in shared memory blocks inside MPSoCs
represents a challenging task. Unauthorized access to data and instructions in
memory can compromise the execution of programs running on the systems - by
tampering with the information stored in selected areas - or cause the acquisition
of critical information by external entities, such as in the case of systems deal-
ing with the exchange and management of cryptographic keys (Coburn et al.
[2005]; Fiorin et al. [2008]). Two different types of memory attacks can be
considered:

• Attacks to internally shared memory (Fiorin et al. [2008])

• Attacks to shared memory that is physically outside of the system but con-
nected to it (Coburn et al. [2005]; Cotret et al. [2011])

In our work we focus on shared memory blocks inside MPSoC. We consider
initiated unauthorized memory access targeted at:

• Extraction of confidential information

• Data tamper

• Compromise the execution of programs running on the systems

By means of performing the attack itself we exploited Code Injection attacks
explained in the sequel.
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Figure 4.8. Buffer overflow attack scenario

4.2.2 Code Injection Attacks - Buffer Overflow

Binary code injection attacks are enabled if the bounds of memory areas
are not checked, and access beyond these bounds is possible by the program.
Exploiting this vulnerability, an attacker can inject additional data overwriting
the existing one of adjacent memory. From there, they can take over application
control flow, or even take control of the entire system under the attack. In
particular, C and C++ programming languages are prone to this kind of attacks
since typical implementations lack a protection scheme against overwriting data
in any part of the memory. In fact, the languages do not provide a mechanism
of checking if the data written to an array is within its boundaries (Mitropoulos
et al. [2011]).

There are different ways of performing the buffer overflow attack such as
(Hardware-software design methods for security and reliability of MPSoCs [2009]):

• Overwriting the Return Address Register

• Overwriting the Frame Pointer

• Modifying a Data Pointer

In this thesis we will focus on the first listed type of attacks. We consider
buffer overflow caused in a scenario similar to one give in Figure 4.8.
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In the implemented framework, the security strategies are tuned to combat
the aforementioned threats by implementing proper attack specific protection
integrated in wider system environment.

4.2.3 Denial-of-Service attack

There are different ways of performing DoS attack but usually it is done by
forcing consumption of communication resources. With regard to the taxonomy
presented in Figure 2.6 we consider bandwidth depletion in form of direct Dis-
tributed DoS (DDoS) attack using direct causing method with variable rate. In
terms of exact attack technique, in this work we focus on the protection against
vulnerable and flooding DoS attacks. Vulnerable attacks are software specific, in
fact, malformed packets interact with installed programs causing resources con-
sumption corrupting system operation. They usually rely on packet changing
and they are easily detectable. Popular examples include Neptune or Transmis-
sion Control Protocol synchronization (TCP SYN) flag, ping ’o death and the targa3
attacks Carl et al. [2006]. A flooding attack forces the unbounded sending of the
packets and can be either single-source attack originating only in one host or
multi-source attack where multiple hosts flood the victim with a barrage of at-
tack packets. Such an attack requires no SW vulnerability Hussain et al. [2003].

The key challenge in detecting DoS attacks is represented by correct distinc-
tion between unexpected burst of regular traffic and increased packet transfer
due to the attack. In Section 7.5.1 we discuss simulation and test-benchmark
techniques used to emulate realistic application execution (i.e. communication)
scenarios (Basseville and Nikifirov [1993]).
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Chapter 5

The proposed conceptual solution - a
Hierarchical Agent-Based Security
Framework

In this Chapter we introduce our approach to incorporating security-related
techniques and methods into an efficient integrated system-level protection mech-
anism. We give an overview of the security framework structure which repre-
sents the core of our proposal. We show the composition and structure of the
system which is organized in hierarchical fashion based on security agents as
elementary building blocks (as presented in Section 5.1). The hierarchical or-
ganization of the protection system has been chosen as it best suits to the need
of coordinating different cores’ protections strategies with an unique system-
wide protection mechanism: the proposed solution is discussed in Section 5.2.
Furthermore, the agent based structure proposed by us balances centralized and
distributed solutions considering energy dissipation and area consumption. Con-
trary to other solutions (such as Patel et al. [2010]) no code instrumentation is
required which simplifies the deployment and improves portability of the solu-
tion. Results and comparisons between the proposed and other approaches are
reported in Section 7.

In addition to the architecture, a comprehensive security policy embracing
all the different protection mechanisms has been developed and presented. It is
based on trusting values calculations and accordingly security domains assign-
ments as shown in Section 5.4. We explain in the sequel the most important
elements of the proposed security framework.

53
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5.1 Security Agents

Modern MPSoC systems represent very complex, heterogeneous systems with
highly dynamic interactions among applications. Moreover, security related in-
teractions (e.g. attack propagation) introduce another degree of nondetermin-
ism in system behavior. Therefore, due to high complexity, dynamism and het-
erogeneity of the considered system, adoption of the multi-agent system (MAS)
concept ( Wooldridge [1997]; Jennings [2001]) appears to be a promising con-
cept to tackle the listed issues. MAS has been proven as successful instrument in
dealing with similar problems in a number of different fields (Borselius [2003];
Xiao et al. [2007]; McArthur et al. [2007]; Dimeas and Hatziargyriou [2011]) as
well as in security related ones (Bonhomme et al. [2010]; Feltus et al. [2010]).

The Security Framework that we propose is based on a logical entity named
Security Agent. Security agents are logical elements (built in hardware or soft-
ware or with a mix of hardware and software) that encapsulate all the security
related issues at different levels of design. Their functionalities depend on which
level they are employed at (i.e. which purpose they serve, see Figure 5.1); they
include attack specific-protection, communication with other agents and coun-
termeasures, as detailed in Section 5.2. We devise security agents according
to requirements listed in Section 3.2. Therefore, the agents are conceived as
flexible, modular structures that can be easily extended with extra components
for additional functionalities (i.e. handling some newly discovered attacks) by
straightforward addition of an extra module. Once a new module or agent is
inserted in the system it ’checks-in’ to the security framework and the systems
gets aware of its presence and role.

More precisely, agents and supporting structures are developed to be:

• Comprehensive - by implementing the agent structure in a flexible fash-
ion we provide high autonomy to the front-end agents attached to the
individual cores. In turn, each front-end agent can be tuned to support
specific protection needs of a particular core (please refer to Local Secu-
rity Agent in Section 5.2). On the other hand, inter-agent communication
and interaction is standardized and unified. In this way, we build a security
framework capable of meeting the requirements of heterogeneous MPSoC
composition as well as the ones related to a wider spectrum of security
aspects that may arise from such structure.

• Modular - the agents are built as easily extendable modular structures. In
fact, the agents’ architecture is designed to support in a flexible way possi-
ble changes in the number of employed agents and as well as to facilitate
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insertion of new attack specific protection modules. For this reason each
agent has an updated list (actually coordination table) of its directly sub-
ordinated agents (which belong to a lower layer in the hierarchy). Upon
insertion in the system newly employed agent checks-in to the coordina-
tion table and the information is subsequently propagated to higher layers’
agents so that the security framework as a whole is aware of the new sit-
uation. This feature enables facilitated and undisturbed extension of the
protection system to different types of attacks.

• Scalable - the security framework can be also easily extended to accom-
modate the addition to the system of new cores. This is again enabled by
properties of the modular structure of the proposed architecture. In fact,
insertion of a new core implies addition of a newly assigned agent (at-
tached to the core) to the system. Practically, only the coordination table
needs to be updated through the check-in process and the entire security
framework is adjusted to support the change accordingly.

• Portable - we encapsulate the architecture-specific issues in the communi-
cation interface of the front-end agents (i.e. attack specific agents - which
are actually at the same time ’core specific’, as explained in Section 5.2).
These interfaces have to be customized to adopt the communication stan-
dards of the specific cores. This fact represents the limitation of the so-
lution and at the same time it introduces the need for additional design
efforts in case of deployment of the solution on other systems. Neverthe-
less, ’translation’ of the solution to other architectures requires interven-
tion only in this part (front-end attack specific agents), beyond this point
the entire structure is fully architecture independent and portable.

5.2 Hierarchical Structure of Security Agents

We define four different security levels and we assign one type of security
agent to each layer. These four types of agents are organized in a hierarchical
fashion as follows (the general system structure is represented in Figure 5.1):

• An Attack Specific Agent (ASA) is a dedicated software or hardware struc-
ture that handles a specific attack (e.g. denial of service, code injection
etc.). The corresponding security level is defined at Attack Specific Protec-
tion layer. Particular implementations at this level are described in details
in Section 6.3.
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• A Local Security Agent (LSA) takes care of securing the individual core, of
aggregating and coordinating all ASAs deployed on the core and of com-
municating with other Security Agents that are performing specific actions
as countermeasures. There is one LSA per core. It logically encapsulates
all security related activities defined at core protection layer. The detailed
description of the structure and implementation of LSA is given in Section
6.4).

• A Cluster Security Agent (ClSA) is a module that coordinates LSAs as-
signed to cores inside a cluster in those MPSoC architectures designed as
interconnections of autonomous clusters (ClSAa correspond to the cluster
protection layer). For simplicity reasons, but without loss of generality, we
have not implemented this type of Agent in our experimental setup (the
FPGA-based architecture used for the experimental validation is a single-
cluster MPSoC).

• A Central Security Agent (CSA) represents a central point in the system
security. It operates at the system level protection layer. It practically
executes security policies (i.e. updates trusting tables, performing coun-
termeasures etc.) and coordinates all the security activities in the system
through LSAs or hierarchically through ClSAs for cluster-based architec-
tures (structure and implementation of the solution is detailed in Section
6.5).

All the agent types are implemented in modular and scalable fashion in the
form of easily extendable finite state machines.

5.3 Communication among Security Agents

As stated in Section 1.2 we consider an MPSoC as a structure composed of
three basic building elements - processing cores, memory units and communica-
tion medium. As it will be shown in Section 6.3, memory units and processing
cores have been secured by assigning proper Local Security Agents. Still, these
agents need to communicate, in order to provide system level protection. There-
fore, sensitive security related data have to be protected and possibly kept out
of an attacker’s reach.

In order to build an efficient and reliable security system, an appropriate
communication structure must be designed with the goal of providing safe and
secure communication among all security agents. To support such requirement,
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Figure 5.1. Hierarchical structure of the security system

we have introduced a Secure NoC (S-NoC) parallel to the ’regular’ NoC that
supports the standard application (SNoC implementation is described in de-
tails in Section 6.6). In this way, the security-related traffic is separated from
the regular data traffic, thus providing a further degree of protection since the
security-related data are kept fully isolated in the dedicated architecture. As a
consequence, all security related components and services are encapsulated in
a single independent structure. An alternative for autonomous security-related
data routing would be utilization of virtual channels in the regular NoC, but
apart from higher risk of data interception, the design efforts as well as cost
of implementation in that case would be even higher (this statement especially
holds for MPSoCs with limited numbers of cores as shown by Yoon et al. [2010]).

The communication protocol on the secure NoC is designed to be rather
straight-forward. In the initial phase, the communication is started and estab-
lished by the CSA; afterwards, the communication is effected in event based
fashion (the UML like sequence diagram in Figure 5.2 shows the communication
protocol among CSA and LSAs). In order to simplify the diagram, ClSAs are
not presented in the figure since they are not implemented in our experimental
set-up. Since, in the current implementation, ASAs are implemented as modules
directly embedded in the LSAs, no explicit communication between these two
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is presented in the diagram (internal communication is also event based). Nev-
ertheless, CSA performs initialization of all LSAs and CSA (e.g. setting initial
parameters of trusting table). Once the initialization phase is over, the system is
run and its operation moves into regular execution (LSAs send reports and CSA
updates the trusting table accordingly). When a violation of security policies is
detected the system moves into another operation mode executing attack anal-
ysis. Upon violation is resolved the CSA reprograms the system and restores its
regular operation mode.

5.4 Security policy

The security policy in the framework is based on three elements:

• Evaluation of incidents (i.e. disruptions) and security alert severity calcu-
lations

• Trusting relationships - trusting values calculations and assignment to each
MPSoC

• Designing the security domains and deciding the thresholds between them;
determining accordingly the degree of threat/violation and proper coun-
termeasures

All the above issues are combined together to form an efficient protection
system. They are determined statically (at design time) requiring that some ba-
sic information on the attack characteristics must be known in order to optimally
customize the security policy elements. For instance, application-specific traffic
statistics should be known so that protection mechanisms for some specific at-
tacks (such as Denial-of-Service) can be optimally tuned.

5.4.1 Disruptions, security alerts and positive feedback

We consider as a disruption any kind of unexpected event in the system. This
includes all types of unauthorized requests for resources or services. It must be
noted anyway that not all disruptions come from malicious attacks, as many may
be caused by various software bugs or system failures.

We consider in general two kinds of attack detection:

• Deterministic attack detection - enabled through customized logic that
identifies specific violations according to a given set of rules
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Figure 5.2. Communication protocol among security agents
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• Statistical attack detection - achieved by setting up suitable ’misbehavior’
patterns and accordingly detected violation conditions based on system
monitoring statistics

Obviously for the second type of attack detection techniques, actually dis-
tinguishing between malicious disruption and a regular application execution
incident is a very challenging task. In order to distinguish between intentional
incidents and malicious attacks a customized solutions for each type of attack
has to be made (e.g various types of applications have very different commu-
nication patterns and this in turn requires customization of attack detection
parameters for DoS detection). Such kind of solutions are integrated in Local
Security Agents (LSAa) who are in charge of making the decision on alert sever-
ity levels.

