
Turku Centre for Computer Science

TUCS Dissertations
No 154, December 2012

Ville Rantala

On Dynamic Monitoring
Methods for Networks-on-Chip

On Dynamic Monitoring Methods for
Networks-on-Chip

Ville Rantala

To be presented, with the permission of the Faculty of Mathematics and Natural
Sciences of the University of Turku, for public criticism in Auditorium Lambda on

December 12, 2012, at 12 noon.

University of Turku
Department of Information Technology

20014 Turun yliopisto

2012

Supervisors

Adjunct Professor Juha Plosila
Department of Information Technology
University of Turku
20014 Turun yliopisto
Finland

Adjunct Professor Pasi Liljeberg
Department of Information Technology
University of Turku
20014 Turun yliopisto
Finland

Reviewers

Professor Gert Jervan
Department of Computer Engineering
Tallinn University of Technology
Raja 15, 12618 Tallinn
Estonia

Associate Professor Zhonghai Lu
Department of Electronic Systems
Royal Institute of Technology
Forum 120, 16440 Kista
Sweden

Opponent

Professor Timo D. Hämäläinen
Department of Computer Systems
Tampere University of Technology
33101 Tampere
Finland

ISBN 978-952-12-2822-3 (PRINT)
ISBN 978-952-12-2823-0 (PDF)
ISSN 1239-1883

Abstract

Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of pro-
cessing cores integrated in a single chip. An emerging challenge is the implementation
of reliable and efficient interconnection between these cores as well as other components
in the systems. Network-on-Chip is an interconnection approach which is intended to
solve the performance bottleneck caused by traditional, poorly scalable communication
structures such as buses. However, a large on-chip network involves issues related to
congestion problems and system control, for instance. Additionally, faults can cause
problems in multiprocessor systems. These faults can be transient faults, permanent
manufacturing faults, or they can appear due to aging. To solve the emerging traffic
management, controllability issues and to maintain system operation regardless of faults
a monitoring system is needed. The monitoring system should be dynamically applicable
to various purposes and it should fully cover the system under observation. In a large
multiprocessor the distances between components can be relatively long. Therefore,
the system should be designed so that the amount of energy-inefficient long-distance
communication is minimized.

This thesis presents a dynamically clustered distributed monitoring structure. The
monitoring is distributed so that no centralized control is required for basic tasks such
as traffic management and task mapping. To enable extensive analysis of different
Network-on-Chip architectures, an in-house SystemC based simulation environment was
implemented. It allows transaction level analysis without time consuming circuit level
implementations during early design phases of novel architectures and features.

The presented analysis shows that the dynamically clustered monitoring structure
can be efficiently utilized for traffic management in faulty and congested Network-on-
Chip-based multiprocessor systems. The monitoring structure can be also successfully
applied for task mapping purposes. Furthermore, the analysis shows that the presented
in-house simulation environment is flexible and practical tool for extensive Network-on-
Chip architecture analysis.

i

ii

Acknowledgements

The research, presented in this thesis, was carried out during years 2008-2012 at the
Department of Information Technology, University of Turku. The work was funded
by Academy of Finland and Turku Centre for Computer Science (TUCS) Graduate
School, with financial support from the Nokia Foundation and the Finnish Foundation
for Technology Promotion. This thesis would not have been done without the support
from these organizations.

I would like to thank my supervisors Juha Plosila and Pasi Liljeberg for steering me
through this process which practically started in 2006 when I worked as a summer trainee
at their laboratory. I wish to express my gratitude to Teijo Lehtonen for co-authoring
several papers and guiding me through these years. I would also like to thank reviewers
Gert Jervan and Zhonghai Lu whose comments improved this thesis significantly. I
also express my gratitude to professor Timo D. Hämäläinen for agreeing to act as the
opponent.

Warm thanks go also to the coffee room crews both at the Department of the Infor-
mation Technology as well as at the Business Innovation Development Unit, especially
to Sami Nuuttila for solving each and every computer related problem I was able to
discover.

Finally I would like to thank my parents Anne and Pasi for encouragement and sup-
port towards whatever I have been doing.

