
Turku Centre for Computer Science

TUCS Dissertations
No 191, January 2015

Syed Mohammad Asad Hassan Jafri

Virtual Runtime Application Partitions for
Resource Management in
Massively Parallel Architectures

Virtual Runtime Application
Partitions for Resource Management
in Massively Parallel Architectures

Syed Mohammad Asad Hassan Jafri

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium Beta on January 28, 2015, at 12 noon.

University of Turku
Department of Information Technology

FI-20014 Turku
Finland 2014

Supervisors

Assoc. Juha Plosila
Department of Information Technology
University of Turku
Finland

Prof. Ahmed Hemani
Department of Electronic Systems
Royal Institute of Technology
Sweden

Prof. Hannu Tenhunen
Department of Information Technology
University of Turku
Finland

Reviewers

Assoc. Prof. Magnus Jahre
Department of Computer and Information Science
Norwegian University of Science and Technology
Norway

Assoc. Prof. Tulika Mitra
School of Computing
National University of Singapore
Singapore

Opponent

Prof. Jari Nurmi
Department of Electronics and Communications Engineering
Tampere University of Technology
Finland

ISBN 978-952-12-3164-3
ISSN 1239-1883

The originality of this thesis has been checked in accordance with the
University of Turku quality assurance system using the Turnitin Originality
Check service.

Abstract

This thesis presents a novel design paradigm, called Virtual Runtime Ap-
plication Partitions (VRAP), to judiciously utilize the on-chip resources.
As the dark silicon era approaches, where the power considerations will
allow only a fraction chip to be powered on, judicious resource manage-
ment will become a key consideration in future designs. Most of the works
on resource management treat only the physical components (i.e. compu-
tation, communication, and memory blocks) as resources and manipulate
the component to application mapping to optimize various parameters (e.g.
energy efficiency). To further enhance the optimization potential, in addi-
tion to the physical resources we propose to manipulate abstract resources
(i.e. voltage/frequency operating point, the fault-tolerance strength, the
degree of parallelism, and the configuration architecture). The proposed
framework (i.e. VRAP) encapsulates methods, algorithms, and hardware
blocks to provide each application with the abstract resources tailored to its
needs. To test the efficacy of this concept, we have developed three distinct
self adaptive environments: (i) Private Operating Environment (POE), (ii)
Private Reliability Environment (PRE), and (iii) Private Configuration En-
vironment (PCE) that collectively ensure that each application meets its
deadlines using minimal platform resources. In this work several novel ar-
chitectural enhancements, algorithms and policies are presented to realize
the virtual runtime application partitions efficiently. Considering the future
design trends, we have chosen Coarse Grained Reconfigurable Architectures
(CGRAs) and Network on Chips (NoCs) to test the feasibility of our ap-
proach. Specifically, we have chosen Dynamically Reconfigurable Resource
Array (DRRA) and McNoC as the representative CGRA and NoC plat-
forms. The proposed techniques are compared and evaluated using a variety
of quantitative experiments. Synthesis and simulation results demonstrate
VRAP significantly enhances the energy and power efficiency compared to
state of the art.

i

ii

Acknowledgments

The research work presented in this thesis has been carried out in the de-
partment of Information Technology, University of Turku with close collab-
oration with Electronic Systems department Royal institute of Technology
(KTH) from September 2010 to October 2014. This work would not have
been possible in four years without the support of many people. First of
all, I would like to express my deepest gratitude to my supervisors, Prof.
Ahmed Hemani, Assoc. Prof. Juha Plosila, Assoc. Prof. Kolin Paul and
Prof. Hannu Tenhunen, for their excellent guidance, patience, and support.
In addition, I would also like to specially thank Prof. Stanislaw Piestrak,
for continuous guidance and support during the course of my thesis. I would
like to acknowledge the support of my loving wife, Hira, and wonderful sons
(Ailee and Jari). Without their love, encouragement, and patience, I would
not be able to spend nights in the university to conduct the demanding
research. I would like to show my gratitude to the PhD researchers Adeel
Tajammul, Omer Malik, Liang Guang, Ali Shami, and Nasim Farahini, who
have supported me throughout my research. It gives me great pleasure to
acknowledge Assoc. Prof. Magnus Jahre and Assoc. Prof. Tulika Mitra for
the detailed reviews and the constructive comments on the manuscript. I
thank Prof. Jari Nurmi for agreeing to be my opponent. I greatly appreci-
ate the financial support for my doctoral studies from the Higher Education
Commission of Pakistan, Turku Centre of Computer Science (TUCS), Nokia
foundation, Ulla Tuomisen saatio and University foundation of Turku. Fi-
nally, I would like to thank my parents for their constant love, support,
and prayers and dedicate this thesis to them. Turku, October 2014 Syed
Mohammad Asad Hassan Jafri

iii

iv

Contents

1 Introduction 1

1.1 Trends and developments . 1
1.1.1 Power wall . 1
1.1.2 Utilization wall and Dark silicon 2
1.1.3 Fault-tolerance becoming critical 3

1.2 Problem statement . 4
1.3 Background . 4

1.3.1 Services . 5
1.3.2 Control Architecture 7
1.3.3 Implementation Platforms 7

1.4 Objectives and methods . 8
1.5 Contributions . 11

1.5.1 Private Configuration Environments 11
1.5.2 Private Reliability Environments 11
1.5.3 Private Operating Environments 12

1.6 Research publications and contributions 13
1.7 Thesis Navigation . 18

2 Targeted platforms 21

2.1 DRRA before our innovations 21
2.1.1 DRRA computation layer 22
2.1.2 DRRA Storage layer (DiMArch) 23
2.1.3 DRRA programming flow 24

2.2 Control and configuration backbone integration 25
2.3 Compact Generic intermediate representation to support run-

time parallelism . 26
2.3.1 FFT example . 27
2.3.2 Compact Generic Intermediate Representation 28
2.3.3 The Two Phase Method 30

2.4 Network on Chip . 32
2.4.1 Nostrum . 33
2.4.2 Power management infrastructure 33

v

2.5 Experimental Methodology 33
2.6 Summary . 34

3 Private Configuration Environments for CGRAs 35

3.1 Introduction . 35
3.2 Related Work . 38
3.3 Private Configuration Environments (PCE) 40

3.3.1 PCE Configuration modes 41
3.3.2 PCE life time . 42
3.3.3 PCE Generation and Management Packet (GMP) . . 42
3.3.4 Morphable Configuration Memory 43
3.3.5 Morphable Configuration Infrastructure 44

3.4 Hierarchical configuration backbone 45
3.4.1 Local controller . 46
3.4.2 Application controller 48
3.4.3 Platform controller . 48

3.5 Application mapping protocol 50
3.5.1 Configware datapath setup 50
3.5.2 Autonomous configuration mode selection 51

3.6 Formal evaluation of configuration modes 52
3.6.1 Performance . 52
3.6.2 Memory requirements 53
3.6.3 Energy consumption 54

3.7 Results . 55
3.7.1 Configuration time and Memory requirements of var-

ious configuration modes 55
3.7.2 Overhead analysis . 57
3.7.3 PCE benefits in late binding and configuration caching 59
3.7.4 PCE in presence of compression algorithms 60

3.8 Summary . 62

4 Private Reliability Environments for CGRAs 63

4.1 Introduction . 63
4.1.1 Private reliability environments for computation, com-

munication, and memory 63
4.1.2 Private reliability environments for configuration mem-

ory . 64
4.1.3 Motivational example 65

4.2 Related Work . 66
4.2.1 Flexible reliability . 66
4.2.2 Scrubbing . 67
4.2.3 Summary and contributions 68

4.3 System Overview . 69

vi

4.4 Fault Model and Infrastructure 69
4.4.1 Residue Mod 3 Codes and Related Circuitry 70
4.4.2 Self-Checking DPU . 72
4.4.3 Fault-Tolerant DPU 74
4.4.4 Permanent Fault Detection 75

4.5 Private Reliability Environments 75
4.5.1 Reliability Levels . 77
4.5.2 Fault-Tolerance Agent (FTagent) 77
4.5.3 Run-Time Private Reliability Environments Generation 78
4.5.4 Formal Evaluation of Energy Savings 79

4.6 Configuration memory protection 81
4.6.1 Morphable Configuration Infrastructure 81
4.6.2 Scrubbing Realization in DRRA 81

4.7 Formal Modeling of Configuration Scrubbing Techniques . . . 83
4.7.1 Memory Requirements 83
4.7.2 Scrubbing Cycles . 84
4.7.3 Energy Consumption 85

4.8 Results . 86
4.8.1 Sub-modular redundancy 86
4.8.2 Scrubbing . 89

4.9 Summary . 91

5 Private reliability environment for NoCs 93
5.1 Introduction . 93
5.2 Related work . 95
5.3 Hierarchical control layer . 98
5.4 Fault Model and infrastructure 99

5.4.1 Protection against Temporary Fault in Buffers/links . 100
5.4.2 Protection against permanent faults in links 100

5.5 On-demand fault tolerance . 102
5.5.1 Packet identification 102
5.5.2 Providing needed protection 105
5.5.3 Formal evaluation of energy savings 105

5.6 Monitoring and management services 107
5.6.1 Cell agent . 107
5.6.2 Cluster agent . 110
5.6.3 System agent . 111
5.6.4 Inter-agent communication protocol 111
5.6.5 Effects of granularity on intelligence 111

5.7 Results . 112
5.7.1 Experimental setup . 112
5.7.2 Ratio of control to data packets 113
5.7.3 Cost benefit analysis 113

vii

5.8 Summary . 116

6 Private operating environments for CGRAs 117

6.1 Introduction and Motivation 117
6.2 Related Work . 119
6.3 DVFS infrastructure in DRRA 121

6.3.1 Voltage Control unit 121
6.3.2 Clock generation unit 123

6.4 Data flow management . 123
6.4.1 Dynamically Reconfigurable Isolation Cell (DRIC) . . 123
6.4.2 Intermediate Storage 126

6.5 Metastability management . 126
6.5.1 Operating principle . 127
6.5.2 Hardware Implementation 128

6.6 Dynamic Parallelism . 128
6.6.1 Model . 130
6.6.2 Optimal DVFS granularity 131
6.6.3 Problems with unconstrained parallelism 132

6.7 Parallelism Intelligence . 133
6.7.1 Architectural enhancements 133
6.7.2 Resource allocation graph (RAG) model 134
6.7.3 RAG generation . 136

6.8 Operating point intelligence integration 137
6.8.1 Integrating voltage and frequency in RAG 137
6.8.2 Quantifying Feasibility of profiling 140
6.8.3 Autonomous Parallelism, Voltage, and Frequency Se-

lection (APVFS) . 140
6.9 Results . 141

6.9.1 Energy and power reduction 142
6.9.2 Overhead analysis . 146

6.10 Summary . 147

7 Private operating environment for NoCs 149

7.1 INTRODUCTION . 149
7.2 RELATED WORK . 150
7.3 ARCHITECTURAL DESIGN 151

7.3.1 Application Timestamps 151
7.3.2 System Agent . 152
7.3.3 Cell Agents . 154
7.3.4 Architectural Integration 154

7.4 SELF-ADAPTIVE POWER MANAGEMENT 156
7.4.1 Best-effort Per-Core DVFS (BEPCD) 156
7.4.2 Experiment Setup . 156

viii

7.4.3 Experiment Result . 158
7.4.4 Overhead Analysis . 161

7.5 Summary . 161

8 Conclusion 163
8.1 Contributions . 163
8.2 Future work . 165

ix

x

List of Figures

1.1 Resource management taxonomy 5
1.2 Direction for future platforms 9
1.3 Goals, resources, services and architectural support for re-

source management . 10
1.4 Private configuration environments approach 10
1.5 Navigation of the thesis . 19

2.1 Different applications executing in its private environment . . 22
2.2 Computational layer of DRRA 23
2.3 DRRA storage Layer . 24
2.4 DRRA programming flow . 25
2.5 DRRA control and configuration using LEON 3 25
2.6 Multicasting architecture . 26
2.7 Mapping of each butterfly on DRRA fabric 28
2.8 Fully serial FFT mapping on DRRA cells 28
2.9 Serial parallel FFT mapping on DRRA cells 29
2.10 Fully parallel FFT mapping on DRRA cells 29
2.11 Runtime Extraction of CGIR 31
2.12 DRRA programming flow . 31
2.13 McNoC architecture . 32

3.1 Motivation for Private Configuration Environments (PCE) . . 37
3.2 Classification of methodologies to optimize configuration . . . 39
3.3 Logical view of private configuration environment 40
3.4 PCE generation and management 43
3.5 Private Configuration Environment (PCE) infrastructure . . 45
3.6 Hierarchical configuration control layer 46
3.7 Direct Feed and Multi-Cast controller (DFMC) 47
3.8 Memory Load and distributed Feed Controller (MLFC) . . . 48
3.9 Application controller architecture 49
3.10 Application controller functionality 49
3.11 Platform controller logical/functional representation 50
3.12 Configuration protocol . 50

xi

3.13 Autonomous Configuration Mode Selection algorithm (ACMS) 52
3.14 Configuration memory requirements for various configuration

modes . 58
3.15 Area and power breakdown of various PCE components . . . 58
3.16 Stalls when applying late binding to WLAN and matrix mul-

tiplication . 59
3.17 Effect of compression on IFFT 61

4.1 Comparison of different fault-tolerance architectures. 66
4.2 DRRA Data Path Unit (DPU). 70
4.3 Working principle of residue mod 3. 71
4.4 Residue adder/subtractor, multiplier, and generator mod 3. . 72
4.5 Self-checking hardware to check Out1 and Out2. 73
4.6 Self-checking DPU using residue code mod 3 and duplication. 74
4.7 Fault-tolerant DPU built using two self-checking DPUs. . . . 75
4.8 Permanent fault detection state machine. 76
4.9 Private reliability environments. 76
4.10 Fault-tolerance agent integration. 78
4.11 Interface of a fault-tolerance agent with a self-checking DPU. 79
4.12 Private Configuration Environment (PCE) infrastructure . . 82
4.13 Architecture for internal and external scrubbers 82
4.14 Overhead evaluation of self-checking and fault-tolerant DPUs

using residue mod 3 code, DMR, and TMR. 87
4.15 Area breakdown for overall fault-tolerant circuitry. 88
4.16 Energy consumption for various applications. 88
4.17 Energies of different algorithms tested. 88
4.18 Scrubbing cycles external vs internal scrubber 89
4.19 Configuration memory requirements for various scrubbers . . 90
4.20 Power breakdown for a scrubber 91
4.21 Area breakdown for a scrubber 91

5.1 Motivational example for control/data traffic 96
5.2 McNoC architecture . 98
5.3 McNoC architecture . 99
5.4 Fault tolerant NoC switch . 100
5.5 Reconfiguration to spare wire 101
5.6 Permanent fault detection state machine 102
5.7 Multi path reconfigurable fault tolerance circuitry 103
5.8 Application fault tolerance level identifier 104
5.9 Area comparison between ABFA and ABFB 105
5.10 Power comparison between ABFA and ABFB 105
5.11 Functionality of the system, cluster, and cell agent 108
5.12 Cell agent interface to the switch 109

xii

5.13 block diagram of packet generator 110
5.14 Communication protocol between agents 112
5.15 Area and power overhead of fault tolerance circuitry 115

6.1 CGRA hosting multiple applications 119
6.2 DVFS infrastructure in DRRA 122
6.3 Voltage control unit . 122
6.4 Clock generation unit . 123
6.5 DRIC generation and placement 124
6.6 Generation of DRIC configware from regulation algorithm . . 125
6.7 Metastability manager integration 127
6.8 Metastability manager . 129
6.9 Directed acyclic graph representing tasks with multiple versions131
6.10 Shortcomings of greedy algorithm 133
6.11 Modified programming flow for energy aware task parallelism 134
6.12 Resource allocation graph model 135
6.13 Resource allocation graph (RAG) 136
6.14 Resource allocation graph (RAG) with voltage and frequencies139
6.15 Memory requirements to generate profile for RAG based par-

allelism . 140
6.16 Autonomous parallelism, voltage, and frequency selection (APVFS)141
6.17 Energy and power savings by applying APVFS on matrix

multiplication with multiple versions 143
6.18 Energy and power savings by applying APVFS multiple al-

gorithms . 143
6.19 Energy and power consumption of WLAN on DRRA 144
6.20 Resources required for speedup RAG vs greedy approach . . . 145
6.21 Compression achieved by using RAG based DVFS 146
6.22 Area comparison ISDVFS vs TDVFS 147

7.1 Labeling Timestamps in the Application 152
7.2 Monitoring and Reconfiguration Software on System Agent . 153
7.3 Schematics of cell Agent and its Interfaces to System Agent

and Network Node . 154
7.4 Integrating Hierarchical Agents as an Intelligence Layer . . . 155
7.5 Per-Core DVFS for Best-effort Power Management with Run-

time Performance Monitoring 157
7.6 Energy and power comparison for (a) matrix multiplication,

(b) FFT, (c) wavefront, and (d) hiperLAN 160

xiii

xiv

List of Tables

1.1 Circuit size from 1963-2010 [2]. 1
1.2 Processor frequencies different generations [52]. 2
1.3 The origin of utilization wall [120]. 3

2.1 Local controller functionality 22

3.1 Configuration modes . 41
3.2 Local controller functionality 46
3.3 Reconfiguration cycles needed in different configuration modes

56
3.4 Reduction in configuration cycles distributed vs multi-cast . 56
3.5 Memory requirements for different configuration modes . . . 57
3.6 Area and power consumption of different components of PCE 57
3.7 Reconfiguration cycles needed in different configuration modes

with loop preservation . 60
3.8 Reconfiguration memory needed for different configuration

modes with loop preservation 61
3.9 Configuration memory requirements for different versions of

IFFT . 61

4.1 DPU functionality. 70
4.2 Fault-tolerance levels. 77
4.3 Control bits and the corresponding reliability level. 79
4.4 Truth-table of the output select signal OtS. 80
4.5 Summary of how various scrubbing techniques are realized . . 83
4.6 Area and power overhead of self-checking and fault-tolerant

circuits using residue code mod 3, DMR, and TMR. 87
4.7 Number of cycles required by the external and internal scrubber 89
4.8 Memory requirements of different scrubbers 90
4.9 Area and power consumption for memory based scrubbing . . 91
4.10 Area and power consumption for Error Correcting Codes (ECCs) 92

5.1 Major differences between CGRA and NoC platforms 93
5.2 Fault tolerance levels . 102

xv

5.3 Traffic interchange between cell agent and switch 109
5.4 Comparison between voltage scaled, IPF, IAPF, and IPF+IAPF

schemes . 112
5.5 Ratio of control to data packets 113
5.6 Energy consumption for worst case and on-demand fault tol-

erance . 114
5.7 Reduction in energy overhead by using on-demand fault tol-

erance . 114
5.8 Area and power consumption of different components of fault

tolerant circuit . 115

6.1 Private operating environment requirements 118
6.2 Functionality of various RAG components 135

7.1 Experimented Instructions for Monitoring and Power Man-
agement on System Agent (a LEON3 processor) 153

7.2 Voltage frequency pairs . 157
7.3 Energy and power savings for matrix multiplication 159
7.4 Energy and power savings for FFT 159
7.5 Energy and power savings for HiperLAN 159
7.6 Energy and power savings for wavefront 160

xvi

xvii

List of Abbreviations

ACC Application Configuration Controller
ACMS Autonomous Configuration Mode Selection
AHB Amba High Performance Bus
ALU Arithmetic and Logic Unit
APVFS Autonomous Parallelism, Voltage, and Frequency Selection
BB Basic Block
BIC Bus based Indirect Configuration
BIST Built In Self Test
BLS BLind Scrubber
CC Configuration Controller
CDMA Code Division Multiple Access
CGIR Compact Generic Intermediate Representation
CGRA Coarse Grained Reconfigurable Architecture
CGU Clock Generation Unit
CP Control Packets
DC Direct Configuration
DED Double Error Detection
DFMC Direct Feed and Multicast Controller
DIC Distributed Indirect Configuration
DME Data Management Engine
DMR Double Modular Redundancy
DP Data Packets
DPM Dynamic Power Management
DPU Data Path Unit
DRIC Dynamically Reconfigurable Isolation Cell
DRRA Dynamically Reconfigurable Resource Array
DSM Distributed Shared Memory
DWC Duplication With Comparison
Dynamic Voltage and Frequency Scaling DVFS
ECC Error Correcting Codes
EDC Error Detecting Codes
EIS Error Invoked Scrubber
FA Fault tolerance scheme Adaptive
FFT Fast Fourier Transform

xviii

FIR Finite Impulse Response filter
FPGA Field Programmable Gate Array
FT agent Fault Tolernace agent
GCM Global Configuration Memory
GMP PCE Generation and Management Packet
GRLS Globally Ratio Synchronous Locally Synchronous
HBUS Horizontal BUS
HI Hierarchical Index
IAPF Inter Packet Fault tolerance
IPF Intra Packet Fault Tolerance
LCC Local Configuration Controller
MFD Memory Feed Distributed
MFMC Memory Feed Multi Cast
MFS Memory Feed Sequential
MLFC Memory Load and distributed Feed Controller
MM Matrix Multiplication
MN Main Node
Mod Modulo
MP Maping Pointer
MTTF Mean Time To Failure
NoC Network on Chip
Par Parallel
Parpar Partially Parallel
PCC Platform Configuration Controller
PCE Private Configuration Enviornment
PE Processing Element
PLA Programmable Logic Array
PM agent Power Management agent
PMU Power Management Unit
POE Private Operating Enviornment
PRE Private Reliability Enviornment
PREX Private Execution Environments
RAG Resource Allocation Graph
RAM Random Access Memory
RBS ReadBack Scrubber
Reg-file Register file
RowMultiC Row Multi-Casting
RTM Runtime Resource Manager
SB circuit switched Switch Box
SEC Single Error Correction
Ser Serial

xix

SEU Single Event Upsets
TMR Tripple Modular Redundancy
VA Voltage Adaptive
VBUS Vertical BUS
VCU Voltage Control Unit
VI Vertical Index
WLAN Wireless LAN
VRAP Virtual Runtime Adaptive Partitions

xx

Chapter 1

Introduction

1.1 Trends and developments

In this section, this thesis will explain various trends and challenges faced by
the digital design industry that prompted this thesis. Since commercial pro-
duction of integrated circuits started in the early 1960s, the increasing speed
and performance requirements of the applications have driven the design-
ers to manufacture increasingly smaller transistors. The smaller transistors
enhance performance by allowing to embed additional silicon on a chip and
increase the operating frequency. As shown in Table 1.1, the reduction in
transistor sizes has followed More’s law, which predicts that on-chip tran-
sistor density doubles every 18 to 24 months.

Table 1.1: Circuit size from 1963-2010 [2].
Year Integration Level Transistor Count

1963 Small Scale Integration (SSI) < 100
1970 Medium Scale Integration (MSI) 100-300
1975 Large Scale Integration (LSI) 300-30000
1980 Very Large Scale Integration (VLSI) 30000-1 million
1990 Ultra Large Scale Integration (ULSI) > 1 million
2010 Giga Scale Integration (GSI) > 1 billion

1.1.1 Power wall

With the arrival of 3D integration, the Moore’s law continues to offer expo-
nential increases in transistor count per unit area [120]. However, the power
wall limits the maximum allowable transistor frequency. The issue of power
wall arises because the power consumed by a chip operating at voltage V
and frequency F is given by Power = QFCV 2. Where C and Q are respec-

1

tively the capacitance and the activity factor. The formula simply states
that an increase in voltage increases the power consumption (and therefore
the activity factor) exponentially. Since the maximum allowable frequency is
dependent on the operating voltage, high frequency chips require expensive
cooling methods. Therefore, to meet the performance requirements, the in-
dustry opted parallelism instead of increasing the chip frequency. This trend
can be seen in the processor generation shown in Table 1.2. It can be seen
from the table that the processor speeds increased till approximately 3GHz
but after that the industry has started to focus on exploiting parallelism to
enhance performance.

Table 1.2: Processor frequencies different generations [52].
Year Model Process Clock Transistor Count

1993 Pentium 0.8um 66 MHz 3.1 million
1995 Pentium Pro 0.6um 200 MHz 5.5 million
1997 Pentium II 0.35um 300 MHz 7.5 million
1999 Pentium III 0.25um 600 MHz 9.5 million
2000 Pentium IV 0.18um 2 GHz 42 million
2005 Pentium D 90nm 3.2 GHz 230 million
2007 Core 2 Duo 65nm 2.33 GHz 410 million
2008 Core 2 Quad 45nm 2.83 GHz 820 million
2010 Six-Core Core i7-970 32nm 3.2 GHz 1170 million
2011 10-Core Xeon 32nm 2.4 GHz 2600 million

1.1.2 Utilization wall and Dark silicon

Utilization wall [120] is a recent concept in digital design industry that lim-
its the usable transistors on chip. It states that even with constant voltage
and frequency a dense chip will consume additional power (i.e. even at
same voltage, a 20 nm chip will consume more power than a 65 nm chip).
As a consequence, in future designs the power and thermal limits will al-
low only a portion chip to operate full throttle (voltage and energy). To
understand this problem, consider Table 1.3 [120]. The table shows how
transistor properties change with each process generation, where S is the
scaling factor. e.g. for shifting from a 45nm to a 32nm process generation,
S = 45/32 = 1.4. The table distinguishes the factors that governed the tran-
sistor properties before and after 2005. In pre 2005 era (also called Dennard
scaling era), it was possible to simultaneously scale the threshold and the
supply voltage. In this era the transistor properties were governed by Den-
nards Scaling which implies that power consumption is proportional to the
area of a transistor. In the post 2005 period (post Dennard scaling era), the

2

threshold or supply voltage could no longer be easily scaled without causing
either exponential increases in leakage or transistor delay [120]. The table
shows that as the number of transistors increases by S2, their frequency in-
creases by S, and their capacitance Q decreases by 1/S. The Dennard/post
Dennard Scaling eras differ in supply voltage VDD scaling (under Dennard
scaling, VDD goes down by 1/S, but in the post Dennard scaling era, VDD

remains fixed because the threshold voltage Vt cannot be scaled). When
scaling down to the next process generation, the change in a design power
(δ P) is given by δP = δQFCVDD (with additional squaring for the VDD

term). Therefore, while the Dennard scaling promised constant power when
migrating between process generations, since 2005 power increases by S2.
For future designs it is predicted that heat dissipation (resulting from ad-
ditional power) will be significant to burn the device [90]. It is predicted
that in future the power and thermal limits will allow only a portion of the
chip to remain operational, leaving a significant fraction left unpowered, or
dark. This phenomenon known as dark silicon. As a consequence of dark
silicon, with every process generation, the amount of usable transistors will
decrease. To deal with the dark silicon era, architectural, algorithmic, and
technological solutions are needed to efficiently utilize the on-chip resources.

Table 1.3: The origin of utilization wall [120].
Transistor property Dennard Scaling era Post Dennard scaling era

δ Density S2 S2

δ Frequency ≈ S ≈ S

δ Capacitance 1/S 1/S

δ V 2
DD 1/S2 ≈ 1

δ Power=δ QFCV 2
DD 1 S2

1.1.3 Fault-tolerance becoming critical

Every new process generation is marked by smaller feature size, lower node
capacitance, higher operating frequency, and low voltage. These properties
enhance performance, lower the power consumption, and allow to make
smaller embedded chips. However, these properties affect the noise margins
and amplify susceptibility to faults. It is therefore predicted that the number
of on-chip faults will increase as technology scales further into the nano-
scale regime, making fault tolerance a critical challenge of future designs
[17, 99, 53].

3

1.2 Problem statement

From the discussion above, three conclusions can be drawn: (i) the power
wall has forced the industry to opt for parallelism (since parallelism allows to
perform the same task at lower frequency/voltage), (ii) the utilization wall
makes dark silicon a critical consideration for future designs, necessitating
the use of efficient runtime power management techniques and customizable
hardware, and (iii) the small feature sizes has made variability an essential
consideration for contemporary digital designs. All these trends make effi-
cient resource management an essential challenge. The future platforms will
host multiple applications with arbitrary communication/computation pat-
terns, power budgets, reliability requirements, and performance deadlines.
For these scenarios, compile time static decisions are sub-optimal and unde-
sirable. Unlike the classic resource managers [94], that handled only physi-
cal component (like memory and computational units), the next generation
resource managers should also manipulate additional performance/cost met-
rics like reconfiguration, reliability, voltage, and frequency) to get the maxi-
mum chip performance. To solve this challenge requires a framework based
on theoretical foundations. The framework should simultaneously address
the algorithms, the architecture, and the implementation issues for simulta-
neously managing the physical and abstract on-chip components. This thesis
presents a systematic approach to design next generation resource managers.
The approach is called Virtual Runtime Adaptive Partitions (VRAP). The
proposed approach (i.e. VRAP) is based on virtualization and it provides a
framework that allows each application to enjoy the operating point, relia-
bility, and configuration infrastructure tailored to its needs.

1.3 Background

Efficient resource management (to optimize e.g. power, resource utilization)
in the prevailing research trends (dark silicon era, fault-tolerance consider-
ations, platforms hosting multiple applications), necessitates the use of a
resource manager that can not only dynamically allocate and reclaim phys-
ical but also manipulate the performance and cost metrics such as voltage,
frequency, reliability, and configuration architecture. To achieve these goals,
the resource manager should provide various services such as configuration
optimization, power optimization, and adaptive fault-tolerance. Existing
works deal with these goals and services separately. Figure 1.1 highlights
the various components of a resource manager and the implementation al-
ternatives chosen by the researchers.

4

Resource management

RTM
architecture

Targetted
platform

Services

D
estributed

C
entralized

H
irarchical

N
oC

C
G

R
A

O
ptim

ize
pow

er

O
ptim

ize
config

F
P

G
A

U
P

roc

O
ptim

ize
reliability

C
onfiguration

C
om

m
unication

C
om

putation

S
torage

D
V

F
S

D
P

M

F
ine

grain

C
oarse
grain

M
esochronous

G
R

LS

A
sync F

IF
O

G
A

LS

R
educe

delivery tim
e

H
ide

latency

F
aster configuration

netw
ork

C
ontext

sw
itching

P
re fecthing

C
onfiguration

com
pression

RTM

CGRA

UProc
NoC
DPM

DVFS

GRLS

GALS

Async
FIFO

Runtime resource
manager
Coarse grained
reconfigurable
architecture
Micro processor
Network on chip
Dynamic power
management
Dynamic voltage and
frequency scaling
Globally ratio
synchronous
locally synchronous
Globally
asynchronous
locally synchronous
Asynchronous
FIFO

=

=

=
=
=

=

=

=

=

Figure 1.1: Resource management taxonomy

1.3.1 Services

In this section, a briefly explanation of various services provided by the
proposed resource managers will be presented. Our discussion will cover
three categories: (i) power optimization, (ii) configuration optimization, and
(iii) reliability optimization.

Power optimization

Power optimization constitute techniques directly targeted towards reduc-
ing energy/power. Broadly, the power optimization techniques can be clas-
sified as dynamic voltage and scaling (DVFS) and dynamic power man-
agement (DPM) [15]. DVFS exploits the fact that voltage and frequency
have conflicting impact on the power consumption. It scales the voltage
and frequency to meet the application requirements. DVFS reduces dy-
namic power. Most recent surveys on DVFS can be found in [69, 19]. DPM
switches off the part of the device that is free. It reduces the static power
consumption. Depending on the granularity of power management, DVFS
can range from coarse-grained to fine-grained. Coarse-grained DVFS, scales
the operating point of entire platform for the application needing maximum
performance. Fine-grained DVFS offers better energy efficiency by allowing
to modify the frequency/voltage of each resource separately [70]. However,

5

its realization is strongly challenged by factors such as voltage switching and
synchronization overheads [33].

Reliability optimization

Fault tolerance will be an essential feature in future designs. However, in a
platform that hosts multiple applications, each application can potentially
have different reliability requirements (e.g. control information in many
DSP applications require higher reliability than the data streams). In addi-
tion, the reliability needs of an application can also vary depending on the
operating conditions (e.g. temperature, noise, and voltage etc.). Providing
maximum (worst case) protection to all applications imposes high area and
energy penalty. To cater this problem, flexible reliability schemes have been
proposed [6, 5, 55], which reduce the fault-tolerance overhead by provid-
ing only the needed protection for each application. The flexible reliability
schemes vary greatly depending on the component to protect (computation,
communication and/or storage). Most of the existing research (on flexible
reliability) that protects the computation, only support shifting between dif-
ferent levels of modular redundancy. In modular redundancy, an entire unit
(e.g. ALU) is replicated, making it an expensive technique that costs at
least twice energy and area overhead compared to the unprotected chip. To
protect the communication and the memories, in addition to modular redun-
dancy, the adaptive reliability schemes also employ low cost error detecting
codes (EDCs) [55].

Configuration optimization

In modern platforms, the concurrency and communication patterns among
applications is arbitrary. Some applications enjoy dedicated resources and do
not require further reconfiguration. While other applications, share the same
resources in a time-multiplexed manner, and thus require frequent reconfigu-
rations. Additionally, a smart power management system might dynamically
serialize/parallelize an application, to enhance energy efficiency by lowering
the voltage/frequency operating point. This requires a reconfiguration archi-
tecture that is geared to dynamically and with agility reconfigure arbitrary
partitions of a fabric instance. To address these requirements, concepts
like configuration pre-fetching [35, 109, 88], context switching, configuration
compression [34, 51, 45], and faster reconfiguration networks [129, 128, 58]
have been proposed. While these techniques do solve the problem, they
come at a considerable cost (i.e. they improve the agility at cost of space
and vice-versa). An even bigger problem is that, they address the reconfig-
uration requirements of only a certain category of applications/algorithms.

6

1.3.2 Control Architecture

Control architecture is responsible for monitoring and managing various
components of a device (a CGRA or NoC our case). The resource mangers
with centralized control architecture enjoy high efficiency since they moni-
tor the entire platform centrally and make decisions accordingly [26, 113].
However, the centralized managers suffer from a single point of failure, larger
volume of monitoring (resources and resource states), and central point of
communication (between the manager and the hosted resources)and there-
fore are not scalable. To make the control architecture scalable, distributed
control architectures were proposed [4]. The distributed controllers mon-
itor only a part of device. They assume that by optimizing each portion
of the device separately, the entire platform will be optimized. However,
in this approach (also termed as greedy approach) the efficiency badly suf-
fers, since the distributed units are unaware of the platform state. As a
trade off between scalability (provided by the distributed resource managers
by reducing the communication hot spots) and efficiency (provided by the
centralized resource managers due to the availability of system level infor-
mation), the recent works propose on hierarchical control architectures [27].
In these architectures, the basic control is distributed but the distributed
blocks are also allowed to communicate with each other. The coordination
allows them to optimize even at system level.

1.3.3 Implementation Platforms

The ASIC or fully customized designs are extremely efficient in terms of
area, energy and power. However, the entire design flow is costly in terms
of time design time, effort, and manufacturing cost. Furthermore, since
ASICs are usually designed to support only a single application under spe-
cific conditions, a separate ASIC is needed for every application hosted by a
chip. Software approach allows to use the same processor for implementing
any function using the load store architecture, and thereby reduce design
time and design effort. However, the load store architecture is slow since it
does not allow to create specialized data paths provided by the ASIC imple-
mentation. To tackle these problems, the digital design industry has taken
two paths: (i) increase the ASIC flexibility and (ii) increase the processor
performance.

Increasing ASIC flexibility

The increase in the ASIC flexibility was achieved by devices such as Pro-
grammable Logic Arrays (PLAs), Field Programmable Gate Arrays (FP-
GAs), and Coarse Grained Reconfigurable Architectures (CGRAs). PLAs
were first devices that introduced flexibility in ASICs. They allowed to

7

implement any logic function using configurable AND planes linked to pro-
grammable OR gate planes. However, once configured, they could not be
reprogrammed. To tackle this problem, the SRAM based FPGAs (with vir-
tually infinite reconfiguration cycles) were introduced. To realize a logic
function the FPGAs store its implementation in a look up table. The look
up table based implementation is costly in terms of configuration memory,
area, power and energy consumption. Initially, the FPGAs were solely used
for prototyping. Since the last decade, fueled by the demands of high perfor-
mance of multimedia and telecommunication applications, coupled demand
for low non recurring engineering and time to market FPGAs are now in-
creasingly used to implement actual designs. However, since FPGAs are
slower than ASICs they fail to meet the high performance requirements of
modern applications. To meet the high performance requirements the idea
of coarse grained reconfigurable architectures was proposed [132]. CGRAs
enhance silicon and power efficiency by implementing commonly used pro-
cessing elements (e.g. ALUs, multipliers, FFTs etc.) in hardware.

Increasing processor performance

To enhance the processor performance, the initial approach was to increase
its clock speed. However, as explained in Section 1.1.1, due to the power wall,
the computing industry took an irreversible transition towards parallelism
since 2005. As a result, today the performance is achieved by integrating a
number of smaller processors.

On the basis of the architectural characteristics, Figure 1.2 [132] de-
picts various platforms. The figure shows that both the approaches are
slowly coming closer together. For performance improvements in software
implementations, single core powerful processor has given way to simpler
many processor systems. To enhance the flexibility in hardware solutions
the PLAs gave way to FPGAs. To enhance the performance, the coarse
grained architectures (as an alternative to FPGAs), have been a subject of
intensive research since the last decade [112]. Major FPGAs manufactur-
ers (Xilinx and Altera) already integrate many coarse-grained components
(like DSPs) in their devices. It is expected the performance requirements
will derive the industry to devote a significant percentage of device area
for coarse grained components. Considering these trends, CGRAs and net-
work on chips (NoCs) have been chosen, as candidate platforms, to test the
efficacy of the proposed VRAP framework.

1.4 Objectives and methods

To cope with the current and future design challenges, this thesis presents a
novel design paradigm called Virtual Runtime Adaptive Partitions (VRAP).

8

R e c o n f i g u r a b i l i t y

P a r a l l a l i s m

G r a n u l a r i t y

F P G A

E a r l y u p

U n i
P r o c e s s o r

F U a r r a y

P L A

C G R A

M u l t i c o r e

Figure 1.2: Direction for future platforms

Figure 1.3 illustrates goals, resources (both abstract and physical), and ser-
vices needed to realize the next generation resource managers. The main
goal of our methodology is to meet the application requirements (i.e. dead-
lines, reliability, power budget), on a flexible platform, with the overheads
close to its customized implementation. The proposed resource manage-
ment paradigm incorporates algorithms, hardware, and the architectural
locks/switches to provide each application with only the resources essential
to meet it deadlines and minimize energy.

A generic approach to realize the proposed architecture is shown in Fig-
ure 1.4. To make the problem manageable, this thesis have divided the
framework into three phases: (i) private configuration environments (PCE),
(ii) private reliability environments (PRE), and (iii) private operating envi-
ronments (POE). PCE deals with the hardware/software necessary to im-
plement a configurable reconfiguration architecture. PRE investigates the
architectural switches needed to realize adaptive reliability. POE explores
the architecture needed to manipulate the voltage and frequency for reduc-
ing the power consumption. It should be noted that the three environments
chosen for this thesis are for proof of concept. Additional optimization cri-
teria e.g. private thermal environments can also be merged in the VRAP
framework.

9

Minimize
power

Minimize
energy

Meet
deadlines

Meet
reliability

Minimize
memory

Goals

Physical
resources

Voltage Frequency

Resources

Manage
operating

point

Manage
reliability

Manage
configuration

Services

GRLS
Polymorphic

reliability
tolerance

Polymorphic
configuration
architecture

Architectural support

Partial and
dynamic

reconfiguration

Manage
parallelism

Runtime resource
manager

Figure 1.3: Goals, resources, services and architectural support for resource
management

Private execution
enviornment

Private operating
enviornment

Private reliability
enviornment

Private configuration
enviornment

Figure 1.4: Private configuration environments approach

10

1.5 Contributions

Since the VRAP framework is implemented in three stages, the contributions
will also be described in three parts.

1.5.1 Private Configuration Environments

This thesis proposes private configuration environments for CGRAs. The
configuration infrastructure is developed in two stages: (i) an efficient and
agile configuration architecture development and (ii) the enhancement of
scratchpad memory to implement Private Configuration Environments (PCE).

To design efficient and agile configuration mechanism, the thesis com-
bines LZSS compression with RowMultiC that minimizes the configware
transfers to DRRA configuration memory. The obtained results, using a
few applications, suggest that the proposed method has a negligible penalty
in terms of area (1.2%), while provides a significant reduction in the con-
figuration cycles (up to 78%) and energy (up to 94%) required to configure
DRRA. To further reduce the configuration cycles, this thesis also presents
a technique to compactly represent multiple bitstreams, corresponding to
different application implementations (with different degree of parallelism).
The compact representation is unraveled at runtime. The simulation re-
sults, using FFT with three versions (with different degree of parallelism),
revealed that the CGIR saves an additional 18% memory for 2 versions and
33% memory for 3 versions.

After developing the reconfiguration mechanism, the thesis also presents
an on-demand reconfiguration. On-demand reconfiguration relies on a mor-
phable data/configuration memory, supplemented by morphable hardware.
By configuring the memory and the hardware, the proposed architecture
realizes four configuration modes: (i) direct feed, (ii) direct feed multi-cast,
(iii) direct feed distributed, and (iv) multi context. The obtained results
suggest that significant reduction in memory requirements (up to 58 %) can
be achieved by employing the proposed morphable architecture. Synthesis
results confirm a negligible penalty (3 % area and 4 % power) compared to
a DRRA cell.