Alert severity levels can be given in various resolutions, but for simplicity
reasons and without loss of generality we stick to three levels, i.e., low, medium
and high level. Such division enables us to group and process disruptions (calcu-
lating and then forwarding the appropriate alert level) locally in LSA. This way,
we transmit less often information on the SNoC, thus unburdening it from traffic
and saving the energy at the same time.

Positive feedback

As already mentioned above, some attack detection techniques that rely on
application behavior monitoring might be misled by unexpected irregularities
and raise a false alert. In particular this applies to Denial-of-Service attack as
described in Section 2.3.1. In order to prevent the possibility that such false
alerts cause permanent trusting value decrease we introduce and implement
positive feedback mechanisms. These mechanisms must be tailored to specific
applications as well. Nevertheless, their purpose is (once activated) to monitor
appearance of specific events in defined time windows (usually after an alert
has been raised or when the core gets into specific security domain as defined
in Section 5.4.3). If none event has been recorded during the monitored period
the positive feedback signals is sent to the CSA and this results in incrementing
the trusting value for the considered core.

5.4.2 Trusting policy

We implement a centralized trusting policy. All trusting related matters are
managed by CSA. It performs the following functionalities:
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• Defines levels of trustiness which correspond to security domains

• Defines threshold values between different security domains

• Assigns initial trusting values to the cores

• Updates trusting values in the trusting table

At system initialization time all cores are given highest trusting value. Def-
inition of both the exact trusting value as well as its initial rate can be decided
by the system designer at design time. Upon reception of each alert (or positive
feedback) the trusting is recalculated. The assigned value is decreased/increased
according to severity of the alert (or value of the positive feedback) and once it
gets zero the CSA performs proper countermeasures (e.g. cutting the access to
the NoC to the attacked core).

Considering in particular DoS detection, trusting value can also be increased
if no alert has been detected in the given time period after the first detected alert.
Once the alert is fired (a medium-severity alert pushes the core into medium se-
curity domain) the counter in LSA is started and if no other alert arrives in
the specific time-window a ’positive-feedback’ signal (which increases the trust-
ing value) is sent to CSA. The alerts can be of low, medium and high severity
(decreasing the trusting value, in our specific implementation, for 5, 10, 15 re-
spectively). Positive feedback signals correspond to a trusting value increment
of two points in our specific implementation.

Equation 5.1 shows how the trusting value (TV) for the specific core has
been calculated. In this equation T V (i)T represents the trusting value of the
specific core in some instant of time. T V (i)0 is the initial trusting value and in
our implementation it is the maximum value as well. The trusting value for the
specific core is calculated as deduction of all reported alerts for the core with
addition of all the positive feedbacks for the core. We have two sums in this
case:

• All the types of alerts which correspond to all the kinds of implemented
attack specific agents for the specific core

• All the positive feedbacks which again may come from all the different
attack specific agents

In general, this means that for a specific core, all reported alert types from
all existing cores (as well as positive feedbacks) are summed up to give a proper
trusting value, as indicated in equation 5.1 (where m denotes all the types of
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alerts and n is the total number of the cores; Aler t(X i) represents the alert of
the specific attack type for the given core):

T V (i)T = T V (i)0− Aler t(X i) + PF(X i) =
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∑
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(5.1)

Alert detections (as well as positive feedbacks reporting) can be consequences
of differently implemented protection mechanisms. Some of them are imple-
mented in the form of attack specific agents that monitor the core they are at-
tached to and report alerts on violation detection coming from the core they are
assigned to (e.g. code injection). On the other hand, there are attack specific
agents which detect attacks to the cores they are attached to that are coming
from other cores (e.g. unauthorized memory access). In some cases both types
of agents can be employed in the same core (i.e. embedded in the same lo-
cal security agent). Therefore, every LSA may report different alert types for
all cores in the system (including the one the LSA is attached to). That’s why
in the sum in equation 5.1 we consider all the cores and all the alert (actually
protection) types. Thus, the trusting value for each core is calculated based on
alerting/feed-backing signals from LSAa at all cores in the system.

Such an approach enables to combine a wide diversity of attack specific pro-
tections for an unlimited number of cores. We establish thus in a simple and
elegant way a structure that correlates all the types of protections into a sin-
gle system level security strategy. Still, alert severity weighting and design of
positive feedback mechanisms must be customized for each attack itself fairly
related with other protection types and integrated into a single security matrix
(in which each alert for every core is weighted properly).

5.4.3 Security domains, violation detection and countermeasures

In order to optimally manage system operation from security aspect, we have
introduced security domains inspired by those proposed by (Inoue et al. [2005];
Hiroaki et al. [2008]; Porquet et al. [2009]). In general, the concept of secu-
rity domains is based on confining application execution in specific environment
according to importance and trusting of the application and the core that is to
execute it (as explained in Section 2.3). These solutions normally requires imple-
mentation of virtualization of execution environment. As we have on available
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limited MPSoC resources, such a solution (fairly costly in terms of processing
power and memory) common in general purpose computing would not be ap-
plicable. In our specific solution we consider mapping of individual cores into
proper security domains rather then applications or threads. Thus we have lower
granularity of instances that we are processing but still without loss of generality
of the solution.

Different security domains are defined at the design time, and the cores in the
system are assigned to appropriate domains in run-time. We have established -
high, medium and low security levels corresponding to actual level of the trust-
ing value of the core. Definition of thresholds between the different levels (i.e.
trusting values which define specific security domains) is another challenge and
it should be left to the designer of the system based on particularities of the
system and possible attacks. In our concrete implementation we have taken uni-
form distribution of threshold values, meaning that cores with trusting values in
the upper third (i.e. 11-15) are considered as highly trusted and medium or low
trusted cores are accordingly grouped.

Depending on its current trusting value, a core may belong to one of the de-
fined security domains and it would be threated accordingly. In our implementa-
tion belonging to a security domain impacts on the way a core is monitored, the
different access rights to shared memories it may have and finally on the access
to the NoC itself. More specifically there are three possible options:

• High security domain - all the resources of the system are available to the
core and it can execute all the application types. The security monitoring
system (which involves activation of positive feed-backing mechanism) is
switched off. In other words only the basic alert detection mechanisms are
active for such a core. This way we avoid unnecessary energy dissipation,
as if a core is considered as highly trusted there is no need for improvement
of its trust value or some other additional checks.

• Medium security domain - security monitoring for the core in the domain
is activated (i.e. positive feed-backing is enabled); also some restrictions
to specific memory regions may apply (this depends on specific system
implementation and it is defined at system design time)

• Low security domain - additional restrictions to shared memory access are
applied. All the cores are sent warnings on the potential threat coming
from this core

Once the trusting value reaches zero we consider that security violation is
definitely detected. The core is cut off from NoC access until the cause of the vi-
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olation has been resolved. More exact countermeasures go beyond our research
as they are attack and technology depended. We implement very basic counter-
measures that are aimed towards attack isolation and preventing its propagation
through the system.
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Implementation and Validation of the
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Chapter 6

From the General Approach to Actual
Architectural Design

In this Chapter we present the approaches and instruments used in the pro-
cess of final design implementations. We discuss performance and limitations
of the existing instruments as well as proposed enhancements applied to the ex-
isting SoC design flow. We show implementations of different types of security
framework components, actually agents - Attack Specific Agents (ASAs), Local
Security Agent (LSA) and Central Security Agent (CSA). The structure and func-
tionalities of each of the agents is explained in details.

6.1 SoC Design Flow and Fast Prototyping Strategies

SoC platform design in general requires hardware-software co-design deci-
sions to be made. It requires evaluating trade-offs among different merits and
constraints such as area costs, power consumption, performance, flexibility, time
to market, design time etc. Once the system structure is defined, the design
flow involves parallel development of hardware and software components of
the system (this process is represented in Figure 6.1). When it comes to design
synthesis, CAD tools generate hardware components (through place and route
process) first, and only after the hardware platform of the system is built SW
blocks are integrated by software development environment (in our particular
case we have used for hardware generation the Xilinx provided tools - ISE, EDK,
SDK etc. (Xil [2005]) - as explained in Section 6.1.1)

In order to use available resources more efficiently, designers of NoC-based
MPSoC architectures need tools allowing reliable and fast validation and testing
strategies for system debugging and development. Automation of the design

67



68 6.1 SoC Design Flow and Fast Prototyping Strategies

Figure 6.1. Standrad SoC hardware-software design flow (taken from Bishop
[n.d.])
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flow is the solution to reduce the time spent in these activities, in particular in
the case of reconfigurable NoC-based multiprocessor architectures.

Automation in the generation of processing nodes in multiprocessor SoC is
discussed in Section 2.5. We have developed a light-weighted framework to
perform automatic generation of MPSoCs based on on-chip networks (Lukovic
and Fiorin [2008]), in particular addressing FPGA-based design of such systems.
Compared to previous related work, the framework described in this paper ex-
tends for the first time the functionalities offered by the Xilinx EDK 7.1i tool-
chain, in order to give support for the fast automatic generation of NoC-based
MPSoCs employing the processing elements provided by Xilinx. The framework
provides the system designer with the possibility to quickly develop prototypes
that can be significantly helpful to test, validate and debug the type of system
addressed, thereby reducing the time for the development of a project.

6.1.1 The Standard FPGA design flow

In this Section we briefly present the characteristics of the Xilinx EDK de-
sign flow, describing its advantages and disadvantages in the case of NoC-based
MPSoCs design.

We refer to EDK versions 7.1i and later, used for the development of our
work. The tool-chain involves hardware and software design flows, integrat-
ing a complete platform generation in one framework. It is composed of many
different tools, with functionalities ranging from IP-core insertion wizards to
programs exploiting complex algorithms to perform the place-and-route of the
design. The EDK functionalities are presented to the end-user through a graphi-
cal user interface - the Xilinx Platform Studio (XPS).

The entire EDK system generation relies on information written into several
project-specific description files. Platform-related information is written in the
Xilinx Microprocessor Project (XMP) file, representing a central point for the
entire project. Specifications of system hardware components for each IP in-
stance are described in the Microprocessor Hardware Specification (MHS) file,
and software properties (e.g. specific drivers) of each of them are given in the
Microprocessor Software Specification (MSS) file. The MHS and the MSS files
are at the top of system description hierarchy. Features and characteristics of
each kind of IP included in the project are described in the Microprocessor Pe-
ripheral Description (MPD) file.

Each IP instance in the system, described by means of a parameterizable
MHS file, receives the adequate parameter value from a dedicated description
record in the MHS and MSS files, where all components of the system are listed.
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Figure 6.2. The Xilinx EDK design flow

The external input-output connections of the system are defined in the User
Constraint File (UCF) Xil [2005].

EDK merges the creation of the software and hardware parts into one in-
tegrated system (as presented in Figure 6.2). Its real power lies in the clear
representation of the entire HW/SW system it gives to the user, as well as in
the significant number of IPs provided by the FPGA vendor. Insertion of pro-
vided IP-cores as well as of the custom created ones is facilitated by tools for IP
integration.

While very comfortable for automatic generation of a system based on the
provided processors and IPs, EDK is not well-suited for multiprocessor platforms
based on custom IPs, in particular if connected through non-standard interfaces.
In fact, for non trivial architectures including a mix of custom modules and Xil-
inx IP blocks adopting a complex communication system, EDK often requires
designers a time-costly manual modification of the system files, with possible
generation of subtle errors during the procedure. Therefore, in the next sec-
tion we focus on possibilities for enhancing the existing EDK design flow for
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automatic generation of NoC-based MPSoC systems, proposing and describing
the integrated automation framework we implemented on top of the EDK tool-
chain.

6.1.2 Network-on-Chip adjusted FPGA design flow

The integration of multiple instances of the same IP and their connection
through not-standard interfaces requires additional efforts from a designer as
all the links (i.e. ports, buses etc.) among the components have to manually in-
serted. This represents a significant problem in the generation of NoC-based MP-
SoCs on FPGA and it reflects at increasing the prototyping time for the system.
An efficient approach for cores interconnection can be developed by knowing
the exact number of inserted IPs and their communication interface. Based on
such approach, we apply a set of rules for IP connections in order to automate
the manual work that should be otherwise performed. In this way, we fill up the
gap in existing design flow between the connection of peripherals/IPs and the
instantiation of software applications (as show in Figure 6.2).

The automation engine we propose frees system designers from taking care
of internal system interconnection as well as from the need of knowing the EDK
tool-chain and the format of system files by providing an efficient components
integration instrument (Lukovic and Fiorin [2008]). These improvements bring
more efficiency in system design facilitating testing and validation phases.

The automation engine we present here is conceived as a three-layer struc-
ture (see Figure 6.3). Each layer corresponds to one phase of the design flow.
The core of the solution relies on a Tcl language script that creates the required
directory structure, and designs the specific project files and makefile. The fun-
damental benefit brought by this approach is the fact that it enables system de-
signers to be aware of just system functionalities without needing knowledge of
its internal structure. The enhancement of existing design flows enables the full
integration of the several components involved in system generation, reducing
the knowledge about the specific tool-chain needed by users. All the needed spe-
cific description files of the project as well as the makefile that drive the process
of synthetization are generated in few minutes, after defining the characteristics
of the system to implement.