Turku, November 5, 2012

Ville Rantala

iii

iv

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Publications . 3

1.4 Organization . 4

2 Network-on-Chip 5

2.1 Components . 5

2.2 Topologies . 7

2.2.1 Basic Topologies . 8

2.2.2 Hierarchical Topologies . 10

2.2.3 Irregular Topologies . 10

2.3 Network Traffic Classification . 11

2.4 Network Flow Control . 11

2.5 Routing Algorithms . 12

2.5.1 Deterministic Routing . 13

2.5.2 Stochastic Routing Algorithms . 17

2.5.3 Adaptive Routing . 18

2.6 Network Problems . 20

2.7 Summary . 21

3 Monitoring on Network-on-Chip 23

3.1 Purpose of Monitoring . 24

3.1.1 Traffic Management . 24

3.1.2 Fault Detection . 25

3.1.3 Task Management . 25

3.2 Monitoring Structures . 26

3.2.1 Centralized Monitoring . 27

3.2.2 Clustered Monitoring . 28

3.2.3 Localized Monitoring . 29

3.2.4 Distributed Monitoring . 30

3.3 Monitoring Trade-offs . 31

v

3.3.1 Resource Allocation . 31

3.4 Fault Tolerance of Monitoring Systems . 32

3.5 Summary . 32

4 Dynamically Clustered Distributed Monitoring 33

4.1 Dynamically Clustered Monitoring Structure 33

4.2 Principles of Analysis . 36

4.3 Monitoring Traffic Overhead . 37

4.4 Routing Algorithms . 43

4.5 Monitoring Algorithms and Communication 44

4.6 Summary . 46

5 Simulation Environment 47

5.1 Architecture . 48

5.2 Architectural Components . 48

5.2.1 Router . 48

5.2.2 Network Interface . 53

5.2.3 Link . 53

5.2.4 Core . 54

5.2.5 Monitor . 56

5.3 Simulator Components . 61

5.3.1 Packet . 61

5.3.2 Terminator . 62

5.4 Simulator Functionality . 62

5.4.1 Architecture . 62

5.4.2 Top Level Control . 63

5.4.3 Traffic Pattern . 63

5.4.4 Fault Injection . 64

5.4.5 Task Mapping . 64

5.5 Summary . 64

6 Traffic Management 65

6.1 Status Update Interval . 65

6.1.1 Status Update Interval Analysis 67

6.1.2 Cost of Implementations . 70

6.2 Status Data Diffusion . 72

6.2.1 Additional Status Data Processing 75

6.2.2 Status Data Diffusion Analysis . 77

6.3 Format of Network Status Data . 81

6.3.1 Granularity of the Router Status Values 82

6.3.2 Combining Router and Link Statuses 82

6.4 Serial Monitor Communication . 86

6.5 Reduction of Monitors . 89

vi

6.6 Summary . 91

7 Lightweight Task Mapping 93
7.1 Lightweight Distributed Task Mapping . 94

7.1.1 Core Load Monitoring and Reporting 96
7.2 Mapping Decision Process . 96

7.2.1 Neighbor Evaluation . 96
7.2.2 Mapping Decision Strategies . 99

7.3 Enhanced Monitoring System . 100
7.4 Case Study: Mapping Tasks . 100
7.5 Summary and Future Work . 104

8 Conclusions 107

vii

viii

List of Figures

2.1 Router . 6

2.2 Basic components of a Network-on-Chip. 7

2.3 Mesh network. 8

2.4 Torus network. 9

2.5 Fat-tree network. 9

2.6 Polygon network. 10

2.7 Star network. 10

2.8 Hierarchical hybrid mesh-ring network. 11

2.9 XY routing. 14

2.10 Turn model routing algorithms. 15

2.11 Turnaround routing algorithm. 19

3.1 Network components and their connections. 26

3.2 Clustered monitoring. 29

3.3 Distributed monitoring. 30

4.1 Dynamic clusters. 35

4.2 Network topology in DCM structure. 36

4.3 Number of transactions. 39

4.4 Maximum traverse lengths. 40

4.5 Distribution of monitoring traffic load in time. 41

4.6 Routing directions. 42

4.7 Routing direction in experimental routing algorithm. 43

4.8 Structure of monitoring packet payload. 45

5.1 Structure of a 2x2 NoC. 49

5.2 Structure of a router. 50

5.3 Productive directions. 51

5.4 Routing directions. 52

5.5 Structure of a link. 54

5.6 Structure of a core. 55

5.7 Indexes of the neighbors. 57

5.8 Structure of a monitor. 58

ix

6.1 Throughput: status update interval. 66
6.2 Throughput: status update interval, 10% of the links are faulty. 67
6.3 Sent monitoring packets. 68
6.4 Sent monitoring packets, 10% of the links are faulty. 69
6.5 Diffusion of network status information. 73
6.6 Diffusion of network status information as a function of time. 75
6.7 Routing directions. 76
6.8 Indexes of the neighbor routers. 77
6.9 Throughput: cluster size, additional status data processing. 78
6.10 Throughput: cluster size. 79
6.11 Throughput: cluster size, additional status data processing, 10% of links

are faulty. 79
6.12 Throughput: cluster size, 10% of links are faulty. 80
6.13 Throughput: additional status data processing. 81
6.14 Throughput: status granularity. 83
6.15 Throughput: status granularity, 10% of links are faulty. 83
6.16 Throughput: status granularity, additional status data processing. 84
6.17 Throughput: status granularity, additional status data processing, 10%

of links are faulty. 84
6.18 Throughput: separate traffic and fault data and hybrid formats. 85
6.19 Throughput: separate traffic and fault data and hybrid formats, 10% of

links are faulty. 86
6.20 Throughput: serial communication. 87
6.21 Throughput: serial communication. 88
6.22 Patterns of removed monitors. 89
6.23 Throughput: fewer monitors. 90
6.24 Throughput: fewer monitors, 10% of links are faulty. 91

7.1 Mapping decision process. 97
7.2 Task mapping initiator cores. 101
7.3 Core load with mapping decision strategy 1. 103
7.4 Core load with mapping decision strategy 2. 103
7.5 Core load with mapping decision strategy 3. 103
7.6 Core load with mapping decision strategy 4. 103

x

List of Tables

6.1 Status update implementation complexity. 70
6.2 Monitoring system cost comparison. 71
6.3 Cost of 100-router NoC with different monitoring structures. 72

7.1 Neighbor evaluation approaches. 101
7.2 Task mapping results. 102

xi

xii

List of Abbreviations

ALOAS Arbitration Look Ahead Scheme
BE Best Effort
DCM Dynamically Clustered Monitoring
DyAD Dynamically Adaptive and Deterministic
E East
FIFO First In, First Out
Flit FLow control digIT or FLow control unIT
GS Guaranteed Service
GT Guaranteed Thoughput
I/O Input/Output
ID Identifier
IP Intellectual Property
IVAL Improved VALiant’s randomized algorithm
MPSoC Multiprocessor System-on-Chip
N North
NI Network Interface
NoC Network-On-Chip
PE Processing Element
S South
SoC System-On-Chip
TDM Time Division Multiplexing
TLM Transaction-Level Modeling
TTL Time To Live
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuit
W West

xiii

xiv

Chapter 1

Introduction

Network-on-Chip (NoC) is a promising interconnection paradigm for current and future
high-performance Systems-on-Chip (SoC) [9, 16, 49]. These SoCs can include hundreds
of separate processor cores, memories and other Intellectual Property (IP) blocks, and
the number of these components is increasing. Communication between these compo-
nents is challenging. It can form a performance bottleneck, and therefore, largely de-
termine the maximum performance and capacity of the whole system. Traditional SoCs
utilize shared-medium, bus-based communication infrastructures. Bus-based structures
are adequate for a small number of components but are poorly scalable for larger sys-
tems. When the number of components increases each component has less and less
communication capacity available, the shared-communication medium is able to handle
only one transaction at a time. The bus structure is poorly scalable and therefore not
suitable for high-performance multi-core or multiprocessor systems.

NoC is a nanoscale on-chip computer network which consists of routers and links.
System components can be connected to the routers through network interfaces. On-
chip networks can be constructed following different network topologies and they can
utilize various routing algorithms to steer data from a source to a destination. The data
can be transferred in the form of data packets. The main advantages of a network-based
communication infrastructure are scalability and flexibility. The size of a system can
be increased without blocking the communication infrastructure, which is a problem in
traditional bus-based communication infrastructures. Scaling the size of the network up
increases the network capacity and offers new additional communication paths while in
bus-based structures up-scaling increases capacitance and rises possibility of congestion.

Two essential issues concerning high-performance NoCs are the congestion and fault-
iness of the involved resources. Highly loaded computational resources can generate a
large amount of traffic which causes congestion to the network and in the worst case
blocks the network. A typical issue is unbalanced communication resource utilization.
While part of network is highly loaded there can still be other resources in idle state.
Network topologies and routing algorithms can be designed to minimize these issues
but they are not able to balance network utilization without network monitoring and

1

monitoring-based reconfiguration. The monitoring is also essential to detect faults and
reconfigure the system to operate despite such faults.

Manufacturing of complex multiprocessor systems requires utilization of modern
nanoscale integrated circuit fabrication processes. These complex integrated circuits
can include manufacturing faults which prevent the utilization of components in the
faulty areas. Aging effects, for instance electromigration, can compose additional faults
to the system [62]. To improve system reliability and increase manufacturing yield these
complex systems should have mechanisms to maintain the functionality even though
there are faulty components in the system. These mechanisms should be able to detect
inadequate functionality and reconfigure the system so that faulty parts can be isolated
and the overall functionality is maintained with a reasonable performance.

