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Abstract

Most current multiprocessor �le systems are designed to use multiple disks in parallel, using the high

aggregate bandwidth to meet the growing I/O requirements of parallel scienti�c applications. Most

multiprocessor �le systems provide applications with a conventional Unix-like interface, allowing

the application to access those multiple disks transparently. This interface conceals the parallelism

within the �le system, increasing the ease of programmability, but making it di�cult or impossible

for sophisticated application and library programmers to use knowledge about their I/O to exploit

that parallelism. In addition to providing an insu�cient interface, most current multiprocessor �le

systems are optimized for a di�erent workload than they are being asked to support.

In this work we examine current multiprocessor �le systems, as well as how those �le systems are

used by scienti�c applications. Contrary to the expectations of the designers of current parallel �le

systems, the workloads on those systems are dominated by requests to read and write small pieces of

data. Furthermore, rather than being accessed sequentially and contiguously, as in uniprocessor and

supercomputer workloads, �les in multiprocessor �le systems are accessed in regular, structured,

but non-contiguous patterns.

Based on our observations of multiprocessor workloads, we have designed Galley, a new parallel

�le system that is intended to e�ciently support realistic scienti�c multiprocessor workloads. In

this work, we introduce Galley and discuss its design and implementation. We describe Galley's

new three-dimensional �le structure and discuss how that structure can be used by parallel applica-

tions to achieve higher performance. We introduce several new data-access interfaces, which allow

applications to explicitly describe the regular access patterns we found to be common in parallel

�le system workloads. We show how these new interfaces allow parallel applications to achieve

tremendous increases in I/O performance. Finally, we discuss how Galley's new �le structure and

data-access interfaces can be useful in practice.
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Chapter 1

Introduction

While the speed of most components of massively parallel computers has been steadily increasing

for years, the speed of the I/O subsystem has not been keeping pace. Hardware limitations are

one reason for the di�erence in the rates of performance increase, but the slow development of new

multiprocessor �le systems is also to blame.

The successful design of computer systems (both hardware and software) depends on a thorough

understanding of their intended usage. A system's designer optimizes the policies and mechanisms

of the system for the cases expected to be most common in the typical workload. In the case

of multiprocessor �le systems, however, there was little or no information about the nature of a

`typical' workload. As a result, designers were forced to build multiprocessor �le systems based

only on speculation about how they would be used, extrapolating from characterizations of general-

purpose workloads on uniprocessor and distributed �le systems, or scienti�c workloads on vector

supercomputer �le systems. To �ll this gap, we examined how scienti�c applications on two di�erent

multiprocessors use the parallel �le systems available to them.

The results of our analyses suggest that the workload for which most multiprocessor �le systems

were optimized is very di�erent than the workloads they are actually being asked to support. For

example, it was generally assumed that scienti�c applications designed to run on a multiprocessor

would behave in the same fashion as scienti�c applications designed to run on sequential and vector

supercomputers: accessing large �les in large, consecutive chunks [Pie89, PFDJ89, LIN+93, MK91].

Instead, our observations show that many scienti�c applications make many small, regular, but

non-consecutive requests to the �le system.

Using the results from our workload characterizations and from performance evaluations of
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existing multiprocessor �le systems, we have developed Galley. Galley is a new multiprocessor �le

system that is designed to deliver high performance to a variety of parallel, scienti�c applications

running on multiprocessors. Rather than attempting to design a �le system that is intended to

directly meet the speci�c needs of every user, we have designed a more general system that lends

itself to supporting a wide variety of libraries, each of which should be designed to meet the needs

of a speci�c community of users.

Galley introduces a new three-dimensional means of structuring �les in a parallel �le system.

This structure is intended to allow applications to explicitly control the way data is distributed

throughout the �le system, and to allow applications to explicitly control the amount and type of

parallelism in use at any given time.

Galley introduces several new data-access interfaces. These interfaces allow applications to

describe to the �le system the more complex data access patterns we observed to be common in

real parallel scienti�c workloads. These interfaces are designed to provide the �le system with

enough information to allow it to deliver higher performance, by performing better disk scheduling,

making better use of the limited space available for a bu�er cache, and by making more e�cient

use of the interconnection network. These interfaces may be considered independently of Galley's

new three-dimensional �le structure; they may be added to existing parallel or sequential �le

systems, giving applications the opportunity to achieve higher performance, but without sacri�cing

backwards compatibility. These interfaces have inuenced the Scalable I/O Initiative's low-level

application programming interface [CPD+96].

Galley's design was deliberately kept simple, to facilitate the task of developing an e�cient,

high-performance implementation. We will discuss our implementation, and show that we achieved

our goal of e�ciency and high-performance. Our implementation was designed with the goal of

being easily portable to other platforms. We will show that we have succeeded in this respect as

well.

We will also discuss several ways in which Galley has been used to solve problems in practice,

and the ways in which Galley's features were useful in solving those problems. We will discuss

in detail the implementation of one application and one user-level library that we implemented

directly on top of Galley. We will also discuss in detail another application that we implemented

on top of the aforementioned user-level library. We will also briey describe several other projects
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that have been implemented on top of Galley.

We will discuss several other parallel �le systems and examine how Galley is similar or di�erent

to those systems. Finally, we will identify several areas that should be explored further.
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1.1 Contributions

This work makes two major contributions:

� Our workload characterizations provide an empirically-based understanding of the I/O needs

of parallel scienti�c applications. Rather than relying on guesses and extrapolations, mul-

tiprocessor �le system implementors may now make design decisions based on the observed

behavior of real applications being used in a production environment. Among the particular

issues we examined are:

{ What did the job mix look like? How many jobs ran concurrently? How many processors

did each job use? How many �les did each job use?

{ Were �les read, written, or both?

{ What was the distribution of �le sizes?

{ What was the distribution of read and write request sizes?

{ How were requests spaced in the �le? Were the accesses sequential and, if so, in what

way?

{ How much inter-processor �le sharing was there? How much inter-job sharing?

{ What forms of locality were there? How might caching be useful?

� We have also designed a new multiprocessor �le system that is intended to meet the needs

of parallel scienti�c applications more e�ectively than current existing parallel �le systems.

This end is accomplished in three ways:

{ A new way of structuring �les in a parallel �le system, which allows applications and

libraries to add structure to their �les and to explicitly control parallelism in �le access.

{ Several new �le system interfaces, with more expressive power than traditional interfaces,

which provide the �le system with the information it needs to e�ciently handle a variety

of access sizes and patterns.

{ A design that is simple and scalable enough to allow an implementation to run well on

multiprocessors with dozens or hundreds of nodes.
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1.2 Outline

In Chapter 2 we explore both the history and the current state of the art of �le systems, both

sequential and parallel, to provide su�cient context for the remainder of this thesis. In Chapter 3,

we describe the implementation and the low-level results of the workload characterization phase of

this work. In Chapter 4, we discuss a more detailed analysis of the �le-access patterns observed in

our workload characterization.

Chapter 5 discusses the high-level goals of the Galley Parallel File System, as well as the design

and implementation of the system. In Chapter 6, we examine the performance and scalability of

Galley. In Chapter 7 we show how Galley has been used in practice.

Chapter 8 describes related work in parallel �le systems. In Chapter 9, we summarize our

results and observations, and draw some overall conclusions.
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Chapter 2

Background

To provide a su�cient context for describing our new work, we discuss some of the basic character-

istics of �le systems in general, and parallel �le systems in particular. We will discuss the speci�c

characteristics of many parallel �le systems in Chapter 8.

The role of the �le system is to provide a simple means for applications to store and retrieve

data. The �le system relieves the application of the responsibility for low-level management of the

storage medium, and ensures that multiple applications do not interfere with one another.

A �le system has several di�erent responsibilities. First, it must maintain a mapping between

�le names and the �les they represent. Second, it must keep track of which blocks on the disk are

associated with each �le and which blocks are available to be used. Finally, the �le system must

handle requests from applications to move data between the disk and the applications' address

spaces.

Although sequential and parallel �le systems perform the same basic tasks, they vary in the

manner in which those tasks are executed.

2.1 Sequential File Systems

Since most modern �le systems, both sequential and parallel, de�ne themselves in relation to Unix,

we will briey discuss some of the characteristics of the Unix �le system and its implementations.

Under Unix, each �le is represented as a linear, addressable stream of bytes [Tho78, RT78]. In other

words, �les are collections of bytes, arranged in a one-dimensional structure. Each byte within the

�le may be addressed using a single integer representing that byte's o�set, or distance from the
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Figure 2.1: Simple representation of Unix's hierarchical name space.

beginning of the �le.

2.1.1 Naming

The �le namespace in Unix is structured as a tree, such as the one shown in Figure 2.1. Each node

in the tree is either a �le or a directory. Files contain data and directories contain �les and other

directories.

On the disk, each directory is stored as one or more directory blocks. A directory block contains

a series of entries, one for each �le in the directory. Each entry contains the name of a �le or

a directory, as well as the address of the inode associated with that �le or directory. A �le's or

directory's inode contains several pieces of metadata: the time the �le or directory was created,

who created it, who has permission to access it, and so on. For a �le, the inode contains additional

information, such as the size of the �le. Most importantly, the inode also tells us where to �nd the

�le's data on disk.

7



When an application wants to access the data stored in a �le, it passes the name to the �le

system, which then looks up the �le's inode. To �nd the correct inode, the �le system begins by

searching at the root of the �le system, which is always stored at a known location on disk. It then

traverses each node in the directory tree, until it reaches the directory or �le with the given name.

Once it �nds the name of the �le, it can retrieve the associated inode and can then access the �le's

data on behalf of the application.

2.1.2 Block Mapping

Files in Unix are mapped to disk blocks using a multi-level mapping scheme, shown in Figure 2.2.

Most Unix systems use three levels of mapping: direct, indirect, and doubly-indirect. A direct

mapping is a list of blocks containing actual �le data. This direct mapping is generally kept right

in the inode. In the original Unix �le system, the inode contained direct mapping entries for the

�rst 10 blocks of the �le [Tho78, RT78]. Since each block in that system was 512 bytes, �les that

were 5120 bytes or less were mapped completely by the direct entries in the inode. The Berkeley

Fast File System (FFS), a higher-performance Unix �le system released with BSD 4.2, used a block

size of at least 4096 bytes, and the inode typically contained 5 to 13 direct entries [MJLF84]. Thus,

FFS is able to access �les at least 20 KB in size using only the direct entries in the inode.

If the �le is too large to be mapped by the direct entries in the inode, the �le system uses an

indirect block. The disk address of this indirect block is also stored in the inode. Rather than

containing �le data, the indirect block contains a list of mapping entries. If the inode contains the

mappings for the �rst 10 blocks in the �le, then the �rst entry in the indirect block is a mapping for

the eleventh block of the �le. Using 4 bytes for each disk address, the indirect block in the original

Unix �le system was able to map an additional 128 blocks, or 64 KB. With its 4 KB minimum

block size, the FFS is able to map at least an additional 4 MB using an indirect block.

If the �le is too large to be mapped using the indirect block, Unix �le systems implement a

doubly-indirect block, the address of which is also stored in the �le's inode. Rather than mapping

�le blocks to disk blocks, the doubly-indirect block contains pointers to indirect blocks, similar to

those described above. Thus, a doubly-indirect block contains pointers to 128 indirect blocks in

the original Unix �le system, and to at least 1024 indirect blocks in the Fast File System.

The original Unix �le system also supports a triply-indirect block, for those �les that are larger
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Figure 2.2: Unix's multi-level scheme for mapping �le blocks to disk blocks.

than about 8.5 MB. Since the FFS requires at least a 4 KB block size, only a doubly-indirect block

is necessary to map �les up to 2 GB in size. Until recently, �les in Unix could not be larger than

2 GB, so there was no need for FFS to support a triply-indirect block.

Finally, the �le system must keep track of which blocks on a disk are in use and which are still

available. The �rst Unix �le system maintained a linked list of the free blocks on the disk. This

scheme makes it possible to �nd a free block in constant time, as long as you are not picky about

which block you get. However, maintaining the integrity of a linked list on disk in the presence of

potential system failures can be a tricky process. Rather than a linked list, the FFS uses a series

of bitmaps, with one bit for each block in the system. This structure takes little space and is easy

to maintain, but searching for a free block can take longer than constant time. Since the FFS also

used a more complex block allocation scheme (e.g., attempting to keep the blocks of a �le within

the same cylinder group, minimizing rotational latency, etc.), a linked list would also take more

than constant time to return a new block that �t the restrictions imposed by the �le system.
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2.1.3 Data Access

Unix provides applications with a simple data-access interface. Files are linear streams of bytes, and

Unix provides the calls read() or write(), which allow applications to access contiguous regions

of those linear streams. The standard Unix �le system interface provides only blocking semantics.

That is, when an application issues a read() or write() request, the application stops and waits

until the call is completed. For a read() request, the call is completed when all the requested

data has been placed in the application's bu�er. For a write() request, the call is completed

when all the data has been copied out of the application's bu�er, and into one of the operating

system's internal bu�ers. Some variants of Unix also provide non-blocking I/O calls. These routines

return control to the application immediately, and the actual data transfer is carried on behind the

scenes as the application continues executing. Non-blocking I/O can allow an application to overlap

computation and I/O, reducing overall execution time. Non-blocking I/O tends to be signi�cantly

more complicated to use, and the performance varies widely from system to system.

Rather than requiring the application to explicitly specify which region it wants to access on

every request, Unix maintains a �le pointer for each �le an application has open. This �le pointer

indicates the byte following the last byte accessed (before the application �rst accesses the �le, the

pointer points to byte 0). On each read() or write(), the application identi�es the number of

bytes to access, and the bu�er from or to which data should be transferred. The �le system then

reads or writes the speci�ed number of bytes from the �le, beginning at the location indicated by

the �le pointer. When the access is completed, the �le system updates the pointer to point to the

byte following the last byte accessed. This interface encourages sequential access, and thus most

Unix �le systems are optimized for sequential access. The application may tell the �le system to

move the �le pointer to any arbitrary location within the �le, without transferring any data, using

the lseek() call.

2.2 Parallel File Systems

As the sizes of interesting and tractable problems has grown, the amounts of data required to solve

these problems has grown as well. An individual disk cannot store enough information, nor can it

access it rapidly enough, to solve these problems. Just as we use multiple processors in parallel to
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increase computational power, so we can use multiple disks in parallel to increase I/O power.

There are several issues to consider when designing a parallel I/O system for a multiprocessor.

First, where in the system are the disks placed? Second, how is the �le data distributed among

the multiple disks? Finally, how do applications access that data? We will briey discuss some

common ways in which parallel �le systems have addressed these issues.

2.2.1 Structure

The �rst issue to be considered when designing a parallel I/O system is where to place the disks.

One of the most common types of parallel I/O system is the RAID (Redundant Array of

Inexpensive Disks) system [PGK88]. In a RAID system multiple disks are clustered together, and

the system can deliver high performance by exploiting the high aggregate bandwidth of the multiple

disks. A RAID is usually connected to a computer system by a high-speed channel, such as SCSI-2,

Fiber Channel, or HiPPI. When the computer accesses the RAID through this channel, the RAID

controller hides the parallelism of the underlying system, making the RAID appear as a single

high-speed disk, allowing �le systems to ignore the complexity of handling multiple disks at a time.

Even with a high-speed connection, however, the single channel can become a signi�cant bottleneck

for the whole I/O subsystem.

One way to avoid this bottleneck is to eliminate the single channel. In a sequential computer

system, this elimination may be accomplished by installing multiple SCSI interfaces, and attaching

only a small number of disks to each SCSI bus. In a parallel computer system, this approach can

be taken one step further; we can attach disks to entirely di�erent nodes within the system. The

disadvantage of distributing the disks among di�erent nodes is that we lose the illusion of a single

fast disk, and the �le system must explicitly manage the multiple disks. How this management

should be done is the primary focus of our research.

Rather than asking each node in a parallel machine to function as both a compute server and

an I/O server, most parallel �le systems are designed along a client-server model. Some subset of

the nodes in the system are designated I/O processors (IOPs), and the remainder are designated

compute processors (CPs). In general, systems that are based on this sort of dichotomy adhere to

it strictly. That is, the I/O nodes are used exclusively as I/O servers and the compute nodes are

used exclusively for running users' applications. Examples of systems based on this architecture
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Figure 2.3: Example of striping. The �le shown has 8 blocks, which are striped

across 4 disks.

are Intel's iPSC/860 and Paragon, and Thinking Machines' CM-5.

2.2.2 Data Distribution

Once the basic architecture of a parallel �le system has been determined, the next major issue is

the distribution of data within the system. The approach adopted by most parallel �le systems is to

distribute a �le's data across all the disks in the system. This practice is typically called striping or

declustering. This striping is performed by breaking the �le into smaller units, typically measured

in kilobytes, and assigning these units to disks in round-robin order. A simple example of such a

declustering may be seen in Figure 2.3. Kim [Kim86] and Salem [SGM86] were among the earliest

researchers to demonstrate the usefulness of transparent striping.

This approach is simple to implement, and it is easy to identify on which disk a given �le block is

stored, without requiring an expensive lookup operation. Also, for large requests, this distribution

can lead to good load balancing among the disks.

2.2.3 Interfaces

Most parallel �le systems present applications with an interface similar to that provided by Unix.

As discussed above, using a Unix-style interface, applications may access any region of a �le, but

they may only access data in contiguous chunks.

To support parallel applications, most parallel �le systems also provide some facility for de-

scribing how the data within the linear �le is to be shared among the multiple compute nodes in
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the application. In �le systems with a linear �le model, the most common such facility is the shared

�le pointer. In other words, each �le is assigned a single �le pointer, which is shared by all the

nodes in an application.

File systems that provide shared �le pointers also tend to allow applications to choose from

a number of modes, each of which provides di�erent semantics governing how the �le pointer is

shared by the nodes in the application. For example, Intel's Concurrent File System provides 4

modes. In Mode 0, the default mode, each node has its own private �le pointer. Mode 1 provides

atomic-append semantics; there is a single, shared �le pointer, and only one node may access the

�le at a time. Access is granted in a �rst-come �rst-serve fashion. Mode 2 again provides a shared

�le pointer, but access to the �le is granted to the compute nodes in round-robin order. Finally,

Mode 3 is similar to Mode 2, with the added restriction that each node access the same amount of

data on each turn.

Several other types of parallel-application support are discussed in Chapter 8.

2.3 File System Workloads

Although researchers have studied �le-system workloads on general-purpose workstations and vector

supercomputers, there has never been an extensive study of multiprocessor �le-system workloads.

General-purpose uniprocessor workloads.

Uniprocessor �le-access patterns have been measured many times. Floyd and Ellis [Flo86, FE89]

and Ousterhout et al. [OCH+85] measured isolated Unix machines. Baker et al. studied the work-

load of a cluster of workstations running the Sprite �le system, which is a distributed, Unix-like

system [BHK+91]. Ramakrishnan et al. studied access patterns in a commercial computing envi-

ronment on a VAX/VMS platform [RBK92]. These studies all cover general-purpose (engineering

and o�ce) workloads with uniprocessor applications. These studies identify several characteristics

that are common among uniprocessor �le-system workloads: �les tend to be small (only a few kilo-

bytes), they tend to be accessed with small requests, and they tend to be accessed both completely

and sequentially (i.e., each byte in the �le is accessed in order | from beginning to end).
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Scienti�c vector applications.

Some studies examined scienti�c workloads on vector machines. In [dC94], del Rosario and Choud-

hary provide an informal characterization of grand-challenge applications. Powell measured a set

of static characteristics (�le sizes) of a Cray-1 �le system [Pow77]. Miller and Katz traced speci�c

I/O-intensive Cray applications to determine the per-�le access patterns [MK91], focusing primar-

ily on access rates. Miller and Katz also measured secondary-tertiary �le migration patterns on a

Cray [MK93], giving a good picture of long-term, whole-�le access patterns. Pasquale and Polyzos

studied I/O-intensive Cray applications, focusing on patterns in the I/O rate [PP93, PP94a, PP94b].

All of these studies are limited to single-process applications on vector supercomputers. These stud-

ies identify several characteristics that are common among supercomputer �le-system workloads.

Unlike workstation �le-system workloads, �les tend to be large (many megabytes or gigabytes) and

they tend to be accessed with large requests (megabytes at a time). Like workstation workloads,

�les are typically accessed both completely and sequentially.

Scienti�c parallel applications.

Although there has been no other study of the full workload of a multiprocessor �le system, peo-

ple have studied individual applications. Reddy et al. chose �ve sequential scienti�c applications

from the PERFECT benchmarks and parallelized them for an eight-processor Alliant, �nding only

sequential �le-access patterns [RB90]. This study is interesting, but far from what we need: the

sample size is small; the programs are parallelized sequential programs, not parallel programs per

se; and the I/O itself was not parallelized. Cypher et al. [CHKM93] studied individual parallel sci-

enti�c applications, measuring temporal patterns in I/O rates. Crandall et al. instrumented three

parallel applications to study their �le-access activity in detail [CACR95]. Although they found

primarily sequential access patterns, the patterns were often cyclical (e.g., applications repeatedly

opened and closed the same �le, each time accessing it in the same pattern). There was a wide

distribution in request sizes, though few were larger than 1 MB, and a wide variation in spatial

and temporal access patterns. Baylor et al. performed a similar analysis of several applications

on the IBM SP-2 [BW96]. Galbreath et al. present a high-level characterization of multiprocessor

�le-system workloads based on anecdotal evidence [GGL93]. Crockett [Cro89] hypothesizes about

the character of a parallel scienti�c �le-system workload.
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In the next two chapters we present our own study of the workloads on two parallel machines

in use in a production environment.
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Chapter 3

Workload Characterization

Perhaps the most important information needed by the designer of a complex system is a reasonable

approximation of the workload that the system will be expected to support. One way of arriving

at such an approximation is to examine the workloads supported by existing systems.

Ideally, a workload characterization is an architecture-independent representation of the work

generated by a group of users in a particular type of computing environment. However, since the

architectures of di�erent parallel I/O subsystems are so diverse, any observed workload will be tied

to a particular machine. Although we try to factor out these e�ects as much as possible in our

discussion below, we must note that some care should be taken in generalizing the results.

3.1 Platform

To be useful to a system designer, a workload study must be performed in an environment similar to

that in which the new system is expected to be installed. For our purposes, this meant that we had to

trace the activity of a multiprocessor �le system that was in use for production scienti�c computing.

The Intel iPSC/860 at NASA Ames' Numerical Aerodynamics Simulation (NAS) facility met this

criterion.

The iPSC/860 is a distributed-memory, message-passing, MIMD machine. The machine has

128 compute nodes, based on the Intel i860 processor, that are connected by a hypercube network.

I/O is handled by 10 dedicated I/O nodes, each of which is connected to one of the compute nodes

rather than directly to the hypercube interconnect. The I/O nodes are based on the Intel i386

processor, and each has a single bus for SCSI disk drives. There may also be one or more service
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nodes that handle Ethernet connections or interactive shells [NAS93].