System Initialization

The outer layer - the system initialization - provides direct interaction with
the system architect in the form of text user interface. Moreover, relying on
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Figure 6.3. The layered structure of design flow

Xilinx EDK, our framework has to provide full compatibility with appropriate
structure in sense of directories tree and system description files. Therefore,
the task this layer performs is the fast automated creation of project folders and
files based on system designer preferences. The framework takes as inputs -
destination paths to EDK install directory, project directory, paths to HDL source
code of custom IP and C source code of software application, as well as the
number and type of system components and type of interaction between the
host and platform. Additionally, debugging information in form of signals to be
monitored could be provided. All these data are used for creating appropriate
MPD and UCF files and binding of custom IPs’ HDL and applications’ C source
files to the adequate points in the structure. The project configuration file -
written in the XMP file - carries information on the hardware platform used.
This process directly corresponds to ’Basic system builder’ and ’Create/Import
Peripherals’ in XPS design flow (see Figure 6.2).
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enhancements

System Integration

After the creation of the required project structure, the design flow moves
onto the next stage - the system integration layer. The designer’s preferences
are now presented in EDK understandable form, which enables the process of
components interconnection/integration. As the automation engine at this stage
knows all the components of the system, it creates the proper number and types
of NIs and appropriately associates them to the given components. The cus-
tomizable routers are also configured according to the total number of inserted
IPs. All IPs are assigned an identification number depending on their instantia-
tion. The same number is labeled to the associated NI and router input-output
port. The framework connects the suitable components following the assigned
numbers. The IP’s are labeled according to the order of instantiation, in a way
allowing the user to know exact ’address’ of each component in the system.

Components’ interfaces in MHS files are now assigned according to described
rules for NoC interconnections. In this way, the NoC is instantiated among the
Xilinx and custom IPs. This step represents an essential enhancement to EDK
design flow as it grants designers full freedom from interconnecting issues.

System Synthesis

Once the system is fully integrated, synthesis begins. The makefile created in
previous phase drives the execution of HW/SW sinthetization tools of the EDK
design flow. Hardware flow is run first. After system Netlists creation, the im-
plementation flow is executed. Then, the bitstream file is generated and then
the software flow is run. This phase consist of three steps - adding a software
application to the desired processor, generation of custom libraries and compi-
lation and linking of source code. Once both hardware and software flows are
executed, the bitstream file is initialized with BRAM data (for initialization of
data instruction memories attached to processing units).

The final result of the automation engine is a configurable bitstream file
which is directly downloaded to the attached platform.

6.2 Network-on-Chip as a medium to accommodate se-
curity related enhancements

Being modular, scalable and technology independent, Networks-on-Chips
represent a solid ground to provide MPSoCs with extra services (in addition
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to inter-core communication). In fact, NoCs represent a solid basis to meet
requirements of a security framework listed in Section 3.2. The NoC intercon-
nect comprises two types of components, namely: Network Interfaces (NIs) and
Routers. We consider in the present work reference NoC architecture as detailed
in Section 4.1. Naturally, NIs as front-end components of NoCs, attached directly
to the cores, represent the optimal point for hosting additional services.

6.2.1 Enhancing Network Interfaces

As discussed in Section 4.1.2, the Network Interfaces (NIs) act as adapters
of communication standards between the various IP cores and the NoC. The NI
module, acting as an interface between the IP and the interconnecting struc-
tures, encapsulates all the issues related to a reliable and efficient transmission
of data through the network, freeing the IP of any communication related con-
cerns. The NI is in charge of structuring data as packets or flits, and it also
manages transmission of necessary control flow information.

NIs represent a gateway to the NoC and due to their modular and flexible
design as well as to close interaction with cores they are attached to, they are
an ideal point for deployment of modules enabling services other than commu-
nication related ones. We embed Local Security Agents (that actually host Atack
Specific Agents) in NIs in such manner that regular functionalities are not dis-
turbed.

6.3 Attack specific protection

The combination of various MPSoC design decisions and operating environ-
ment may expose the system to critical combinations of security risks as shown
in Section 3.1. Attack techniques may be easily merged and coordinated, a fact
representing an additional challenge for security aware design.

Among the most widespread types of attacks we consider:

• Code injection

• Denial of services

• Side channel attacks

We show in the sequel protection solutions we implemented (against the
above listed attacks) and their integration in wider security framework.
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6.3.1 Attack Specific Agent - Data Protection Unit

We introduce a concept (named as ’MemPROT’) for protecting shared mem-
ories from unauthorized access. It is based on the Data Protection Unit (DPU)
which is a hardware module that enforces access control rules specifying the way
in which a component connected to the NoC can access the blocks in which a
memory can be divided to allow separation between sensitive and non-sensitive
data of different processors (Bjerregaard and Mahadevan [2006]). The module
is integrated in the Local Security Agent (as shown in Section 6.4.3) embed-
ded in the Network Interface of the target memory (or of the memory-mapped
peripheral) to supply services similar to those offered by a classical ’firewall’
in data networks. The Network Interface receives packets coming from several
initiators requesting access to the target memory. While processing the packet,
the information contained in the header is passed to the DPU. The protection
module looks up the access rights for the requesting packet and checks if the
requested operation is allowed, granting or denying the access of the data to the
memory block. The internal structure of the DPU is given in Figure 6.4. One
of the most relevant parts of the DPU is represented by the lookup table. In
hardware this element is commonly implemented combining a typical Content
Addressable Memory (CAM) (Guz et al. [2006]), used in associative memories
and data networks routers, and a RAM storing the access rights (load, store, both
or none). It is important to note that coupling the DPU with the NI guarantees
that no additional latency is associated with the access right check since, as we
will show better later, the protocol conversion and the DPU access are performed
in parallel.

Figure 6.4 shows the architecture details when the DPU is embedded at the
target NI (attached to memory). For this architecture, the DPU checks the header
of the incoming packet to verify if the requested operation is allowed to access
the target. This access control is done mainly by using a look-up table (LUT),
where entries are indexed by the concatenation of the SourceID, the type of
information D = /I , and the starting address of the requested memory operation
MemAddr. The number of entries in the table depends on the number of memory
blocks to be protected in the system, as well as on the number of initiators. In
the implementation shown in Figure 6.4, we assume 4 Kbytes as the size of the
smallest memory block to be managed for the access rights.

This means that all data within the same block of 4 Kbytes have the same
rights (corresponding to the 12 LSB in the memory address) and that we use
only the 20 most significant bits of the MemAddr field for the lookup. The LUT
of the DPU is the most relevant part of the architecture and it is composed of
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Figure 6.4. Data Protection Unit - internal structure

three parts:

• A Content Addressable Memory (CAM) (Radulescu et al. [2005]) used for
the lookup of the SourceID and the type of data D = /I ,

• A Ternary CAM (TCAM) (Radulescu et al. [2005]) used for the lookup
of the MemAddr. With respect to the binary CAM, the TCAM is useful
for grouping ranges of keys in one entry since it allows a third matching
state of ’X’ (Don’t Care) for one or more bits in the stored datawords, thus
adding more flexibility to the search. In our context, the TCAM structure
has been introduced to associate to one LUT entry memory blocks larger
than 4 Kbytes.

• A simple RAM structure used to store the access right values

Each entry in the CAM/TCAM structure indexes a RAM line containing the
access rights allowed/notal lowed for user load/store and supervisor load/-
store. The type of operation L/S and its role U/S taken from the incoming
packets are the selection lines in the 4:1 multiplexer placed at the output of the
RAM. Moreover, a parallel check is done to verify that the addresses involved
in the data transfer are within the memory boundary of the selected entry. If
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Figure 6.5. Overview of the whole NoC-based architecture including the Data
Protection Unit at target Network Interface

the packet header does not match any entry in the DPU, there are two possible
solutions, depending on the security requirements. The first is more conserva-
tive (shown in Figure 6.4), avoiding access to a memory block not matching any
entry in the DPU LUT by using a match line. The second one, less conservative,
also enables the access in the case when there is no match in the DPU LUT. This
corresponds to the case when a set of memory blocks does not require any ac-
cess verification. The output enable line of the DPU is generated by a logic AND
operation between the access rights obtained by the lookup, the check on the
block boundaries, and, considering the more conservative version of the DPU,
the match on the LUT. Given the complexity of the protocol conversion to be
done by the NI kernel, we can assume that the DPU critical path is shorter than
the critical path of the NI kernel (as confirmed in the results reported in Section
7). Under this assumption, integrating the DPU at the target NI guarantees that
no additional latency is associated with the access right check since, as shown in
Figure 6.5, the protocol conversion and the DPU access are done in parallel.

6.3.2 Attack Specific Agent - Stack Protection Unit

We introduce a protection mechanism against ’code insertions’ attacks named
InjectPROT. The solution is based on a Stack Protection Unit (SPU).

The basic concept of the ASA/SPU is rather straightforward. Every time
a function is called, the return address of the caller function is stored on the
stack but it is also replicated in the ASA/SPU which keeps track of the return
addresses of the nested functions and reports any attempt at overwriting that
particular address (simply comparing stored value with one obtained from the
stack). Practically, the task of the ASA/SPU is to restrict the stack accesses to the
current stack frame. The concept is presented in Figure 6.6.
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Figure 6.6. Basic concept of Attack Specific Agent - Stack Protection Unit

ASA/SPU customization for MicroBlaze processor

The ASA/SPU has to keep track of return addresses and it should store them
on each process context switch or process execution mode switch (user-kernel ex-
ecution mode shift). While the concept is totally general, the implementation is
strongly CPU-specific, as the exact machine instructions and event sequences de-
vised for function call and return must be matched step-by step by the ASA/SPU.
The scenario of context switching and instruction that handle it in the MicroB-
laze architecture are shown in Figure 7.5. The ASA/SPU should follow such
scenario and on a context switch (that may occur for different reasons such
as function nesting, interrupt handling, exception management and so forth) it
should store the return address as well as verify return address correctness on
function return.

Using a brlid r15, instruction the current value of the Program Counter (PC)
is placed in the r15 (pointer link register), and the PC is replaced with the ad-
dress of A function. In the A function the instruction addikr1, r1,−x is intro-
duced to prepare the current stack frame (i.e. the stack frame space used by the
function). After the stack pointer is decreased, the r15 register is stored at the
beginning of the current stack frame. This is the return address for the function
A. These are the necessary operations to enable arbitrary nested function calls.
In order to return from the called function, the instruction to restore the r15
register is issued. Instruction lwi r15, r1, 0 , restores the program counter to the
instruction next to the return address (rtsd r15,8 ) and cleans up the stack frame
by addikr1, r1, x . The SPU must follow this sequence and store the nested re-
turn addresses.

The ASA/SPU has been realized as a Finite State Machine (see Figure 6.7).
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Upon initialization the SPU goes to Idle mode (or state) in which it waits for the
instruction from the Kernel. The command which signals that context switch has
occurred or that execution mode has been changed drives the ASA/SPU in an
appropriate state.

Figure 6.7. Functions’ nesting and Stack Protection Unit as finite state machine
that follows the scenario

The internal structure of the ASA/SPU is given in Figure 6.8. In case of a
call (i.e. process context switch) the Kernel (actually the Scheduler) requests
from SPU (actually from User Stack History Updater) the history of the nested
path calls of the previous process and then sends to the SPU the history of the
nested calls of the current process in order SPU to update the set of protected
return addresses of the running process. The call is detected by the Stack Pointer
Tracker which checks every executed instruction searching for addik r1, r1, -
x. Then it takes the value of the SP from the Trace_New_Reg_Value, saves it
and increments the address of the user/kernel address space in SPU where the
new SP value will be stored. In case it encounters addik r1, r1, x it means that
the return from a call is detected. It decrements the address of the user/kernel
address space, so as to point to the SP of the previous function.
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Figure 6.8. Internal structure of Attack Specific Agent - Stack Protection Unit

The operational scenario is presented in Figure 7.5. The Command Inter-
preter takes through FSL instructions from the Kernel (as it can be seen in Figure
6.8), translates them and uses to drive the SPU. In the case of context switch
(SPU is in Context Switch state accordingly), User Stack History Updater points
to the location to which newly arrived return address (to be stored) is going to
be written and Stack Pointer Tracker provides the exact value to be written (i.e.
return address itself obtained from Trace bus). The Memory Manager, based on
command from the Interpreter, places the provided return address into the stor-
age dedicated for user or kernel mode stacks. On the other hand in the case of
function return (Check and return state) the return address stored previously by
Memory Manager is compared with one that processor wants to return at (from
Trace_Instruction provided by MicroBlaze Trace bus), in case these two differ,
the Alert signal is set.

ASA/SPU interaction with the processor and Kernel

The overall NoC system with PPS deployed in Network Interfaces (NIs) at-
tached to MicroBlazes is represented in Figure 1.2.

In the case of stand-alone applications running on the CPU (without op-
erating system installed) the ASA/SPU shown in Figure 6.6 works very effi-
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ciently(which is verified by testing results reported in Chapter 7). In this case no
modifications are required on the CPU side. Deployment of an operating system
(OS) on the microprocessor requires some modifications to the Kernel of the OS
so as to support ASA/SPUs to be supported. Actually, the Kernel structures must
be modified so as to be able to inform (issue commands through FSL connec-
tion) the ASA/SPU about changes in execution of processes running at the core.
Therefore, realization of the ASA/SPU solution requires ’patching’ of the Kernel.

In order to provide some basic secure environment for correct execution of
the applications, the OS needs to work in at least two modes (i.e. user and
kernel mode). These modes are supported by any present-day CPU and usually
this means that in user mode all resources are accessible and all instructions
are executable, while in the restricted, kernel mode memory regions and special
register accesses are allowed only partially or not allowed at all.

The OS creates a separate User Stack for every newly created process (see
Figure 6.9). Most of the time processes run in user mode. Processes can access
services offered by the kernel (e.g. printing to the console) using a system call.
System calls are usually accessed through wrapper functions offered by libraries
(i.e. standard libc). The wrapper function prepares the parameters for the de-
sired function and raises a debug trap via a dedicated instruction (i.e. brki for Mi-
croBlaze, invokes both syscall and debug trap). Upon the trap instruction is set,
OS works in kernel mode and doesn’t consider the user stack. The kernel uses
a dedicated space in kernel memory, one for every process, to store the kernel
stack (see Figure 6.9), and in the case of uClinux to store the process data struc-
ture, needed to handle the process, too. Also in the case of external interrupts or
exceptions OS moves into kernel mode execution. Nevertheless, since MicroB-
laze does not fully support different working modes we had to introduce dedi-
cated instructions in order to inform the ASA/SPU when a switch between these
two working modes occurs. The code for handling interrupts, exceptions and
system calls is architecture specific and it is located in two assembly files under
the specific architecture directory (entry.S and hw_exception_handler.S). A
dedicated control word that informs the SPU when the system enters or leaves
kernel mode is inserted in the appropriate structure in OS. The information be-
tween MicroBlaze and SPU is communicated through FSL.

