
 Amphlett, R. W., & Bull, D. R. (1996). Genetic algorithm based DSP
multiprocessor scheduling. In Unknown. (Vol. 2, pp. 253 - 256). Institute of
Electrical and Electronics Engineers (IEEE). 10.1109/ISCAS.1996.540400

Link to published version (if available):
10.1109/ISCAS.1996.540400

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ISCAS.1996.540400
http://research-information.bristol.ac.uk/en/publications/genetic-algorithm-based-dsp-multiprocessor-scheduling(a1b4c1c1-6c9c-4e24-9851-c13557766f07).html
http://research-information.bristol.ac.uk/en/publications/genetic-algorithm-based-dsp-multiprocessor-scheduling(a1b4c1c1-6c9c-4e24-9851-c13557766f07).html

GENETIC ALGORITHM BASED DSP MULTIPROCESSOR SCHEDULING

Robert W. Amphlett and David R. Bull
Centre for Communications Research,

University of Bristol, Bristol, UK.
R.W.Amphlett@bristol.ac.uk Dave.Bull@bristol.ac.uk

ABSTRACT
This paper presents recent work on the application of
Genetic Algorithms to the NP-complete problem of
multiprocessor scheduling for audio DSP algorithms. The
Genetic Algorithm is used to schedule algorithms written
in the form of data flow graphs onto specified
multiprocessor arrays. A unique chromosome
representation technique is described and a number of
application-specific genetic operators are introduced.
Comparisons of the performance of the Genetic Algorithm
technique with heuristic scheduling techniques show that
the choice of the most suitable technique varies with the
structure and complexity of the scheduling problem.
Finally, techniques for combining heuristic and Genetic
Algorithm scheduling techniques are discussed.

1. INTRODUCTION
The use of large multiprocessor systems to solve real-time
digital signal processing (DSP) problems has introduced
the need for efficient task scheduling algorithms. For
example, the processing requirements (>IO00 MIPS, [11)
of multiple channel audio processing in studio mixing
consoles far exceed the capabilities of single DSPs,
therefore demanding the use of multiprocessor techniques.
With the increasing complexity of DSP algorithms and the
subsequent increase in the number of processing elements
(PES) being incorporated into processing arrays, the
problem of efficiently scheduling a given algorithm onto a
given multiprocessor network becomes non-trivial.

In recent years several techniques have been proposed as a
solution to the solution of the NP-complete problem of
multiprocessor mapping and scheduling [2], each with
varying degrees of success [2-71. Such methods include
heuristic algorithms [2, 31, critical path techniques [4] and
acyclic and cyclic graph methods [5]. An alternative, more
recent approach, has involved the application of Genetic
Algorithms (GAS) to this problem [6,7].

This paper describes the application of GA-based
optimisation methods to the problem of multiprocessor
scheduling for audio signal processing programs. A
suitable problem representation is described in section 2.
Various application-specific genetic operators, designed to

0-7803-3073-0/96/$5 .OO @1996 IEEE 253

optimise the effectiveness of the GA search, are then
introduced. Results showing the relative performance of
the genetic operators are discussed in section 3 and the
performance of the GA based scheduling technique is
compared with the Greedy Algorithm heuristic in section
4. Finally, methods for obtaining near optimal scheduling
performance by combining heuristic and GA based
techniques are discussed.

2. GA BASED SCHEDULING
The principles of GAS were first developed by Holland [8]
in 1975, and are well documented in many texts [9, 101.
GAS are based on the adaptive processes of natural
systems which are essential for evolution, using direct
analogies of natural behaviour such as 'populations' of
'chromosomes', 'reproduction', 'cross-breeding' and
'mutation'. They have been shown to be robust stochastic
searching algorithms for a wide range of problems. The
standard GA can be represented as shown in figure 1. The
problem to be solved is represented as a set of parameters
which can be encoded as a string (or 'chromosome')
representing a potential solution to the problem. An
objective (or 'fitness') function is then designed to evaluate
how good a particular solution is at solving the problem.