Intel's Concurrent File System (CFS) [Pie89, FPD93, Nit92] provides a Unix-like interface to

the user with the addition of four I/O modes, as discussed in the previous chapter. CFS generally

stripes each �le across all I/O nodes in 4 KB blocks. CFS allows users to specify that a �le

only be stored on a subset of the available I/O nodes, but we found no application that use that

functionality. In some parallel �le systems compute nodes send requests to a server, which is

responsible for determining which I/O nodes will be involved in satisfying the request. Under CFS,

compute nodes send requests directly to the appropriate I/O node, without the involvement of such

a server. Each I/O node maintains a cache of recently used data from its local disk. No caching is

done on the compute nodes.

3.2 Data Collection

On the iPSC/860, high-level CFS calls are implemented in a library that is linked with the user's

application. We instrumented the library calls to generate an event record each time they were

called. The event records were bu�ered at each compute node and periodically sent to a data

collector running on the service node. The collector then wrote the data to the central trace data

�le, itself on CFS. To avoid skewing the results of our study, the collector's use of CFS was not

recorded in the trace data.

For our study, one data �le was collected for the entire �le system. One other possibility, used

in the study discussed in Section 3.5, is to store the trace information for each job in its own �le.

The trace data �les begin with a header record containing enough information to make the �le

self-descriptive, and continue with a series of event records, one per event.

This work was conducted as part of the CHARISMA project, which we began in June 1993 to

CHARacterize I/O in Scienti�c Multiprocessor Applications from a variety of production parallel

computing platforms and sites. The CHARISMA project is unique in recording individual read

and write requests in live, multiprogramming, parallel workloads, rather than from selected or non-

parallel applications. Since one of the goals of the CHARISMA project was to organize and facilitate

a multi-platform �le-system tracing e�ort, we de�ned a large set of event records suitable for both

SIMD and MIMD systems. The records used in the iPSC/860 study are shown in Figure 3.1.

We traced only the I/O that involved the Concurrent File System. This means that any I/O
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Notes:

UserID | Unix UID
SystemID | Internet IP address
FileID | (disk, block number) of File Header Block
ClientID | number of node requesting I/O

Header:

Magic number
Format version number
Start date (standard Unix date format)
System type (iPSC, CM-5, etc.)
SystemID
System Con�guration (procs, disks, memory)
Timestamp unit (in seconds, 64-bit oat)

Job load:

record type code
timestamp
program name
path to executable
UserID
list of ClientIDs (nodes running the job)

Client completion:

record type code
timestamp
ClientID

Client Open �le:

record type code
timestamp
ClientID
FileID
�le descriptor
�le name
�le size
�le creation time
open mode (r, w, rw, create, etc.)

Client Close �le:

record type code
timestamp
ClientID
�le descriptor
�le size

Read/Write request:

record type code
operation type

(r/w, sync/async, etc.)
timestamp
ClientID
�le descriptor
�le o�set
size of I/O

Truncate/Extend:

(explicit operations only)
record type code
timestamp
ClientID
�le descriptor
original �le size
new �le size

Link/Unlink:

record type code
timestamp
ClientID
FileID
new number of links to �le

Set I/O mode:

record type code
timestamp
ClientID
�le descriptor
new access mode

Figure 3.1: The event records used when tracing the �le system workload on an

iPSC/860.
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which was done through standard input and output or to the host �le system (all limited to

sequential, Ethernet speeds) was not recorded. We collected data for about 156 hours over a period

of 3 weeks. Although we did not trace continuously for the whole 3 weeks, we tried to get a realistic

picture of the whole workload by tracing at all di�erent times of the day and of the week, including

nights and weekends. The period covered by a single trace �le ranges from 30 minutes to 22 hours.

The longest continuously traced period was about 62.5 hours. Tracing was usually initiated when

the machine was idle. For those few cases in which a job was running when we began tracing, the

job was not traced. Tracing was stopped in one of two ways: manually or by a system crash. The

machine was usually idle when tracing was manually stopped.

Since our instrumentation was almost entirely within a user-level library, there were some jobs

whose �le accesses were not traced. These included most system programs (e.g., ls, cp, and ftp)

as well as user programs that were not relinked during the period we were tracing. Although we

were able to record all job starts and ends through a separate mechanism, there was no way to

distinguish between a job which was untraced from a job which simply did no CFS I/O, so we do

not know precisely how many jobs were traced. While we were tracing, 3016 jobs were run on the

compute nodes, of which 2237 were only run on a single node. We actually traced at least 429 of

the 779 multi-node jobs and at least 41 of the single-node jobs. As a tremendous number of the

single-node jobs were system programs it is not surprising nor necessarily undesirable that so many

were untraced. In particular, there was one single-node job that was run periodically, simply to

check the status of the machine. That one job accounted for over 800 of the single-node jobs.

One of our primary concerns was to minimize the degree that our measurement perturbed the

workload. We identi�ed three ways that our instrumentation might a�ect the workload.

Our �rst concern was network contention. We expected users' jobs to generate a great many

event records. Had we chosen to send a message to the data collector for each event record, we

would certainly have created unreasonable congestion near the collector or perhaps in the overall

machine. Since large messages on the iPSC are broken into 4 KB blocks, we chose to create a

bu�er of that size on each node to hold local event records. This bu�er allowed us to reduce the

number of messages sent by our instrumentation by over 90% without stealing much memory from

user jobs.

The second concern was local CFS overhead. Since we were tracing every I/O operation in a
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production environment, it was imperative that the per-call overhead be kept to a minimum to

avoid inconveniencing the users. By bu�ering records on the compute nodes we were able to avoid

the cost of message passing on every call to CFS.

Our �nal concern was that we might increase contention for the I/O subsystem. We tried to

minimize this e�ect by creating a large bu�er for the data collector and writing the data to CFS

in large sequential blocks. Although we collected about 700 MB of data, our trace �les accounted

for less than 1% of the total tra�c.

Simple benchmarking of the instrumented library revealed that the overhead added by our

instrumentation was virtually undetectable in many cases. The worst case we found was a 7%

increase in execution time on one run of the NAS NHT-1 Application-I/O Benchmark [CCFN92].

After the instrumented library was put into production use, anecdotal evidence suggests that there

was no noticeable performance loss.

3.2.1 Postprocessing

The raw trace �les required some simple postprocessing before they could be easily analyzed. This

postprocessing included data realignment, clock synchronization, and chronological sorting.

Since each node bu�ered 4 KB of data before sending it to the central data collector, the

raw trace �le contained only a partially ordered list of event records. Ordering the records was

complicated by the lack of synchronized clocks on the iPSC/860. Each node maintains its own

clock; the clocks are synchronized at system startup, but each drifts signi�cantly and di�erently

after that. We partially compensated for the asynchrony by time-stamping each block of records

when it left the node and again when it was received at the data collector. From the di�erence

between the two we could approximately adjust the event order to compensate for each node's clock

drift relative to the collector's clock. This technique allowed us to get a closer approximation of the

event order. Nonetheless, it is still an approximation, so much of our analysis is based on spatial,

rather than temporal, information.

3.3 Results

We characterize the workload from the top down, beginning with the number of jobs in the machine

and the number and use of �les by all jobs. We then examine individual I/O requests by looking

20



for sequentiality, regularity, and sharing in the access pattern. Finally, we evaluate the e�ectiveness

of caching through trace-driven simulation.

3.3.1 Jobs

As a �rst look into the details behind Table 3.1, Figure 3.2 shows the amount of time the machine

spent running a given number of jobs. For more than a quarter of the traced period, the machine

was idle (i.e., zero jobs). For about 35% of the time it was running more than one job, sometimes

as many as eight. Although not all jobs use the �le system, a �le system clearly must provide

high-performance access by many concurrent, presumably unrelated, jobs.

Trace Traced Megabytes Number of �les

name Jobs Read Written Opened Read Written Both Neither

feb10 73 2977.63 1311.35 3609 2659 573 280 97

feb11 46 129.79 1161.70 5281 41 4185 803 252

feb14p1 9 334.81 395.14 1610 791 819 0 0

feb14p2 15 1701.25 1691.18 783 313 309 147 14

feb14p3 1 40.18 45.92 130 97 33 0 0

feb14p4 12 98.22 121.97 1392 165 919 292 16

feb15 34 18835.90 19265.64 4968 698 3622 442 206

feb16p1 37 12860.40 12593.27 2893 2468 406 2 17

feb16p2 30 32.66 505.09 2159 176 1709 0 274

feb17 20 517.74 398.28 3068 1447 1242 292 87

feb18p1 3 54.78 117.45 735 162 541 0 32

feb18p2 9 196.33 284.34 1248 521 567 0 160

feb18p3 12 28.30 307.49 838 128 676 0 34

feb21 6 114.83 224.47 684 198 294 0 192

feb22p1 37 325.78 386.63 3679 534 3025 1 119

feb22p2 14 16.71 228.49 3500 188 3269 0 43

feb22p3 7 21.44 79.44 2573 247 2217 0 109

feb23p1 17 96.64 3698.34 8168 688 7440 0 40

feb23p2 63 216.51 381.98 9512 1166 7680 0 666

feb24 5 142.96 1261.17 1751 702 981 0 68

mar1 30 69.54 265.96 5198 1151 3993 0 54

Totals 470 38812.40 44725.29 63779 14540 44500 2259 2480

100.0% 22.8% 69.8% 3.5% 3.9%

Table 3.1: Summary statistics of the trace data. Only those jobs whose �le accesses were caught

by our library are included here.

Of course, some of the jobs in Figure 3.2 were small, single-node jobs, and some were large
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Figure 3.2: Amount of time the machine spent with the given number of jobs

running. This data includes all jobs, even if their �le access could not be traced.
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Figure 3.3: Distribution of the number of compute nodes used by jobs in our

workload (even those whose �le access could not be traced). The iPSC limits the

choice to powers of 2.

parallel jobs. Figure 3.3 shows the distribution of the number of compute nodes used by each job.

One-node jobs dominated the job population, although large parallel jobs dominated node usage.

A successful �le system must allow both small, sequential jobs and large, highly parallel jobs access

to the same �les under a variety of conditions and system loads.
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3.3.2 Files

In Table 3.1 above, �les are classi�ed by how they were actually used rather than by the mode in

which they were opened. Note that many more �les were written than were read (indeed, more

than three times as many). We found that the programmers of traced applications often found

it easier to open a separate output �le for each compute node, rather than coordinating writes to

a common output �le. This tendency may have contributed to the substantially smaller average

number of bytes written per �le (1.2 MB) than average bytes read per �le (3.3 MB). Note also

that there were very few �les that were read and written in the same open. This latter behavior is

common in Unix �le systems [Flo86] and may be accentuated here by the di�culty in coordinating

concurrent reads and writes to the same �le (note that the CFS �le-access modes are of little help

for read-write access). We suspect that most of those �les that were opened, but not accessed at

all, were opened by applications that terminated prematurely.

Table 3.2 shows that most jobs opened only a few �les over the course of their execution,

although a few opened many �les. The maximum was one job that opened 2217 �les. Some of the

jobs that opened a large number of �les were opening one �le per node. Although not all �les were

open concurrently, �le-system designers must optimize access to several �les within the same job.

Number of Number

Files of Jobs

1 71

2 15

3 24

4 120

5+ 240

Table 3.2: Among traced jobs, the number of �les opened by jobs was often small (1{4).

We found that only 0.61% of all opens were to \temporary" �les, which we de�ned to be any

�le deleted by the same job that created it. Nearly all of those temporary �les may have been from

one application. The rarity of temporary �les and of �les that were both read and written indicates

that few applications chose to use �les as an extension of memory for out-of-core solutions. Many

of the Ames applications are computational uid dynamics (CFD) codes, for which they have found

that out-of-core methods are in general too slow.
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Figure 3.4: Cumulative distribution function (CDF) of the number of �les of

each size at close. For a �le size x, CDF(x) represents the fraction of all �les that

had x or fewer bytes.

Figure 3.4 shows that most of the �les accessed were large (10 KB to 1 MB).1 It is important to

note that each of the largest jumps is primarily due to one or two applications, so undue emphasis

should not be placed on the speci�c numbers as opposed to the general tendency towards larger

�les. Although these �les were larger than those in a general-purpose �le system [BHK+91], they

were smaller than we would expect to see in a scienti�c supercomputing environment [MK91]. We

suspect that users limited their �le sizes due to the small disk capacity (7.2 GB) and limited disk

bandwidth (10 MB/s peak).

3.3.3 I/O Request Sizes

Figures 3.5 and 3.6 show that the vast majority of reads are small, but that most bytes are trans-

ferred through large reads.

Indeed, 96% of all reads were for fewer than 100 bytes, but those reads transferred only about

2% of all data read. Similarly, 89% of all writes were for fewer than 100 bytes, but those writes

transferred only about 2.5% of all data written. The number of small requests is surprising due to

their poor performance in CFS [Nit92]. The jump at 4 KB indicates that some users have optimized

1As there was a large number of small �les as well as a number of distinct peaks across the whole range of sizes,

there was no constant granularity that captured the detail we felt was important in a histogram. We chose to plot

the �le sizes on a logarithmic scale with pseudo-logarithmic bucket sizes: the bucket size between 10 and 100 bytes

is 10 bytes, the bucket size between 100 and 1000 is 100 bytes, and so on.
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Figure 3.5: CDF of the number of reads by request size and of the amount of

data transferred by request size.
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Figure 3.6: CDF of the number of writes by request size and of the amount of

data transferred by request size.

for the �le-system block size, but it appears that most users preferred ease of programming over

performance.

Figures 3.5 and 3.6 show spikes in the number of small requests as well as in the data transferred

by 1 MB requests. Although the spikes of small requests occurred throughout the tracing period,

one trace alone (probably one application alone) contributed the large spike at 1 MB. Although

the speci�c position of the spikes is likely due to the e�ect of individual applications, we believe
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that the preponderance of small request sizes is the natural result of parallelization by distributing

�le data across many processors, and would be found in other workloads using a similar �le-system

interface.

3.3.4 Sequentiality

We de�ne a sequential request to be one that begins at a higher �le o�set than the previous request

from the same compute node. We de�ne a consecutive request to be a sequential request that

begins precisely one byte beyond where the previous request ended. A common characteristic of

�le workloads, particularly scienti�c workloads, is that �les are accessed consecutively [OCH+85,

BHK+91, MK91]. Frequently, �les are also accessed in their entirety. Figures 3.7 and 3.8 show

the amount of sequential and consecutive access (on a per-node basis) to �les with more than one

request in our workload.

The spikes at 100% in the two �gures show that most write-only �les were accessed strictly

consecutively (and hence strictly sequentially as well). This behavior was likely due to the fact that

most write-only �les were written only by one processor. Most read-only �les were also accessed

strictly sequentially. Unlike the write-only �les, however, nearly 70% of read-only �les were accessed

with non-consecutive requests, as illustrated by the spike at 0% in Figure 3.8. These sequential,

but non-consecutive, patterns were the result of interleaved access, where successive records of the

�le are accessed by di�erent nodes. In an interleaved access pattern, from the perspective of an

individual node, some bytes must be skipped between one request and the next. Not surprisingly,

access to read-write �les was primarily non-sequential.

3.3.5 I/O-Request Intervals

We de�ne the number of bytes skipped between one request and the next to be the interval size.

Consecutive accesses have interval size 0. The number of di�erent interval sizes used in each �le,

across all nodes that access that �le, is shown in Table 3.3. A surprising number of �les were read

or written in one request per node, so there were no intervals. Over 99% of the 1-interval-size �les

were consecutive accesses; the one interval size was 0. The remainder of 1-interval-size �les, along

with the 2-interval-size �les, represent 5% of all �les, and indicate another form of highly regular

access pattern. Only 1.2% of all �les had 3 or more di�erent interval sizes, and their regularity, if
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Figure 3.7: Sequential access to �les on a per-node basis. Most read-only and

write-only �les were accessed strictly sequentially.
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Figure 3.8: Consecutive access to �les on a per-node basis. Most write-only

�les were accessed strictly consecutively.

27



any, was more complex.

Number of di�erent Number Percent of

interval sizes of �les total �les

0 20078 38.2

1 29451 56.1

2 2363 4.5

3 48 0.1

4+ 596 1.1

Table 3.3: The number of di�erent interval sizes used in each �le across all participating nodes.

Zero represents those cases where only one access was made to a �le, per node.

To get a better feel for this regularity, we also counted the number of di�erent request sizes

used in each �le, as shown in Table 3.4. Over 90% of the �les were accessed with only one or two

request sizes. Combining the regularity of request sizes with the regularity of interval sizes, many

applications clearly used regular, structured access patterns. These patterns are explored in more

detail in the next chapter.

Number of di�erent Number Percent of

request sizes of �les total �les

0 2480 3.9

1 25523 40.0

2 32779 51.4

3 2510 3.9

4+ 487 0.8

Table 3.4: The number of di�erent request sizes used in each �le across all compute nodes. Files

with zero di�erent sizes were opened and closed without being accessed.

3.3.6 Synchronization

Given the regular request sizes and interval sizes shown in Tables 3.3 and 3.4, Intel's I/O modes

(discussed in Chapter 2) would seem to be helpful. Our traces show, however, that over 99% of the

�les were accessed using mode 0, so fewer than 1% of the �les were accessed using modes 1, 2, or 3.

Tables 3.3 and 3.4 may give one hint as to why: although there were few di�erent request sizes and

interval sizes, there were often more than one, something not easily supported by the automatic �le

modes. Anecdotal evidence also suggests that programmers chose not to use modes 1 to 3 because
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they were signi�cantly slower than mode 0.

3.3.7 Sharing

We call a �le shared if more than one process opens it. It is concurrently shared if the opens

overlap in time. It is write-shared if at least one of the processors writes to the �le. In uniprocessor

and distributed-system workloads, concurrent sharing is known to be rare [BHK+91]. In a parallel

�le system, concurrent �le sharing among processes within a job is presumably the norm, while

concurrent �le sharing between jobs is likely to be rare. Indeed, in our traces we saw a great deal

of �le sharing within jobs, and no concurrent �le sharing between jobs. The interesting question is

how the individual bytes and blocks of the �les were shared. A block, in this case, refers to one of

CFS's 4 KB �le blocks.

Figure 3.9 shows the percentage of �les with varying amounts of byte- and block-sharing. Since

it is impossible for �les opened by only a single node to have any amount of sharing, this �gure

includes only those �les that were concurrently opened by multiple nodes. There was more sharing

for read-only �les than for write-only or read-write �les, which is not surprising given the complexity

of coordinating write sharing. Indeed, although 70% of read-only �les had 100% of their bytes

shared, 90% of write-only �les had no bytes shared at all. While a half of all read-write �les (not

shown in Figure 3.9) were 100% byte-shared, 93% of them were 100% block-shared, which would

stress a cache consistency protocol, if present. Overall, the amount of block sharing implies strong

interprocess spatial locality, and suggests that caching may be successful.

3.4 Caching

Bu�ering and caching are common in traditional �le systems, and with the right policies can be

successful in multiprocessor �le systems [KE93b, KE93a]. One advantage of caching is that multiple

small requests (which were common in this workload) may be combined into a few larger requests

that can be more e�ciently served by disk hardware. Indeed, with RAID disk arrays commonly seen

on today's multiprocessors (such as the Intel Paragon and the KSR-2) it is even more important to

avoid small requests at the disk level. Fortunately, the small requests seen in Figures 3.5 and 3.6,

when coupled with small interval size, lead to spatial locality. Other potential bene�ts may come

from temporal or interprocess locality in the access pattern.
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Figure 3.9: CDF of �le sharing between nodes in Read-Only and Write-Only

�les at byte and block granularity.

In a distributed-memory machine, it is possible to place a bu�er cache at the compute nodes,

at the I/O nodes, or both. We evaluated all three options with trace-driven simulation.

3.4.1 Compute-node Caching

The amount of block sharing in write-only and read-write �les show that any attempt to maintain

write-bu�ers at the compute nodes would necessitate a cache consistency protocol, so we restricted

our e�ort to read-only �les. Other people have examined the possibility of caching data for write-

only �les at the compute node [PEK96]. The results of a simple trace-driven simulation of read-

only compute-node caching, with 4 KB (one block) bu�ers and LRU replacement, are shown in

Figure 3.10. We consider a hit to be any request that was fully satis�ed from the local bu�er (i.e.,

with no request sent to an I/O node).

Caching success, as indicated by a high hit rate, was limited to a subset of the jobs: 40% of

the jobs had a greater than 75% hit rate, but 30% of the jobs had a 0% hit rate. Further, for

those jobs where a cache was bene�cial, a single one-block bu�er per compute node was usually

su�cient. A single bu�er could maintain a high hit rate in patterns with a small request size and a

short (perhaps zero) interval size. Clearly there was spatial locality in our workload, and not much

temporal locality, or multiple bu�ers would have helped more2. In short, it appears that a one-

2Multiple bu�ers were useful in a very few jobs, apparently those which were interspersing reads from more than
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Figure 3.10: Results of compute-node caching simulation. Hit rates di�ered

from job to job, with three distinct clumps, indicating that the cache either helped

or did not. One bu�er was as good as many bu�ers.

block bu�er per compute node, per �le, may be useful for read-only �les, but a careful performance

analysis is still necessary.

3.4.2 I/O-node Caching

Given the apparent interprocess locality, I/O-node caching should also be successful. To �nd out

whether that was the case, we ran a trace-driven simulation of I/O-node caches, with 4-KB bu�ers

managed by either an LRU or FIFO replacement policy. The number of compute nodes was held

constant at 128 (the actual number of compute nodes in the traced system), and the number of

I/O nodes varied from 1 to 20. The actual number of I/O nodes on the traced system was 10.

These I/O-node caches served all compute nodes, all �les, and all jobs, according to our best guess

of the event ordering within our traces as described in Section 3.2. We assumed that the �les were

striped in a round-robin fashion at a one-block granularity. No compute-node cache was used.

Figure 3.11 shows the results of the simulation. With LRU replacement, a small cache (4000

4-KB bu�ers over all I/O nodes) was su�cient to reach a 90% hit rate. With FIFO replacement,

nearly 20000 bu�ers were needed to obtain a 90% hit rate, since FIFO does not give preference to

blocks with high locality. It made little di�erence whether the bu�ers were focused on a few I/O

one �le. In those cases a single bu�er per �le would have been appropriate.
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Figure 3.11: Results of I/O-node caching simulation. Each line represents a

complete run of the simulation with a �xed number of I/O nodes. Although they

are hard to distinguish, there are lines for 1, 2, 5, 10, 15, and 20 I/O nodes.

nodes or spread over many I/O nodes. That is, the hit rates were similar; performance is another

issue. The success of such a small cache, coupled with the apparent lack of intraprocess locality in

many jobs (Figure 3.10), recon�rms the presence of a high degree of interprocess spatial locality.

As a �nal test, we simulated the combination of a single bu�er per compute node and a cache at

each of 10 I/O nodes. The result was only about a 3% reduction in the I/O-node hit rate when each

I/O node had a small cache of 50 bu�ers. This further suggests that when caching was limited to

the I/O nodes, most of the hits were indeed a result of interprocess locality because, as Figure 3.10

shows, the limited intraprocess locality was �ltered out by the compute-node cache.