1.5.2 Private Reliability Environments

The thesis proposes private reliability environments for both CGRAs and
NoCs. For CGRAs, this thesis presents an adaptive fault-tolerance mech-
anism to provides the on-demand reliability to multiple applications. To
provide on-demand fault-tolerance, the reliability requirements of an appli-
cation are assessed upon its entry. Depending on the assessed requirements,
one of the five fault-tolerance levels are provided: (i) no fault-tolerance, (ii)
temporary fault detection, (iii) temporary/permanent fault detection, (iv)

11

temporary fault detection and correction, or (v) temporary/permanent fault
detection and correction. In addition to modular redundancy (employed
in the state-of-the-art CGRAs offering flexible reliability levels), this the-
sis presents the architectural enhancements needed to realize sub-modular,
residue mod 3 redundancy. The residue mod 3 coding allows to reduce the
overhead of the self-checking and fault-tolerant versions by 57% and 7%,
respectively. The polymorphic fault-tolerant architecture is complemented
with a morphable scrubbing technique to prevent fault accumulation. The
obtained results suggest that the on-demand fault-tolerance can reduce en-
ergy consumption up to 107%, compared to the highest degree of available
fault-tolerance (for an application needing no fault-tolerance).

For NoCs, this thesis presents an adaptive fault tolerance mechanism,
capable of providing the on-demand protection to multiple traffic classes.
On-demand fault tolerance is attained by passing each packet through a two
layer, low cost, class identification circuitry. Upon identification, the packet
is provided one of the four fault tolerance levels: (i) no fault tolerance, (ii)
end to end DEDSEC, (iii) per hop DEDSEC, or (iv) per hop DEDSEC
with permanent fault detection and recovery. The obtained results suggest
that the on-demand fault tolerance incurs a negligible penalty in terms of
area (up to 5.3%) compared to the fault tolerance circuitry, and provides a
significant reduction in energy (up to 95%), compared to state of the art.

1.5.3 Private Operating Environments

Private operating environments are presented for both CGRA and NoC.
In CGRA domain, this thesis presents the architecture and implementation
of energy aware CGRAs. The proposed architecture promises better area
and power efficiency, by employing Dynamically Reconfigurable Isolation
Cells (DRIC)s and Autonomous Parallelism Voltage and Frequency Selec-
tion algorithm (APVFS). The DRICs utilize reconfiguration to eliminate
the need for most of the dedicated hardware, required for synchronization,
in traditional DVFS techniques. APVFS ensures high energy efficiency by
dynamically selecting the application version which requires the minimum
frequency/voltage to meet the deadline on available resources. Simulation
results using representative applications (Matrix multiplication, FIR, and
FFT) showed up to 23% and 51% reduction in power and energy, respec-
tively, compared to traditional designs. Synthesis results have confirmed
significant reduction in DVFS overheads compared to state of the art DVFS
methods.

In NoC domain, this thesis presents the design and implementation of a
generic agent-based scalable self-adaptive NoC architecture to reduce power.
The system employs dual-level agents with SW/HW co-design and synthesis.
The system agent is implemented in software, with high-level instructions

12

tailored to issue adaptive operations. The effectiveness and the scalability
of the system architecture is demonstrated using best-effort dynamic power
management, using distributed DVFS. The experiments revealed that the
adaptive power management saved up to 33% energy and up to 36% power.
The hardware overhead of each local agent is only 4 % of a router area.

1.6 Research publications and contributions

Overall, the thesis has resulted in 22 accepted peer-reviewed international
publications (4 ISI-Indexed journals and 18 conference papers). In addition,
2 ISI-Indexed Journal and 2 conference papers are submitted for review.

This monograph is based on the following publications.
Accepted Journal Publications

1. Syed M. A. H. Jafri, Liang Guang, Ahmed Hemani, Kolin Paul, Juha
Plosila, Hannu Tenhunen: Energy-aware fault-tolerant NoCs address-
ing multiple traffic classes, in Microprocessors and Microsystems- Em-
bedded Hardware Design. 2013. In press. doi:dx.doi.org/10.1016/j.
micpro.2013.04.005.
Authors Contribution The author proposed the idea to provide
different reliability level to different traffic classes while using the hi-
erarchical agent based framework developed by Liang. Compared to
the conference version of this paper, the author also designed an inter-
agent communication protocol. The Author performed all the exper-
iments and also wrote most of the manuscript. The other authors
provided guidance and supervision.

2. Syed M. A. H. Jafri, Stanislaw Piestrak, Oliver Sentieys, and Sebestien
Pillement: Design of Coarse Grained Reconfigurable Architecture DART
with Online Error Detection, in Microprocessors and Microsystems-
Embedded Hardware Design. 2013. In press. doi:dx.doi.org/10.1016/j.
micpro.2013.12.004.
Authors Contribution The author designed and evaluated the residue
mod 3 for the CGRA DART, while Prof. Stanislaw came up with the
idea to protect DART using residue mod 3. In addition, he also sug-
gested pipelining to eliminate the timing overheads incurred by the
conference version of this paper.

3. Syed M. A. H. Jafri, Stanislaw Piestrak, Kolin Paul, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Private reliability environments for
efficient fault-tolerance in CGRAs, Springer Design Automation for
Embedded Systems. 2013. In press.
Authors Contribution The author proposed and designed an adap-
tive version of Residue mod 3 to provide efficient fault-tolerance for

13

mixed criticality application in CGRAs. On addition, the author pre-
sented the architectural modifications needed to realize adaptive scrub-
bing in CGRAs. Prof. Stanislaw and Assoc. Prof. Kolin provided the
essential related work in the field. The other coauthors provided su-
pervision and helped in the manuscript preparation.

4. Nasim Farahini, Ahmed Hemani, Hasan Sohofi, Syed M. A. H. Jafri,
Muhammad Adeel Tajammul, Kolin Paul: Parallel Distributed Scal-
able Address Generation Scheme for a Coarse Grain ReconïňĄgurable
Computation and Storage Fabric, Submitted to Microprocessors and
Microsystems- Embedded Hardware Design (Accepted)
Authors Contribution The author evaluated the effect of various
compression methods on the hardware presented by Nasim.

Accepted Conference Publications

5. Syed M. A. H. Jafri, Guillermo Serrano Leon, Masoud Daneshtalab,
Ahmed Hemani, Kolin Paul, Juha Plosila, Hannu Tenhunen: Transfor-
mation Based Parallelism for low power CGRAs, Field programmable
logic (FPL) 2014 (Accepted). Authors Contribution The author
proposed the idea to provide hardware transformation based paral-
lelism, rather than storing multiple versions. Bachelor student Guillermo,
wrote VHDL code of the transformer and performed the experiments.
The other authors provided guidance and supervision.

6. Syed M. A. H. Jafri, Masoud Daneshtalib, Muhammad Adeel Tajam-
mul, Ahmed Hemani, Juha Plosila, Hannu Tenhunen: Cascaded com-
pression architecture for efficient configuration in CGRAs, Interna-
tional Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM) 2014 (Accepted). Authors Contribution The au-
thor, and Prof. Hemani proposed the idea to combine various com-
pression techniques into a single architecture. The author wrote most
of the paper and performed most of the experiments. Adeel mapped
various versions of FFT to conduct the experiments.

7. Syed M. A. H. Jafri, , Guillermo Serrano Leon, Junaid Iqbal, Ma-
soud Daneshtalab, Ahmed Hemani, Kolin Paul, Juha Plosila, Hannu
Tenhunen: RuRot: Run-time Rotatable-expandable Partitions for Ef-
ficient Mapping in CGRAs International Conference on Embedded
Computer Systems: Architecture, Modeling and Simulations (SAMOS)
2014 (Accepted). Authors Contribution The author proposed the
idea to provide hardware based dynamic remapping in CGRAs and
wrote most of the paper. Bachelor student Guillermo, wrote VHDL
code of the mapper and performed the experiments.

14

8. Syed M. A. H. Jafri, Masoud Daneshtalab, Muhammad Adeel Ta-
jammul, Kolin Paul, Ahmed Hemani, Peeter, Ellervee, Juha Plosila,
Hannu Tenhunen: Morphable compression architecture for efficient
configuration in CGRAs, Euromicro conference on Digital System De-
sign (DSD) 2014 (Accepted). Authors Contribution The author,
and Prof. Hemani proposed the idea to cascade various compression
techniques. The author wrote most of the paper and performed most
of the experiments. Adeel mapped various versions of FFT to conduct
the experiments.

9. Syed M. A. H. Jafri, Stanislaw Piestrak , Kolin Paul, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Implementation and evaluation of con-
figuration scrubbing on CGRAS: A case study, in Proc. International
symposium on System on Chip , pp 1-8 Oct 2013.
Authors Contribution The author designed and evaluated architec-
ture for configuration scrubbing the CGRA DRRA. Prof. Stanislaw
and Prof. Kolin provided essential related work in this field.

10. Syed M. A. H. Jafri, Stanislaw Piestrak, , Kolin Paul, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Energy-Aware Fault-Tolerant CGRAs
Addressing Application with Different Reliability Needs, in Proc. Eu-
romicro Conference on Digital System Design (DSD), pp 525-534, Sept
2013.
Authors Contribution The author designed and evaluated the residue
mod 3 for the CGRA DRRA. In addition the author also proposed a
method to adapt the reliability level provided by the system at run-
time. The remaining co-authors provided essential guidance.

11. Syed M. A. H. Jafri, Muhammad Adeel Tajammul, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Energy aware task parallelism for
efficient dynamic voltage and frequency scaling in CGRAs, in Proc.
International Conference on Embedded Computer Systems: Architec-
ture, Modeling and Simulations (SAMOS), 2013, 104-112.
Authors Contribution The author designed and evaluated runtime
task parallelism on CGRA DRRA. Adeel programmed the applica-
tions to conduct the experiments. The remaining coauthors provided
essential guidance.

12. Muhammad Adeel Tajammul, Syed M. A. H. Jafri, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Private configuration environments
for efficient configuration in CGRAs, in Proc. Application Specific
Systems Architectures and Processors (ASAP), 2013, 227-236.
Authors Contribution The author designed the architecture to con-
figure DRRA from the Global configuration memory (that can be con-

15

nected externally to DRRA) while Adeel designed framework to con-
figure the DRRA using internal scratchpad memory. The author also
wrote most of the manuscript and performed the simulations.

13. Syed M. A. H. Jafri, Ozan Ozbak, Ahmed Hemani, Nasim Farahini,
Kolin Paul, Juha Plosila, Hannu Tenhunen: Energy-Aware CGRAs
using Dynamically Re-configurable isolation Cells, in Proc. Interna-
tional Symposium for Quality and Design (ISQED), 2013, 104-111
Authors Contribution The author designed the architecture to im-
plement DVFS in CGRA DRRA. The implementation was done by
Ozan. The idea to use Dynamically Re-configurable isolation Cells
was provided by Prof. Hemani. The manuscript was also written by
the Author.

14. Syed M. A. H. Jafri, Liang Guang, Ahmed Hemani, Kolin Paul, Juha
Plosila, Hannu Tenhunen: Energy-aware fault-tolerant NoCs address-
ing multiple traffic classes, in Proc. Euromicro Conference on Digital
System Design (DSD), 2012, 242-249.
Authors Contribution The author proposed the idea to provide
different reliability level to different traffic classes while using the hi-
erarchical agent based framework developed by Liang. The Author
performed all the experiments and also wrote most of the manuscript.
The other authors provided guidance and supervision.

15. Syed M. A. H. Jafri, Liang Guang, Axel Jantsch, Kolin Paul, Ahmed
Hemani, Hannu Tenhunen: Self-adaptive Noc Power Management with
Dual-level Agents - Architecture and Implementation. Proc. Pervasive
and Embedded Computing and Communication Systems (PECCS),
2012, pp 450-458.
Authors Contribution The author implemented and evaluated most
of the agent based framework proposed by Liang on McNoC platform.
Liang wrote most of the manuscript.

16. Syed M. A. H. Jafri, Ahmed Hemani, Kolin Paul, Juha Plosila, Hannu
Tenhunen: Compact generic intermediate representation (CGIR) to
enable late binding in coarse grained reconfigurable architectures. In
Proc. International Conference on Field Programmable Technology
(FPT), 2011: 1-6.
Authors Contribution The author designed and implemented the
compression algorithm to compactly represent the configware for DRRA.
Assoc. Prof. Kolin and Prof. Hemani provided the main idea. The
author wrote most of the manuscript.

17. Syed M. A. H. Jafri, Ahmed Hemani, Kolin Paul, Juha Plosila, Hannu
Tenhunen: Compression Based Efficient and Agile Configuration Mech-

16

anism for Coarse Grained Reconfigurable Architectures. In Proc. In-
ternational Symposium on parallel and distributed processing work-
shops (IPDPSW), 2011: 290-293.
Authors Contribution The author designed and implemented the
configuration mechanism for DRRA. Assoc. Kolin and Prof. Hemani
provided the idea of using LEON3 for the work. The author also wrote
most of the manuscript.

18. Syed M. A. H. Jafri, Stanislaw J. Piestrak, Olivier Sentieys, SÃľbastien
Pillement: Design of a fault-tolerant coarse-grained reconfigurable ar-
chitectures: A case study. in Proc. International Symposium for
Quality and Design (ISQED), 2010: 845-852.
Authors Contribution The author designed and evaluated the residue
modulus 3 for the CGRA DART, while Prof. Stanislaw came up with
the idea to protect DART using residue mod 3 codes.

Accepted papers not included in this thesis

19. Liang Guang, Syed M. A. H. Jafri , Tony Yang, Juha Plosila and
Hannu Tenhunen: Embedding Fault-Tolerance with Dual-Level Agents
in Many-Core Systems, in Proc. Workshop on Manufacturable and
Dependable Multicore Architectures at Nano Scale (MEDIAN 2012).

20. Liang Guang, Syed M. A. H. Jafri, Bo Yang, Juha Plosila Hannu Ten-
hunen: Hierarchical Supporting Structure for Dynamic Organization
in Many-Core Computing Systems. Proc. Pervasive and Embedded
Computing and Communication Systems (PECCS) , pp.252-261, 2013

21. Syed M. A. H. Jafri, Tuan Nguyen, Masoud Daneshtalab, Ahmed He-
mani, Juha Plosila, Hannu Tenhunen: NeuroCGRA: A CGRA with
support for neural networks Accepted for Publication in Proc. Dy-
namically Reconfigurable Network on Chip (DrNoC) 2014.

22. Hassan Anwar, Syed M. A. H. Jafri, Masoud Daneshtalab, Ahmed
Hemani, Juha Plosila, Hannu Tenhunen: Exploring Neural Networks
on CGRAs. Accepted for Publication in Proc. MES 2014

Submitted Journal Publications

23. Syed M. A. H. Jafri, Muhammad Adeel Tajammul, Ahmed Hemani,
Juha Plosila, Hannu Tenhunen: Morphable conïňĄguration architec-
ture to address multiple reconïňĄguration needs. IEEE Transaction
on VLSI

24. Syed M. A. H. Jafri, Ozan Ozbak, Ahmed Hemani, Nasim Farahini,
Kolin Paul, Juha Plosila, Hannu Tenhunen: Architecture and Imple-
mentation of Dynamic Parallelism, Voltage, and Frequency Scaling

17

(PVFS) on CGRAs. Submitted to ACM Journal of Emerging Tech-
nologies.

1.7 Thesis Navigation

Fig. 1.5 shows the thesis navigation. The figure contains core technical
areas, chapters, proposed schemes, constituents, and publications together.
The purpose of this figure is to aid the reader in understanding this thesis
pictorially.

18

Paper 1

and 9

Fa
u
lt

 t
o
le

ra
n
t

N
o
C
s

Inter packet fault

tolerance

Adaptive

reliability based

on criticality

Virtual Runtime Application Partitions for Resource management

In Massively Parallel Architectures

ChaptersCore Areas Constituents PublicationsProposed Schemes

1

Introduction

T
re

n
d
s

a
n
d

ch
a
lle

n
g
e
s

fo
r

n
a
n
o
sc

a
le

 d
e
si

g
n
s

PCE, PRE, and POE

Trends and

Challenges

Paper 11

and 12

Configuration

architecture2

Targeted

platforms

C
G

R
A

 a
n
d

N
o
C
 p

la
tf

o
rm

s

CGRA

configuration

architecture Compression

technique

Paper 7

and 14

M
o
rp

h
a
b
le

co
n
fi
g
u
ra

ti
o
n

a
rc

h
it

e
ct

u
re

3

Private

configuration

environments for

CGRAs

Direct

configuration

Adaptive

configuration

architecture for

CGRAs

Indirect

configuration

Multi context

configuration

Paper 2, 3,

4, 5, and

13

Fa
u
lt

-t
o
le

ra
n
t

C
G

R
A

s

Configuration

scrubbing

Self checking

processing

elements

Adaptive

scrubber

Residue mod 3 self-

checking processing

elements

Fault tolerant

processing

elements

Adaptive

reliability Paper 3

and 6

E
n
e
rg

y
a
w

a
re

C
G

R
A

s

6

The VHDL

Snippets

DVFS

Autonomous

voltage,

frequency and

parallelism

selection

Paper 6, 8,

and 15

E
n
e
rg

y
a
w

a
re

N
o
C
s 7

The Overall

Framework

DVFS

Autonomous

voltage and

frequency

scaling

Agent based

control

scheme

Paper 10

8

Conclusions

Thesis

Summary
Future

Work

4

Private reliability

environments for

CGRAs

5

Private reliability

environments for

NoCss

6

Private operating

environments for

CGRAs

7

Private operating

environments for

NoCs

Figure 1.5: Navigation of the thesis

19

20

Chapter 2

Targeted platforms

In this chapter, will explain the experimental platforms used to test the effi-
cacy of PREX framework. For this purpose, we have chosen Coarse Grained
Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs). The
motivation for choosing the CGRAs and NoCs has already been given in
Chapter 1.

2.1 DRRA before our innovations

Unlike FPGAs, contemporary CGRAs vary greatly in their architecture (i.e.
computation, communication and storage), configuration scheme, energy
consumption, performance, and reliability. Therefore, in the absence of a
standard CGRA we had to isolate a platform to test the validity of our frame-
work. For this thesis, we have chose Dynamically Reconfigurable Resource
Array (DRRA) [111] due to three reasons: (i) we had available complete
information about its architecture (from the RTL and the physical design),
so that we could implement the proposed architectural modifications easily;
(ii) DRRA has a grid based architecture, which is the most dominant design
style for CGRAs, it therefore allowed us to compare our work with other
CGRAs; and (iii) we had available a library for commonly used DSP func-
tion (containing FFTs, FIRs), allowing us to quickly map DSP applications
and perform cost/benefit analysis of the proposed techniques on real world
applications. DRRA is a dynamically reconfigurable coarse-grained archi-
tecture developed at KTH [110]. In this section, we will explain the DRRA
architecture before our enhancements.

As depicted in Figure 2.1, DRRA is composed of two main components:
(i) DRRA computation layer and (ii) DRRA storage layer (DiMArch). In
Table 2.1, the functionality of these components is listed. DRRA compu-
tation layer performs the computations. DiMArch is a distributed memory
fabric template that complements DRRA with a scalable memory archi-

21

DRRA storage
layer

DRRA computation
layer

App1 App2 App3
Memory
elements

Cells

Figure 2.1: Different applications executing in its private environment

tecture. DRRA can host multiple applications, simultaneously. For each
application, a separate partition can be created in the DRRA storage and
computation layers.

Table 2.1: Local controller functionality
Component Functionality

DRRA computation layer Perform computations
DRRA storage layer Store data for computations

2.1.1 DRRA computation layer

The computation layer of DRRA is shown in Figure 2.2. DRRA computa-
tional layer is divided into four components: (i) register files (Reg-files), (ii)
morphable Data Path Units (DPUs), (iii) circuit switched interconnects ,
and (iv) sequencers organized in rows and columns. The register files store
data for the DPUs that perform computations. Each register file contains
two ports (port A and port B). Circuit switched interconnects provide in-
terconnectivity between the different components of DRRA (DPUs, circuit
switched interconnects, reg-files and sequencers). The sequencers hold the
configware which corresponds to the configuration of the components (reg-
files, DPUs, and circuit switched interconnects). Each sequencer stores up
to 64 35-bit instructions and can configure elements the in same row and
column as the sequencer itself. The configware loaded in the sequencers
contains sequence of configurations required to perform an operation. To
understand the process of configuration, consider for example that we want
to add the contents of reg-file 0 (row = 0, column = 0) to the contents of

22

reg-file 1 (row = 0, column = 1), using DPU 1 (row = 0, column = 1) , and
store the result to register file 2 (row = 0, column = 2). To configure the
DRRA for this operation, 3 sequencers are required: (i) sequencer 0 con-
taining one instruction to configure register file 0 (ii) sequencer 1 containing
three instructions to configure reg-file 1, MDPU 1, and circuit switched in-
terconnect 1 (iii) sequencer 2 containing two instructions to configure reg-file
2 and circuit switched interconnect 2. It should be noted that this example
was just for illustrative purposes, we could have performed the same opera-
tion using only one sequencer by loading the inputs from different ports of
same register file and then storing the result to the same register file.

Column 0

Row0

Row1

Column 1

Sequencer Sequencer

DPU DPU

DPUDPU

Reg-file Reg-file
SB

SB

SB

SB

SB

SB

SB

SB

Reg-file Reg-file

Cell0

Cell1

Cell2

Cell3

Sequencer Sequencer

Figure 2.2: Computational layer of DRRA

2.1.2 DRRA Storage layer (DiMArch)

DiMArch is a distributed memory template that complements DRRA with
a scalable memory architecture. Its distributed nature allows a high speed
data access to the DRRA computational layer [118, 86]. DRRA was de-
signed to host multiple applications with potentially different memory to
computational ratio. To efficiently utilize the memory resources, DiMArch
dynamically creates a separate memory partition for each application [118].
As shown in Fig. 2.3, DiMArch is a 2-dimensional array of memory tiles.
Depending on their function, the tiles are classified into two types: (i) Con-
figuration Tile (ConTile) and (ii) Storage Tile (STile). The memory tiles
present in the row, adjacent to the DRRA computation layer, are called

23

ConTiles. The ConTiles manage all data transfers and contain five com-
ponents: (i) SRAM, to store data for computational layer, (ii) an address
generator to provide data from appropriate addresses, (iii) a crossbar, to
handle data transfers between tiles, (iv) an Instruction Switch (iSwitch),
to handle the transfer of control instructions between tiles [117], and (v) a
DiMArch sequencer, to store the sequence in which data will be transferred
to the DRRA computational layer. The memory tiles present in rows, non-
adjacent to the DRRA computational layer, are called STiles. They are
mainly meant for data storage and therefore do not contain the DiMArch
sequencer.

iSwitchiSwitch

iSwitchiSwitch

Sequencer Sequencer

To Reg-Files
Column 0

To Reg-Files
Column 1

ConTile

STile

Crossbars

SRAM

SRAMSRAM

SRAM

Figure 2.3: DRRA storage Layer

2.1.3 DRRA programming flow

Figure 2.4 depicts the programming flow of DRRA [58]. The configware
(binary) for commonly used DSP functions (FFT, FIR filter e.t.c.) is written
either in VESYLA (HLS tool for DRRA) and stored in a library. To map an
application, its (simulink type) representation is fed to the compiler. The
compiler, based on the available functions (present in library) constructs the
binary for the complete application (e.g. WLAN).

24

Vesyla
(HLS tool) Library Compiler

Simulink
model

DRRA

Figure 2.4: DRRA programming flow

2.2 Control and configuration backbone integra-
tion

When our thesis started, DRRA lacked a runtime reconfiguration and control
mechanism. The tests were performed by manually feeding each sequencer
with the machine code. To manage delivery of configware from the on chip
memory to the sequencers in DRRA, we integrated a LEON 3 processor,
as shown in Figure 2.5. The processor was connected to AHB bus, inspired
from the architectures presented in [11, 43, 71]. The choice of using LEON 3
connected to AHB bus was dictated by the ease of implementation, power,
and flexibility offered by this architecture. It should however be noted,
that this architecture can be improved significantly by using direct memory
access (DMA) and an advanced bus like AXI, but implementation of such
an architecture is beyond the scope of this thesis. In our architecture, the
LEON 3 processor delivers the configuration bitstream from the memory to
the DRRA. The loader acts as an interface between the AHB bus and the
DRRA fabric.

Vesyla
(HLS tool) Library Compiler

Simulink

LEON 3 Configware

Loader
DRRA

RTM

Figure 2.5: DRRA control and configuration using LEON 3

To configure DRRA efficiently, we have employed a multi-casting. Mul-
ticasting allows compression and ability to configure multiple components
simultaneously [58]. To utilize these benefits, we modified the DRRA ad-

25

dressing scheme. In particular, we employed RowMultiC originally proposed
in [123]. In the original DRRA addressing scheme, n bits required to pro-
gram m components were n = ⌈log(m)/log(2)⌉ bits. Each sequencer was
assigned a unique identity ranging from 0 to 2n − 1. The address decoding
was achieved by comparing the incoming address with the assigned identity.
In multicasting, as shown in Figure 2.6, each sequencer is assigned a unique
ID on the basis of its row and column number. Hence, the generated ad-
dress contains 2 parts. The first part contains r = number of rows and
the second part contains c bits where c = number of columns. Hence, the
overhead of implementing this scheme is overheadtotal = (r + c) − n bits.
To address a sequencer, 1 is placed in the column and the row bits of the
address. Multiple sequencers can be addressed by placing multiple 1s in the
row or column positions. For decoding, the incoming address is compared
with the assigned row and column number. If the corresponding row and
column number of the sequencer is 1, then the device is programmed.

Loader

DRRA Sequencers

RB

CB

Sequencer

LEON3

Figure 2.6: Multicasting architecture

2.3 Compact Generic intermediate representation

to support runtime parallelism

One of the contributions of this thesis is to integrate runtime parallelism
with conventional power management techniques. The runtime parallelism
allows to make aggressive power management decisions and therefore en-
hance energy efficiency. Consider for example that N components execute
a task in T seconds consuming E energy. For a perfectly paraleizable task
N ∗ C components can perform the same task in T/C seconds. To reduce
the energy, the voltage and frequency can be scaled down to reduce the en-
ergy efficiency while still meeting the deadlines. The support for runtime
parallelism, was provided by using two phase method initially proposed in
[128]. This two phase method has two phases: (i) offline and (ii) online.
In the offline phase, different versions of each application, with different
levels of parallelism are stored. At runtime, the most efficient version is
mapped to the system. The two phase approach [128], however suffered

26

from prohibitive configuration memory requirements arising from the need
to store multiple versions. Unfortunately, the need for extra memory in-
creases linearly with the versions. To cater this problem, we presented a
compression method, called Compact Generic Intermediate Representation
(CGIR). CGIR, instead of storing a separate binary for each version, stores a
compact, unique, and customizable representation. To formalize the poten-
tial savings of our method, consider for example that, A(i), bits are needed
to map the ith implementation of application A. Total bits needed to rep-
resent configware for each application, CA, in two phase approach is given
by equation

CA =
v∑

i=1

A(i), (2.1)

where v is the number of versions. Total bits needed to represent configware
for each application, CAC , in CGIR based approach is given by equation

CAC = A(imax) +
v∑

i=1

seq(i), (2.2)

where A(imax) is the version with maximum storage requirement and seq(i)
represents the sequences stored for each version. It was shown in [57] that
seq(i) represents only a small part (17% to 32%) of total implementation
giving considerable overall savings when multiple versions are stored. In this
section we will describe the method to develop CGIR from raw configware
(hard binaries of different versions).

2.3.1 FFT example

To illustrate the self similarities among different versions, we have chosen 16-
point DIT radix 2 FFT algorithm. For achieving various versions, we have
used pipelined (cascaded) approach [54]. We have implemented 3 versions
of FFT with one, two and four butterflies respectively. In Figure 2.7, we
show the mapping of a complex FFT butterfly on DRRA. Each butterfly
requires 4 DPUs and 4 reg-files. reg-file 0 and reg-file 2 hold the real and
complex bitstreams, respectively. Twiddle factors are pre-stored in reg-file
1. DPU 0 and DPU 2 consume data from reg-file 0, reg-file 1, and reg-file 2
and feed the outputs to DPU 1 and DPU 3. DPU 1 and DPU 3 utilize this
data along with the delayed version of input bitstream (stored in reg-file 3)
and twiddle factors (stored in reg-file 2) to produce the final outputs.

A fully serial version (SV) containing a single butterfly is shown in Fig-
ure 2.8. The solid boxes indicate the sequencer numbers. The numbers
in parentheses indicate row and column numbers, respectively. The dotted
boxes containing four solid boxes constitute the butterfly shown in Figure

27

*

- +

REFI 0 REFI 2

*

- +

*

- +

*

- +

Wr Br Wr Bi

Wi Bi Wi Br

Cr
Dr

Ci
Di

Br Ar Bi Ai

M
D

P
U

 0

M
D

P
U

 2

M
D

P
U

 1

M
D

P
U

 3

B
u

tt
er

fl
y

Figure 2.7: Mapping of each butterfly on DRRA fabric

2.7. A fully serial version, requires six sequencers (4 to configure the but-
terfly and 2 for storing the intermediate results). A partially parallel FFT
version (PPV), is shown in Figure 2.9. It requires twelve sequencers. Eight
sequencers store configware of MDPU, reg-file, and switch box for imple-
menting the 2 butterflies and four additional sequencers are needed to store
configware for reg-files, which hold intermediate results. A fully pipelined
(cascaded) FFT version (PV), using 4 butterflies is shown in Figure 2.10.
It requires 16 sequencers to store configware of MDPU, reg-file, and switch
box for implementing the 4 butterflies.

Stage 0, Stage 1, Stage 2 and Stage 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0,0)

(1,0)

(0,1)

(1,1)

(0,2) (0,3)

(1,2) (1,3)

(0,4) (0,5)

(1,4) (1,5)

(0,6)

(1,6)

(0,7)

(1,7)

D
R

R
A

Figure 2.8: Fully serial FFT mapping on DRRA cells

2.3.2 Compact Generic Intermediate Representation

In this section we will describe the method to develop CGIR from raw con-
figware (hard binaries of different versions).

Basic Block

To exploit the regularities among different versions, we introduce the ter-
minology of Basic Block (BB). A BB is a piece of configware that performs

28

Stage 0 and Stage 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0,0)

(1,0)

(0,1)

(1,1)

(0,2) (0,3)

(1,2) (1,3)

(0,4) (0,5)

(1,4) (1,5)

(0,6)

(1,6)

(0,7)

(1,7)

DRRA

Stage 1 and Stage 3

Figure 2.9: Serial parallel FFT mapping on DRRA cells

Stage0 Stage1 Stage2 Stage3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0,0)

(1,0)

(0,1)

(1,1)

(0,2) (0,3)

(1,2) (1,3)

(0,4) (0,5)

(1,4) (1,5)

(0,6)

(1,6)

(0,7)

(1,7)

DRRA

Figure 2.10: Fully parallel FFT mapping on DRRA cells

identical functions in all versions. A completely sequential implementation
contains only a single BB. The number of BBs in a version depends on its
level of parallelism. In the FFT example SV will have only one BB (im-
plementing a single butterfly), while a PV will have 4 BBs (implementing
4 butterflies). A complete CGIR consists of BBs, interconnections between
them, and some additional code for synchronization.

Effects of Parallelism on Basic Block Configware

Although, each BB is functionally identical, variations in configware of two
BBs occur when parallelism is exploited using data parallelism or pipelining.
For data parallelism, differences in configware arise due to the difference in
the physical placement of BBs. For functional parallelism, the differences
in configware occur from the differences in both the physical placement and
the delay when each BB receives data.

For identical functions, the DPU instructions remain same regardless
of the location of the BB on DRRA. Reg-file instructions are also location
invariant, however, if dependencies exist like in the case of pipelining, each
instruction has a different delay. Switch box instructions are sensitive to
location. Simply put, reg-file instructions are delay sensitive, Switch box
instructions are location sensitive, and DPU instructions are both delay and
location insensitive. Therefore, the DPU instructions remain same in all

29

versions, the reg-file instructions in different versions differ only in delay,
and the switch box instructions in various versions differ only in placement.
Hence, instead of storing all the instructions, we store only delays for reg-file
instruction and only placement information for switch box instructions.

Extra Code for Communication and Synchronization between BBs

Most of the compression possibilities arise from extracting regularities among
BBs. However, some additional code is required for connecting and synchro-
nizing these BBs. For simplicity, we have decided not to compress this part
and store it as a hard binary.

CGIR Generation

In Figure 2.11, we have shown how the CGIR based representation is stored
and unraveled. The extra code for communication and synchronization is
stored as hard binary (it is not transformed). All the DPU instructions are
also stored as hard binaries. However, since the DPU instructions are the
same in all versions, compression is achieved by storing DPU instructions for
a single BB. To create different versions, the same code is sent to different
sequencers. In addition, if a version contains multiple BBs, configware for
only one BB needs to be stored, and its copy is sent to different sequencers to
achieve parallelism (we call it internal compression). The reg-file and switch
box instructions for each BB are stored as intermediate representations.
For reg-file instructions, the delay field is represented by a variable. A
set of delay values for each version is stored separately. For switch box
instructions, the location information is stored in two fields: (i) Hierarchical
Index (HI) and (ii) Vertical Index (VI). Hence, the HI and VI fields are
represented by a variable. A set of values for each version is stored separately
(this storage is shown at the bottom of Figure 2.11). An extra bit (EB) is
used to indicate whether an instruction is a hard binary or an intermediate
representation. EB = 0, indicates that the word is a hard binary. EB = 1,
indicates that the word is an intermediate representation. The method for
unraveling this code will be explained in next Section 2.3.3.

2.3.3 The Two Phase Method

Before explaining how the CGIR is unraveled at runtime, we will describe
the changes in two phase method (shown previously in Figure 2.4).

Programming Flow

Inspired from [128], we have designed two phase method for optimal version
selection. Figure 2.12 illustrates the details of our method. The configware

30

Version 1 Version 2 Version 3

Version number

Extra bit

Delay/no of delays

HI/no of HI values

VI/no of VI values
OP code

Delays

VI values

HI values

CGIR

Unraveler

Unraveled
instruction

18 1818

6

6

6

1

18

6 6

6

Figure 2.11: Runtime Extraction of CGIR

for commonly used DSP functions (FFT, FIR filter e.t.c.) is written either
in VESYLA (HLS tool for DRRA) or MANAS (which is the assembler for
DRRA) and stored in an offline library. The library, thus created, is profiled
with throughputs and energy consumptions of each implementation. When
an application is to be loaded, an offline compiler isolates the versions which
meet the deadlines of the application and sends them to RTM, as CGIRs.
Each CGIR compactly represents multiple versions. The RTM unravels the
CGIR by selecting the most optimal version (in terms of power consumption,
memory utilization etc.), considering the available resources.

VESYLA
(HLS tool) Compiler

VersionsCGIRRTM

DRRA

Library Constraints

Simulink model
of modem code

Phase 1 (compile time)

Phase 2 (runtime)

Runtime conditions

Figure 2.12: DRRA programming flow

Runtime Unraveling

The runtime unraveling can either be performed by the in software or hard-
ware. Due to the ease of implementation (considering the complex problems
tackled), for most part of the thesis we have employed software based unrav-

31

eling. In this technique, the processor analyzes each configuration instruc-
tion before feeding it to DRRA. If the instruction represents a hard binary,
it is fed directly to DRRA. If its a soft primitive, then its unraveled and the
unraveled instruction is sent to DRRA. For the sake of completion, we will
also show how the soft binary can be quickly unraveled using a hardware
based solution. Figure 2.11 shows the circuitry for unraveling the CGIR in
hardware. EB is analyzed to determine whether an incoming instruction
represents a hard binary or an intermediate representation. Upon detection
of an intermediate representation, set of sequences to be replaced in the
intermediate representation are extracted from CGIR depending on the ver-
sion to be configured. Finally, from the OP code, it is determined whether
the incoming sequence indicates delay for reg-file instructions or HI values
and VI values for switch box instructions. Once the delay or HI and VI
fields have been inserted, the instruction is sent to the sequencer.

2.4 Network on Chip

In this thesis, we have chosen McNoC to test the effectiveness of our method.
McNoC is a packet switched network on chip platform, which uses regular
mesh topology [23]. We chose McNoC due to the following reasons: (i) we
had available full RTL code allowing us to make architectural modifications
easily; (ii) McNoC had in built power management system which allowed
us to test the effect of power management on a NoC; (iii) McNoC is a very
well documented platform with over 100 publications, and (iv) the architec-
ture of McNoC is very similar to the contemporary academic and industrial
platforms allowing us to extend the framework to other architectures. The
overall architecture of McNoC is shown in Figure 2.13. Broadly, McNoC
can be divided into two different components: (i) network on chip and (ii)
power management infrastructure.

North

E
ast

South

W
es

t

PMU
VCUCGU

Switch Switch Switch

Switch Switch Switch

Switch Switch Switch

Rec Rec Rec

Rec Rec Rec

Rec Rec Rec

Network on chip

Power management infrastructure

Figure 2.13: McNoC architecture

32

2.4.1 Nostrum

McNoC uses the Nostrum network-on-chip as communication backbone [93,
97, 83]. It uses regular mesh topology with each node comprising of a re-
source (rec in Figure 2.13) and a switch. Every resource contains a LEON3
processor, a memory and a Data Management Engine (DME) [25, 1]. DME
acts as a memory management unit and interfaces the node with the net-
work. Nostrum uses buffer-less switches which provide hot potato X-Y rout-
ing [37]. In this routing strategy, as long as there are no contentions, packets
are routed normally using dimension order routing. If multiple packets con-
tend for a link, the packet with most hop-count is given priority and the
rest are randomly misrouted to another free link. The main benefit of us-
ing hot potato routing is that it allows to use buffers-less routers. The
buffer-less routers have significantly small energy and area costs (compared
to buffered routers) and are a subject of intensive research for low power
NoCs [89, 46, 67, 73]. Since we target low power NoCs, nostrum provided
us with a perfect platform. For buffered NoCs, the relative overhead of im-
plementing the proposed framework (compared to a router) is expected to be
significantly smaller thereby enhancing the feasibility of our approach. The
methods, presented in this thesis can easily be extended to accommodate
buffered in routers.

2.4.2 Power management infrastructure

A power management system has been built on top of Nostrum by intro-
ducing a Globally Ratio Synchronous Locally Synchronous (GRLS) wrapper
around every node [22, 21]. The wrapper is used to ensure safe communica-
tion between nodes and to enable Dynamic Voltage and Frequency Scaling
(DVFS). The access point to provide the power services is given by the
Power Management Unit (PMU), which uses Voltage Control Unit (VCU)
and Clock Generation Unit (CGU) to control the voltage and the clock fre-
quency, respectively, in each node. A detailed description of GRLS is beyond
the scope of this thesis and for details, an interested reader can refer to [23].

2.5 Experimental Methodology

To access the efficacy of the presented work, the author will implemented
various components of VARP framework on DRRA or McNoC in the pro-
ceeding chapters. To estimate additional overheads, the synthesis results
will be done using 65 nanometer technology at 400 MHz frequency, using
Synopsys design compiler (unless otherwise stated). Most of the algorithms
will be implemented on the LEON3 processor.

33

2.6 Summary

In this chapter, the architectural details of the CGRA and the NoC plat-
forms, used in this thesis, were presented. To evaluate VRAP on a CGRA,
DRRA was chosen. However, before this thesis DRRA lacked a configuration
backbone essential to evaluate the VRAP. Therefore, before implementing
the core contributions of thesis thesis, i.e. PCE, PRE, and POE, we en-
hanced DRRA with a smart and efficient configuration mechanism. To eval-
uate VRAP on a NoC, we have chosen McNoC. McNoC is RTL based cycle
accurate simulator. It already contained a comprehensive Data Manage-
ment Engine (DME) complemented by a power management infrastructure,
that allowed to implement POE and PRE on the existing McNoC platform.

34

Chapter 3

Private Configuration
Environments for CGRAs

3.1 Introduction

In this chapter, we will present a polymorphic configuration architecture,
that can be tailored to efficiently support reconfiguration needs of the ap-
plications at runtime. Today, CGRAs host multiple applications, running
simultaneously on a single platform. To enhance power and area efficiency
they exploit late binding and time sharing. These features require frequent
reconfigurations, making reconfiguration time a bottleneck for time critical
applications. Existing solutions to this problem either employ powerful con-
figuration architectures or hide configuration latency (using configuration
caching). However, both these methods incur significant costs when designed
for worst-case reconfiguration needs. As an alternative to worst-case dedi-
cated configuration mechanism, we exploit reconfiguration to provide each
application its Private Configuration Environment (PCE). PCE relies on a
morphable configuration infrastructure, a distributed memory sub-system,
and a set of PCE controllers. The PCE controllers customize the morphable
configuration infrastructure and reserve portion of the a distributed mem-
ory sub-system, to act as a context memory for each application, separately.
Thereby, each application enjoys its own configuration environment which is
optimal in terms of configuration speed, memory requirements and energy.