Apart from execution modes of a single process, the OS must also switch
between processes. When a context switch occurs the scheduler must save the
context of the current process in order to restore it next time it runs. Once
the current context is saved the context of the next process scheduled to run is
restored. This gives to the process the illusion that nothing has happened in the
meantime. During this procedure the OS updates the information that it uses to
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manage processes as well. In a similar way the OS must also perform a context
switch of the SPU to store the data of the current process and to reprogram the
SPU memory with the data of the next process that will run. The OS asks to
SPU the history of the current user stack (in order to verify correctness of the
return address) and also initiates reprogram of the SPU with the data of the
newly activated process. This procedure, in charge of return address check and
SPU update, is performed using only two control words through FSL, and the
data is stored in the process data structure every time a context switch occurs.
Once this procedure is over, a new process is ready to restore its context and get
executed.

Figure 6.9. Processes and stacks considering Operating System modes

The interaction between OS and ASA/SPU is needed at process creation and
whenever a process swap is performed by the scheduler. In order to temporar-
ily save the data of the SPU traced history between process switch we added
an array in the task-struct structure task_struct->stack_history[]. In the
schedule() function we added the instructions to save the current SPU history in
the array and to reprogram the SPU with the traced history of the next process.
The inserted array is accessed within the schedule() function and rewritten with
external data (i.e. this from SPU).

The modifications presented here are MicroBlaze specific and porting of the
solution to other architectures would require their customization.
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6.3.3 Attack Specific Agents - DoSPROT

We now introduce a protection against Denial-of-Service types of attack named
DoSPROT, consisting in practice of two different types of attack specific agents.
Actually, we implement attack specific protection for detecting vulnerable and
flooding DoS attacks in the form of two independent Attack Specific Agents
(ASAs). They work fully in parallel to each other as well as to the NI kernel
so that no performance degradation is introduced into the system. We show in
the sequel the role, place, functionalities and implementation details of both of
them.

Attack Specific Agent - VDoS

A Vulnerable DoS attack is usually manifested by sending random packets
to the network including among the destinations also non-existing cores. Even
though these packets can not reach the destination, as they are not routed (NoC
discards them), their presence is an important indicator of the security threat.
VDoS therefore represents straight-forward implementation of ’out-of-boundary’
check logic integrated in a LSA in form of an ASA (as shown in Section 6.4).
It is matched to raise a high severity alert upon detection of addressing space
violation as such an event is commonly clear proof of presence of malicious
application. The implementation of VDoS/ASA is presented in Figure 6.10. The
address map of the system contains addresses of memory mapped system cores.
The control logic module extracts the destination address from the appropriate
control flit and verifies if it is within the valid address range.

Attack Specific Agent - FDoS

FDoS/ASA is based on the module that performs the CUSUM algorithm; we
have adapted, and enhanced the algorithm to our specific needs. Algorithm pa-
rameters have been customized to the given input traffic and special attention
has been paid to prevention of false alerts. In particular, this is reflected in
trusting calculation for the core for which FDoS alert is determined (we have
assigned medium level severity to such alerts so that practically at least three
alerts in a raw should be raised in order to consider the core as attacked). The
block scheme of the FDoS/ASA is given in Figure 6.11. The exact implementa-
tion of the module is presented in the sequel.

Flooding DoS attack detection algorithm
We have adopted and applied the non-parametric CUSUM (Basseville and Niki-
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Figure 6.10. Architecture of the Vulnerable DoS - Attack Specific Agent

firov [1993]) method for Flooding DoS attack detection. Assume that variable
X represents the number of packets that are sent through the network and E(X)
= c is the mean value of random variable X that is calculated as the average
number of the flits sent in the fixed time interval t0 through the network. We
chose the step parameter a (which implies that cumulative value of the function
decreases) to be fairly greater than c and define new random variable X̃ as: X̃ =
X - a . During the normal traffic flow the mean value of the new random vari-
able X̃ will be less than zero. If an attack happens or a sudden increase of the
network traffic occurs, the mean value of the X̃ will be positive since the mean
value of the X will be greater than step parameter a. CUSUM value is calculated
and updated during for each observed period t0 as the cumulative sum of all
previous mean values of the random variable X̃ (as shown in Equation 6.1). If
X̃ is greater than zero in several consecutively repeated measuring periods, as
a result, the cumulative value of CUSUM function will increase. Obviously this
may happen due to irregularities in regular traffic or due to an DoS attack.

CUSU M = yn = yn−1+ E(X̃n) =
n
∑

i=0

E(X̃ i) =
n
∑

i=0

E(X i − a) (6.1)
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During normal traffic flow the CUSUM value will be on average negative
with small fluctuations when the packet burst on the network occurs. But in
the case of flooding attack, in every considered interval t0 the mean value of
the random variable X̃ will be positive which will increase CUSUM. When the
value of CUSUM exceeded the threshold h (defined in design time according to
expectable application traffic type) the attack is detected and the appropriate
alarm is sent to the CSA (see equation 6.2).

aler t =

(

0 if yn < h

1 if yn ≥ h
(6.2)

In order to implement this algorithm, a module which captures the time se-
ries of the transmitted flits in the considered time period t0 has been developed.
This unit is also equipped with the local memory for the purpose of saving the
values of algorithm parameters and various temporal values (such as mean value
of the transmitted flits E(X) = c, upper bound a, CUSUM value, alert threshold
h etc.).

The accuracy of the algorithm as well as the attack detection time, depends
on the parameters a and h. These parameters require design time definition.
These values should be chosen in such a way to optimize attack detection in
terms of time while minimizing the number of the false alarms. However, these
goals cannot be simultaneously achieved, so the appropriate parameters are cho-
sen by analyzing specific input traffic characteristics, in order to make the best
trade-off between objectives.

In order to further improve the algorithm we introduce a saturation value
(the minimal possible CUSUM value so that it can not go more negative than
that; the value is related with the ’a’ step parameter and it is determined for each
application traffic input separately) and also we reset the CUSUM value upon
detection of the alert. This increases efficiency in distinguishing false from real
alerts. The CUSUM alert is of medium severity which in our case means decrease
of core trusting value for ten. This practically means that three consecutive
alerts will cause the core to be cut from the NoC. The CUSUM value is reset to
saturation level upon the alert and the counter is started. If in specified time
(defined as 25 CUSUM periods) upon alert issuing no new alerts arrive, LSA
sends ’positive-feedback’ signal to LSA.

The architecture of the solution and its integration with LSA and NI is given
in Figure 6.11
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Figure 6.11. Architecture of the Flooding DoS - Attack Specific Agent

6.4 Local Security Agent

In this section we detail the implementations of the Local Security Agent
(LSAs) as a module incorporating all the ASAs at an individual core and inte-
grating them with the security framework.

The core functionalities of LSA are encapsulated in two modules:

• The Local Security Manager performs the key operations that are the same
for all LSAs. It evaluates reported security events and assesses them form-
ing appropriate alerts (maps alert to different severity levels). It imple-
ments positive feedback for different kinds of attacks (each type of the
attack has its own ASA and in some cases associated ’supporting mod-
ules’ such as positive feedback mechanism e.g. for FDoS - CUSUM). In
some cases, the LSA may contains a module dedicated to attack analysis
purposes (e.g. for SPU/ASA an Instruction Tracing Unit (ITU) that serves
for debugging purposes is designed). Finally the LSA maintains the ASA
Portfolio which keeps track of all ASAs integrated in the LSA with all as-
sociated ’supporting modules’. The detailed description of LSM structure
and functionalities is given in Section 6.4.1.

• Communication interface adopts communication standards of SNoC to LSA.
It implements the protocol presented in Figure 5.2 from LSA side. The
details on this module are given in Section 6.4.2.
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It should be noted here that even though in general the structure of all LSAs
is the same, practically two different kinds of LSA implementations can be iden-
tified in our system - LSA for processing core and shared memory block. Nev-
ertheless, the only difference between them lies in types of ASAs they employ
and accordingly assigned supporting modules of LSM (refer to Section 6.4.3
for details). While LSAs for processing cores employ SPU/ASA, VDoS/ASA and
FDoS/ASA; an LSA assigned to shared memory accommodates DPU/ASA. We
explain later how these differences reflect to the practical LSA implementation
(e.g. positive feedback mechanisms).

Figure 6.12. General Local Security Agent architecture (details explained in
Figure 6.4.1)

A brief description of LSA modules as well as specific LSA solutions developed
for our security framework are given in the sequel. The general architecture of
LSA is presented in Figure 6.12 and explained in details in Section 6.4.1.

6.4.1 Local Security Manager

The Local Security Manager (LSM) represents a core component of LSA. It
manages all the security related issues relevant for the core it is attached to.
These consider following functionalities:
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• Evaluation of detected violations reported by ASAs. This concerns process-
ing of the of the incident and calculating of the alert severity accordingly.
For instance, as unauthorized memory access may originate from different
reasons, an alert is raised only if a defined number of such violations is
received in given time (both, the number of detected violations and time
window are statically decided in design time). These operations are per-
formed by the violation assessment module and are optional, depending on
tha type of the attack.

• Positive feed-backing is mechanism that is specific for each attack type
and it is aimed at prevention of false alerts. It relies on expectancy that
detected violation will be repeated in case of the malicious code presence
in the system. It is realized in form of an alert monitor which operates in
a given time-window. The counter (that represents this monitored period)
is triggered by violation detection. This concept is optional and applicable
only for attacks that may have some uncertainties in the detection process
(such as memory access validation or DoS detection) so that additional
checks are needed. Detection of some of attacks such as ’code injection’
is highly reliable (deterministic) and no other proofs are needed. These
attacks are given high severity level.

• Collection of information (if applicable) on the alert that might be useful
for precise threat identification, countermeasures or debugging process is
also optional. This information may be available for some types of at-
tacks such as for instance ’code injection’ (appropriate ASA may get some
debug information provided by the processor it is attached to, as the case
with Instruction Trace Unit explained later). All operations associated with
evaluation of the attacks are encapsulated in a dedicated attack analysis
module.

• ASA portfolio represent the list of all employed ASAs and provides infor-
mation on all the supporting elements assigned to specific ASA. Not all the
ASAs have the same supporting elements, some of them (such as DoS re-
lated ASAs) have assigned positive feedback modules) while others (such
as ’code injection’ SPU/ASA) may have associated violation analysis mod-
ules or for instance violation assessment modules (which calculate alert
severities as for instance memory access violation related DPU/ASA)

• Attack countermeasures - performed by countermeasures module which di-
rectly manages reactions of the framework to the discovered threats. These
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are mostly oriented towards problem isolation, for instance, the access to
the attached processing unit to the regular data NoC can be disabled on
request from CSA. The access to the regular NoC to the blocked processing
unit can be reestablished only if CSA informs LSA (actually Countermea-
sure module) that the attached unit can be unblocked.

Attack analysis module - Instruction Trace Unit

The attack analysis module is in charge of providing as much as possible
information on detected attack. The information can be obtained from different
sources in different ways and it is practically attack and technology specific.
Nevertheless, the ’report form’ is the same for all the attack types. In our work
we rely on debug instruments enabled by MicroBlaze processor.

MicroBlaze provides the so called trace bus which enables an external view
to the instructions that are being executed. Based on this property we built an
Instruction Trace Unit (ITU) that can be used for debugging purposes. ITU is
implemented in form of inferring shift registers which keep tract of executed in-
structions. The number of these registers determines the number of instructions
that are able to be stored, the only limitation in this case is the available area.

ITU works in two modes:

• Tracing instructions - in this mode it only memorizes the value of PC or
instruction code of each newly executed instruction by writing it into the
first shift register

• Alert (hold) mode - if the SPU has provided an alert signal the ITU freezes
tracing and provides the kept track of instructions memorized in its regis-
ters to Local Security Manager, through dedicated custom bus

The structure of ITU is represented in Figure 6.13. The obtained information
which represent a set of latest instructions can be locally processed or sent for
further processing to CSA. In our implementation this information is transmitted
to CSA where it is stored and could be used for further attack elaboration and
decision on countermeasures.

6.4.2 Communication interface

The communication interface adapts LSA communication to SNoC standards.
It actually interprets and packs properly information from Local Security Man-
ager modules (such as alert assessment, alert analysis etc.) and forwards it to
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Figure 6.13. Instruction Tracing Unit structure

the CSA according to specified protocol. Conversely, it translates messages from
CSA and drives LSA modules accordingly (for instance disables access to NoC in
case of request from CSA).

6.4.3 Specific Local Security Agent solutions

In our implementation we have employed two different types of cores (pro-
cessing elements and memories) which practically resulted in two different im-
plementations of LSAs that have been realized. In fact, the differences came
from different types of attacks that have been addressed by ASAa integrated
in these LSAs. Actually, the structure of both LSAs fully complies with general
LSA structure exposed in Section 6.4 but practically the two differ in optional
modules inside Local Security Manager that are implemented. More precisely:

• LSA associated to memory core - involves only DPU/ASA which requires
attack assessment and positive feedback module while attack analysis mod-
ule has been realized as a trivial structure (as no additional information on
the attack, apart of what is the access initiator core, can not be obtained).
Realization of the LSA hosting DPU/ASA is shown in Figure 6.16.

