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ABSTRACT 
This paper presents recent work on the application of 
Genetic Algorithms to the NP-complete problem of 
multiprocessor scheduling for audio DSP algorithms. The 
Genetic Algorithm is used to schedule algorithms written 
in the form of data flow graphs onto specified 
multiprocessor arrays. A unique chromosome 
representation technique is described and a number of 
application-specific genetic operators are introduced. 
Comparisons of the performance of the Genetic Algorithm 
technique with heuristic scheduling techniques show that 
the choice of the most suitable technique varies with the 
structure and complexity of the scheduling problem. 
Finally, techniques for combining heuristic and Genetic 
Algorithm scheduling techniques are discussed. 

1. INTRODUCTION 
The use of large multiprocessor systems to solve real-time 
digital signal processing (DSP) problems has introduced 
the need for efficient task scheduling algorithms. For 
example, the processing requirements (>IO00 MIPS, [ 11) 
of multiple channel audio processing in studio mixing 
consoles far exceed the capabilities of single DSPs, 
therefore demanding the use of multiprocessor techniques. 
With the increasing complexity of DSP algorithms and the 
subsequent increase in the number of processing elements 
(PES) being incorporated into processing arrays, the 
problem of efficiently scheduling a given algorithm onto a 
given multiprocessor network becomes non-trivial. 

In recent years several techniques have been proposed as a 
solution to the solution of the NP-complete problem of 
multiprocessor mapping and scheduling [2], each with 
varying degrees of success [2-71. Such methods include 
heuristic algorithms [2, 31, critical path techniques [4] and 
acyclic and cyclic graph methods [5].  An alternative, more 
recent approach, has involved the application of Genetic 
Algorithms (GAS) to this problem [6,7]. 

This paper describes the application of GA-based 
optimisation methods to the problem of multiprocessor 
scheduling for audio signal processing programs. A 
suitable problem representation is described in section 2. 
Various application-specific genetic operators, designed to 
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optimise the effectiveness of the GA search, are then 
introduced. Results showing the relative performance of 
the genetic operators are discussed in section 3 and the 
performance of the GA based scheduling technique is 
compared with the Greedy Algorithm heuristic in section 
4. Finally, methods for obtaining near optimal scheduling 
performance by combining heuristic and GA based 
techniques are discussed. 

2. GA BASED SCHEDULING 
The principles of GAS were first developed by Holland [8] 
in 1975, and are well documented in many texts [9, 101. 
GAS are based on the adaptive processes of natural 
systems which are essential for evolution, using direct 
analogies of natural behaviour such as 'populations' of 
'chromosomes', 'reproduction', 'cross-breeding' and 
'mutation'. They have been shown to be robust stochastic 
searching algorithms for a wide range of problems. The 
standard GA can be represented as shown in figure 1. The 
problem to be solved is represented as a set of parameters 
which can be encoded as a string (or 'chromosome') 
representing a potential solution to the problem. An 
objective (or 'fitness') function is then designed to evaluate 
how good a particular solution is at solving the problem. 

BEGIN /* Genetic Algorithm */ 
generate initial population 
compute fitness of each individual 
WHILE NOT finished DO 
/* produce new generation */ 

FOR population-size/;! DO 
/* reproduction cycle */ 

select 2 chromos. from old gen. for mating 
/* biased in favour of fitter individuals */ 
combine the two chromos. to give two offspring 
I* crossover/mutation */ 
compute fitness of offspring 
insert offspring into new generation 

END 
IF population has converged THEN 

finished = TRUE 
END 

END 
Fig. 1 : Traditional Genetic Algorithm Structure 

In order to apply Genetic Algorithms to the problem of 
multiprocessor scheduling, the DSP program is written in 
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the form of a directed acyclic data graph [2]. It is then 
grouped into sets of tasks representing instruction blocks 
with high data-dependent edges. These tasks are organised 
in the form of a task graph (figure 2), which describes the 
node execution times, execution precedences and data 
transfers. The main GA maps the tasks onto a predefined 
multiprocessor array by assigning tasks to processors as 
ordered task lists (figure 3) while maintaining task 
precedences. The resulting schedule is determined from 
the ordered task list by taking into account each node’s 
execution finishing time (figure 4). 

Before the GA can begin processing, an initial population 
of legal schedules is produced by assigning tasks from 
each precedence level in the ordered task graph in turn 
(randomly) to the available processors. A special 
chromosome representation has been developed in order to 
fully represent legal solutions to the scheduling problem. 
Each chromosome is represented by two arrays. The first is 
a two-dimensional NxM array, where N is the number of 
processors and M is the maximum number of tasks that can 
be stored on each processor. This array stores the task 
numbers that make up the entire schedule, with a variable 
number of tasks allocated to each processor in their order 
of execution. The second array is one-dimensional with 

(Node, Precedence, Execution time1 - -  

Figure 2: Example Task Graph 

Figure 3: Ordered List (Two PES) 

P l m 6  , T7 p 
P2 T2 

TIME0 1 2 3 4 5 6 7 8 9 1011  

Figure 4: Example Schedule (Two PES) 

dimension N and stores the actual number of tasks 
allocated to each processor. Only legal schedules are 
allowed to be represented by the array structure. A legal 
schedule must satisfy the following criteria: 

1. All tasks are present at least once but once only. 
2. The precedence relationships are maintained 

between tasks which are scheduled to the same 
processor. 