Specifically, we deal with the case when a CGRA fabric instance hosts
multiple applications, running concurrently (in space and/or time), and
each application has different reconfiguration requirements. Some appli-
cations enjoy dedicated CGRA resources and do not require further re-
configuration. While other applications, share the same CGRA resources
in a time-multiplexed manner, and thus require frequent reconfigurations.
Additionally, a smart power management system might dynamically serial-

35

ize/parallelize an application, to enhance energy efficiency by lowering the
voltage/frequency operating point. This requires a reconfiguration archi-
tecture that is geared to dynamically and with agility reconfigure arbitrary
partitions of the CGRA fabric instance. To address these requirements,
concepts like configuration caching [35], [109], [88], configuration compres-
sion [34], [51], [45], and indirect reconfiguration [129], [128], [58] have been
proposed. While these techniques do solve the problem, they come at a
considerable cost (i.e. they improve the agility at cost of space and vice-
versa). Moreover, they address the reconfiguration requirements of only a
certain category of applications/algorithms; when a different category of
application is instantiated, either the resources are under-utilized or the
reconfiguration speed suffers. In this chapter, we propose a configurable
reconfiguration architecture, that allows different partitions of CGRA fab-
ric instances to have a reconfiguration infrastructure that is adapted to its
needs. In essence, we are proposing second order reconfigurability; recon-
figuring the reconfiguration infrastructure to match the application needs.
In particular, we distinguish between four reconfiguration architectures: (i)
Direct Configuration (DC), (ii) Distributed Indirect Configuration (DIC),
(iii) Bus-based Indirect Configuration (BIC) and (iv) multi-context config-
uration, as shown in Fig. 3.1 (a). Each of these architectures incur different
costs (in terms of reconfiguration time, configuration memory, and energy).
The DC requires the least memory (and hence power/energy) but is too
slow to support applications needing time sharing and late binding ([58],
[44], Section 3.7). The DIC offers high speed reconfiguration at the cost
of additional memory/power. The BIC allows to compress data resulting
in reduced memory requirements (see [123] and Section 3.7), compared to
distributed configuration infrastructure, at the cost of performance. The
multi-context architecture offers high frequency reconfiguration at the cost
of high memory.

To efficiently utilize the silicon and energy resources we present a mor-
phable architecture, that can dynamically morph into DC, DIC, BIC, or
multi-context. As shown in Fig. 3.1 (b), the proposed scheme relies on a
reconfigurable infrastructure (hardware) supported by a morphable scratch
pad memory. The polymorphic infrastructure can be tailored to realize ei-
ther direct, bus based or distributed communication. The morphable mem-
ory can morph into data memory, single context configuration memory, or
multi-context configuration memory. Each application can have its own
customized reconfiguration architecture (infrastructure and memory), which
we call Private Configuration Environment (PCE). The proposed scheme is
generic and in principle applicable to all grid based CGRAs with a scratch
pad data memory [43], [103], [80]. To report concrete results, we have chosen
DRRA [111] as a representative CGRA. Simulating practical applications
(WLAN and Matrix Multiplication) show that our solution can save up to

36

CM = Configuration
 manager
Mem= Configuration
 memory
PE = Processing
 element

(a) Reconfiguration architectures

No parallel configuration

Configware
bank

PE1 PE2

CM

No parallel configuration
efficient multi-casting

Configware
bank

PE1 PE2

CM

Memory

Parallel configuration
but no multi-casting

Configware
bank

CM

PE1 PE2

CM

Mem

Direct configuration
arcitecture

Distributed indirect
configuration arcitecture

Bus-based indirect
configuration arcitecture

Mem

High frequency
reconfigurations

Configware
bank

CM

PE1 PE2

CM

Multi-context
configuration arcitecture

Mem Mem

(b) Proposed configuration
 architecture

Configware
bank

PE1 PE2

Morphable
architecture

Can be customized to DCA,
DIC, or BIC

Morphable configuration
architecture

Morphable
memory

Figure 3.1: Motivation for Private Configuration Environments (PCE)

37

58 % memory (compared to the worst case), by changing the configuration
modes. Synthesis results confirm that implementing the proposed technique
incurs negligible overheads (3 % area and 4 % power).
This work had five major contributions:

1. we propose a morphable configuration infrastructure which can be tai-
lored to match the application configuration needs, thereby promising
significant reductions in memory and energy consumption;

2. we exploit existing data memory to mimic configuration caching and
context switching, thereby eliminating the need for dedicated contexts;

3. we propose an Autonomous Configuration Mode Selection (ACMS)
algorithm that based on the reconfiguration deadlines and available
memory selects a configuration mode that consumes the least energy;

4. we present a 3-tier hierarchical configuration control and management
layer, to realize the above concepts in a scalable manner (Section 3.4);
and

5. we formalize (Section 3.6) and analyze (Section 3.7) potential benefits
and drawbacks of using the morphable reconfiguration architecture.

3.2 Related Work

A configuration architecture is composed of two main elements: (i) config-
uration delivery mechanism and (ii) internal configuration memory. The
configuration delivery mechanism transfers the configware, that determines
the system functionality, from an external storage device to the internal
configuration memory. Therefore, as shown in Fig. 3.2, the techniques that
enhance the configuration efficiency, either reduce the configuration delivery
time and/or optimize the internal configuration memory. In this section, we
will review the most prominent work from both areas that is relevant to our
approach.

Traditionally, reconfigurable architectures were provided with only one
configuration memory and the configware was loaded in daisy chained fash-
ion [96]. DeHon [35] analyzed the benefits of hiding configuration latency
by employing multi-context reconfiguration memories. To allow fast recon-
figuration, DAPDNA-2 [109] and FE-GA employ four, DRP-1 [88] and STP
16 employ 16, and ADRES employs 32 contexts in their architectures. How-
ever, the redundant context memory is both area and power hungry. As a
result of redundant contexts, the configuration memory consumes 50% and
40% of area in ADRES and MuCCRA [7], respectively [8]. Additionally, the
configuration caching consumes prohibitive dynamic (due context switch-
ing) and static (due to additional memory) power. As a part of solution

38

Configuration optimization techniques

Faster config
network Multi-casting

Context
switching

Configuration
defragmentation

Self
configured
datapath

Faster
clock

Multi-cast
rows/

columns
RoMultiC

Dictionery
based

Statistics
based

Config
compression

Reduce config
delivery time

Hide config
latency

Figure 3.2: Classification of methodologies to optimize configuration

to this problem, Compton [30] presented a method for configuration data
de-fragmentation. The proposed method reduces the unusable areas in con-
figuration memory, created during reconfiguration. Thereby, it enhances the
configuration memory utilization. All the research, that attempt to enhance
the configuration efficiency, employ dedicated contexts regardless of the con-
figuration requirements. As an alternative, we suggest using the contexts
with configurable size by exploiting the scratch pad memory to mimic the
functionality of multiple contexts.

Existing research that reduces the configware delivery time employs
configuration compression, multi-casting or a faster configuration network.
Configuration compression utilizes regularity in data to minimize the size of
configuration bitstream. Multicasting reduces the configuration latency by
configuring multiple PEs, simultaneously. Morphosys [43], reduces the con-
figuration cycles by allowing all the PEs in a row/column to be configured
in a single cycle. However, since the entire row/column has to be configured
with same data, it incurs significant hardware overheads if different elements
in a row/column perform different functions. The hardware wastage in Mo-
sphosys was considerably reduced by the RowMultiC, presented in [123].
This technique, uses two wires, indicating column and row respectively, con-
nected to each cell of a CGRA. The cells which have one set in both column
and row wire are configured with the same data in a single cycle. This
scheme was later employed by [7] and [72] to optimize their configuration
architectures. The multi-casting technique in this thesis is also inspired from
RowMultiC. We enhance its effectiveness by suggesting how it can be scaled.
SmartCell [80] employs both multi-casting and context switching to reduce
the excessive configuration time. We employed a combination of RowMultiC
and dictionary based compression to enhance configuration efficiency [57].
Sano and Amano [108] proposed an adaptive configuration technique to dy-
namically increase the configuration bandwidth. The proposed approach
combines the configuration bus with the computation network, at runtime.
When high speed configuration is needed, the network otherwise used for
computation is stalled and used to reduce configuration time. Furthermore,

39

since the configuration is not as complex as the computations, they suggest
to use a faster network for configuration.

3.3 Private Configuration Environments (PCE)

The reconfigurable fabric DRRA efficiently hosts multiple applications by
dynamically creating a separate partition in its computation and memory
layers. However, before our enhancements, all applications were provided a
dedicated serial bus based configuration mechanism. Since different applica-
tions can also have different reconfiguration requirements, we have upgraded
the DRRA computation and storage layer to implement a morphable recon-
figuration architecture. Thus each application on the DRRA fabric can have
a configuration scheme tailored to its needs, called Private Configuration En-
vironment (PCE). The proposed scheme relies on a morphable storage layer
and a reconfigurable infrastructure. To realize a morphable storage layer,
DiMArch, that previously served as data memory to the DRRA computa-
tional fabric, can now morph into context memory for different configura-
tions. The configuration infrastructure is made morphable by embedding
a set of controllers to handle data transfers. The details of the morphable
memory and reconfigurable infrastructure will be given in Sections 3.3.4 and
3.3.5, respectively.

Global
configuration

memory
DRRA computational layer

Sequencers
Multi-context
sequencers

FFT (PCE1) Matrix multiplication (PCE2)

0

1

2

3

4

5

6

7

8

9

Figure 3.3: Logical view of private configuration environment

To clearly illustrate the concept of PCE, consider the case of a DRRA
instance, shown in Fig. 3.3, that simultaneously hosts FFT and Matrix Mul-
tiplication (MM). It is assumed that MM needs fast and frequent reconfigu-
rations (using multiple contexts) while FFT once configured needs no further
reconfiguration. Providing FFT with fast multi-context configuration archi-
tecture would be a waste of area and energy. The proposed methodology
promises reductions in these overheads by morphing into PCE1 and PCE2
for FFT and MM, respectively. Where PCE1 provides simple direct load-
ing from memory and PCE2 provides a fast multi-context reconfiguration
architecture.

40

3.3.1 PCE Configuration modes

To achieve different levels of performance and memory consumption, the
proposed architecture can morph into four configuration modes: Direct
Feed (DF), Memory Feed Multi-Cast (MFMC), Memory Feed Distributed
(MFD), and multi-context. In Table 3.1, we briefly estimate the costs and
benefits of these modes. The estimates will be formally evaluated in Sec-
tion 3.6 and actual figures will be reported in Section 3.7. In Direct Feed
mode (DF), the configuration bitstream is directly fed to the DRRA se-
quencers from the global configuration memory (see Fig. 2.5). This method
requires high reconfiguration time, due to additional latency of moving con-
figware from global configuration memory via AHB bus to the loader. The
DF mode incurs low memory costs since it requires no intermediate stor-
age. The Memory Feed Multi-Cast (MFMC), the Memory Feed Distributed
(MFD), and the multi-context modes copy the configware transparently to
DiMArch, before transferring it to DRRA sequencers. Thereby, they reduce
the configuration latency (global configuration memory to the loader) at the
cost of additional intermediate memory. In memory feed multi-cast mode,
the configware is directly fed to the DRRA sequencers from DiMArch. This
mode offers code compression by storing identical configuration words only
once [123], [7]. The memory feed distributed mode feeds the configware from
the DiMArch to multiple sequencers (belonging to different columns), simul-
taneously. Thereby the MFD mode reduces configuration time. It requires
additional memory, since same configuration words need to be stored in
multiple locations. The multi-context mode, stores multiple configurations
of same application in different memory banks of DiMArch. This mode al-
lows high speed of operation (same as MFD) and high frequency context
switching.

Table 3.1: Configuration modes

Configuration Configuration Configuration Configuration Targeted
mode infrastructure time memory domain

Direct Feed Bus based sequential and
High Low

Applications needing
(DF) multi-cast configware transfers no reconfiguration

from global memory
Memory Feed Bus based sequential and

Medium Medium
Applications using

Multi-Cast multi-cast configware transfers late binding
(MFMC) from DiMArch
Memory Feed Distributed sequential

Low High
Applications using

Distributed transfers from DiMArch late binding
(MFD)
Multi-context Multiple parts of DiMArch act

Low Highest
Applications using

as multiple contexts time sharing

To further illustrate the need for different configuration modes, consider

41

for example that a platform hosts Wireless LAN (WLAN). Given that abun-
dant resources are available and no further reconfigurations are needed, the
direct feed mode (with minimum memory requirements) will be the most
efficient configuration technique. If the WLAN application can be paral-
lelized/serialized (e.g. to enhance its energy efficiency [60]) the system
requires some initial reconfigurations to stabilize. To meet the reconfigu-
ration needs of this system either memory feed multi-cast or memory feed
distributed modes would be feasible. Finally, if the platform has limited re-
sources and the WLAN is time multiplexed with MPEG4 decoder. To meet
the deadlines, this system will require fast and frequent reconfigurations that
can be only provided by multi-context configuration mode.

3.3.2 PCE life time

The proposed scheme provides multiple applications with the configuration
architectures, tailored to their needs, called Private Configuration Environ-
ments (PCE). A PCE has the life time equal to the application, for which it
is created. Before an application enters a platform, its PCE is created and
required resources reserved. During execution, the PCE manages the con-
text switches and configware delivery. After the application exits the plat-
form, the PCE is terminated and the reserved resources released. Broadly,
the life time of a Private Configuration Environment (PCE) can be divided
into six stages: (i) memory banks in DiMArch (data memory) are reserved
to act as configuration memory, (ii) the application configware is stored in
the reserved memory banks, (iii) the context switching and data transfer
instructions are sent to the DiMArch sequencers (Section 3.3.4), (iv) config-
uration infrastructure is morphed to mimic the configuration mode (Section
3.3.5), (v) the application starts executing with the data transfers and con-
text switches managed by the DiMArch sequencer (Section 3.3.4), and (vi)
the PCE is terminated once application leaves the platform.

3.3.3 PCE Generation and Management Packet (GMP)

To realize the six stages of PCE, discussed in Section 3.3.2, additional infor-
mation is stored with the configware of each application. This additional in-
formation identifies the peculiarities of a PCE (e.g. configuration mode and
contexts). Fig. 3.4 (a) shows the original Application ConfigWare (ACW)
along with the appended PCE information, collectively called PCE Genera-
tion and Management Packet (GMP). The GMP packet contains four types
of instructions: (i) PCE Context Length (PCL) instructions, (ii) Applica-
tion ConfigWare (ACW), (iii) Data sequencing instructions (Dseq), and (iv)
Context sequencing instructions (Cseq). The PCL instructions are loaded
first from the global configware memory to a DiMArch sequencer (see Sec-

42

(b) GMP example for MM and FFT

Mode

Cseq

Dseq

GMP for MM

Ctxts

Start End

Start End

ACW Ctxt0

ACW Ctxt1

Mode

Dseq

GMP for FFT

Ctxts

ACW
PCL
instrs

/*Generate PCE2 for MM*/
Reserve memory(x1 to y1) for ctxt1
Reserve memory(x2 to y2) for ctxt2
load ctxt1 in memory (x1 to y1)
load ctxt2 in memory (x2 to y2)
/*Manage PCE2 for MM*/
Feed sequencers 4-9 memory (x1 to y1)
Feed data to registers 4-9
Feed sequencers 4-9 memory (x2 to y2)
/*Generate PCE1 for FFT*/
/*No context reservation needed
ditect load inferred*/
/*Manage PCE1 for FFT*/
Feed sequencers 0-3 ACW from GCM
Feed data to registers 0-3
(c) PCE generation and mentainance(a) GMP Packet

PCL

ACW

Cseq

Dseq

PCE = Private configuration
 enviornment
GMP = PCE generation and
 management packet
PCL = PCE context length

Dseq = Data sequence
Cseq = Context sequence
CTXT = Context
ACW = Application configware

Figure 3.4: PCE generation and management

tion 2.1.2). Depending on the PCL instructions, the DiMArch sequencer
either creates or manages a PCE. The Dseq instructions identify the loca-
tions and order, to transfer data for computation. The Cseq instructions
dictate the locations and order in which context switches should be made.
To illustrate how a PCE is generated and managed (using the GMP), we
reuse the example of FFT and matrix multiplication, discussed earlier in
this section. Remember that FFT and matrix multiplication use direct feed
and multi-context configuration modes, respectively. Therefore, as shown in
Fig. 3.4 (b), matrix multiplication and FFT have different GMP packets .
For FFT, the PCL field contains only one instructions indicating that FFT
will use direct feed mode (needing no context reservation). For matrix mul-
tiplication, the PCL field contains three instructions. The first instruction
indicates that multi-context configuration mode with two contexts should be
reserved. The other two instructions identify the start and end addresses of
DiMArch memory banks to be reserved for each context. After the memory
banks are reserved, the application configware is sent to the reserved Di-
MArch memory banks. Finally, the Dseq and Cseq instructions are copied
to the DiMArch sequencers to manage data transfers and context switching,
respectively. Fig. 3.4 (c) depicts how the DiMArch sequencer decodes the
packet to generate and manage the PCEs.

3.3.4 Morphable Configuration Memory

Before our modifications, all the configware was stored in a global configu-
ration memory (see Fig. 2.5), before its transfer to the relevant sequencers

43

[58]. But as discussed later in sections 3.6 and 3.7, the cost of programming
the sequencer from the global configware memory is too high to support
late binding or time sharing (provided by MFMC, MFD, and multi-context
modes). To allow fast and frequent reconfigurations, we have extended the
functionality of the existing distributed-data-memory, DiMArch (described
in Section 2.1.2), to store configware as well. To efficiently support variable
memory to computation ratios of different applications, DiMArch can be dy-
namically divided into multiple partitions, by the software [118]. Each parti-
tion can be viewed as a local memory for the application. Each partition can
be subdivided into two parts: (i) configware partition and (ii) data partition.
Before an application is mapped, a request to reserve a memory/configware
partition, is sent to DiMArch. Based on the request, DiMArch creates mem-
ory/configware partitions of appropriate sizes. The configware partition can
be further morphed into three states: (i) centralized single context, (ii) dis-
tributed single context, and (iii) distributed multi context. The centralized
single context state assumes that DiMArch is connected to a bus based
configuration infrastructure and outputs data sequentially. The distributed
single context state considers that DiMArch is supported by a distributed
configuration architecture. In this configuration mode, DiMArch copies data
in multiple memory banks, from where it can be transferred to the DRRA
sequencers, in parallel. In distributed multi-context state, DiMArch stores
different chunks of a configware in multiple memory banks to perform high
frequency context switching. To realize different configuration states, Di-
MArch sequencers (Section 2.1.2) are employed. The DiMArch sequencers
are implemented as simple state machines that control and manage each
partition. The state machines determine when data or configware is sent to
the reg-files or sequencers, respectively. For further information on DiMArch
sequencer, we refer to [118].

3.3.5 Morphable Configuration Infrastructure

Fig. 3.5 depicts a high-level overview of DRRA configuration infrastructure.
In this section, we will explain how each configuration mode is realized using
this hardware. The intelligence for morphing the configuration architecture
resides in a Configuration Controller (CC). To allow scalability, the CC
is implemented hierarchically in three layers, as explained later in Section
3.4. For the direct feed mode, the CC performs three steps: (i) it loads
the configware from the configware bank to the Horizontal Bus (HBUS),
(ii) it asserts the sequencer addresses directly to DRRA using RowMultiC
(see [123] and Section 3.4.2), and (iii) it directs the Local Configuration
Controller (LCC), present with each column of the DRRA, to copy the data
from the HBUS to vertical bus VBUS , effectively broadcasting data to
all sequencers. To support memory feed distributed, memory feed multi-

44

cast, and multi-context modes, the configware is first loaded to DiMArch
by the DiMArch sequencers using the DiMArch network shown in Fig. 2.3.
In distributed mode, the configware from the DiMArch memory bank is
transferred to the MLFCs. The MLFCs depending on the address transfer
the configware to the sequencers. In MCMF mode, the configware is placed
by MLFCs on its VBUS, and simultaneously the multi-cast addresses are
sent to the CC.

MLFC

DiMArch

DFMC

DRRA
 Sequencers

LLC

VBUS

HBUS

DiMArch =Destributed local
 memory
VBUS = Vertical bus
MLFC =Memory load and
 distributed feed
 controller
LCC =Local configuration
 controller
DFMC =Destributed feed
 and multi-cast
 controller
HBUS = Horizontal bus
CW =Configware

CW

Config
controller

Global config
memory

DiMArch
network

Memory
Sequencers

Figure 3.5: Private Configuration Environment (PCE) infrastructure

3.4 Hierarchical configuration backbone

To ensure scalability, we have implemented the proposed configuration archi-
tecture using three hierarchical layers of configuration controllers: (i) local
controller, (ii) application controller, and (iii) platform controller. A logical
view of these controllers is shown in Fig. 3.6. A single platform controller
manages all the Private Configuration Environments (PCEs) of the plat-
form. It is connected to the loader and receives the PCE generation and
management packets (see Section 3.3.2) from the global configuration bank.
Depending on the contents of the packet and the available free resources the
platform agent sends the PCE generation and management packet to one
of the application controllers. Each application controller creates and man-
ages a PCE, by interacting with local controllers. A set of local controllers
coordinate with each other and the application controller to realize one of
the configuration modes. The configuration controllers are implemented as
simple state machines, which depending on the chosen configuration mode,
direct the configuration words towards appropriate path. For a given ap-
plication, the application and local controllers can operate in either direct

45

feed, memory feed distributed, or memory feed multi-cast mode (see Section
3.3.1). Before shifting to memory feed distributed or memory feed multi-
cast mode, the controllers first load DiMArch in an additional mode, called
memory load mode. The multi context mode is realized by the morphable
DiMArch memory and hence the controllers are oblivious to it.

Platform
controller

Application
controller

Local
controller

DRRA
column

Local
controller

DRRA
column

Local
controller

DRRA
column

PCE1

Application
controller

Local
controller

DRRA
column

Local
controller

DRRA
column

PCE2

Figure 3.6: Hierarchical configuration control layer

3.4.1 Local controller

A separate controller, called local controller, is embedded with each column
of DRRA. To generate and manage a private configuration environment, a
set of local controllers work in harmony. The basic functionality of the local
controller is shown in Table 3.2. To efficiently realize the functionality we
have implemented the local controllers in two parts: (i) multi-cast controller
and (ii) DiMArch controller.

Table 3.2: Local controller functionality
Configuration mode Functionality

Direct feed
Copy configware from horizontal bus to vertical
bus to vertical bus

Memory load
Copy configware from horizontal bus to DiMArch
sequencer

Memory Feed Distributed (MFD)
Copy configware from DiMArch sequencers to
vertical buses

Memory Feed Multi-Cast (MFMC)

(i) One of the local controllers copies
configware from the DiMArch sequencer to
horizontal bus
(ii) All local controllers copy the configware
from horizontal bus to the vertical bus

Multi-cast controller

As depicted in Fig. 3.7 (a), the multi-cast controller is connected to hor-
izontal bus, vertical bus, and DiMArch controller interface. To determine
its operating mode, the multi-cast controller continuously snoops for valid

46

data, on the horizontal bus and the DiMArch controller interface. Upon
detecting valid data on the horizontal bus, it morphs to either direct feed
or memory load mode.In direct feed mode it copies the configware from the
horizontal bus to the vertical bus, thereby broadcasting the configware to
all sequencers. In memory load mode the configware is sent to the DiMArch
controller interface. If the multi-cast controller detects valid data on its Di-
MArch controller interface it copies the configware and multi-cast addresses
to the vertical bus and the horizontal bus, respectively. The application
configuration controller later use these addresses to enable the appropriate
sequencers, as will be explained in Section 3.4.2.

DFMC

MLFC

HBUS

V
B

U
S

(a) DFMC interface

Arbiter

DFMC

MLFC

V
B

U
S

Arbiter

DFMC

MLFC

V
B

U
S

Arbiter En ACC

LCC=1?
Yes

LCC=1
or

MCMF

End

CP HBUS
to VBUS

No

Yes

CP HBUS
to memseqin

No
Direct Feed

(b) DFMC loading/feeding functionality

MCMF=1?

No

No

Yes

Yes

mem=1?

LCC=1?

Yes

mem=1?

Mem load

Start

No

Yes

MCMF=0 ?

CP memseq
to hbus

CP memseq
to RCB

MCMF_A=1

MCMF

Figure 3.7: Direct Feed and Multi-Cast controller (DFMC)

DiMArch controller

The functionality of DiMArch controller is depicted in Fig. 3.8. Each Di-
MArch controller is connected to the memory sequencer, multi-cast con-
troller, and vertical bus. To determine its operating mode, the DiMArch
controller monitors the memory sequencer and the multi-cast controller in-
terface. On detecting valid data on its multi-cast controller interface, it
morphs to memory load mode. In memory load mode, the DiMArch con-
troller copies the configware on the multi-cast controller interface to the
vertical bus and signals the memory sequencers to load the data in reserved
memory (See Section 3.3.2). If the DiMArch sequencer finds data on its
interface with memory sequencer, it morphs to memory feed distributed or
memory feed multi-cast mode.In memory feed multi-cast mode and the con-
figware is sent to the multi-cast controller. In memory feed distributed mode
the configware is copied to the vertical bus, and the addresses sent to the

47

multi-cast controller.

en_memseq=1
or

MFMC=1

End

Mem=1? MFMC=1?
Yes

No

Start

MFMC=1 ? No

Yes

Place data
on memseq

MFMC_L=1

Yes

ini_d>1? Ctr++
Yes

Ctr>ini_d?
No

Ld_ctr++
Yes

Ld_ctr<N?

No

Ld_data

Yes

Memory load MFMC

MFMC=0 ? No

Yes

Send data
to sequencer

MFMC_L=1

Memory feed

No

No

Figure 3.8: Memory Load and distributed Feed Controller (MLFC)

3.4.2 Application controller

An application controller is embedded with a set of local controllers to gen-
erate and manage a private execution environments. The architecture and
functionality of the application controller is depicted in figures 3.9 and 3.10,
respectively. The application controller is connected to platform controller,
horizontal bus, row bus, and column bus. The total number of rows and
columns in a private configuration environment is a design time decision.
Each wire RBi and CBj is connected to the all the sequencers in ith row
and jth column, respectively. During operation, the application controller
snoops, for valid data, on platform controller interface and horizontal bus.
If it detects valid data on platform controller interface, it morphs to ei-
ther direct feed or memory load mode. In direct feed mode the application
controller performs two tasks: (i) it asserts the row bus and column bus ad-
dresses and (ii) it copies the data to horizontal bus. In memory load mode
the configware from platform controller is sent directly to the horizontal
bus. If application controller finds valid data on horizontal bus, memory
feed multi-cast mode is inferred and row bus/column bus addresses are ex-
tracted from the horizontal bus.

3.4.3 Platform controller

The platform controller is the general manager responsible for dynamically
generating all the private configuration environments in a platform. A logi-

48

Application
controller

DRRA Sequencers

RB

CB

Sequencer

Platform
controller

HBUS

Arbiter

Figure 3.9: Application controller architecture

En ACC

Assert
row/col/ld

DF?
Yes

New app
or

MFMC_A

End

Sd CW
to HBUS

En_LCC=1

Lst=1 ?
No

Yes
Direct Feed

Memory load

MFMC=1?

No

Yes

MFMC

Yes

en_LCC=0
en_memseq

Sd CW
to HBUS

Lst=1 ?

No

Yes

MFMC=0 ?

No

Assert
row/col/ld

No

Start

Figure 3.10: Application controller functionality

49

cal representation of the Platform Controller (PCC) is depicted in Fig. 3.11.
The platform controller based on the sequencers to be programmed, iden-
tifies the candidate application controller. It is mainly intended to ensure
scalability of the proposed bus based morphable architecture. For small
projects (applications hosting only a single applications) the platform con-
troller can be completely removed from the system. For mid to large sized
projects the platform controller can be controlled by a dedicated thread in
the LEON3 processor (2.5). In this thesis, we mainly target future platforms
hosting multiple applications simultaneously and therefore, we control and
manage the platform controller, by software.

Platform
controllerLoader

Configware

Application
controller

Application
controller

Application
controller

Figure 3.11: Platform controller logical/functional representation

3.5 Application mapping protocol

In this section, we will explain how the polymorphic reconfiguration archi-
tecture is customized for each application.

New
Application

Direct
mode ?

Select
application
controller

Platform
controller

Y
es

Memory feed
sequential

or
Memory feed

multicast

Memory feed
distributed

Activate
rowbus/colbus

Configure DiMArch
sequencers

Load configware in
DiMArch sequencers

Transfer configware
to DRRA sequencers

Memory
mode

Broadcast data
DiMArch to DRRA

Transfer data DiMArch
to DRRA sequentially

N
o

Figure 3.12: Configuration protocol

3.5.1 Configware datapath setup

Fig. 3.12 depicts how the datapath for the configware of an application
is setup. Before mapping an application to the reconfigurable fabric, the

50

platform controller determines the application controller where the config-
ware should be sent. The algorithm to determine an appropriate application
controller is beyond the scope of this thesis. Some details about similar algo-
rithms can be found in [40]. Upon reception of configware from the platform
controller, the application controller checks the mode field in the received
configware (see Fig. 3.4). If the field indicates direct load, the configware is
loaded directly to DRRA sequencers. To load the configware, the row and
column lines are first asserted (to activate the destination sequencers) and
then the configware is broadcast to the horizontal and vertical buses (HBUS
and VBUS). If the mode field indicates indirect loading, the configware is
sent to the DiMArch memory. It should be noted that before loading the ac-
tual application configware, the DiMArch sequencers are programmed. The
configured DiMArch sequencers first load the configware to the memory and
then feed it to the DRRA sequencers at selected times. For multi-context
memory feed modes, multiple copies of configware are stored. In the mem-
ory feed direct mode, only a single copy of configware is stored, while for
the memory feed distributed mode configware is stored in multiple memory
banks.

3.5.2 Autonomous configuration mode selection

Up till now we assumed that the configuration mode for each application
is determined by the programmer at compile time. To autonomously select
the configuration mode, we have implemented a simple algorithm, called
Autonomous Configuration Mode Selection algorithm (ACMS), on the plat-
form controller (note that the platform controller itself is realized on LEON3
processor as a software). ACMS based on the available resources and appli-
cation deadlines selects the configuration mode needing the least memory at
runtime. The algorithm is depicted in Fig. 3.13. To illustrate the motivation
for using this algorithm, consider for example that an application A requests
CGRA resources. Given the availability of resources, the application will be
mapped to the platform. However, if the sufficient resources are not avail-
able the platform controller will call the ACMS algorithm, that will attempt
to time multiplex the application with an existing application. To time-
multiplex multiple applications, ACMS finds a mapped application, B, with
a slack larger than the deadline of application A. If such an application is
found, A and B are multiplexed and the mode fields of both applications are
modified. The current version of ACMS only make dynamic mode selection
decisions if the resources consumed by the mapped application (application
B in this example) are greater than or equal to the resources needed by the
application to be mapped (application A in this example). The algorithm
presently works only if both the mapped and to be mapped applications are
in memory feed modes. The dynamic change from direct feed to memory

51

feed mode will require further architectural modification and which are not
covered in this thesis.

Reconfiguration
needs

Platform
controller

Choose mode
needing min

memory

New
application

Map
application

Figure 3.13: Autonomous Configuration Mode Selection algorithm (ACMS)

3.6 Formal evaluation of configuration modes

In this section, we will formally analyze the performance and memory re-
quirements of each configuration mode.

3.6.1 Performance

The time, ts, needed to configure an application, Ai, in direct feed mode
(sequentially) is given by:

ts =
seq∑

i=0

W i∑

j=0

(T (CW(i,j)) + Ls), (3.1)

where seq, W i, Ls, and T (CW(i,j)) denote the total sequencers to be fed, the
total configware words in each sequencer, the latency from the global config-
uration memory to the HBUS, and the time needed for loading a configware
word from VBUS to the sequencers. In the proposed configuration scheme,
T (CW(i,j)), remains constant, since it is achieved via broadcast. Therefore,
Equation 3.1 can be written as:

ts =
seq∑

i=0

W i∑

j=0

(T (CW) + Ls), (3.2)

The time needed for direct feed in employing multi-casting, tmd, is given by:

tmd = ts − (
MC∑

l=0

Tcw ∗G(l)− 1 + Ls), (3.3)

The time needed for memory feed distributed mode, td, is given by:

td = max(tseq(i)), (3.4)

where tseq(i) is the time needed to feed configware to the ith sequencer and
is given by:

tseq(i) =
W i∑

j=0

Tcw + Lm. (3.5)

52

Where Lm is the latency for feeding data from the DiMArch and given by:

Lm = D + 1, (3.6)

where D is the distance of memory bank from MLFC. Therefore, provided
that the configware is in DiMArch, distributed mode promises significant
reductions in reconfiguration time, compared to direct mode. The time
needed for memory feed multi-cast mode, tm, is given by:

tm = (
seq∑

i=0

W i∑

j=0

T (CW(i,j)) + Lm)− (
MC∑

l=0

Tcw ∗G(l)− 1 + Lm), (3.7)

where MC and G(l) denote the words which can be multi-cast and the group
of sequencers to configuration word l can be broadcast. It will be shown later
in Section 3.7 that Ls >> Lm. Finally, the time needed to switch a context
in multi context mode is same as that of the memory feed distributed mode.
The multi-context mode is useful for time sharing when applications need to
shift their contexts frequently. Therefore, from the equations 3.2, 3.3, 3.4,
and 3.7 it can be concluded that ts > tmd > tm > td.

3.6.2 Memory requirements

Configuration memory, CMs, needed to configure an application, Ai, in
direct feed mode (sequentially) is given by:

CMs =
seq∑

i=0

Wi ∗ lCW , (3.8)

where seq, Wi, and lCW denote the sequencers, the configuration words in
the ith sequencer, and the length of a configuration word. The configuration
memory, CMmc, required for direct feed, by employing multi-casting, is
given by:

CMmc = CMs − (
MC∑

l=0

lcw ∗ seq(l)− 1), (3.9)

where MC and seq(l) denote the words which can be multi-cast and the
number of sequencers to which word l can be broadcast. Equations 3.8 and
3.9 clearly indicate that multi-cast feeding requires lesser memory. Config-
uration memory, CMMF D, needed for distributed mode, is given by:

CMMF D = 2 ∗ CMs, (3.10)

It should be noted that CMs and ctxt ∗ CMs bits will be needed in the
global configuration memory Global Configuration Memory (GCM) and the

53

DiMArch, respectively. Configuration memory needed for multi-cast mem-
ory feed, CMMF MC , is given by:

CMMF MC = (ctxt + 1) ∗ CMmc. (3.11)

The configuration memory, CMcs, required for multi context mode, is given
by:

CMcs = CMMF D ∗ ctxts, (3.12)

where ctxt denotes the number of contexts reserved. From equations 3.8,
3.9, 3.10, 3.11, and 3.12 it is obvious that the memory requirements of
Ccs > CMMF D > CMMF MC > CMs > CMms.

3.6.3 Energy consumption

In this section, to visualize the effect of configuration mode on configuration
energy consumption, we will present a very simplistic energy model. The
actual energy estimates, using Synopsys Design Compiler will be reported
in Section 3.7. Configuration energy, Es, needed to configure an application,
Ai, in direct feed mode (sequentially) is given by:

Es =
seq∑

i=0

Wi ∗ ECW , (3.13)

where seq, Wi, and ECW denote the sequencers, the configuration words in
the ith sequencer, and the and the energy required to transport a configura-
tion word to from memory the sequencer.

The configuration energy, Emc, required for direct feed, by employing
multi-casting, is given by:

Emc = Es − (
MC∑

l=0

EG2B(l) ∗ seq(l)− 1), (3.14)

where MC and seq(l) denote the words which can be multi-cast and the
number of sequencers to which word l can be broadcast. EG2B is the energy
needed to transport a word from the global configuration memory to the
HBUS. Equations 3.13 and 3.14 indicate that multi-cast feeding requires∑MC

l=0 EG2B(l) ∗ seq(l) − 1 lesser than the direct feed mode. Configuration
energy, EMF MC , needed for multi-cast memory feed mode is given by:

EMF MC = Emc + Recof ∗ Emem, (3.15)

where Recof are the total number of reconfigurations and Emem is the re-
configuration energy to feed from the memory. The configuration energy,
Ecs, required for multi context mode, is given by:

Ecs = Emc +
Recof∑

i=0

Emem(i), (3.16)

54

where Emem(i) denotes the energy needed to feed the DRRA from the ith

context. It is assumed that different contexts will be placed very close
together making Ecs ≈ EMF MC . From equations 3.13, 3.14, 3.15, and 3.16
it is obvious that the energy requirements of Es > Ems > EMF MC ≈ Ecs.

3.7 Results

In this section, we will perform cost benefit analysis of the proposed ap-
proach.

3.7.1 Configuration time and Memory requirements of vari-
ous configuration modes

To analyze the configuration time and memory requirements of various con-
figuration modes, on real application, we mapped six representative appli-
cations/algorithms on the DRRA: (i) Fast Fourier Transform (FFT), (ii)
Matrix Multiplication (MM), (iii) Finite Impulse response Filter (FIR), and
(iv) wireless LAN transmitter (WLAN), 2-D convolution, and block inter-
leaver). The motivation for choosing FFT, FIR, MM, 2-D convolution,
and block interleaver is their wide spread in DSP application. WLAN was
selected to analyze the benefits on a real complete application. For the
FFT and MM multiple versions with different levels of parallelism (serial,
partially parallel (par par), and fully parallel) were simulated. Each appli-
cation was configured using the three configuration modes, shown in Section
3.3: (i) Direct Feed (DF), (ii) Memory Feed Multi-Cast (MFMC), and (iii)
Memory Feed Distributed (MFD). In addition, we also simulated the con-
figuration time and memory, with no multi-casting support. Therefore, two
additional modes: Direct Feed Sequential (DFS) and modes Memory Feed
Sequential (MFS) were created. Table 3.3 shows the time needed to config-
ure the applications. It is clearly seen that the direct feed modes have require
significantly large configuration time compared to the memory feed modes
due to large configuration latency. Hence, justifying the assumption made
in Section 3.6.1 (Ls >> Lm). Table 3.4 compares the configuration time of
Memory Feed Distributed (MFD) and Memory Feed Multi-Cast (MFMC)
modes. It is seen that, for the tested applications, the MFD mode promises
a considerable reduction in configuration time (from 35 % to 80 %) com-
pared to the multi-cast mode. The reason is that, the MFD mode feeds the
configuration words in parallel, while the MFMC mode offers parallel feed-
ing only when identical words are fed to multiple sequencers. Table 3.4 and
Fig. 3.14, show the memory requirements for the Direct Feed (DF), Memory
Feed Distributed (MFD) and Memory Feed Multi-Cast (MFMC) modes. It
can be seen that direct feed mode requires significantly lesser memory com-
pared to the memory feed modes (MFD and MCMF) because it does not

55

require additional copies of configware in DiMArch. The reason for better
memory efficiency of Memory Feed Multi-Cast (MFMC) mode, compared
to Memory Feed Distributed (MFD) mode is that, the MFMC mode stores
identical configuration words only once. The memory requirements of the
MFD and MFMC modes are identical only when all the configware words
are different (e.g. in case of FIR and MM serial). It should be noted that all
the for the multi-context mode, the memory requirements will be a multiple
of MFD mode. The reconfiguration time will remain the same as the MFD
mode.

Table 3.3: Reconfiguration cycles needed in different configuration modes

Application
Configuration mode

DF DFS MFS Multicast Distributed
(Cycles) (Cycles) (Cycles) (Cycles) (Cycles)

FFT64 serial 5577 3120 143 52 80
FFT64 par par 7137 5655 183 29 145

FFT2048 25077 19500 643 63 500
MM serial 819 819 21 13 21

MM par par 1677 1326 43 13 34
MM parallel 2535 1716 65 13 44

FIR 507 546 13 5 14
WLAN 8892 6435 228 52 165

2D convolution 4056 4056 104 75 75
Block interleaver 1872 1872 48 8 8

Table 3.4: Reduction in configuration cycles distributed vs multi-cast

Application
Configuration mode

MFD MFMC Reduction
(cycles) (cycles) %

FFT64 serial 52 80 35
FFT64 par par 29 145 80

FFT2048 63 500 87
MM serial 13 21 38

MM par par 13 34 62
MM parallel 13 44 70

FIR 5 14 64
WLAN 52 165 68

56

Table 3.5: Memory requirements for different configuration modes

Application
Configuration mode

MFMC MFD DF
(bits) (bits) (bits)

FFT64 serial 5760 10296 2880
FFT64 par par 10440 13176 5220

FFT2048 36000 46296 18000
MM serial 1512 1512 756

MM par par 2448 3096 1224
MM parallel 3168 4680 1584

FIR 1008 936 504
WLAN 11880 16416 5940

2D convolution 7488 7488 3744
Block interleaver 3456 3456 1728

3.7.2 Overhead analysis

To estimate additional overhead incurred by the local, application, and plat-
form controllers, we synthesized the DRRA fabric with PCE infrastructure.
Area and power requirements of each component is shown in Table 3.6 and
Fig. 3.15. The LCC and ACC arbiter were found to be most costly, con-
suming power (64 %) and area (39 %). LCC consumes high power since it is
active in all configuration modes. Overall, the results confirm that the mor-
phable reconfiguration architecture incurs negligible additional overheads (3
% area and 4 %power). To support RowMultiC (Section 3.4.2), an additional
wire is added to every row and column of DRRA. Every cell is connected
to the row and the column wire, traversing the cell (see Fig. 3.9). Thereby,
each cell requires only 2 wire bus for its addressing. This overhead is sig-
nificantly smaller compared to the wiring overhead of traditional addressing
strategy, i.e. nlog2. Where n is the total cells present in the system. The
latency for direct loading (from SRAM to DRRA sequencers via AHB bus)
and memory loading (from DiMArch to DRRA sequencers via memory se-
quencers) is 39 and 6 cycles respectively. For memory loading, once the
pipeline is filled a configuration word can be sent every cycle.