• LSA associated to processing core - involves SPU/ASA (shown in Figure
6.14), VDoS/ASA and FDoS/ASA (both shown in Figure 6.15). While the
first one requires attack analysis, VDoS/ASA practicaly does not require
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any of these optional modules; FDoS requires only two other modules,
namely - attack assessment and positive feedback.

The architecture of the LSAs, together with inter- and intra- connections
among components is presented in Figure 6.14 (for processing core involving
ASA/SPU) and for LSA involving DoS protection in Figure 6.15. In Figure 6.16
we present integration of ASA/DPU with LSA into corresponding NI (for memory
blocks).

6.5 Central Security Agent

The CSA represents the central point in managing security policies of the
framework. It is in charge of correlating all security related information from dif-
ferent sources, establishing a system level protection mechanism. It practically
monitors and controls LSAs, maintains trusting table, performs attack counter-
measures and so forth. It is designed in modular and scalable manner. CSA is
composed of three main components - Communication interface, Security Policy
Manager and Trusting Table. The structure of CSA is represented in Figure 6.17

The Communication interface translates SNoC protocol to drive internal op-
erations and vice versa. It actually performs operations that are mirrored to
those done by LSA communication interface. Trusting table actually is a block of
RAM memory that keeps track of trusting values of each core (i.e. LSA) in the
system. The heart of the CSA is indeed Security Policy Manager that is composed
of following modules:

• LSA portfolio - keeps track of all cores (actually LSAs) in the system. If
an additional core is to be inserted it should be only checked out in the
module

• Trusting Policy Manager - executes the valid trusting policy (in our case
one defined in Section 5.4.2), counting alerts and positive feedbacks for
each core

• Security domains - defines the number and ’borders’ (in sense of trusting
values) between different levels of security. It also defines the way how
cores in specific domain are treated.

• Attack analysis - collects information obtained from counterparts in LSAs,
creates logs, history and statistics of attacks per core
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Figure 6.14. Enhanced NI to microBlaze with Local Security Agent involving
Attack Specific Agent - Stack Protection Unit (security related elements are
denoted in red color)
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Figure 6.15. Enhanced NI to uBlaze with Local Security Agent involving
ASA/VDoS and ASA/FDoS (security related elements are denoted in red color)
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Figure 6.16. NI to memory with Local Security Agent for involving Attack
Specific Agent - Data Protection Unit (security related elements are denoted
in red color)
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• Countermeasures - performs specified actions against detected attacks

A CSA is a fairly ’light’ component of the system as most core functionali-
ties are distributed and left to LSAs (e.g. positive feed-backing) which unloads
communication on SNoC and also saves energy at the same time. Nevertheless,
some operations are still centralized as CSA is the only pure hardware part of
the system (LSA kernel is also built in hardware but contains some ASAs that
have software components as well) and accordingly is considered as the safest
part of entire security framework. We purposely build the unit in hardware as
this allows claiming the highest level of robustness and resistance to attacks.

Figure 6.17. Structure of Central Security Agent

6.6 Secure NoC

The Secure NoC (SNoC) represents an interconnecting medium among se-
curity related components. In other words, it is a fully NoC compliant structure
both in terms of architecture and communication protocols. Nevertheless, SNoC
is built fully in parallel to existing NoC that routs regular data. Both networks
practically use the same NIs for adopting data transmission to given communica-
tion protocols - NI kernel considers regular data while communication interface
of LSA handles security related data. From this point onwards the two networks
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are fully separated. This way, we encapsulate the security related communica-
tion in a dedicated structure and achieve full separation of regular and security
related system components and their communication.

The structure and position of S-NoC inside the security framework is shown
in Figure 1.2. The communication among agents attached to S-NoC is performed
according to the protocol presented in Figure 5.2.



Chapter 7

Testing and Validation

The final system has been implemented on a Xilinx Virtex-5 ML510 board
using EDK 10.1 tool-chain while several components have been previously im-
plemented and tested on a Virtex-II Pro board. The proposed solutions have
been tested against various attack scenarios. The area and power consumption
as well as performance impact are studied and presented in this Chapter.

7.1 Validation approach

We have implemented, tested and validated the proposed solutions in a two
phase process:

• Firstly, attack specific solutions have been developed, tested and validated.
These include Data Protection Unit, Stack Protection Unit and Denial-of-
Service (both vulnerable and flooding DoS) protection modules. It should
be mentioned that both implementation and validation of these framework
elements represents technically the most demanding part of the work.

• In the second validation phase the architecture of the ’core’ security frame-
work which integrates diverse attack specific solutions has been developed
and verified. This includes Local Security Agents, Central Security Agent
and Secure NoC. Also efficiency of security policies implemented in the
security framework has been tested and validated.

We show in details approaches and procedures adopted for the purpose of
validation of the proposed solutions. Validation of attack specific solutions in-
cludes four different units:

97



98
7.2 Attack Specific Agent - Data Protection Unit - implementation and

validation

• Attack Specific Agent - Data Protection Unit - presented in Section 7.2

• Attack Specific Agent - Stack Protection Unit - presented in Section 7.3

• Attack Specific Agent - Vulnerable DoS - presented in Section 7.4

• Attack Specific Agent - Flooding DoS - presented in Section 7.5

The details on concrete implementation and validation of ’core’ of the secu-
rity framework and implemented correlating security policies are described in
Section 7.6

7.2 Attack Specific Agent - Data Protection Unit - im-
plementation and validation

The conceptual solution as well as the implementation details of Data Protec-
tion Unit (DPU) have been presented in Section 6.3.1. Additional enhancements
of the Network Interface connected to the shared memory (i.e. Block RAM -
BRAM) are needed in order to adapt the solution to the architecture of the sys-
tem.

7.2.1 Integration with NI to BRAM

As mentioned above, the ASA/DPU is embedded in the NI that interfaces
to the interconnection network with the BRAM used as shared memory in our
system.

As shown in Figure 7.1, the NI embeds the controller of the BRAM, which is in
charge of handling write/read accesses to memory. The BRAM controller works
in parallel with the DPU controller. Both controllers are implemented as state
machines that take the same input and process it in parallel. The UML activity
diagram for an access in memory is shown in Figure 7.2. Upon the arrival of a
new first flit containing the header of the packet, access information is passed by
the NI to both controllers. While the DPU controller checks the access rights of
the request, the BRAM controller sets the memory block in the read/write access
operation mode. In case of a request satisfying the access rules specified in the
DPU, data are read or written to memory and an appropriate acknowledgment
packet is sent to the initiator of the transaction. If the request is not accepted,
the packet is discarded and a packet of negative acknowledgment is sent to the
initiator.
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Figure 7.1. Internal implementation of the Network Interface to BRAM em-
bedding the ASA/DPU

7.2.2 Reconfiguration of the DPU table

In order to make the proposed solution for data protection more flexible and
more efficient, we designed the DPU module to be reconfigurable. In fact, in
a general software environment the required memory access rights can change
dynamically with the evolution of the applications (and/or the system). More-
over, access rights assigned to cores in the system may change due to decreased
trusting so that reconfiguration of shared memory access rights as a countermea-
sure is required. This requires an update of the data protection characteristics in
order to satisfy the security requirements of the changing applications.

To enable this feature, we added a write port and another memory unit
(called shadow memory) to the basic DPU architecture. Actually, this module
has been integrated in the LSA that embeds ASA/DPU in the form of a coun-
termeasure module (as represented in Figure 6.16). The additional write port
is used to update the DPU table, while the memory module is used to store the
new DPU values.Actually, the shadow memory stores the necessary information
to reconfigure the DPU that allows to satisfy the security requirements of the
following application scenario. When it is necessary to let the system switch to
a new scenario, the shadow memory is updated with the new information. Only
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Figure 7.2. Activity diagram of the NI embedding the DPU: access to memory
and reconfiguration
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Table 7.1. FPGA resources consumption - System composed of two Microb-
lazes, shared BRAM and NoC (implemented on a Xilinx Virtex II board)

System with DPU (4 lines) Used/Available % Used

Slice Flip Flops 2,465/27,392 9
4 input LUTs 5,671/27,392 20

Occupied Slices 3,371/13,696 24
Block RAMs 104/136 76

MULT18X18s 6/136 4

System with DPU (8 lines) Used/Available % Used

Slice Flip Flops 2,610/27,392 10
4 input LUTs 5,891/27,392 21

Occupied Slices 3,527/13,696 25
Block RAMs 104/136 76

MULT18X18s 6/136 4

when the shadow memory has received all the new table values from the CSA
that initiated the table update (the controller of the overall security system) and
the reconfiguration signal has been issued, the values on the shadow memory
can be committed to the DPU table.

This method avoids a transient behaviour of the DPU during the updating
since committing from the shadow memory is faster than a remote update. Pack-
ets that arrive from the NoC during the reconfiguration wait in the input queue
of the NI until the end of the process before being analyzed.

Another important issue is that the reconfiguration phase for the DPU can be
performed only by the CSA, since otherwise the reconfiguration of the shadow
memory can be used as base for attacks. CSA communicates with the appro-
priate LSA which further performs ASA/DPU reconfiguration through LSM and
’countermeasures module’.

ASA/DPU has been proved to be an efficient firewall-like protection mecha-
nism which filters unauthorized memory access attempts according to a prede-
fined set of rules. Its efficiency depends on the rest of the security system (access
rights are calculated according to the trusting which is calculated by CSA) so that
we can consider it as an useful complementary part of overall security solution.
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Table 7.2. Area consumption (occupied slices) as relative ratio between com-
ponents

DPU (8 lines)/Component Consumption ratio

DPU/Router 1.06
DPU/Microblaze 0.25

DPU/NI (with DPU) 0.83

7.2.3 Costs of implementation

In this section we present synthesis results of the multiprocessor system pre-
viously similar to the one shown in Figure 1.2. The test architecture is com-
posed of two microprocessors (MicroBlazes), two shared on-chip memory block
(BRAM) of 64 KB, and the interconnection NoC system, in which we implement
our module for data protection. The whole architecture was developed on a
Xilinx Virtex-II Pro XC2VP30-FF896 board, by using the Xilinx Embedded Devel-
opment Kit version 8.2. The system was implemented to work at the operation
frequency of 100 MHz. For test and debug purposes, an RS232 interface was
used for communication between the board and the host computer.

Table 7.1 shows FPGA resources utilization of the overall system, in the case
in which a DPU with respectively 4 and 8 lines is implemented. Numbers re-
ported in the tables refer to an implementation of the elements of the system
as shown in Figure 1.2 In the first case, the total number of equivalent gates
is equal to 6,757,418, while in the second case it is 7,057,675. A DPU with 4
entry lines is able to protect a memory divided into 2 protection regions from
all the possible types of access request (load/store) issued by the two processing
elements in the system. In fact, the number of entry lines is given by the product
of the number of PEs and the number of protection regions in which the memory
is divided. A DPU with 8 entry lines can protect the same system with a memory
with up to 4 protection regions.

Table 7.2 shows the ratio between the dimension of a DPU with 8 entry lines
and those of the other components of the system. As it is possible to notice, the
dimension of the DPU is almost equivalent to the dimension of the NoC router
and it represents a significant part of the NI to BRAM.

In Figure 7.3 we show, expresses as number of occupied slices, the area of
different configurations of the DPU. As also shown in (Fiorin, Palermo, Lukovic
and Silvano [2007]), the number of slices occupied by the implementation of
the data protection module increases linearly with the number of entry lines,
and it represents the dominant part in the area overhead of the NI to BRAM.
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Figure 7.3. Area of the DPU for different numbers of entry lines

7.3 Attack Specific Agent - Stack Protection Unit

We present here the implementation of the Stack Protection Unit explained
in the Section 6.3.2. In the prototype presented we have used Xilinx provided
MicroBlaze ’soft core’ processor. MicroBlaze implements stack conventions as
represented in Figure 7.4.

Whenever a function calls another procedure (a branch in the instruction
flow occurs) the PC of the caller is saved in the link register (R15). The stack
pointer must be decreased by as many positions as the width of the stack frame
is wide, saving the context of the caller function and opening a new stack frame
for the called function.

At the return from the callee function, the return address is retrieved from
the stack and saved in the Link Register; then the return instruction updates
the PC with this value. The stack is updated (increased) with the instruction
following the return instruction.

This analysis can reveal a potentially critical problem: by writing an array to
the stack without checking its upper bound (e.g. using the C function strcopy())
one can overwrite the data of the other stack frames. Very simple attacks can
be performed on architectures in which the instruction and data memories are
shared, consisting in injecting machine code directly on the stack and modifying
the return address to point at malicious code. Even if the stack memory is not
executable, and/or separated, overwriting the return address of the caller and
also overwriting saved registers is still possible. This means that the attacker can
redirect the control flow by giving the corrupted values to the targeted return
function.
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Figure 7.4. MicroBlaze stack organization

The basic concept of the SPU is rather simple. Every time a function is called,
the return address of the caller function is stored on the stack and also replicated
in the SPU, which keeps track of the return addresses of the nested functions and
reports any attempt at overwriting the particular address (simply by comparing
the stored value with one obtained from the stack). Figure 6.6 shows the concept
of the SPU. Practically, the task of the SPU is to restrict the stack accesses to the
current stack frame.

Considering the context switch scenario as presented in Figure 7.5 and the
simplified attack scenario:

void re turn_ input ( void ){
char b u f f e r [30] ;
ge t s ( b u f f e r ) ;
p r i n t f ("% s\n " , bu f f e r ) ;

}
main () {

re tu rn_ input ( ) ;
re turn 0;

}

In the main the return_input function is called. Calling the function saves the
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Figure 7.5. MicroBlaze and SPU context switch scenario

return address onto the stack and the space for the array is reserved, however
there is no check if the input can fit in the array size.

