18,506 research outputs found

    Galley: A New Parallel File System for Parallel Applications

    Get PDF
    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/O requirements of parallel scientific applications. Most multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access those multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated application and library programmers to use knowledge about their I/O to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. In this work we examine current multiprocessor file systems, as well as how those file systems are used by scientific applications. Contrary to the expectations of the designers of current parallel file systems, the workloads on those systems are dominated by requests to read and write small pieces of data. Furthermore, rather than being accessed sequentially and contiguously, as in uniprocessor and supercomputer workloads, files in multiprocessor file systems are accessed in regular, structured, but non-contiguous patterns. Based on our observations of multiprocessor workloads, we have designed Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. In this work, we introduce Galley and discuss its design and implementation. We describe Galley\u27s new three-dimensional file structure and discuss how that structure can be used by parallel applications to achieve higher performance. We introduce several new data-access interfaces, which allow applications to explicitly describe the regular access patterns we found to be common in parallel file system workloads. We show how these new interfaces allow parallel applications to achieve tremendous increases in I/O performance. Finally, we discuss how Galley\u27s new file structure and data-access interfaces can be useful in practice

    Implementation of Standard Genetic Algorithm on MIMD machines

    Full text link
    Genetic Algorithms (GAs) have been implemented on a number of multiprocessor machines. In many cases the GA has been adapted to the hardware structure of the system. This paper describes the implementation of a standard genetic algorithm on several MIMD multiprocessor systems. It discusses the data dependencies of the different parts of the algorithm and the changes necessary to adapt the serial version to the parallel versions. Timing measurements and speedups are given for a common problem implemented on all machines

    Parallelization and Vectorization of Quantum Mechanical Programs in Solid State Physics

    Get PDF
    Knowledge of the structure and functionality of chemical systems does not only allow verification of physical and chemical mechanisms of model hypothesis but it also offers the possibility of designing new materials with improved properties. Quantum mechanical methods are the appropriate tool for performing theoretical investigations on the molecular level. Reliable calculations on complex chemical molecules and macromolecules require the usage of high-performance computers. The most promising development in the modem computer technology - the massive parallel multiprocessor systems - can be efficiently used to investigate the structure of large and complex chemical systems

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Genetic algorithm based DSP multiprocessor scheduling

    Get PDF

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho
    • …
    corecore