Note the contrast with Miller and Katz's tracing study [MK91], which found little bene�t from

caching. They did notice a bene�t from prefetching and write-behind. Both their workload and ours

involve sequential access patterns; the di�erence is that the small requests in our access pattern

lead to intraprocess spatial locality, and the distribution of a sequential pattern across parallel

compute nodes leads to interprocess spatial locality, both of which could be successfully captured

by caching.
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3.5 Workload Characterization of a CM-5

Working with researchers from Duke University and Thinking Machines Corporation, we performed

a similar workload characterization on a Thinking Machines CM-5 at the National Center for

Supercomputing Applications [PEK+95, Pur96]. The CM-5 had 512 compute nodes and a much

more powerful I/O subsystem than the iPSC/860. While the iPSC/860 was used primarily by

control-parallel applications written in Fortran or C, most of the applications on the CM-5 were

data-parallel programs written in CMF, a data-parallel dialect of Fortran. The CM-5 also had a

number of control-parallel applications written in Fortran or C, which used the CMMD library

for message-passing and I/O. The iPSC/860 was used mostly for computational uid dynamics

applications, but the CM-5 at NCSA was used for a wide variety of scienti�c applications.

Despite the great di�erences between the machines and the environments, we found that the

�le system workloads had broad areas of similarity.

While the number of write-only �les outnumbered the read-only �les by 3 to 1 on CFS, the

ratio was less than 2 to 1 on the CM-5. We hypothesize that the number of write-only �les on CFS

was so high because many applications found it easier to manage a separate output �le for each

compute node, and then coalescing them during postprocessing. Since the applications on the CM-5

were predominantly data-parallel, this �le-per-CP model is less natural. This hypothesis is further

supported by the total number of �les opened per application: on the iPSC, most applications

opened 4 or more �les; on the CM-5, most opened only 1 or 2.

On the CM-5 there was little di�erence between the amount of data written to write-only �les

and read from read-only �les. In both cases, the amount of data transferred was much greater

than under CFS. Since the CM-5 had a more powerful I/O subsystem, as well as many times the

amount of disk space, this result is also not surprising. Like the iPSC, the CM-5 workload had few

temporary �les.

Individual requests on the CM-5 were larger than we observed on the iPSC, but since the vast

majority were under 1000 bytes, they were still far smaller than conventional wisdom would have

led us to expect. Like the iPSC, there was a great deal of regularity in the interval sizes; almost

all �les had only 1 or 2 intervals. There was less regularity of request sizes on the CM-5, but still

fewer than 20% of the �les had 4 or more di�erent request sizes.
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Like the iPSC, we observed a great deal of byte and block sharing. The sharing in control-

parallel (CMMD) programs was on the same order as the sharing on the iPSC: 61% of the read-only

�les had all of their bytes shared and 93% of the write-only �les had none of their bytes shared.

The data-parallel (CMF) programs had much less byte sharing; 60% of the read-only �les had 1%

or fewer of their bytes shared by multiple processors. This lack of sharing probably reects CMF's

data-distribution model: each processor is statically assigned a disjoint subsection of a matrix.

Although there were di�erences in the workloads, there were signi�cant similarities as well.

Perhaps most importantly, it appears that there is a natural tendency for parallel programs to

access �les in regular patterns composed of small, non-contiguous chunks.
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Chapter 4

Access Pattern Analysis

To better understand some of the results from the previous chapter, and the cause of those results,

we performed a more detailed analysis of the patterns in which individual nodes accessed data in

individual �les.

4.1 Access Patterns

Most parallel �le systems have been optimized to support large (many kilobyte) �le accesses. The

workload study described in the previous chapter shows that while some parallel scienti�c applica-

tions do issue a relatively small number of large requests, there are many applications that issue

thousands or millions of very small requests, putting a great deal of stress on current �le systems.

A common characteristic of many �le-system workloads, particularly scienti�c �le-system work-

loads, is that �les are accessed consecutively [OCH+85, BHK+91, MK91]. In the parallel �le-system

workload, we found that while almost 93% of all �les were accessed sequentially, consecutive access

was primarily limited to those �les that were only opened by one compute node. When �les were

opened by just a single node, 93% of those �les were accessed strictly consecutively (i.e., every

access began immediately after the previous access), but when �les were opened by multiple nodes,

only 15% of those nodes accessed the �le strictly consecutively.

Recall that an interval is the distance between the end of one access and the beginning of the

next. Although we found that almost 99% of all �les were accessed with fewer than 3 di�erent

intervals, that �nding made no distinction between �les accessed by a single node and �les accessed

by multiple nodes. Looking more closely, we found that while 51% of all multi-node �les were
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accessed at most once by each node (i.e., there were no intervals at all) and 16% of all multi-node

�les had only 1 interval size, over 26% of multi-node �les had 5 or more di�erent interval sizes.

Since previous studies have shown that scienti�c applications rarely access �les randomly [MK91],

the fact that a large number of multi-node �les have many di�erent interval sizes suggests that

these �les are being accessed in some complex, but possibly regular, pattern.

4.1.1 Strided Accesses

Although �les may be opened by multiple nodes simultaneously, we are only interested here in

the accesses generated by individual nodes. When necessary to avoid confusion, we use the term

node-�le to discuss a single node's usage of a �le. We refer to a series of requests to a node-�le as a

simple-strided access pattern if each request is the same size and if the �le pointer is incremented

by the same amount between each request. One simple way this pattern could occur in practice is if

each process in a parallel application reads a single column of data from a two-dimensional matrix

stored on disk in row-major order. Another possibility is shown in Figure 4.1. In this example,

an application has distributed the columns of a two-dimensional matrix across its processors in

a cyclic pattern. Note that the number of columns must be evenly divisible by the number of

compute nodes. Otherwise, the distance between columns within a row would be di�erent than the

distance between the last column in one row and the �rst column in the next row, breaking the

simple-strided pattern.

Since a strided pattern was less likely to occur in single-node �les, and since it could not occur

in �les that had only one or two accesses, we looked only at those �les that had three or more

requests by multiple nodes.1 Figure 4.2 shows that many of the accesses to these �les appeared

to be part of a simple-strided access pattern. Although consecutive access was far more common

in single-node �les, it does occur in multi-node �les. Since consecutive access could be considered

a simple form of strided access (with an interval of 0), Figure 4.2 shows the frequency of strided

accesses with and without consecutive accesses included. In either case, over 80% of all the �les we

examined were apparently accessed entirely with a strided pattern.

We de�ne a strided segment to be a group of requests that appear to be part of a simple-strided

1Although we only looked at a restrictive subset of �les, they account for over 93% of the I/O requests in the

entire traced workload.
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0 1 2 3 4 0 1 2 3 40 1 2 3 40 1 2Compute Node #: 3 4

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Column #:

Figure 4.1: The columns of this 20x20 matrix have been distributed cyclically

across the 4 compute nodes in an application. The columns assigned to node 0 are

highlighted. If the matrix were composed of 8-byte doubles and stored on disk in

row-major order, the I/O pattern would have an stride of of 32 (4*8) bytes.
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Figure 4.2: Cumulative distribution of node-�les according to the fraction of

accesses that were involved in a simple-strided pattern. This graph covers both the

case where consecutive accesses are counted as strided (with an interval of 0) and

the case where they are not.
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Figure 4.3: The number of di�erent strided segments in each node-�le. We have

ignored segments of fewer than 10 accesses.

pattern. A segment's length is the number of requests that comprise that segment. Figure 4.2 only

shows the percentage of requests that were involved in some strided segment; it does not tell us

whether the requests are all part of a single strided segment that spans the whole �le, or if each �le

had many segments with only a few requests in each. Figure 4.3 shows that most �les had only a

few strided segments, it was still common for a node-�le to be accessed in many strided segments.

Since we were only interested in those cases where a �le was clearly being accessed in a strided

pattern, this �gure does not include short segments (fewer than 10 accesses) that may appear to be

strided. Furthermore, in this graph we did not consider consecutive access to be strided. Despite

using these fairly restrictive criteria for `strided access', we still found that it occurred frequently.

Although Figure 4.4 indicates that most segments fell into the range of 20 to 30 requests, Figure 4.5

shows that there were quite a few long segments as well.

Although the existence of these simple-strided patterns is interesting and potentially useful, the

fact that many �les were accessed in multiple short segments suggests that there was a level of

structure beyond that described by a simple-strided pattern.

4.1.2 Nested-strided Accesses

A nested-strided access pattern is similar to a simple-strided access pattern but rather than be-

ing composed of simple requests separated by regular strides in the �le, it is composed of strided
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Figure 4.4: The number of segments of a given length (including `short' segments

of 10 or fewer accesses). By far, most segments have between 20 and 30 accesses.
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Figure 4.5: The tail of the segment length distribution shown in the previous

�gure. There are quite a few very long strided segments.
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Compute Node #: 0 1 2 3 4 5 6 7
Column #:

0

Inner Stride

1 2 3 4 5 6 7 0 1 2 3

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Outer Stride

Inner Stride

Figure 4.6: The columns of this 20x20 matrix have been distributed cyclically

across the 8 compute nodes in an application. The columns assigned to node 0 are

highlighted. If the matrix were composed of 8-byte doubles and stored on disk in

row-major order, the I/O pattern would have an inner stride of 64 (8*8) bytes and

an outer stride of 160 (20*8) bytes.

segments separated by regular strides in the �le. A singly-nested pattern is the same as a simple-

strided pattern. A doubly-nested pattern could correspond to the pattern generated by an appli-

cation that distributed the columns of a matrix stored in row-major order across its processors in

a cyclic pattern, if the columns could not be distributed evenly across the processors (Figure 4.6).

The simple-strided sub-pattern corresponds to the requests generated within each row of the ma-

trix, while the top-level pattern corresponds to the distance between one row and the next. This

access pattern could also be generated by an application that was reading a single column of data

from a three-dimensional matrix. Higher levels of nesting could occur if an application mapped a

multidimensional matrix onto a set of processors.

Table 4.1 shows how frequently nested patterns occurred. Files with zero levels of nesting had

no strided accesses, and those with one level had only simple-strided accesses. Interestingly, it was

far more common for �les to exhibit three levels of nesting than two. This tendency suggests that
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Maximum Level Number of

of Nesting node-�les

0 469

1 10945

2 747

3 5151

4+ 0

Table 4.1: The number of node-�les that use a given maximum level of nesting.

many of the applications in this environment were using multidimensional matrices.

4.1.3 CM-5

We performed a similar analysis of the workload on the CM-5 discussed in the previous chapter.

Those applications written in the data-parallel CM Fortran had a single �le pointer for the whole

application. Conceptually, individual CPs did not access �les; the application as a whole performed

all �le accesses. Consequently, we found that most of those data-parallel applications exhibited little

or no explicitly strided access. Since we hypothesize that most of the strided access patterns are

the result of distributing data across multiple CPs in an application, we would not expect to see

this form of access in data-parallel applications, where there is no notion of a per-CP �le access.

Of course, the actual movement of data between CPs and IOPs is likely to be similar to that seen

on the iPSC, but that data movement is transparent to the application programmer. Those CM-5

programs that were written in the control-parallel paradigm, with one �le pointer for each CP, did

exhibit a high degree of strided access. Like the iPSC, most of the applications had a single level

of nesting, and there were more with three levels than with two levels. Unlike the iPSC, there were

a small number of applications with more than 3 levels of nesting.
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Chapter 5

Design and Implementation of Galley

Galley is a new multiprocessor �le system, which we designed in response to the results of our

workload studies.

5.1 Design Goals

Most current multiprocessor �le system designs are based primarily on hypotheses about how

parallel scienti�c applications would use that �le system. Before we began the detailed design of

Galley, we laid out a number of high-level design goals, which are the result of examining how

parallel scienti�c applications actually use existing �le systems:

� allow applications and libraries to explicitly control parallelism in �le access,

� e�ciently handle a variety of access sizes and patterns,

� be exible enough to support a wide variety of interfaces and policies, implemented in libraries,

� allow easy and e�cient implementations of libraries,

� be scalable enough to run well on multiprocessors with tens or hundreds of nodes,

� minimize memory and performance overhead.

5.2 File Structure

Most parallel �le systems are based on a Unix-like, linear �le model [BGST93, LIN+93, Pie89].

Under this model, a �le is seen as an addressable, linear sequence of bytes. Applications can issue
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requests to read or write contiguous subranges of that sequence of bytes. A parallel �le system

typically declusters the data within those �les (i.e., scatters the blocks of each �le across multiple

disks), allowing parallel access to the �le. This parallel access reduces the e�ect of the bottleneck

imposed by the relatively slow disk speed. Although the �le is actually scattered across many disks,

the underlying parallel structure of the �le is hidden from the application.

Galley uses a more complex �le model that allows greater exibility, and which should lead to

higher performance. As we show in Chapter 7, it is possible to support the traditional linear �le

model on top of Galley's more complex structure.

5.2.1 Sub�les

The linear �le model o�ered by most multiprocessor �le systems can give good performance when

the request size generated by the application is signi�cantly larger than the declustering unit size,

as a single request will involve data from multiple disks. Under these conditions, the �le system

can access multiple disks in parallel, delivering higher bandwidth to the application, and possibly

hiding any latency caused by disk seeks. The drawback of this approach is that most multiprocessor

�le systems use a declustering unit size measured in kilobytes (e.g., 4 KB in Intel's CFS), but our

workload characterization studies show that the typical request size in a parallel application is much

smaller: frequently under 200 bytes. This disparity between the request size and the declustering

unit size means that most of the individual requests generated by parallel applications are not being

executed in parallel. In the worst case, the compute processors in a parallel application may issue

their requests in such a way that all of an application's processes may �rst attempt to access disk 0

simultaneously, then all attempt to access disk 1 simultaneously, and so on.

Another drawback of the linear �le model is that a dataset may have an e�cient, parallel

mapping onto multiple disks that is not easily captured by the standard declustering scheme. One

such example is the two-dimensional, cyclically-shifted block layout scheme for matrices, shown

in Figure 5.1, which was designed for SOLAR, a portable, out-of-core linear-algebra library [TG96].

This data layout is intended to e�ciently support a wide variety of out-of-core algorithms. In

particular, it allows blocks of rows and columns to be transferred e�ciently, with a high degree of

I/O parallelism, as well as square or nearly-square sub-matrices.

To avoid the limitations of the linear �le model, Galley does not impose a declustering strategy
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Figure 5.1: An example of a 2-dimensional, cyclically-shifted block layout, as

described in [TG96]. In this example there are 6 disks, logically arranged into a

2-by-3 grid, and a 6-by-12 block matrix. The number in each square indicates the

disk on which that block is stored.

on an application's data. Instead, Galley provides applications with the ability to fully control this

declustering according to their own needs. This control is particularly important when implement-

ing I/O-optimal algorithms [CK93]. Applications are also able to explicitly indicate which disks

they wish to access in each request. To allow this behavior, �les are composed of one or more

sub�les, which may be directly addressed by the application. Each sub�le resides entirely on a

single disk, and no disk contains more than one sub�le from any �le. By default a �le will contain

one sub�le on every disk in the system, but the application may also choose how many sub�les a

�le contains when the �le is created. The application may even choose on which disks the �le will

be created. The number of sub�les remains �xed throughout the life of the �le.

The use of sub�les gives applications the ability both to control how the data is distributed

across the disks, and to control the degree of parallelism exercised on every subsequent access.

Of course, many application programmers will not want to handle the low-level details of data

declustering, so we anticipate that most end users will use a user-level library (such as SOLAR)

that provides an appropriate declustering strategy, but hides the details of that strategy from the

end user.

5.2.2 Forks

Each sub�le in Galley is structured as a collection of one or more independent forks. A fork is a

named, addressable, linear sequence of bytes, similar to a traditional Unix �le. Unlike the number

of sub�les in a �le, the number of forks in a sub�le is not �xed; libraries and applications may add
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Figure 5.2: Three dimensional structure of �les in the Galley File System. The

portion of the �le residing on disk 0 is shown in greater detail than the portions on

the other two disks.

forks to, or remove forks from, a sub�le at any time. There is no requirement that all sub�les have

the same number of forks, or that all forks have the same size. The �nal, three-dimensional �le

structure is illustrated in Figure 5.2.

The use of forks allows further application-de�ned structuring. For example, if an application

represents a physical space with two matrices, one containing temperatures and other pressures,

the matrices could be stored in the same �le (perhaps declustered across multiple sub�les) but in

di�erent forks. In this way, the related information is stored logically together but each matrix

may be accessed independently.

While typical application programmers may �nd forks helpful, they are most likely to be useful

when implementing libraries. In addition to storing data in the traditional sense, many libraries

also need to store persistent, library-speci�c \metadata" independently of the data proper. One

example of such a library would be a compression library similar to that described in [SW95a].

Rather than compressing the whole �le at once, making it di�cult to modify or extract data in the

middle of the �le, the �le is broken into a series of chunks, which are then compressed independently.

With Galley, such a library could store the compressed data chunks in one fork and the necessary

index information about those chunks in another.
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Another instance where this type of �le structure may be useful is in the problem of genome-

sequence comparison. This problem requires searching a large database to �nd approximate matches

between strings [Are91]. The raw database used in [Are91] contains thousands of genetic sequences,

each of which is composed of hundreds or thousands of bases. To reduce the amount of time required

to identify potential matches, the authors constructed an index of the database that was speci�c

to their needs. Under Galley, this index could be stored in one fork, while the database itself could

be stored in a second fork.

A �nal example of the potential use of forks is Stream*, a parallel �le abstraction for the

data-parallel language, C* [MHQ96]. Stream* divides a �le into three distinct segments, each of

which corresponds to a particular set of access semantics. Although the current implementation of

Stream* stores all the segments in a single �le, one could use a di�erent fork for each segment. In

addition to the raw data, Stream* maintains several kinds of metadata, which are currently stored

in three di�erent �les: .meta, .first, and .dir. In a Galley-based implementation of Stream*,

it would be natural to store this metadata in separate forks rather than separate �les.

5.2.3 Namespace

E�ciently supporting a mature, useful naming system in a scalable parallel �le system is a complex

problem. Given this complexity, and the fact that it was not the focus of our research, we have

avoided most of the issues involved by limiting Galley to a much simpler naming structure than

most sequential or parallel �le systems. Rather than providing a hierarchical structure, Galley's

namespace is at. Conceptually, this means that every �le is stored in the root directory, and there

are no subdirectories.

This simple naming structure is one of the more serious shortcomings that would need to be

addressed before Galley could be considered for practical use.

5.3 Compute Processors (CPs)

Beyond the assumption that the �le system contains multiple disks, the �le model discussed in the

previous section does not depend on any speci�c �le system structure. As we discuss below, Galley

is based on the client-server model.

A client in Galley is simply any user application that has been linked with the Galley run-time
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library, and which runs on a compute processor. The run-time library receives �le-system requests

from the application, translates them into lower-level requests, and passes them, as messages,

directly to the appropriate servers, running on I/O processors. The run-time library then handles

the transfer of data between the I/O processors and the compute node's memory.

As far as Galley is concerned, every compute processor in an application is completely indepen-

dent of every other compute processor. Indeed, Galley does not assume that one compute processor

is even aware of the existence of other compute processors. This independence means that Galley

does not impose any communication requirements on a user's application, so applications may use

whichever communication software (e.g., MPI, PVM, P4) is most suitable to the given problem.

Indeed, applications are not limited to the control-parallel, message-passing paradigm; data-parallel

applications can be, and have been, implemented on top of Galley.

Like most multiprocessor �le systems, Galley o�ers both blocking and non-blocking I/O. To

simplify the implementation, and to avoid binding Galley too tightly to a single architecture, Galley

originally used multi-threading to implement non-blocking I/O. Unfortunately, most of the major

communications packages cannot function in a multi-threaded environment. Since we cannot rely on

the availability of thread support, Galley is designed to use Unix signals to implement non-blocking

I/O, which in turn requires that we use a TCP/IP communications substrate. Clearly, Unix signals

were not intended to support high-performance I/O, so this approach may a�ect the performance

of some applications. The application programmer will have to decide if the performance gained

by overlapping I/O and computation outweighs the performance impact of our signal-based non-

blocking I/O. If support for multi-threaded applications ever becomes commonplace in message-

passing packages, our original approach would likely be preferable.

5.4 I/O Processors (IOPs)

Galley's I/O servers, illustrated in Figure 5.3, are composed of several units, which are described in

detail below. Galley's IOPs do not communicate between themselves and they use only TCP/IP to

communicate with CPs. Since IOPs do not interact with any high-level message-passing library, we

were able to implement each unit as a separate thread. Each IOP also has one thread designated

to handle incoming I/O requests for each compute processor. When an IOP receives a request from

a CP, the appropriate CP thread interprets the request, passes it on to the appropriate worker
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Figure 5.3: Internal structure of a Galley I/O Processor, showing two active

data requests waiting for blocks from the CacheManager and/or the DiskManager,

and three idle CP threads. All threads execute in the same address space.

thread, and then handles the transfer of data between the IOP and the CP. This multi-threading

makes it easy for an IOP to service requests from many clients simultaneously.

While one potential concern is that this thread-per-CP design may limit the scalability of the

system, we have not observed such a limitation in the practice. One may reasonably assume that

a thread that is idle (i.e., not actively handling a request) is not likely to noticeably a�ect the

performance of an IOP. By the time the number of active threads on a single IOP becomes great

enough to hinder performance, the IOP will most likely be overloaded at the disk, the network

interface, the memory, or the bu�er cache, and the e�ect of the number of threads will be minor

relative to these other factors.

48



5.4.1 CP Threads

CP threads remain idle until a request arrives from the corresponding CP. After being awakened

to service a new request, a CP thread creates a list of all the disk blocks that will be required to

satisfy the request. The CP thread then passes the full list of blocks to the CacheManager, and

waits on a queue of bu�ers returned by the CacheManager and DiskManager. As bu�ers arrive on a

CP thread's queue, the thread moves the data between those bu�ers and the thread's CP (possibly

using an intermediate bu�er for packing and unpacking small records). When a CP thread �nishes

all the data movement for a bu�er, it decreases that bu�er's reference count (discussed more in the

next section), and handles the next bu�er in the queue. When the whole request has been satis�ed,

or if it fails in the middle, the thread passes a success or failure message back to its CP, and idles

until another request arrives.

The order in which a fork's blocks are placed on the CP thread's bu�er queue is determined by

which blocks are present in the bu�er cache and the order in which that fork's blocks are laid out

on disk. Therefore, it is not possible for Galley's client-side run-time library to know in advance

the order in which an IOP will satisfy the individual pieces of a request. So, when reading, before

the IOP can send data to the CP, it must �rst send a message indicating what data will be sent.

Similarly, when writing, the IOP must send a message to the CP indicating which portion of the

data the IOP is ready to receive. When writing, this approach is somewhat unusual in that the

IOP is essentially `pulling' the data from the CP, rather than the traditional model, where the CP

`pushes' the data to the IOP.