Table 3.6: Area and power consumption of different components of PCE
ACC ACC-arbiter LCC LCC-arbiter DRRA cell

Power µW 13.67 25.1 130.19 33.29 5029
Area µm2 488 1247 580 890 85679

57

Figure 3.14: Configuration memory requirements for various configuration
modes

Figure 3.15: Area and power breakdown of various PCE components

58

3.7.3 PCE benefits in late binding and configuration caching

To demonstrate the benefits of our scheme, we have used autonomous par-
allelism, voltage, and frequency selection algorithm (APVFS), presented in
[60]. The APVFS algorithm stores multiple versions of each application,
with different degree of parallelism. High energy efficiency is achieved by
dynamically choosing the version that requires the least voltage/frequency,
to meet the deadlines on available resources. To ensure low configuration
time, the algorithm stores multiple versions in spare contexts. For our ex-
periments, we use WLAN and Matrix Multiplication (MM). WLAN requires
a stream to be processed in 4µsec. Additionally, we assume that the appli-
cation allows to buffer a single stream during reconfiguration stall. For MM,
we assumed a synthetic deadline of 1msec. Additionally, we assume that the
applications allows to buffer a single stream during reconfiguration. Using
these constraints on DRRA operating at 400 MHz frequency, the WLAN
and MM are allowed to stall for 1.6 K and 400 K cycles, respectively. Fig.
3.16 shows the reconfiguration stalls, using different configuration modes.
It can be seen that the desired configuration constraints for WLAN and
MM are met by MFMC (requiring 11880 bits) and DF (requiring 1584 bits)
modes, respectively (see Table 3.5). A traditional worst case architecture
(using MFD mode) would require 32832 bits see Table 3.5. Therefore, even
for this small example (using a single context), our architecture promises 58
% savings of configuration memory.

Figure 3.16: Stalls when applying late binding to WLAN and matrix mul-
tiplication

59

3.7.4 PCE in presence of compression algorithms

To reduce the configuration memory, DRRA supports two configuration
compression schemes: (i) loop preservation and (ii) Compact Generic Inter-
mediate Representation (CGIR) based compression.

Loop preservation saves memory by delaying the loop unrolling until
the configware reaches the sequencer. Once the configware reaches the
DRRA sequencer, an embedded hardware unit unrolls the loops and maps
the instructions to the DRRA sequencers. It has been shown that the ap-
proach can save on average 55% configuration memory [91]. To evaluate
the impact of loop preservation on configuration mode, we mapped six algo-
rithms/applications (64 point FFT, 2048 point FFT, 2D convolution, matrix
multiplication, and block interleaver) on DRRA fabric. The configuration
cycles and the memory requirements of each configuration mode is shown
in Table 3.7. The multi-casting modes are not shown since they are not
supported in presence loop preservation. It can be seen that while overall
data cycles and memory for all the applications reduces significantly, the
difference in configuration modes remain constant.

Table 3.7: Reconfiguration cycles needed in different configuration modes
with loop preservation

Application
Configuration mode

Direct feed Memory feed Memory feed distributed
(Cycles) (Cycles) (Cycles)

FFT64 serial 2262 58 19
FFT2048 5460 140 23
2D conv 546 14 9

Matrix mult serial 468 12 12
Block interleaver 1872 48 8

Compact Generic Intermediate Representation (CGIR) is mainly in-
tended to compress configware when multiple versions of an application
(with different levels of parallelism) are stored. Storing multiple versions
allows to enhance energy efficiency by dynamically parallelizing/serializing
an application. Details about how energy efficiency is enhanced by using
multiple versions can be found in [60][57]. CGIR compresses data by stor-
ing configware for only a single version. The rest of the versions are stored
as differences from the original version. The decompression is performed
in software by a LEON3 processor. Therefore, in the memory feed modes
(MFD and MFMC) configware cannot be stored as a CGIR. To consider
the impact of CGIR on different reconfiguration modes, we mapped IFFT
(used in WLAN transmitter) with multiple versions on DRRA. The results

60

Table 3.8: Reconfiguration memory needed for different configuration modes
with loop preservation

Application
Configuration mode

Direct feed Memory feed
(Bits) (Bits)

FFT64 2556 5112
FFT2048 5040 10080
2D conv 504 1008

Matrix mult 532 864
Block interleaver 1728 3456

Table 3.9: Configuration memory requirements for different versions of IFFT
Versions No Compression CGIR

DF (bits) MFD (bits) DF(bits) MFD (bits)

1 4050 8100 4121 8100
2 8240 16480 5077 16480
3 12290 24580 6033 24580
4 16340 32680 6989 32680
5 20390 40780 7945 40870

are shown in Table 3.9 and depicted in Fig. 3.17. It can be clearly seen
that after the CGIR based compression the difference between the memory
requirements of direct feed and memory feed distributed modes increase sig-
nificantly. The reason for the increase is that the decompression of CGIR
into hard binary requires a processor, which is not available in the memory
feed modes. From these results it is obvious that the CGIR based compres-
sion aggravates the need for proper mode selection.

Figure 3.17: Effect of compression on IFFT

61

3.8 Summary

In this chapter, we have presented a morphable architecture, to provide
the on-demand reconfiguration infrastructure to each application, hosted by
a CGRA. On-demand reconfiguration was attained by using a morphable
data/configuration memory supplemented by morphable hardware. By con-
figuring the memory and the hardware, four configuration modes were real-
ized: (i) direct feed, (ii) direct feed multi-cast, (iii) direct feed distributed,
and (iv) multi context. To manage the process in a scalable fashion, a three-
tier control backbone, was introduced. It was responsible for customizing
the configuration infrastructure upon arrival of a new application. The ob-
tained results suggest that significant reduction in memory requirements
(up to 58 %) can be achieved by employing the proposed morphable archi-
tecture. Synthesis results confirm a negligible penalty (3 % area and 4 %
power) compared to a DRRA cell. Future research on PCEs will involve
development of a comprehensive reconfiguration mode selection algorithm.
The algorithm, along with memory, will also take into account thermal and
energy considerations for optimal mode selection. Additionally, we also plan
to test the feasibility of other compression techniques (such as run length
encoding and Hoffman encoding) on various reconfiguration modes.

62

Chapter 4

Private Reliability
Environments for CGRAs

4.1 Introduction

With the progress in the processing technology, the size of semiconductor
devices is shrinking rapidly, which offers many advantages like low power
consumption, low manufacturing costs, and ability to make hand held de-
vices. However, shrinking feature sizes and decreasing node capacitance, the
increase of the operating frequency, and the power supply reduction affect
the noise margins and amplify susceptibility to faults. It is therefore pre-
dicted that the number of on-chip faults will increase as technology scales
further into the nano-scale regime, making fault-tolerance an essential fea-
ture of future designs [17]. In particular, bit-flips in storage elements called
Single Event Upsets (SEUs), most often caused by cosmic radiation, are of
major concern [63]. In this chapter, we will first present our work on de-
veloping private reliability environments for CGRAs followed by PREs for
NoCs (in the next chapter).

4.1.1 Private reliability environments for computation, com-
munication, and memory

The superior performance of CGRAs (compared to FPGAs) combined with
the increasing importance of fault tolerance has lead the researchers have to
develop CGRAs with reliability considerations [5, 56, 55, 6]. Novel CGRAs
host multiple applications simultaneously on a single platform. Each ap-
plication can potentially have different reliability requirements (e.g., a car
braking system requires very high reliability while a video streaming can be
accommodated on a less reliable platform). In addition, the reliability needs
of an application can also vary depending on the operating conditions (e.g.

63

temperature, noise, voltage, etc.). Providing maximum (worst case) pro-
tection to all applications imposes high area and energy penalty. To cater
this problem, recently, flexible reliability schemes have been proposed [6] [5]
[55], which reduce the fault-tolerance overhead by providing only the needed
protection for each application. Since the flexible reliability schemes pro-
vide each application with the fault-tolerance infrastructure tailored to its
need, in this thesis we call them Private Reliability Environments (PREs).
The existing architectures that offer flexible reliability, only allow to shift
between different levels of modular redundancy. In modular redundancy, an
entire replaceable unit (i.e. a module) is replicated, making it an expensive
technique resulting in at least twice energy and area overhead. As an alter-
native to expensive modular redundancy, we propose a flexible fault-tolerant
architecture that, besides modular redundancy allows to use low-cost protec-
tion based on Error Detecting Codes (EDCs) [61]. Compared to previously
proposed flexible reliability schemes, that protect CGRAs against the same
class of faults (e.g. SEUs), the proposed scheme (using EDCs) not only
protects data memory, computations, and communications, but also offers
significant reduction of energy consumption. In particular, we chose residue
modulo (mod) 3 codes, because they have been known as one of the least
costly methods which can be used to protect against undetected errors simul-
taneously in the computations, the data memory, and the communications
[56][82]. Depending on the strength of the fault-tolerance approaches used
(which imply different energy overhead), the proposed technique offers five
different dynamically configurable reliability levels. Our solution relies on
an agent based control layer and a reconfigurable fault-tolerance data path.
The control layer identifies the application reliability needs and configures
the data path to provide the needed reliability.

4.1.2 Private reliability environments for configuration mem-
ory

To protect the configuration memory we have used configuration scrubbing.
The motivation for using configuration scrubbing in CGRAs is that the
modern CGRAs enhance the silicon and power efficiency by hosting multi-
ple applications, running concurrently in space and/or time. Some applica-
tions enjoy dedicated CGRA resources and do not require further reconfig-
uration, whereas some other applications share the same CGRA resources
in a time-multiplexed manner, and thus require frequent reconfigurations.
Additionally, some CGRAs [112] also support smart power management
systems that can serialize/parallelize an application to enhance energy effi-
ciency by lowering the voltage/frequency operating point. To address these
requirements multiple copies of the configware are stored and techniques
like configuration caching [109][88] and indirect reconfiguration [58][119] are

64

employed to configure/reconfigure applications. While these techniques do
solve the problem, they impose high overheads in terms of configuration
memory. Therefore, in many recently proposed CGRAs the configuration
memory consumes significant percentage of the overall device area (50% in
ADRES [124], 40% in MuCCRA [7], 30% in DRRA [112]). The large con-
figuration memories make configuration scrubbing an interesting technique
even for CGRAs. However, to the best of our knowledge, before our thesis
the research on configuration scrubbing dealt only with FPGAs without any
reference to CGRAs.

4.1.3 Motivational example

As a concrete motivational example (for private reliability environments)
consider Fig. 4.1 which depicts a scenario in which a CGRA simultaneously
hosts a car braking system and a DSP application (e.g. for video stream-
ing). The dotted boxes indicate the resources occupied by each application.
Obviously, the car braking system requires the highest reliability level, be-
cause each computation should be correct, on time, and cannot be dropped.
We assume that Triple Modular Redundancy (TMR) provides the needed
reliability. The computations for the DSP application can be classified into
critical/less-critical computations, depending on their contributions towards
the overall output quality (say, in terms of peak-signal-to-noise-ratio) [10].
While each critical computation is important and needs very high reliabil-
ity (ensured e.g. by TMR), the less critical computations can be dropped
if an error is detected (making a self-checking unit protected using EDCs
sufficient). The static fault-tolerant architecture (Fig. 4.1b)) will waste en-
ergy because it will provide redundant modules for both applications (here,
a module is a basic block that typically consists of an ALU, registers and
a switch). A number of these modules are combined to realize a complete
CGRA. The adaptive modular fault-tolerance (Fig. 4.1c)) enhances the
fault-tolerance strength only at the modular level; it allows to increase en-
ergy efficiency, by providing separate redundancy for each application. The
additional dotted line isolates the resources occupied by the critical (em-
ploying TMR) and the less critical (employing duplication with comparison
(DWC)) parts of the DSP application. Our solution (Fig. 4.1d)) provides
architectural support to allow shifting redundancy even at the sub-modular
level.

The proposed scheme is generic and in principle applicable to all grid
based CGRAs [43][103]. To obtain some realistic results, we have chosen
a Dynamically Reconfigurable Resource Array (DRRA) [111], as a repre-
sentative CGRA. Simulating practical applications (Fast Fourier Transform
(FFT), matrix multiplication, and Finite Input Response (FIR) filter) shows
that our solution provides flexible protection, with energy overhead ranging

65

Car Braking
system

DSP
application

(a) No fault tolerance (b) Static fault tolerance

(c) Adaptive modular
fault tolerance

Car Braking
system

DSP
application

Car Braking
system

DSP
application

(d) Adaptive fine grained
fault tolerance

Car Braking
system

DSP
application

Critical Less
critical

Critical Less
critical

Figure 4.1: Comparison of different fault-tolerance architectures.

from 3.125% to 107% for self-checking to fault-tolerant versions, respec-
tively. Synthesis results confirm that sub-modular redundancy significantly
reduces the area overhead (59.1% and 7.1% for self-checking and fault-
tolerant versions, respectively), compared to the-state-of-the art adaptive
reliability methods.

4.2 Related Work

Since the last decade, fault-tolerance has been a subject of extensive re-
search [78]. In this section, we will review only the most prominent works
in adaptive fault-tolerance which are the most relevant to our approach.

4.2.1 Flexible reliability

Much of the work dealing with flexible fault-tolerance attempts to protect
the communication system (especially in packet switched network-on-chips).
Worm et al. [125] proposed a technique to scale supply voltage depending
on observed error patterns. Assuming that the voltage level directly af-
fects reliability, they suggested that a smaller voltage would be sufficient for
transmission in less noisy execution conditions, thus increasing/decreasing
the voltage depending on the noise level. This work was later used in [126]
to propose a self-calibrating on-chip link, where the proposed architecture

66

achieves high-performance and low-power consumption by dynamically ad-
justing the operating frequency and voltage swing. Error detection was com-
bined with retransmission to ensure reliability. Li et al. [79] showed that re-
taining the voltage and changing the fault-tolerance scheme provides a better
improvement in reliability per unit increase in energy consumption. Based
on their findings, they presented a system capable of dynamically monitoring
noise and shifting amongst three fault-tolerance levels of different intensity
(Triple ERror detection (TER), Double Error Detection (DED), and par-
ity). The idea behind their strategy is to monitor the dynamic variations
in noise behavior and to use the least powerful (and hence the most energy
efficient) error protection scheme required to maintain the error rates below
a pre-set threshold. Rossi et al. [105] included end-to-end fault-tolerance
on specific parts of the Network-on-Chip (NoC) packet to minimize energy
and timing overhead. A method for adapting error detection and correction
capabilities at run-time, by dynamically shifting between codes of different
strengths, was presented in [130] to tolerate temporary faults. The latter
work was improved to handle both permanent and temporary faults [100].
The proposed scheme combines Error Correcting Codes (ECC), interleaving,
and infrequently used spare wires to tolerate faults. Unfortunately, only a
few works present attempts to provide adaptive fault-tolerance to protect
computations in CGRAs. Alnajjar et al. [5], [6] proposed a coarse-grained
dynamically reconfigurable architecture with flexible reliability to protect
both computations and the configuration. The presented architecture of-
fers flexible reliability level by allowing to dynamically shift between Double
Modular Redundancy (DMR) and Triple Modular Redundancy (TMR). To
reduce the overheads of this method, we presented an architecture to allow
flexible reliability even at sub modular level [61].

4.2.2 Scrubbing

Various surveys and classifications of configuration scrubbing in FPGAs, can
be found in the existing literature [12][48][75][49]. The scrubbing techniques
can be classified on the basis of methodology (intelligence), architecture (lo-
cation of the scrubber), and system level considerations (reliability offered
and power consumed) [49]. On the basis of intelligence the scrubber can
be either blind, readback scrubber or error invoked scrubber [48][49].. The
blind scrubber scrubs the configuration memory after selected intervals [12],
[48]. The readback scrubber first reads the configware form configuration
memory and writes to the configuration memory only upon error detection
[12], [48]. The error invoked scrubber reduces power consumption and time
to recover from faults by combining high level error detection and correc-
tion techniques with the configuration scrubbing [13][49]. The scrubbing
circuitry of the error invoked scrubber scrubs part of the system in error

67

upon error detection [81][18]. Depending on the scrubber’s location, the
configuration memory can be scrubbed internally or externally. In internal
scrubbing the scrubbing hardware resides inside the reconfigurable device,
whereas in external scrubbing the scrubbing circuitry is present outside the
reconfigurable device [87][64]. On the basis of system level considerations
the scrubbing techniques can be classified on the basis of the reliability they
provide to a system. One of the adequate reliability measures of a system is
the Mean Time To Failure (MTTF) which depends primarily on the scrub-
bing frequency. To calculate the scrubbing frequency, various models have
been presented. For instance, Ju-Yueh Lee et al. [75] developed a model to
quantify the effect of scrubbing rate on reliability using the stochastic sys-
tem vulnerability factor of configuration memory bits. They also proposed a
heterogeneous scrubber which scrubs different parts of the device at different
rates depending on their effect on MTTF. In addition, the Markov model
[114] and soft error benchmarking [115] (for caches) can also be extended
for the configuration memories and used to determine the scrubbing rates.
Most of the existing work on configuration scrubbing deals with FPGAs.
In this thesis, we implemented and evaluated the efficacy of configuration
scrubbing even on CGRAs.

4.2.3 Summary and contributions

The related work reveals that ECCs are mostly used to protect only the
interconnects. Existing adaptive fault-tolerance techniques either employ
expensive modular redundancy or leave the configuration memory unpro-
tected. Our approach allows to shift reliability on a fine-granular level (using
residue mod 3 codes). We will show that this seemingly small change in gran-
ularity would significantly enhance the energy efficiency of the whole system
(see Section 4.8). In addition, we propose a unique framework for protect-
ing the memory, computation, communication, and configuration against
permanent and temporary faults.

By introducing the private reliability environment we made
four major contributions:

1. We proposes a morphable fault-tolerance architecture that can be dy-
namically tailored to match the reliability needs of any application
hosted by the CGRA. Compared to the state-of-the-art adaptive ar-
chitectures that support adaptivity at modular level, our technique
also incorporates Error Detecting Codes (EDCs). Thereby, it not only
simultaneously protects data memory, computations and communica-
tions, but also promises a significant reduction in energy consumption;

2. We present an architecture for low-cost implementation of various
configuration scrubbing techniques on a CGRA (so far implemented

68

only on FPGAs). These schemes on one hand allow to evaluate the
overheads and performance of configuration scrubbing techniques and
on the other allow to provide the scrubbing technique that optimally
matches the scrubbing requirements of an application;

3. We introduce fault-tolerance agents (FTagents) that allow to adapt
autonomously between different reliability levels, at run-time; and

4. We present an enabling control and management backbone that pro-
vides a foundation for the above concept by configuring the FTagents
to meet varying reliability requirements.

4.3 System Overview

In this thesis, we have chosen the DRRA to test the effectiveness of our
method. The block level explanation of DRRA computational layer, mem-
ory layer, and programming flow has already been presented in Chapter
2. Because we are looking at the DRRA structure specifically from the
point of incorporating in it fine-grained (sub-modular) fault-tolerance, we
will present a detailed description of its DPU. The DRRA architecture con-
tains a DPU in every cell, in which the computations are performed. As
shown in Fig. 4.2, each DPU has three adders, a multiplier, and a subtrac-
tor connected by a series of multiplexers. In addition, it contains saturation
and Code Division Multiple Access (CDMA) logic to support an industrial
application (with Huawei) [92][112]. It has a total of five inputs, four out-
puts, and a configuration signal CFG (not shown) to realize different DSP
functions detailed in Table 4.1. For a detailed discussion and motivation for
using the DRRA architecture, an interested reader can refer to [92][112][36].

4.4 Fault Model and Infrastructure

In this thesis, we present a configurable framework to protect the data path
against temporary and permanent faults that cause single bit errors. To
address the temporary faults, we consider the Single Event Upsets (SEUs)
which are bit-flips in storage elements, most often caused by cosmic neutron
strikes. The motivation for choosing SEUs is that they constitute a major
percentage of all faults in modern VLSI digital circuits [63]. An SEU can lead
to erroneous data by flipping a bit in the storage elements (data memory,
configuration memory, or the registers in computation and communication
blocks). The proposed architecture handles single bit errors in computation,
communication, and data memory. To protect the configuration memory,
a scrubbing scheme similar to [47] can be used. In addition to SEUs, our
architecture also handles permanent faults causing single bit data errors.

69

8

Out1

in2_33 const1
Mul

Multiplier

In0cons in2

Add

reg

In3

In5In4

Out2

sub1

In1

In4In5 Mul In0

Add

Add

Saturation
logic

Out4

Saturation
logic

CDMA
logic

Out3

In0 In1

8 8 8 8 8 8 8

1616161616 16

33 33
Resize

33

33 33

16 16 16 16 16

CDMA
logic

Figure 4.2: DRRA Data Path Unit (DPU).

Table 4.1: DPU functionality.
CFG Functionality

007 Symmetric serial FIR filter with internal accumulation
003 Symmetric FIR MAC with external accumulation
006 Asymmetric FIR MAC with internal accumulation
002 Asymmetric FIR MAC with external accumulation
20A FFT butterfly
000 Simple multiplication, two input add
200 Two input subtractor OVSF and scrambler code generator
050 Initialize scrambler registers
030 Shift scrambler registers and code generator
080 Vector rotator MAC
101 Complex number multiplication

OVSF = Orthogonal Variable Spreading Factor
MAC = Multiplier-Accumulator

4.4.1 Residue Mod 3 Codes and Related Circuitry

To handle single bit temporary errors, we use Error Detecting Codes (EDCs).
The reason for using them is that modular redundancy approaches, like Du-
plication With Comparison (DWC) and TMR, not only require prohibitive
(over twice and thrice) overhead, but also leave the data memory unpro-
tected (unless the memory system is duplicated, triplicated or uses a sepa-

70

rate EDC). EDCs like parity checking or arithmetic residue modulo (mod)
A codes (A odd integer) require less hardware overhead and can be used
to protect memory, computations, and communications. Although simple
parity code requires just one additional bit, it incurs excessive overhead (70–
90% area [82]) to protect the arithmetic circuitry (adders, multipliers, and
subtractors). Therefore, we employ the residue mod 3 codes that detect all
arithmetic errors that do not accumulate to a multiple of 3 (hence, all single
bit errors), while incurring smaller overhead [56][82].

Working Principle

Fig. 4.3 shows the general scheme of a self-checking arithmetic circuit pro-
tected using the residue code mod A. The circuit works as follows. Two
operands X and Y along with their check parts mod A, |X|A and |Y |A, arrive
at the inputs of the circuit. The same arithmetic operation ∗ ∈ (+,×,−)
is executed separately and in parallel on input operands and their check
parts, to produce the result Z = X ∗ Y and the check part of the result
|Z|A = ||X|A ∗ |Y |A|A. From the result Z, the check part |Z|∗A is generated
independently and used as the reference value for the comparator. Any fault
in the arithmetic circuit or the residue generator mod A may influence only
the value of |Z|∗A. Similarly, any fault in the arithmetic circuit mod A may
influence only the value of |Z|A. Therefore, assuming that no single fault in
any of three blocks (arithmetic circuit, arithmetic circuit mod A, and residue
generator mod A) produces an error whose arithmetic value is a multiple of
A, any such an error would result in a disagreement |Z|A 6= |Z|∗A, indicated
by the comparator.

Residue code
mod A

Arithmetic
circuit
{+, −, ×}

Checker for
residue code

mod A

Error
signal

Arithmetic
circuit
{+, −, ×}
mod A

Residue
generator

mod A

Comparator

Residue code
mod A

X
I

Y
I

Z
I

K

K

K

K

I

X
A

Y
A

Z
A

K
Z

A
*

Figure 4.3: Working principle of residue mod 3.

71

Implementation

The basic arithmetic blocks needed to realize residue mod 3 checking in the
DRRA architecture are shown in Fig. 4.4. Fig. 4.4a) shows the logic scheme
of the adder/subtractor mod 3, where |X|3 = |x1x0| and |Y |3 = |y1y0|
respectively denote the residue mod 3 check parts of the operands X and
Y , S = (s1s0) represents the check part of the result, and FA denotes a
full-adder. Figs. 4.4b) and 4.4c) show the logic schemes of the multiplier
residue mod 3 and the 8-input generator of residue mod 3. Assuming that
X = (xn−1, ..., x1, x0) is an operand to be protected against errors, the
residue mod 3 generator calculates R = (R1R0), which is the remainder of
the integer division of X by 3. For this thesis, we have employed the efficient
residue generators from [98]. Residues for bigger numbers can be calculated
easily by first calculating the residue mod 3 of each part separately and then
adding them mod 3.

FA

FA

X0X1Y0Y1

S0S1

Add/
sub

(a) Adder/subtractor
mod 3

FA

FA

FA

FA

FA

FA

X0X1X2X3X4X5X6X7

R0R1

(c) 8-bit residue generator
mod 3

(b) Multilpier
mod 3

X0X1Y0Y1

Z1Z0

Figure 4.4: Residue adder/subtractor, multiplier, and generator mod 3.

4.4.2 Self-Checking DPU

To protect computations against errors resulting from temporary faults, we
have modified the data paths of the four outputs: Out1, Out2, Out3, and
Out4 (cf. Fig. 4.2). The data paths of Out1 and Out2 are mainly composed
of arithmetic circuits (±,×) whose functioning can be efficiently verified by
their residue mod 3 equivalents working in parallel (as shown in Fig. 4.4).
Fig. 4.5 illustrates the circuits used to generate Cp1 and Cp2—the check
parts for the data paths of Out1 and Out2, respectively. It will be shown
later in Section 4.8 that the residue mod 3 equivalents require significantly
smaller overhead, compared to corresponding arithmetic blocks they protect.
The data paths with outputs Out3 and Out4 contain logic blocks (CDMA
and saturation). To verify these outputs, we simply duplicate their data
paths, using an additional hardware block called Cp3-4. Henceforth, all the
check parts will be jointly referred to as replicas.

72

2

Out1
mod 3

in2
mod 3

cons
mod 3Mul

mod 3

Multiplier
mod 3

In0
mod 3

cons
mod 3

In2
mod 3

Add
mod 3

reg

In3
mod 3

In5
mod 3

In4
mod 3

sub
mod 3

In1
mod 3

In4
mod

3

In5
mod

3

Mul
mod

3

In0
mod

3

Add
mod 3

Add2
mod 3

In0
mod 3

In1
mod 3

Out2
mod 3

2 2 2 2 2 2 2

2 2 2 22
2

2 2 2 2

Check part 1
(CP1)

Check part 2
(CP2)

Figure 4.5: Self-checking hardware to check Out1 and Out2.

73

Fig. 4.6 illustrates how the replicas are combined to realize a self-
checking DPU. We will explain the scheme with the data flowing from the
top to the bottom. Initially, four 18-bit inputs (only one input is shown to
enhance visibility), each containing 16 data bits and 2 check bits arrive at
the input of the DPU. At this stage, the data bits and the check bits are
separated. 16 data bits are sent to the original DPU, Cp3-4, and MSB mod
3 blocks. The MSB mod 3 block generates |msb|3—the residue mod 3 for
8 most significant bits of the 16-bit operand which is sent to the Cp1 and
Cp2. At the same time, the Cp1 and Cp2 also receive the check bits (from
the input). Considering that the residue mod 3 of an entire word equals the
sum of the residues mod 3 of all its parts, the Cp1 and Cp2 generate the
residue mod 3 for least significant bits (LSBs), |lsb|3 according to

| |msb|3 + |lsb|3 |3 = |operand|3 (4.1)

and
| |lsb|3 = |operand|3 − |msb|3 |3 (4.2)

performed using the adder/subtractor mod 3 of Fig. 4.4. Having available
the |msb|3 and |lsb|3, the replicas perform the calculations simultaneously
with the original DPU. Finally, the results calculated from the replicas are
compared to the outputs of the original DPU to detect errors.

DPU

MSB
mod 3

Out1

C
om

pa
ra

to
r

E
rr

or
1

E
rr

or
3

Out2

C
om

pa
ra

to
r

Check
part 1
(Cp1)

Mul
mod 3

Gen
mod 3

Reg

E
rr

or
4

C
om

pa
ra

to
r

Out3
Out4

Out3
Out4

Gen
mod 3

Gen
mod 3

Mul

C
om

pa
ra

to
r

E
rr

or
2

Gen
mod 3

Inputs

18

162

Replicas

Generator Mod 3/ comparators

Check
part 2
(Cp2)

Check
part 3-4
(Cp3-4)

Figure 4.6: Self-checking DPU using residue code mod 3 and duplication.

4.4.3 Fault-Tolerant DPU

To realize a fault-tolerant DPU, we considered two alternatives: (i) recom-
putation and (ii) duplication (by combining two self-checking DPUs). For

74

recomputation, the error signal from the self-checking DPU is fed to the
DRRA register files (see Section 2.1.1). If the error signal is activated, the
data transmission is stalled and recomputation is executed. A detailed dis-
cussion of recomputation is beyond the scope of this thesis, and some details
can be found e.g. in [9]. The fault-tolerant DPU can also be realized by
combining two self-checking DPUs, as shown in Fig. 4.7: the output selector
allows to move forward only the error free output. The architectural mod-
ifications needed to realize this architecture dynamically will be discussed
later in Section 4.5.

Self-checking
DPU1

Self-checking
DPU2

Z1 Z2

Output selector

Error1

Error2

Figure 4.7: Fault-tolerant DPU built using two self-checking DPUs.

4.4.4 Permanent Fault Detection

To detect a faulty DPU, we have used the state machine containing three
states, shown in Fig. 4.8:

1. As long as no fault is detected in the system, the state machine remains
in state No error. If an error signal is activated, the state machine
changes its state to Tempft, denoting detection of a temporary fault.

2. Once in the Tempft state, a counter is initialized. Upon consecutive
occurrence of errors in the same DPU, the counter is incremented.
Should the value of the counter exceed a pre-defined threshold, a per-
manent fault is declared and the state machine shifts to Update RTM
state, where RTM denotes the run-time resource manager.

3. In Update RTM state, the RTM updates information about detected
permanent faults.

The reason for choosing this widely used methodology for detecting on-line
permanent faults was relative ease of its implementation [55][39].

4.5 Private Reliability Environments

To efficiently meet the reliability requirements of multiple applications, the
proposed architecture dynamically creates a separate fault-tolerant parti-
tion for each application, called private reliability environment (PRE). To

75

No
error

Tempft

error=0

error=1Update
RTM

Before permanent fault detectionAfter permanent
 fault detection

error=0 error=1
count<threshcount>thresh

Figure 4.8: Permanent fault detection state machine.

clarify the concept of the PRE, let us consider the case of a DRRA in-
stance that hosts simultaneously two applications, shown in Fig. 4.9. It is
assumed that each of these two applications requires a different reliability
level. Therefore, assuming the worst-case for both of them, and hence ap-
plying the same fault-tolerance techniques to both the applications, would
clearly waste energy and area. The proposed technique reduces the over-
head involved by morphing into private reliability environment 1 and private
reliability environment 2 for application 1 and application 2, respectively.
To create PREs, the fault-tolerance needs of each application are stored
along with its configware in the global configuration memory.Depending on
the reliability needs, a separate thread in the RTM configures a set of Fault-
Tolerance agents (FTagents) which activate/deactivate different parts of the
fault-tolerance infrastructure to meet the exact fault-tolerance needs of the
mapped application. The FTagent will be detailed later in Sections 4.5.2
and 4.5.3.

RTM
configuration

 thread

FTagent
1

DPU1

FTagent
2

DPU2

FTagent
3

DPU3

Private reliability
enviornment 1

FTagent
4

DPU4

FTagent
5

DPU5

Private reliability
enviornment 2

Reliability
needs

Configware

App1

Reliability
needs

Configware

App2

Global configuration memory

Figure 4.9: Private reliability environments.

76

Table 4.2: Fault-tolerance levels.
Reliability level Technique used Faults covered

RL1 None No fault-tolerance
RL2 Res mod 3 SEU detection

RL3
Res mod 3 + SEU and permanent
state machine fault detection/diagnosis

RL4 Res mod 3 + DMR SEU detection/correction

RL5
Res mod 3 + DMR + SEU and permanent
state machine fault detection/correction

4.5.1 Reliability Levels

We have defined five different fault-tolerance levels (RL1-RL5) with growing
fault-tolerance strength, and hence requiring higher and higher overhead,
as shown in Table 4.2. The lowest level RL1 offers no fault-tolerance, so
the replicas and residue mod 3 generators (see Fig. 4.6) are switched off
thus consuming no dynamic energy. In RL2, the replicas, residue mod 3
generators, and logic duplication units are all activated to allow for SEU
detection. In RL3, besides SEU detection, permanent faults causing single
bit data errors are also detected, by activating the state machine of Fig.
4.8. In RL4, two self-checking DPUs are combined to realize a fault-tolerant
DPU that can detect and correct SEUs as well as tolerate permanent faults
causing single bit data errors. Finally, the highest level RL5, besides the
protection level offered by RL4, it also allows to diagnose permanent faults
and signal them to the RTM which then can trigger an appropriate action.

4.5.2 Fault-Tolerance Agent (FTagent)

To ensure that each application is provided with the required reliability
level autonomously, we have embedded a fault-tolerance agent (FTagent)
into each self-checking DPU (see Fig. 4.10). The FTagent is a passive entity
that is controlled by the RTM. Each FTagent, denoted by FT ai,j, is con-
nected to the FTagents FT ai+1,j and FT ai,j+1, by a 1-bit feedback wire,
where i and j represent the row and column number of an FTagent. The
feedback wire is used to send an error signal when two self-checking DPUs
are dynamically combined to implement a fault-tolerant DPU (capable of
detecting and correcting SEUs). The details of how the fault-tolerant DPU
is realized at run-time, will be discussed below in Section 4.5.3. To map
an application, the RTM sends its reliability requirements to the FTagents
which activate only those parts of the self-checking DPU circuitry that are
essential to provide the required reliability level. Thereby, the dynamic en-
ergy consumption is significantly reduced compared to static fault-tolerance.

77

Self-checking
DPU

FTagent

Self-checking
DPU

FTagent

Self-checking
DPU

FTagent

Self-checking
DPU

FTagent

Self-checking
DPU

FTagent

Self-checking
DPU

FTagent

Figure 4.10: Fault-tolerance agent integration.

4.5.3 Run-Time Private Reliability Environments Genera-
tion

Fig. 4.11 illustrates the FTagent circuitry that allows to dynamically shift
between different reliability levels. The RTM controls the FTagent using
three control bits: (i) Enable Self-Checking (ESC), (ii) Enable Permanent
fault Detection (EPD), and Enable Fault-Tolerance (EFT). Table 4.3 shows
the bit values and the corresponding reliability levels. The ESC bit con-
trols Multiplexer 1 and Demultiplexer 2 to decide whether the self-checking
replicas should be enabled. The EPD bit decides whether the state machine
should be activated to allow for permanent fault detection. To implement
the fault-tolerant reliability levels RL4 and RL5, two self-checking DPUs
are dynamically combined, as discussed previously in Section 4.4.3. The
proposed architecture allows to combine the self-checking DPU, DPUi,j,
with one of the neighboring DPUs, DPUi+1,j or DPUi,j+1, where i and j
represent the DPU row and column numbers, respectively. To interchange
between self-checking and fault-tolerant reliability levels, the Enable Fault-
Tolerance (EFT) bit is used. In the fault-tolerant mode, the outputs of
both self-checking DPUs are connected to the same line. The Output Se-
lect (OtS) bit determines which of the two outputs should be forwarded to
the common line. The value of the OtS bit itself can be determined with
the help of Table 4.4, where OrD, ErN, and Error denote respectively the
DPU order, an error in the neighboring DPU (shown in Fig. 4.10), and an
error in the same DPU. For example, consider the self-checking DPUi, j
combined with one of the self-checking DPUs DPUi+1,j or DPUi,j+1, to
realize a fault-tolerant DPU. The self-checking DPUi,j will have OrD = 0,
while the self-checking DPUi+1,j or DPUi,j+1 will have OrD = 1. In ab-
sence of any error (ErN = 0 and Error = 0), the first DPU (i.e. the DPU
with OrD = 0) outputs data while the DPU with OrD = 1 outputs high

78

Table 4.3: Control bits and the corresponding reliability level.
Control bits Reliability

ESC EPD EFT level

0 0 0 RL1
1 0 0 RL2
1 1 0 RL3
1 0 1 RL4
1 1 1 RL5

impedance signal. If erroneous data is detected in one of the DPUs (indi-
cated by the positive ErN or the Error bit), the error free data is forwarded.
The minimized logic circuitry generating the OtS bit is given by

OtS = Error ·OrD + Error · ErN (4.3)

CB = Check bits
Comp= Comparitor
ESC = Enable self-checking
DPU = Data path unit
zzz = High impedence
ord = Ft_agent 1 or 2
ErN = Error in neighbouring Ft_agent
EPD = Enable permanent fault
 detection
OtS = Output select
EFT = Enable fault-tolerance

ESC

CBZeros

Zeros

EPD

DPU

Replicas
State
machine

ErrorsComp

zzz Ord ErN

PF

Outputs

1

2
3

4
OtS

5
EFT

Figure 4.11: Interface of a fault-tolerance agent with a self-checking DPU.

4.5.4 Formal Evaluation of Energy Savings

To visualize the potential savings of the proposed method, first we will
present here a simplistic energy model, whereas more accurate synthesis
results, obtained using Synopsys Design Compiler, will be given in Section
4.8. The energy, Eft(i), needed to execute an application, A(i), on a static

79

Table 4.4: Truth-table of the output select signal OtS.
Inputs Output

OrD ErN Error OtS

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

fault-tolerant architecture is given by

Eft(i) = Ea(i) + Eft(max), (4.4)

where Ea(i) is the energy required to execute A(i) and Eft(max) is the
energy required to provide fault-tolerance to the application needing the
maximum reliability level.

The total energy, Eftt, needed to execute a set of applications, A, by a
CGRA with static reliability level is given by

Eftt =
A∑

i=1

(Ea(i) + Eft(max)). (4.5)

The energy, Efr, required to execute an application on a platform with
flexible reliability level is given by

Efr(i) = Ea(i) + ERL(i) + Econf , (4.6)

where ERL(i) is the energy consumed by the ith application requiring a given
reliability level and Econf is the additional energy required to configure the
reliability levels.

The total energy, Efrt, needed to ensure suitable fault-tolerance methods
for a set of applications, A, hosted by a CGRA (with support for flexible
reliability levels) is given by

Efrt =
A∑

i=1

(Ea(i) + ERL(i) + Econf). (4.7)

Eqns 4.5 and 4.7 indicate that for a set of applications, A, an architecture
with flexible reliability promises a decrease in energy consumption provided
that Eft(max)−(Eft(RL))+Econf) > 0. Since in many application domains,

80

the reliability requirements of different applications vary significantly (e.g.,
a car braking system and a video decoder have significantly different reli-
ability needs), on-demand fault-tolerance promises massive energy savings,
provided that the actual implementation guarantees that Econf is indeed
relatively low. As shown in Figs 4.11, the on demand circuitry is composed
of simple multiplexers that consume negligible energy (see Section 4.8).

4.6 Configuration memory protection

To support advanced features like configuration caching [109, 88], runtime
parallelism and indirect reconfiguration [58] modern CGRAs host big con-
figuration memories (50% in ADRES [124], 40% in MuCCRA [7], 30% in
DRRA [112]), making configuration scrubbing an interesting technique for
CGRAs. Various scrubbing techniques (discussed in Section 4.2) have dif-
ferent overheads and benefits (as will be shown later in sections 4.7 and
4.8). Therefore, instead of implementing a dedicated scrubber, we present
an architecture to support multiple scrubbing techniques (shown in Section
4.2). In Section 4.8) we will show the the architecture to support multiple
scrubbing schemes requires negligible overheads compared to a dedicated
scrubber.

4.6.1 Morphable Configuration Infrastructure

Fig. 4.12 depicts a high-level overview of the DRRA configuration infras-
tructure. The configware is fed to the DRRA sequencers either directly by
LEON3 or indirectly by DiMArch. To feed the sequencers directly, LEON3
performs three steps: (i) it loads the configware from the configware bank to
the Horizontal Bus (HBUS); (ii) it asserts the sequencer addresses directly
to DRRA using RowMultiC (see [123]); and (iii) it directs the memory se-
quencers which are present in each column of the DRRA to copy the data
from the HBUS to vertical bus VBUS, thus effectively broadcasting data
to all sequencers. To feed the DRRA via DiMArch, the configware is first
loaded to DiMArch by the memory sequencers using the DiMArch network.
Then, the configware from the DiMArch memory banks is transferred to
the DRRA sequencers, depending on the instructions of the LEON3. It
will be shown later in Sections 4.6.2 and 4.8 that this architecture supports
scrubbing techniques discussed in Section 4.2 incurring minimal overhead.

4.6.2 Scrubbing Realization in DRRA

Table 4.5 summarizes how scrubbing methods based on location and intel-
ligence are implemented. Fig. 4.13 depicts the datapaths to realize various

81

MLFC

DiMArch

DFMC

DRRA
 Sequencers

LLC

VBUS

HBUS

DiMArch =Destributed local
 memory
VBUS = Vertical bus
MLFC =Memory load and
 distributed feed
 controller
LCC =Local configuration
 controller
DFMC =Destributed feed
 and multi-cast
 controller
HBUS = Horizontal bus
CW =Configware

CW

Config
controller

Global config
memory

DiMArch
network

Memory
Sequencers

Figure 4.12: Private Configuration Environment (PCE) infrastructure

scrubbing techniques. To implement the external scrubber, the LEON3 pro-
cessor picks the configuration words from the global configuration memory
and transfers them via AHB, application controller, and local controllers
to the DRRA sequencers. To realize the internal scrubber, the DiMArch
sequencers are initially programmed by the LEON3 processor. Once pro-
grammed, the memory sequencer can configure DRRA sequencers during
each cycle (without any support from the processor). Both the configu-
ration memories (global configuration memory and DiMArch) are volatile
memories that are filled when the system is powered on. In this thesis, we
assume that the first configuration (i.e. copied from non-volatile memory to
global configuration memory) is correct. Techniques to ensure the validity
of the first configuration will be considered in the future.

To realize various levels of intelligence, the scrubbing algorithms pre-
sented Section 4.2 were implemented on LEON3 processor and the DiMArch
sequencers respectively for the internal and external scrubber.