BEGIN /* Genetic Algorithm */
generate initial population
compute fitness of each individual
WHILE NOT finished DO
/* produce new generation */

FOR population-size/;! DO
/* reproduction cycle */

select 2 chromos. from old gen. for mating
/* biased in favour of fitter individuals */
combine the two chromos. to give two offspring
I* crossover/mutation */
compute fitness of offspring
insert offspring into new generation

END
IF population has converged THEN

finished = TRUE
END

END
Fig. 1 : Traditional Genetic Algorithm Structure

In order to apply Genetic Algorithms to the problem of
multiprocessor scheduling, the DSP program is written in

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 9, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

mailto:R.W.Amphlett@bristol.ac.uk
mailto:Dave.Bull@bristol.ac.uk

the form of a directed acyclic data graph [2]. It is then
grouped into sets of tasks representing instruction blocks
with high data-dependent edges. These tasks are organised
in the form of a task graph (figure 2), which describes the
node execution times, execution precedences and data
transfers. The main GA maps the tasks onto a predefined
multiprocessor array by assigning tasks to processors as
ordered task lists (figure 3) while maintaining task
precedences. The resulting schedule is determined from
the ordered task list by taking into account each node’s
execution finishing time (figure 4).

Before the GA can begin processing, an initial population
of legal schedules is produced by assigning tasks from
each precedence level in the ordered task graph in turn
(randomly) to the available processors. A special
chromosome representation has been developed in order to
fully represent legal solutions to the scheduling problem.
Each chromosome is represented by two arrays. The first is
a two-dimensional NxM array, where N is the number of
processors and M is the maximum number of tasks that can
be stored on each processor. This array stores the task
numbers that make up the entire schedule, with a variable
number of tasks allocated to each processor in their order
of execution. The second array is one-dimensional with

(Node, Precedence, Execution time1 - -

Figure 2: Example Task Graph

Figure 3: Ordered List (Two PES)

P l m 6 , T7 p
P2 T2

TIME0 1 2 3 4 5 6 7 8 9 1011

Figure 4: Example Schedule (Two PES)

dimension N and stores the actual number of tasks
allocated to each processor. Only legal schedules are
allowed to be represented by the array structure. A legal
schedule must satisfy the following criteria:

1. All tasks are present at least once but once only.
2. The precedence relationships are maintained

between tasks which are scheduled to the same
processor.

The GA proceeds by creating new subsequent populations
of legal schedules while attempting to optimise a number
of possible scheduling objectives. These include
minimising the schedule finishing time, maximising
processor utilisation and minimising costly inter-processor
communication.

In order to maintain legal schedules and to ensure that the
entire solution search landscape is covered by the GA, the
chromosome structures described above are complemented
by specific genetic operators. These are modified versions
of the traditional binary crossover and mutation operators
and include:

I . One-Point Crossover
2. Task-Swap Mutation
3. Two-Point Crossover
4. Shufle Mutation
5. N-Point Crossover

All operations are limited to act on a precedence level
basis. Crossover is limited to locations at the boundary
between precedence levels, while mutation only acts upon
tasks from individual precedence levels.

3. GENETIC OPERATOR RESULTS
Typical execution times on a Sparc 10 workstation for 100
generations ranged from approximately one minute for a
64 task schedule, to 1.2 hours for a 1000 task graph
(typically 10,000 instructions). The simpler 64 task graph
case is presented below.

All possible combinations of operators have been applied
to the problem of scheduling a 64 task graph onto 4
processors. Figure 5 shows example results, comparing
one-point crossoverttask-swap mutation with n-point
crossoverlshuffle mutation. Each graph shows the best and
the standard deviation of the excess minimum finishing
time for the schedule found at each generation of the trial
by the GA (i.e. the fitness is calculated as the amount by
which the schedule length exceeds the critical path length,
measured in program instruction cycles). All GAS are
successful at reducing the finishing time of the schedule
but some techniques perform better than their counterparts.
In the examples shown, it can be seen that n-point
crossover with shuffle mutation achieves a better excess

254

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 9, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

minimum finish time (47 instructions) than one-point
crossover with task-swap mutation (92 instructions). The
standard deviation shown in figure 5a rapidly approaches
zero, indicating the possible premature convergence of the
GA population. This could contribute to the poorer
performance of the GA employing one-point crossover and
task-swap mutation.

4. A COMPARISON BETWEEN THE GA
AND A GREEDY ALGORITHM

In order to evaluate the comparative performance of the
GA method, it was applied to a range of task graphs of
varying complexity. The complexity of each graph is
measured by comparing the absolute minimum finishing
time of the schedule, using critical path analysis (assuming
an unlimited number processors), with the 'mean load per
processor' calculated as the sum of the execution times of
all tasks divided by the number of processors. The last of
these two measures acts as the limiting factor which
determines the minimum finishing time possible for a
given schedule. For example, four different 64-task graphs
were scheduled for 100 generations. The results are
presented graphically in figure 6, which shows the best,
mean and worst schedule fitnesses (i.e. instruction cycles
in excess of critical path schedule) for each GA generation.