There is a further complication in transferring data between CPs and IOPs: packing. Rather

than sending lots of small packets across the network, when possible Galley packs multiple small

chunks of data into a larger bu�er, and sends the larger bu�er when it is full. This packing

reduces the aggregate latency, and increases the e�ective data-transfer bandwidth. In the current

implementation, the list of data chunks is precomputed on the CP and the whole list is sent to the

IOP.1 On our testbed systems, the speed of the network relative to the speed of the processors is

high enough that sending the list across the network makes more sense than computing the list on

the CPs and the IOPs.

1Note, this list is speci�ed in logical fork-level chunks, not low-level disk-block chunks.

49



For simplicity, within a single packet the IOP will only pack chunks in the order they appear

in the chunk list. If an out-of-order block is placed on a CP thread's queue, the current bu�er is

ushed, even if it is not full, and a new pack bu�er is started. An early implementation of Galley

supported out-of-order packing within a packet, but that approach required that a fairly large

packet of `control' data be sent to the CP with each ushed bu�er. The current implementation is

less exible, but appears to have higher performance on our testbeds. On a system with a higher-

bandwidth, lower-latency network, out-of-order packing might be more e�cient, as the cost of the

extra control data would be reduced.

5.4.2 CacheManager

Each IOP has a bu�er cache that is maintained by the CacheManager. Each bu�er has an associated

reference count, which indicates how many CP threads are waiting to use data stored in that

bu�er. In addition to deciding which blocks are kept in the bu�er, the CacheManager does all the

work involved in locating blocks in the bu�er cache for CP threads. To perform these lookups,

the CacheManager maintains a separate list of disk blocks requested by each thread. When the

CacheManager has outstanding request lists from multiple threads, it services requests from each

list in round-robin order. This round-robin approach is an attempt to provide fair service to each

requesting CP.

The CacheManager maintains a global LRU list of all the blocks resident in the cache. When a

new block is to be brought into the cache, this list is used to determine which block is to be replaced.

Providing applications with more control over cache policies is one possible area for future research.

Rather than performing lookups by scanning through the entire LRU list, for e�ciency the

CacheManager also maintains a hash table, containing pointers to all the blocks in the cache. For

each disk block requested, the CacheManager searches its hash table of resident blocks. If the block

is found, its reference count is increased, a pointer to that bu�er is added to the requesting thread's

ready queue, and the block is moved to the most-recently-used end of the LRU list. If the block is

not resident in the cache, the CacheManager �nds the �rst block in the LRU list with a reference

count of 0, and schedules it to be replaced by the requested block. The bu�er is then marked `not

ready', and a request is issued to the DiskManager to write out the old block (if necessary) and

to read the new block into the bu�er. Once a block has been scheduled for eviction, it cannot be
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\recalled"; if another request arrives for that block, it will have to be reread from disk.

5.4.3 DiskManager

The DiskManager logically partitions a disk into 32 KB blocks, and accepts requests from the

CacheManager to read or write those blocks. The DiskManager maintains a list of pending block

requests. As new requests arrive from the CacheManager, they are placed into the list according to

the disk scheduling algorithm. The DiskManager currently uses a Cyclical Scan algorithm [SCO90].

When a block has been read from disk, the DiskManager updates the cache status of that block's

bu�er from `not ready' to `ready' and adds it to the requesting threads' ready queues.

The DiskManager is also responsible for keeping track of which blocks on the disk are not

assigned to any fork, and for allocating new blocks to forks as they grow. Like FFS, and unlike

the original Unix �le system, Galley uses a bitmap to keep track of the empty blocks on a disk.

Given Galley's 32 KB block size, a single bitmap block contains 262144 bits, which is su�cient to

maintain information about 8 GB of disk space. For a large disk or RAID, multiple bitmap blocks

would be used. These bitmap blocks are stored near the \front" of the disk, and are ushed every

time the disk scheduler reaches the front of its cycle. Although this regular ushing provides some

measure of safety, it is possible for the �le system to be left in a highly inconsistent state following a

crash. This problem would certainly need to be addressed before Galley could be considered ready

for production use.

Many �le systems perform some kind of prefetching; data is read from the disk into the bu�er

cache before any process actually requests it. Prefetching is an attempt to reduce the latency of �le

access perceived by the process. Galley's DiskManager does not attempt to prefetch data for two

reasons. First, indiscriminate prefetching can cause thrashing in the bu�er cache [Nit92]. Second,

prefetching is based on the assumption that the system can intelligently guess what an application

is going to request next. Using the higher-level requests described below, there is frequently no

need for Galley to make guesses about an application's behavior; the application is able to explicitly

provide that information to each IOP.

To increase portability, Galley does not use a system-speci�c low-level driver to directly access

the disk. Instead, Galley relies on the underlying operating system (presumably Unix) to provide

such services. Galley's DiskManager has been implemented to use raw devices, Unix �les, or simu-
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lated devices as \disks". Galley's disk-handling primitives are su�ciently simple that modifying the

DiskManager to access a device directly through a low-level device driver for higher performance

is likely to be a trivial task.

5.4.4 Metadata

The preceding sections discuss the functional units that move the data between the disk, the cache,

and the CPs. We now discuss some of the details of how that data is stored and retrieved. Figure 5.4

shows how the pieces discussed below all tie together.

Naming

When an application wishes to access the data in a �le, it must �rst locate that �le's metadata, or

the information that describes where the actual data is stored. Each �le in Galley has a single �le

header block associated with it. The �le header block contains the number of sub�les in the �le,

and a list of sub�le header IDs. A sub�le header ID is an (IOP, block num) pair, which indicates

on which IOP a sub�le is stored, and which disk block on that IOP contains the sub�le's header

block.

Rather than storing all the �le header blocks on a single IOP, which would create a single point

of congestion that could limit the system's scalability, the �le header blocks are distributed across

all the IOPs in the system. To �nd the IOP that manages a given �le's header block, a simple hash

function is applied to the �le name. Given the simplicity of Galley's naming system, this approach

is reasonably simple to implement e�ciently. Vesta uses a similar hashing scheme for their naming

system [CF96].

A sub�le header block contains information about all the forks within the sub�le. In particular,

a fork's entry in the sub�le header block contains its name, its size, and the disk addresses of

its mapping blocks, which are discussed below. The current implementation of Galley allows each

sub�le to have only a single, 32 KB header block, limiting sub�les to 256 forks. If this limit should

prove problematic in practice, extending or eliminating it would require little work.

Block mapping

Although Galley's forks resemble traditional Unix �les, Galley does not adopt Unix's method of

mapping these �les to blocks. Rather than using a hierarchical structure of direct, indirect, and
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Hash Function

Subfiles: 4
(0, 3457)
(1, 98453)
(2, 47478)
(3, 989)

��

Size: 500000000

Disk 0 Disk 1 Disk 2 Disk 3

File Header Block

Subfile Header Block

File Name

Mapping blocks:

Fork 0:
Name: index
Size: 1024000
Mapping blocks:

MB 0: 121

Forks: 2

Fork 1:
Name: ActualData

MB 0: 87534
MB 1: 33744

Figure 5.4: Diagram of Galley's metadata structures from the �le level down to the

fork level.
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doubly-indirect blocks to map disk block to forks, Galley uses a one-level collection of mapping

blocks. Each of these mapping blocks is similar in nature to a direct block in the Unix mapping

system. That is, each mapping block contains a series of block numbers, each of which maps a

single block in the fork to a single block on disk. This approach is simpler than the multi-level

approach used by Unix �le systems, and allows a simpler implementation.

Since Galley's blocks are larger than those on most Unix �le systems, we need fewer mapping

entries to map the same amount of data onto disk. For example, a Unix �le system that used a

4 KB block size would need 8 times as many mapping entries to map a �le onto disk as Galley

would to map the same �le to disk. Furthermore, since Galley's blocks are larger, each mapping

block contains more entries: again, 8 times as many as a �le system with a 4 KB block size. Under

Galley, a single mapping block contains 8192 mapping entries, enough to map 256 megabytes of

data. The current implementation limits a single fork to 4 GB of data. Note that this limitation

allows us to specify o�sets into a fork with a single 32-bit integer.

One special case of block mapping occurs when a fork contains a hole. For example, if an

application wrote data only in block 0 and block 2, then block 1 will not contain any data. As

in Unix, we treat such a block as if it were �lled with zeros. While we could certainly assign a

disk block to each such empty block, that would consume unnecessary disk space, and require disk

accesses that could be avoided. Instead, Galley maps these empty blocks to disk block 0. Since

Galley uses disk block 0 to store metadata about the �le system itself, we know that no ordinary

�le will ever have an actual block assigned to disk block 0. If an application ever attempts to write

to a block that is mapped to 0, Galley assigns an actual disk block to replace the empty block. If an

application asks to read data from an empty block, Galley sends a short message to the requesting

CP, notifying it that the block is empty. The CP then �lls the appropriate bu�er with zeros. Not

only does this approach avoid a disk access, it avoids sending a block of data across the network.

The Unix approach is optimized for small �les. The workload studies discussed in [OCH+85,

BHK+91] show that most �les in a Unix workload can be addressed using just the direct-mapping

entries in the inode. Few �les will require an indirect block and fewer still will require a doubly-

indirect block. Since we have seen that �les in a scienti�c environment (both vector supercomputer

and parallel) tend to be much larger than a Unix environment, and tend to have greater variability

in size, Galley adopts a simpler approach to block mapping that does not favor any particular �le
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size.

5.5 Application Interface

Given the new �le model implemented by Galley, and the observed frequency of regular access

patterns in multiprocessor �le system workloads, it was not su�cient to simply provide applications

with a traditional Unix-like interface. Thus, Galley provides a new interface that is intended to

better meet the needs of scienti�c applications. Although applications may certainly be written

directly to Galley's interface, it is intended primarily to allow the easy implementation of libraries.

We anticipate that these libraries will provide the higher-level functionality needed by most users.

5.5.1 File Operations

Files in Galley are created using the gfs create file() call. In addition to specifying a �le name,

an application may specify on how many IOPs, and even on which IOPs, the �le is to be created.

A gfs create file() call is completed in three steps. The �rst step is to verify that the name

chosen for the �le is not already in use, and to reserve the name if it is available. This step requires

that a single message be sent to the IOP that will be responsible for maintaining the metadata

for the new �le. The responsible IOP is chosen by applying a hash function to the �le name, as

discussed earlier. The second step is to create sub�les on each of the appropriate IOPs. This step

requires that a message be sent to each IOP, asking that a sub�le header block be assigned to the

�le. Each IOP returns either the ID of the assigned header block, or an error code. If this step fails

on any IOP (e.g., if it is out of disk space), then each IOP is instructed to release the newly assigned

header blocks, the reserved �le name is released, and the appropriate error code is returned to the

application. The �nal step of a successful �le-creation process is to store the �le name, along with

all the sub�le header block IDs, on disk at the responsible IOP and to return a success code to the

application. Note that after the �le is created, all the sub�les are empty; no forks are created as

part of the �le-creation process. Also, the �le is not opened as part of this process.

As far as Galley is concerned, each compute node in an application is a completely independent

entity. Therefore, Galley has no notion of a leader, a node that can issue requests on behalf of other

processors. Thus, each node in an application that wishes to use a �le in Galley must explicitly

open that �le using the gfs open file() call. Although it is conceivable that requiring every
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node to open a �le independently could lead to performance bottlenecks, we have not observed

any such problems in practice. When an application issues a gfs open file() call, the run-time

library sends a request to the appropriate metadata server (again, determined by hashing the �le

name). If the �le exists, the metadata server returns a list of all the sub�le header block IDs to the

requesting CP. The run-time library assigns the open �le a �le ID, and caches the list of header

block IDs in an open-�le table to avoid repeated requests to the metadata server. Since these IDs

do not change during the course of the �le's lifetime, we do not have to be concerned that the

cached IDs will become inconsistent with the IDs stored at the metadata server. The run-time

library then sends messages to each of the IOPs on which the �le has a sub�le, notifying the IOP

that the sub�le has been opened. The IOP then either sets up a small amount of state, or increases

a reference count if another CP has already opened the sub�le. The reference count is decreased

when a CP closes the �le, or if an application that has it open completes or crashes.

The metadata server maintains no information about which CPs open a �le, or even that the

�le has been opened. This lack of state at the metadata server means that it is possible for one

compute processor to ask that a �le be deleted (using gfs delete file()) while another CP is still

using the �le. Deleting a �le in Galley is a two-step process. The �rst step simply involves removing

some indexing information: the name and ID list stored at the metadata server. Since each CP

that opens a �le maintains a local cache of header block IDs, CPs that have already opened a �le

are not a�ected by the removal of that indexing information. The second step is asking each IOP

on which the �le was created to delete its sub�le. If the reference count for that sub�le is 0, it (and

all of its forks) are actually deleted. If the reference count for that sub�le is greater than 0, it is

marked for deletion, and will be deleted when the reference count reaches 0. Thus, even if CP A

requests that a �le be deleted, while CP B is using the �le, CP B will still be able to access the

�le's data until it closes the �le.

5.5.2 Fork Operations

Forks are created using the gfs create fork() call, which takes as parameters the ID of an open

�le, the sub�le in which the fork is to be created, and a name for the new fork. Galley's run-time

library looks up the ID of the appropriate sub�le header block in its cached list, and sends both

the sub�le header ID and the fork name to that sub�le's IOP. By sending the sub�le header ID
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to the IOP, there is no need for an extra indexing operation to take place at the IOP; the IOP is

able to retrieve the appropriate sub�le header block immediately. The IOP adds the name of the

fork to the sub�le header block, and returns a success or error code to the CP. For the convenience

of application programmers, Galley also provides a gfs all create() call, which creates a fork of

the given name in each of the �le's sub�les.

As with �les, each process in an application that intends to access a fork's data must ex-

plicitly open that fork. Once again, while this requirement theoretically has the potential for

reducing system performance, such behavior has not been observed in practice. Forks are opened

using the gfs open fork() call, which takes the same parameters as the fork-creation call. If the

fork-open request is successful, Galley returns a fork ID, which is used in subsequent calls, much

like a �le descriptor is used in Unix. Forks are closed with gfs close fork() and deleted with

gfs delete fork(). As with �les, if a CP attempts to delete a fork that has a non-zero reference

count, that fork is marked for deletion, but is not actually deleted until its reference count reaches

0. For convenience, there are gfs all open(), gfs all close(), and gfs all delete() calls as

well.

5.5.3 Data Access Interface

The standard Unix interface provides only simple primitives for accessing the data in �les. These

primitives are limited to read()ing and write()ing consecutive regions of a �le. As discussed in

the previous chapter, we have found that these primitives are not su�cient to meet the needs of

many parallel applications. Speci�cally, parallel scienti�c applications frequently make many small

requests to a �le, with strided access patterns.

In addition to a simple, Unix-style interface, Galley provides three interfaces that allow ap-

plications to explicitly request data in regular, structured patterns, such as those described in

Chapter 4, as well as one interface for complex, but unstructured requests. These interfaces allow

the �le system to combine many small requests into a single, larger request, which can lead to im-

proved performance in several ways. First, reducing the number of requests can lower the aggregate

latency costs, particularly for those applications that issue thousands or millions of tiny requests.

Second, providing the �le system with this level of information allows the IOPs to make intelligent

disk-scheduling decisions, leading to fewer disk-head seeks, and to better utilization of the disks'
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internal caches. Finally, the �le systems can reduce the total number of messages transmitted

between the CP and the IOP.

The data-access interfaces o�ered by Galley are summarized below. Note that each request

accesses data from a single fork; Galley has no notion of a �le-level read or write request.

Traditional requests

int gfs_read(int fid, void *buf, long offset, long size)

Beginning at offset in the open fork indicated by fid, the �le system will read size bytes,

and store them in memory at buf. The call returns the number of bytes transferred.

Naturally, there is a corresponding gfs write() call.

Simple-strided requests

int gfs_read_strided(int fid, void *buf, long offset, long size,

long f_stride, long m_stride, int quant)

Beginning at offset in the open fork indicated by fid, the �le system will read quant records,

of size bytes each. The o�set of each record is f stride bytes greater than that of the previous

record. The records are stored in memory beginning at buf, and the o�set into the bu�er is

changed by m stride bytes after each record is transferred. The call returns the total number of

bytes transferred.

When m stride is equal to size, data will be gathered from disk, and stored contiguously in

memory. When f stride is equal to size, data will be read from a contiguous region of a �le,

and scattered in memory. It is also possible for both m stride and f stride to be di�erent than

size, and possibly di�erent than each other. Either the �le stride (f stride), the memory stride

(m stride), or both may be negative. Note that, when reading, if the memory stride is negative,

but of a smaller magnitude than the record size, the records will overlap in memory. For example,

if the memory stride is �5 and the record size is 10, the �rst record covers bytes 0 to 10, the second

record covers bytes �5 to 5, and so on. Similarly, when writing, if the �le stride is negative, it is

possible for records to overlap in the �le. Galley does not guarantee the order in which records will

be transferred, so the system's behavior in such situations is unde�ned. Furthermore, the behavior

is likely to be unrepeatable as well.
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Nested-strided requests

int gfs_read_nested(int fid, void *buf, long offset, long size,

struct gfs_stride *vec, int levels)

The vec is a pointer to an array of (f stride, m stride, quantity) triples listed from the

innermost level of nesting to the outermost. The number of levels of nesting is indicated by levels.

An example of the use of the nested-strided interface is shown in Figure 5.5. This example

contains the code to allow a node to read its portion of a three-dimensional M �M �M matrix.

The matrix is stored in a single fork, in standard \C" order, and the matrix is to be distributed

across the processors in a (BLOCK, BLOCK, BLOCK) fashion. For simplicity, we have assumed

that we have the proper number of processors to distribute the data evenly. In this case that means

we have N �N �N processors, which are logically arranged in a cube. The processors are assigned

ranks from 0 to N3
� 1, starting at the top, left, front corner and proceeding to the back, right,

bottom corner. So, processor 0 is at the top left of the front of the cube, processor N2
� 1 is at the

bottom right of the front of the cube, and processor N2 is at the top left of the second plane of the

cube. Using a traditional read/write interface, each node would have to issue (M=N)2 requests to

read its entire subcube. The nested-strided request reduces the number of requests issued by each

node to one.

Although this code fragment looks complicated, it should be noted that it is essentially a

proper subset of the code necessary to request each chunk individually, as would be necessary with

a traditional interface. Furthermore, it is no more complex than in any other general-purpose,

structured interface, such as MPI-IO or Vesta (which are discussed in Chapter 8).

Nested-batched requests

int gfs_read_batched(int fid, void *buf, struct gfs_batch *vec,

int quant)

Although we found that most of the small requests in the observed workloads were part of either

simple-strided or nested-strided patterns, there may well be applications that could bene�t from

some form of high-level, regular request, but would �nd the nested-strided interface too restrictive.

One example of such an application is given in Chapter 7. For those applications, we provide a
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#define Q (M/N) /* Elements in each dimension assigned to a node */
#define ELT_SIZE sizeof(double)
#define ROW_SIZE (M * ELT_SIZE)
#define PLANE_SIZE (M * M * ELT_SIZE)

int
read_my_block(rank, kid, a)

int rank; /* This node's rank in the application */
int kid; /* The ID of the open fork with the data */
double a[]); /* Where the data will be stored */

{
struct gfs_stride vec[2];
u_long offset;
u_long bytes;
int x, y, z; /* This node's location in the logical cube

of processors. */

x = rank % N;
y = (rank % (N*N))/N;
z = rank / (N*N);

offset = Q * ((x*ELT_SIZE) + (y*ROW_SIZE) + (z*PLANE_SIZE));

/* Inner stride: Captures the data from one plane */
vec[0].f_stride = ROW_SIZE; /* Distance between two rows */
vec[0].m_stride = Q * ELT_SIZE; /* Size of data from one row */
vec[0].quantity = Q; /* Number of rows to read */

/* Outer stride: Captures the data from all the planes */
vec[1].f_stride = PLANE_SIZE; /* Distance between two planes */
vec[1].stride = Q*Q * ELT_SIZE; /* Size of data from one plane */
vec[1].quantity = Q; /* Number of planes to read */

bytes = gfs_read_nested(kid, a, offset, (Q * ELT_SIZE), vec, 2);
return (bytes == (Q*Q*Q * ELT_SIZE));

}

Figure 5.5: Example of a nested-strided request. For simplicity, we assume that the

data can be distributed evenly across the processors..

nested-batched interface. The data structure involved in a nested-batched I/O request is called a

request vector, and is shown in Figure 5.6.

A single instance of this data structure essentially represents a single level in a nested-strided

request. That is, with one gfs batch structure, you can represent a \standard" request, a simple-

strided request, or one level of nesting in a nested-strided request. Galley's batched interface allows

an application to submit a vector of batched requests, which allows an application to submit a

list of strided requests, a list of standard requests, a list of nested-strided requests, or arbitrarily

complex combinations of those requests.
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struct gfs_batch {
int32 f_off; /* File offset */
int32 m_off; /* Memory offset */
char f_absolute; /* Is the file offset absolute? */
char m_absolute; /* Is the memory offset absolute? */
char sub_vector; /* Is the sub-request a vector? */
int32 quant; /* Number of repetitions */
int32 f_stride; /* File stride between repetitions */
int32 m_stride; /* Memory stride between repetitions */
int subvec_len; /* Number of elements in subvec */
union {

int32 size; /* Size for simple request */
struct gfs_batch *subvec; /* Vector of batch requests */

} sub;
};

Figure 5.6: Data structure involved in a nested-batched I/O request.

As with a nested-strided request, a batched request allows an application to specify that a

particular pattern will be repeated a number of times, with a regular stride between each instance

of the pattern. However, a nested-strided request requires that the repeated pattern be either

a simple-strided or a nested-strided request. The batched interface allows applications to repeat

batched requests with a regular stride between them. Hence the name \nested-batched". This

capability allows applications to repeat arbitrary access patterns with a regular stride.

A full gfs read batched() or gfs write batched() request will typically combine multiple

gfs batch structures into vectors, trees, vectors of trees, trees of vectors, and so on. For example,

a doubly-nested-strided request would be a two-level tree. The root of the tree would describe

the outer level of striding, and that node's child would describe the inner level of striding. An

application with two such strided requests could combine them into a single batched request. In

that case, there would be a vector of two trees, and each tree would have two levels.

The �rst two elements in the data structure contain the initial �le and memory o�sets of the

request. The second two elements of the data structure indicate whether these o�sets are speci�ed

absolutely (as is done with all other Galley requests), or relatively. If the o�sets are relative, then

if the request is the �rst element in a new vector, these o�sets are speci�ed relative to the o�set of

that vector's parent. Otherwise, a relative o�set is speci�ed relative to the o�set of the previous

element in the vector.

The �fth element in the structure (sub vector) indicates whether the pattern to be repeated
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is a simple data request or another batch vector. The sixth element (quant) indicates how many

times the pattern should be repeated. The next two elements contain the strides that should be

applied to the �le and memory o�sets between repetitions of the pattern. The ninth element in

the structure applies only when the pattern to be repeated is a batched request. In that case, it

indicates how many elements are in the sub-request.

