1,543 research outputs found

    Sensor Networks with Random Links: Topology Design for Distributed Consensus

    Full text link
    In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communication. The signal-to-noise ratio (SNR) is usually a main factor in determining the probability of error (or of communication failure) in a link. These probabilities are then a proxy for the SNR under which the links operate. The paper studies the problem of designing the topology, i.e., assigning the probabilities of reliable communication among sensors (or of link failures) to maximize the rate of convergence of average consensus, when the link communication costs are taken into account, and there is an overall communication budget constraint. To consider this problem, we address a number of preliminary issues: (1) model the network as a random topology; (2) establish necessary and sufficient conditions for mean square sense (mss) and almost sure (a.s.) convergence of average consensus when network links fail; and, in particular, (3) show that a necessary and sufficient condition for both mss and a.s. convergence is for the algebraic connectivity of the mean graph describing the network topology to be strictly positive. With these results, we formulate topology design, subject to random link failures and to a communication cost constraint, as a constrained convex optimization problem to which we apply semidefinite programming techniques. We show by an extensive numerical study that the optimal design improves significantly the convergence speed of the consensus algorithm and can achieve the asymptotic performance of a non-random network at a fraction of the communication cost.Comment: Submitted to IEEE Transaction

    ChoiceRank: Identifying Preferences from Node Traffic in Networks

    Get PDF
    Understanding how users navigate in a network is of high interest in many applications. We consider a setting where only aggregate node-level traffic is observed and tackle the task of learning edge transition probabilities. We cast it as a preference learning problem, and we study a model where choices follow Luce's axiom. In this case, the O(n)O(n) marginal counts of node visits are a sufficient statistic for the O(n2)O(n^2) transition probabilities. We show how to make the inference problem well-posed regardless of the network's structure, and we present ChoiceRank, an iterative algorithm that scales to networks that contains billions of nodes and edges. We apply the model to two clickstream datasets and show that it successfully recovers the transition probabilities using only the network structure and marginal (node-level) traffic data. Finally, we also consider an application to mobility networks and apply the model to one year of rides on New York City's bicycle-sharing system.Comment: Accepted at ICML 201

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    A framework for community detection

    Get PDF
    • …
    corecore