DiMArch
Local

controller
DRRA

sequencer

App
controller

Local
controller

LEON3
initiates
transfers

AHB
bus

Global
configuration

memory

External scrubber

Internal scrubber

Figure 4.13: Architecture for internal and external scrubbers

To support a heterogeneous/homogeneous scrubber (Section 4.2), we

82

Table 4.5: Summary of how various scrubbing techniques are realized
Classification Scrubber Implementation
criteria

Location
External

Sequencers scrubbed from
Global Configuration Memory (GCM)

Internal
Sequencers scrubbed from
DiMArch

Intelligence

Blind
Sequencers scrubbed blindly after
statically calculated period
from DiMArch or GCM

Readback
Configware from sequencers read
and checked after statically
calculated period

Error invoked
Configware from sequencers read
and checked after error
detection

exploit the memory sequencers present in DiMArch. Each memory se-
quencer can be programmed to scrub the sequencers at a different frequency
(by LEON3). Therefore, each application on the DRRA fabric can have
a scrubbing scheme tailored to its reliability needs. The required scrub-
bing frequency can be calculated on the basis of the methods proposed in
[75][115][114].

4.7 Formal Modeling of Configuration Scrubbing

Techniques

In this section, we will formally analyze the memory timing and energy over-
head of each scrubbing technique. The basic assumption is that a given se-
quencer can be scrubbed without affecting all the remaining sequencers. The
main motivation for providing these formalizations is to provide a generic
framework to estimate the impact of scrubbing strategy on memory require-
ments, reconfiguration cycles, and reconfiguration energy. The actual results
on a representative platform will be given in the next section.

4.7.1 Memory Requirements

The configuration memory requirements depend mainly on whether a reli-
able memory SEU hardened or protected by ECCs is used. The total number

83

of bits needed for an unprotected configuration memory is

CMnft =
seq−1∑

i=0

Wi ∗ lCW , (4.8)

where seq, Wi, and lCW respectively denote the total number of sequencers
in DRRA, the number of configuration words of the ith sequencer, and the
length of a configuration word. The size of the configuration memory re-
quired to implement configuration scrubbing, using a reliable duplicate is

CMdup =
seq−1∑

i=0

(Wi ∗ lCW) +
seq−1∑

i=0

(Wi ∗ lF CW), (4.9)

where lF CW denotes the length of a configuration word in memory. Here,
we assume that the reliable memory is realized using an error detecting and
correcting code protection, which implies FCW > CW . Since the blind
scrubbing requires a reliable duplicate, Eqns 4.8 and 4.9 indicate that the
blind scrubbing requires twice the area of an unprotected memory. The other
schemes (readback and error invoked scrubber) can also be realized with a
reliable duplicate memory. However, modern memory schemes commonly
employ EDCs and/or ECCs to reduce the overhead, and the size of thus
protected configuration memory is

CMECC =
seq−1∑

i=0

(Wi ∗ lCW + lECC), (4.10)

where lECC is the length of the check part of the EDC/ECC employed.
From Eqns 4.8, 4.9, and 4.10 it is obvious that for memory requirements the
following inequalities hold: CMnft < CMDUP < CMECC . Hence, a blind
scrubber is expected to require larger memory than the readback or error
invoked scrubber.

4.7.2 Scrubbing Cycles

The number of scrubbing cycles is mostly dependent on the datapath em-
ployed for configuration (i.e. the location of the scrubber). The time needed
to configure an application using an external scrubber is given by

text =
seq−1∑

i=0

(W i ∗ CycGCM + CycAHB + Cycapp + Cyclcc), (4.11)

where CycGCM , CycAHB , Cycapp, and Cyclcc denote the number of cycles
respectively needed by the global configuration memory, the AHB bus, the

84

application controller, and the local controller, to transfer a sequencer in-
struction. The time needed to configure an application using an internal
scrubber is

tint =
seq−1∑

i=0

(W i ∗ CycDiMArch + Cyclcc), (4.12)

where CycDiMArch and Cyclcc denote the number of cycles needed respec-
tively by DiMArch and the local controller to transfer a sequencer instruc-
tion. Therefore, from Eqns 4.11 and 4.12 we can infer that text ≫ tint pro-
vided that CycDiMArch ≪ CycGCM + CycAHB + Cycapp. It will be shown
in Section 4.8 that it is indeed the case.

4.7.3 Energy Consumption

In this section, we will present a simplistic energy consumption model to
visualize the impact of using scrubbing on energy consumption. The actual
energy estimates, obtained using Synopsys Design Compiler, will be reported
in Section 4.8.

The configuration energy needed to configure DRRA is

Ecfg =
seq−1∑

i=0

Wi ∗ECW , (4.13)

where ECW is the energy required to transport a configuration word from
the memory to the sequencer.

The energy needed to scrub the configuration memory depends on both
the location of the scrubber and the technique employed to implement scrub-
bing.

The configuration energy needed for blind scrubbing is

Ebl = SCRcyc ∗ EW Bcfg, (4.14)

where SCRcyc is the number of times the configuration is written during
the application execution (it depends on the reliability needs and external
noise level).

The configuration energy needed for readback scrubbing is

Erb = SCRcyc ∗ (ERDcfg + EW Rcfg) ∗ Ecmp, (4.15)

where ERDCF G, EW Rcfg, and Ecmp respectively denote the energies needed
to read the configuration word, to write to the configuration memory, and to
perform comparison. EW Rcfg and Ecmp depend on whether DWC or ECC
is employed. Eqns 4.14 and 4.15 indicate that the blind scrubbing consumes
less energy than the readback scrubbing.

85

The configuration energy needed for error invoked scrubber is

Esys = SCRcyce ∗ (ERDcfg + EW Rcfg) ∗ Ecmp, (4.16)

where SCRcyce is the number of the scrubbing cycles which for error invoked
scrubber depends on the number of detected errors. It should be noted
that although the architectural components (sequencers, instructions, AHB
bus etc.) used to realize these formalizations were applied specifically for
DRRA, the formalizations presented can be adapted for other architectures
by replacing the appropriate components, e.g. the distributed sequencers
can be replaced by the centralized configuration memory for ADRES.

4.8 Results

In this section we will separately discuss the benefits and overheads of using
adaptive sub-modular redundancy and configuration scrubbing adaptively.
The architecture and formalizations used in this thesis are generic and, ba-
sically, should be applicable to most grid based CGRAs as well. Since the
existing CGRAs vary greatly in architecture, it is not possible to provide
concrete generic results as well. Therefore, we have chosen DRRA as a
representative platform because of the following reasons: (i) it is well docu-
mented [112], (ii) it has been used in both industry [92] and academia [112],
and (iii) we had available all its full architectural details from RTL codes
design to physical layout.

4.8.1 Sub-modular redundancy

To analyze the benefits of using residue mod 3 codes rather than modu-
lar redundancy techniques, we have synthesized the self-checking and fault-
tolerant versions of DPUs. The area and power overhead of unprotected,
self-checking, and fault-tolerant versions of DPU are shown in Table 4.6 and
depicted in Fig. 4.14. The second column of Table 4.6 shows the parame-
ters of the self-checking DPU using DMR and residue mod 3 circuits. The
self-checking DPU using DMR was realized by duplicating the entire DPU
followed by a comparator of the results. The self-checking DPU using residue
mod 3 was realized by using circuitry shown in Figs 4.5 and 4.6. The table
clearly shows that the residue mod 3 circuitry requires significantly smaller
overhead in terms of area (59%) and power (57%) compared to DMR. The
fault-tolerant DPU using TMR was realized by triplicating the entire DPU
followed by a 2-out-of-3 voter selecting the correct result. The fault-tolerant
DPU using residue mod 3 was realized using circuitry shown in Figs 4.7 and
4.10. It is seen that two self-checking residue mod 3 DPUs can be combined
to realize a fault-tolerant DPU with lesser overhead than TMR. It should

86

Table 4.6: Area and power overhead of self-checking and fault-tolerant cir-
cuits using residue code mod 3, DMR, and TMR.

DPU
Self-checking Fault-tolerant

DMR Mod 3 TMR Mod 3
Area [µm2] 13563 27868 19890 40984 39978
Power [mW] 4.5 9.16 6.61 13.78 13.2

be noted that the architecture is capable of dynamically shifting between
self-checking and fault-tolerant versions.

Figure 4.14: Overhead evaluation of self-checking and fault-tolerant DPUs
using residue mod 3 code, DMR, and TMR.

Fig. 4.15 shows the area breakdown of self-checking DPU. It can be
seen that most of the extra area (74%) is consumed by the duplicated DPU
logic. As for the residue mod 3 circuits of Fig. 4.6, most of the extra area
(18%) consume the residue generators mod 3. The adders, subtractors, and
multipliers mod 3 consume only negligible area compared to the remaining
part of the self-checking circuitry.

To evaluate the energy/power consumption benefits of the fault-tolerance
on-demand, we performed gate level simulations by mapping three repre-
sentative applications (FFT, matrix multiplication, and FIR filtering) on
DRRA. Figs 4.16 and 4.17 show the energy consumed by the self-checking
and fault-tolerant circuitry for executing the above three benchmarks. It
can be seen that using on-demand fault-tolerance incurs the power overhead
varying from 3.125% to 107%, depending on the reliability level. In sum-
mary, the proposed energy aware fault-tolerance approach allows to save
up to 107% energy overhead (compared to the worst case approach) and
58% area (compared to known state-of-the-art techniques offering flexible
reliability levels).

87

Figure 4.15: Area breakdown for overall fault-tolerant circuitry.

Figure 4.16: Energy consumption for various applications.

Figure 4.17: Energies of different algorithms tested.

88

4.8.2 Scrubbing

Configuration Time

To analyze the configuration time of various configuration scrubbing tech-
niques in real applications, we have mapped four sample algorithms/applications
on the DRRA: (i) Fast Fourier Transform (FFT), (ii) Matrix Multiplication
(MM), (iii) Finite Impulse Response (FIR) filter, and (iv) Wireless LAN
(WLAN) transmitter. For the FFT and MM, multiple versions with different
levels of parallelism (serial, partially parallel, and fully parallel) were simu-
lated. Since the number of scrubbing cycles directly depends on the location
of scrubber, we simulated the operation of both the internal and external
scrubber. Table 4.7 shows the number of cycles required to scrub each ap-
plication. It is clearly seen that the external scrubber requires significantly
larger configuration time (up to 38 times more) compared to the internal
scrubber, which justifies the assumption made in Section 4.7.2 (text ≫ tint).
The reason is that the internal scrubber bypasses the processor intervention.
Fig. 4.18 depicts these trends graphically.

Table 4.7: Number of cycles required by the external and internal scrubber
Algorithm/ External scrubber Internal scrubber
application [# of cycles] [# of cycles]

FFT64 serial 3120 80
FFT64 partially parallel 5655 145
FFT2048 13500 500
MM serial 819 21
MM partially parallel 1326 34
MM parallel 1716 44
FIR 546 14
WLAN 6435 165

Figure 4.18: Scrubbing cycles external vs internal scrubber

89

Memory Requirements

To evaluate memory requirements of each scrubbing class, we simulated
each technique using DWC and Hamming ECCs. The reason behind using
the Hamming codes is their widespread use to protect configuration data
in FPGAs [64]. Table 4.8 and Fig. 4.19 show memory requirements of
scrubbing, when memory is unprotected, using duplication, and using ECCs.
It can be seen that duplication incurs significantly larger memory overhead
compared to ECCs (100% for duplication and only 19.44% for ECCs). It
should be noted that while ReadBack Scrubber (RBS) and Error Invoked
Scrubber (EIS) can employ either duplication or ECCs, the BLind Scrubber
(BLS) can only employ duplication. Therefore, the BLS generally requires
higher overhead than the RBS and EIS. Justifying the assumption made in
Section 4.7.1.

Table 4.8: Memory requirements of different scrubbers
Unprotected Duplication ECCs

Algorithm/ BLS, RBS, EIS RBS, EIS
application (bits) (bits) (bits)

FFT64 serial 2880 5760 3440
FFT64 partially parallel 5220 10440 6235
FFT2048 18000 36000 21500
MM serial 756 1512 903
MM partially parallel 1224 2448 1462
MM parallel 1584 3168 1892
FIR 504 1008 602
WLAN 5940 11880 7095

Figure 4.19: Configuration memory requirements for various scrubbers

Area and Power Overhead

To estimate the area and power overhead related to using scrubbers, we
have synthesized the DRRA fabric with configuration scrubbing support for

90

65 nm technology at 400 MHz frequency using Synopsys Design Compiler.
Area and power requirements of each component (discussed briefly in Section
4.3 and detailed in [119]) are shown in Table 4.9. Overall, the results reveal
that scrubbing incurs negligible overhead (3% area and 4% power).

Table 4.9: Area and power consumption for memory based scrubbing
ACC LCC DRRA cell

Power [µW] 38.68 163.48 5029
Area [µm2] 1735 1470 85679

To estimate additional overhead incurred by the ECCs, we also synthe-
sized the Hamming coder/decoder. Area and power requirements for each
of the components are shown in Table 4.10 and in Figs. 4.20 and 4.21 which
show that the Hamming coder/decoder consumes a significant portion of
the overall additional scrubbing circuitry (58% area and 89% power).

Figure 4.20: Power breakdown for a scrubber

Figure 4.21: Area breakdown for a scrubber

4.9 Summary

In this chapter, we have presented an adaptive fault-tolerance mechanism
that provides the on-demand reliability to multiple applications hosted by

91

Table 4.10: Area and power consumption for Error Correcting Codes (ECCs)
Hamming encoder Hamming decoder

Power [µW] 719 866
Area [µm2] 1527 2904.12

a Coarse Grained Reconfigurable Architecture (CGRA). To provide on-
demand fault-tolerance, the reliability requirements of an application were
assessed upon its entry. Depending on the assessed requirements, one of
the five fault-tolerance levels can be provided: (i) no fault-tolerance, (ii)
temporary fault detection, (iii) temporary/permanent fault detection, (iv)
temporary fault detection and correction, or (v) temporary/permanent fault
detection and correction. In addition to modular redundancy (employed
in the state-of-the-art CGRAs offering flexible reliability levels), we have
also presented the architectural enhancements needed to realize sub-modular
residue mod 3 redundancy. Indeed, residue mod 3 coding allowed to reduce
the overhead of the self-checking and fault-tolerant versions by 57% and
7%, respectively. To shift autonomously between different fault-tolerance
levels at run-time, a fault-tolerance agent was introduced for each DPU.
This agent is responsible for reconfiguring the fault-tolerance infrastructure
upon arrival of a new application or changing external conditions. Finally,
the polymorphic fault-tolerant architecture was complemented by a mor-
phable scrubbing technique to protect the configuration memory. The ob-
tained results suggest that the on-demand fault-tolerance can reduce energy
consumption up to 107%, compared to the highest degree of available fault-
tolerance (for an application actually needing no fault-tolerance). Future
research on a fault-tolerant DRRA will move in two directions: (i) the ar-
chitecture and algorithms to support a comprehensive remapping algorithm
will be implemented and (ii) the algorithms for self-adaption (scrubber that
can adapt itself to provide the needed reliability level using the minimal
energy) will be studied and implemented.

92

Chapter 5

Private reliability
environment for NoCs

5.1 Introduction

Until now we only discussed how the PREX framework was applied to
CGRAs. However, although CGRAs are emerging as high performance en-
ergy efficient alternatives to FPGAs, they are difficult to program compared
to both FPGAs and processors (since the design flows and compilers for
CGRAs are not mature). Therefore, we also decided to test the effective-
ness of the proposed framework on relatively more mature network on chip
platforms. Table 5.1 lists the major differences between a NoC and a CGRA
platform. The table simply shows that while CGRA platforms are essential
to allow fast computations demanded by modern 3-G, 4-G standards, the
NoC based platforms provide an easily programmable.

Table 5.1: Major differences between CGRA and NoC platforms

Platform Switching strategy Computational units Speed Programming efficiency

NoC Packet-switching LEON3 processor Low due to High due to processor
load store based platform and
architecture static network

CGRA Circuit-switching DPUs High speed due to Low due to arbitrary
arbitrary long datapaths with
datapaths in-deterministic

synchronization

This chapter presents an architecture to provide customized reliability
to different applications hosted by a packet switched NoC. In NoCs differ-
ent entities communicate by exchanging packets. Information contained in

93

a packet can be classified into two classes: (i) control information (source
address, destination address etc.) and (ii) data information (actual data
payload to be transmitted). To guarantee the smooth delivery, control in-
formation in general require high reliability while the protection level of the
data information should ideally be application dependent [133]. Proposed
adaptive fault tolerance methods attempt to reduce the fault tolerance over-
head by providing different level of protection to control and data fields
[105, 133]. Henceforth, we will refer to these methods as Intra Packet Fault
Tolerance approaches (IPF). Many recently proposed NoCs support multiple
traffic classes [65, 23]. On the basis of functionality, the traffic classes can
be divided into data traffic and control traffic, containing data and control
packets, respectively. The data packets hold computation information such
as intermediate results, while the control packets deliver control information
such as lowering of voltage. In addition, a new traffic class can emerge when
when a new application, with different protection needs (than those already
running), enters the platform. The reliability requirement of a packet de-
pends on its functionality and parent application. Consider for example that
in streaming applications control traffic needs higher reliability because loss
or corruption of a control packet can lead to system failure. However, infre-
quent loss or corruption of data packets has little effect on the quality or can
even be reproduced in software. On the other hand, in a critical application
like car breaking system, both data and control traffic need high reliability.

Inspired from the IPF methods, we proposed Inter Packet Fault toler-
ance (IAPF). IAPF provides different fault tolerance strengths to multiple
traffic classes, considering packet as a single entity, thereby reducing the
energy overhead, significantly. To identify different traffic types, a two layer
low cost identification circuitry is used. The two layers identify the parent
application and the control/data type of each packet, respectively. Upon
identification, packets are directed towards the path offering needed reli-
ability. We have chosen frequently used methods to tolerate temporary
and permanent faults. To combat temporary faults, we use Error correcting
codes (ECC). ECC utilizes information redundancy to detect and/or correct
errors [14, 133]. Specifically, we use hamming codes to detect and correct
temporary faults in each switch. To address permanent faults in intercon-
nects, we use a spare wire between each pair of switches similar to [77, 131].
If a permanent fault is detected, the interconnect is reconfigured to the
spare wire. Using fault tolerance infrastructure and a hierarchical control
layer, our architecture offers four dynamically changeable reliability levels:
(i) no fault tolerance, (ii) end to end fault tolerance providing Double Er-
ror Detection Single Error Correction (DEDSEC) for temporary faults, (iii)
per-hop fault tolerance providing DEDSEC for temporary faults, and (iv)
per-hop fault tolerance providing DEDSEC for temporary faults and spare
wire replacement for permanent faults. It should be noted that more fault

94

levels can easily be integrated to existing architecture. We achieve consid-
erable reductions in energy overhead (from 95 % to 52 %) for implemented
applications (wave front, FFT, HiperLAN, and matrix multiplication) with
an acceptable area overhead (up to 5.3 %), for providing on-demand fault
tolerance (in comparison to overall fault tolerance circuitry).
Motivational Example:

As a concrete motivating example, we present here a case study of 64-
point FFT, mapped on a 3-processor NoC, as shown in Figure 5.1. The FFT
is parallelized by pipelining the butterfly stages [57]. The communications
between the processors are realized using a Distributed Shared Memory
(DSM). One of the processors, called system processor, acts as the system
manager that controls the other two processors, performing computations.
The system processor also hosts a smart power management algorithm to
choose the optimal voltage/frequency operating point. In the figure, the
control and data packet exchanges, between the processors, are represented
by dotted and solid arrows, respectively. The data packets hold intermediate
results, and control packets deliver synchronization and voltage/frequency
scaling information. It can be seen that the data packets are significantly
greater in number compared to the control packets. For many streaming
applications (e.g. WLAN, HiperLAN), that use 64-point FFT, infrequent
loss or corruption of data packets has little effect on the quality or can even
be reproduced in software. However, an erroneous control packet can cause
system failure (e.g. by turning off the processor). As opposed to existing
fault-tolerance techniques (providing same reliability to all the packets),
we exploit this difference in reliability requirements, to reduce the fault
tolerance energy overheads, by providing on-demand fault tolerance (to each
traffic class). Like the FFT example taken here, the data packets are likely
to be the dominant the traffic class in most applications, as asserted by the
famous 80-20 % rule [85]. The 80-20 rule states that 80 % of the execution
time is consumed by 20 % of the program code. The time consuming portions
of the code are typically data computations in nested loops. Parallelism is
typically exploited by mapping the loop iterations on multiple processing
elements (which need to exchange data). Thereby making the data packets
dominant traffic class.

5.2 Related work

Since the last decade, fault tolerant NoCs have been a subject of extensive
research [78]. In this section, we will review only the most prominent work
on Energy aware fault tolerant NoCs. Depending on the attribute to be
modified, techniques to reduce fault tolerance energy overheads can be either
Voltage Adaptive (VA) or the Fault tolerance scheme Adaptive (FA). VA

95

//Psuedo code for
//64 point FFT
while(start !=1)
Start time calc
while (Application exist)
{
 for (i=0; i<64; i++)
 {
 FFT=butterfly (data)
 Copy proc2mem
 }
 Enable processor2
 Stop time calc
 Stream time
}

//Psuedo code for
//64 point FFT
Start processor1

Start processor2
while (! stream end)
DVFS(processor1)

DVFS(processor2)

System memory Memory1

//Psuedo code for
//64 point FFT
while(start !=1)
Start time calc
while (Application exist)
{
 for (i=0; i<64; i++)
 {
 FFT=butterfly (data)
 Store result
 }
 Stop time calc
 Stream time
}

Memory2

Processor 2

Processor1System processor

128

1

1

1

1

1

To
system
processor

1

1

Data traffic
Control (ctrl) traffic

Data traffic= 64 packets
Ctrl traffic = 7 packets
Data traffic= Low reliability
Ctrl traffic = High reliability

Figure 5.1: Motivational example for control/data traffic

approaches, considering that transmission voltage has a conflicting influence
on energy efficiency and circuit dependability, adjust the voltage level (on
the basis of e.g. error rate or noise) to minimize the energy consumption.
FA approaches adjust the fault tolerance scheme (and hence the energy
overhead) to match reliability needs.

Voltage adaptive: Worm et al [125] proposed a technique to scale sup-
ply voltage based on observed error pattern. Considering that the voltage
level directly affects reliability, they suggested that a smaller voltage would
be sufficient for transmission in a less noisy execution condition. Therefore,
they increased/decreased the voltage based on existing noise. This work
was later used in [126] to propose a self-calibrating on-chip link. The pro-
posed architecture achieved high-performance and low-power consumption
by dynamically adjusting the operating frequency and voltage swing. Error
detection was combined with retransmission to ensure reliability.

Fault tolerance scheme adaptive: Li et al [79] showed that retaining
the voltage and changing the fault-tolerance scheme provides a larger im-
provement in reliability per unit increase in energy consumption. Based on
their findings, they presented a system capable of dynamically monitoring
noise and shifting between among three fault tolerance levels of different
intensity (Triple Error Detection (TER), Double Error Detection (DED),
and parity). The idea behind their strategy was to monitor the dynamic

96

variations in noise behavior and use the least powerful (and hence the most
energy efficient) error protection scheme required to maintain the error rates
below a pre-set threshold. Zimmer and Jantsch [133] proposed a method for
dynamically adapting between four different quality of service levels. They
provided different protection levels to different packet fields. They suggested
that, since packet control part needs higher reliability, the encoding scheme
for the header should be chosen first so that the minimum reliability con-
straint is met. The number of wires required for header encoding limits
those remaining for payload transmission. Rossi et al [105] included end to
end fault tolerance on specific parts of NoC packet to minimize energy and
timing overhead. This thesis uses the end to end and per hop strategy in-
spired from their work. Lehtonen et al [76] employed configurable circuits for
adapting to different fault types. They used reconfigurable links to tolerate
transient, intermittent, and permanent errors. A method for dynamically
shifting between codes of different strengths was presented in [130] that tol-
erated temporary faults. This method adapts error detection and correction
at runtime. Later the work was improved to handle both permanent and
temporary faults [100]. The proposed scheme combines ECC, interleaving
and infrequently used spare wires to tolerate faults.

From the related work it can be seen that the existing fault tolerance
FA schemes reduce energy overheads by changing fault tolerance level on
the basis of information class within a packet. Our approach (which can be
considered as a subset of FA schemes) make decisions to adapt reliability
on the basis of traffic class of each packet. This apparently small change in
granularity of decision making significantly enhances awareness (and hence
the intelligence) of the system, as will be shown in Section 5.6.5. Section 5.7
shows that our scheme promises significant reduction in energy overheads
at cost of minimal area/timing overheads.

Compared to the related work, we made following major con-
tributions:

1. We presented on-demand fault tolerance that scans each packet for
its reliability needs and directs it to the path offering the required
protection. Thus, the energy overhead to provide fault tolerance is
significantly reduced compared to state-of-the-art adaptive techniques
FA techniques [133, 105, 76] (having no information about the traffic
class).

2. We present an enabling management and control backbone that pro-
vides a foundation for the above concept by configuring the fault tol-
erance circuit to meet the reliability requirements.

97

5.3 Hierarchical control layer

As already mentioned in Chapter 1, we have chosen McNoC to test the
effectiveness of our method. To refresh our memory, we will briefly dis-
cuss its architecture again. The overall architecture of McNoC is shown in
Figure 5.2. Broadly, McNoC can be divided into two different parts: (i)
network on chip, and (ii) power management infrastructure. McNoC uses
the Nostrum network-on-chip as communication backbone [93, 97, 83]. It
uses regular mesh topology and provides hot potato X-Y routing [37]. A
power management system has been built on top of Nostrum by introducing
The power management system allows to manipulate voltage and frequencies
using APIs. A detailed description of GRLS can be found in [23].

North

E
ast

South

W
es

t

PMU
VCUCGU

Switch Switch Switch

Switch Switch Switch

Switch Switch Switch

Rec Rec Rec

Rec Rec Rec

Rec Rec Rec

Network on chip

Power management infrastructure

Figure 5.2: McNoC architecture

To enable adaptivity we added an intelligence layer on the McNoC sys-
tem architecture as shown in Figure 5.3. This layer is composed of one cell
agent per node, one cluster agent controlling a number of cell agents and a
system agent managing entire platform. The main purpose of this layer was
to provide various services like fault tolerance and power management or-
thogonally to the traditional NoC functions (like packet switching etc.). In
this section we will describe this layer briefly. A detailed description about
how this layer controls adaptive fault-tolerance and power-management will
be given later in Section 5.6 and Chapter 7, respectively.

Cell agents are simple, passive entities implemented primarily in hard-
ware to provide on-demand monitoring services such as reporting average
load of a switch, to the cluster agent (explained later in Chapter 7). Each
cluster agent manages a number of cell agents to bring about e.g. DVFS
functionality. The system agent is the general manager of all monitoring.
Operations like application mapping are performed by the system agent.
The cluster agent is responsible for managing each application in case mul-
tiple applications are running in a single platform. The joint efforts of the
system, cluster and local agents realize the adaptivity of the system e.g. au-
tonomous trade-off between power, energy and timing requirements of the

98

Node

Cell
agent

Node

Cluster
agent

Cluster
agent

System
agent

North

E
ast

South

W
es

t

PMU
VCUCGU

Cell
agent

Node

Cell
agent

Node

Cell
agent

Node

Cell
agent

Switch Switch Switch

Switch Switch Switch

Switch Switch Switch

Rec Rec Rec

Rec Rec Rec

Rec Rec Rec

Network on chip Power management infrastructure

Hirarchical control layer

Figure 5.3: McNoC architecture

application. In terms of functionality, the agent layer is orthogonal to the
data computation. The underlying NoC backbone, regardless of the exact
implementation (topology, routing, flow control or memory architecture),
performs the conventional data communication, while the agent subsystem
monitors the computation and communication. The separation of agent
services provides portability of the system architecture to different NoC
platforms, thus leading to improved design efficiency.

5.4 Fault Model and infrastructure

In this thesis, we detect and correct three type of faults in NoCs: (i) single
bit temporary faults in storage buffers, (ii) temporary faults in a link, and
(iii) permanent faults in a link. A single bit temporary faults in storage
buffers or a link, can cause a bit flip in the packet to be transmitted and
is modeled as single event upsets (SEUs). Permanent fault in a link can
induce error in the packet bits traversing the wire. These faults are modeled
as Stuck-At-faulT (SAT). The motivation for protecting buffers and wires
is that they consume most silicon in high performance [106] and low power
[89, 46, 67, 73] NoCs, respectively. Thereby, they are most susceptible to
faults. Moreover, the other components of a NoC (i.e. routing logic and
network interface) can be protected locally, using commonly used Built-In-

99

Self-Test (BIST) methods [31], independent of the proposed scheme.

5.4.1 Protection against Temporary Fault in Buffers/links

For protection against single bit temporary errors, we use Error Correcting
Codes (ECC). Specifically we employ hamming codes which are DEDSEC
codes. Motivation behind the choice of the ECC was that hamming codes or
its variants are frequently used in NoCs, to combat temporary faults [14, 76].
It should be noted that any other ECC scheme and/or interleaving can be
used. Same ECC can be employed to detect/correct temporary faults in
wires and the buffers. Here, the purpose is not to propose the most efficient
ECC, but to present a generic methodology to reduce fault tolerance energy
overheads. Figure 5.4 shows the architecture of a fault tolerant switch. HC
and HD stand for hamming coder and decoder, respectively. Whenever, a
packet leaves a switch, it is encoded with hamming code using a hamming
encoder. Whenever a packet enters a switch, it is decoded to extract the
original packet.

HC

HD

HC

HD

H
C

H
D

H
C

H
D

HC

HD

HC
HD

Figure 5.4: Fault tolerant NoC switch

5.4.2 Protection against permanent faults in links

To overcome a permanent fault in one of the wires, we employ a spare wire
between each pair of switches, similar to [77]. If a permanent fault is de-
tected, the data around the faulty wire is directed towards the spare wire
as shown in Figure 5.5. In the figure T and R indicate respectively the
transmitting and receiving end. To reduce router complexity and balance
the delay within routed wires the reconfiguration ripples through the bus
instead of directly mapping the faulty wire to the spare. The faulty wire
(wire with permanent fault) is detected at the receiving end by continu-
ous occurrence of temporary fault at the same wire. Upon detection of a
faulty wire, the receiver switches to spare wire and informs the transmitter
end about the faulty wire (by sending a faulty wire packet, shown in Ta-
ble 5.3, directed towards the transmitter). After receiving the faulty wire

100

packet, the transmitter also switches to the spare wire and sends spare wire
switched packet to the receiving end. To ensure safe communication, from
the transmission of faulty wire packet to the reception of spare wire switched
packet, the receiver rejects all packets during this duration. This process is
facilitated by the cell agent and will be explained in Section 5.6.1.

T1

T2

T3

T4

T5

R1

R2

R3

R4

R5

T1

T2

T3

T4

T5

R1

R2

R3

R4

R5

T1

T2

T3

T4

T5

R1

R2

R3

R4

R5

No fault Fault detected on wire2 Reconfiguration around faulty wire

Spare Spare Spare

Figure 5.5: Reconfiguration to spare wire

If another permanent fault is discovered, the application is mapped to
another processor. Again, the reason for choosing this methodology was
the ease of implementation. Methods like split transactions [76] can be
employed to increase the efficiency, however they are beyond the scope of
this thesis. The state machine, shown in Figure 5.6, is used to support the
switching to spare wire and the remapping functionality. This state machine
specifically represents the reconfiguration functionality at the receiving end
of faulty wire. The reconfiguration at the transmitting end and remapping
is accomplished by the agent based monitoring and management system,
explained in Section 5.6. The state machine is divided into three stages:

1. As long as no fault is detected in the system, the state machine remains
in state No error. If a temporary fault is detected, by a non zero syn-
drome, the state machine changes its state to Tempft 1. In this state,
a counter is initialized and the syndrome stored. Upon consecutive
occurrence of errors at the same bit location, the state machine moves
to Tempft 2. If the value of counter exceeds a pre-defined threshold,
a permanent fault is inferred. Upon detection of permanent fault the
state machine signals switching to spare wire (state Switch wire) and
changes to state wchd in stage 2,

2. The state machine remains in state wchd as long as no other single
wire fault is detected. If another permanent fault is detected, the state
machine moves to state Remap req in stage 3 passing through states
wchd ft1 and wchdft 2, similar to stage 1.

3. This state signals remapping to the control layer.

101

No
error

Tempft

error=0

error=1Update
RTM

Before permanent fault detectionAfter permanent
 fault detection

error=0 error=1
count<threshcount>thresh

Figure 5.6: Permanent fault detection state machine

Table 5.2: Fault tolerance levels
Code Fault tolerance level Energy Overhead

00 None None
01 End to end (Temporary) Low
10 Per-hop (Temporary) Medium
11 Per-hop (Temporary and permanent) High

5.5 On-demand fault tolerance

Depending on the reliability needs, each packet is provided only the required
fault tolerance strength, thereby reducing the energy overhead, considerably.
We call this method on-demand fault tolerance. On the basis of fault toler-
ance strength, and hence the overhead, we have provided four different fault
tolerance levels as shown in Table 5.2. In per hop strategy, the packet passes
through the fault tolerance circuitry at each hop. This strategy can detect
both single bit temporary errors and single wire permanent faults per hop.
End to end fault tolerance scheme is employed to ensure energy efficiency
in packets requiring low reliability. This scheme can tolerate single bit error
in the entire source to destination path. On-demand fault tolerance is ac-
complished in two stages: (i) packet identification and (ii) providing needed
protection.

5.5.1 Packet identification

The packet identification involves traffic type and parent application iden-
tification. The traffic type identification circuitry determines whether the
packet is control or data packet. The parent application circuitry determines
the parent application a packet belongs to.

102

Control/data traffic identification

This strategy is specifically targeted for applications needing different pro-
tection levels for the control and data packets (e.g. streaming applications).
Packet type identification uses a mux, a demux and a Hop Count Com-
parator (HCC in the figure) shown at the top of Figure 5.7. To distinguish
data packets from control packets, high hopcount values are reserved for
the control packets. The motivation behind choosing hopcount to identify
control packet is that hopcount is also used to prioritize packets in case of
contentions. Therefore, by reserving high values in hopcount field for control
packets, they always have higher priority than the data packets. To support
this mechanism, the router only increments the hopcount value, HV , of the
data packets if HV < Resmin + 1. Where Resmin is the smallest of the
reserved values.

HCC

P
ac

ke
t

13
6

E2EC

HD

6
6

12
4

ctrl

 E2E perhop

Figure 5.7: Multi path reconfigurable fault tolerance circuitry

Parent application identification

This strategy is specifically designed for situations when multiple applica-
tions with different reliability needs are running simultaneously on a plat-
form. To distinguish packets from different applications, either of the two
circuits shown in Figure 5.8 can be used. Circuit in Figure 5.8-a (referred
to ABFA from hereon in), is very efficient and flexible but, as will be shown
later in this section, not scalable. Circuit in Figure 5.8-b (referred to ABFB
from hereon in) is scalable but not as efficient for smaller projects involving
less than 70 processors.

ABFA uses a special, proc ∗ f bit register, called index reg, which can
support 2f different fault tolerance levels. Where proc is the number of
processors present in the platform. Each row in the index reg indicates the

103

fault tolerance need of application hosted by that processor e.g. proc3 =
01 indicates that processor 3 needs end to end temporary fault tolerance
(from Table 5.2). When all the applications in the platform need the same
reliability, the application identification circuitry is deactivated and packets
pass uninterrupted through a bypass path (not shown in figure). As soon
as an application needing a different protection level enters the platform,
ABFA is switched on and the corresponding rows of index reg are updated.
When activated, ABFA compares the reliability needs of the source and the
destination processor and provides the greater of the two values. The main
problem with this method is that the size of the index reg is dependent on
the number of processors, making it unscalable.

Proc1
Proc2
Proc3
Proc4

Src

Dest

Comp

Src

Dest

I
n
d
e
x

r
e
g

(a) (b)

Index reg

Figure 5.8: Application fault tolerance level identifier

ABFB, shown in Figure 5.8-b offers scalability at the cost of flexibil-
ity. In the this method, a pre determined maximum number of processors
PREmax per application is decided at design time. A PREmax ∗ a bit reg-
ister is embedded in each cell agent. Where a represents the bits needed to
represent the source or destination address. The controlling cluster agent
(explained in Section 5.6.2) fills the register with the addresses of the proces-
sors controlled by the cluster agent, collectively called cluster group. When
ABFB is activated, the source and destination addresses of each packet are
compared to other addresses in the cluster group. If the incoming packet
belongs to a different group, it is assigned the maximum fault tolerance
level supported by the platform. Though less efficient, this approach still
promises substantial reduction in energy overhead provided bulk of packets
are exchanged between processors belonging to the same application. To
estimate the area and power overheads of the proposed circuits (ABFA and
ABFB), we synthesized their multiple versions (with different NoC nodes).
For power estimates, the default 20 % switching activity was used. The
obtained area and power are shown in figures 5.9 and 5.10. The figures
reveal that for small projects (up to 70 nodes), ABFA promises lesser area

104

and power overheads. For projects exceeding 70, ABFB is more efficient in
terms of both area and power.

Figure 5.9: Area comparison between ABFA and ABFB

Figure 5.10: Power comparison between ABFA and ABFB

5.5.2 Providing needed protection

Once the packet is identified, the packet is given needed protection by con-
figuring the muxes/demuxes shown in Figure 5.7. Depending on the traffic
type, the control, end to end, and per-hop signals (ctrl, E2E, and perhop
in the figure) are adjusted. Any of the four fault tolerance levels can be
provided to the packets. The details of how this circuit is configured, will
be presented in Section 5.6.1.

5.5.3 Formal evaluation of energy savings

To visualize the potential savings of the proposed method (for a generic
NoC/application), we will present here a simplistic energy model. The ac-
tual energy estimates using, Synopsys design compiler, by executing real
application (HiperLAN, matrix multiplication, wavefront, and FFT) on Mc-
NoC will be shown in Section 5.7. The formalizations can serve as a guide
to determine when to bypass the packet identification circuits, presented

105

in sections 5.5.1 and 5.5.1, is useful. Let Ec(i) and Ed(j), be the energy
required by control and data packet, respectively, to traverse the NoC. En-
ergy, Et, needed for providing fault tolerance to all the packets traversing
the NoC using traditional methods is given by equation:

Et =
C+D∑

k=1

Eft + (
C∑

i=1

Ec(i) +
D∑

i=1

Ed(j)). (5.1)

Where, C and D is the number of control and data packets, respectively.
Eft is the energy required for providing fault tolerance. The equation can
be reduced to:

Et = (C + D) ∗ Eft + (
C∑

i=1

Ec(i) +
D∑

i=1

Ed(j)). (5.2)

Energy, ECID, needed to identify and provide fault tolerance to each
packet type, separately, is given by equation

ECID =
C∑

i=1

(Ec(i) + Eftc + Eid) +
D∑

i=1

(Ed(j) + Eftd + Eid), (5.3)

where, Eid, is the energy needed to identify the packet. Eftc, and Eftd,
represent the energy consumed for providing fault tolerance to control and
data packets, respectively. The equation can be reduced to:

ECID = (C + D) ∗ (Eftc + Eftd + Eid) +
C∑

i=1

(Ec(i)) +
D∑

i=1

(Ed(j)) (5.4)

Since in many applications (e.g. streaming applications), the number of
control packets is significantly lower than the data packets (shown in Section
5.7) and data packets can traverse unprotected, this equation promises mas-
sive energy savings provided Eid is lesser than Eft. We will show in Section
5.7 that Eid is composed of a simple comparator needing very low energy.
To cover the corner cases, where the control packets are frequent and/or
each packet class needs the same reliability, the identification circuitry can
be bypassed.

To formalize the potential savings of using ABFA and ABFB, let Ea(i),
be the energy overhead of ith application and Emax be the overhead to pro-
vide fault tolerance to the application needing maximum reliability. Energy,
Eapp, for providing fault tolerance to all application using traditional method
is given by equation

Eapp =
app∑

i=1

(Ea(i) + Emax), (5.5)

106

where, app are the total applications running simultaneously. Energy, EP ID,
needed to provide fault tolerance to all applications individually is given by
equation

EP ID =
app∑

i=1

(Ea(i) + Eid + Eft(i)). (5.6)

This method can reduce energy overhead provided Eid + Eft(i) < Emax. If
all applications running on the system have same reliability requirements,
bypass paths should be activated. Overall, equations 5.3 and 5.6, promise
significant overhead reduction provided multiple traffic classes with different
reliability needs traverse the NoC.

5.6 Monitoring and management services

The monitoring and management services are provided by a three-tier hier-
archical control layer shown in Figure 5.2. In this section we will explain,
in detail, the architecture and functionality of the control layer. Remember
from Section 5.3, the control layer is composed of three types of agents.
Figure 5.11 shows the functionality of each of the agent type.

5.6.1 Cell agent

Cell agent is a passive entity, implemented in hardware and connected with
each switch of the NoC. In terms of fault tolerance, the functionality of cell
agent can be divided into six parts: (i) if a permanent fault is detected by
the state machine, shown in Figure 5.6, it configures the receiving switch
to shift to the spare wire and sends a packet containing the syndrome to
the neighboring switch at the transmitting end, (ii) if a packet containing
the syndrome has been sent to the transmitting end, it rejects all packets
till the reception of spare wire switched packet from the transmitting end,
(iii) if an incoming packet is identified as faulty wire packet, it configures
the switch to shift to spare wire, specified by the packet, and sends a spare
wire switched packet directed towards the source of received packet, (iv) if
an incoming packet is identified as spare wire switched packet, it restarts
accepting packets, (v) if a permanent fault is detected in another wire, it
sends remap packet to the system agent, and (vi) upon request from the
application/system agent, it configures the fault tolerance circuitry shown
in Figure 5.7, to set the fault tolerance strength. Here, we only focus on
shifting to spare wire, a corresponding fault tolerance protocol is beyond the
scope of this thesis and for that an intrested reader can refer to [16].