Finally, the sub-request is described. The sub-request can be a simple data transfer (in the case

of a standard or a simple-strided request), or it can be a vector of gfs batch structures (in the

case of a nested-strided, or more complex request).

List requests

int gfs_read_listio(int fid, void *buf, struct gfs_list *vec,

int quant)

Finally, in addition to these structured operations, Galley provides a list interface, which has

functionality similar to the POSIX lio listio() interface [IBM94]. This interface allows an

application to simply specify an array of (�le o�set, memory o�set, size) triples that it would

like transferred between memory and disk. Although the nested-batched interface may be used to

achieve the same functionality, the list interface is far simpler for those applications with access

patterns that do not have any inherently regular structure. While this interface essentially functions

as a series of simple reads or writes, it provides the �le system with enough information to make

intelligent disk-scheduling decisions, as well as the ability to coalesce many small pieces of data

into larger messages for transferring between CPs and IOPs.

5.5.4 Non-blocking I/O

All of the calls discussed above are blocking calls. Galley also allows applications to make non-

blocking data-transfer calls. The syntax of the non-blocking calls is similar to that of the blocking

calls, with the addition of one extra parameter: a handle.

A handle is essentially a pointer to an internal Galley data structure. Each non-blocking call

has an associated handle, and each handle may only be associated with a single non-blocking call

at a time.

Galley uses the handle data structure to maintain information about the current status of the

outstanding I/O request. Applications pass the handle to Galley to check the status of the request.
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In particular, gfs test(handle) returns 1 if the non-blocking call has completed and 0 if there

is still data to be transferred. After calling gfs wait(handle), the application will block until

the non-blocking I/O request has completed. gfs wait() returns with the exit status of the non-

blocking request (i.e., either the total number of bytes transferred or an error code). gfs wait()

is also used to clear a handle. That is, a handle may be reused, but the application must �rst

inform Galley (using gfs wait()) that it has collected the result of the earlier call associated with

the handle. Calling gfs test() does not clear the handle, even if the call has completed, because

the application may wish to check how much data was transferred { information not returned by

gfs test().

As with the blocking calls, Galley makes no guarantees about the order in which non-blocking

requests will be satis�ed. Thus, if a node issues multiple non-blocking reads for the same location

in memory, the state of that location when the reads have completed is unde�ned. Similarly, if a

node issues two non-blocking writes for overlapping regions of a single fork, the contents of that

region when the writes complete are also unde�ned.

5.6 Portability

Galley was originally implemented on a cluster of IBM RS/6000s and an IBM SP-2, all running

AIX 4.1.3. It has been in daily use on those systems for over a year, mostly by graduate and

undergraduate students. Galley has been ported to DEC Alpha workstations running Digital Unix

and x86-based PCs running Linux and FreeBSD.

The �rst port, from the RS/6000 to the DEC Alpha, took several days. Most of the di�culties

we encountered during this port were related to the 32-bit nature of the RS/6000 and the 64-bit

nature of the Alpha. After the �rst port was completed, the subsequent ports took only a few hours

each. The ease of the subsequent ports suggests that most of the machine-dependent elements of

the implementation have been identi�ed and have either been removed or clearly noted in the code.

The portion of the code that requires the most change when porting to a new architecture

is that part which implements Galley's thread interface. Although all of our target systems have

ostensibly provided a POSIX-compliant pthreads interface, those interfaces are all based on di�erent

drafts of the POSIX standard. Thus, while the interfaces are basically the same, there are many
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small incompatibilities. Rather than relying directly on the pthreads interface throughout the code,

Galley implements its own simple interface to the underlying thread system. So, porting Galley to

a new thread interface only requires that a small, isolated section of the code be modi�ed.
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Chapter 6

Performance of Galley

Most studies of multiprocessor �le systems have focused primarily on the systems' performance

on large, sequential requests. Indeed, most do not even examine the performance of requests

of fewer than many kilobytes [Nit92, BBH95, KR94]. As discussed earlier, multiprocessor �le-

system workloads frequently include many small requests. This disparity between the observed

and benchmarked workloads means that most performance studies actually fail to examine how a

�le system can be expected to perform when running real applications in a production environment.

6.1 Access Patterns

We examine the performance of Galley under several di�erent access patterns, shown in Figure 6.1.

Each pattern is composed of a series of requests for �xed-size pieces of data, or records. Although

these patterns do not directly correspond to a particular `real world' application, they are repre-

sentative of the general patterns we observed to be most common in production multiprocessor

systems, as described earlier. Our experiments used a �le that contained a sub�le on each IOP,

and a single fork within each sub�le. To allow us to better understand the system's performance,

each fork was laid out contiguously on disk. The patterns shown in Figure 6.1 reect the patterns

that we access from each fork, and hence, from each IOP. The correspondence between the �le-level

patterns observed in actual applications, and the IOP-level access patterns used in this study, is

discussed below.

The simplest access pattern is called broadcast. With this access pattern every compute node

reads the whole �le. In other words, the IOPs broadcast the whole �le to all the CPs. This access
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(b) Partitioned(a) Broadcast

(c) Interleaved

Figure 6.1: The three access patterns examined in this study. Two views of

each pattern are displayed: the pattern as applied to a linear fork on a single IOP,

and matrix distributions that could give rise to the pattern. For these examples, we

assume that the matrices are stored in row-major order. Each square corresponds to

a single record in the �le, and the highlighted squares represent the records accessed

by a single CP in a group of four.

pattern models the series of requests we would expect to see when all the nodes in an application

read a shared �le, such as the initial state for a simulation. Since, to read all the data in a �le,

an application must read all the data in every sub�le, a broadcast pattern at the �le level clearly

corresponds to a broadcast pattern at each sub�le. Although it may seem counterintuitive for an

application to access large, contiguous regions of a �le in small chunks, we observed such behavior

in practice (recall the �les with interval-size 0 in Chapter 3). One likely reason that data would be

accessed in this fashion is that records stored contiguously on disk are to be stored non-contiguously

in memory. Another possible cause for such behavior is that the I/O was added to an existing loop

as an afterthought. Since it seems unlikely that an application would want every node to rewrite

the entire �le, we did not measure the performance of the broadcast-write case.

Under a partitioned pattern, each compute node accesses a distinct, contiguous region of each

�le. This pattern could represent either a one-dimensional partitioning of data or the series of

accesses we would expect to see if a two-dimensional matrix were stored on disk in row-major

order, and the application distributed the rows of the matrix across the compute nodes in a BLOCK
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fashion. There are two di�erent ways a partitioned access pattern at the �le level can map onto

access patterns at the IOP level. The simpler mapping, which is not shown in the �gure, occurs if

the �le is distributed across the disks in a BLOCK fashion; that is the �rst 1=n of the �le bytes in

the �le are mapped onto the �rst of the n IOPs, and so forth. For each IOP, this mapping results

in an access pattern similar to a broadcast pattern with 1 compute processor. The other mapping,

shown in the �gure above, distributes blocks of data across the disks in a CYCLIC fashion. This

second mapping is more interesting and corresponds to the mapping used by most implementations

of a linear �le model. This distribution results in accesses by each CP to each IOP. In a system

with 4 CPs, the �rst CP would access the �rst 1=4 of the data in each sub�le, and so forth. Thus,

using the second mapping, a partitioned pattern at the �le level leads to a partitioned pattern at

each IOP. As with the broadcast pattern, applications may access data in this pattern using a

small record size if the the data is to be stored non-contiguously in memory.

In an interleaved pattern, each compute node requests a series of noncontiguous, but regularly

spaced, records from a �le. For the results presented here, the interleaving was based on the

record size. That is, if 16 compute nodes were reading a fork with a record size of 512 bytes, each

node would read 512 bytes and then advance its index into the �le by 8192 (16*512) bytes before

reading the next chunk of data. The pattern models the accesses generated by an application that

distributes the columns of a two-dimensional matrix across the processors in an application, in a

CYCLIC fashion. To see how this �le-level pattern maps onto an IOP-level pattern, assume that

the linear �le is distributed traditionally, with blocks distributed across the sub�les in a CYCLIC

fashion. In the simplest case, the block size might be evenly divisible by the product of the

record size and the number of CPs. In this case, every block in the �le is accessed with the same

interleaved pattern, and any rearrangement of the blocks (between or within disks) will result in the

same sub�le-access pattern. Thus, the blocks can be declustered across the sub�les, but the access

pattern within each sub�le will still be interleaved. There are, of course, more complex mappings

of an interleaved �le-level pattern to an IOP-level pattern, but we focus on the simplest case.
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6.2 Experimental Platform

The Galley Parallel File System was designed to be easily ported to a variety of workstation

clusters and massively parallel processors. The results presented here were obtained on the IBM

SP-2 at NASA Ames' Numerical Aerodynamic Simulation facility. This system had 160 nodes,

each running AIX 4.1.3, but only 140 were available for general use. Each node had a 66.7 MhZ

POWER2 processor and at least 128 megabytes of memory. Each node was connected to both an

Ethernet and IBM's high-performance switch. Although the switch allowed throughput of up to

34 MB/s using one of IBM's message-passing libraries (PVMe, MPL, or MPI), those libraries cannot

operate in a multi-threaded environment. Furthermore, neither MPL nor MPI allow applications

to be implemented as persistent servers and transient clients. As a result of these limitations, and

to improve portability, Galley was implemented on top of TCP/IP.

6.2.1 TCP/IP Performance

To determine what e�ect, if any, our use of TCP/IP would have on the overall performance of our

system, we benchmarked the SP-2's TCP/IP performance. According to IBM, and veri�ed by our

own testing, the maximum TCP/IP throughput between two nodes on the SP-2 is approximately

17 MB/s. Unfortunately, as the number of communicating nodes increases, they are unable to

maintain this throughput at each node, as shown in Figure 6.2.

For each test shown in that �gure, we used 16 sinks, and varied the number of sources from 4 to

64. For a given test, each source sent the same amount of data to each sink, in a series of messages,

using a �xed record size. For each sink/source con�guration, we measured the throughput for a

variety of message sizes. As the throughput ranged over several orders of magnitude, we varied the

total amount of data transferred as well, from 1.5 MB with 4 sources and a 64-byte record size, to

over 800 MB with 64 sources and a 64-kilobyte record size.

In each of these tests, we used select() to identify sockets with pending I/O, but we did

not attempt to use any ow-control beyond that provided by TCP/IP. As the �gure shows, the

achieved maximum throughput increases with the number of sources, until the number of sources

exceeds 32. Even with many sources, we are only able to achieve about 220 MB/s, or less than

14 MB/s at each sink.

68



0

50

100

150

200

250

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t 

(M
B

/s
)

Record Size

TCP/IP Peformance

64 Sources

4 Sources

16 Sources
32 Sources

8 Sources

Figure 6.2: Measured TCP/IP throughout on the SP-2. For each test, there

were 16 sinks (similar to CPs reading a �le), and a variable number of sources

(similar to IOPs servicing read requests).

6.2.2 Simulated Disk

Each IOP in Galley controls a single disk, logically partitioned into 32KB blocks. For this study,

each IOP had a bu�er cache of 24 megabytes, large enough to hold 750 blocks. While each node on

the SP-2 has a local disk, that disk must be accessed through AIX's Journaling File System (JFS).

Although Galley was originally implemented to use these disks, we found that the performance

results obtained using those disks were unreliable, primarily due to the prefetching and caching

performed by JFS. Speci�cally, we frequently measured apparent throughputs of over 10 MB/s

from a single disk. Furthermore, as we discuss below, the choice of access pattern could greatly

a�ect Galley's disk scheduling, which in turn a�ected performance by changing the amount of

time the disk spent seeking and how e�ectively Galley was able to use the disks' on-board caches.

Accessing disks through JFS caused these di�erences to be minimized or eliminated, concealing

the impact an application's access pattern would have on Galley's performance. To ensure we were

actually evaluating the performance of Galley, rather than that of AIX's prefetching and caching

implementations, for this study we used a simulation of an HP 97560 SCSI hard disk rather than

the physical disks on each node. The HP 97560 has an average seek time of 13.5 ms and a maximum

sustained throughput of 2.2 MB/s [HP91].

Our implementation of the disk model was based on earlier implementations described in [RW94,
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KTR94]. Among the factors simulated by our model are head-switch time, track-switch time, SCSI-

bus overhead, controller overhead, rotational latency, and the disk cache. To validate our model,

we used a trace-driven simulation, using data provided by Hewlett-Packard and used by Ruemmler

and Wilkes in their study.1 To evaluate the accuracy of our model, we used the same metric as the

previous two implementations, This metric, which Ruemmler and Wilkes call the demerit �gure,

is obtained by plotting the cumulative time distribution curves of the real and simulated disk

outputs, and calculating the root mean square of the horizontal distance between the two curves.

Comparing the results of our trace-driven simulation with the measured results from the actual

disk, we obtained a demerit �gure of 5.0%, indicating that our model was extremely accurate.

The simulated disk is integrated into Galley by creating a new thread on each IOP to execute

the simulation. When the thread receives a disk request, it calculates the time required to complete

the request, and then suspends itself for that length of time. In most cases the disk thread does

not actually load or store the requested data, but since metadata blocks must be preserved, the

disk thread maintains a small pool of bu�ers, which is used to store this metadata. When the disk

simulation thread copies data to or from a bu�er, the amount of time required to complete the

copy (which we calculate at system startup) is deducted from the amount of time the thread is

suspended. It should be noted that the remainder of the Galley code is unaware that it is accessing

a simulated disk. It should also be noted that this pool of bu�ers was small enough (ten 32 KB

blocks on each IOP) that we are con�dent that it remained memory-resident, so this small cache

was not likely to a�ect the node's virtual memory behavior.

6.3 Performance Results

For this performance analysis, we held the number of compute processors constant at 16, and varied

the number of IOPs (each with one disk) from 4 to 64. Thus, the CP:IOP ratio varied from 1:4 to

4:1. Each test began with an empty bu�er cache on each IOP, and each write test included the time

required for all the data to actually be written to disk. Although the size of each fork was �xed,

the amount of data accessed for each test was not. Since the system's performance on the fastest

tests was several orders of magnitude faster than on the slowest tests, there was no �xed amount of

data that would provide useful results across all tests. Thus, the amount of data accessed for each

1Kindly provided to us by John Wilkes and HP.
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test varied from 4 megabytes (writing 64-byte records to 4 IOPs) to 2 gigabytes (reading 64-KB

records from 64 IOPs). We performed each test 5 times. Since other applications were running on

the machine at the same time, there was some variability in the results. In an attempt to identify

the system's typical performance on each pattern, we disregarded the lowest and highest results,

and present the average of the remaining 3.

6.3.1 PIOFS

Our �rst workload study revealing the prevalence of small requests in multiprocessor workloads was

published in 1994. To determine whether or not parallel �le system performance on these small

requests had not improved since our �ndings came to light, we examined the performance of IBM's

PIOFS, one of the newest commercial parallel �le systems, on the patterns discussed above.

We measured the performance of PIOFS (using its Unix interface rather than its lower-level

Vesta interface) on the SP-2 described above. There were 3 I/O nodes, each of which used a 4-disk

RAID 0 for its underlying storage medium. We measured the performance using 16 CPs. The

results of these tests are shown in Figures 6.3 and 6.4. These plots show that that even the newest

parallel �le systems still provide poor performance for the requests we observed to be common in

practice.

Although these results were obtained on the same machine as the performance results for Galley

(discussed below), the two �lesystems used very di�erent kinds of disks. Furthermore PIOFS had

access to the user-level network interface, which allowed communication at up to 35 MB/s. Finally,

we were unable to force the IOP's caches to be ushed between tests, so it is likely that all the

read tests indicate PIOFS's performance when reading from cache. Given these di�erences, we

cannot directly compare the performance of PIOFS with the performance of Galley. These results

are included simply to show that with the standard Unix-like interface, even the newest parallel

�le systems do not deliver high performance for the small requests that dominate parallel scienti�c

workloads.

6.3.2 Traditional Interface

We �rst examined the performance of Galley using the standard read/write interface. This interface

required each CP to issue separate requests for each record from each fork. Each CP issued
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Figure 6.3: Read performance of PIOFS on the SP-2. There were 16 CPs and 3
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asynchronous requests to all the forks, for a single record from each fork. When a request from one

fork completed, a request for the next record from that fork was issued. By issuing asynchronous

requests to all IOPs simultaneously, the CPs were generally able to keep all the IOPs in the system

busy. Since each CP accessed its portion of each sub�le sequentially, the IOPs were frequently

able to schedule disk accesses e�ectively, even with the small amount of information o�ered by the

traditional interface. Furthermore, the CPs were generally able to issue requests in phase. That

is, when an IOP completed a request for CP 1, it would handle requests for CPs 2 through n. By

the time the IOP had completed the request from CP n, it had received the next request from

CP 1. Thus, even without explicit synchronization among the CPs, the IOPs were frequently able

to service requests from each node fairly and were able to make good use of the disk.

Figure 6.5 shows the total throughput achieved when reading a �le with various record sizes

for each access pattern. Figure 6.6 presents similar results for write performance when overwrit-

ing an existing �le, and Figure 6.7 shows Galley's performance when writing to a new �le. The

performance curves have the same general shape as throughput curves in most systems; that is, as

the record size increased, so did the performance. As in most systems, eventually a plateau was

reached, and further increases in the record size did not result in further performance increases.

The precise location of this plateau varied between patterns and CP:IOP ratios. Not surprisingly,

when accessing data in small pieces, the total throughput was limited by a combination of software

overhead and by the high latency of transferring data across a network, regardless of the access

pattern.

The choice of access pattern had the greatest e�ect on performance when reading data with

large blocks. When reading an interleaved pattern, the system's peak performance was limited by

the sustainable throughput of the disks on each IOP (about 2.2 MB/s). Interestingly, there was a

small dip in performance as the record size increased from 2 KB to 4 KB. With records of 2 KB or

smaller, every CP reads data from every block. So, regardless of the order in which CPs' requests

arrive at an IOP, that IOP reads all of the blocks in its fork, in order. With a record size of 4 KB,

each CP reads data only from alternate blocks. As a result, it is possible for a request for block n+1

to arrive before a request for block n, possibly causing a miss in the disk cache and an extra head

seek, slightly degrading disk performance. The overall performance when reading the partitioned

pattern was limited by the time the disk spent seeking from one region of the �le to another.
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Figure 6.5: Throughput for read requests using the traditional Unix-like inter-

face. There were 16 CPs in every case. Note the di�erent scales on the y-axis.
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Figure 6.6: Throughput for write requests using the traditional Unix-like inter-

face when overwriting an existing �le. There were 16 CPs in every case.

When testing an earlier version of Galley we found that with large numbers of IOPs, the network

congestion at the CPs was so great that the CPs were unable to receive data and issue new requests

to the IOPs in a timely fashion [NK96]. This congestion was also responsible for the limited TCP/IP

throughput with large numbers of nodes. As a result, the in-phase ordering of requests discussed

above broke down, so the DiskManagers on the IOPs were unable to make intelligent disk scheduling

decisions, causing excess disk-head seeks and thrashing of the on-disk cache. The combination of

the network congestion and the poor disk scheduling led to dramatically reduced performance with

large record sizes in the interleaved and partitioned patterns. To avoid this problem, we added

a simple ow-control protocol to Galley's data-transfer mechanism. This ow control essentially
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Figure 6.7: Throughput for write requests using the traditional Unix-like inter-

face when writing a new �le. There were 16 CPs in every case.

requires an IOP to obtain permission from a CP before sending each chunk of data. By limiting the

number of outstanding permissions, the CP can reduce or avoid this network congestion. Simple

experiments on the SP-2 showed that choosing a limit between 2 and 8 led to the highest, and

most consistent, performance. While this limit is currently a compile-time option, it may be worth

exploring the possibility of allowing the CP to set it dynamically as well.

Under the broadcast access pattern, data was read from the disk once, when the �rst compute

processor requested it, and stored in the IOP's cache. When subsequent CPs requested the same

data, it was retrieved from the cache rather than from the disk. Since each piece of data was used

many times, the cost of accessing the disk was amortized over a number of requests, and the limiting
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factors were software and network overhead. In this case, the total throughput of the system was

limited by the SP-2's TCP/IP performance, as discussed above.

We now consider Figure 6.6. When overwriting an existing �le, and using records of less than

32 KB, the �le system had to read each block o� the disk before the new data could be copied

into it. Without this requirement, any data that was stored in that block would be lost | even

data that was not being modi�ed by the write request. As a result, the system's performance was

signi�cantly slower when writing small records than when reading them. As when reading data, the

interleaved pattern had the higher throughput because the partitioned pattern forced the disk to

spend time seeking between one region of the �le and another. The performance di�erence between

the two was smaller when writing since many of the disk accesses in the write case occurred at

the end of the test, when the benchmark forced each IOP to write all dirty blocks to disk (with a

gfs sync() call). Since most of the disk accesses occurred at once, the DiskManager was able to

schedule those accesses e�ciently.

When the record size reached 32 KB, the write performance of both patterns increased dra-

matically. With the record size at least as large as the �le system's block size, Galley did not have

to read each data block o� the disk before copying the new data in. Since the �le system could

simply write the new data to disk (rather than read-modify-write), the number of disk accesses in

each pattern was cut in half.

We �nally consider Figure 6.7. In these tests we measured the time to write data to a new

�le, rather than overwriting an existing �le. We did not use Galley's gfs extend() call (which

preallocates disk space for a fork) for these tests; new blocks were assigned to the fork on the y,

as it grew. Not only was writing to a new �le generally faster than overwriting an existing �le,

in many cases it was even faster than reading a �le. For small requests, writing a new �le was

faster than overwriting an existing �le because there was no need to read the original data o� of

disk. There is some additional overhead involved when writing a new �le, as new blocks must be

assigned to the �le, but this cost was signi�cantly less than the cost of the read-modify-write cycle.

In those cases where writing a new �le was faster than reading a �le, the write tests bene�ted from

the nearly perfect disk schedule during the gfs sync() call, as discussed above.
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6.3.3 Strided Interface

When reading data with a traditional interface, in many cases we were able to achieve nearly 100%

of the disks' peak sustainable performance. This best-case performance seems respectable, but as

with most systems, Galley's performance with small record sizes was certainly less than satisfactory.

The goal of Galley's new interfaces is to provide high performance for the whole range of record

sizes, with particular emphasis on providing high throughput for small records.

The tests in this section were again performed by issuing asynchronous requests to each fork.

Rather than issuing a series of single-record requests to each IOP, we used the strided interface to

issue only a single request to each IOP. That single request identi�ed all the records that should be

transferred to or from that IOP for the entire test. All other experimental conditions were identical

to those in the previous section.

Figure 6.8 shows the total throughput achieved when reading a �le with various record sizes for

each access pattern using the new interface. Figure 6.9 shows corresponding results for overwriting

an existing �le and Figure 6.10 shows the results when writing to a new �le.