A monitoring system is an essential part of system reconfiguration in the cases of
high traffic load or faulty system conditions. It consists of probes and monitors and
requires dedicated or shared communication medium to move data between probes,
monitors and other network components. A monitoring system collects various status
data from the system and delivers the observed data to the components of the system.
The collected data can be used to reconfigure system operation and that way maintain
and improve the functionality of the system. The usage of a monitoring system is not
limited to avoidance and solving of traffic and fault related issues. The operation of a
large and complex multi-core or multiprocessor system requires extensive knowledge of
the status of different components so that the operation of the system can be controlled
and optimized. The monitoring system can be used for statistics collection or task
mapping purposes, for instance.

1.1 Objectives

The main objective of this work is to develop a scalable monitoring structure for high-
performance NoC based multiprocessor systems which makes it possible to maintain sys-
tem functionality under high computational and communication load and even though
there are faulty components in the system. The monitoring system should collect the
status information from the system and deliver it as widely as necessary to ensure system
functionality. A goal is to implement the system as far as possible without centralized
control so that maximal scalability and architectural fault tolerance can be obtained. Ar-
chitectural fault tolerance refers to system architecture where faulty components have
local influence on the functionality of a system but do not distract the overall functional-
ity which is typically the case when a centralized controller becomes faulty. In a faultless
network the maximal performance requires the balanced utilization of network resources.
Therefore, the communication infrastructure should be able to monitor the network load
and direct the traffic also through less loaded areas. Balanced resource utilization also
balances the energy consumption and, furthermore, equalizes the heat dissipation. En-
ergy consumption and heat dissipation are both essential issues in modern integrated
circuits. Additionally, the Network-on-Chip monitoring system should be applicable for

2

system control purposes which include for instance task mapping methods.
To enable extensive analysis of Networks-on-Chip a simulation environment is needed.

The simulator should operate on the transaction level without in-detail circuit-level im-
plementations so that new ideas and approaches can be easily analyzed without time
consuming circuit implementations. This simulation environment should be able to
model large NoCs with different routing algorithms and monitoring structures.

1.2 Contributions

The main contributions of the thesis include:

• Dynamically clustered distributed monitoring structure which is scalable, flexible
and where the monitoring infrastructure is evenly distributed over the monitored
system. The dynamically clustered structure is presented in Chapter 4.

• SystemC based Network-on-Chip simulation environment which enables transac-
tion level analysis of different Network-on-Chip architectures and their features.
The simulation environment is presented in Chapter 5.

• Analysis of traffic management related features of the dynamically clustered mon-
itoring structure. The analysis is studied in Chapter 6.

• Lightweight distributed task mapping method which is based on the dynamically
clustered monitoring structure and where the cores are able to carry out task
mapping autonomously without complete knowledge of the system status. The
lightweight task mapping method is presented and studied in Chapter 7.

1.3 Publications

The results, presented in this thesis, are partly published previously in journal articles

• V. Rantala, P. Liljeberg and J. Plosila. Status Data and Communication Aspects
in Dynamically Clustered Network-on-Chip Monitoring. In Journal of Electrical
and Computer Engineering, 2012(2012), 2012.

• V. Rantala, T. Lehtonen, P. Liljeberg and J. Plosila. Analysis of Monitoring Struc-
tures for Network-on-Chip: a Distributed Approach. IGI International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), 2(1):49–67, 2011.

and conference articles

• V. Rantala, T. Lehtonen, P. Liljeberg and J. Plosila. Analysis of Status Data Up-
date in Dynamically Clustered Network-on-Chip Monitoring. In 1st International
Conference on Pervasive and Embedded Computing and Communication Systems,
PECCS 2011, March 2011.

3

• V. Rantala, T. Lehtonen, P. Liljeberg and J. Plosila. Multi Network Interface
Architectures for Fault Tolerant Network-on-Chip. In International Symposium
on Signals, Circuits and Systems (ISSCS ’09), July 2009.

The results and discussion presented in Chapter 7 are new and they have not been
published previously.

1.4 Organization

The thesis is organized as follows. The basics of Networks-on-Chip are presented in Chap-
ter 2. It includes the descriptions of NoC components and topologies as well as presents
typical problems regarding Networks-on-Chip. Monitoring is discussed in Chapter 3, in-
cluding different monitoring structures and the purposes of monitoring. A dynamically
clustered distributed monitoring approach for Networks-on-Chip is presented in Chapter
4. The chapter includes the concept level analysis of the dynamically clustered moni-
toring approach and discussion concerning routing and monitoring algorithms. Chapter
5 presents SystemC based transaction level Network-on-Chip simulation environment
which is used to simulate and analyze the presented monitoring approach in chapters
to follow. Issues concerning traffic management using dynamically clustered monitor-
ing are presented and analyzed in Chapter 6. In Chapter 7 the dynamically clustered
monitoring is applied for task mapping purposes. Issues related to task mapping us-
ing the presented monitoring system are discussed and the task mapping functionality
demonstrated. Finally, conclusions are drawn and future work discussed in Chapter 8.

4

Chapter 2

Network-on-Chip

Network-on-Chip (NoC) is an approach to implement the interconnection of large and
complex integrated circuits. Principles of Networks-on-Chip are basically similar to prin-
ciples of any computer network. The main components are similar with the components
of computer networks but implemented in nanoscale. Topology of the network deter-
mines how the components are organized and connected to each other. A significant
part of a network implementation is a routing algorithm which defines along which path
data are transferred from a source to a destination.

Typically, in Network-on-Chip data are transferred in packets. Each packet includes
a header and a payload. The actual data are stored as a payload while the header
includes important control information. The most important part of data in the header
is an address of a destination but it can also include for instance an address of a sender,
packet ID and some statistical data. Network flow control is a protocol which determines
how individual packets are moved in the network. Besides these, types of the network
traffic and basic problems are discussed in this chapter.

2.1 Components

Components of Networks-on-Chip include routers, links, network interfaces and cores.
Additionally, an NoC can include probes and monitors. A router is the essential com-
ponent of a network. It is in charge of that all the data are transferred from sources
to correct destinations. The structure of a router is represented in Figure 2.1. There
are several input and output ports, switch to connect input and output ports together
and two logic blocks to control the switch. The core of the routing logic is a routing
algorithm which decides to which output port the input port is connected when a packet
arrives at the router. The arbitration logic decides from which input port a packet is
received at any point of time. The arbitration logic unit listens to the input ports and
takes care that data from all directions are accepted and forwarded. The arbitration
algorithm can vary based on different prioritization requirements.