The interface of the cell agent with the switch is shown in Figure 5.12.
The cell agent is further divided into 2 sub-agents (i) Power Management
agent (PM agent) and (ii) the Fault Tolerance agent (FT agent). The PM

107

Map
Applications

Changes
in cond?

New
application?

Configure
agents

Start

Y
es

Y
es

N
o

Finish
execution?

End

Y
es

N
o

N
o

get proc
to ctrl

add new
proc?

update adrs
in registers

Start

Y
es

N
o

Terminate
cluster?

End

Y
es

N
o

Update
packet gen

New
class?

Update FT
paths

Start

Y
es

N
o

Stop
execution?

End

Y
es

N
o

Update traffic
classes

System agent Cluster agent Cell agent

Figure 5.11: Functionality of the system, cluster, and cell agent

108

Table 5.3: Traffic interchange between cell agent and switch
Packet source destination

peak load PM agent application agent
faulty wire (syndrome) FT agent neighboring node

remap FT agent system agent
load request cluster agent PM agent
set DVFS cluster agent PM agent
set region system agent PM agent

spare wire switched FT agent neighboring node

agent and the FT agent work independently to provide power management
and fault tolerance services, respectively. The only interference between
the agents occur at the switch boundary, when the packet is to be inserted
into the network. At this point the contentions need to be resolved using
appropriate priorities. Here, we will focus on the functionality of the FT
agent and the PM agent will be discussed only when it affects the FT agent.
A detailed functionality of PM agent will be discussed in Chapter 7. All
types of packet transfer between the agents and the network are shown in
Table 5.3.

Cell agent on transmitting
interface

Service
identifier

PM
agent

FT
agent

Packet generator
and

traffic handeler

Traffic: agent to the network
PM agent: peak loadfrom PM agent
 to System agent
FT agent : use spare from the
 receiver to nearest
 neighbour
FT agent: remap from the receiver
to System agent

PM
agent

FT
agent

Traffic: network to agent
PM agent: Send load load from the
 network to PM agent
PM agent: Set DVFS load from the
 network to PM agent
PM agent: Set Region load from the
 network to PM agent
FT agent : use spare from the network
 to FT agent
FT agent: set FT level

Cell agent on receiving
 interface

Switch

Cell Agent interface with switches

Figure 5.12: Cell agent interface to the switch

Packets from the switch to the agent pass through a service identifier.

109

The service identifier directs the packet to the appropriate sub-agent (PM
agent or the FT agent). The packets from the agent to the switch pass
through a packet generator and traffic handler unit. The packet generator
packs the packets with appropriate destination and priority, before sending
them to the switch. For our experiments, the highest priority is given to
remap packets, followed by the spare wire (faulty wire, switch to spare wire,
wire switched) and power management (peak load, load request, set DVFS,
set region) packets. In present implementation of McNoC, the hopcount
field has 6 bits. Therefore, on the basis of priority, values 63, 62, and 61 are
reserved for the remap, spare wire, and power management packets, respec-
tively. In a single cycle, up to four remap or change wire packets and one
sendload can contend for the switch. Three FIFOs with different priorities,
shown in Figure 5.13, are used to resolve contentions. The generate packet
unit generates a NoC packet depending on the information received.

Remap FIFO

Ch wire FIFO

Send load

Generate
Packet

Figure 5.13: block diagram of packet generator

5.6.2 Cluster agent

A cluster agent is present as a separate thread for each application running
on a NoC platform. Cluster agent runs parallel to the computations on one
of the processors executing the application. The number of cluster agents
is equal to the number of applications executing simultaneously on NoC. In
our experiments we use 4 cluster agents to control wavefront, FFT, Hiper-
LAN and matrix multiplication respectively. In terms of fault tolerance, the
cluster agent has two main functionalities: (i) to dynamically update the
index reg in ABFB with the addresses of the processors controlled by the
cluster agent and (ii) to provide turn off signals to the cell agents if the
application finishes. The cluster agent also performs power management,
but that will be discussed later in Chapter 7.

110

5.6.3 System agent

The system agent is the general manager of the system and is implemented
as a separate thread on one of the processors of the NoC in software. For
each application, it updates the cell and cluster agent about the fault toler-
ance requirements of traffic types present in the NoC. As soon as the fault
tolerance needs change (e.g. due to entry of new application), it updates
the packet generator of cell agents to ensure that the control packets with
appropriate hop count values (and hence priorities) are generated. Upon
receiving remap message, it remaps the application to a different part of
NoC and sends the turn off message to the cluster agent.

5.6.4 Inter-agent communication protocol

To realize on-demand fault-tolerance, an agent may need to apprise other
agent(s) about an observed event. As shown in Figure 5.14, this infor-
mation exchange takes place via inter-agent communication protocol. To
simply the illustration, all the communications are shown by arrows (they
actually take place using the NoC). In the context of fault tolerance, the
agents communicate with each other in three scenarios: (i) an application
with different reliability needs (from already hosted applications) enters the
platform, (ii) first faulty wire (in a link) is detected by a cell agents, and
(iii) second faulty wire (in a link) is detected by a cell agent. Upon arrival of
an application with new fault tolerance needs, the system agent informs all
cluster agents (by sending Set Fault Tolerance (SFT) packet) to update the
Fault Tolerance Level (FTL) of cell agents, controlled by it. When a wire
with permanent fault is detected by the a cell agent at receiving switch (see
Section 5.6.1), it requests the cell agent at transmitting switch to use the
spare wire. After shifting to spare wire, the the cell agent at transmitting
end updates the cell agent at receiving end about it. When a link with two
faulty wires is discovered, the the cell agent at receiving end updates the
system agent about it.

5.6.5 Effects of granularity on intelligence

Remember from Section 5.2 that principal difference between IAPF and IPF
approaches is the granularity of decision making. As shown in Table 5.4,
increasing the granularity to packet level offers significant flexibility, other-
wise unachievable by IPF approaches. While both IPF and IAPF schemes
can modify their fault tolerance strengths depending on the noise, IPF ap-
proaches inherently lack the ability differentiate packets belonging to differ-
ent traffic classes. They can neither differentiate between packets belonging
to different applications (with different reliability needs) nor between pack-
ets containing different information (control/data). By using the proposed

111

SFT = Set new applications fault
 tolerance level

FTL = Fault tolerance level

System
agent

Cluster
agent

New application with differnt
reliability needs enters platform

SFT

FTL

FTL

Cell
agent1

Cell
agent2

Permanent fault detected in
second wire

System
agent

Cell
agent1

Remap request

Cell
agent1

Cell
agent2

Permanent fault detect by
cell agent 1

Swirch wire

Wire switched

Figure 5.14: Communication protocol between agents

Table 5.4: Comparison between voltage scaled, IPF, IAPF, and IPF+IAPF
schemes

Awareness IPF IAPF IPF+IAPF

Varying noise levels yes yes yes
Different packet classes no yes yes

Different application classes no yes yes
Different fields in packets yes no yes

IAPF approach the system is able to transparently distinguish packets be-
longing to different traffic classes and adjust the fault tolerance intensity
accordingly. However, due to higher granularity, IAPF alone fails to recog-
nize different fields within a packet. Integrating IPF and IAPF approaches
enables the system to aptly analyze the packet and hence reduce the energy
overhead of fault tolerance. It will be shown in the next section that the ad-
dition of this additional analysis step reduces energy overhead, considerably,
at the cost of minimal area and timing penalty.

5.7 Results

In this section, we will evaluate the benefits and costs of on-demand fault
tolerance.

5.7.1 Experimental setup

We performed experiments by mapping four representative applications (wave-
front, FFT, HiperLAN, and matrix multiplication) on McNoC platform.
The applications were coded in C and mapped to multiple number proces-

112

Table 5.5: Ratio of control to data packets
App CPUs CPs DPs CPs (%)

WF 3 7 2040 0.34
WF 6 13 4080 0.31
WF 9 19 6120 0.31
FFT 3 7 192 3.64
FFT 6 13 384 3.38

HLAN 4 9 320 2.81
HLAN 7 15 504 2.97
MM 3 7 192 3.64
MM 6 13 240 5.40
MM 12 25 264 9.46

sors, as shown in column CPUs of Table 5.5. Along with the actual applica-
tion C code, the per-core energy/power management algorithm, used in [59]
(will be explained in Chapter 7), was also implemented on each processor.
The algorithm chooses the optimal operating point, by selecting the mini-
mum voltage/frequency required to meet the application deadlines. There-
fore, along with Data Packets (DP) three type of Control Packets (CP) were
generated: (i) synchronization packets, (ii) fault tolerance packets, and (iii)
power management packets. The hopcount field of each control packet was
modified to the reserved value, before leaving the source node, by the cell
agent attached to it. Thereby, the control and data packets were provided
different levels of protection.

5.7.2 Ratio of control to data packets

Table 5.5 shows total Data Packets (DPs) and Control Packets (CPs) gen-
erated while executing each of the benchmarks. The DPs were used in
exchange of intermediate computation results and the CPs were used to
provide fault tolerance and power management. It is clearly seen that only
a negligible portion of packets were control packets (from 0.34% to 9.46%).
Hence, justifying the assumption made in Section 5.5.3.

5.7.3 Cost benefit analysis

To evaluate the reduction in overhead, achieved by the proposed technique,
the fault tolerance hardware was synthesized. Worst case and on-demand
adaptive fault tolerance levels, explained in Section 5.5, were tested. Table
5.6 and Table 5.7 show the energy consumed by the fault tolerance circuitry
for executing the four benchmarks. In the tables, WCP, WCE, OPA, OEA,

113

Table 5.6: Energy consumption for worst case and on-demand fault tolerance
App WCP WCE OPA OEA OPB OEB

(µJ) (µJ) (µJ) (µJ) (µJ) (µJ)

WF(3) 114.9 168.5 5.6 11.1 30.5 60.7
WF(6) 229.8 337.1 11.2 22.5 60.8 121.2
WF(9) 344.6 505.6 16.8 33.0 91.2 181.86
FFT(3) 11.2 15.9 0.9 1.6 3.3 6.4
FFT(6) 22.3 31.7 1.7 3.1 6.6 12.7

HLAN(4) 18.5 26.4 1.3 2.4 5.3 10.4
HLAN(7) 29.1 41.6 2.1 3.9 8.5 16.5
MM(3) 11.1 15.8 0.9 1.6 3.3 6.4
MM(6) 14.2 19.8 1.37 2.4 4.4 8.5
MM(12) 16.2 21.8 2.14 3.5 5.6 10.6

Table 5.7: Reduction in energy overhead by using on-demand fault tolerance
App OPA OEA OPB OEB

(%) (%) (%) (%)

WF(3) 95.1 93.4 73.5 63.9
WF(6) 95.1 93.5 73.5 64.0
WF(9) 95.1 93.5 73.5 64.0
FFT(3) 91.9 89.9 70.3 59.5
FFT(6) 92.1 90.2 70.5 59.8

HLAN(4) 92.6 90.8 71.1 60.6
HLAN(7) 92.5 90.8 70.9 60.4
MM(3) 91.9 89.9 70.3 59.5
MM(6) 90.3 88.0 68.7 57.1
MM(12) 86.8 83.7 65.1 51.6

OPB and OEB represent worst case per hop, worst case end to end, on-
demand per hop using circuit ABFA, on-demand end to end using circuit
ABFA, on-demand per hop using circuit ABFB (OPB), and on-demand end
to end using circuit ABFB, respectively. The number inside the parenthesis,
after the benchmark, represents the number of processors used in parallel
to execute the algorithms

For per hop protection, parallel parts of application were mapped con-
tiguously while for end to end fault tolerance, the parallel parts were one
hop apart. For on-demand fault-tolerance, only the control packets were pro-
vided DEDSEC while the data packets traversed the network unprotected.
From the tables it is obvious that both the ABFA and ABFB promise con-
siderable reduction in energy overheads compared to the worst case fault

114

Table 5.8: Area and power consumption of different components of fault
tolerant circuit

HC HD AIF ABFA ABFB

Power µW 1333 1924 29 109 705
Area µm2 3729 5369 60 450 2828

tolerance. ABFA circuitry outperforms ABFB circuit, since the synthesis
was done for 16 nodes. Following Figure 5.10, for NoCs with more than 70
processors, the ABFB circuit should be a better solution.

To estimate additional overhead incurred by on-demand fault tolerance,
we synthesized two versions of fault tolerance hardware, using ABFA and
ABFB, respectively. Area and power requirements for each of the compo-
nents is shown in Table 5.8 and Figure 5.15. For both versions, Hamming
Coder (HC) and the Hamming Decoder (HD) was found to be most costly
in terms of area (84.70 % and 79.9 %) and power (95.86 % and 75.9 %). The
AIF circuit for detecting control/data packet had negligible overhead. The
overhead for parent application detection was largely dependent on whether
ABFA or ABFB was used. In Figure 5.15, ABFA promises lesser overhead
(4.68 % area, 3.21 % power) compared to ABFB (23.59 % area and 17.69 %
power) because a NoC with 16 nodes was synthesized. Remember from Sec-
tion 5.5.1, the overhead of ABFA is dependent on the number of processors
present. For a NoC exceeding 70 processors, ABFA would be more costly
than ABFB while the overhead of ABFB would remain constant. Over-
all, results confirm that on-demand fault tolerance can achieve significant
energy savings with negligible additional costs (5.3 % area for ABFA and
24.9 % area for ABFB). It should be noted that although these experiments
were conducted on Nostrum (that reduces energy consumption by eliminat-
ing output buffers), same overheads are expected for a high performance
NoC (with buffered outputs). Since regardless of the buffer size, the fault
tolerance architecture and ECC remains the same.

Figure 5.15: Area and power overhead of fault tolerance circuitry

115

5.8 Summary

In this chapter, we presented an adaptive fault tolerance mechanism, capable
of providing the on-demand protection to multiple traffic classes present in
a NoC platform. On-demand fault tolerance was attained by passing each
packet through a two layer , low cost, class identification circuitry. Upon
identification, the packet was provided one of the four fault tolerance levels:
(i) no fault tolerance, (ii) end to end DEDSEC, (iii) per hop DEDSEC, or (iv)
per hop DEDSEC with permanent fault detection and recovery. To manage
the process autonomously, a three-tier control backbone, was introduced.
It was responsible for reconfiguring the fault tolerance infrastructure upon
arrival of each new traffic class. The obtained results suggest that the on-
demand fault tolerance incurs a negligible penalty in terms of area (up to
5.3%) compared to the fault tolerance circuitry, while being able to provide
a significant reduction in energy (up to 95%) by providing protection only
to the control traffic.

116

Chapter 6

Private operating
environments for CGRAs

6.1 Introduction and Motivation

As the dark silicon era fast approaches, where the thermal considerations
will allow only a part of chip to be powered on, aggressive power manage-
ment decisions will become critical. This chapter presents the architecture
and algorithms that allow aggressive power management in CGRAs. The
proposed solution, called Private Operating Environments (POEs), allows
various applications (hosted by a CGRA) to enjoy the voltage/frequency
operating points tailored to its needs. Specifically, we deal with the case
when a CGRA hosts multiple applications, running concurrently (in space
and/or time), and each application has different performance requirements.
Some applications enjoy relaxed timing budget, and can afford to run at
a low voltage/frequency operating point. While other applications, have
stringent timing deadlines that require the CGRA to operate at maximum
frequency/voltage. To efficiently host these applications, requires a plat-
form that is geared to dynamically and with agility create arbitrary volt-
age/frequency partitions. Various requirements of such a platform are de-
picted in Table 6.1. In this section we will briefly describe the each function
and its requirements. The detailed implementations will be given later in
this chapter.

For efficient operating point selection, we have employed Dynamic volt-
age and frequency scaling (DVFS) [3]. DVFS enhances energy efficiency
by scaling voltage and/or frequency to match the runtime performance re-
quirements. To realize DVFS, requires voltage regulators and frequency
dividers. Depending on the granularity of power management, DVFS can
be either coarse-grained or fine-grained [41]. In coarse-grained DVFS, the
operating point of entire platform is scaled to match frequency/voltage re-

117

Table 6.1: Private operating environment requirements
Function Requirement

Frequency/voltage scaling
(i) Voltage controller
(ii) Frequency divider

Data-flow management
(i) Intermediate buffers
(ii) Frequency regulation

Metastability management Synchronizes
Runtime parallelism (i) Application model

(ii) Multiple profiles
DVFS/parallelism intelligence Algorithms and feedback loop

quirements of the application needing maximum performance. Fine-grained
DVFS allows to modify the frequency/voltage of different parts of chip sep-
arately. Therefore, for contemporary platforms, fine-grained DVFS offers
better energy efficiency by exploiting fine-grained workload locality [70].
However, realization of fine-grained DVFS is strongly challenged by factors
(e.g. data-flow management and metastability) when data crosses clock
boundaries [33]. In this chapter, we will show how these synchronization
overheads can be reduced by exploiting the reconfiguration features offered
by modern CGRAs. Synchronization overheads arise from extra buffers and
handshakes needed to provide reliable communication between different is-
lands, (i.e. different parts of a platform with different operating points). Our
solution relies on runtime generation of a bitstream, which configures one of
the existing cells (hardware resource) as an isolation cell, called dynamically
reconfigurable isolation cell (DRIC). The DRIC serves to synchronize data
exchanges between different islands. Reduction in overheads is achieved
by eliminating the need for most of additional dedicated hardware. To re-
duce energy consumption even further we utilize Autonomous Parallelism,
Voltage, and Frequency Selection (APVFS). that in addition to selecting
optimal frequency/voltage, also parallelizes the applications at runtime [57].
To implement runtime parallelism, various versions (i.e. implementations of
an application with different degree of parallelism) are stored. High energy
efficiency is achieved by dynamically choosing the version that requires the
least voltage/frequency to meet the deadlines on available resources.

Motivation: To illustrate motivation for using fine-grained DVFS, DRIC,
and APVFS consider Figure 6.1, showing a CGRA with six processing ele-
ments (PEs). The figure depicts a typical scenario, in which WLAN trans-
mits data to an MPEG decoder. Each of these applications is mapped to
a different part of device and requires different throughput (performance).
Fine-grained DVFS promises a considerable increase in energy efficiency
by providing a separate voltage/frequency to each of these parts. Fine-

118

grained DVFS, however, requires additional synchronizers embedded in all
PEs, causing unnecessary overheads. The proposed technique reduces these
overheads, significantly, by configuring a DRIC to synchronize communica-
tion between the PEs, which actually communicate (PE2 and PE4 in the
figure). APVFS can enhance the energy/power efficiency even further by
shifting to a parallel version with lower frequency/voltage (F3, V3 in the
figure).

The proposed scheme is generic and in principle applicable to all grid
based CGRAs. To report concrete results, we have chosen dynamically re-
configurable resource array (DRRA) [112], as a representative CGRA. Sim-
ulating many practical applications revealed a significant reduction in power
and energy consumption, compared to traditional DVFS techniques. Ma-
trix multiplication (with three versions) showed the most promising results
giving up to 23% and 51% reductions in consumption (for the tested ap-
plications), respectively. Synthesis results confirm that our solution offers
considerable reductions in area overheads compared to state of the art DVFS
techniques.

DVFS
overhead

WLAN MPEG

Coarse-grained DVFS

(F1, V1) (F1, V1)

PE1 PE2

 Unable to exploit workload localities

PE4 PE5PE3 PE6

WLAN

Fine-grained DVFS

(F1, V1) (F2, V2)

MPEG

Exploits workload localities with extra
overhead in every cell

PE1 PE2 PE3 PE4 PE5 PE6

WLAN

(F1, V1) (F2, V2)

MPEG

PE1 PE2 PE3 PE4 PE5 PE6

DRIC

Fine-grained DVFS using DRICs

Exploits workload localities and
reduces DVFS overhead in every cell

WLAN

(F1, V1) (F3, V3)

MPEG

PE1 PE2 PE3 PE4 PE5 PE6

DRIC

Fine-grained DVFS using APVFS

 Exploits workload localities and spare cells
to give better energy efficiency

Figure 6.1: CGRA hosting multiple applications

6.2 Related Work

Since our work relates both to reduction in DVFS overheads and optimal
version selection (dynamic parallelism), we review the most prominent work
from both areas that is relevant to our approach.

Reduction in DVFS overheads: DVFS has been an area of exten-
sive research in recent years for system on chip [3]. Unfortunately, only few
works deal with implementing DVFS on CGRAs [68], [104]. Liang et al.

119

[41] and Amir et al. [102] proposed using reconfigurable links to reduce the
overheads imposed by the synchronizers in network on chips (NoC). The
reconfigurable links bypass the synchronization circuitry if two cells operate
at same frequency. Both of these methods require dedicated reconfigurable
buffers and the reconfiguration is mainly used to minimize the latency. Yang
et al. [101] exploit DVFS to reduce reconfiguration energy in runtime re-
configurable devices. This method is in principal opposite to what we try
to achieve (i.e. use reconfiguration to reduce DVFS overheads). Warp pro-
cessor [84] monitors the program at runtime and generates instructions to
configure its hardware for computation intensive parts. The fast execution
of certain parts creates idle slacks. The voltage is later scaled to take ad-
vantage of these idle slacks. We use runtime creation of DRICs inspired
from this method. To the best of our knowledge, a technique that exploits
the reconfiguration to reduce dedicated hardware, needed for fine-grained
DVFS, is missing (in CGRA domain).

Runtime parallelism: Traditionally, the platforms were provided with
only one configuration per task considering the worst case [38]. Nagarajan
et al. [107], explored the possibility of dynamic parallelism, by employing an
array of small processors. The proposed architecture allowed different levels
of parallelisms ranging from single thread on multiple processors to running
many threads on a single core. P. Palatin et al. [95], presented component-
based programming paradigm to support run-time task parallelism. In the
MORPHEUS project [122], Thoma et al. developed dynamically reconfig-
urable SoC architectures. Teich et al. [121] presented a paradigm (called
invasive computing) to parallelize/serialize tasks on a CGRAs.

DVFS + Runtime parallelism: Although both DVFS and runtime
parallelism have been researched thoroughly, only few works combine paral-
lelism with DVFS, to allow aggressive voltage/frequency scaling. Couvreur
[128] presented a two phase method to enhance energy efficiency, by com-
bining dynamic version selection and DVFS on a CGRA, called ADRES.
The work was later improved in [129] by providing criteria for selection of
optimal versions. However, this method incurred prohibitive memory and
reconfiguration costs, limiting the versions that can be stored. To reduce
storage and reconfiguration requirements, we [57] suggested to store only
a single version and represent the remaining versions by their differences
from the original. In [60], we presented the architecture and algorithm to
dynamically realize Autonomous Parallelism Voltage and Frequency Selec-
tion (APVFS). The proposed architecture/algorithm promised high energy
efficiency by parallelizing a task, whenever adequate resources are available.
However, the task parallelism relied on solely on greedy algorithm, that can
(in some cases) be more costly than simple DVFS (see Section 6.9 and [62]).
In [62], we presented energy aware task parallelism to address the problem
faced by the greedy algorithm. In this chapter, we combine the architecture

120

proposed in [60] and with the parallelism intelligence presented in [62].
Compared to related work, this thesis has four major contri-

butions:

• We present Architecture and implementation of fine-grained dynamic
voltage and frequency scaling (DVFS), using low latency rationally
related frequencies, on a CGRA;

• We propose energy aware task parallelism, that parallelizes a task only
when its parallel version offers reduction in energy;

• We integrate energy-aware task parallelism with operating point intel-
ligence, to select optimal parallelism, voltage, and frequency at run-
time; and

• We present a complete HW/SW solution that serves to realize all the
above concepts.

6.3 DVFS infrastructure in DRRA

We have chosen Globally Ratio-synchronous Locally Synchronous (GRLS)
[20] design style to implement DVFS in DRRA. The main motivation for
choosing GRLS is that it promises higher performance compared to GALS
systems (requiring handshake) and higher efficiency compared to me-synchronous
systems (requiring all modules to be at same frequencies).The only restric-
tion is that it requires that all clocks on the chip run at frequencies which
are sub-multiple of a so called global virtual frequency, FH . For a detailed
discussion of GRLS and other clocking strategies, we refer to [20]. It should
be noted that although we specifically use GRLS for this thesis, the proposed
methods are, in principal, applicable to GALS as well.

A power management system has been built on top of DRRA by intro-
ducing a wrapper around every cell as shown in Figure 6.2. The wrapper
is used to ensure safe communication between nodes operating at different
frequencies and to realize Dynamic Voltage and Frequency Scaling (DVFS).
The access point to provide the power services is given by the power man-
agement unit. The power management unit, depending on voltage select
and frequency select signals, uses voltage control unit and clock generation
unit to control the voltage and the clock frequency, respectively.

6.3.1 Voltage Control unit

To implement voltage scaling, we have used quantized supply voltage levels.
In this technique, multiple global supply voltages are generated on-chip or
off-chip and distributed throughout the chip using parallel supply voltage

121

Voltage vontrol
unit

Clock generation
unit

Power management
unit

DRRA
cell

Frequency
select

Voltage
select Voltage vontrol

unit

Clock generation
unit

Power management
unit

DRRA
cell

Frequency
select

Voltage
select

Voltage vontrol
unit

Clock generation
unit

Power management
unit

DRRA
cell

Frequency
select

Voltage
select Voltage vontrol

unit

Clock generation
unit

Power management
unit

DRRA
cell

Frequency
select

Voltage
select

Voltage 1
Voltage 2

Figure 6.2: DVFS infrastructure in DRRA

distribution grids. To realize voltage switching, a local Voltage Control Unit
(local VCU) is embedded in every DRRA cell, as shown on Figure 6.3. Each
local voltage control unit contains a PMOS power switch and the necessary
logic to drive it. The power switches select one of the global supply voltages
as the local supply voltage for the module. This allows quantized voltage
regulation. The central Voltage Control Unit (central VCU) powers the
distribution grid with different voltage levels. Depending on the system
requirements, any number of rails can be formed and distributed. For this
work, we have chosen two operating voltages.

Central VCU

(can be off-chip)

Local

VCU

Local

VCU

Vdd

V1 V2... V(n-1)

V1 V2

Voltage

distribution

grid

Chip

V1 rail

V2 rail

GND

PMOS switches

Physical layer voltage switch

Figure 6.3: Voltage control unit

122

6.3.2 Clock generation unit

For frequency scaling, we have used a Clock Generation Unit (CGU) inspired
from [20]. The hardware for the clock generation unit is shown in Figure
6.4. The CGU receives the selected clock from the local voltage control
unit. It uses the Frequency Select (Fs) signal, from the runtime resource
manager, to set a division threshold. To generate the output clock, Clko,
of desired frequency a counter is incremented every cycle, and compared to
the division threshold value. If count = Fs, the counter is reset and a toggle
Flip Flop (FF) enabled. The toggle Flip Flop (FF) derives the Clko signal.

V1

V2 VCU

Vs

Clk

Toggle

FF

CGU

Counter Count=Fs

Reset

Clko

Figure 6.4: Clock generation unit

6.4 Data flow management

Whenever two islands with different frequencies/voltages communicate, syn-
chronization is required. The synchronization requires data-flow and metasta-
bility management. We have employed Dynamically Reconfigurable Isolation
Cells (DRICs) to meet these requirements at runtime. Where a DRIC can
be any spare DRRA cell, that is dynamically configured by the runtime
resource manager (see Chapter 2) to synchronize communications between
two islands. In this section, we discuss how a DRIC manages data-flow later
in Section 6.5 we will discuss how it caters metastability. For data flow
management, the DRIC has two responsibilities: (i) to regulate the data
transmission and (ii) to provides storage buffers (in form of reg-files) for in-
termediate data. To formulate the need for data-flow management, consider
that two islands with different frequencies need to exchange data. Let Ft

and Fr be the transmitter and the receiver frequencies, respectively. As long
as Ft ≤ Fr, the transmitter can transmit safely without any regulation. If
Ft > Fr, a regulation mechanism is needed to prevent the loss of data.

6.4.1 Dynamically Reconfigurable Isolation Cell (DRIC)

Transmission rate management has two major requirements (i) a transmis-
sion algorithm to decide when the data should be sent/stalled and (ii) a
buffer to store intermediate data. Additionally, to dynamically create the
arbitrary partitions (frequency/voltage islands) the architecture should be

123

able to meet these requirements between any two cells of DRRA. We have
used Dynamically Reconfigurable Isolation Cells (DRICs) to meet the above
requirements. To create a DRIC, the runtime resource manager (see Chap-
ter 1) configures a spare CGRA cell as isolation cell, whenever a new island
is created. An isolation cell contains three parts: (i) an FSM dictating when
to transmit data (based on the regulation algorithm used), (ii) a buffer to
store data, and (iii) a link connecting the transmitter, DRIC and the re-
ceiver. In DRRA, the configware to manage data-flow (for DRIC) can be
generated using only the reg-file and SB instructions (see Chapter 2 to re-
call the functionality of reg-file and SB instructions). Final composition
of reg-file instructions is dependent on the transmission algorithm used for
synchronization. Contents of the SB instructions are determined by the
physical location DRIC. The process of DRIC generation is shown in Figure
6.5 and explained in Sections 6.4.1 and 6.4.1.

Change
DVFS

DRIC
exists?

Generate reg-file
 instructions

Generate
SB instructions

Send configware
 to CGRA

CGRA platform

No

Yes

RTM processing

Island 1

(F1, V1)

PE1 PE3

PE2 PE4

PE5

PE6

(F2, V2)

PE7 PE9

PE8 PE10

Island 2

CGRA platform

Island 1

(F1, V1)

PE1 PE3

PE2 PE4

PE5

PE6

(F2, V2)

PE7 PE9

PE8 PE10

Island 2DRIC

Figure 6.5: DRIC generation and placement

Register-file (reg-file) instruction generation

We have employed the reg-files to realize the transmission algorithm. The
GRLS clocking strategy, used in our architecture, uses the frequency regu-
lation algorithm presented in [24]. Algorithm 1 shows a modified version of
this algorithm. Nt = Fh/Ft and Nr = Fh/Fr are called transmitter and re-
ceiver division ratios. Where Fh, Ft, and Fr are the global, transmitter, and
the receiver frequencies, respectively. Comments m and o indicate whether
the line is our modification or original code from [24]. The algorithm allows
a transmitter to send data only when send = 1. To implement the regula-
tion algorithm (using DRIC), we considered three alternatives: (i) configure
DPUs, SBs and reg-files to directly mimic the regulation algorithm and con-
trol data flow accordingly, (ii) map the regulation algorithm as a separate
thread on RTM (i.e. in software) and control data transmission by send-
ing the calculated value of send to DRRA, and (iii) use a hybrid of above

124

approaches. The first alternative requires at least two cells to implement
a DRIC, making it costly (in terms of area, time and power). The sec-
ond alternative is too costly because it involves software based calculation
of send whenever two islands communicate. We therefore, resort to third
alternative. In our technique, the RTM does initial calculation to gener-
ate custom configware and uploads it to DRRA. After initialization, DRRA
regulates data transmission internally (without any assistance from RTM).
The DRIC configware is generated by RTM in three intermediate steps: (i)
RTM exploits the fact that the sequence of ’0s’ and ’1s’ (in variable send),
calculated by regulation algorithm is periodic with period P ; The period,
P , for given Nt and Nr, is calculated using equation:

P = Nr/HCF, (6.1)

where HCF is the Highest Common Factor (HCF) of the transmitter and
the receiver division ratios, (ii) the loop in Algorithm 1 is executed P times
and the corresponding values of send (either ’0’ or ’1’) are stored in an array
named sendseq, and (iii) the delay and reg-file instructions are generated
for every ’0’ and ’1’ stored in sendseq, respectively.

Although the above steps are performed in software, they have negligible
overheads (compared to overall application execution time), since they are
executed in background only once (when DRIC is created). The process of
reg-file instruction generation for Nr = 20 and Nt = 8 is shown in Figure
6.6. Using Equation 6.1 we get P = 5. The regulation algorithm generates
the sequence 101001010010100.......... For P = 5, the sequence reduces to
10100. As a result, DRIC configware will contain 2 reg-file and 3 delay
instructions.

Refile Instr

Delay

Refile instr

Sequencer
code

Delay

Delay
Shortened sequence

1 0 1 0 0

Actual sequence

1 0 1 0 0 1

Figure 6.6: Generation of DRIC configware from regulation algorithm

Switch-box (SB) instruction generation

SB instructions need to be generated whenever an island is created. These
instructions serve to connect the transmitter and the receiver with the DRIC.
Based on the location of the transmitter and the receiver, the RTM calcu-
lates the optimal position (in terms of minimum hop-counts) for placing the

125

Data: Nr, Nt

Result: Array containing minimum sequence that needs to be stored
c=Nr;
P = Nr/HCF ; /* m */

if Nr <= Nt then /* o */

send=1; ; /* o */

else /* o */

for i← 0 to P do /* m */

if c>Nr-Nt then /* o */

send=1 ; /* o */

c=c-(Nr-Nt); /* o */

else /* o */

send=0 ; /* o */

c=c+Nt ; /* o */

end
sendseq[i]=send ; /* m */

end

end

Algorithm 1: Modified regulation Algorithm

DRIC. The calculated optimal position is used to generate the configware
for connecting the DRIC with the islands exchanging data.

6.4.2 Intermediate Storage

The storage requirement of a DRIC depends on the frequency difference
between the communicating islands and the traffic burstiness. This storage
is essential for all multi-frequency interfaces. In case the applications hosted
by the frequency islands require a bigger buffer, two DRICs can be combined
to meet the storage requirements. The algorithm to dimension the buffer
lies outside the scope of this thesis.

6.5 Metastability management

The transmission algorithm, presented in the previous section, prevents the
data overflow by constraining the transmitter. In this section, we will discuss
how our architecture handles metastability, i.e. setup and hold violations.
To cater the setup and hold violations, that occur due to voltage/frequency
scaling, we employ ratio-synchronous metastability manager, inspired from
[20]. The system level view of the metastability manager is shown in Figure
6.7 (a). If the communicating cells have different operating points (indicated
by different island control line), the data is passes through the metastability

126

manager. Otherwise it is sent directly to the receiver.

(b) Component level view of
metastability manager

Strobe

1 2-edge
sampler

Synchr Analysis Delay

(a) Metastability manager interface

Shortened
sequence

Metastability
managerStrobe

1

Data
Data
16

Receiver
cell

DRIC

Latency
insenseitive

receiver

Same
island

Learning phase

16

Data
2-edge
sampler

1-Cell
FIFO

E
Receiver

cell

Data transmission phase

Figure 6.7: Metastability manager integration

6.5.1 Operating principle

As shown in Figure 6.7 (b), the functionality of the metastability manager
can be divided into two phases (i) learning phase and (ii) data transmission
phase. During the learning phase, it analyzes a 1-bit strobe signal to deter-
mine the time instants at which data can be safely sampled. The method
relies on the periodicity of ratio-synchronous clocks; i.e. the relationship
between the transmitter and the receiver frequencies repeats periodically.
Based on the analysis results of the learning phase, the valid data is trans-
mitted to the receiver in second phase. Here, we will first explain each
component of the learning phase followed by its implementation. The data
transmission phase will be explained with implementation.

Strobe sampling and synchronization

The strobe signal originates from Dynamically Reconfigurable Isolation Cells
(DRIC). The DRIC uses the same shortened sequence (see Figure 6.6), gen-
erated for data-flow management, to drive the strobe signal. The shortened
sequence is stored in a 16-bit circular buffer (considering the maximum pos-
sible size of shortened sequence), that shifts its contents after every cycle.
The value of the least significant bit, in the circular register is assigned to a
toggle flip-flop that drives the strobe signal. Simply put, the strobe signal
toggles with each data transmission. The strobe signal itself is sampled,
by the metastability manager, after a delay of T W , at every (positive and
negative) clock edge. The motivation and method to determine T W will be
given later in this section. Since the source and destination of the strobe
signal have a different operating point, it is passed through high-latency
multi-stage synchronizers, to ascertain its validity.

127

Strobe analyzes

The strobe analyzes phase relies on the fact that the divider algorithm (see
Section 6.4) guarantees that the data sample obtained at either positive or
negative clock edge is valid [20]. This phase determines whether to sample
data at positive or negative clock edge. Let S = (s0, ..., si) denote a set
of samples, of delayed strobe signal (obtained at every clock edge). It was
shown in [20] that if si 6= si−1, the delayed strobe signal transitioned between
the time instants ti−1− tsu and ti + tho. Where tsu and tho denote setup and
hold times, respectively. In other words if si 6= si−1, the data can be safely
sampled at si.

6.5.2 Hardware Implementation

The RTL level implementation of metastability manager is shown in Figure
6.8 (b). We will explain the figure from left to right, considering how the
data flows. A strobe line is connected via delay line to two flip-flops, one
positive and other negative edge-triggered. To synchronize the strobe sam-
ples, each flip-flop is connected to a cascades of additional flip-flops. The
output of the flip-flop cascade is compared with the sample arrived half a
cycle earlier. The results of the comparator are fed to another a chain of
flip-flops. The outputs of this flip-flops chain are connected to multiplexers
controlled by sel = KNT −NS − 1 signal. Where NS and NT denote num-
ber of synchronization stages (typically 2 or 3 flip-flops) and transmission
ratio, respectively. K = ⌈NS/NT ⌉ is the smallest integer that guarantees
KNT − NS − 1 ≥ 0. The circuit of Figure 6.8 (b) outputs Sp and Sn sig-
nals to ensure that the hardware of Figure 6.8 (a) transmits valid data. If
Sp = 0(Sn = 0), vp(vnz) is cleared, otherwise the value of the shortened
sequence is stored in vp(vnz) and the value of the data signal is stored in
dp(dnz). The dnz and vnz signals are synchronized to the receiver clock
domain. vp(vn) indicates that a valid data item has just been sampled on
the positive (negative) edge of the clock. The ds register acts as a one cell
buffer to absorb the bursts of data sampled on two consecutive edges. When
dp and dn contain a word, the oldest (dn) is output and the newest is saved
in the ds register. vs = 1 when the ds register contains a valid item.

6.6 Dynamic Parallelism

In this section, we will explain how an application with each task containing
multiple versions is modeled. Additionally, we will also explain the poten-
tial problems with existing state of the art parallelism techniques (when
combined with DVFS).

128

Clk

(b) Learning phase

Sn

Sp

Clk

KNt-Ns-1

Strobe

(a) Data transmission block

Clk

Clk

Sp

Vp

Vnz

Sn

Dp

Dnz

Dn

Vn

Vp

Vn

Vs

VpVn+VpVs+VnVs

Sp = Strobe sampled at positive
 edge
Sn = Strobe sampled at negative
 edge
Vp = Sp
Vnz= Sn
Vn = Delayed Vnz
Vs = Valid data item in buffer
Dp = Data signal at positive edge
Dn = Data signal at negative edge
Ns = Number of synchronization
 stages
Nt = Transmission ratio
K = Ns/Nt
E = Enable register

1 1

1

1

1

1

16

16

1

16

161

1

E

E

E E

Figure 6.8: Metastability manager

129

6.6.1 Model

Before we introduce the intelligence to control the power management infras-
tructure, we will present an intuitive way to model an application containing
multiple tasks, where each task can be parallelized/serialized. In addition,
we will also show a simplistic delay and energy model to visualize how the
dynamic parallelism affects energy.

Application and delay model

An application A can be described by a directed acyclic graph, as shown in
Figure 6.9. It is an enhanced version of the directed acyclic graph proposed
in [74], that modeled application containing only the tasks with single ver-
sion. A directed acyclic graph is a quadruple < T ; V ; W ; C >, where T is
a set of tasks, corresponding to its nodes. Vi represents the set of versions
(implementations with different degree of parallelism) for each task ti ∈ T .
The weights, wi,j , of a node ti (shown below the nodes), represent the exe-
cution time of each version, v(i,j). A task with multiple versions ti(v(i,j)) is
expressed as:

ti(v(i,j)) = {ti(v(i,j)) ∈ T | w(ti(v(i,j))) > w(ti(v(i,j+1)))}, (6.2)

where i = 1, ..., T and j = 1, ..., Vi. Each edge, C(ti, tj), represents the
precedence constraints between tasks ti and tj. Consider an application
A, pipelined into T tasks, such that that each task executes on a different
part of the device. After the pipeline is filled, net execution time of the
application wA can be approximated as:

wA ≈ max(w(ti(v(i,vm))), (6.3)

where max(w(t(i,vm))) is the mapped task version requiring maximum ex-
ecution time. Simply put, an application is represented by a set of tasks.
Each task contains multiple versions with different degree of parallelism.
During execution, any task version can be mapped to the device. Over-
all application execution time is approximately equal to the mapped task
version, with maximum execution time.

Energy model

To visualize the effect of parallelism on energy efficiency, we present here a
simplistic energy model. The actual energy estimates, calculated by Synop-
sys Design Compiler on synthesized DRRA fabric, will be given in Section
6.9. Overall dynamic energy consumption is composed of two components
(i) computation energy and (ii) communication energy. Consider a CGRA
with multiple processing elements. The supply voltage and frequency, for a

130

O1

O2

C(1, 3)

C(1, 2)
C(2, 4)

C(3, 5)

task1

V1 V2

V3 V4

task2

V1 V2

V3

task3

V1

task4

V1 V2

V3

task5
V1 V2W(1-4)

W(1-3)

W(1) W(1-2)

W(1-3)

V = version
V1, V2 = versions with different degree of
 parallelism
W = execution time
W (1-4) = execution times of versions 1, 2, 3,
 and 4
C = communication
C (1,3) = task1 produces data consumed by
 task3
O1 = output1
O2 = output2

Figure 6.9: Directed acyclic graph representing tasks with multiple versions

processing element, are represented as V DDi and Fi, respectively. Where,
i denotes the processing element number. Using this notation, the dynamic
energy consumptions for computations can be written written as:

Ei(V DDi, Fi) = SWi ∗ Fi ∗ V DD2
i ∗ Aci, (6.4)

where Aci is the time for which ith processing element remains active and
SWi stands for the total switched capacitance per cycle. Equation 6.4 clearly
shows that the energy consumption can be reduced by lowering the frequency
and/or voltage. The for an application, the lowest allowed voltage/frequency
is determined by its performance requirements. Parallelism induces speedup
allowing to scale the voltage/frequency even further thereby reducing the net
energy consumption.