In table 1, the minimum schedule finishing time results are
compared with those from a greedy algorithm. The greedy
algorithm is a commonly used approach which produces a
single schedule solution by recursively assigning the
largest task on each successive precedence level to the next
available processor. Table 1 shows that, for simpler

.............

,, I._(.._...___I ~ I .,.. I
..,.... , ..._ "__

o m p a a m a m m a w
Figure 5 (a): 1-Point Crossover, Task Swap Mutation

graphs, or conversely a larger number of available
processors, simple heuristic algorithms, such as the greedy
algorithm can be successful at finding optimal or near
optimal solutions. However, for harder scheduling
problems they are not as effective at reducing schedule
finishing times. In such cases, the GA technique performs
better, offering a reduction in finishing time of up to 85%
for a 64 task 1 8 processor problem.

A current area of investigation involves hybridisation of
heuristic and GA techniques in order to utilise the best
aspects from both. A simple example of this involves
taking the solution from the greedy algorithm to a task
graph and using it to 'seed' the initial population of the GA.
Early results have found that this approach can produce
better results than either technique in isolation. However,
care must be exercised in order to prevent the fitness of
the greedy solution dominating the rest of the GA
population, preventing the formation of alternative
minimum finishing time schedules.

5. CONCLUSIONS
The results presented here demonstrate that the
performance of CA based multiprocessor scheduling
compares favourably with existing heuristic methods.
Modifications made to the GA operators, such as crossover
and mutation, do not significantly affect the GAS
performance provided that the legality of schedules is
preserved. Finally, techniques for hybridising Genetic
Algorithms with existing multiprocessor scheduling
techniques have been introduced. Early results indicate
that these will out-perform existing techniques for most
applications.

o m ~ a a ~ a m m a n n

(b): N-Point Crossover, Shuffle Mutation

Table 1: GA - Greedy Algorithm Comparisons

255

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 9, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of Sony
Broadcast and Professional Europe and The Centre for

[SI Ha, S. and Lee, E.A., 'Quasi-Static Scheduling for
Multiprocessor DSP', 1991 IEEE Int. Symposium
on Circuits and Systems, Vol. 1, Singapore, June

Communications Research, University of Bristol. 1991, pp. 352-5.

REFERENCES
Eastty, P., 'Digital Audio Processing on a Grand
Scale', 81st AES Convention, Los Angeles, USA,
Nov. 1986.
Coffman, E.J., 'Computer and Job-Shop Scheduling
Theory', John Wiley & Sons, 1976.
Lo, V.M., 'Heuristic Algorithms for Task
Assignment in Distributed Systems', IEEE Trans.
Computers, Vol. 37, No. 11, Nov. 1988, pp. 1384-
07

[6] Amphlett, R.W. and Bull, D.R., 'Multiprocessor
Scheduling for High Quality Digital Audio', IEE
Col. Multiprocessor DSP - Applications,
Algorithms and Architectures, London, May 1995,

Hou, E.S.H., Hong, R. and Ansari, N., 'Efficient
Multiprocessor Scheduling Based on Genetic
Algorithms', IECON '90, IEEE Industrial
Electronics Soc., Pacific Gro. FL., USA, Vol. 2,

Holland, J.H., 'Adaptation in Natural and Artificial
Systems', MIT Press, 1975.

pp. 211-218.

NOV. 1990, pp. 1239-43.

7 1 .

[9] Goldberg, D.E., 'Genetic Algorithms in Search,
Optimisation and Machine Learning', Addison-
Wesley Publishing, 1989.

[lo] Beasley, D., Bull, D.R. and Martin, R.R., 'An
Overview of Genetic Algorithms', University
Computing, 1993, Vol. 15, pp. 58-69, 170-181.

Kohler, W.H., 'A Preliminary Evaluation of the
Critical Path Method for Scheduling Tasks on
Multiprocessor Systems', IEEE Trans. Computers,
Vol. C-24, Dec. 1975, pp. 1235-8.

Figure 6 (a): 64 Tasks, 8 Processors; Mean Load 376 (b): 64 Tasks, 4 Processors; Mean Load 752
(100 Generations; Critical Path Length = 877 instruction cycles)

GQaTm8m W=MD (#LMTm4mKP=M)
X X R = Q ~ M X = ~ ~ ~ "=a@ w=aa

o 10 a, 3 a 9) m io m 90 im o io a, 30 a 9) m io m a im

(c): 64 Tasks, 8 Processors; Mean Load 377 (d): 64 Tasks, 4 Processors; Mean Load 754
(100 Generations; Critical Path Length = 482 instruction cycles)

256

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 9, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