Links are used to connect routers to each other. Basically, they are wires optionally

5

Z
Z�
�

Z
Z�
�Z

Z�
� Z

Z�
� Z

Z�
�Z

Z�
�

Z
Z�
�Z

Z�
� Z

Z�
� Z

Z�
�

Input Ports

Output Ports

Routing
Crossbar Switch

Arbitration
Logic Logic

Figure 2.1: 5-port router.

with data buffering capabilities. If a transfer distance is relatively long, a link can have
repeaters to amplify the transferred signal. Buffer registers, where packets are stored
while waiting for transferring forward, are implemented in links or in routers.

The purpose of a Network-on-Chip is to connect the components of an integrated
circuit to each other. These components are in this thesis called as cores. These com-
ponents can be processors, memories or any intellectual property (IP) blocks.

In networks data are transferred in packets so the packets have to be generated before
the data are sent to the network and also the packets have to be opened when they have
been received from the network. These two operations are done in a network interface
(NI) which, as its name indicates, is an interface between a core and a network. A
network interface can be implemented as a part of a core and the core is able to connect
to an interconnection network through it.

The connections of the basic components are represented in Figure 2.2. Additionally,
a Network-on-Chip can include diagnostic components, probes and monitors. These
components are used to collect diagnostic and statistic data from the system. A probe
is a small component which is attached to an observed component. It delivers the
observation data to a monitor which takes care of data exploitation. The monitoring
data can be used for reconfiguration or statistical purposes, for instance.

6

NI

Core

NI

Core

R R

@@ @@
LinkLink

L
in
k

L
in
k

Figure 2.2: Basic components of a Network-on-Chip: router (R), link, core and network
interface (NI) in a corner of a larger network.

2.2 Topologies

Topology defines the structure of a network. Interconnection networks can be catego-
rized into four classes based on the network topology. These classes are shared-medium
networks, direct networks, indirect networks and hybrid networks. In the shared-medium
networks the transmission medium is shared by all components of the system. A bus
is an example of a shared-medium network. Each device connected to the bus has a
certain time slot when it is allowed to use the bus and only one component can use the
shared medium at a time. Arbitration logic is used to control who is able to use the bus
and for what duration. The major drawback of a shared-medium network is its lack of
scalability. When new components are connected to a bus, the time slot for each com-
ponent has to be shortened and that way the communication performance most likely
decreases.

Direct networks are also known as point-to-point networks. In a direct network
each component is directly connected to all the components it is communicating with.
Therefore, any two components are not able to communicate with each other if they do
not have a direct connection between each other. Shared-resource and direct networks
are typically circuit switched networks which means that data are transferred without
dividing it into packets. [51]

In a packet switched network, the raw data are divided into packets which are trans-
ferred in the network individually. Packet switched communication is utilized in indirect
networks. An indirect network consists of routers which compose a direct network be-
tween them. Devices of the system are connected to routers through a network interface.
[18] A hybrid network is a network which consists of a combination of different kinds of
networks.

A network is non-blocking if it is able to fulfill all the requests that are offered to it.
In a packet switched networks, this kind of network is also called as a non-interfering
network. A non-interfering network can deliver all the packets in guaranteed time. [14]
A basic network topology has one hierarchy layer where all the nodes are equal. An
improved version of this network topology is a hierarchical network where a network is

7

R R R R

R

R

RRRR

R

R R

R R

R

Figure 2.3: Mesh network.

divided into multiple hierarchy layers. Networks on the lower layer are called as the
subnetworks of a higher layer.

2.2.1 Basic Topologies

Mesh and Torus Probably the most utilized Network-on-Chip topology is mesh,
presented in Figure 2.3. A mesh network consists of m columns and n rows. In the
mesh network, presented inf Figure 2.3, both m and n are four. The routers are located
in the intersections of rows and column. Addresses of routers and resources can be
easily defined as X- and Y-coordinates of a mesh. The strength of the mesh network is
its simplicity. It can be easily placed on a chip without complicated routing of wires.
However, weakness of a mesh topology is varying distance between routers. Average
distance from center of a network is shorter than from routers at the edges of mesh. [14]

A torus network is an improved version of the basic mesh network. A simple torus
network is a mesh where the heads of the columns are connected to the tails of the
columns and the left sides of the rows are connected to the right sides of the rows. A
torus network has better path diversity than a mesh network, which means that there
are more alternative routes between two nodes of the network. The average distance
between routers is constant on the contrary to the mesh. A torus network is shown in
Figure 2.4. The chip implementation of a torus network is more complicated than the
mesh network due to the links from an edge to another edge. These links can also require
signal repeaters due to their relatively long length. [38]

Tree and Butterfly Topologies In a tree network routers are placed at different
levels and cores are connected to the routers on the lowest level [11]. The routers on
higher levels are called as ancestors of the routers below them. A fat-tree topology is
illustrated in Figure 2.5. The cores can be connected to four routers at the bottom of the
figure. In the fat-tree topology, the routers are connected to multiple ancestors which
increases the path diversity in the network and offers multiple routes between cores.

A butterfly network is a duplicated tree network. It consists of two tree networks

8

�
 	�
�
 	�
�
 	�
�
 	�
	

��

	

��

	

��

	

��
R R R R

R

R

RRRR

R

R R R

RR

Figure 2.4: Torus network.

from which another is turned around and connected above the original tree network.
This way cores can be connected not only to the routers at the bottom of the network
but also to the routers on the top of the network. The highest ancestor routers are in
the middle of the network. [28]

Polygon and Star Topologies The simplest polygon network is a circular network
where packets travel in a loop from a router to another in uni- or bidirectional path.
Network becomes more diverse when chords are added to the circle. A polygon network
is fully connected if there is a direct link from every router to every other router in the
network. A fully connected polygon network is presented in Figure 2.6.

A star network, which is represented in Figure 2.7, is another simple network topol-
ogy. It consists of a central router in the middle of the star, and cores in the spikes of
the star. The capacity requirements of the central router are quite large, because all
the traffic between the spikes goes through the central router. That causes a remarkable
possibility of congestion in the middle of the star.[60]

�
�
�
�
��

��
�
��

�
��

�
��

�
�
�
�
��

@
@
@

@
@@

HH
H

HH
H
HH

H
HH

@
@
@

@
@@

R R

R RRR

Figure 2.5: Fat-tree network.

9

�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
AA

�
�
�
�
�

A
A
A
A
A

H
HH

H
HH

HH

�
���

����

�
�
�
�
�

T
T
T
TT

�
��

�
��

��

H
HHH

HHHH

R R

RR

R R

Figure 2.6: Fully connected polygon (hexagon) network.

2.2.2 Hierarchical Topologies

Hierarchical topologies are based on an idea that multiple networks are connected to each
other with an upper level network, a global network. The originally separate networks,
or subnetworks, are also called as the clusters of the network. This approach is useful in
situations where most of the traffic is between components in a cluster but there is still
a need to have a connection to the components located in the other clusters.