To model the communication energy, we use the bit energy matrix pro-
posed by Benini and Mecheli [127]. The bit energy matrix estimates the
communication energy, for a packet switched NoC to be:

Ebit = ELbit + EBbit + ESbit, (6.5)

where ELbit, EBbit, and ESbit, represent the energy consumed by the link,
buffer and switch fabric, respectively. For a circuit switched NoC (employed
in many CGRAs [112]), the bit energy matrix can be simplified to:

Ebit ≈ ELbit. (6.6)

Since EBbit, and ESbit, are negligible for circuit switched networks (because
after a route is configured, all packets follow the same route). It will be
shown that the parallel versions require additional communication energy,
since the data has to travel longer.

6.6.2 Optimal DVFS granularity

Remember from Section 6.1, depending on the granularity of power manage-
ment, DVFS can range from coarse-grained to fine-grained. Considering the
costs and benefits of fine/coarse grained DVFS, it was shown in [60] that
for CGRAs the DVFS is most effective when is done at application level.

131

These results have been further quantified by our experiments in Section
6.9). In application level DVFS, the operation point of an entire application
(e.g. WLAN, MPEG4) is scaled. Implementing DVFS at a finer granularity
(e.g. interleaver, scrambler) would require additional power hungry buffers
(DRICs in our case), that diminish the benefits of DVFS.

6.6.3 Problems with unconstrained parallelism

Existing techniques that aim to enhance energy efficiency by employing
parallelism, use greedy algorithm [128, 129, 57, 60]. However, the greedy
algorithm blindly parallelizes tasks causing two potential problems: (i) un-
productive resource allocation and (ii) inter-task resource arbitration.

Unproductive resource allocation problem

The existing techniques, that combine parallelism with DVFS, take decisions
to parallelize and/or serial a task, based on greedy algorithm. The greedy
algorithm blindly shifts a task ti(v(i,j)) to its parallel version ti(v(i,(j+1)), pro-
vided the required resources are available. Unfortunately, the parallel ver-
sion ti(v(i,j+1)) guarantees a reduction in overall application execution time
wA only if it requires maximum time; i.e. w(ti(v(i,j))) = max(w(ti(v(i,vm))))
(from Equation 6.3). Since, DVFS is done at application level (for motiva-
tion see Sections 6.6.2 and 6.9 or [60, 62]), without a reduction in overall
application execution time, voltage/frequency cannot be lowered. At the
same voltage and frequency ti(v(i,j+1)) is likely to result in excessive energy
consumption due to additional data communication cost of the parallel ver-
sion (see Equation 6.6). Moreover, if a resource is allocated to a task, it
cannot be can be turned off to save static energy. Therefore, it is essential
to judiciously decide whether to parallelize a task. The problem can be
formulated as follows: Given an application A with set of tasks T , subject
to availability of resources available and parallel versions, parallelize a task
ti ∈ T , only if parallelizing it increases overall application throughput.

Inter-task resource arbitration problem

To visualize this problem, consider an instance of a CGRA platform with
limited free resources. In a mapped application, A, multiple tasks can be
parallelized. However, the free resources are only sufficient to parallelize
some of the tasks. In this scenario, the resource manager should allocate
the free resources to the task(s) promising the highest energy efficiency. The
problem can be formulated as follows:
Given an application A with set of tasks tp ∈ T requiring some resources to
shift to a parallel version, subject to availability of resources, parallelize the
task ti ∈ tp promising maximum energy efficiency.

132

To illustrate these drawbacks of greedy approach, consider Figure 6.10.
Figure 6.10 (a) depicts an instance of CGRA that hosts two applications,
simultaneously. Application 1 contains three tasks, where tasks 1 and 3 can
be parallelized. Figure 6.10 (b) shows another instance of CGRA in which
application 2 finishes execution, leaving behind free resources sufficient to
parallelize both Task1 and Task3. The greedy algorithm will blindly paral-
lelize both the tasks, even though they have no impact on the application
throughput. Without a speedup, the operating point, of the application,
cannot be lowered. At same voltage and frequency, a parallel versions is
likely to be more expensive in terms of both dynamic (resulting from ad-
ditional data communication costs) and static (since an allocated resource
cannot be turned off) energy. Figure 6.10 (c), shows an instance when lim-
ited free resources are available. The greedy algorithm will be unable to
decide, which task to parallelize.

App1

Task1

2vers

Task2

1vers

Task3

3vers

App2

Task1

1vers

App1

Task1

2vers

Task2

1vers

Task3

3vers

Free
resources

CGRA at t0 CGRA at t1

App1

Task1

2vers

Task2

1vers

Task3

3vers

Free
resources

CGRA at t1

B
N

(a) CGRA platform hosting
 two applications

(c) Inter-task resource
 arbitration: greedy
 approach unable
 to prioritize parallelizing
 Task1 or Task3

(b) Unproductive resource
 allocation: task2 is
 bottle neck (BN)
 parallelizing Task1 or
 Task3 gives no speedup

Figure 6.10: Shortcomings of greedy algorithm

6.7 Parallelism Intelligence

As a solution to the above mentioned problems, we present energy aware
task parallelism. The proposed solution relies on resource allocation graphs
and autonomous parallelism, voltage, and frequency algorithm (APVFS), to
make parallelism decisions. In this section, we will show how to parallelize
tasks intelligently, later in Section 6.8, we will show the criteria to choose
voltage/frequency.

6.7.1 Architectural enhancements

The greedy algorithm requires no information about the application behav-
ior as it parallelizes tasks blindly. The proposed approach, aims to guide
the resource manager in dynamically allocating resources to tasks, such that

133

each resource allocation reduces energy consumption of overall application.
As shown in Figure 6.11, our approach relies on a compile-time generated
resource allocation graph (RAG). The runtime resource manager uses this
RAG as a guide to orchestrate parallelism at runtime. The RAG contains
information about the execution time and data dependencies of tasks. Based
on this information, and application deadlines, the runtime resource man-
ager alters frequency/voltage and manipulates parallelism, as will be dis-
cussed later in this section.

Resources
available

Application
deadlines

Vesyla
(HLS tool) Library Compiler

Simulink
model

Configware

Parallelize/
serialize

Versions

DRRA

DVFS

Compile time

Runtime

Leon3

CompressionRAG

Figure 6.11: Modified programming flow for energy aware task parallelism

6.7.2 Resource allocation graph (RAG) model

The resource allocation graph (RAG) ensures that a resource is only allo-
cated to a task, if it decreases overall application execution time. To accom-
plish this, RAG imposes complete ordering on task parallelism, by using a
one dimensional linked list shown in Figure 6.12. The RAG is composed of
five main components: (i) main nodes, (ii) entry edge, (iii) mapping header,
(iv) sub node, and (v) sub edge. The functionality of these components is
summarized in Table 6.2. RAG contains a set of main nodes connected by
directed edges, called entry edges. A main node, along with the nodes to
its left, represent the application parallelism state. Application parallelism
state identifies the version of each task at a main node. The main-node also
contains information about the application execution time at that node.
The left most main node represents all tasks with their serial version, and
therefore has the maximum execution time. The execution time of a main
node decreases from left to right. The entry edges show the additional re-

134

sources needed for moving to the main node towards right. A pointer called,
mapping header, is used to identify the task version currently mapped to
the platform. The mapping header points to one of the main nodes. During
execution, if the resources specified by the entry edge become free (because
another application finishes execution), the mapping header moves towards
right main node. The tasks, indicated by the sub nodes, are parallelized. To
each parallelized task, the resources allocated by the sub edge, are allocated.

To clarify the functionality of resource allocation graph (RAG), consider
for example the RAG shown in Figure 6.13 (bottom right block). The map-
ping header points to main node 3. It means that currently tasks 2, 5, 3, and
6 have versions 3, 2, 2, and 2, respectively, mapped to the platform. Rest
of the tasks have their serial version mapped to the platform. The applica-
tion parallelism state will remain in the same till at least three additional
resources are available.

Mapping header

ti,vj

ti,vj

ti,vj

ti,vj

ti,vj

ti,vj

Execution
time

Execution
time

Execution
time

Main node1

Sub node

ti= task number

vj= version number

Entry
edge1

Sub edge

Main node2 Main node1

Entry
edge2

Figure 6.12: Resource allocation graph model

Table 6.2: Functionality of various RAG components
Component Functionality

Main node

(i) Identifies the tasks to allocate the free
resources
(ii) A main mode with all the main nodes to
its right identify the version of each
task

Left most main node Represents all tasks with in serial version
Right most main node Represents all tasks with maximum parallelism
Mapping header Shows the mapped version of each task

Main node execution time
Shows the execution time of an application
when all the tasks using the version specified
by the main node

Entry edge
Specifies the number of resources needed for a
shift to main node towards right

Sub node Indicates the task to parallelize

Sub edge
Indicates the resources to each task in sub
node

135

6.7.3 RAG generation

RAG is generated, at compile time, from the directed acyclic graph of an
application. The proposed solution accommodates the directed acyclic graph
with multiple outputs, with different deadlines. As shown in Algorithm 2
and illustrated in Figure 6.13, the RAG is created in three main steps.

Directed acyclic graph

1

2 3 5

6 7

8 9

O1 O2
Dependency graphs

1

2

6 7

8

1

3 5

9

O1

O2

Intermediate resource
allocation graph 1

2,2

2,3

6,2

5,2 3,2

5,3 9,2

20

15

10

20

5

1

2

3

1 1

Intermediate resource
allocation graph 2

2,2 5,2 3,2 20

2,3 15

6,2 10

5,3 9,2 5

Mapping
header

Resource allocation Graph (RAG)

1

2

2

3

Main node1

Main node2

Main node3

Main node4

Figure 6.13: Resource allocation graph (RAG)

In the first step, a separate dependency graph, is created, for each ap-
plication output. Each dependency graphs, thus created, contain the tasks
on which an output depends. A task ti or an output oj is considered to be
dependent on another task tk, if ti or oj consumes the data produced by
tk. In the second step, each dependency graph is converted to an intermedi-
ate resource allocation graph. An intermediate resource allocation graph is
modeled the same way as resource allocation graph, discussed earlier in this
section. The first main node of an intermediate resource allocation graph,
represents all tasks (from the corresponding dependency graph), in their se-
rial versions. For generating the rest of the main nodes the execution times
of each task, is profiled and stored with the dependency graphs. To create

136

the second node, the task(s), tmax, with maximum execution time in the
dependency graph, is isolated. The overall application execution time ap-
proximately equals tmax. The parallel version of tmax forms the second main
node of intermediate resource allocation graph. In the dependency graph,
the execution time of tmax is updated to the execution time of its parallel
version. If the dependency graph contains multiple tasks with maximum
execution time, a sub node for each task is created and placed inside the
main node. The rest of the nodes of each intermediate resource allocation
graph are created the same way. The process continues until a task found
which cannot be parallelized. In the third step, the intermediate resource
allocation graphs are merged into a single resource allocation graph. Like
step 2, this step is also carried out iteratively. In each iteration, all the
intermediate resource allocation graphs are searched to find the main node
with maximum execution time. This main node, along with its entry edge,
is moved to the resource allocation graph (RAG). Therefore, a new node is
added to the RAG in each iteration. The process continues till all nodes
from intermediate resource allocation graphs are finished. To preserve the
dependency constraints, with exception of the first main nodes (in interme-
diate resource allocation graphs), a main node can only be moved to the
RAG, if its predecessor already exists in RAG.

6.8 Operating point intelligence integration

The dynamic voltage and frequency scaling presented in [60] and [62] rely on
monitoring the deadlines at runtime. This method has two drawbacks: (i) it
forces the application to miss a deadline, and is therefore applicable for only
soft deadline applications and (ii) it requires multiple counters that consume
additional dynamic energy. The main motivation for using the counters was
that storing the complete application profile with all the versions is very
costly. We will show here that by using the RAG, the storage requirements
are reduced, or the profile can be generated at the runtime.

6.8.1 Integrating voltage and frequency in RAG

The proposed algorithm caters the overheads of the runtime monitoring us-
ing counters by adding the operating point information in the compile time
generated resource allocation graph. Remember that each main node in
RAG represents an entire application (to find the version of each task a
node with the nodes to its right). The main node also contains application
execution time (in cycles) at a particular state. Therefore, given the appli-
cation deadline and available frequencies, the lowest frequency that meets
applications deadlines can be easily calculated.

137

Input: DAG representing an application ;
Output: Resource allocation graph (RAG) ;
/* Generate dependency graphs */

Construct, D, dependency graphs for each application output and
calculate execution times of all task versions;
/* Generate intermediate resource allocation graph */

for j ← 0 to D do
for continuous do

Isolate the bottleneck task(s), tmax ;
entry edge= 0 for m← 0 to L do

/* L is a set of tasks, tli, with execution time =

tmax, and each tli is a sub node */

Find the resources Rm needed to parallelize tmax ;
Create a sub node with the weight of sub edge =Rm ;
entryedge = entryedge + Rm ;

end
Create a new main node with entry edge, sub nodes, and sub
edges;

end
Break loop ;

end
/* Generate Resource Allocation Graph (RAG) */

In the intermediate resource allocation graphs, find main nodes,
MNmax, with maximum execution time;
if MNmax > 1 then

Combine all Main Nodes (MN) in to a single node ;
end
while ∃ MN in intermediate resource allocation graphs do

Find the MNmax ;
if the predecessor of the main node already in RAG then

Add mnl as a new node in RAG ;
end

end

Algorithm 2: Resource allocation graph (RAG) generation

138

Data: Available frequencies Freq, application deadlines Adl, RAG
main nodes MN with execution time in cycles MNet

Result: RAG main nodes with corresponding frequency and voltage
Selected frequency ;
Fs = Freq(0) ;
for i← 0 to MN do /* loop through all main nodes */

for j ← 0 to Freq do /* loop through all frequencies */

exetime= MNet(i)/Freq(j) ;
if exetime <= Adl then

Fs=Freq(j) ;
else

Add Fs with the MN(i);
break frequencies loop;

end

end

end

Algorithm 3: Generating RAG with frequency and voltages

Main
node1

Execution
time

Main
node2

Execution
time

Main
node3

Execution
time

Application
deadline

Voltage
frequency

pairs

Main
node1

Execution
time

Main
node2

Execution
time

Main
node3

Execution
time

Voltage
frequency

Voltage
frequency

Voltage
frequency

Figure 6.14: Resource allocation graph (RAG) with voltage and frequencies

139

6.8.2 Quantifying Feasibility of profiling

The main motivation for monitoring the runtime performance in our previ-
ous works [60, 62] was to avoid the excessive memory overhead of profiling
all the versions with all the frequencies. The total values that needed to
be stored is given by versions ∗ frequencies ∗modes. Where mode repre-
sents the operating mode of an applications; e.g. WLAN be mapped with
either BPSK, QPSK, or 16-QAM mode and the processing speed depends
on the chosen mode. In the proposed approach, the memory requirement is
simply equal to the number RAG nodes. The memory requirements for the
presented algorithm is shown in Figure 6.15.

Figure 6.15: Memory requirements to generate profile for RAG based par-
allelism

6.8.3 Autonomous Parallelism, Voltage, and Frequency Se-
lection (APVFS)

To demonstrate the effectiveness and overheads of using our scheme, we
have used APVFS algorithm, shown in Figure 6.16. In the figure, Rf , Rep,
Aa, Ar, V , and F refer to free resources, resources needed to enter the
next RAG node, actual execution time, deadline, voltage, and frequency,
respectively. Depending on the runtime deadlines and available resources,
the algorithm iteratively finds a mapping offering high energy efficiency.
The algorithm operates in three steps: (i) RAG forward traversal, (ii) RAG
backward traversal, and (iii) parallelism lookup table traversal. In RAG
forward traversal, the RAG is traversed from the first main node to the last
main node till an entry edge with weight greater than free resources is found.
The mapping pointer (MP) is placed at the source main node, of this edge.
In RAG backward traversal, the RAG is traversed from this main node to
the first node, to generate a parallelism lookup table. The parallelism lookup
table is a look-up table with single column. The index of the table indicates
the task number and its value denotes the mapped version. During the back
traversal, the task versions, indicated by the RAG sub nodes, is placed in

140

the the task cell, if its empty. If a task cell is already full (indicating that a
version with higher energy efficiency is already present) no action is taken.
In the parallelism lookup traversal step, the task versions present in the filled
cells are mapped to the device. For empty cells, the most serial versions of
the tasks are mapped.

New app
enters

Start

Aa<Ar?

Reduce
V/F

Old V/F
switch

Store
V/FYes

No

V/F selection

F avail?

Yes

No

END

Select initial
RAG node

Shift to
next node

Rf<Rep?

Rf<Rep?

No

Yes

RAG
farward traversal

Shift to last
node

Shift to
next node

Yes

Add ti(v(i,j))
in PUT

PUTti=ø?

Yes

1
st
node?

RAG
Backward traversal

Check 1st

PUT row

Shift to
next row

Add ti(v(i,1))
in PUT

PUTti=ø?

Yes

last row?

Map app

PUT traversal

No

Yes

No NoYes

No

RAG = Resource allocation graph
Rf = Resources free
Rep = Resources shown by entery edge of next node
PUT = Parallelism lookup table
t = Task
v = Version
V = Voltage
F = Frequency
App = Application
Aa = Application actual execution time
Ar = Application required exeution deadline
avail = Available

Figure 6.16: Autonomous parallelism, voltage, and frequency selection
(APVFS)

6.9 Results

To identify the voltages and their corresponding supported frequencies,
DRRA fabric was synthesized. The technology supports voltages from 1.1
V to 1.32 V. The synthesis results revealed that DRRA can run up to a
frequency of 1.2 GHz and 1 GHz at 1.32 V and 1.1 V, respectively.

141

6.9.1 Energy and power reduction

To determine the power and energy consumption, gate level Switching Ac-
tivity Files (SAIF) were recorded. The power analysis was performed on the
synthesized DRRA fabric with the generated SAIF files.

Independent islands

Here, we will show the benefits of combining parallelism with DVFS, for the
algorithms that do not communicate with each other (i.e. they do not require
DRICs/buffers for synchronizing the clock domains). Later in section 6.9.1,
we will show how the application level DVFS using DRICs reduce the over-
heads, compared to static buffers. We used matrix multiplication, FIR filter,
and FFT as representative algorithms, motivated by their extensive use in
many DSP applications (like WLAN, image enhancement etc.). To exploit
parallelism, matrix multiplication with three versions, serial (ser), partially
parallel (parpar), and parallel (par) was used. The benchmarks were exper-
imented with no DVFS, traditional DVFS (TDVFS; i.e. DVFS without par-
allelism), DVFS with runtime parallelism (PVFS shown in [60, 62]), and the
pre-profiled DVFS (PPVFS; presented in Section 6.8.3). Synthetic deadlines
were used to analyze whether a shift to different version/voltage/frequency
should be made. Initially, maximum frequency (1.2 GHz) and voltage (1.32
V) was assigned to all cells of the fabric. Figures 6.17 and 6.17 show en-
ergy and power consumption, after applying no DVFS, TDVFS, PVFS and
PPVFS. Since the matrix multiplication had three versions, we have shown
it separately, as well, to amplify the effect of dynamic parallelism. It can
be seen that by applying PVFS and PPVFS the power and energy con-
sumption of matrix multiplication reduces by 23% and 51%, respectively.
The proposed PPVFS iterates quickly to the quickly to the optimal energy
and power. Figures 6.17 depicts a scenario when FIR and FFT also enter
the platform platform at time instants 9 and 13, respectively. Again the
proposed algorithm iterates quickly compared to the TDVFS and PVFS
without missing a single deadline.

Communicating islands

To evaluate the energy reductions for algorithms/applications, at different
operating points, that communicate with each other, we mapped the WLAN
transmitter to DRRA (see [62]). In our experiments, the interleaver and the
IFFT had respectively 2 and 5 versions. The actual deadline of WLAN i.e.
4µsecs was used. To quantify the energy/power reductions, promised by
our approach, we compared it to three DVFS algorithms: (i) traditional
DVFS (TDVFS), (ii) dynamic parallelism voltage and frequency scaling us-
ing greedy algorithm with application level DVFS (GPVFS), and (iii) dy-

142

Figure 6.17: Energy and power savings by applying APVFS on matrix mul-
tiplication with multiple versions

Figure 6.18: Energy and power savings by applying APVFS multiple algo-
rithms

143

namic parallelism voltage and frequency scaling using greedy algorithm with
task level DVFS (TPVFS). The results are shown in Figure 6.19. The figure
shows power and energy consumed with different number of free resources.
For 13 resources, all the algorithms show similar behavior, since none of
the application tasks can be parallelized. When 17 resources are available,
the interleaver can be parallelized. Both GPVFS and TPVFS parallelize
the interleaver. Unfortunately, TPVFS, increases both the power and en-
ergy consumption as a result of additional buffers needed for synchronizing
different frequency islands. GPVFS is unable to perform any voltage or
frequency scaling, since it would violate 4µsec deadline of WLAN. APVFS
leaves the extra resources free. These free resources can can be powered off
to reduce static power/energy. For 19 resources, APVFS, parallelizes the
FFT (which was actually the bottleneck in application performance), pro-
viding reduction in power and energy since both the voltage and frequency
can be scaled at this point. GPVFS is unable to utilize these resources, since
it would parallelize the Interleaver first. At this point, it can be seen that
APVFS saves 28% power and 36% energy compared to GPVFS. It should
be noted that if more resources are available, GPVFS will continue to assign
resources till all the 5 versions are exhausted.

Figure 6.19: Energy and power consumption of WLAN on DRRA

Resource utilization

To evaluate the resource utilization, promised by our technique compared to
the greedy approach, both the techniques were simulated. For simulations,
MPEG4 [66] and WLAN [62] were used. Figure 6.20 shows the resources
allocated to the applications and their corresponding throughputs. The
figure clearly illustrates that while energy aware task parallelism allocates a
resource(s), only if it promises a speedup, the greedy approach suffers from
unproductive resource allocations for both the applications. For MPEG4,
the greedy approach makes unproductive allocations when 16, 18, 20 and 22
resources are free. For WLAN, an unproductive allocations is made for 15
free resources, and the effect ripples till 21 free resources are available. It is
is due to these unproductive resource allocations that the greedy approach

144

consumes excessive energy/power (as seen in Section 6.9.1).

Figure 6.20: Resources required for speedup RAG vs greedy approach

Reduction in configuration memory requirements

Finally, our method promises significant savings in configuration memory
requirements compared to state of the art compression method proposed
in [57]. This method, called Compact Generic Intermediate Representation
(CGIR), compresses data by storing configware for only a single version.
The rest of the versions are stored as differences from the original version.
Remember, from Section 6.7, the RAG isolates the versions which actually
reduce power/energy. Therefore, all the redundant versions are discarded.
As a result, APVFS promises considerable configuration memory savings.
The proposed method promises significant (up to 36 %) memory savings
compared to state of the art for implementing IFFT in WLAN. Figure 6.21

145

clearly illustrates the trend that as the number of stored versions increase,
our method promises a higher compression compared to CGIR.

Figure 6.21: Compression achieved by using RAG based DVFS

6.9.2 Overhead analysis

DRIC overheads

To analyze the benefits (in terms of area) of the proposed method (ISD-
VFS), employing DRICs, compared to the traditional DVFS (TDVFS), we
synthesized different versions of DRRA. For each version different number of
cells and islands were chosen. The synthesis results are illustrated in Figure
6.22. In the figure, ISDVFS 1, ISDVFS 2, ISDVFS 3, and ISDVFS 4 refer
to a fabric with 1, 2, 3, and 4 DRICs, respectively. It is seen that while over-
heads of TDVFS increase linearly with size of fabric, the cell addition has
negligible effect on ISDVFS. The overheads for ISDVFS are more dependent
on the number of communicating islands. The figure reveals that ISDVFS
incurs lesser overhead provided only a single DRIC is employed for 10 or
more cells. Since even simple applications like WLAN transmitter (with
serial IFFT) require 16 cells, for most real world applications our approach
promises significant reductions in area overheads. The proposed approach
incurs additional timing overhead, when a DRIC is initially mapped to the
device. This overhead is dependent on the size of DRIC configware, gen-
erated by RTM. For 15 frequency levels, used in this thesis, the maximum
size of DRIC configware can be 15 words and would require 15 cycles to
be mapped. This overhead is a negligible compared to overall application
execution time. DRIC generation itself does not require any overhead since
it occurs transparently in background.

APVFS overheads

The proposed approach incurs additional timing overhead during forward,
backward, and parallelism lookup table traversals. However, the traversals

146

are done in the background, while the application is running. The applica-
tion has to stall for only As = SW ∗LC secs. Where SW and LC denote the
number of words in configware and the time required for loading a word,
respectively. At 400MHz, the reconfiguration of the serial and partially
parallel versions of WLAN require As = 9µsec, and As = 10µsec, respec-
tively (i.e. only 3 frames will be lost during reconfiguration). The memory
overhead of storing RAG is MRAG = Nbit ∗ (

∑
mainnodes +

∑
subnodes +∑

enteryedges) bits, where Nbit, represents the bits required to store a node.
For WLAN, considering Nbit = 32bits, MRAG = 576bits. Since this overhead
is only 14% of the reductions in configuration memory (shown in section Sec-
tion 6.9.1), overall, APVFS requires less memory than previously presented
approaches. For the GRLS clocking strategy, used in DRRA, the voltage
switching time is approximated to be 20ns, while a frequency can be changed
in a single cycle.

Figure 6.22: Area comparison ISDVFS vs TDVFS

6.10 Summary

In this chapter, we have presented architecture and implementation of energy
aware CGRAs. The proposed architecture promises better area and power
efficiency, by employing DRICs and APVFS. The DRICs utilize reconfigu-
ration to eliminate the need for most of the dedicated hardware, required
for synchronization, in traditional DVFS techniques. APVFS ensures high
energy efficiency by dynamically selecting the application version which re-
quires the minimum frequency/voltage to meet the deadline on available
resources. Simulation results using representative applications (Matrix mul-
tiplication, FIR, and FFT) showed up to 23% and 51% reduction in power
and energy, respectively, compared to traditional designs. Synthesis results
have confirmed significant reduction in DVFS overheads compared to state
of the art DVFS methods. Future research on energy-aware architectures

147

will involve investigating the effect APVFS has on energy-aware mapping.

148

Chapter 7

Private operating
environment for NoCs

7.1 INTRODUCTION

In this chapter we will explain how the power management intelligence was
integrated to the McNoC platform. As already explained, McNoC already
hosted an architecture to support multi VDD/multi frequency partitions of
NoC. The architecture uses GRLS principles to ensure that validity when
crossing clock domains. In additions the architecture allowed to use simple
commands like change DVFS to scale the voltage and/or frequency. Unlike
the private operating environments for the CGRAs, where the intra appli-
cation communication patterns are predictable, in packet switched NoCs
both inter and intra application communication patterns are unpredictable.
Therefore, instead of profiling, to achieve autonomous adaptivity we decided
to integrate a feedback loop in existing McNoC architecture. The proposed
feedback loop monitors the traffic loads at runtime and based on the loads
autonomously find the optimal voltage and frequency that meets the appli-
cation deadlines (for each switch).

This chapter presents the essential architectural support to enable the
automation of power management services. The need for scalability has dic-
tated the use of a hierarchical agent monitored NoC. The proposed architec-
ture contains several levels of controllers, called agents (see Chapter 5), with
hierarchical scope and priorities, to provide both coarse and fine-granular
observability and reconfigurability. Conceptually, agents are monitoring and
reconfiguration functions, which can be realized as software, hardware or a
hybrid of both. The conventional NoC platform (consisting of data, memory
and communication) is considered as a resource supervised by the agents.
As explained in previously in Chapter 5, the hierarchical monitoring ser-
vices are performed by three types of agents: (i) system agent, (ii) cluster

149

agent, and (iii) cell agent. The system agent, which determines the adap-
tive policy for the whole NoC. It is implemented in software agent, with
specific instructions designed monitor and reconfigure the NoCs. The clus-
ter agents are only used for the fault tolerance services already mentioned
in Chapter 5. The cell agents monitor (e.g. traffic loads) and reconfigure
the local resources (e.g. voltage and frequency) based on the command from
the system agent. The communication between agents are implemented on
existing NoC channels. The agents are fully integrated in a RTL-level cycle-
accurate NoC simulator with LEON3 processing elements and distributed
shared memory.

To test the efficacy of our solution, we have used best-effort per-core
DVFS (dynamic voltage and frequency scaling), as a representative algo-
rithm. The architecture and the algorithm were tested on a few applications
(matrix multiplication, FFT, wavefront, and hiperLAN transmitter). The
software and hardware overheads were evaluated to show the scalability of
the system architecture.

7.2 RELATED WORK

The coming dark silicon era has made DVFS a subject of intensive research.
Existing works focus previous on a specific algorithms or monitoring to de-
termine the optimal power. Unfortunately, works that deal with systematic
approach for generic monitoring and reconfiguration architecture that al-
lows integration of various services (e.g. fault tolerance and DVFS) are
fairly limited.

Ciordas [28] proposed a monitoring-aware system architecture and de-
sign flow for NoC. This work focused on hardware-based probes for transac-
tion debugging and QoS (Quality-of-Service) provision. Our work, however,
presents a SW/HW (software/hardware) co-design approach to the monitor-
ing and reconfiguration, with services for non-functional design goals, such
as power and energy consumption. Sylvester [116] presented an adaptive sys-
tem architecture, ElastIC, for self-healing many-core SoC. Where each core
was designed with observable and tunable parameters, for instance power
monitors. A centralized DAP (diagnostic and adaptivity processing) unit
dynamically was employed to test and reconfigure the cores with degraded
performance. However, [116] does not explore the architectural support. A
two-level controlling architecture was presented by Dafali [32]. They used
a centralized configuration manager to determines the management policies
(of the whole network), while each local manager performed reconfigura-
tion based on the management policies. However, this work only focused
on the design of self-adaptive network interface, without the system level
discussion of power efficiency or dependability. Liang et al. [42] proposed a

150

functional overview of hierarchical agent monitoring design paradigm. This
work presented an instruction-level architectural design and implementation
specifically for NoC platforms. However, they only focused on general prin-
ciples to realize functional partition. Hoffmann [50] presented a so-called
”heartbeat framework”. This approach presented a way for applications to
monitor their performance and make that information available to external
observers. The progression of the application is symbolized as a heartbeat.
By monitoring the intervals between heartbeats, the platform observer and
the application can be aware of the system performance. We integrate this
application labeling approach into our system architecture, where the sys-
tem agent monitors the application execution time by checking the labeled
timestamps.

Compared to these existing works, we made following major contribu-
tions:

• We presented an scalable hardware architecture to provide monitoring
and reconfiguration services using hierarchical agents.

• We presented an instruction-level architectural design that enables the
system architecture to be integrated into NoC design flow.

7.3 ARCHITECTURAL DESIGN

The functions of system and cell agents were implemented as software in-
structions and hardware components, respectively. For the software based
system agents we designed various instructions to monitor and reconfigure.
For hardware based cell agents, we designed an interface with the software
and the the necessary primitives to control the resources under the directives
of system agent.

7.3.1 Application Timestamps

To allow applications monitoring, meta-data was added in the instructions
(e.g. to denote the progression of the application). Fig. 7.1 depicts an
example of adding timestamps in the applications. In particular, the starting
and finishing time of the application and the critical sections are labeled with
special instructions, so that the occurrence of these events can be monitored
by the system agent.

These timestamps labeling instructions are implemented as memory write
instructions. Specific data is written to a memory location of the system
agent, to notify the occurrence of the event. The allocation of the memory
address is performed during compilation.

151

Application_start();

...

...

Monitored_event_start();

...

...

Monitored_event_end();

...

...

...

Application_end();

Memory_write(memory_location1)

On the system agent’s memory space

Memory_write(memory_location4)

Application labelled with Timestamps

Memory_write(memory_location2)

Memory_write(memory_location3)

Implementation

Figure 7.1: Labeling Timestamps in the Application

7.3.2 System Agent

The system agent works as the “general manager” for monitoring and re-
configuration services. Depending on the design requirement, the system
agent performs operations like task mapping, process scheduling, run-time
power management and fault tolerance. The need to perform these diverse
operations has motivated us to implement the system agent is implemented
as a dedicated processor in NoC, so that the agent functions can be reloaded
dynamically. For smaller projects, the system agent can be implemented as
a separate thread. The system agent monitors the application progress and
the system parameters, and reconfigures the system according to an adaptive
algorithms. To accomplish this, the system agent first checks the start of the
application (or a frame in streaming applications), which is implemented as
a blocking memory read. The application will label the timestamps when
it starts (Section 7.3.1). To monitor a certain parameter after the applica-
tion starts, the system agent first issues a command to check the run-time
value of the parameter. The command is written to the memory location of
the intended network node, so that the corresponding cell agent will receive
the command. Similarly, the system agent issues a number of parameter-
checking commands, implemented as non-blocking memory writes. To make
the reconfiguration decisions, the system agent waits on the report of the
monitored parameters by the corresponding cell agents (as memory writes;
Section 7.3.3). These waiting operations are implemented as blocking reads.
When a read completes, the system agent performs reconfiguration based
on the run-time parameter values. The waiting of multiple parameters are
parallel processes, since the parameters may be returned in random orders.
When all required monitoring and reconfiguration operations are finished,
the system agent waits for the completion of the application. However, in
case one monitored parameter is the execution time of an application frame,
the monitoring operation may be finished after the frame ends.

Table 7.1 lists the detailed C instructions (on a Leon 3 processor) on the
system agent to implement monitoring and power management.

152

Parallel processes:

Check (monitored_parameter1);

...

Check (monitored_parameter2);

...

blocking_read(memory_location1)

Software Instruction

Check_Application_Start();

...

Check_Application_End();

...

Implementation

Process 1:

blocking_read(location_parameter1);

reconfiguration1(paramter1);

Process 2:

blocking_read(location_parameter2);

Reconfiguration2(parameter2);

Memory_write(command1);

Memory_write(command2);

Reconfiguration1 (monitored_parameter1);

Reconfiguration2 (monitored_parameter2);

blocking_read(memory_location2);

Figure 7.2: Monitoring and Reconfiguration Software on System Agent

Table 7.1: Experimented Instructions for Monitoring and Power Manage-
ment on System Agent (a LEON3 processor)

Instruction Function

wait(memory location) Wait for the occurrence of an event (the application
writes the corresponding memory location)

get load(row, column, switch) Check the run-time workload of a particular switch
reset load(row, column, switch) Refresh the workload record of a particular switch
set window(row, column, switch, Set the monitoring window
windowsize)
set priority(row, column, Set the priority of agent command in the network
switch, priority) arbitration
DVFS change(memory location, Change the voltage and frequency of a particular
clk sel, vol sel) switch (denoted by the memory location)

153

Network

Node

System Agent

Local agent

Microcontroller

Monitor commands

e.g. get_load

load

load

wrapper

Clk_sel

Vol_sel

Other parameters,

e.g. Packet latency

Reconfiguration

commands e.g.

DVFS_change

Figure 7.3: Schematics of cell Agent and its Interfaces to System Agent and
Network Node

7.3.3 Cell Agents

Cell agents are distributed hardware entities embedded in each network
node. They receive commands from the system agent to activate the mon-
itoring and reconfiguration operations. Each cell agent, after receiving the
monitoring commands from the system agent, reads the required parameters
from the local resource (Fig. 7.3). Similarly, when receiving a reconfigura-
tion command, it actuates the reconfiguration, for instance by setting the
power switch and frequency generator. The interfaces to various parameters
for monitoring and reconfiguration are hardwired, so that the network node
can be used as a modularized component integrable into any NoC systems.

7.3.4 Architectural Integration

The agent intelligence layer is the architectural integration of the system
agent and the distributed cell agents, with time-stamp-labeled application
(Fig. 7.4) .

The application programmers specify the timestamps of monitored events
in the application, for instance the starting/end times of each frame. The
system designers write software instructions for monitoring and reconfigu-
ration operations with high-level abstraction. These operations are sent to
and implemented by cell agents, which are hardware entities present in each
network node. The wrapping of the cell agent and the resource is design
specific. For instance, if parameters from both the processing element and
the router are needed for the monitoring and reconfiguration, the cell agent
is attached to the whole node. Since the monitoring and reconfiguration are
infrequently issued compared to data communication [29], we can reuse the
existing NoC interconnect for inter-agent communication.

Due to the SW/HW co-design and modularized architectural integration,
the agent intelligence layer is highly scalable. The cell agent wrapper can
be applied to any NoC node (or a particular NoC component, e.g. router),

154

System Agent

Management Sofware
Processing element

Router

Application_start;

......

Start

(monitored_event1);

......

Local agent

Local

agent

Router

check(paramter1);

check(parameter2);

Reconfiguration1(parameter1);

Reconfiguration2(parameter2);

...
Check

parameters

Wrapper

......

End

(monitored_event1);

......

RouterRouter

Inactive

Inter-agent communication

Commands/

Monitored data

reconfigure

Local

agent

Check

parameters

reconfigure

Local

agent

reconfigure
......

......

Application_end;

Figure 7.4: Integrating Hierarchical Agents as an Intelligence Layer

155

and be used as a building block to construct a NoC of arbitrary size without
incurring additional overhead. The software-based system agent, on the
other hand, can be written with various monitoring and reconfiguration
instructions as needed for the application.

7.4 SELF-ADAPTIVE POWER MANAGEMENT

To demonstrate the effectiveness and overheads of using dual-level agents, we
have used best-effort per-core DVFS on the existing NoC platform. Based
on the specified parameters (e.g. peak load and average load), the cell agents
trace run-time system information. Upon the request of the system agent,
they return the recorded values. Depending on the provided information
and the application performance constraints, the system agent adjusts the
voltage and/or frequency to optimize the power and energy consumption.

7.4.1 Best-effort Per-Core DVFS (BEPCD)

The adaptive power management using distributed DVFS with run-time ap-
plication performance monitoring, abbreviated as BEPCD, is illustrated in
Fig. 7.5. P, S, LT, F and Ts represent processor, switch, low traffic switches
(the switch with the lowest workload), switch frequency and threshold time
(the application latency), respectively. The terms inside parenthesis rep-
resent the function to be performed on the entity to the left (e.g. P(any)
starts? means if any of the processors starts). Simply put, the process is
performed in three steps: (i) the initialization of voltage and frequency of
each switch and the setting of application latency requirement, (ii) run-time
tracing of the workload of each switch and the application latency (Section
7.3.2), (iii) if the latency is lower than the constraint, DVFS is applied to
the switch with the lowest workload.

7.4.2 Experiment Setup

To identify the voltages and their corresponding supported frequencies, the
switches were synthesized (Table 7.2). The technology supports voltages
from 1.1 V to 1.32 V. The synthesis results reveal that the routers are
capable of supporting up to 300 MHz frequency at 1.32 V and up to 200
MHz frequency at 1.1 V. Based on GRLS clocking in the NoC platform, the
allowable frequencies are 300, 200, 100, 50, 40, and 20 MHz (exact divisors
of FH = 600MHz, least common multiplier of 300MHz and 200MHz).

Four applications (matrix multiplication, FFT, wavefront, and hiperLAN
transmitter) are mapped on a 3x3 mesh-based NoC. The absence of DSPs in
existing NoC platform prevents us from meeting the deadline (4 µs/frame)
of hiperLAN transmitter. Thus we set the deadline as the minimal latency of

156

Figure 7.5: Per-Core DVFS for Best-effort Power Management with Run-
time Performance Monitoring

Table 7.2: Voltage frequency pairs
Voltage Frequency Timing constraints

(V) (MHz)

1.32 400 violated
1.32 300 met

1.32 200 met

1.1 400 violated
1.1 300 violated
1.1 200 met

1.1 100 met

1.1 50 met

1.1 40 met

1.1 20 met

157

the application on the NoC platform (39 µs) , when all routers are configured
with the highest frequency.

To analyze the power and energy consumption, the switching activity
files are generated for each application from Cadence NCSim. The power
analysis is performed by Synopsys design compiler on the synthesized NoC
routers with the generated switching activity files.

7.4.3 Experiment Result

Four benchmarks (matrix multiplication, FFT, wavefront, and hiperLAN)
were experimented with BEPCD algorithm. Initially, the system agent as-
signed max frequency (300 MHz) and voltage (1.32 V) to all switches. At
each iteration, the application execution time was monitored and if it did
not violate the timing deadline, the next lower voltage/frequency pair from
Table 7.2 was assigned to the lowest traffic switch (in terms of peak load in
a time window of 40 cycles).

Tables 7.3, 7.4, 7.6, and 7.5 show the energy and power savings of each
of the four benchmarks. In the tables, the second column shows the switch
number which changes its voltage/frequency followed by ”f” or ”vf”. ”f”
indicates a frequency change, while ”vf” shows that both the voltage and
frequency change.

The power and energy trends for each of the four applications are clearly
depicted in Figure 7.6. It is seen that as a consequence of BEPCD, the NoC
quickly iterates towards the minimum power for each of the application. If
the targeted switch is present in the critical path, as expected, the applica-
tion execution time (AET) increases with a decrease in voltage/frequency
(iteration 3 to 6 and 7 to 9 in Table 7.3, iteration 2 and 4 in Table 7.6). The
AET remains unaffected if the switch does not come in the critical path
(Table 7.5, iteration 6 to 13 Table 7.6). In some situations, the memory
contention is reduced with voltage/frequency decrease, then AET may also
decrease (iteration 7 and 10 Table 7.3, iteration 7 and 10 in table 7.4, and
iteration 3 in Table 7.6).