ASA/SPU appeared to be an efficient protecting instrument in all considered
scenarios. It other words, the SPU raises the alert signal whenever the attack
is performed, ITU (which is actually Attack Analysis Module of its LSA, see Fig-
ure 6.14) moves into hold mode and Local Security Manager of the LSA takes
and transmits those data to the CSA disabling at the same time to the attacked
processor access to the NoC.

7.3.1 Costs of implementations

The entire system prototype (based on a scheme shown in Figure 1.2) is com-
posed of two shared memory blocks two MicroBlazes (running uClinux) with
LSA and NoC (including NI to memory with embedded DPU), occupies 17,338
slice LUTs which is around 22% of total available area on the board (total avail-
able on ML510 board: Slice Registers - 81920; Slice LUTs - 81920).

The detailed cost of the overall implemented system of its (separately eval-
uated) components in terms of area consumed is given in Table 7.3. It can be
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Table 7.3. Area consumption (in number of occupied slices) per component -
implemented on Xilinx Virtex-II board

Component Area (slice Regs) Area (slice LUT)

Total System 16504 17338
ASA/SPU 186 360
ASA/DPU 334 314
LSA/uB 213 481

LSA/DPU 361 435
CSA 45 64

SNoC 558 1284
Tot Security
Framework 1751 3180

seen that the proposed security framework takes about 10% of Slice Registers
and about 18% of Slice LUTs consumed by the entire system design. These re-
sults are slightly better compared to those provided in (Patel et al. [2010]) which
is also dealing with system level protection against buffer overflow.

It turns out that the LSA for MicroBlaze (uB) represents about 77% of the
enhanced NI with respect to area consumed. Such result had to be expected as
the LSA components consume RAM for storing data while the part of NI that is
interfaced to MicroBlaze mostly consists only of control logic. Nevertheless, the
ASA/SPU represents the most consuming component within LSA.

Analysis of the synthesis results shows that area overhead is inevitable in
solutions like this as deployment of security concepts necessitates commitment
of additional system resources. On the other hand, the costs introduced are still
acceptable and they even represent an improvement compared to previously
proposed solutions.

7.4 Attack Specific Agent - Vulnerable DoS - validation

The ASA/VDoS module is implemented according to the detailed description
given in Section 6.3.3. It actually verifies correctness of the destination ad-
dresses of packets traveling on the NoC and raises alerts in case of any detected
violation. Due to simplicity of its functionalities its realization has been rather
simple and not demanding both in terms of technical realization as well as with
respect to resources consumption. Accordingly, the validation process for the
module has been straight-forward. The module is tested against different sets of
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packets transmissions and it is proved to be efficient in detecting address space
violations, reporting alerts in all attack situations.

The module operates fully in parallel to the rest of the system so that no
performance degradation has been introduce by ASA/VDoS.

Due to its extreme simplicity (address comparator and a look-up table) con-
sumption of area and power compared to the rest of the design is negligible (far
less then 1%).

7.5 Attack Specific Agent - Flooding DoS - validation

Design and validation of ASA/FDoS has represented one of technically most
requiring tasks for the present work. Moreover, due the nondeterministic na-
ture of this type of attack, protection against the attack itself represents a very
relevant test for our security framework.

The algorithm adapted for the purposes of FDoS detection as well as the
appropriate ASA/FDoS module are described in Section 6.3.3. Due to complex-
ity of the testing of the proposed solution, validation has been carried out in
two phases. We have built a simulation environment in Matlab which fully cor-
responds to the experimental setup given in Figure 7.6. Processing cores are
simulated as sources of traffic according to the distribution presented in Section
7.5.1. In the first phase, we have tested only efficiency of the enhanced CUSUM
algorithm considering values of the parameter a for the given traffic inputs. In
a subsequent stage we tested efficiency of the security policy that combines all
the protection mechanisms in the system according to the defined trusting policy
(refer to Equation 5.1). For these purposes we used the simulation environment
provided by EDK Xilinx which fully emulates the developed hardware design
enabling much better insight in results.

In practice we performed:

• Simulation of the algorithm for the given system considering the prede-
fined traffic patterns. This step aims firstly at validating the algorithm
itself and afterwards at tuning its parameters for the specific input traffic
pattern. Simulations are performed in Matlab simulation environment.

• FPGA prototyping of the solution and its integration in the existing exper-
imental NoC based MPSoC as the final validation step

We present our approach to testing and validation in details in the sequel.
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7.5.1 Simulation of FDoS detection by CUSUM algorithms and
parameters tuning

In order to credibly validate the proposed solution we have to determine
the relevant application communication patterns and set algorithm parameters
accordingly.

Figure 7.6. Experimental MPSoC setup used for final system validation

The input traffic patterns have been used as defined in the sequel.

Packet Distribution of the test Applications

Since the protection from DoS attacks requires the observation and analy-
sis of the network traffic, in order to properly simulate the attack, the normal
data packet flow for different type of on-chip applications has to be taken into
account. For the sake of testing the CUSUM algorithm we model the traffic on
the network. There are several possible ways to characterize the traffic behavior
on the NoC-based MPSoC among which the following are the most important
(according to Santi et al. [2005]):

• uniform distribution of the packets or constant injection rate - assumes that
the source constantly sends data to the destination at the same rate
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• packets’ distribution using the probabilistic functions - describes the traffic
by the probabilistic functions

• trace methods - monitoring traffic to detect behavioral patterns

These approaches may be tailored to different applications. Using the con-
stant injection rate in modeling the NoC traffic can be suitable for streaming
multi-media applications (as stated by Tedesco et al. [2006]). Probabilistically
modeled applications can be classified in two groups: application for which the
average traffic rate is not known a priori - Unknown Rate (UR) applications - and
applications for which rates are previously defined, named Known Rate (KR)
models. The algorithm has been tested on these two traffic simulation types, the
detailed description and explanation of these methods will be presented.

Constant Injection Rate: According to this model packets are injected at the
fixed rate, in the defined time periods (Tedesco et al. [2006]). This model does
not reflect very well real word situations, since usually the applications’ data
transmission rates vary over time. Still, the model is very efficient for media and
streaming applications.

Probabilistic Models : There are two classes of such models, namely - Un-
known Rate (UR) models, and Known Rate (KR) models. The first class includes
On-Off processes, while normal and exponential distributions are instances of
the second class.

Unknown Rate (UR) Model: The applications that are fairly well described by
this model should inject fixed-length packets, but with variable times of activity
and inactivity. These kinds of applications are usually called On-Off applications
and the size of the packet burst as well as the duration of the idle period vary.
During the active period the traffic source produces the fixed-length packets
at regular intervals while during inactive period there is no packet generation.
Figure 7.7 presents the On-Off traffic rate model (Tedesco et al. [2006]).

This model can be described with different probabilistic distributions among
which the Pareto distribution is the most widely used. The model that uses
Pareto distribution suitable for describing the applications like MPEG-2 video
and Internet traffic (according to Pande et al. [2005]). Another unknown rate
model is based on Markov Chains and is known as Markov Modulate Process
(MMR). The current state of a traffic source in a Markov Chain specifies data
generation at a rate r. The function that describes state changes is an exponential
(Tedesco et al. [2006]). This model is usually adopted for modeling Internet
traffic (Clegg [2007]).

The Pareto On-Off distribution, which is of particular interest for our work,
is described as:



110 7.5 Attack Specific Agent - Flooding DoS - validation

Figure 7.7. On-Off Traffic Model of the test application

tON = (1− r)

−1

αON (7.1)

tOF F = (1− r)

−1

αOF F (7.2)

In this equation r is the randomly chosen value in the [0:1] range allowing
to dynamically generate the size of the ’On’ and ’Off’ periods. α is a parameter
that is specific for every application.

Known Rate (KR) models are based on discretized versions of continuous
probabilistic functions, such as the normal and exponential distributions. Given
probabilistic distributions, and given the amount of packets, together with a set
of transmission rates, the process mounts a packet transmission table indicating
the number of packets for each defined rate. Equations 7.3 and 7.4 present the
normal and exponential distribution, respectively, and they compute the proba-
bility p for each rate. In these equations, µ corresponds to the average injection
rate and σ the injection rate standard deviation.

P(rate) =
1

σ
p

2π
e−(rate−µ)2

.

2σ2

(7.3)

P(rate) =
1

µ
e−rate

.

µ (7.4)

Contrary to UR models, the global average injection rate for the KR models is
directly obtainable from the particular distribution equation together with other
parameters.
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According to (Tedesco et al. [2006]), performance requirements of HDTV
and MPEG-2 video are two relevant workloads for SoC research groups. These
applications comprise large data blocks and must respect strict time intervals.
This type of traffic can be efficiently modeled with probabilistic functions and
Pareto ON-OFF.

Determining optimal CUSUM parameters

The enhanced CUSUM algorithms used in our solution is explained in de-
tails in Section 6.3.3. We tested the algorithm’s efficiency against traffic input
as shown in Section 7.5.1. Considering that different applications have different
communication requirements it is expected that the detection algorithm param-
eters will have to be tuned accordingly.

Once the test application communication patterns have been set, the values
of the attack-detecting algorithm’s parameters a and h parameters (refer to Sec-
tion 7.5) must be decided. This is where the real challenge comes. Parameter
a should be greater than the bit rate captured in one time frame for the sake
of having negative CUSUM value. Also, parameter a should not be greater than
the maximum bit rate, in order to be able to get a positive value of the CUSUM
when the attack occurs (see the equation 7.5).

CUSU M =
n
∑

i=0

E(X i − a) (7.5)

If a is greater than maximum bit rate value this sum will never be positive and
the proposed algorithm cannot be implemented. Thus, in the case of constant
injection rate, the parameter a should fall in the following interval:

a = (
max throughput

2
, max throughput) (7.6)

Where the maximum throughput is calculated as the product of the maxi-
mum number of flits in one time frame multiplied by the maximum number of
bits in one flit, divided by the number of clock cycles per time frame (as shown
in equation 7.7).

max throughput =
�

X ∗ Y

No.of clk cycles per timeframe

�

=
�

75 ∗ 34

80

�

= 31 bits per clock cycle (7.7)
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Where: X = max No.of flits per timeframe (design specific); Y = max No.of bits
per flit

Parameter h will determine how fast we will detect the alarm and it directly
influences the number of false alerts. In order to decrease the number of de-
tected false alarms, parameter h should not be close to the value of the param-
eter a. Also, it should not be much greater than parameter a for the sake of
detecting the alert in reasonably time. For the purposes of this work we have
fixed its value to the 2a.

Performing different simulations we have observed that the parameter a is
the one which has the greatest impact on the algorithm execution. The algo-
rithm is very sensitive to changes of this parameter since it is directly involved
in the calculation of the CUSUM. Small fluctuations of this parameter can make
CUSUM value extremely negative and this can slow down the detection of the
attack (as it may be seen in Figure 7.8). On the other hand the value of the pa-
rameter also impacts on false alerts detection as the higher the value of param-
eter a lowers the possibility of false detections. Obviously a trade-off between
number of false alerts and detection latency must be found. A number of sim-
ulations for the specific test application settings has been performed and based
on the results resented in Figure 7.9 the value of the parameter a has been set
to ten.

Figure 7.8. Impact of step parameter ’a’ on attack detection latency
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Figure 7.9. Detection latency vs. false alerts trade-off - optimal value of a
parameter may be 10 or 11 for the specific case

7.5.2 Costs of the implementation

Considering now the impact on performance, both units ASA/VDoS and
ASA/FDoS work fully in parallel to the rest of the system and do not introduce
any overhead and do not require any additional code instrumentation. Power
overhead is also negligible (less than 1%)

Table 7.4 represents the synthesis results for the area occupied by the whole
design. The area is estimated both through the number of slice Regs and the
number of slice LUTs.

It can be seen that proposed ASA/FDoS implementation takes around 10% of
Slice Registers and around 13% of Slice LUTs consumed by entire system design.

7.6 Validation of the overall security framework

As shown in Section 5.1 attack specific protection solutions (that are real-
ized in form of Attack Specific Agents) are integrated in Local Security Agents
and further through Secure NoC into wider (system level) security framework.
We consider the system as shown in Figure 7.6. The integration and correla-
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Component Area (Slices) LUTs

Total System 5751 9802
ASA/VDoS 4 10
ASA/FDoS 63 220

Table 7.4. Resource Utilization in terms of area (implementation on Xilinx
Virtex-V FPGA)

tion of different security solutions into one system-level protection mechanism
is detailed in Chapter 5.

In order to demonstrate the effectiveness of the proposed solution we have
focused on protection against Denial-of-Service attacks, considering that it tests
most thoroughly our approach (as it is a nondeterministic detection method
whose performance varies with different applications based on their expected
and actual behavior). We consider several different aspects of detection effi-
ciency. These include:

• Rate of successful detection of real attacks - percentage of reported alerts
considering total number of attacks

• Rate of false alerts notification - percentage of reported (false) alerts con-
sidering total number of regular traffic bursts (that may be mistakenly
presented by CUSUM as attacks)

• Detection latency - defined as the time needed to raise an alert from the
moment when the attack occurred

Our goal is to show how our system level security framework improves attack
detection in all these aspects (and at different levels staring from attack specific
protection layer to the system level protection layer).