A hierarchical hybrid topology is a combination of two different network topologies.
Subnetworks have different topology than the global network. A hierarchical hybrid
network with local mesh networks and a global polygon network is represented in Figure
2.8.

2.2.3 Irregular Topologies

Irregular networks do not follow any regular topology. An irregular network has an
application specific structure where routers are connected to the cores and to each other
based on a known traffic pattern. Only the communication paths, which are required by
the application, are implemented.

T
T
T

�
�
�

�
�
�

T
T
T

R

RR

R

R

R

R

Figure 2.7: Star network.

10

RR R R R R

RR R R R R

RR R R R R

RR R R R R

RR R R R R

RR R R R R

Figure 2.8: Hierarchical hybrid network with a global ring topology and local mesh
topologies.

2.3 Network Traffic Classification

The traffic in Networks-on-Chip may be classified into two categories: guaranteed through-
put (GT) traffic and best effort (BE) traffic. Guaranteed throughput is also called as
guaranteed service (GS). When guaranteed throughput is utilized the specification of the
system guarantees that some defined portion of sent data reach its destination in a given
time frame. Guaranteed throughput works best with a routing algorithm that operates
similarly as a circuit switched network, which means that the packets are sent from a
sender to a receiver through a fixed path and this path is not used by other senders at
the same time. All interference has to be minimized on the used path.

Best effort packets are transferred as trustworthy as possible. There are still no
guarantees that best effort packets will ever reach the receiver. Latencies can vary and
in the worst case packets can be lost for instance due to un-delivered packet removal
mechanisms. Traffic in a basic packet switched network is mostly best effort traffic.
In a packet switched network packets from a sender to a receiver may not move along
the same path especially when adaptive routing algorithms are used (see Section 2.5.3).
The packets from different senders move simultaneously in the network and share the
network resources. [14] Therefore, fixed performance cannot be guaranteed but the
network performance depends on the contemporary traffic pattern.

2.4 Network Flow Control

Network flow control determines how packets are transmitted inside a network. The flow
control is not directly dependent on a routing algorithm so that usage of a certain routing
algorithm does not necessarily require utilization of a certain flow control. However, some

11

algorithms may be designed to use some given flow control.

Store-and-Forward. Store-and-forward is the simplest network flow control. Packets
move in one piece, and an entire packet has to be stored in the memory of a router before
it can be forwarded to the next router. The buffer memory in a router has to be as large
as the largest packet in the network. The latency is the combined time of receiving a
packet and sending it forward. [6]

Virtual Cut-Through. Virtual cut-through is an improved version of the store-and-
forward flow control. A router can begin to send a packet to the next router as soon as
the next router gives a permission. The packet is stored in the router until the forwarding
begins. Forwarding can be started before the whole packet is received and stored to the
router. This network flow control needs as much buffer memory as the store-and-forward
mode, because it is not guaranteed that the forwarding can begin before the whole packet
has been received. However, average latencies can be decreased. [34]

Wormhole Routing. In wormhole routing packets are divided into small and equal
sized flits (FLow control digIT or FLow control unIT). A first flit of a packet is routed
similarly as packets in the virtual cut-through routing. After the first flit, the route is
reserved to route the remaining flits of the packet. This route is called as a wormhole.
The wormhole flow control requires less memory than the two other modes because only
one flit has to be stored at a time to a router. Also the latency is smaller whereas a risk
of deadlock is higher (see Section 2.6). [59]

The risk of deadlock can be reduced by using virtual channels, which means that
multiple virtual channels are multiplexed to a physical port using time division multi-
plexing, for instance. The usage of virtual channels enhances the stability of a network
and reduces the risk of congestion and network blockage [15]. Virtual channels over-
come channel blocking problems by allowing other packets to use the channel resources
regardless of blocking packets. Without the use of the virtual channels, one blocking
packet reserves the whole channel until the packet is removed.

2.5 Routing Algorithms

Routing on Network-on-Chip is similar to routing on any computer network. A routing
algorithm determines how the data are routed from a source to a destination.

Routing algorithms are divided into three categories: deterministic,
stochastic and adaptive algorithms. Deterministic and stochastic algorithms are obliv-
ious algorithms because they route packets without any information about fault and
traffic conditions of the network. Deterministic algorithms route packets from a sender
to a receiver always along the same route while stochastic routing is based on randomness
and probabilities.

12

Adaptive algorithms reconfigure the routing based on the status of the network. The
algorithm uses a monitoring method to be aware about traffic levels, congestion spots
and faulty components in a network. Typical problems, such as deadlock and livelock,
are discussed later in Section 2.6.

2.5.1 Deterministic Routing

Deterministic routing algorithms route packets every time from a certain point A to
a certain point B along a fixed path. [18] In congestion free networks, deterministic
algorithms are reliable and have low latency. They are well suitable for real-time systems
because packets always reach the destination in their original order which eliminates the
need for packet reordering. The latencies are also predictable as long as the network
stays faultless and congestion free. In one of the simplest cases, each router has a routing
table that includes routes to all other routers in the network and the routing decisions
are simple table look-up operations.

Some of the deterministic algorithms are suitable for both regular and irregular
networks. Algorithms, which are used in the irregular networks, have to be based on
routing tables. When the structure of the irregular network changes, every router has
to be updated.

Dimension Order Routing Dimension order routing is a typical minimal turn al-
gorithm which is suitable for being utilized in mesh and torus networks. In minimal
turn algorithms, packets are routed from a source to a destination using as few turns
as possible. The dimension order algorithm determines to what direction packets are
routed during every stage of the routing. [14, 43]

Probably the most used dimension order algorithm is an XY routing algorithm. It
routes packets first in X- or horizontal direction to the correct column and then in Y-
or vertical direction to the destination. The procedure of XY routing is illustrated in
Figure 2.9. XY routing suits well in mesh and torus networks, where addresses of the
routers are their XY-coordinates. Deterministic XY routing never ends up in deadlock
or livelock. [17]

There are some problems in the traditional XY routing. Typically the traffic does
not distribute evenly over the whole network but the routers in the middle of a network
become more loaded than the routers at the edges of a network. Therefore, there is a
need for algorithms which equalize the traffic load over the whole network.

Pseudo Adaptive XY Routing A pseudo adaptive XY routing algorithm has been
proposed to work in a deterministic or an adaptive mode depending on the state of the
network. The algorithm works in deterministic mode when the network is at most only
slightly congested. When a network becomes blocked, the algorithm switches to the
adaptive mode and starts to search routes that are not congested.

The pseudo adaptive XY routing works on mesh networks. Each port of a router
has a small temporary storage buffer and a 2-bit status identifier called quantized load

13

- -

6

6

A

B

Figure 2.9: XY routing from router A to router B.

value. The identifier tells the other routers if the router is congested and cannot accept
new packets.