The GA proceeds by creating new subsequent populations 
of legal schedules while attempting to optimise a number 
of possible scheduling objectives. These include 
minimising the schedule finishing time, maximising 
processor utilisation and minimising costly inter-processor 
communication. 

In order to maintain legal schedules and to ensure that the 
entire solution search landscape is covered by the GA, the 
chromosome structures described above are complemented 
by specific genetic operators. These are modified versions 
of the traditional binary crossover and mutation operators 
and include: 

I .  One-Point Crossover 
2. Task-Swap Mutation 
3. Two-Point Crossover 
4. Shufle Mutation 
5. N-Point Crossover 

All operations are limited to act on a precedence level 
basis. Crossover is limited to locations at the boundary 
between precedence levels, while mutation only acts upon 
tasks from individual precedence levels. 

3. GENETIC OPERATOR RESULTS 
Typical execution times on a Sparc 10 workstation for 100 
generations ranged from approximately one minute for a 
64 task schedule, to 1.2 hours for a 1000 task graph 
(typically 10,000 instructions). The simpler 64 task graph 
case is presented below. 

All possible combinations of operators have been applied 
to the problem of scheduling a 64 task graph onto 4 
processors. Figure 5 shows example results, comparing 
one-point crossoverttask-swap mutation with n-point 
crossoverlshuffle mutation. Each graph shows the best and 
the standard deviation of the excess minimum finishing 
time for the schedule found at each generation of the trial 
by the GA (i.e. the fitness is calculated as the amount by 
which the schedule length exceeds the critical path length, 
measured in program instruction cycles). All GAS are 
successful at reducing the finishing time of the schedule 
but some techniques perform better than their counterparts. 
In the examples shown, it can be seen that n-point 
crossover with shuffle mutation achieves a better excess 
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minimum finish time (47 instructions) than one-point 
crossover with task-swap mutation (92 instructions). The 
standard deviation shown in figure 5a rapidly approaches 
zero, indicating the possible premature convergence of the 
GA population. This could contribute to the poorer 
performance of the GA employing one-point crossover and 
task-swap mutation. 

4. A COMPARISON BETWEEN THE GA 
AND A GREEDY ALGORITHM 

In order to evaluate the comparative performance of the 
GA method, it was applied to a range of task graphs of 
varying complexity. The complexity of each graph is 
measured by comparing the absolute minimum finishing 
time of the schedule, using critical path analysis (assuming 
an unlimited number processors), with the 'mean load per 
processor' calculated as the sum of the execution times of 
all tasks divided by the number of processors. The last of 
these two measures acts as the limiting factor which 
determines the minimum finishing time possible for a 
given schedule. For example, four different 64-task graphs 
were scheduled for 100 generations. The results are 
presented graphically in figure 6, which shows the best, 
mean and worst schedule fitnesses (i.e. instruction cycles 
in excess of critical path schedule) for each GA generation. 

In table 1, the minimum schedule finishing time results are 
compared with those from a greedy algorithm. The greedy 
algorithm is a commonly used approach which produces a 
single schedule solution by recursively assigning the 
largest task on each successive precedence level to the next 
available processor. Table 1 shows that, for simpler 

............. 

, ......, I._(.._...___I ~ I .,.. ..... I 
..,.... , ..._ "__ 

o m p a a m a m m a w  
Figure 5 (a): 1-Point Crossover, Task Swap Mutation 

graphs, or conversely a larger number of available 
processors, simple heuristic algorithms, such as the greedy 
algorithm can be successful at finding optimal or near 
optimal solutions. However, for harder scheduling 
problems they are not as effective at reducing schedule 
finishing times. In such cases, the GA technique performs 
better, offering a reduction in finishing time of up to 85% 
for a 64 task 1 8 processor problem. 

A current area of investigation involves hybridisation of 
heuristic and GA techniques in order to utilise the best 
aspects from both. A simple example of this involves 
taking the solution from the greedy algorithm to a task 
graph and using it to 'seed' the initial population of the GA. 
Early results have found that this approach can produce 
better results than either technique in isolation. However, 
care must be exercised in order to prevent the fitness of 
the greedy solution dominating the rest of the GA 
population, preventing the formation of alternative 
minimum finishing time schedules. 

5. CONCLUSIONS 
The results presented here demonstrate that the 
performance of CA based multiprocessor scheduling 
compares favourably with existing heuristic methods. 
Modifications made to the GA operators, such as crossover 
and mutation, do not significantly affect the GAS 
performance provided that the legality of schedules is 
preserved. Finally, techniques for hybridising Genetic 
Algorithms with existing multiprocessor scheduling 
techniques have been introduced. Early results indicate 
that these will out-perform existing techniques for most 
applications. 

o m ~ a a ~ a m m a n n  

(b): N-Point Crossover, Shuffle Mutation 

Table 1: GA - Greedy Algorithm Comparisons 
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Figure 6 (a): 64 Tasks, 8 Processors; Mean Load 376 (b): 64 Tasks, 4 Processors; Mean Load 752 
(100 Generations; Critical Path Length = 877 instruction cycles) 
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(c): 64 Tasks, 8 Processors; Mean Load 377 (d): 64 Tasks, 4 Processors; Mean Load 754 
(100 Generations; Critical Path Length = 482 instruction cycles) 
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