In this Section we present results of DoS attack detection simulations in the
case of input traffic described by statistics given in Section 7.5.1 with the addi-
tion of a burst traffic event. We have run several types of experiments:

• Detection using basic standalone CUSUM and introducing saturation value
(minimal CUSUM value below which it is not possible to go)

• Detection using improved standalone CUSUM detection algorithm and
proper security policies favoring multi-level detection (several attack de-
tections cause an alert - depending on defined alert severity level)
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• Detection using CUSUM detection algorithm and correlating security pol-
icy (i.e. CUSUM complemented with other protections strategies in partic-
ular unauthorized memory detection)

As a communication model we consider an multi-media like application char-
acterized with input traffic pattern as defined in Section 7.5.1. In addition to that
we simulated another application with burst communication pattern. We relied
on CUSUM detection algorithm parameters as previously defined and obtained
in Section 7.5.1. Test input traffic is shown in Figure 7.10 where the red arrow
denotes malicious traffic. The appropriate calculated value of the two CUSUM
versions (basic and saturated) is given in Figure 7.11. The corresponding trust-
ing value (considering only CUSUM detection) is represented in Figure 7.12.

Figure 7.10. Input traffic sent to the NoC by the monitored core (the attack
starts around slot 150)

In this case we may notice that for the given traffic inputs and algorithm pa-
rameters, the basic CUSUM algorithm detects none of the events while saturated
CUSUM detects both false and real one. The reason for such behavior is in the
cumulative nature of the CUSUM algorithm. If the value of the CUSUM goes so
negative that it would take too long to detect an attack, on the other hand if
the saturation value is low, than there is the possibility that even regular traffic
bursts would cause false attacks. Considering the nature of FDoS attacks (Blazek
et al. [2001]) which must last in time in order to take an effect, it is clear that
once detected attack will be detected very soon again (even with CUSUM reset).
For this reason we introduce the CUSUM reset value (assigned to CUSUM upon
detection of the alert, and equal to half minimal-saturation value) and we assign
medium severity level to the CUSUM (i.e. FDOS) alert. In addition to that, a
positive feed-backing mechanism is started immediately upon attack detection.
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Figure 7.11. Measured CUSUM values - for the basic and saturative algorithms

This actually means that in order to declare presence of a FDoS attack in the
system three CUSUM alerts (of medium level) must be detected in a pre-defined
time (otherwise trusting value would be increased by the positive feed-backing
mechanism). All these enhancements are introduced in appropriate LSA which
represents second (i.e. core) level protection. The trusting value change with
enhanced CUSUM is presented in Figure 7.12.

Figure 7.12. Core trusting value changing for basic and enhanced CUSUM
algorithm

The analysis of the attack so far has been made considering only statistical
elaboration of the traffic produced by the monitored core. If we take a look from
another perspective, namely, from the cores that are exposed to the malicious
traffic, then we might be able to complement and improve detection of FDoS
at the core which implements ASA/FDoS. In fact, FDoS attacks are commonly
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targeted at the communication infrastructure in the sense that packets are ran-
domly sent through the network (Blazek et al. [2001]) in order to congest it. It is
reasonable to assume that a portion of such packets would eventually hit shared
memory cores installed in the system as well. In that case, our ASA/DPU pro-
tection mechanism would promptly report access violations (unless the attacker
in some manner manages to present false memory access protocols and access
rights, which is highly improbable) causing alerts which additionally decrease
the trusting value of the attacking core. The value for which the core trusting
decreases (considering alerts for ASA/DPU) is calculated according to number
of unauthorized memory accesses in defied time window (we consider each such
access as an incident and we count the alert level according to the number of
incidents in defined time slot, which is equal to five CUSUM observing slots in
this case).

Figure 7.13. Total trusting value (including CUSUM and DPU alerts and
positive feed-backing)

Finally figure 7.13 represents trusting values change in case when we con-
sider (i.e. correlate) all the local security agents (meaning all the specific attack
agents) simultaneously. These figures clearly show improvements in false alerts
removal (by introducing core protection level - LSA modules) as well as in de-
creasing of detection time latency for a FDoS attack detection. This is achieved,
at one side, by improving the CUSUM algorithm provided by the ASA/FDoS
with extensions done at LSA (i.e. saturation value, resetting and positive feed-
backing). On the other hand, additionally combining security related informa-
tion from different sources at the system level (i.e. CSA and appropriate security
policies) improves significantly latency of the detection and also positively im-
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pacts real attacks detection.

7.6.1 Overall security framework efficiency

We have previously shown what are the methods we used to validate our
solution. We have also defined efficiency aspects that we use as a reference to
compare protection efficiency at different levels. In fact, we compare percents
of real and false attacks detection as well as latency in detection at three levels:

• Attack specific protection level - which practically means that we mea-
sure efficiency of exact detection mechanism for specific attack. In consid-
ered case of FDoS attack, it practically means that we consider only basic
ASA/FDoS which implements CUSUM algorithm.

• Core protection level - locally at LSA we process to some extent informa-
tion obtained from ASAs. In observed FDoS case it means that we, on top
of CUSUM value provided by ASA/FDoS, add other mechanisms such as
saturation, multiple level alert (by assigning proper severity level to the
specific alert), positive feed-backing etc.

• System level protection - at this stage we implement security policy which
correlates security information from different sources in order to improve
the overall attack detection mechanisms.

We have simulated the input traffic based on replication of the pattern pro-
vided in Figure 7.14. Each time slot has 80 clock cycles (which is CUSUM time
window as defined in Section 6.3.3) and inside slots there are as many packet
transactions over the network as defined in 7.5.1. For the simulation purpose
this pattern has been replicated hundred times. There are several parameters
that are changing in this pattern in order to provide relevant results: the num-
ber of bursts and attacks per slot; intensity of bursts and attacks; duration of
both of them.

In the Figure 7.15 we may see that first level (CUSUM based ASA/FDoS) has
quite low detection rate with still fairly good latency. Nevertheless, the second
protection level (based on LSA enhancements) introduces additional latency in
the detection. This effect comes from the introduction of saturation and re-
set values as well as for the reason that severity level of the alert is decreased
to medium so that three alerts from CUSUM result in a final FDoS alert. At
the third (i.e. system) level, introduced security policy brings correlation with
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Figure 7.14. Input traffic pattern

other detection mechanisms which complements other FDoS detection strate-
gies. From the figure we may notice that third (actually system wide) protection
level brings higher detection rate, with remarkable latency decrease as well.

Figure 7.15. Real alerts detection efficiency

Another aspect of the efficiency, as previously discussed, relates to false alerts
detection. In fact, regular traffic (especially bursts of regular applications’ com-
munication) may be wrongly interpreted by CUSUM as DoS attacks. This effect
has been a motivation for introduction of features such as CUSUM reset and pos-
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Figure 7.16. False alerts detection - as a consequence of regular traffic bursts

itive feedback (both implemented at second protection level i.e. in LSAs). We
may clearly notice from Figure 7.16 that in this case second security level (i.e.
LSA) improves the efficiency of the detection considering the decreased percents
of false alerts notifications. Still at the third (i.e. system) protection level we do
not have any contribution from other agents (in this case ASA/DPU) as false
alerts are caused by bursts of the regular traffic which do not cause any memory
violations and no alerts from ASA/DPU are raised in that case. As a result the
graph looks the same for the second and the third level. Even though the latency
is an irrelevant factor in this case it can be still noticed that those fake alerts are
reported earlier at the second protection level, compared to the first (ASA) level.
Nevertheless, there are no changes at the third (system) level as no contribution
from other ASAs is present (again due the fact that only bursts of regular traffic
are considered so that no security violations are present in the system).

Finally, considering the security efficiency aspects we defined in Section 7.6
we may state that compared to original specific attack protection mechanisms
(first level protection in our case) our added security levels behave as follows:

• Second (i.e. core) level protection layer does not impact precision of real
attacks detection but at the same time considerably decreases the rate of
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reported false attacks. In turn, it increases detection latency by additional
processing

• Third (i.e. system) level protection layer improves detection precision of
real attacks while it remarkably improves latency of detection by simul-
taneous correlation of security related information from different sources.
Nevertheless, it does not impact in any way detection of false alerts so that
for this aspect of security it is in fact useless.

The analysis presented in this Section clearly shows improvements brought
by the proposed multi-level hierarchical approach to MPSoCs security. Never-
theless, it may be assumed that combination (i.e. system level correlation) of
more attack specific protection mechanisms would additionally improve overall
protection efficiency.
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Chapter 8

Assessment and Comparisons with
Other Approaches

Different kinds of overheads are inevitable for all types of security solutions.
In this Chapter we show what are the costs introduced by the presented im-
plementation compared to other relevant solutions - costs taken into account
include performance degradation, area and power overheads. We also discuss
Non-Recurring Engineering (NRE) design costs compared to other solutions and
we comment on achieved portability and scalability of the solutions.

8.1 General considerations and comparisons with other
approaches

Our solution is intended to be very flexible - integrating and correlating many
different approaches. The security framework embraces various attack-specific
solutions combining them through defined security policy into an efficient sys-
tem level security protection - which is to the best of our knowledge the first
complete implementation of such a protection strategy for MPSoCs.

It is clear that for a single attack protection it does not make sense to build
the complete framework as it is intended for protection against multiple threats
and its purpose is actually to combine diverse attack specific approaches into
one robust protection mechanism. In fact, with increasing of numbers of specific
attacks, from which the system is protected, the overhead in relative terms (per-
centage of area dedicated to ’core’ security framework) is decreasing while the
efficiency is increasing (the higher the diversity of sources of security relevant
information, the better overall system level protection) as shown in Section 8.2.

123
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As mentioned in Section 2 solution most similar to ours is the one described
in (Patel et al. [2010]). The architectural framework presented in that work is
actually based on behavioral monitoring and verification by a dedicated security
processor. Monitoring of application execution is enabled by code instrumen-
tation - adding special dedicated functions at the level of block of instructions.
This fact represents the main drawback of the approach as it requires remark-
able engineering efforts for adapting to specific application. Furthermore, all
the applications to be executed on the platform must be all known in advance
by the monitoring security processor. Moreover, it is very difficult to develop
the ’permissible behavior’ graph for complex applications. Considering all the
mentioned facts we may say that the proposed solution has very limited porta-
bility and scalability and it may be suitable for embedded systems executing
rather simple and straight-forward dedicated applications. Overheads compar-
isons with this solution are provided in the relevant Sections 8.2, 8.3 and 8.4. As
for efficiency of the solution, (Patel et al. [2010]) reports detect approximately
70% of bit flip errors in the control flow instructions (CFIs) which may be caused
by whatever security attack. This is comparable with the results which we ob-
tained at the third level protection as our rate (concerning DoS attacks which
are far most difficult to detect) varies in range 70-95% for different attack pat-
terns. On the other hand our framework guaranties full protection against buffer
overflow as well.

Other approaches rely on application execution monitoring such as the one
presented in (Mao and Wolf [2007]; S. and Wolf [2010]) which describes hard-
ware support for security. This solution relies on verification of the real-time
created monitoring with a ’monitoring graph’ that is statically produced (i.e.
in design time, according to several different patterns such as address pattern,
control flow pattern, hashed pattern etc.). The verification is performed by a
dedicated security structure called ’processing monitor’. This approach is very
limited due to two facts:

• Application behavior must be known in advance, in other words the so-
lution might be efficient only in the case of embedded systems executing
pre-defined applications with very predictable execution implications. In
our approach most attack specific protection mechanism do not require
any knowledge of specific behavior pattern apart of VDoS protection - that
requires communication requirements of the application that are still far
less difficult to determine.

• On the other hand, determining ’permissible’ behavior of the complex ap-
plications and building the appropriate ’monitoring graph’ may require



125 8.1 General considerations and comparisons with other approaches

considerable resources (in terms of memory, area, power consumption
etc.) as well as design time. Considerable processing power may be re-
quired for run-time performance of verification algorithms. Our solution
requires no additional monitoring mechanism; elementary memory is re-
quired for storing trusting tables and temporal values of variables needed
for different services such as positive feed-backing; all the security related
processing is performed in parallel to regular system (by the dedicated
hardware built structures) so that minimal performance overhead is bur-
den to the main system.

The above listed issues represent the key differentiation points between the
two approaches. Authors claim in (S. and Wolf [2010]) that additional logic and
memory correspond to roughly one-tenth of the application binary sizes which
is comparable to our solution. Apart from that, we are not able to compare area
and power consumption as these data are not provided.

Some sort of collaborative monitoring for embedded systems security has
been introduced by (Wolf et al. [2006]). In this work ’collaborative monitoring
logic’ has been introduced to correlate multiple concurrent events in run-time.
They employ a ’processing monitoring system’ in parallel to a ’thermal moni-
toring system’ to supply the information to the ’collaborative monitoring logic’
which then makes different decisions based on collected information. The ’pro-
cessing monitoring system’ is practically the same as the one described in (Mao
and Wolf [2007]; S. and Wolf [2010]) and the ’thermal monitoring system’ col-
lects the data on temperature at specific points on the chip. The authors rely on
the assumption that disorders in system operation can reflect on heating in some
predictable pattern. The solution has been tested through SimpleScalar simula-
tor and authors claim that it introduces 13-15% memory overhead. The main
shortcomings of this solution are the same as for aforementioned implementa-
tion provided by (Mao and Wolf [2007]; S. and Wolf [2010]) and moreover
the correlation between temperature changes and application activities is not
satisfactorily proved.

Nevertheless, our solution is still, to the best of our knowledge, the only one
fully implemented and verified in FPGA technology. Furthermore, it is the only
solution that utilizes multi-agent systems structured in a hierarchical fashion
which implements security policy that correlates different attack specific detec-
tion approaches.
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8.2 Area overhead

Considering that our solution is mostly implemented in hardware, the cost in
terms of area (i.e. logic cells) used represents the major concern. According to
synthesis results information shown in Section 7 we have presented the security
framework area consumption data in Table 8.1.