A router assigns priorities to incoming packets when there are more than one incom-
ing packet arriving simultaneously. Packets from north have the highest priority, then
south, east and finally packets incoming from west have the lowest priority. While the
traditional XY routing causes network loads more in the middle of the network than to
the lateral areas, the pseudo adaptive algorithm divides the traffic better over the whole
network. [17]

Turn Models Turn model algorithms determine turns which are and which are not
allowed while routing packets through a network. Turn models are deadlock-free because
the turn prevention eliminates the possibility to transmit packets in full circle. Three
examples of turn model algorithms are presented below. [32]

1. West-first routing algorithm prevents all turns from any direction towards west.
Therefore, the packets going west must be first transmitted as far towards west as
necessary. Routing packets towards west is not possible later on.

2. North-last routing algorithm disables turns away from north direction. Thus, the
packets which need to be routed towards north, must be first moved in east-west-
dimension and finally towards north to the destination.

3. Negative-first routing algorithm allows all other turns except turns from a positive
direction to a negative direction. The network is considered as a coordinate system
where the origin is in the bottom left corner and the positive directions are from
bottom to top and from left to right. Packet routings in negative directions must
be done before anything else.

Allowed turns in these three turn model algorithms are illustrated in Figure 2.5.1.

14

-

?

6

-

6

?

(a) West-first

?

6

-

6

?

�

(b) North-last

6

-

6

?

�

-

(c) Negative-first

Figure 2.10: Allowed turns in turn model routing algorithms. The origin of network
coordinates is located in the bottom left corner of the networks.

15

Shortest Path Routing Shortest path routing algorithms transfer packets always
along the shortest path from a sender to a receiver. A distance vector routing algorithm
is the most basic shortest path routing algorithm. Each router has a routing table
that contains information about neighbor routers and all possible packet destinations.
Routers exchange routing table information with each other and this way keep their
own tables up to date. Routers route packets by calculating the shortest path based on
their routing tables and then send packets forward. Distance vector routing is a simple
method because each router does not have to know the structure of the whole network.
[5]

Link state routing is somewhat more complex than the distance vector routing. The
basic idea is the same as in the distance vector routing, but in the link state routing
algorithm each router shares its routing table with every other router in the network. The
link state routing presented for Network-on-Chip systems is a little bit customized version
of the traditional distance vector routing. The routing tables covering the whole network
are stored in memories of routers already during the manufacturing phase. Routers use
their routing table updating mechanisms only if there are remarkable changes in the
structure of the network or if some new faults emerge. [5]

Source Routing In source routing a sender makes all routing decisions concerning the
complete routing path of a packet. The whole route is stored in the header of a packet
before sending, and routers along the path do the routing following the predefined routing
path.

Arbitration look ahead scheme (ALOAS) is a faster version of source routing. Infor-
mation of a routing path has been supplied to routers along the path before the packets
are even sent. Route information moves along a special channel that is reserved only for
this purpose. [16, 35, 71]

Contention-free routing is an algorithm based on routing tables and time division
multiplexing (TDM). Each router has a routing table that includes corresponding output
ports and time slots to every potential sender–receiver pairs. Contention-free routing
algorithm is used in Philips Æthereal NoC system and it is also called as a clockwork
routing. [24, 39, 48, 50]

Destination-tag Routing A destination-tag routing algorithm is a kind of an in-
verted version of the source routing algorithm. The sender stores the address of the des-
tination, also known as a destination-tag, to the header of a packet. Every router makes
routing decisions independently based on the address of the receiver. The destination-
tag routing is also known as floating vector routing. [14, 71] The routing decisions are
based on routing tables which are stored in every router.

Topology Adaptive Routing Deterministic routing algorithms can be improved by
adding some adaptive features to them. The algorithm works like a basic deterministic
algorithm but it has one feature which makes it suitable for dynamic networks. A central

16

controller can update the routing tables of the routers if necessary. A corresponding
algorithm is also known as an online oblivious routing. [8] The cost and latency of
the topology adaptive routing algorithm are near to the costs and latencies of basic
deterministic algorithms. An advantage of topology adaptiveness is its suitability to
irregular and dynamic networks.

2.5.2 Stochastic Routing Algorithms

Stochastic routing algorithms are based on coincidence and an assumption that every
packet sooner or later reaches its destination. Stochastic algorithms are typically simple
and fault-tolerant. Throughput of data is especially good but as a drawback, stochastic
algorithms use plenty of network resources.

Stochastic routing algorithms determine time to live (TTL) of packets. It is a time
how long a packet is allowed to move around in the network. After the predefined time
has been reached, the packet will be dropped from the network. When a packet is
dropped, the sender of the packet has to be notified so that it could resend the data. A
few stochastic routing algorithms are presented below.

Probabilistic Flood The simplest stochastic routing algorithm is the probabilistic
flooding algorithm. [19, 52] Routers send a copy of an incoming packet in all possible
directions without any information about the location of the destination of a packet.
The copies of a packet diffuse over the whole network similarly as a flood. Finally, most
probably at least one of the copies will arrive at its destination and the redundant copies
will be removed.

Directed Flood A directed flood routing algorithm is an improved version of proba-
bilistic flood. It directs packets approximately in the direction where their destination is
located. The main advantage of a directed flood is its lower network resource consump-
tion compared with a probabilistic flood. [20, 53]

Random Walk A random walk algorithm sends a predetermined amount of copies
of a packet to a network. Every router along the routing path sends incoming packets
forward through some of its output ports. The packets are directed in the same way as
in the directed flood algorithm. The network resource load, caused by a random walk
routing algorithm, is lower than the load of the two stochastic algorithms presented
above. [53]

Valiant’s Random Algorithm Valiant’s random algorithm is a partly stochastic
routing algorithm. One main problem in deterministic routing algorithms is that they
cause irregular load in a network. The load is typically especially high in the middle
areas of the network. Valiant’s random algorithm equalizes traffic load on networks
that have a good path diversity. First the algorithm randomly picks one intermediate
node and routes packets to it. Then the packets are simply routed to their destination.

17

Routing from beginning to the intermediate node and then to the destination are done
using a deterministic routing algorithm. [68]

IVAL (Improved VALiant’s randomized routing) is an improved version of the Valiant’s
random algorithm. It is similar to turn around routing. At the first stage of the algo-
rithm packets are routed to a randomly chosen point between the sender and the receiver
by using oblivious dimension order routing. The second stage of the algorithm works
almost equally, but this time the dimensions of the network are handled in reverse order.
Deadlocks are avoided in IVAL routing by assigning virtual channels to the physical
channels of a router. [67]

2.5.3 Adaptive Routing

Adaptive routing algorithms are able to reconfigure the routing during run-time based
on the status of the network. Several adaptive routing algorithms for Network-on-Chip
are presented below.