Given the traditional interface, the disk scheduler had to handle each request in the order

they arrived from the CPs. This requirement led to excess disk-head movement primarily in

the partitioned pattern, but also in the interleaved pattern when the record size was larger than

2 KB (32 KB=16 CPs). Since each CP read from the same data blocks in the broadcast case, and in

an interleaved pattern with small records, the disk schedule was optimal even with the traditional

interface. Since many of the disk accesses in the traditional write cases occurred after a call to

gfs sync(), the disk scheduler was able to make intelligent decisions then as well. Therefore, the

tests on which the new interface led to the greatest improvements in the disk schedule were the in-

terleaved and partitioned read tests, and these were the two tests where the peak throughput to the

CPs improved most dramatically. Note that the interleaved pattern again sees a signi�cant perfor-

mance increase when the record size reaches 32 KB. As with the traditional interface, with smaller

records each block must be read before it is modi�ed. A �le system that o�ered a collective data-

access interface would frequently be able to avoid the read portion of the read-modify-write cycle,

as it would be aware that the entire block would be overwritten by data from all the processors.

Once again, network contention was a problem for large numbers of IOPs. The peak throughput
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Figure 6.8: Throughput for read requests using the strided interface. There

were 16 CPs in every case. Note the di�erent scales on the y-axis.
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Figure 6.9: Throughput for write requests using the strided interface when

overwriting an existing �le. There were 16 CPs in every case.

on the broadcast pattern was limited to 13{14 MB/s to each CP. The best disk schedule can also

be the worst network schedule, as in the partitioned pattern, where all IOPs �rst served CP 1,

then CP 2, and so forth. This disk schedule, combined with the limits of TCP/IP on the SP-2,

contributed to the interleaved-read pattern having higher performance than the partitioned-read

pattern using the strided interface.

While the increase in peak performance is interesting, the most striking di�erence between the

two sets of tests is that, in most cases, Galley was able to achieve peak performance with records

as small as 64 bytes | two or three orders of magnitude smaller than the request sizes required

to achieve peak throughput using the traditional interface. Other than increased opportunities for
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Figure 6.10: Throughput for write requests using the strided interface when

creating a new �le. There were 16 CPs in every case.

intelligent disk scheduling, the primary performance bene�t of our new interface was a reduction in

the number of messages, accomplished by packing small chunks of data into larger packets before

transmitting them to the receiving node.

One interesting case where Galley was not able to achieve maximum throughput with a small

record size was in writing a new �le in an interleaved pattern. When a CP thread on an IOP

receives the �rst request to write to a new fork, that CP thread locks the metadata for that fork.

The CP thread then examines the list of requests for the fork, and asks the DiskManager to assign

however many blocks are necessary for the new �le. Only after all the blocks have been assigned

does the CP thread unlock the fork's metadata, allowing the other CP threads to start processing
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their requests. It appears that the delay caused by this long-term locking noticeably a�ects the

system's throughput. This delay is less signi�cant with the partitioned pattern because the number

of requests is smaller; each CP has at most one request per block in the partitioned pattern, while

they may have many requests per block in the interleaved case.

Although it is clear that the strided interface allowed the �le system to deliver much better

performance, the throughput plots shown in Figures 6.8{6.10 present only part of the picture.

Figure 6.11 shows the speedup of the strided-read interface over a traditional read interface, and

Figures 6.12 and 6.13 show similar results for the write interfaces, for both new �les and overwriting

preexisting �les. When using an interleaved pattern with small records, the strided interface led to

speedups of up to 98 times when reading, 30 times when overwriting an old �le, and 23 times when

writing a new �le. There was a similar increase in performance for small records in a partitioned

pattern: up to 92 times when reading, 56 times when rewriting, and 35 times when writing a new

�le. The broadcast-read pattern had the largest speedups for small records, ranging from 150 to

over 350.

Although there was less room for improvement with large records, better disk scheduling when

reading interleaved and partitioned patterns occasionally led to higher performance even for large

records. When reading, the minimum speedups within the range of record sizes we examined

were between 1.0 and 2.0, and occurred with the largest record sizes. When writing, the minimum

speedups were mostly between 1.0 and 1.2, with one test (writing a new �le in a partitioned pattern

with 4 IOPs) as low as .93. Again, the minimum speedups in the write tests were smaller than

the read tests because much of the writing with the traditional interface was performed during the

gfs sync() call, so the IOP was able to perform more e�cient disk scheduling.
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Figure 6.11: Increase in throughput for read requests using the strided interface.

Note the di�erent scales on the y-axis.
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Figure 6.12: Increase in throughput forwrite requests using the strided interface

when overwriting an existing �le. Note the di�erent scales on the y-axis.
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Figure 6.13: Increase in throughput for write requests using the strided interface

when creating a new �le. Note the di�erent scales on the y-axis.
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Chapter 7

Galley in Practice

We will now present several di�erent examples, showing how Galley's features have been used in

practice. We will discuss, in detail, an application written directly to Galley's API, a user-level

library implemented on top of Galley, and an application implemented on top of the user-level

library.

7.1 FITS

The Flexible Image Transport System (FITS) data format is a standard format for astronomical

data [NAS94]. A FITS �le begins with an ASCII header that describes the contents of the �le and

structure of the records in the �le. The remainder of the �le is a series of records, stored in binary

form. Each record is composed of a key, with one or more �elds, and one or more data elements.

Each record within a single FITS �le has an identical size and structure. Records may appear in

any order within the �le.

For this work, we created a system that was able to handle a speci�c type of FITS �le in use at

the National Radio Astronomy Observatory (NRAO), and generic queries on those �les. A library

that was capable of handling many kinds of queries and FITS �les is a perfect example of the type

of domain-speci�c library we expect to be implemented on Galley.

7.1.1 FITS at NRAO

One speci�c example of how FITS �les are used in practice is described in [KFG94, KGF93]. This

type of FITS �le contains records with 6 keys, describing the frequency domain (U; V;W ), the

baseline, and the time the data was collected. The baseline is a single number that indicates
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which antenna or combination of antennas generated that record. The data portion of each record

contains a pair of data elements, one for each of two polarizations. Each data element contains

oating-point triples for each of 31 frequencies. The triples represent a single complex number and

a weighting factor. Thus, a single data element contains 372 bytes of data and each record contains

24 bytes of key information and 744 bytes of data.

These �les are used in many di�erent ways by di�erent users at NRAO. The most common

types of use involve scanning sub-volumes of the full, multi-dimensional, sparse data set, where

the sub-volumes may be de�ned along one or more of the axes. For example, a user may want to

examine all the records within a given time range, sorted along the U axis.

Previous work on these �les has focused on increasing locality along several dimensions simul-

taneously. In [KFG94, KGF93], the authors examine studied the e�ectiveness of Piecewise Linear

Order-Preserving Hashing (PLOP) �les at reducing the amount of time required to perform com-

mon queries, by increasing certain kinds of locality within the �les. While locality can also improve

performance in parallel �le systems, too much locality can reduce the number of disks being accessed

at any time, actually leading to lower performance.

7.1.2 FITS on Galley

We now describe how we stored FITS �les on Galley.

Since most of the queries common at NRAO include subranges of time as at least one of the

constraints, we sorted the records by time before distributing them across the IOPs. The data was

distributed in cyclic fashion, in blocks of 1024 records. That is, in a system with 4 IOPs, IOP 0

would hold records 0 to 1023, 4096 to 5119, and so on, while IOP 1 would hold records 1024 to

2047, 5120 to 6143, and so on.

For many queries, we were unable to determine a priori which data records would satisfy the

query. As a result, we frequently examined many keys to identify the small number of data records

that were relevant to the query. To improve performance, we chose to store the keys in one fork per

IOP and the data in another. This setup allowed us to achieve higher performance when reading

the keys, since we were not paying for the cost of retrieving uninteresting data from disk. Although

we stored all the data in a single fork on each sub�le, another reasonable choice would have been

to store the data for each polarization in its own fork. Since many of the queries involved data
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from only a single polarization, this setup would also have reduced the amount of uninteresting

data that was read from disk.

To evaluate the e�cacy of their PLOP-�le implementation, the authors performed several

queries, which were intended to be representative of those that were most commonly used in prac-

tice at NRAO [KGF93]. Their tests were performed on a single-processor, single-disk system. We

performed the same set of queries, using the same data set, on our implementation. Our tests were

performed on a cluster of IBM RS/6000s connected by an FDDI network. Since the original queries

were performed on a single-node processor, we also used a single CP. We used four IOPs, each

with a single disk. Each IOP used a raw disk partition to store its data, thus avoiding skewing the

results by retrieving data stored in AIX's bu�er cache.

The speci�c queries performed in both cases are briey described below. More detail about

each query, and why it is commonly used at NRAO, may be found in [KGF93].

1. Read the full data set.

2. Read the full data set, sorting records by time.

3. Read the full data set, sorting records by baseline.

4. Read a sub-volume of the data including 10% of the time range.

5. Read a sub-volume of the data including 10% of the time range, sorting the records by U .

6. Read the sub-volume for a single time and polarization.

7. Read a sub-volume including 10% of the time range and one polarization.

8. Read a sub-volume including 50% of the time range, a single baseline, and one polarization.

9. Read a sub-volume including 50% of the time range, antenna #1, and one polarization.

10. Read a sub-volume including 50% of the time range, antenna #14, and one polarization.

11. Read a sub-volume including 50% of the time range, antenna #27, and one polarization.

12. Read a sub-volume containing a single baseline and a single polarization, sorting records by

time.
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Using a priori knowledge about the structure of the queries and the on-disk data structures,

many of these requests could have been most e�ciently expressed using some form of strided request.

Since our system was designed to handle generic queries, however, the queries were all performed

using Galley's list interface. The bu�er cache on each IOP was ushed prior to each query.

Table 7.1 shows the length of time required to complete each query for both the PLOP-�le

and Galley implementations. Since the PLOP-�le results were obtained on a di�erent system with

only a single disk, we cannot directly compare the absolute time required to complete the queries.

Instead, we compare the amount of time required to complete a query relative to the time required

to read all the data. This crude normalization allows us to make some e�ort at comparison.

Data PLOP-�le Galley

Query Elements Secs. Normal. Secs. Normal.

1 126092 55.49 1.00 11.20 1.00

2 126092 70.50 1.27 11.72 1.05

3 126092 181.80 3.28 13.96 1.25

4 12636 4.10 0.07 1.00 0.09

5 12636 6.85 0.12 1.53 0.14

6 351 0.27 0.00 0.17 0.01

7 6318 2.33 0.04 0.62 0.05

8 186 1.45 0.03 0.55 0.05

9 4836 4.03 0.07 1.45 0.13

10 4836 14.50 0.26 2.10 0.19

11 4836 20.30 0.37 2.27 0.20

12 180 1.49 0.03 1.57 0.14

Table 7.1: Timing results for PLOP �les on a uniprocessor system, and for Galley �les on a 4-IOP,

1-CP system. Results are shown in raw form, as well as normalized to the time required to read the

full data set with no �ltering or sorting. The full data set contained 63,046 records, with 126,092

data elements.

While our implementation on top of Galley was far simpler than the PLOP-�le implementation

(only about 1/10 the number of lines of code), it performed signi�cantly better in 4 out of 11 cases

(disregarding the �rst case, which is used as a baseline), and had competitive performance in 5 of

the remaining cases. Galley performed particularly well on queries 2 and 3. While the PLOP-�le

implementation had to sort the whole dataset in memory, Galley's interface allowed us to read just

the keys from their forks, sort them, and then read the actual data into memory in sorted order.

Galley also performed relatively well on queries 10 and 11. While the PLOP-�le implementation
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had to read in 3 to 5 times as many records as it needed, we were able to �lter out the interesting

records by looking only at the data in the key-fork. Galley's relative performance was worst on

queries 9 and 12. In these two cases, Galley had to examine a large number of keys to identify

a small number of interesting records, while the PLOP �les were carefully structured to reduce

the number of records they had to examine for these queries. This same structure also caused the

PLOP-�le implementation to be noticeably worse than Galley's on queries 10 and 11.

7.2 A Linear File Model

For decades, the Unix-like, linear �le model has been the standard model for data storage on

uniprocessor and vector supercomputer systems. That is, on most systems, �les are collections of

bytes, arranged in a one-dimensional structure. In view of this long-term trend, it is unsurprising

that the designers of many parallel �le systems adopted the same model.

To simplify the task of porting legacy applications and creating new applications, we have im-

plemented LFM, a library that provides a linear �le model on top of Galley. Furthermore, this

linear �le model provides applications with the interfaces necessary to achieve high performance

on those common, yet di�cult access patterns. Finally, our linear �le model implementation pro-

vides a simple method of performing asynchronous data transfer, allowing applications to overlap

computation and I/O.

The most common method of implementing a linear �le model on a parallel �le system is to break

the �le into a series of blocks, all the same size, and decluster them across the disks in the system,

in round-robin order [Pie89, LIN+93, SGM86]. This method is relatively simple to implement, and

can lead to good performance in some cases. Speci�cally, when individual nodes in an application

access a linear �le in large chunks, each access will involve data stored on multiple disks. By

accessing those disks in parallel, the �le system is able to deliver high aggregate bandwidth. The

downside of this implementation of a linear �le model is that an application that accesses data in

small chunks is not able to achieve this high aggregate bandwidth, as each request involves data

from only a single disk. Naturally, the designers of such systems were aware of this limitation, but

since they expected multiprocessor applications to access data in large chunks, this limitation was

not expected to be problematic in practice.
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7.2.1 Implementation

As with most linear �le model implementations, our implementation declusters its data by assigning

blocks to disks in round-robin order. Unlike most systems, however, we allow (but do not require)

applications to specify the declustering unit. That is, applications may choose the size of the blocks

to be distributed. When a �le is �rst created, the default declustering unit is 32 KB | the size

of blocks in the Galley �le system. An application may change the declustering unit at any time.

Furthermore, an application may choose to make that change either temporary or persistent. A

temporary change lasts only as long as the application has the �le open. A persistent change lasts

until the �le is deleted, or until another application makes a persistent change in the declustering

unit. Changing the declustering unit does not change the data already in the �le, which can lead to

unexpected results if one application makes a persistent change that is not anticipated or detected

by the next application to access the �le. We do not place any restrictions on the size of the

declustering unit.

Most parallel �le systems provide applications with little more than a standard Unix interface.

Speci�cally, they only allow applications to accesses contiguous regions of the �le in a single request.

The most notable exceptions to this rule are Vesta [CF96] and MPI-IO [The96], which we discuss

further in Chapter 8. Both of these systems allow applications to describe logical views of a �le.

That is, each process in a parallel application describes the subset of the �le that it wishes to

access. The �le system then transparently maps requests against an abstract linear model to that

process's subset of the �le. Our linear �le model provides interfaces similar to those provided by

Galley. Speci�cally, we allow applications to explicitly make strided, nested-strided, and batched

requests.

Unlike Galley's low-level interface, LFM provides applications with a �le pointer for each open

�le. Although many linear-�le-based parallel �le systems provide shared �le pointers, our library

does not provide this facility for two reasons. First, we would need to �nd some way for all the nodes

in an application to share the �le pointer. Sharing this information in a reasonably e�cient and

portable way would be di�cult unless we relied on some particular message-passing library. Since

we did not want to limit the users' choice of language or message-passing library, this restriction

was not acceptable. Second, and more importantly, application programmers do not seem to want
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this feature. In the CFS workload we traced, those modes that used shared �le pointers were almost

never used. In the CMMD workload, modes with shared �le pointers were used, but only because

those modes were substantially faster than the independent modes. Anecdotal evidence collected

from those users indicated that they would have preferred to use the independent modes [PEK+95].

7.2.2 Data Access Interface

The standard Unix interface provides only simple primitives for accessing the data in �les. These

primitives are limited to read()ing and write()ing consecutive regions of a �le. In addition to a

Unix-style interface, our linear �le model provides three interfaces that allow applications to ex-

plicitly make regular, structured requests such as those observed in our workload characterizations.

These interfaces allow the �le system to combine many small requests into a single, larger request,

which can lead to improved performance, as shown in the previous chapter.

The higher-level interfaces o�ered by our linear �le model are summarized below. Although we

show only the read requests, there are corresponding write requests for each call.

Simple-strided requests

int lfm_read_strided(int fid, void *buf, long size,

long f_stride, long m_stride, int quant)

Beginning at the location indicated by the �le pointer, the library will read quant records, each

of size bytes, from the open �le associated with fid. As with Galley's simple-strided request, the

o�set of each record is f stride bytes greater than that of the previous record. The records are

stored in memory beginning at buf, and the o�set into the bu�er is changed by m stride bytes

after each record is transferred. Either the �le stride (f stride) or the memory stride (m stride)

may be negative. The call returns the number of bytes transferred. When the call is completed,

the library updates the �le pointer to point to the byte following the last byte in the �nal record

read. Note that if the �le stride is negative, the �le pointer may actually move backwards in the

�le following this call. As with the standard Galley interface, if a negative stride in a read request

leads to overlapping records in memory, the contents of that memory are unde�ned when the read

request completes.
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Nested-strided requests

int lfm_read_nested(int fid, void *buf, long size,

struct lfm_stride *vec, int levels)

The vec parameter is a pointer to an array of (f stride, m stride, quantity) triples listed

from the innermost level of nesting to the outermost. The number of levels of nesting is indicated

by levels. As with the simple-strided request, the location indicated by the �le pointer is used

as the initial o�set for the request. Again, when the call is completed, the library updates the �le

pointer to point to the byte following the last byte in the �nal record read.

Nested-batched requests

int lfm_read_batched(int fid, void *buf, long size,

struct lfm_batch *vec, int quant)

Our Linear File Model library also provides applications with a nested-batched request. Note

that the syntax for this request is nearly the same as that of Galley's nested-batched request. Unlike

Galley, when using LFM, even the initial �le o�set may be given relatively. If the �rst �le o�set

of a nested-batched request is relative, the library calculates the o�set relative to the current �le

pointer. Since Galley does not maintain a �le pointer, there is no such point that may be used as

a base in a gfs read batched() call.

Non-blocking I/O

LFM provides applications with a simple means of utilizing non-blocking I/O. The non-blocking

calls are of the form lfm nb read strided(), and the parameters are exactly the same as those

of the blocking calls. When using non-blocking I/O, the �le o�set is updated just before the call

returns, not when the I/O is actually transferred.

Under LFM, there is no notion of a handle; applications may call lfm test() and lfm wait()

on the �le ID. Unlike Galley's low-level interface, there is no need to `clear' the non-blocking request.

Instead, once all the data for the non-blocking call has been transferred, the call is automatically

cleared by the next blocking or non-blocking call on that �le.

This approach has the limitation of restricting the application to one outstanding request per

�le. Any attempt to read or write from a �le with an outstanding non-blocking request will cause
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an error condition to be returned to the application. Since LFM provides the high-level interfaces

necessary to request multiple chunks of data at once, we do not view this limitation as serious.

7.2.3 Performance

We tested the performance of the LFM library using the same system con�gurations and access

patterns discussed in Chapter 6. While we applied those access patterns to individual forks in the

tests described in that chapter, in these tests we applied the patterns to the whole �le. In the tests

discussed below, we use the default 32 KB striping unit. Each test was performed �ve times; we

disregarded the lowest and highest results, and present the average of the remaining three.

When measuring the write performance in this section, we examined only the performance when

rewriting an existing �le. Since the library's behavior is exactly the same when creating a new �le

as when overwriting an existing �le, any di�erence in performance between the two is caused by the

underlying Galley �le system. Since we already explored this issue with Galley's low-level interface

in Chapter 6, we will not repeat it here.

Note that our LFM implementation is fairly straightforward, and little has been done to optimize

its performance.

Traditional interface

We �rst examined the performance of the LFM Library using the standard Unix-style interface.

Figure 7.1 shows the total throughput achieved when reading a �le with various record sizes for

each access pattern. Figure 7.2 presents similar results for write performance.

As with the Galley performance results discussed earlier, most of the performance curves have

the same general shape as throughput curves in most systems; as the record size increased, so did

the performance. Regardless of the access pattern, when accessing data in small pieces the total

throughput was limited by the lower aggregate disk bandwidth, since the full parallelism of the �le

system was not being utilized, and by the high per-request latency, caused by software overhead

and the inherently high latency of transferring data across a network.

Using the traditional-style interface with LFM led to lower performance than when directly

accessing Galley's traditional interface. The primary cause of this di�erence is the number of disks

being accessed. Using Galley's interface directly, each compute node always accessed every disk.
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Figure 7.1: Throughput for read requests using LFM's traditional Unix-like

interface with a 32 KB striping unit. There were 16 CPs in every case. Note the

di�erent scales on the y-axis.
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Figure 7.2: Throughput for write requests using LFM's traditional Unix-like

interface with a 32 KB striping unit. There were 16 CPs in every case.

When making small requests for data using the LFM interface, it is possible that all of the CPs may

be using the same one or two IOPs at once. This behavior is similar to that which we would expect

to see in a traditional multiprocessor �le system such as CFS or CMMD. Full I/O parallelism is

only achieved when the record size is #IOPs * striping unit bytes or greater.

The pattern with the lowest peak performance when reading with the traditional-style interface

was the partitioned pattern. As with the low-level Galley interface, this poor performance was

primarily caused by ine�cient disk scheduling. Each compute node accessed data from a distinct

region on each IOP, so each disk spent a great deal of time seeking from one region of the �le to

another.
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Peak performance was better when reading an interleaved pattern, with the best performance

occurring when the record size was exactly (#IOPs /#CPs) * striping unit. With records that size

or smaller, every CP that accessed data on an IOP accessed exactly the same blocks. With larger

records, a single CP accessed every second block, or every fourth block, and so on. Since CPs were

not accessing the same blocks, it was possible for requests for disk blocks to arrive out of order,

degrading the disk schedule, and thus overall performance. As we discussed in Chapter 6, we saw

similar behavior when using Galley's traditional interface for this pattern. The interleaved pattern

achieved higher performance than the partitioned pattern because, even if requests arrived at the

IOPs out of disk-order, the disk head was only forced to do small, local seeks, rather than seeking

from one region of the �le to another. Thus, the disks spent less time seeking.

Finally, as with Galley's low-level interface, we achieved the highest performance when reading

the broadcast pattern. Every node read the same bytes in the �le, in sequential order, so the IOPs

were able to reuse the data stored in the bu�er cache, and there were no out-of-order disk requests.

With large numbers of IOPs, the overall performance was still lower than the raw Galley interface

because each CP only accessed a subset of the IOPs on each request.

While the read tests generally outperformed the write tests, with large requests (i.e., 64 KB

or larger), write performance was generally better than the read performance on the same access

patterns. This di�erence in performance occurred because most of the disk accesses in the write

case happened when at the end of a test, when we forced the IOPs to ush their bu�er caches.

Since most of the disk accesses happened at once, the DiskManagers were able to do a better job

of scheduling disk accesses, avoiding many of the seeks that were required when reading. For the

same reason, the interleaved-write pattern did not experience the same performance drop as the

interleaved-read pattern.