Design Area (Slice Regs) Slice LUTs

Clean design 6295 7614
Sec. framework + ASA/SPU 7775 9727

Sec. framework + ASA/SPU+FDoS 8339 10768
Sec. framework + ASA/SPU+FDoS+DPU 8700 11344

Total system (with all 4 ASAs) 8704 11354

Table 8.1. Resource utilization of the components of the system for the Xilinx
Virtex V FPGA on ML510 board

In fact, two main contributors to the area consumption can be distinguished:

• Costs introduced by attack specific protection solutions (implemented in
form of Attack Specific Agents in our system). These mostly represent
already developed solutions adapted for specific problem and technology
used in our setup.

• Costs introduced by ’core’ structures of security framework. These include
Local Security Agents that coordinate all Attack Specific Agents assigned
to a core; Secure NoC and finally Central Security Agent.

It should be noted that the area consumption of the entire security frame-
work increases with addition of attack specific agents for two reasons: due to
addition of ASAs and due to extension of supporting ’core framework’ modules
such as LSA and CSA (e.g. ASA portfolio in LSAs, Security Policy Manager in
CSA etc.) to accommodate newly added ASAs.

Let us now consider the protection for the given system from a set of given
specific set of attacks. We may compare two approaches:

• Implementation of independent standalone solutions for each attack pro-
tection separately
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• Implementation of the attack specific protections (in the same manner as
above) with the addition of their mutual integration and correlation in a
system level security framework

It is clear that implementation of all attack specific solutions to be inte-
grated in a wider security framework would have the same cost as the sum
of all independent-standalone solutions. Still, in the first listed case, the system
security strategies would not be coordinated and the overall efficiency of the
protection mechanism would be as strong as the weakest attack specific protec-
tion implemented. On the other hand, our solution would in addition to the
area consumed by attack specific modules (which would be actually the same
as a sum of aforementioned standalone solutions) have some extra costs intro-
duced by the ’core’ of the security framework which manages security at system
level (i.e. executes the security policy correlating all the implemented protection
mechanisms). The area overhead in absolute terms is increasing with addition
of each attack specific agent (see Figure 8.1) but the percentage of the area
consumed by the core framework inside total security overhead is decreasing
in relative terms (meaning that percentage of the area consumed by the core
framework compared to the area consumed by the total security framework is
decreasing with addition of ASAs).

In other words, comparing the two cases (with and without core security
framework), we may say that the differences in cost of implementation decrease
with increasing numbers of specific attack protection types that are to be imple-
mented in the system. From this analysis we may conclude that our proposed
security framework pays-off for greater numbers of ASAs. Considering that mod-
ern systems are commonly defended against a large number of possible attacks,
it is reasonable to assume that our solution would be appropriate for the most
modern systems.

Comparison with other solutions in terms of area consumption is fairly dif-
ficult to be performed. The main reason for that is that solutions are not fully
compatible. For instance, the most relevant system level protection solution
provided by (Hardware-software design methods for security and reliability of MP-
SoCs [2009]; Patel et al. [2010]) considers only the buffer overflow type of the
attack. For that case area overheads for different types of the security monitor
are reported to be between 22-39%. It can be seen that our proposed counter-
part security framework takes around 10% of Slice Registers and around 18%
of Slice LUTs consumed by entire system design (for the solution which consid-
ers buffer overhead protection only). These result is slightly better compared
to those provided in (Patel et al. [2010]). Still, our fully built framework with
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Figure 8.1. Absolute increase of area consumption with addition of core frame-
work (i.e. LSA+CSA+SNoC) and extra ASAs with respect to original design

four different protection mechanisms (i.e. four ASA types) and support for the
second and the third security levels consumes around 40% of area taken by the
original design. Area overhead reported by (Sepulveda et al. [2011]) is 26.7%.

8.3 Power consumption overhead

Power consumption may be static (quiescent) and dynamic. We have col-
lected information on power consumption via a tool available in the Xilinx tool-
box, namely XPower Analyzer which operates at layout level. According to in-
formation provided by Xilinx (XilinxPower) power is considered and calculated
according to the following definitions (XPower Analyzer [2011]):

• Quiescent power (i.e. static power) is the power drawn by the device
when it is powered up, configured with user logic and there is no switching
activity. In XPower Analyzer, the value reported for Total Quiescent Power
is composed of these quiescent power components:

– The device static power - represents the power consumed by the de-
vice when it is powered up without programming the user logic. Any
change affecting the device operating environment will affect this
power.
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– Design static power - represents the power consumed by the user
logic when the device is programmed and without any switching ac-
tivity. For instance, depending on the device family and resource con-
figuration, some blocks used in a design (such as clock management,
I/Os, and Multi-Gigabit Transceivers) will consume a set amount of
power regardless of activity.

• Dynamic power represents the fluctuating power as the device runs. It
represents the amount of power generated by the switching user logic and
routing.

Having defined power consumptions like this, we have run the power ana-
lyzing tool (which emulates layout hardware) on our design executing the appli-
cations with communication patterns used for experiments as defined in Section
7.5.1 as benchmark. In this analysis we consider only dynamic power consump-
tion as the differences in static power are negligible.

The implemented security framework has basically three sources of addi-
tional power consumption: signals (representing the power consumed by all
routing structures in the device that connect logic elements, IOs and dedicated
blocks) BRAM/memories and logic. It turns out that signals and logic con-
sume the greatest part of dynamic consumption after memories. Consumption
in BRAMs is mostly due to components that contain look-up tables as it is the
case with CSA (containing trusting policy tables) and DPU (containing access
permissions policy table).

The Table 8.2 shows the consumption of the entire design starting from basic
design with step by step addition of security framework components, at first
core components (which include SNoC, CSA and LSA placeholder - as no ASA
are present) and later one by one ASA.

The Figure 8.2 shows increase in power consumption with addition of ASAs,
one by one. It may be noticed that the greatest growth in power consumption
is due to the core of the security framework (this actually represents the basic
cost introduced by our solution and it is still lower then 6% of total consumption
of the system). Adding attack specific protection as well as elements for their
integration (e.g. LSA modules, CSA upgrades etc.) introduces additional costs
as may be seen from the same figure.

Nevertheless, it is very difficult to make comparisons with other solutions
concerning power consumption as technologies utilized are different. Still, in
(Patel et al. [2010]) the authors claim that the security monitor consumes be-
tween 12-19% of total power consumption for the implementation on Xtensa
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Table 8.2. Power consumption of the design with subsequent addition of an
ASA measured for the Xilinx Virtex V FPGA

Design Power consumption in mW

Clean design 152.41
Added core security framework 160.25

Added ASA/SPU 162.64
Added ASA/FDoS 169.07
Added ASA/DPU 175.74
Added ASA/VDoS 180.87

Figure 8.2. Absolute increase of power consumption with addition of an extra
ASA with respect to original ’clean’ design

processor from Tensilica. It varies for different benchmarks. Our solutions in-
troduces increase of power consumption (for the test application we used as
defined in Section 7.5.1) from 6% (for one ASA solutions) to 19% for four-ASA
solution. On the other hand in (Sepulveda et al. [2011]) report 19.6% power
overhead and only 7.6% in (Sepulveda et al. [2012]), nevertheless these results
are given for SystemC-TLM simulation framework and their comparison with
data provided form hardware implementation is not fully relevant.

From the analysis above we may conclude that costs in terms of power con-
sumption caused by the proposed solution are acceptable and moreover as well
as previously shown for area overheads, the solution pays if a large number of
specific attack protection mechanisms implemented.
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8.4 Impact on performance

The major portion of our system is implemented in hardware. Therefore,
execution of most attack specific algorithms is performed in parallel to reg-
ular system execution. This concerns for instance memory access protection
(i.e. ASA/DPU) as well as DoS protection mechanisms (both ASA/VDoS and
ASA/FDoS-CUSUM algorithms are executed in parallel to regular system opera-
tion). Furthermore, core security framework (i.e. LSAs, SNoC and CSA) is fully
independent from the main system. In this way we do not burden the system
with consumption of its neither computational nor computational resources.

Nevertheless, implementation of buffer overflow protection (i.e. ASA/SPU)
requires interaction with operating system at certain times. Since the SPU works
by tracking memory accesses that originate from the core and by detecting in-
structions that could cause the violation (stack manipulation), it does not in-
troduce any additional delays to the pipeline or to the functional units of the
processor. The only impact on performance could come from the fact that the
SPU takes six cycles to adapt to the new stack frame when the context switch
occurs.

We executed several experiments to evaluate the impact on performance.
The test consisted of executing several benchmarks from the MiBench suite
(Guthaus et al. [2002]) (encoding and decoding of jpeg images, dijkstra and
patrizia network algorithms and bitcount from automotive suite) and of com-
pressing and decompressing a video using the MPEG2 standard (benchmark
from MediaBench Lee et al. [1997]). All programs were executed on the sys-
tem with and without the SPU, and we found that the overhead introduced by
the security framework is negligible (less than 1% in all cases) and comparable
with the solution presented in (Patel et al. [2010]).
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Chapter 9

Conclusions and Future Work

Security of MPSoCs represents a novel challenge which attracts wider atten-
tion of research community. Adoption of common well-accepted security strate-
gies developed in general purpose computing and computers networks are not
always suitable for such systems with limited resources. On the other hand MP-
SoCs are getting used for widest range of applications being exposed to threats
coming also from Internet. As a response to these trends we have proposed an
agent based hierarchical structure as a solution for securing these systems at
multiple levels.

The solution and implementation shown, represent an innovative approach
to securing NoC based MPSoCs. The proposed framework does not require any
additional application code instrumentation or any change of the functionalities
of existing IP cores. Still, proposed framework requires minimal intervention
in customizing the attack-specific solutions for specific cores and technology.
Nevertheless, the modular and scalable design of the architecture enables easy
system upgrades which requires only ’check-in’ of the additional module into the
existing structure.

Although the presented implementation is limited to the MicroBlaze soft-
core, it can be easily adapted to other processors. If for instance, the specific
processing core has the tracing capabilities (like MicroBlaze has) ASA/SPU can
be simply attached to the trace signals. In other cases, SPU can monitor the
addresses that are coming out of the processor, and the instruction decode needs
to be changed to signal instructions that manipulate the stack. No other complex
interventions on the datapath or on the micro-architecture are required for this
specific attack protection solution.

The code injection attacks - in particular ’buffer overflow’ based ones, con-
sidered in the implemented prototype - represent a growing threat for MPSoCs
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especially Internet enabled ones that are exposed to the danger of downloading
malicious applications. It has been shown in the testing and evaluation phase
that the system has been fully protected from such kind of attacks whether they
are targeted to exploit software vulnerabilities in application run-time execution
or to tamper the shared memory tampering.

On the other hand nondeterministic, statistic based, detection algorithm for
Denial-of-Service has been used as a demonstrator of the efficiency of the hierar-
chical approach which bring wider integration and correlation among different
protection mechanisms at system level. It is shown that such approach improves
efficiency of DoS attack detection. DoS related solutions are fully portable and
independent from technology utilized.

The synthesis results and tests performed show that our solution introduces
minimal time overhead; area overhead as well as increased power consumption
are fairly remarkable but still comparable with similar solutions proposed. Nev-
ertheless, costs introduced may be considered in limits of acceptable keeping in
mind that security solutions always require considerable resources.

9.1 Concluding evaluations and remarks

The fundamental benefits provided by the presented solution lies in intro-
duced system level security strategy which:

• Improves efficiency of each specific attack protection mechanism itself

• Coordinates and manages all the security related mechanisms and actions
in the system enabling early warning, intrusion detection system and pre-
venting fault propagation

• NoCs proved as useful medium for deployment of auxiliary services other
than communication. By hosting security related components which fur-
ther profit from services provided by Network Interfaces, NoCs enable
building of fully parallel security structure which is not burdening exist-
ing computational and communicational resources of MPSoC itself

• The developed structures enable easy upgrade and extension of the secu-
rity strategies by adding new attack specific protection mechanisms

All the aforementioned benefits have been brought to the system with ac-
ceptable area consumption achieved with low power consumption overhead and
without code instrumentation. In the sequel we comment on the one of the most
important properties of the solution - its portability and scalability.
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9.1.1 Portability and scalability of the solution

Our solution may be considered as composed from two parts - attack specific
solutions (which is composed of ASAa) and core security framework (which
includes LSA, SNoC and CSA). All the architecture specific elements are encap-
sulated in the attack specific protection layer. In fact, ASAs are those elements
who must be tailored to adopt to the exact architecture, communication stan-
dards and protocols of the core they are attached to. These elements are embed-
ded into NIs of the network-of-chip and they are built to rely on these structures.
The core security framework is fully portable, architecturally and technologically
independent solution. The concept can be adopted for any NoC based MPSoC.

Thanks to modular and flexible agent based structure, the solution is very
scalable both in terms of supporting increased number of cores in the system as
well as number of specific attacks the system is protecting from. Therefore, the
solution is capable of coping with foreseen increase in number of cores and at
the same time to adapt to growing security threats.

9.2 Future work

The solutions presented here represents the solid foundations for security
framework implementation in terms of architecture and system level security
policy. Still, remarkable improvements can be done mostly on the system se-
curity policy level. Our current efforts are focused on implementing proper se-
curity policies that would enable construction of enhanced trust relationships
in the system, based on centralized approach. Clearly establishing the trust re-
lationships in the system, not only from an architectural perspective, but also
from a policy perspective would mean that the secure hierarchy should be able
to make a distinction between the expectation and the exception.

As future work in the scope of this framework we also consider adding more
Attack Specific protection solutions as well as increasing the role of the CSA
in terms of improved attack analysis and countermeasures performed. A more
detailed analysis of performance overhead will be performed as well (e.g. we
will consider complex multithreaded and multiprogramming workloads).
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