Minimal Adaptive Routing A minimal adaptive routing algorithm routes packets
always along the shortest network path. The algorithm is effective when more than
one minimal, or as short as possible, paths between a sender and a receiver exist. The
algorithm uses the route which is least congested. [14]

Fully Adaptive Routing A fully adaptive routing algorithm always uses a route
which is least congested regardless of the length of the route. Typically, an adaptive
routing algorithm ranks alternative congestion free routes to order of superiority. Then
the shortest route used. [14]

Congestion Look Ahead A congestion look ahead algorithm gets information of
congestion from other routers. Based on this information the routing algorithm can
direct packets to bypass the congestion spots. [35]

Turnaround Routing Turnaround routing is a routing algorithm for butterfly and
fat-tree networks. The senders and receivers are all on the same side of the network,
as illustrated in Figure 2.11. Packets are at first routed from the sender to some of the
intermediate nodes located on the other side of the network. In this node, the packets are
turned around and then routed to the destination. The routing from the intermediate
node to the receiver is done with the destination-tag routing algorithm.

Routers in turnaround routing are bidirectional which means that packets can flow
through a router in both forward and backward directions. The algorithm is deadlock-
free because packets only turn around once from a forward channel to a backward chan-
nel.

18

��
��

��
��

��
��
��
��-ZZ -

�
�
�

�
��	

�
�Z

Z
�

S
S
S
SS

A

B

Figure 2.11: Turnaround routing from core A to core B.

Turn-Back-When-Possible Turn-back-when-possible is an algorithm for routing in
tree networks. It is a slightly improved version of the turnaround routing presented
above. When turn-back channels are busy, the algorithm looks for a free routing path
on a higher router level. A turn-back channel is a channel between forward and backward
channels. It is used to change the routing direction in the network. [32]

Q-Routing The functionality of the Q-routing algorithm is based on the network
traffic statistics. The algorithm collects information concerning latencies and congestion
areas, and maintains statistics about network traffic status. The Q-routing algorithm
does the routing decisions based on these statistics. [40]

Odd-Even Routing The odd-even routing is an adaptive algorithm used in dynam-
ically adaptive and deterministic (DyAD) mesh-shaped Network-on-Chip systems. The
odd-even routing is a deadlock free turn model which prohibits turns from east to north
and from east to south at tiles located in even columns, and turns from north to west and
south to west at tiles located in odd columns (odd and even in terms of X coordinates
in a mesh network). The DyAD system uses a minimal odd-even routing which reduces
energy consumption and eliminates the possibility of livelock. [29]

Slack-Time Aware Most of the adaptive routing algorithms do not fit in systems
which require strict real-time operation. In adaptive routing the latencies can vary.
Packets can also be transferred along different paths, thus they can arrive at the receiver
in wrong order. The delayed packets cause interruptions for example to audio or video
stream.

Slack-time aware routing scheme divides traffic to guaranteed throughput (GT) and
best effort (BE) traffic. In this scheme the Quality of Service is improved by utilizing
the links of the GT traffic for the BE traffic when there is not much GT traffic in the
network. [7]

19

Hot-Potato Routing The hot-potato routing algorithm routes packets without tem-
porarily storing them in a buffer memory of a router. Packets are moving all the time
without stopping until they reach their destination. When one packet arrives at a router,
the router forwards it immediately towards its destination. However, if there are two
packets going in the same direction simultaneously, the router directs one of the packets
in some other direction. This other packet can possibly flow away from its destination.
This occasion is called as misrouting. In the worst case, packets can be misrouted far
away from their destination and misrouted packets can interfere with other packets. The
risk of misrouting can be decreased by waiting short random time before sending each
packet. Cost of the hot-potato routing is quite low because the routers do not need any
buffer memory to store packets during routing. [21]

2.6 Network Problems

The two main categories of routing algorithms are deterministic and adaptive algorithms.
Problems on deterministic routing, or routing without the information of the state of the
network, typically arise when a network starts to block traffic. The only solution to these
problems is to wait for the reduction of traffic, and try again. Deadlock and starvation
are potential problems in deterministic algorithms as well as in adaptive algorithms
which adapt the routing based on the state of the network. Additionally, livelock can
occur in systems utilizing adaptive routing algorithms.

Deadlock Deadlock is a situation where two or more packets are waiting each other
to be routed forward. All the packets reserve some resources and both are waiting each
other to release the resources. Routers do not release the resources before they get the
new resources and so the routing is locked. [65]

Deadlock situation can be solved by removing one of the packets temporary or per-
manently. However, better solution would be to design the routing algorithm in a way
that it avoids the deadlocks.

Livelock Livelock occurs when a packet keeps spinning around its destination without
ever reaching it. This problem exists in routing algorithms which do not route the packets
always along the shortest path between the sender and the destination. Livelock should
be cut out to guarantee throughput of packets. [65]

There are a couple of solutions to avoid the livelock. Time to live (TTL) counter
counts how long a packet has travelled in the network. When the counter reaches some
predetermined value, the packet will be removed from the network. However, packet
dropping is rarely an absolutely good solution because the data payload is lost at least
until a retransmit. Another solution is to give packets a priority which is based on the
age of a packet. The oldest packet always finally gets the highest priority and will be
routed forward.

20

Starvation Using different priorities can cause a situation where some packets with
lower priorities never reach their destinations. This applies to prioritization which is not
based on the age of a packet. The starvation occurs when packets with higher priorities
reserve resources all the time and the lower priority packets do not get any resources to
be transmitted. Starvation can be avoided by using a fair routing algorithm, which is
an algorithm without fixed priorities, or reserving some bandwidth only for low-priority
packets. [42]

2.7 Summary

This chapter presented essential principles and basics of Network-on-Chip paradigm.
Basic components of NoC were presented and different network topologies were studied.
Vital details, including network traffic classification, network flow control as well as
routing algorithms were presented. Finally, typical problems arising in Networks-on-
Chip were studied.

21

22

Chapter 3

Monitoring on Network-on-Chip

Network-on-Chip (NoC) is a promising interconnection paradigm for future high-performance
integrated circuits [9, 16, 49] and its features and potentiality have been discussed in
Chapter 2. To enable the full potential of the NoC there is a need for monitoring services
to diagnose the system functionality, to optimize the performance and to do run-time
system reconfiguration. The reconfiguration is required to keep the system working with
reasonable performance regardless of faults and unbalanced load in the system [64].