Strided interface

We performed the tests in this section by issuing a single strided request from each CP for all

of its desired records, rather than by issuing a separate request for each record. With the LFM

library, the application running on each CP only had to issue one request, while with the raw

Galley interface, each application had to issue a separate request to each IOP. While the code

for the LFM benchmark was simpler than the Galley benchmark, this simplicity came with some
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performance cost, particularly for small record sizes.

Figure 7.3 shows the total throughput achieved when reading a �le with various record sizes for

each access pattern using the new interface, and Figure 7.4 shows corresponding results for writing.

Using the strided interface, each CP generally accessed data stored on multiple CPs on each

request, making full use of the parallelism available in the underlying system. Since the DiskMan-

ager got the full list of required blocks at once, the strided interface did not su�er the performance

degradation due to poor disk scheduling that we saw with the traditional interface. Finally, with

the strided interface, Galley was able to reduce the total number of packets sent across the network

by packing multiple small records into larger packets.

In many cases, the peak performance of the strided requests came close to the peak performance

achieved using Galley's raw interfaces on the same access pattern. However, this level of perfor-

mance was not always achieved with a combination of small requests and large numbers of I/O

nodes. These results indicate that the unoptimized implementation of the LFM spent a great deal

of time translating the application's request against the linear �le model to a collection of lower-

level requests against Galley's multidimensional �le model. This cost was further exacerbated by

LFM's use of Galley's list-I/O interface. The list I/O interface incurs a fair amount of overhead,

since it must verify that every (�le o�set, memory o�set, record size) triple is valid. In contrast,

Galley's three structured interfaces need only to verify that a small number of parameters are valid.

So, it might be possible to reduce some of this overhead by using a strided Galley request to satisfy

the most regular LFM requests. It is certainly likely that there is room for tuning the current

LFM implementation in other ways as well, but it is also likely that there will still be measurable

overhead for small requests.

Using Galley's low-level interface directly, we were able to achieve peak performance with records

as small as 64 or 128 bytes. Using LFM, peak performance sometimes requires records of 256 bytes

or greater. While this 256 bytes is slightly larger than the requests we found to be most common in

practice on the iPSC/860, it is within the range of most of the requests on the CM-5. Furthermore,

256 bytes is far smaller than the request sizes needed to achieve peak performance in most other

parallel �le systems that provide linear �le models [Nit92, LIN+93, Gro96]. Finally, although

the peak speed is lower than that available through Galley's low-level interface, the increase in

performance gained by using a strided interface is even greater for LFM than for the raw Galley
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Figure 7.3: Throughput for read requests using the strided interface with a

32 KB striping unit. There were 16 CPs in every case.
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Figure 7.4: Throughput for write requests using the strided interface with a

32 KB striping unit. There were 16 CPs in every case.

interface, as can be seen in Figures 7.5 and 7.6, which show the speedup of read and write access

patterns respectively.

When reading a partitioned access pattern, the strided interface resulted in speedups ranging

from 42 to 142 for small requests. With an interleaved pattern, speedups ranged from 50 to just

over 400. Finally, the broadcast pattern showed speedups ranging from 1100 to over 2000 for

small requests. While there was a smaller increase in performance when writing, the increase was

still greater than we saw with Galley's raw interface. The partitioned write pattern had speedups

ranging from 37 to 97 for small requests, and the interleaved write pattern showed speedups from

25 to just over 250. The primary reason LFM showed more improvement with the strided interface
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Figure 7.5: Increase in throughput for read requests using the strided interface.

Note the di�erent scales on the y-axis.
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Figure 7.6: Increase in throughput forwrite requests using the strided interface.

Note the di�erent scales on the y-axis.

than Galley is that when testing Galley's raw performance, we allowed the CPs to use all the IOPs

on each request, even using the traditional interface with small requests.
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4 KB striping unit

To examine the e�ect of the size of the striping unit on the performance of the library, we repeated

all the tests described above with a 4 KB striping unit. Figures 7.7 and 7.8 show the results of

those tests using the traditional interface and Figures 7.9 and 7.10 show the results using the strided

interface.

We �rst consider the performance of the traditional read interface. The partitioned pattern

with the smaller declustering unit had better performance than the same pattern with the larger

declustering unit, particularly with 64 IOPs. This performance increase was caused by the higher

degree of parallelism being used on each request. For example, with a 32 KB declustering unit,

a 256 KB request would only access data on 8 IOPs. With a 4 KB declustering unit, the same

request would access data on 64 IOPs. This higher degree of parallelism can also be detrimental,

however, as we see in the broadcast pattern. In that case, the 16-IOP con�guration had the highest

peak performance, with 32 IOPs performing slightly worse, and 64 IOPs performing signi�cantly

worse. As we have discussed before, in the broadcast pattern the network was typically the limiting

factor. With the small declustering unit and large requests, each CP received small messages from

every IOP, causing congestion at the CP's network interface. With only 16 IOPs, however, the

number of incoming messages was smaller and the messages were larger, reducing latency and

increasing bandwidth. As the other two patterns are disk-bound rather than network-bound,

network congestion was less of a problem.

The traditional write interface produced even more interesting behavior. In the partitioned case,

the performance was generally worse than with the larger declustering unit. With the larger unit,

any request that was 32 KB or larger avoided the read portion of the read-modify-write cycle, since

the entire disk block was overwritten. With the smaller declustering unit, a 32 KB write actually

results in 4 KB writes at 8 di�erent IOPs. Since the writes are distributed across multiple IOPs,

we are not able to avoid this read until the record size is #IOPs * disk block size or larger. Indeed,

we did see a dramatic increase in performance at those points (i.e., 128 KB with 4 IOPs, 256 KB

with 8 IOPs, etc.). Similarly, the peak performance in the interleaved pattern occured when the

combined writes from all the CPs (#CPs * record size) were equal to #IOPs * disk block size. In

that speci�c case, the disk schedule was perfect and all the IOPs were kept busy. We saw similar
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Figure 7.7: Throughput for read requests using the traditional Unix-like interface

with a 4 KB striping unit. There were 16 CPs in every case. Note the di�erent

scales on the y-axis.
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Figure 7.8: Throughput for write requests using the traditional Unix-like inter-

face with a 4 KB striping unit. There were 16 CPs in every case.

behavior in the interleaved pattern in Figure 7.1.

The strided-read interface with the 4 KB declustering unit had performance nearly identical to

the strided-read tests with the larger declustering unit, as did the partitioned-write test.

In the strided interleaved-write pattern with 16 or more IOPs, there was a signi�cant bump

in performance in the speci�c case when the record size = (#IOPs / #CPs)*declustering unit. In

that one special case, each IOP was only servicing a single CP, so the pattern at the IOP was

not interleaved; it was a contiguous write. With those conditions, the disk schedule was perfect

and the read portion of the read-modify-write cycle could be avoided. As the record size increased

beyond this peak, the number of CPs accessing each block was larger than one, so the the IOP
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Figure 7.9: Throughput for read requests using the strided interface with a 4 KB

striping unit. There were 16 CPs in every case. Note the di�erent scales on the

y-axis.
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Figure 7.10: Throughput for write requests using the strided interface with a

4 KB striping unit. There were 16 CPs in every case.

had to perform the full read-modify-write cycle. Referring back to Figure 7.8, we can see a slight

shoulder at each of the corresponding points in that plot. With 16 or fewer IOPs, the interleaved

pattern exhibited an increase in performance with large requests, similar to that observed with the

traditional interface.

Clearly, the choice of a declustering unit can have a signi�cant impact on the performance

of an application, suggesting that �le systems should provide applications with this functionality.

Unfortunately, selecting a \good" declustering unit is likely to be a di�cult task, requiring a great

deal of knowledge about the application's I/O patterns and the characteristics of the underlying

�le system.
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7.3 BT I/O Benchmark

Several years ago, NASA Ames Research Center released a set of benchmarks, called the NAS

Parallel Benchmarks (NPB), which has become a de facto standard for comparing the performance

of high performance computers [BBDS92]. NPB was initially a set of paper benchmarks. That is,

a set of problems were described in detail, but the implementations were left to the benchmarker.

The goal of this approach was to �nd how quickly machines could solve real problems, rather than

to �nd how quickly they could run a given piece of code. One of the main reasons this approach was

adopted was the lack of a standard programming paradigm for parallel computers; each machine

shipped with a proprietary message-passing interface or data-parallel language. With the rise of

MPI and HPF, standards for both message-passing and data-parallel programming have become

available. As a result, version 2 of NPB is an MPI-based collection of codes, rather than a paper

benchmark [BHS+95]. There are plans to release a set of HPF-based benchmarks as well.

Following the success of NPB, NASA Ames attempted to devise a similar suite of benchmarks

for I/O. Although this second suite has not caught on to the same extent as its predecessor, it is

interesting nonetheless.

While most of the components of the suite were simple micro-benchmarks, there was one ap-

plication benchmark as well: a modi�ed version of one of the application benchmarks from NPB.

Speci�cally, they used the BT benchmark with an added I/O phase. The BT benchmark is a

pseudo-time stepping ow solver, and it involves �nding the solution to a block tridiagonal system

of equations. On each iteration, the solver must �nd solutions to three sets of uncoupled systems

of equations. These systems are �rst solved in the x direction, then the y, and �nally in the z

direction.

The BTIO benchmark simulates the I/O required by such a ow solver that periodically writes

its solution matrix to disk for postprocessing. The original I/O benchmark suite was also designed

as a paper benchmark so, as with the computational benchmarks, implementors were free to write

the BTIO benchmark in any way they saw �t. It is conceivable that an implementation that

was designed for high I/O performance could have unacceptable computational performance. To

avoid this problem, results were to be reported by comparing the total time of the I/O benchmark

(including both I/O and computational time) with the best reported time of the standard BT

108



benchmark on the same machine. Although NAS has modi�ed the NPB to be code benchmarks

rather than paper benchmarks, the I/O suite has not yet been similarly changed | perhaps due

to lack of interest.

Below, we discuss the implementation of the BTIO benchmark on top of Galley. Our imple-

mentation was based on the BT benchmark from NPB 2.1. In the spirit of the changes to NPB,

we use the unmodi�ed BT code as our basis for comparison, rather than attempting to identify the

fastest SP-2 implementation of the original BT benchmark.

7.3.1 Data Distribution

In the NPB 2.1 version of the BT benchmark, the data is distributed according to a multi-partition

scheme. In the multi-partition distribution, a three-dimensional matrix is partitioned into a number

of disjoint three-dimensional submatrices, or cells, which are then distributed among the processors

in the application. A simple, two-dimensional multi-partitioned matrix is shown in Figure 7.11.

This distribution is designed to give good locality, which reduces inter-processor communication,

and to lead to good load balancing, which increases processor utilization and reduces total execution

time [vdW93].

Since the solution for each cell relies on knowledge about points on the borders of each sur-

rounding cell, the submatrices on each processor are slightly larger than the size of the cells for

which that processor is responsible. CPs exchange messages between each iteration to update this

boundary information. A side e�ect of these larger matrices is that writing the solution matrix to

disk is slightly more complicated; from its in-core matrices a node must extract just those points

for which it is responsible, and store those points on disk.

7.3.2 Implementation

We implemented the BTIO benchmark on top of the linear �le model in several di�erent ways. In

each case, we rely on information that is computed elsewhere in the code of the benchmark, such

as the number of cells on each processor, and the coordinates of each cell, and so on. The BT

benchmark is written in Fortran, and our output routines are all written in C. Recall that Fortran

and C disagree on how to pass variables in a procedure call and how multidimensional matrices

should be stored. So, rather than \translating" from Fortran to C every time we want to write out
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Processor 3

Figure 7.11: A 16x16 array distributed, in multipartition fashion, across 4 pro-

cessors.

the solution matrix, we perform this translation once during the problem initialization phase, and

store the results in the global variables shown in Figure 7.12. While the performance improvement

caused by avoiding repeated translations is likely to be negligible, the readability of the output

routines was greatly increased.

/* Location and size of a single cell within the global index space */
struct cell_shape {

int x, y, z; /* Lower edge of the cell */
int x_size, y_size, z_size; /* Dimensions of the cell */

};

static struct cell_shape *cell_shape; /* Shape of each local cell */

static int dim; /* Problem size (A=64, B=102) */
static int pad; /* Max. size of a cell with boundary info */
static int cells; /* Number of cells local to this node */
static int nodes; /* Number of nodes in application */
static int rank; /* Rank of this node (between 0 and nodes-1) */
static int fd; /* Target file for the solution matrix */
static double *fixed_u; /* Safe copy of the solution matrix, so

non-blocking I/O can be done safely */

#define PT_SIZE 40 /* Each point in each cell is comprised of 5
8-byte doubles */

Figure 7.12: Global variables shared by all the di�erent routines that output the

solution matrix.

Other than the code shown below, our additions to the original BT code are simply for initial-
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ization and shutdown of the �le system, and a single call to the appropriate output routine.

The benchmark speci�cation does not require that the data be stored on disk in any particular

fashion; they only require that it be in some format accessible to other applications. All of our

implementations store the 3-dimensional matrix on disk in one LFM �le, with the z-axis most

signi�cant, then the y-axis, and �nally, the x-axis. In C, this ordering would correspond to a 3-

dimensional matrix with the subscripts in the following order: z, y, and x. In Fortran, this would

correspond to a 3-dimensional matrix with the subscripts in the reverse order, or x, y, and z, which

is the ordering used by the NAS implementation of the BT benchmark.

The �rst example, shown in Figure 7.13, shows how one could implement the benchmark using

only the nested-strided interface. Each processor is able to write out each of its three-dimensional

cells using a single nested-strided write. The memory striding allows them to skip over the padding,

those boundary points that `belong' to other processors. The �le striding allows them to map the

three-dimensional submatrices to a linear �le. Since the cells belonging to a single processor are

not always equidistant in the �le (see for example the cells belonging to Node 2 in Figure 7.11),

there is no common stride that we may take advantage of at the inter-cell level. Thus, we must

issue a separate request for each of the cells that a processor writes to disk.

The second example, shown in Figure 7.14, shows one possible implementation of the I/O phase

using a nested-batched request. This type of request allows us to submit multiple nested-strided

requests at once. So, each inner vector directly corresponds to one of the inner-strided patterns in

the �rst example, and each outer vector corresponds to one of the outer-strided patterns. Finally,

the top vector allows us to collect all of the nested-strided requests together, and submit them all

at once. It is worth noting that if each of the cells on a single processor were the same size, we

would only need a single inner vector and a single outer vector, rather than one for each cell. We

could use the top vector to repeat the same nested-strided pattern for each cell, just changing the

initial memory and �le o�sets between each repetition of the pattern.

The �nal example, also shown in Figure 7.14, shows a simple way to use non-blocking I/O to

increase the overall performance of the benchmark. In this case, we are able to simply copy the

solution vector to a safe location in memory, and perform the I/O on that �xed copy while the

benchmark continues to work on the original. If the solution vector were larger, it is possible that

there might not be enough memory to maintain both an original and a �xed copy of the matrix.
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void
nested(double *u)
{

long f_off, m_off;
char *base;
struct lfm_stride stride[2];
struct cell_shape *c;
int i;

base = (char *) u;
for (i=0; i < cells; i++) {

c = &cell_shape[i];
f_off = (c->z*dim*dim + c->y*dim + c->x) * PT_SIZE;
m_off = (i*pad*pad*pad + 3*pad*pad + 3*pad + 3) * PT_SIZE;

stride[0].f_stride = dim*PT_SIZE;
stride[0].m_stride = pad*PT_SIZE;
stride[0].quant = c->y_size;

stride[1].f_stride = dim*dim*PT_SIZE;
stride[1].m_stride = pad*pad*PT_SIZE;
stride[1].quant = c->z_size;

lfm_lseek(fd, f_off, SEEK_SET);
lfm_write_nested(fd, &base[m_off], c->x_size*PT_SIZE,

stride, 2);
}

}

Figure 7.13: Implementation of the I/O portion of the BTIO Benchmark using LFM's

nested-strided interface.

In that case, a more sophisticated approach to non-blocking I/O would be necessary.

7.3.3 Performance

Table 7.2 shows the length of time required to run the complete benchmark with problem size

A, which has an output matrix with 64x64x64 elements, each of which contains 5 oating-point

doubles. Table 7.3 shows similar results with problem size B, which has an output matrix with

102x102x102 elements. In each case, the benchmark ran for 200 iterations, and the solution matrix

was written out every 5 iterations. For both benchmark sizes, we used varying levels of I/O support

from the Linear File Model library. For all the tests, we held the number of I/O nodes constant

at 16 and varied the number of compute nodes. The benchmark is structured in such a way as to

require a square number of nodes. We ran each benchmark three times, and report the average

length of time.

The performance of the benchmark on problem size A is essentially what we expected. The
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void
batched(double *u)
{

struct lfm_batch inner[20], outer[20], top[20];
struct cell_shape *c;
int i;

for (i=0; i < cells; i++) {
c = &cell_shape[i];

top[i].f_off = (c->z*dim*dim + c->y*dim + c->x)*PT_SIZE;
top[i].m_off = (i*pad*pad*pad + 3*pad*pad + 3*pad + 3)*PT_SIZE;
top[i].f_absolute = 1;
top[i].m_absolute = 1;
top[i].subvec_len = 1;
top[i].sub_vector = 1;
top[i].quant = 1;

outer[i].f_off = inner[i].f_off = 0;
outer[i].m_off = inner[i].m_off = 0;
outer[i].f_absolute = inner[i].f_absolute = 0;
outer[i].m_absolute = inner[i].m_absolute = 0;

inner[i].quant = c->y_size;
inner[i].f_stride = dim*PT_SIZE;
inner[i].m_stride = pad*PT_SIZE;
inner[i].subvec_len = 1;
inner[i].sub_vector = 0;
inner[i].sub.size = c->x_size*PT_SIZE;

outer[i].quant = c->z_size;
outer[i].f_stride = dim*dim*PT_SIZE;
outer[i].m_stride = pad*pad*PT_SIZE;
outer[i].subvec_len = 1;
outer[i].sub_vector = 1;
outer[i].sub.subvec = &inner[i];

top[i].sub.subvec = &outer[i];
}

#ifdef USE_NON_BLOCKING_IO
lfm_wait(fd); /* Make sure previous write has completed */

bcopy(u, fixed_u, pad*pad*pad*PT_SIZE);
lfm_nb_write_batched(fd, fixed_u, top, cells);

#else
lfm_write_batched(fd, u, top, cells);

#endif
}

Figure 7.14: Implementation of the I/O portion of the BTIO Benchmark using LFM's

nested-batched interface. This example also shows how little needs to be changed to

use non-blocking I/O.
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Compute I/O Type

Nodes None Trad. Strided Batched NB-Batched

9 320.9 415.2 325.3 324.9 323.6

16 188.7 271.8 192.5 189.4 188.9

25 124.3 212.8 129.8 126.6 124.4

36 91.9 182.2 102.8 94.1 92.9

49 69.8 163.8 79.8 72.1 71.6

Table 7.2: Seconds required to complete one run of the BTIO Benchmark on problem size A

(64x64x64). The number of I/O nodes was held constant at 16.

Compute I/O Type

Nodes None Trad. Strided Batched NB-Batched

16 762.1 962.0 768.2 781.8 768.2

25 502.3 708.0 514.8 534.8 506.6

36 351.1 573.8 368.0 365.0 356.8

49 268.6 492.2 287.2 280.4 271.9

64 209.3 453.3 232.0 217.5 210.5

Table 7.3: Seconds required to complete one run of the BTIO Benchmark on problem size B

(102x102x102). The number of I/O nodes was held constant at 16.

execution time was lowest with no I/O performed. The traditional-interface implementation was by

far the slowest of the I/O benchmarks { taking up to 135% longer than the benchmark without any

I/O. With the higher-level requests, the benchmark with I/O required no more than 14% longer

than the benchmark without I/O. The nested-strided implementation, where each cell was written

with a separate request, was the slowest of the higher-level implementations. The nested-batched

implementation was faster, and the non-blocking implementation was the fastest. This ordering

held regardless of the number of processors.

With problem size B, the traditional-interface implementation required up to 117% longer than

the benchmark with no I/O. The slowest higher-level implementation took 11% longer than the

benchmark without I/O, and most took signi�cantly less time. Surprisingly, with fewer than 36

processors the blocking nested-batched implementation was slower than the implementation that

used the nested-strided interface. One possible explanation for this unexpected behavior could be

the overhead imposed by one of Galley's attempts at optimization. Given a list of I/O requests,

Galley sorts them and then attempts to coalesce any adjacent chunks into larger chunks. With
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the strided implementation, the list of I/O requests would be created in sorted order, and Galley

would not bother to sort them again. With the batched implementation, the requests within a cell

would be generated in order (as in the strided implementation), but the cells themselves may not

be generated in the same order they appear in the �le. So, in this case, Galley would try to sort

the whole list of I/O requests before sending them to the IOPs. With problem size A and with

large numbers of processors on problem size B, the number of chunks to be sorted is smaller, so

this optimization would incur less overhead.

7.4 Other Projects

The preceding sections discuss work that was performed as a direct part of the research for this

dissertation. Galley has also been used by other people.

The Panda Array I/O library was designed at the University of Illinois, to support high perfor-

mance I/O for multidimensional matrices [SCJ+95, SW94]. While most such projects are based on

some variant of Fortran, this group chose to examine the issue of supporting distributed matrices

under C++. Joel Thomas, a Dartmouth undergraduate, redesigned and modi�ed the Panda Array

Library to run on top of the Galley Parallel File System [Tho96].

The Vesta �le system, from IBM Research, uses a two-dimensional �le model. Vesta provides

applications with a concise method of describing how these �les should be partitioned among the

compute nodes in an application. Matt Carter, another Dartmouth undergraduate, has imple-

mented a library supporting the Vesta interface on top of Galley. In particular, Galley's sub�les

and forks simpli�ed the implementation of Vesta's two-dimensional �le structure, and Galley's

nested-strided interface supports Vesta's logical views. Vesta is described in greater detail in the

next chapter.

SOLAR is a library of routines to support applications that use out-of-core, dense, matrix

computations [TG96]. SOLAR relies on existing high-performance in-core subroutine libraries to

do much of the computation, and it provides its own optimized matrix I/O library. SOLAR's

author ported the package to Galley, and found that the sub�le model provided him with a useful

degree of control over the distribution of data. He also found that Galley's nested-strided interfaces

allowed him to achieve signi�cantly better performance than the two-phase I/O strategy he had
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originally employed.

Finally, a group at Dartmouth is developing a compiler for ViC*, a variant of the data-parallel

C* [CC94]. ViC* is designed to easily support out-of-core programming methods. Galley is one of

the �le systems that they are targeting. Unlike most parallel �le systems, Galley's sub�les provide

the functionality they need for many of their I/O-optimal algorithms, which require the ability to

explicitly access speci�c disks.
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Chapter 8

Related Work

In this chapter we provide some more details about other multiprocessor �le systems, and compare

them to Galley.

8.1 Unix-like Parallel File Systems

Most commercial multiprocessor �le systems are based on the Unix linear �le model. Some simply

provide a Unix-like interface, and some provide the full semantics required by Unix standards.