The BEPCD performs iterations only till the application meets dead-
line. To cater for the sudden changes in time (iteration 6 in Table 7.4)
resulting from massive memory contention (iteration 6 Table 7.4), the al-
gorithm performs an additional iteration to check if a further reduction in
frequency would reduce time. If no reduction is encountered, switch is re-
verted to original frequency and no further DVFS commands are given. The
plots confirm clearly significant advantages of our proposed strategy (from
21% to 33% decrease in energy and from 21% to 36% decrease in power
consumption).

158

Table 7.3: Energy and power savings for matrix multiplication
Iteration Switch Time Energy Power Energy saving Power savings

(ns) (mJ) mW % %

1 - 105834 1.73 16.35 0 0
2 1vf 105834 1.67 15.84 3.11 3.11
3 3vf 106808 1.26 11.84 26.90 27.56
4 3f 107415 1.21 11.31 29.78 30.82
5 3f 112134 1.25 11.20 27.39 31.46
6 3f 116373 1.27 10.99 26.07 32.76
7 1f 101815 1.11 10.97 35.46 32.91
8 2vf 108774 1.92 16.96 31.11 32.97
9 2f 113100 1.17 10.41 31.97 36.34
10 2f 111134 1.15 10.38 33.32 36.50
11 2f 111467 1.57 10.38 33.12 36.53

Table 7.4: Energy and power savings for FFT
Iteration Switch Time Energy Power Energy saving Power savings

(ns) (mJ) mW % %

1 - 381615 17.40 45.61 0 0
2 3vf 381615 15.87 41.60 8.78 8.78
3 3f 381615 15.67 41.07 9.95 9.95
4 3f 381616 14.10 36.96 18.95 18.95
5 1vf 377320 13.66 36.21 21.49 20.59
6 1f 430525 15.54 36.11 10.68 20.83
7 1f 381616 16.69 35.89 21.29 21.29
8 2vf 381616 13.69 35.89 21.29 21.29
9 2f 381154 13.68 35.89 21.39 21.29
10 2f 376549 12.01 31.89 30.99 30.06

Table 7.5: Energy and power savings for HiperLAN
Iteration Switch Time Energy Power Energy saving Power savings

(ns) (mJ) mW % %

1 - 39000 1.77 45.61 0 0
2 1vf 39000 1.62 41.60 8.78 8.78
3 3vf 39000 1.60 41.07 9.95 9.95
4 3f 39000 1.44 37.06 18.73 18.73
5 3f 39000 1.42 36.54 19.88 19.88
6 3f 39000 1.42 36.42 20.13 20.13
7 1f 39000 1.41 36.21 20.59 20.59
8 - 39000 1.40 35.90 21.29 21.29
9 - 39000 1.40 35.90 21.29 21.29
10 - 39000 1.40 35.90 21.29 21.29
11 - 39000 1.40 35.90 21.29 21.29
12 - 39000 1.40 35.90 21.29 21.29

159

Table 7.6: Energy and power savings for wavefront
Iteration Switch Time Energy Power Energy saving Power savings

(ns) (mJ) mW % %

1 - 91970 1.51 16.50 0 0
2 3vf 110234 1.37 12.50 9.15 31.94
3 3f 106529 1.28 12.03 15.51 37.09
4 3f 110294 1.32 11.97 12.96 37.79
5 - 110294 1.32 11.97 12.96 37.79
6 - 110294 1.32 11.97 12.96 37.79
7 - 110294 1.32 11.97 12.96 37.79
8 - 110294 1.32 11.97 12.96 37.79
9 - 110294 1.32 11.97 12.96 37.79
10 - 110294 1.32 11.97 12.96 37.79

Figure 7.6: Energy and power comparison for (a) matrix multiplication, (b)
FFT, (c) wavefront, and (d) hiperLAN

160

7.4.4 Overhead Analysis

To evaluate the overhead of the dual-level agent intelligence layer, we need
to analyze the area overhead of microcontroller-based cell agent (Fig. 7.3)
and the instruction overhead of software-based system agent (Fig. 7.2).

At 300 MHz frequency with 1.32 V operating voltage, Synopsys design
compiler shows an area of 1459 µm2 for each cell agent, which is negligible
(4 %) as compared to the router area (33806 µm2). The cell agent does
not contribute to any timing overhead as it is not present in the critical
path of the switch. Concerning the software overhead of the system agent,
it only amounts to 279 lines of C code on Leon 3 processor for the BEPCD
algorithm.

We can see from the overhead analysis that, dual-level agent monitoring
incurs minimal hardware area overhead and software instruction overhead.
Thus the system architecture is scalable to large-sized NoCs with a diversity
of monitoring and reconfiguration functions.

7.5 Summary

In this chapter, we have presented the design and implementation of a
generic and scalable self-adaptive NoC architecture. The system is mon-
itored and reconfigured by dual-level agents with SW/HW co-design and
synthesis. The system agent is implemented in software, with high-level
instructions tailored for issuing adaptive operations. The cell agent is at-
tached to each network node and implemented as a microcontroller. The cell
agent provides tracing and reconfiguration of the local circuit parameters,
based on the run-time adaptation commands from the system agent. The
dual-level agents make a joint effort to achieve the performance goals of the
application, where the monitored events are labeled with timestamps. The
separation of the intelligence layer from NoC infrastructure makes the ap-
proach generic and improves the design efficiency. The SW/HW co-design
and synthesis effectively reduces the hardware overhead while offering flexi-
bility for adaptive operations.

We demonstrated the effectiveness and the scalability of the system ar-
chitecture with best-effort dynamic power management using distributed
DVFS. In this case study, the application execution time and the run-time
workloads of all routers are directly monitored by the agents. The router
with the lowest workload will be switched to a lower voltage and/or fre-
quency when there is a positive slack of application latency (per frame/stream).
The experiments were performed with four benchmarks (matrix multiplica-
tion, FFT, wavefront, and hiperLAN transmitter), on a cycle-accurate RTL-
level NoC simulator. We showed that the adaptive power management saves
up to 33% energy and up to 36% power. The hardware overhead of each

161

cell agent is only 4% of a router area.
In the future work, we will present a complete design chain for the system

architecture, including application mapping, scheduling followed by run-time
monitoring and reconfiguration. The inter-agent communication shall also
be provided with guaranteed services.

162

Chapter 8

Conclusion

In this chapter, the concluding remarks of all the preceding chapters will be
presented to consistently depict the overall picture of the achievements. In
addition, a few remaining open problems and directions for future research
will also be presented.

8.1 Contributions

The main contribution of this thesis was to present a framework for creating
dynamic heterogeneity in CGRAs and NoCs. The dynamic heterogeneity al-
lowed to adapt the platform resources, depending on the application, needs
at runtime. Thereby, the proposed framework addressed the emerging design
issues like dark silicon and fault tolerance. In particular, we dynamically ma-
nipulated the voltage, frequency, reliability, and configuration architecture
to optimize the area and power consumption. To systematically tackle this
problem we divided the VRAP framework into three parts: (i) Private Con-
figuration Environments (PCE), (ii) Private Reliability Environment (PRE),
and (iii) Private Operating Environments (POE). To provide concrete re-
sults, PRE and POE were evaluated on both NoCs and CGRAs, while PCEs
were analyzed analyzed only on CGRAs.

PCE provided on demand configuration infrastructure by employing
a morphable data/configuration memory controlled by a hierarchical con-
trollers. By configuring the memory, four configuration modes, with differ-
ent memory requirements and reconfiguration time, were realized: (i) direct
feed, (ii) direct feed multi-cast, (iii) direct feed distributed, and (iv) multi
context. The obtained results suggest that significant reduction in configu-
ration memory requirements (up to 58 %) can be achieved by selecting the
most appropriate mode. Synthesis results revealed that the PCE incurred
negligible penalty (3 % area and 4 % power) compared to a DRRA cell.

PRE was designed to provide on demand reliability to each applica-

163

tion, at runtime, for CGRAs and NoCs. To implement on-demand fault-
tolerance for CGRAs, the reliability requirements of an application were
assessed upon its entry. Depending on the assessed requirements, one of
the five fault-tolerance levels was provided: (i) no fault-tolerance, (ii) tem-
porary fault detection, (iii) temporary/permanent fault detection, (iv) tem-
porary fault detection and correction, or (v) temporary/permanent fault
detection and correction. In addition to modular redundancy (employed
in the state-of-the-art CGRAs offering flexible reliability levels), this the-
sis presented the architectural enhancements needed to realize sub-modular
(residue mod 3) redundancy. The residue mod 3 codes allowed to reduce
the overhead of the self-checking and fault-tolerant versions by 57% and
7%, respectively. To shift autonomously between different fault-tolerance
levels, at run-time, a fault-tolerance agent was introduced for each element.
This agent was responsible for reconfiguring the fault-tolerance infrastruc-
ture upon arrival of a new application or changing external conditions. The
polymorphic fault-tolerant architecture was complemented by a morphable
scrubbing technique to prevent fault accumulation. The obtained results
suggest that the on-demand fault-tolerance can reduce energy consumption
up to 107%, compared to the highest degree of available fault-tolerance (for
an application actually needing no fault-tolerance). For NoCs, this thesis
presented an adaptive fault tolerance mechanism, capable of providing the
on-demand protection to multiple traffic classes. On-demand fault tolerance
was attained by passing each packet through a two layer, low cost, class iden-
tification circuitry. Upon identification, the packet was provided one of the
four fault tolerance levels: (i) no fault tolerance, (ii) end to end DEDSEC,
(iii) per hop DEDSEC, or (iv) per hop DEDSEC with permanent fault de-
tection and recovery. The results suggest that the on-demand fault tolerance
incurs a negligible penalty in terms of area (up to 5.3%) compared to the
fault tolerance circuitry, and premisses a significant reduction in energy (up
to 95%) by providing protection only to the control traffic.

Private operating environments was provided for both CGRA and NoC.
In CGRA domain, this thesis presented architecture and implementation
of energy aware CGRAs. The proposed architecture promised better area
and power efficiency, by employing Dynamically Reconfigurable Isolation
Cells (DRIC)s and Autonomous Parallelism Voltage and Frequency Selec-
tion algorithm (APVFS). Simulation results using representative applica-
tions (Matrix multiplication, FIR, and FFT) showed up to 23% and 51% re-
duction in power and energy, respectively, compared to traditional designs.
Synthesis results have confirmed significant reduction in DVFS overheads
compared to state of the art DVFS methods. In NoC domain, this the-
sis presented the design and implementation of a generic agent-based scal-
able self-adaptive NoC architecture to reduce power. The system employed
dual-level agents with SW/HW co-design and synthesis. The system agent

164

was implemented in software, with high-level instructions tailored to issue
adaptive operations. The effectiveness and the scalability of the system ar-
chitecture was demonstrated using best-effort dynamic power management
using distributed DVFS. The experiments revealed that the adaptive power
management saved up to 33 % energy and up to 36 % power. The hardware
overhead of each local agent is only 4 % of a router area.

8.2 Future work

The future work can take two main directions: (i) additional private en-
vironments can be realized and (ii) design time environment generation to
complement the runtime VRAP framework. In this thesis, we have focused
on PCE, PRE, and POE. The VRAP framework can be extended to inte-
grate new environments, for upcoming technology trends. In particular, we
envision Private Thermal Environments (PTEs) and Private Compression
Environments (PComEs) would be useful. The new environments would
adapt the system resources to optimize respectively the device temperature
and the compression hierarchy. VRAP is useful for mixed criticality ap-
plications. Where criticality can be in terms of reliability, performance, or
reconfiguration overheads. If it is known that a particular platform will
host applications varying only in specific type of criticality (reliability, per-
formance, or reconfiguration requirements), incorporation of all the private
environments will be redundant. For such conditions, a design time envi-
ronment generator can be developed to avoid the needless redundancies.

165

166

Bibliography

[1] X. Chen, Z. Lu, A. Jantsch, S. Chen. Run-time partitioning of hybrid
distributed shared memory on multi-core network-on-chips. In 3rd
International Symposium on Parallel Architectures, Algorithms and
Programming, PAAP ’10, pages 39–46, Washington, DC, USA, 2010.
IEEE Computer Society.

[2] Waqar Ahmed. Core Switching Noise for On-Chip 3D Power Distri-
bution Networks Doctoral Thesis in Sweden, 2012. PhD thesis, Royal
Institute of Technology (KTH), 2012.

[3] R. Airoldi, F. Garzia, and J. Nurmi. Improving reconfigurable hard-
ware energy efficiency and robustness via DVFS-scaled homogeneous
MP-SoC. In Proc. IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), pages
286 –289, May 2011.

[4] M.A. Al Faruque, R. Krist, and J. Henkel. Adam: Run-time agent-
based distributed application mapping for on-chip communication. In
Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE,
pages 760–765, June 2008.

[5] D. Alnajiar, Younghun Ko, T. Imagawa, H. Konoura, M. Hiromoto,
Y. Mitsuyama, M. Hashimoto, H. Ochi, and T. Onoye. Coarse-grained
dynamically reconfigurable architecture with flexible reliability. In
Proc. International Conference on Field Programmable Logic and Ap-
plications, pages 186–192, 2009.

[6] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimoto, and
T. Onoye. Implementing flexible reliability in a coarse-grained re-
configurable architecture. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems,, PP(99):1–1, 2012.

[7] H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nishimura,
V. Tanbunheng, A. Parimala, T. Sano, and M. Kato. MuCCRA chips:
Configurable dynamically-reconfigurable processors. In Proc. IEEE
Asian Solid-State Circuits Conference (ASSCC), pages 384–387, 2007.

167

[8] Hideharu Amano, Masayuki Kimura, and Nobuaki Ozaki. Remov-
ing context memory from a multi-context dynamically reconfigurable
processor. In Proc. IEEE International Symposium on Embedded Mul-
ticore Socs (MCSoC), pages 92 –99, Sept. 2012.

[9] Muhammad Moazam Azeem, Stanislaw J. Piestrak, Olivier Sentieys,
and Sébastien Pillement. Error recovery technique for coarse-grained
reconfigurable architectures. In Proc. IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), pages
441–446, 2011.

[10] N. Banerjee, C. Augustine, and K. Roy. Fault-tolerance with graceful
degradation in quality: A design methodology and its application to
digital signal processing systems. In IEEE Int. Symp. Defect and Fault
Tolerance of VLSI Systems (DFTVS), pages 323–331, 2008.

[11] Jürgen Becker and Reiner Hartenstein. Configware and morphware
going mainstream. Journal of Systems Architecture, 49(4?6):127 –
142, 2003.

[12] M. Berg. The NASA Goddard space flight center radiation effects
and analysis group Virtex 4 scrubber. Annu. Xilinx Radiation Test
Consortium (XRTC) Meeting, 2007.

[13] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K.A. LaBel,
M. Friendlich, H. Kim, and A. Phan. Effectiveness of internal ver-
sus external SEU scrubbing mitigation strategies in a Xilinx FPGA:
Design, test, and analysis. IEEE Trans. Nucl. Sci., 55(4):2259–2266,
August 2008.

[14] D. Bertozzi, L. Benini, and G. De Micheli. Error control schemes for
on-chip communication links: the energy-reliability tradeoff. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
24(6):818–831, 2005.

[15] Muhammad Bhatti, Cécile Belleudy, and Michel Auguin. Hybrid
power management in real time embedded systems: an interplay of
dvfs and dpm techniques. Real-Time Systems, 47:143–162, 2011.
10.1007/s11241-011-9116-y.

[16] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der
Veen. DyNoC: A dynamic infrastructure for communication in dynam-
ically reconfugurable devices. In International Conference on Field
Programmable Logic and Applications, pages 153 – 158, aug. 2005.

168

[17] Shekhar Borkar. Microarchitecture and design challenges for gigascale
integration. In Proc. 37th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture, page 3, 2004.

[18] C. Pilotto, J.R. Azambuja, and F. L. Kastensmidt. Synchronizing
triple modular redundant designs in dynamic partial reconfiguration
applications. In Proc. 21st Annual Symposium on Integrated Circuits
and System Design, pages 199–204, 2008.

[19] Jean-Michel Chabloz. Globally-Ratiochronous, Locally-Synchronous
Systems. PhD thesis, Royal Institute of Technology (KTH), 2012.

[20] Jean-Michel Chabloz and Ahmed Hemani. Distributed DVFS us-
ing rationally-related frequencies and discrete voltage levels. In
Proc. International symposium on Low power electronics and design
(ISLPED), pages 247–252, 2010.

[21] Jean-Michel Chabloz and Ahmed Hemani. Lowering the latency of
interfaces for rationally-related frequencies. In ICCD, pages 23–30,
2010.

[22] Jean-Michel Chabloz and Ahmed Hemani. A gals network-on-chip
based on rationally-related frequencies. In ICCD, pages 12–18, 2011.

[23] J.M. Chabloz and A. Hemani. Scalable Multi-core Architectures,
chapter Power Management Architecture in McNOC, pages 55–80.
Springer Science Business media LLC, 2012.

[24] A. Chakraborty and M.R. Greenstreet. Efficient self-timed interfaces
for crossing clock domains. In Proc. IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 78 – 88, May
2003.

[25] Xiaowen Chen, Zhonghai Lu, A. Jantsch, and Shuming Chen. Support-
ing distributed shared memory on multi-core network-on-chips using a
dual microcoded controller. In Design, Automation & Test in Europe
Conf. & Exhibition (DATE), pages 39–44, 2010.

[26] Chen-Ling Chou and R. Marculescu. Incremental run-time applica-
tion mapping for homogeneous nocs with multiple voltage levels. In
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2007 5th IEEE/ACM/IFIP International Conference on, pages 161–
166, Sept 2007.

[27] I-Hsin Chung, Che-Rung Lee, Jiazheng Zhou, and Yeh-Ching Chung.
Hierarchical mapping for hpc applications. In Parallel and Distributed

169

Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE Inter-
national Symposium on, pages 1815–1823, May 2011.

[28] Calin Ciordas. Monitoring-Aware Network-on-Chip Design. PhD the-
sis, Eindhoven University of Technology, 2008.

[29] Calin Ciordas, Andreas Hansson, Kees Goossens, and Twan Basten.
A monitoring-aware network-on-chip design flow. J. Syst. Archit.,
54:397–410, March 2008.

[30] Katherine Compton. Reconfigurable Computing the Theory and Prac-
tice of FPGA-Based Computation. Morgan Kaufmann Publishers,
2008.

[31] E. Cota, F.L. Kastensmidt, M. Cassel, M. Herve, P. Almeida,
P. Meirelles, A. Amory, and M. Lubaszewski. A high-fault-coverage
approach for the test of data, control and handshake intercon-
nects in mesh networks-on-chip. Computers, IEEE Transactions on,
57(9):1202 –1215, sept. 2008.

[32] R. Dafali and J.-P. Diguet. Self-adaptive network interface (sani):
Local component of a noc configuration manager. In Proc. Int. Conf.
Reconfigurable Computing and FPGAs ReConFig ’09, pages 296–301,
2009.

[33] W J. Dally and J. W Poulton, editors. Digital System Engineering.
Cambridge University Press, 1998.

[34] Andreas Dandalis and Viktor K. Prasanna. Configuration compres-
sion for FPGA-based embedded systems. In Proc. Ninth international
symposium on Field programmable gate arrays, pages 173–182, New
York, NY, USA, 2001. ACM.

[35] A. DeHon. Dynamically programmable gate arrays: A step toward
increased computational density. In Proc. Fourth Canadian Workshop
on Field-Programmable Devices (FPD), pages 47–54, 1996.

[36] Nasim Farahini. An improved hierarchical design flow for coarse grain
regular fabrics. Master’s thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2011.

[37] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In
33rd Annual Symposium on Foundations of Computer Science, SFCS
’92, pages 553–562, Washington, DC, USA, 1992. IEEE Computer
Society.

170

[38] M.D. Galanis, G. Dimitroulakos, and C.E. Goutis. Mapping DSP
applications on processor/coarse-grain reconfigurable array architec-
tures. In Proc. IEEE International Symposium on Circuits and Sys-
tems (ISCAS), page 4 pp., May 2006.

[39] A.-A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, Kwang-Ting
Cheng, and V. Bertacco. Comprehensive online defect diagnosis in
on-chip networks. In Proc. IEEE VLSI Test Symposium (VTS), pages
44–49, 2012.

[40] L. Guang. Hierarchical agent-based adaptation for self-aware embedded
computing systems. PhD thesis, . Ph.D. thesis, University of Turku,
Finland, 2012.

[41] Liang Guang, E. Nigussie, and H. Tenhunen. Run-time communication
bypassing for energy-efficient, low-latency per-core DVFS on network-
on-chip. In Proc. IEEE International SOC Conference (SOCC), pages
481 –486, Sept 2010.

[42] Liang Guang, Ethiopia Nigussie, Jouni Isoaho, Pekka Rantala, and
Hannu Tenhunen. Interconnection alternatives for hierarchical moni-
toring communication in parallel socs. Microprocessors and Microsys-
tems, 34(5):118–128, Aug 2010.

[43] H. Singh, M.H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.C.
Filho. Morphosys: An integrated reconfigurable system for data-
parallel computation-intensive applications. IEEE Trans. Comput.,
49(5):465–481, May 2000.

[44] H.Amano, T.Inuo, H.Kami, T.Fujii, and M.Suzuki. Techniques for
virtual hardware on a dynamically reconfigurable processor - An ap-
proach to tough cases. In Field Programmable Logic and Application
Lecture Notes in Computer Science, pages 464–473, Berlin, 2004.

[45] S. Hauck, Zhiyuan Li, and E. Schwabe. Configuration compression for
the Xilinx XC6200 FPGA. In Proc. IEEE Symp. FPGAs for Custom
Computing Machines, pages 138–146, 1998.

[46] Mitchell Hayenga, Natalie Enright Jerger, and Mikko Lipasti.
SCARAB: a single cycle adaptive routing and bufferless network. In
Proc. Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), MICRO 42, pages 244–254, New York, NY, USA, 2009.
ACM.

[47] J. Heiner, N. Collins, and M. Wirthlin. Fault tolerant ICAP controller
for high-reliable internal scrubbing. In Proc. IEEE Aerospace Conf.,
pages 1–10, 2008.

171

[48] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. FPGA partial recon-
figuration via configuration scrubbing. In Proc. Int. Conf. Field Pro-
grammable Logic and Applications (FPL 2009), pages 99–104, Prague,
Czech Rep., 31 Aug. – 2 Sept. 2009.

[49] I. Herrera-Alzu and M. López-Vallejo. Design techniques for Xilinx
Virtex FPGA configuration memory scrubbers. IEEE Trans. Nucl.
Sci., 60(1):376–385, February 2013.

[50] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.
Miller, and Anant Agarwal. Application heartbeats for software per-
formance and health. In Proceedings of the 15th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, PPoPP
’10, pages 347–348, New York, NY, USA, 2010. ACM.

[51] M. Huebner, M. Ullmann, F. Weissel, and J. Becker. Real-time con-
figuration code decompression for dynamic FPGA self-reconfiguration.
In Proc. International Parallel and Distributed Processing Symposium,
2004.

[52] Intel. Microprocessor quick reference guide.
http://www.intel.com/pressroom/kits/quickreffam.htm.

[53] ITRS. International technology roadmap for semi-
conductors 2011 edition: Executive summary.
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf,
2011.

[54] Eric Jackowski. FFT survey, March 2010.

[55] S. M. A. H. Jafri, Liang Guang, A. Hemani, K. Paul, J. Plosila, and
H. Tenhunen. Energy-aware fault-tolerant network-on-chips for ad-
dressing multiple traffic classes. In Proc. Euromicro Conf. Digital
System Design (DSD), pages 242–249, 2012.

[56] S. M. A. H. Jafri, S.J. Piestrak, O. Sentieys, and Sebastien Pillement.
Design of a fault-tolerant coarse-grained reconfigurable architecture:
A case study. In Proc. Int. Symp. Quality Electronic Design (ISQED),
pages 845–852, 2010.

[57] S.M.A.H. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen.
Compact generic intermediate representation (CGIR) to enable late
binding in coarse grained reconfigurable architectures. In Proc. Inter-
national Conference on Field-Programmable Technology (FPT),, pages
1 –6, Dec. 2011.

172

[58] S.M.A.H. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen.
Compression based efficient and agile configuration mechanism for
coarse grained reconfigurable architectures. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE Inter-
national Symposium on, pages 290 –293, may 2011.

[59] Syed M. A. H. Jafri, Liang Guang, Axel Jantsch, Kolin Paul, Ahmed
Hemani, and Hannu Tenhunen. Self-adaptive noc power management
with dual-level agents - architecture and implementation. In PECCS,
pages 450–458, 2012.

[60] Syed M. A. H. Jafri, Ozan Ozbak, Ahmed Hemani, Nasim Farahini,
Kolin Paul, Juha Plosila, and Hannu Tenhunen. Energy-aware CGRAs
using dynamically reconfigurable isolation cells. In Proc. International
symposium for quality and design (ISQED), pages 104–111, 2013.

[61] Syed M. A. H. Jafri, Stanislaw J. Piestra, Ahmed Hemani, Kolin paul,
Juha Plosila, and Hannu Tenhunen. Energy-aware fault-tolerant cgras
addressing application with different reliability needs. In Proc. Eu-
romicro conference on digital system design (DSD), 2013.

[62] Syed.M.A.H. Jafri, Muhammad Adeel Tajammul, Ahmed Hemani,
Kolin Paul, Juha Plosila, and Hannu Tenhunen. Energy-aware-task-
parallelism for efficient dynamic voltage, and frequency scaling, in
cgras. In Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIII), 2013 International Conference on, pages
104–112, 2013.

[63] Ricardo Jasinski. Fault-tolerance techniques for SRAM-based FPGAs.
Comput. J., 50(2):248–248, March 2007.

[64] L. Jones. Single Event Upset (SEU) detection and correction using
Virtex-4 devices. Xilinx Ltd., San Jose, CA, January 2007. Application
Note XAPP714.

[65] M. R. Kakoee, V. Bertacco, and L. Benini. ReliNoC: A reliable net-
work for priority-based on-chip communication. In Proc. Design, Au-
tomation & Test in Europe Conf. & Exhibition (DATE), pages 1–6,
2011.

[66] G. Khan and U. Ahmed. Cad tool for hardware software co-synthesis
of heterogeneous multiple processor embedded architectures,. Design
Automation for Embedded Systems, 12:313–343, 2008.

[67] J. Kim. Low-cost router microarchitecture for on-chip networks. In
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Inter-
national Symposium on, pages 255 –266, dec. 2009.

173

[68] Jungsoo Kim, Sungjoo Yoo, and Chong-Min Kyung. Program phase
and runtime distribution-aware online DVFS for combined Vdd/Vbb
scaling. In Proc. Design, Automation and Test in Europe (DATE),
pages 417 –422, April 2009.

[69] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. System
level analysis of fast, per-core dvfs using on-chip switching regulators.
In IEEE 14th International Symposium on High Performance Com-
puter Architecture (HPCA), pages 123–134, 2008.

[70] Yoonjin Kim and R. N. Mahapatra. Reusable context pipelining for
low power coarse-grained reconfigurable architecture. In Proc. IEEE
Int. Symp. Parallel and Distributed Processing IPDPS 2008, pages
1–8, 2008.

[71] Yoonjin Kim, Ilhyun Park, Kiyoung Choi, and Yunheung Paek. Power-
conscious configuration cache structure and code mapping for coarse-
grained reconfigurable architecture. In Proc. Int. Symp. ISLPED’06
Low Power Electronics and Design, pages 310–315, 2006.

[72] Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, and Jurgen Te-
ich. A highly parameterizable parallel processor array architecture. In
Proc. IEEE International Conference on Field Programmable Tech-
nology (FPT), pages 105–112, 2006.

[73] A.K. Kodi, A. Sarathy, and A. Louri. ideal: Inter-router dual-function
energy and area-efficient links for network-on-chip (noc) architectures.
In Proc. International Symposium on Computer Architecture (ISCA),
pages 241 –250, June 2008.

[74] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors. ACM Comput.
Surv., 31(4):406–471, December 1999.

[75] Ju-Yueh Lee, Cheng-Ru Chang, Naifeng Jing, Juexiao Su, Shijie Wen,
R. Wong, and Lei He. Heterogeneous configuration memory scrubbing
for soft error mitigation in FPGAs. In Proc. International Conference
on Field-Programmable Technology (FPT), pages 23–28, 2012.

[76] T. Lehtonen, P. Liljeberg, and J. Plosila. Online reconfigurable self-
timed links for fault tolerant NoC. VLSI Design, 2007, 2007.

[77] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu.
Self-adaptive system for addressing permanent errors in on-chip inter-
connects. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 18(4):527–540, 2010.

174

[78] Teijo Lehtonen. On Fault Tolerance Methods for Networks-on-Chip.
PhD thesis, University of Turku Department of Information Technol-
ogy, 2009.

[79] Lin Li, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Adaptive
error protection for energy efficiency. In International Conference on
Computer Aided Design ICCAD, pages 2–7, 2003.

[80] C. Liang and X. Huang. SmartCell: An energy efficient coarse-grained
reconfigurable architecture for stream-based applications. EURASIP
Journal on Embedded Systems, 2009.

[81] D. Lim and M. Peattie. Two flows for partial reconfiguration: Module
based or difference based. Xilinx Ltd., May 2004. Application Note
XAPP290.

[82] D. Lipetz and E. Schwarz. Self checking in current floating-point units.
In Proc. IEEE Symposium on Computer Arithmetic (ARITH), pages
73–76, 2011.

[83] Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch. NNSE:
Nostrum network-on-chip simulation environment. In Swedish System-
on-Chip Conference (SSoCC),, pages 1–4, March 2005.

[84] R. Lysecky. Low-power warp processor for power efficient high-
performance embedded systems. In Proc. Design, Automation and
Test in Europe Conference Exhibition (DATE), pages 1 –6, April 2007.

[85] R. Lysecky and F. Vahid. A configurable logic architecture for dynamic
hardware/software partitioning. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE), volume 1, pages 480 –
485 Vol.1, Feb. 2004.

[86] M. A. Tajammul, M. A. Shami, A. Hemani, S. Moorthi. A NoC based
distributed memory architecture with programmable and partitionable
capabilities. In Proc. 28th NORCHIP Conf., pages 1–6, Tampere,
Finland, 15–16 Nov. 2010.

[87] A. Martin-Ortega, M. Alvarez, S. Esteve, S. Rodriguez, and S. Lopez-
Buedo. Radiation hardening of FPGA-based SoCs through self-
reconfiguration and XTMR techniques. In Proc. 4th Southern Con-
ference on Programmable Logic, pages 261–264, 2008.

[88] M.Motomura. A dynamically reconfigurable processor architecture. In
Microprocessor Forum,, October 2002.

175

[89] Thomas Moscibroda and Onur Mutlu. A case for bufferless routing
in on-chip networks. In Proc. International symposium on Computer
architecture (ISCA), ISCA ’09, pages 196–207, New York, NY, USA,
2009. ACM.

[90] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, and T. Mitra.
Hierarchical power management for asymmetric multi-core in dark sil-
icon era. In Proc. of the 50th Annual Design Automation Conference
(DAC), 2013.

[91] N. Farahini, S. Li, M. A.l Tajammul, M. A. Shami, G. Chen, A. He-
mani, W. Ye. 39.9 GOPs/Watt multi-mode CGRA accelerator for a
multi-standard base station. In Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS), 2013.

[92] N. Farahini, S. Li, M. A.l Tajammul, M. A. Shami, G. Chen, A. He-
mani, W. Ye. 39.9 GOPs/Watt multi-mode CGRA accelerator for a
multi-standard base station. In Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS), 2013.

[93] E Nielsson. Design and implementation of hot/potato switch in a net-
work on chip. Master’s thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2002.

[94] V. Nollet and D. Verkestt. A quick safari through the MPSoC Run-
time management jungle. In Proc. IEEE/ACM/IFIP Workshop Em-
bedded Systems for Real-Time Multimedia ESTIMedia 2007, pages 41–
46, 2007.

[95] Pierre Palatin, Yves Lhuillier, and Olivier Temam. CAPSULE:
Hardware-assisted parallel execution of component-based programs.
In Proc. Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 247 –258, Dec. 2006.

[96] Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. Per-
formance of partial reconfiguration in FPGA systems: A survey and
a cost model. ACM Trans. Reconfigurable Technol. Syst., 4(4):36:1–
36:24, December 2011.

[97] S. Penolazzi and A. Jantsch. A high level power model for the nostrum
NoC. In 9th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools, pages 673 –676, 0-0 2006.

[98] S.J. Piestrak. Design of residue generators and multioperand modular
adders using carry-save adders. IEEE Transactions on Computers,,
43(1):68–77, 1994.

176

[99] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir,
and M.J. Irwin. Fault tolerant algorithms for network-on-chip inter-
connect. In IEEE Computer society Annual Symposium on VLSI,
pages 46 – 51, Feb 2004.

[100] Y. Qiaoyan and P. Ampadu. Transient and permanent error
co-management method for reliable networks-on-chip. In Fourth
ACM/IEEE Int Networks-on-Chip (NOCS) Symp, pages 145–154,
2010.

[101] Yang Qu, Juha-Pekka Soininen, and Jari Nurmi. Using dynamic volt-
age scaling to reduce the configuration energy of run time reconfig-
urable devices. In Proc. Design, Automation and Test in Europe Con-
ference Exhibition (DATE), pages 1 –6, April 2007.

[102] A.-M. Rahmani, P. Liljeberg, J. Plosila, and H. Tenhunen. Devel-
oping reconfigurable FIFOs to optimize power/performance of volt-
age/frequency island-based networks-on-chip. In Proc. IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), pages 105 –110, April 2010.

[103] G.K. Rauwerda, P.M. Heysters, and G.J.M. Smit. Towards soft-
ware defined radios using coarse-grained reconfigurable hardware.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
16(1):3 –13, jan. 2008.

[104] G.K. Rauwerda and G.J.M. Smit. Implementation of a flexible RAKE
receiver in heterogeneous reconfigurable hardware. In Proc. IEEE
International Conference on Field-Programmable Technology (FPT),
pages 437 – 440, Dec. 2004.

[105] D. Rossi, P. Angelini, and C. Metra. Configurable error control scheme
for NoC signal integrity. In Proc. 13th IEEE Int. On-Line Testing
Symp. (IOLTS), pages 43–48, 2007.

[106] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. An
analysis of on-chip interconnection networks for large-scale chip mul-
tiprocessors. ACM Trans. Archit. Code Optim., 7(1):4:1–4:28, May
2010.

[107] K. Sankaralingam, R. Nagarajan, R. Mcdonald, R. Desikan, S. Dro-
lia, M.S. Govindan, P. Gratz, D. Gulati, H. Hanson, Changkyu Kim,
H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar,
S.W. Keckler, and D. Burger. Distributed microarchitectural proto-
cols in the TRIPS prototype processor. In Proc. Annual IEEE/ACM

177

International Symposium on Microarchitecture (MICRO], pages 480
–491, Dec. 2006.

[108] T. Sano, Y. Saito, and H. Amano. Configuration with self-configured
datapath: A high speed configuration method for dynamically recon-
figurable processors. In Proc. Engineering of Reconfigurable Systems
and Algorithms (ERSA), pages 112–118, 2009.

[109] T. Sato, H. Watanabe, and K. Shiba. Implementation of dynamically
reconfigurable processor DAPDNA-2. In Proc. IEEE international
symposium on Design, Automation and Test 2005 (VLSI-TSA-DAT),
pages 323–324, 2005.

[110] M. A. Shami and A. Hemani. Partially reconfigurable interconnec-
tion network for dynamically reprogrammable resource array. In Proc.
IEEE 8th Int. Conf. ASIC ASICON ’09, pages 122–125, 2009.

[111] M. A. Shami and A. Hemani. Classification of massively parallel com-
puter architectures. In Proc. IEEE Int. Parallel and Distributed Pro-
cessing Symposium Workshops PhD Forum (IPDPSW), pages 344–
351, May 2012.

[112] Muhammad Ali Shami. Dynamically Reconfigurable Resource Array.
PhD thesis, Royal Institute of Technology (KTH), Stockholm, Sweden,
2012.

[113] L.T. Smit, G. J M Smit, J.L. Hurink, H. Broersma, D. Paulusma,
and P.T. Wolkotte. Run-time mapping of applications to a hetero-
geneous reconfigurable tiled system on chip architecture. In Field-
Programmable Technology, 2004. Proceedings. 2004 IEEE Interna-
tional Conference on, pages 421–424, Dec 2004.

[114] Jinho Suh, Murali Annavaram, and Michel Dubois. MACAU: A
Markov model for reliability evaluations of caches under single-bit and
multi-bit upsets. In Proc. IEEE 18th Int. Symp. High-Performance
Computer Architecture (HPCA ’12), pages 1–12, Washington, DC,
USA, 2012.

[115] Jinho Suh, Mehrtash Manoochehri, Murali Annavaram, and Michel
Dubois. Soft error benchmarking of L2 caches with PARMA. SIG-
METRICS Perform. Eval. Rev., 39(1):85–96, June 2011.

[116] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive self-
healing architecture for unpredictable silicon. IEEE Design & Test of
Computers, 23(6):484–490, 2006.

178

[117] M. A. Tajammul, M. A. Shami, and A. Hemani. Segmented bus based
path setup scheme for a distributed memory architecture. In Proc.
IEEE 6th Int. Symp. Embedded Multicore SoCs (MCSoC), pages 67–
74, Sept. 2012.

[118] M.A. Tajammul, M.A. Shami, A. Hemani, and S. Moorthi. NoC based
distributed partitionable memory system for a coarse grain recon-
figurable architecture. In International Conference on VLSI Design
(VLSI Design),, pages 232 –237, Jan. 2011.

[119] Muhammad Adeel Tajammul, Syed M. A. H. Jafri, Ahmed Hemani,
Juha Plosila, and Hannu Tenhunen. Private configuration environ-
ments for efficient configuration in CGRAs. In Proc. Application
Specific Systems Architectures and Processors (ASAP), Washington,
D.C., USA, 5–7 June 2013.

[120] Michael B. Taylor. Is dark silicon useful? harnessing the four horese-
men of the coming dark silicon apocalypse. In Design Automation
Conference, 2012.

[121] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-
Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelting. In-
vasive computing: An overview. In Multiprocessor System-on-Chip,
pages 241–268. 2011.

[122] F. Thoma, M. Kuhnle, P. Bonnot, E.M. Panainte, K. Bertels,
S. Goller, A. Schneider, S. Guyetant, E. Schuler, K.D. Muller-Glaser,
and J. Becker. MORPHEUS: Heterogeneous reconfigurable comput-
ing. In Proc. International Conference on Field Programmable Logic
and Applications (FPL), pages 409 –414, aug. 2007.

[123] V. Tunbunheng, M. Suzuki, and H. Amano. RoMultiC: Fast and
simple configuration data multicasting scheme for coarse grain recon-
figurable devices. In Proc. IEEE International conference on Field-
Programmable Technology (FPT), pages 129–136, 2005.

[124] F.-J. Veredas, M. Scheppler, W. Moffat, and Bingfeng Mei. Custom
implementation of the coarse-grained reconfigurable ADRES architec-
ture for multimedia purposes. In Proc. Int. Conf. Field Programmable
Logic and Applications (FPL 2005), pages 106–111, Tampere, Finland,
24–26 Aug. 2005.

[125] F. Worm, P. Ienne, P. Thiran, and G. De Micheli. An adaptive low-
power transmission scheme for on-chip networks. In Proc. 15th Int.
Symp. System Synthesis, pages 92–100, 2002.

179

[126] F. Worm, P. Ienne, P. Thiran, and G. De Micheli. A robust self-
calibrating transmission scheme for on-chip networks. IEEE Trans.
Very Large Scale Integration (VLSI) Systems, 13(1):126–139, 2005.

[127] T.T. Ye, L. Benini, and G. De Micheli. Analysis of power consumption
on switch fabrics in network routers. In Proc. 39th Design Automation
Conference (DAC), pages 524 – 529, 2002.

[128] Ch. Ykman-Couvreur, E. Brockmeyer, V. Nollet, T. Marescaux,
F. Catthoor, and H. Corporaal. Design-time application exploration
for MP-SoC customized run-time management. In Proc. International
Symposium on System-on-Chip, pages 66 –69, Nov. 2005.

[129] Ch. Ykman-Couvreur, V. Nollet, Th. Marescaux, E. Brockmeyer, Fr.
Catthoor, and H. Corporaal. Pareto-based application specification
for MP-SoC customized run-time management. In Proc. International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (IC-SAMOS), pages 78 –84, July 2006.

[130] Q. Yu and P. Ampadu. Adaptive error control for nanometer
scale network-on-chip links. IET Computers & Digital Techniques,
3(6):643–659, November 2009.

[131] S. Y. Yu. Fault tolerance in adaptive real-time computing systems.
PhD thesis, Stanford University, December 2001.

[132] Zain-ul-Abdin and B. Svensson. Evolution in architectures and pro-
gramming methodologies of coarse-grained reconfigurable computing.
Microprocessors & Microsystems, 33:161–178, March 2009.

[133] H. Zimmer and A. Jantsch. A fault model notation and error-control
scheme for switch-to-switch buses in a network-on-chip. In Proc. First
IEEE/ACM/IFIP Int Hardware/Software Codesign and System Syn-
thesis Conf, pages 188–193, 2003.

180

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-3164-3
ISSN 1239-1883

Syed M
. A

. H
. Jafri

V
ritual R

untim
e A

pplication Partitions for Resource M
anagem

ent in M
assively Parallel A

rchitectures