8.1.1 CFS/PFS

Intel's Concurrent File System [Pie89, Nit92] is frequently cited as the canonical �rst-generation

parallel �le system. CFS was written for the iPSC family of parallel machines. Its successor,

PFS, is similar and was written for the Paragon [EK93, RP95]. CFS and PFS provide a simple,

Unix-like interface to the application. The blocks of a �le are declustered across all the disks in

round-robin order. CFS and PFS extend the conventional Unix interface to provide support for

parallel applications by introducing several varieties of shared �le pointer. The simplest form of

shared �le pointer is similar to the \atomic append" of BSD 4.3 [LMKQ89]. The remaining two

types of shared �le pointer are similar to the �rst, but enforce round-robin access to the �le from

all the nodes. The second type of pointer allows arbitrary sized records while the third, and fastest,

shared mode requires that all records be of the same size. In addition to these four modes, PFS

provides a broadcast mode, which allows all processes to access the same data. As we mentioned

earlier, these modes were rarely used in practice on the iPSC/860 at NASA Ames.
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8.1.2 sfs

Many of the applications on the CM-5 are written in a data-parallel language such as CMF, C*,

or *Lisp. To e�ciently support data-parallel I/O operations, Thinking Machines developed a �le

system called sfs, which was derived from SunOS [LIN+93]. Files in sfs are distributed across logical

devices, which are groups of physical disks, clustered into a level 3 RAID. While sfs is capable of

providing high bandwidth for large transfers that span multiple blocks, a high start-up latency

leads to poor performance for small requests. sfs also has structural problems that lead to poor

performance when multiple �les within a single cylinder group are used [LIN+93]. sfs was designed

as a low-level �le system. Users were expected to access it through the I/O support built in to one

of their data-parallel languages or through the CMMD library, described below.

8.1.3 CMMD

The CMMD library allows CM-5 applications to be written in a control parallel style [BGST93].

CMMD maintains the traditional stream-of-bytes abstraction of a �le and supports all the standard

Unix-like operations, which may be executed by each compute node individually. In addition to the

standard operations, CMMD includes support for parallel applications in the form of access modes

like those in Intel's CFS. The simplest mode is local, which is similar to traditional Unix semantics;

each node maintains its own �le pointer and may operate on the �le without any communication

with other nodes. CMMD also o�ers an independent mode in which each node maintains its own

�le pointer, but all other state is shared by all the nodes. CMMD also o�ers two global modes in

which there is a single shared �le pointer.

8.1.4 PIOFS

PIOFS, a parallel �le system for IBM's SP-2, allows users and applications to interact with it

exactly as they would interact with any AIX �le system [CF96]. Indeed, the parallel �le system

is mounted on each of the nodes of the SP-2 using AIX's standard Virtual File System interface.

Although PIOFS may appear as a standard sequential �le system, it is implemented on top of

the Vesta parallel �le system (discussed below). Using Unix's ioctl() facility, administrators and

advanced users may interact with the underlying parallel �le system.
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8.1.5 SUNMOS and PUMA

SUNMOS and its successor, PUMA, are operating systems that were developed by Sandia National

Laboratory and the University of New Mexico for the Intel Paragon [WMR+94]. The design goal

behind both SUNMOS and PUMA was to make as much of the power in the hardware available

to the user as possible. For this reason, the designers adopted simple interfaces that could be

implemented e�ciently. Rather than attempting to match the full semantics of Unix's low-level

I/O calls, their interface was designed to be compatible with the stdio library calls (e.g., fread(),

fwrite(), etc). These calls are translated into requests for the I/O nodes, which use the high-

performance message-passing system to transfer data to and from the compute nodes.

Neither of these operating systems actually provide their own low-level �le system; both are

built on top of the underlying PFS and UFS �le systems.

8.1.6 OSF/1 AD

While SUNMOS and PUMA o�er a \lean and mean" operating system to users of the Intel Paragon,

OSF/1 AD provides the full power of the Unix operating system to each compute node [ZRB+93].

This power does come at some cost; on a Paragon, SUNMOS requires only 256KB of memory on

each node, but OSF/1 AD occupies nearly 10MB [MMRW94]. File system access in OSF/1 is built

on top of Mach Memory Objects [Roy93]. Since memory objects are restricted to multiples of the

page size, small, non-contiguous requests, such as those common in parallel scienti�c workloads,

may lead to poor performance. There is no support for a multiprocessing environment at the

user interface. Furthermore, the designers explicitly did not intend for OSF/1 to satisfy the I/O

performance needs of scienti�c, supercomputer applications [Roy93].

8.1.7 PPFS

Like the systems mentioned above, PPFS provides the end user with a linear �le that is accessed with

primitives similar to the traditional read()/write() interface [HER+95]. In PPFS, however, the

basic transfer unit is an application-de�ned record, rather than a byte. PPFS maps requests against

the logical, linear stream of records to an underlying two-dimensional model, indexed with a (disk,

record) pair. Several di�erent mapping functions, corresponding to common data distributions,

are built into PPFS. An application is able to provide its own mapping function as well.
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8.1.8 SIO Interface

The Scalable I/O Initiative is a collection of researchers from industry, academia, and the national

labs. While the SIO Initiative has many goals, the most relevant to our work is the design of a

new low-level interface for parallel I/O [BBD+94]. The long-term goal of the Operating Systems

Working Group is to design a set of interfaces that may be added to the standard X/Open 4.2

interfaces. That is, the interface presented by the group is intended to be an extension to the Unix

�le system, rather than a replacement of it. The core of the Scalable I/O Iniative's interface allows

applications to submit lists of simple-strided requests [CPD+96]. Earlier proposals borrowed our

nested-batched requests for the core of their interface, but this level of functionality is now described

as an \extension" to the core interface.

8.1.9 Scotch

Scotch is a parallel �le system from Carnegie Mellon University [GSC+95]. It appears that they

eventually intend Scotch to support the SIO low-level interface. Scotch di�ers from other Unix-like

parallel �le systems in two signi�cant ways. The �rst di�erence is Scotch's reliance on application-

inuenced prefetching for high performance. Scotch currently provides only a simple data-access

interface, but it allows applications to provide hints about expected future data accesses. Scotch

then uses these hints when deciding which data should be prefetched from disk. Since Galley

provides applications with the primitives necessary to allow them to express their complete I/O

requirements at once, there is less need for prefetching based on guesses about future data accesses.

Scotch's other unusual feature is its support for per-�le redundancy. While most parallel �le systems

stripe a �le's data across all the disks in the system, Scotch allows applications to indicate that the

system should store a parity block with each such stripe. As in a traditional RAID, the addition of

a parity block allows the reconstruction of a �le in the event of the failure of one disk.

8.2 Non-Unix Parallel File Systems

Although most commercially available parallel �le systems are based on the Unix model, there has

been a great deal of interesting research done using alternative interfaces and �le models.
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8.2.1 Bridge

Bridge was one of the earliest parallel �le systems [DSE88, Dib90], and is unusual in not separating

I/O nodes from compute nodes. Bridge provides three interfaces. The simplest, designed to be used

by a single compute node, is similar to a traditional Unix interface and transparently distributes the

data across the system's disks in blocks. Although the authors mention that application-controlled

block distribution could be useful, there is no indication that this was ever provided except as an

extremely simple and slow prototype. The second interface allows multiple clients to access the

same �le in a structured manner similar to one of the modes provided by CFS. The �nal interface

allows applications to explicitly access the local �le systems on the di�erent nodes. The designers

of Bridge appear to have intended that this interface be used primarily for manipulating data on

disk (e.g., copying or sorting �les) rather than for the transfer of data to and from compute nodes.

8.2.2 nCUBE

A �le-system interface proposed for the nCUBE is based on a two-step mapping of a �le into the

compute-node memories [DJ93]. The �rst step is to provide a mapping from sub�les stored on

multiple disks to an abstract dataset (a traditional one-dimensional I/O stream). The second step

is mapping the abstract dataset into the compute-node memories. The �rst mapping function is

provided by the system software, while the second mapping function is provided by the user. The

�rst function is composed with the inverse of the second to generate a function that directly maps

data from compute-node memory to disk. Their mapping functions are essentially a permutation

of the index bits of the data.

While the nCUBE interface is far more elegant and aesthetically pleasing than Galley's inter-

faces, it does have several important limitations. The most serious of these limitations is a direct

outgrowth of its elegance: since the mapping functions are based on permutations of the index bits,

all sizes must be powers of 2. This restriction includes the number of I/O nodes, the number of

compute nodes, the disk-block size, the unit-of-transfer size, and, for some data distributions, the

matrix dimensions. This interface was implemented, but never released.
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8.2.3 Vesta

The Vesta �le system breaks away from the traditional one-dimensional �le structure [CBF93,

CF96, FCHP95]. Files in Vesta are two-dimensional, and are composed of multiple cells, each of

which is a sequence of basic striping units. BSUs are essentially records, or �xed-sized sequences

of bytes. Like Galley's sub�les, each cell resides on a single disk. While Galley only allows a �le

to have a single sub�le per disk, in Vesta a single disk may contain many cells. As discussed in

the previous chapter, equivalent functionality can be achieved on Galley by mapping cells to forks

rather than sub�les. Vesta's interface includes logical views, or logical partitioning, of the data,

which indicates how the data should be distributed among the processors. Not only does this logical

partitioning provide a useful means of specifying data distribution, it allows signi�cant performance

gains since it can guarantee that each portion of the �le will be accessed by only a single processor.

This guarantee reduces the need for communication and synchronization between the nodes.

While Vesta provides a exible and powerful method of specifying the distribution of a regular

data structure across compute and I/O nodes, it too has limitations. Vesta seems ill-suited to

problems that use irregular data, where irregular is de�ned as anything that cannot be laid out in a

rectangle or that cannot be partitioned into rectangular sub-blocks of a single size. One of Vesta's

great strengths is its two-dimensional �le abstraction, which allows programmers to specify layout

information that will hopefully lead to performance improvements. As discussed in the previous

chapter, a Vesta-like interface has been built on top of Galley. It is interesting to note that the

implementor of the library found that reimplementing the Vesta interface on top of Galley was an

easier task than writing applications for the Vesta interface itself.

Neither nCUBE nor Vesta appear to provide an easy way for two compute nodes to access

overlapping regions of a �le. Since many models of physical events require logically adjacent nodes

to share boundary information, this could be an important restriction. This behavior can also be

seen in the �le-sharing results in Chapter 3, which show that most read-only �les had at least some

bytes that were accessed by multiple processors. On the other hand, the same results show that

in many cases, the strict partitioning o�ered by nCUBE and Vesta may match the applications'

needs for write-only �les.

122



8.2.4 MPI-IO

MPI-IO [The96] is a draft standard for parallel I/O, which derives much of its philosophy and

interface from the MPI message-passing standard [MPI94]. In MPI-IO, �le I/O is modeled as

message passing. That is, reading from a �le is analogous to receiving a message and writing to a

�le is analogous to sending a message. Just as MPI provides structured messages based on simple

and derived types, access to �les in MPI-IO is based on etypes and �letypes. Like structs in C,

MPI's derived types and MPI-IO's etypes are constructed from simple base types such as integers

or oats. Filetypes in turn are structured collections of etypes. Unlike structs or derived types,

�letypes may contain holes as well as data. Using the �letype as a template, these holes allow

applications to specify which pieces of data in a �le are to be accessed and which are to be skipped

over. When multiple nodes in an application access a �le, they typically all share a common etype

while each node has its own �letype, which indicates which portions of the �le that node will access.

Through the proper combination of etypes and holes, �letypes may be used to generate many of

the same regular access patterns as the interfaces we presented above.

MPI-IO presents three advantages. First, rather than being speci�ed in bytes, I/O is speci�ed

in terms of the same data types programmers use in their applications, eliminating the need to

painstakingly calculate o�sets into the �le. Second, MPI-IO may well bene�t from its association

with MPI, which is becoming the dominant message-passing interface. Finally, MPI-IO o�ers the

promise of providing a common interface to parallel I/O across many di�erent platforms. The

primary disadvantage of MPI-IO is its unfamiliarity, particularly to those programmers who are

accustomed to Unix-like I/O. It remains to be seen whether or not this interface will be embraced

by scienti�c programmers. Finally MPI-IO has yet to be fully speci�ed or implemented, and it is

possible that design decisions that look good on paper will not work in practice. It appears that

MPI-IO could also feasibly be implemented on top of a nested-batched interface.

8.2.5 ELFS

The ELFS system, from the University of Virginia, is an object-oriented �le system that has tight

ties to the Mentat programming language [GP91, GL91]. Files in ELFS are instances of object

classes, which provide a high-level interface to an abstract data structure and encapsulate the

access patterns and the actual structure of the �le. Each object has a separate thread of control,
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allowing them to perform asynchronous data transfers as well as to prefetch and cache in the

background. The class is responsible for matching the caching and prefetching algorithms to the

higher-level semantics. Since applications manipulate �les only via the external interface to the

objects, applications are robust under architectural changes.

8.2.6 HFS

The Hurricane File System (HFS) is a part of the Hurricane operating system and was designed

at the University of Toronto to run on the Hector shared-memory multiprocessor [KS93, Kri94,

SVW+93]. While HFS shares our goal of providing a exible, high-performance �le system, it

adopts an entirely di�erent approach. HFS is based on a complex, highly-structured, object-oriented

model. Files in HFS are referred to as storage objects and are made up of three components, one

for each of three levels of the �le system. Each component in turn may be composed of multiple

sub-objects, each designed to add a speci�c functionality to the �le (e.g., transparent replication of

data, a caching algorithm, etc.). This �le structure is both liberating and limiting. A �le may have

a nearly arbitrary set of properties simply by selecting an appropriate combination of sub-objects.

To achieve this exibility, each sub-object must �t exacting speci�cations to ful�ll the assumptions

of other sub-objects. Most applications interact with the �le system through a user-level application

library such as the Alloc Stream Facility [KSU94]. Note that the ideas underlying HFS could be

used to build class libraries on top of Galley.

8.2.7 Whiptail

Whiptail is a �le system developed for the Intel Paragon, and was built on top of Intel's PFS. It

was designed to support libraries for out-of-core applications [SW95b, SWC+95], and it implements

many of the recommendations for parallel I/O discussed in [CK93]. Whiptail provides no byte-level

operations; all �le operations must be done in units that are multiples of the block size. Although

their target users have a di�erent set of requirements than those observed in our two workload

studies, Whiptail's implementors share our goal of providing high performance to libraries by

avoiding unnecessary functionality at the �le system level. Indeed, Whiptail's interface could be

easily implemented on top of our �le system, although that would negate some of the performance

advantages o�ered by its low-level nature.
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8.3 Higher-level Interfaces

There are numerous interfaces that are designed to allow programmers to describe their I/O needs at

a higher semantic level. These interfaces are sometimes tightly integrated into a particular language

such as HPF [Lov93, BGMZ92, HPF93] or CMF [Thi94]. There has also been great deal of research

in designing libraries to support parallel I/O. The focus of much of this research has been the support

of distributed matrices, particularly for data-parallel variants of Fortran [CBH+94, TBC+94, TG96].

Other libraries support multidimensional matrix I/O under C++ [SW94, SCJ+95, CWS+96]. There

has also been quite a bit of work done in supporting irregular data structures: [CSBS94, PSC+95]

discuss the issues relating to interprocessor distribution of these structures, and Jovian explores

the issues relating to their persistent storage [BBS+94]. ViC* provides nearly-transparent support

for out-of-core applications written in C*, a data-parallel dialect of C [CH96].
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Chapter 9

Conclusion

During the course of this research, we have explored two related areas: how scienti�c applications

use current parallel �le systems, and how parallel �le systems can be designed to better meet the

needs of those applications.

Across the two machines and two programming models covered in our workload characteri-

zations, we found important similarities and di�erences in the way applications use the di�erent

parallel �le systems. Compared to uniprocessor workloads, the parallel workloads used much larger

�les, and were dominated by writes. Although there were variations in magnitude, we found small

request sizes to be common in both the parallel workloads, just as they are in uniprocessor work-

loads. Compared to vector-supercomputer workloads, we observed much smaller requests and a

tendency toward non-consecutive, but sequential �le access. Finally, parallelism led to new, inter-

leaved access patterns with high interprocess spatial locality at the I/O node. While some of the

details of our results may be speci�c to the two systems we studied, or to the workloads at the two

sites, we believe that the general conclusions above are widely applicable to scienti�c workloads

running on loosely-coupled MIMD multiprocessors.

Based on the results of these workload characterization studies, we designed Galley, a new

parallel �le system that attempts to rectify some of the shortcomings of existing systems. Galley

is based on a new three-dimensional structuring of �les, which provides tremendous exibility and

control to applications and libraries. We showed how Galley's new data-access requests reduced

the aggregate latency of multiple small requests and allowed the �le system to optimize the disk

accesses required to satisfy the request.

The results of our experiments indicate that our new style of interface increased performance by
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up to several orders of magnitude. More importantly, this new interface allows high performance

on access patterns that are known to be common in scienti�c applications, and that are known

perform poorly on most current multiprocessor �le systems.

Finally, by implementing two applications and a library, we have shown how Galley's features

can be useful in practice. Furthermore, we have also shown how those features can lead to higher

performance in practice.

9.1 Future Work

There is still a great deal of work to be done in studying existing parallel �le systems and developing

new systems.

9.1.1 Workload characterization

When there were no workload studies of multiprocessor �le systems, �le system designers were forced

to rely on studies of uniprocessor systems. Now that we have performed two such studies, there is

a danger that other groups will have less interest in performing additional studies. Since parallel

machines and �le systems are evolving rapidly, it is possible that future parallel applications will

behave very di�erently than the applications we observed in our studies. Without continuing work

in workload characterization, �le system designers will soon be relying on out-of-date information

again.

We were fortunate enough to have access to the source code for the two commercial �le systems

we studied, as well as system administrators willing to put our modi�ed �le systems into production

use. To simplify the task of performing such characterization projects in the future, we would like

to see vendors of commercial parallel �le systems insert hooks into their systems, allowing third-

party instrumentation to be performed without modifying the original �le system code. These same

hooks would likely prove useful for the development of debugging and performance analysis tools

as well.

Finally, the results of these characterizations could be used to develop statistical models for

multiprocessor �le system workloads. These models could be used to reason about parallel algo-

rithms as well as about the e�ects of changes in a system on the behavior of that system. These

models could also be used to create synthetic workload generators, which would be useful for early
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performance evaluations of new parallel �le systems.

9.1.2 Galley

There are several areas of parallel �le system design that should be explored in greater detail. We

hope that researchers will be able to use the Galley Parallel File System to investigate some of

these areas.

� Caching

Caching has traditionally been used to improve a �le system's performance by exploiting

spatial locality and temporal locality. From our workload characterizations, we know that

there is a great deal of spatial locality in parallel �le system workloads, largely due to inter-

processor sharing of �le blocks. Given the large sizes of �les in these workloads, however,

there is less opportunity for temporal locality, since most �les cannot �t entirely within the

cache. Should the absence of temporal locality have any impact on the design of �le system

caches? Should applications be given more control over the way their �les are cached at the

IOPs?

� Application control

Our new data-access interfaces allow applications to communicate more information to the

�le system than traditional interfaces. We found that this information led to opportunities

for tremendous performance improvements. Is there more information that applications can

provide to the �le system to increase performance further? How should applications provide

this information?

One of the more radical methods of addressing this issue is to allow applications to \download"

code to the IOP, where it would run in the same address space as the I/O server [KN96].

This approach is similar in spirit to the techniques suggested by the SPIN [BSP+95] and

Exokernel [EKO95] projects, which involve uniprocessor operating systems. The ability to run

application code at the IOPs could be used to allow applications to perform data-dependent

�ltering or distribution, possibly reducing network tra�c. This ability could also be used to

implement application-de�ned caching and prefetching policies.

128



� Multiple applications

Most descriptions of sequential and parallel �le systems, including our own, have focused

on providing high performance to individual applications. We have seen that in practice,

however, it is common for �le systems to serve multiple applications at once. A complex,

but important, area for future research is the e�cient support of these common, multiple

application workloads. Among the questions that need to be answered are: How do we de�ne

fair service? How do we provide fair service to each application? How do we balance attempts

to provide fair service to multiple applications with potentially conicting per-application

optimizations?

Finally, there a number of important, but less research-oriented, areas for further work on

Galley.

� Naming

The at namespace provided by Galley is su�cient for a prototype or a research system.

If Galley is every to become more generally useful, however, a more sophisticated naming

system will be required. Ideally, Galley should support a full hierarchical naming system like

that provided by Unix.

� Security

Galley does not provide any security at all. Clearly, this limitation would not be acceptable

in most production environments.

� Reliability

Galley is currently designed to deliver the best performance the underlying hardware can

provide. As we discussed in Chapter 6, we are frequently able to achieve that goal. To

achieve this high performance, we have sacri�ced some level of reliability. In particular, when

writing, the DiskManager always schedules disk accesses in such a way as to avoid any excess

seeks, without regard for what is being written. This scheduling can cause a fork's mapping

blocks to be written to disk before the data blocks. If the system crashes before the data

blocks can be written, the mapping blocks will be intact, but will point to \bad" data. Indeed,
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it is likely that the fork will actually contain data from a fork that had been deleted, which

clearly raises security concerns. It should be possible to improve reliability without greatly

sacri�cing performance by implementing a scheme such as soft metadata updates [GP94].

� Heterogeneity

The current implementation of Galley does not support a heterogeneous environment. The

assumption that the CPs and IOPs all use the same basic data representation pervades the

implementation. While this limitation may be reasonable for a �le system designed to run

on a multiprocessor such as the SP-2, where all the nodes are the same, it is likely to be

unacceptable in a �le system designed for a cluster-of-workstations environment.

� Node colocation

All communication between CPs and IOPs takes place over TCP/IP. If a CP and an IOP

happen to reside on the same node, this heavy-weight communication stack could likely be

replaced by Unix pipes or shared memory for higher performance.

� Integration

Another serious limitation of Galley is its isolated nature. Applications can easily create

and use �les on Galley, but there is no standard way to migrate �les between Galley and an

external �le system. To be truly useful in a production setting, Galley must be integrated

with the existing environment.

While Galley does not, and likely never will, support full Unix semantics, a reasonable com-

promise solution to this problem is to provide an NFS interface for Galley, which would allow

standard workstations to \mount" a Galley �le system as they would any remote �le system.

In this type of situation, Galley's �les would look like immutable directories containing sub-

�les, and its sub�les would look like directories containing forks. Forks could be accessed as

standard Unix �les.

The biggest drawback to this simple solution is that the resulting representation of a Galley

�le is not likely to correspond to the model envisioned by the creator of the �le. For example,

our Linear File Model library stripes the data of a linear �le across many sub�les. If the �le

system were exported by NFS, that linearity would not be apparent to external applications.
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A possible solution to this subproblem would be to allow user-de�ned export methods for

�les, possibly through the use of \downloaded" code, as discussed above.

9.2 Availability

The full source code for Galley is available at

http://www.cs.dartmouth.edu/~nils/galley.html.
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