Monitoring services can be roughly divided into two categories based on their main
purpose: system diagnostics and traffic management. The former aims to improve the
reliability and performance of the computational parts while the latter concentrates to
the same issues in the communication resources. It includes fault detection, performance
monitoring as well as computation load management. The other part of the monitoring
services, the traffic management, focuses on the communication infrastructure which en-
ables the interaction between computational components. Traffic management contains
features to maximize communication infrastructure performance and reliability while op-
timizing its power consumption. It is used to balance the utilization of communication
resources and to avoid congestion in the network as well as to reconfigure the routing
in the network in case of faults or congestion related problems. The goal is to main-
tain the network functionality regardless of above-mentioned issues. The core of traffic
management is network monitoring which observes network components and delivers the
observed information so that it can be used to reconfigure the network. Typically there
is a monitoring system to collect traffic information from the network and an adaptive
routing algorithm which adapts its operation when the conditions in the network change
(see Section 2.5).

Two types of information are collected in network monitoring: traffic status in the
network and locations of faults in the network. Traffic statuses can be observed from
different parts of a network: router activity, router FIFO occupancy, or link utilization,
for instance. Fault information can cover the faultiness of different network components:
routers or links, for instance. A network component is considered as faulty when it
does not work as it should by its specification. The network components have to have

23

mechanisms to detect these faults [26]. There are several methods to do the detection.
For instance, faulty links can be detected using methods which are based on the usage
of spare resources or error control coding [37, 10]. Traffic management is discussed and
analyzed in Chapter 6 while a significant part of a system management is studied in
Chapter 7.

In a Network-on-Chip data are typically transferred as packets which have a desti-
nation address and an identifier which shows the type and purpose of the packet. These
packet types can include for instance data packets, monitoring packets or mapping pack-
ets. All these packets are identical in terms of data transfer in the network. They are
transferred in a network from a sender to a destination based on a routing algorithm.
Identifiers are used to recognize packets so that every packet is forwarded to right com-
ponent or handled in correct process. The majority of packets are data packets which
are used to transfer payload data from a core to another. The control packets, which
include for instance monitoring and mapping packets, transfer some information which
is used for system management purposes. Mapping packets are discussed in Chapter
7. Network monitoring related data are transferred in monitoring packets. When a
monitoring packet is received in the destination indicated by its destination address, the
packet is forwarded to the monitor component for further processing.

The NoC monitoring systems which use shared communication resources transfer the
network status data using monitoring packets. When centralized or clustered monitoring
structures are used, these packets have to be initialized in probes, routed from probes
to a monitor and from the monitor to the routers. Centralized control has its strengths
and it is essential for several tasks. However, to optimize performance some of the
traffic management tasks could be carried out with simpler distributed, or dynamically
clustered, monitoring structures to decrease the load of the centralized control system.
[55]

3.1 Purpose of Monitoring

The main purposes of monitoring in Network-on-Chip include traffic management and
system diagnostics. Traffic management related monitoring is mainly based on the ob-
servation of communication resource usage. System diagnostics can be also applied for
traffic management purposes for instance by using fault data for router reconfiguration.

System diagnostics can include various information which is collected for statistical
or system control purposes. One application of system diagnostics is task mapping which
is studied in more detail later on.

3.1.1 Traffic Management

To enable the maximum throughput, the communication resource utilization has to be
balanced so that all the resources are utilized and the congestion is avoided. Adaptive
routing and route reconfiguration are keys to balance traffic and to avoid congestion
[14, 18, 57]. Traffic management should distribute traffic evenly over the whole network

24

and all the usable resources so that all the resources are used on their optimal load and
highly loaded traffic hot spots are not formed.

Implementation of traffic management requires network monitoring; there should be
a monitoring system which collects the information needed to optimize the routing. This
information includes knowledge of current traffic conditions as well as knowledge con-
cerning network functionality and faults. Basically, it is not necessary to have complete
knowledge of the network status in each router; a router should have information on
the network state at the region around it so that it can direct the traffic in the least
congested directions.

3.1.2 Fault Detection

Modern integrated circuits are sensitive to transient faults. Because of a complex manu-
facturing process it is also possible that the circuits can contain permanent manufactur-
ing faults which can occur as run-time errors e.g. due to electromigration. [54, 66, 70]
The objective is to design a system that tolerates faults or recovers from errors caused
by faults. The circuits should also be capable to reliable operation even though there
are a few permanent faults.

The detection of faults requires a monitoring system to locate them and to provide
the information for other components. For instance in the case of a manufacturing
fault, the system could disable the faulty component and migrate its tasks to some other
component. This kind of operation requires redundancy in the system to enable task
migration.

The fault detection is also a part of the traffic management. When there are faults
in the communication infrastructure, the monitoring system can detect them and inform
the system to reconfigure the routing through faultless communication resources.

3.1.3 Task Management

A monitoring structure can be applied for different management and reconfiguration
tasks in a Network-on-Chip. An essential task, included in the system management, is
task mapping.

Typically tasks are mapped to cores at the initialization phase of system operation.
The system diagnostic features of a NoC monitoring system make it possible to collect
task mapping related statistics and use this data to map new tasks run-time. The goal is
to find a suitable core which is able to execute the new task and at the same time to keep
the computational load evenly distributed over the system. Balanced load distribution,
both computational and communication load, is essential because that way the maximum
performance can be achieved without formation of highly loaded hot spots. These hot
spots are unfavorable in terms of performance as well as unbalanced power consumption
and heat dissipation. Task mapping on NoC is studied in Chapter 7.

25

3.2 Monitoring Structures

An NoC monitoring system has the same main requirements as the NoC itself; it should
be flexible, scalable and it should also be capable of real-time operation [12]. Scalability
and flexibility ensure that a monitoring system can be used in different sized Networks-
on-Chip without a time consuming redesigning process. A monitoring system itself
should also be fault tolerant. A network monitoring structure consists of monitoring
units (monitors) and probes as well as communication resources (e.g. routers), or wires,
to connect these components to each other and to the NoC, as illustrated in Figure 3.1.
The monitors are computational components which control the monitoring process and
deliver observed data to its clients. The probes are connected to network components,
e.g. routers, network interfaces or links, whose functionality they observe and deliver
the observed data to the monitoring units.

A monitoring structure can have dedicated resources for communication between
probes and monitors, or it can share the resources of the data network. In our research,
we focus on shared-resource structures which require less additional resources than dedi-
cated structures. We have also paid attention to dedicated resources for serial monitoring
communication between monitors. In shared-resource structures non-intrusive operation
of the monitoring system is a significant issue while in the serial monitoring communi-
cation the delays are crucial in terms of usefulness of the monitoring data.

If the network resources are dedicated for communication between the probes and the
monitors, the probes can be controlled from the monitors. Otherwise the probes have to
be more autonomous to be able to communicate over the shared packet switched network.
Monitors are computational components which control the monitoring. Monitors collect
the monitoring data, exchange the data with other monitors and provide information
for network components which can use it to reconfigure their operation. The system
diagnostics can share the resources of the traffic management but may also require

6

?

6

?

-�

?
6

-�

?
6

� -

?

6

?

6

Router

Probe

Monitor

Router

Probe

Monitor

Figure 3.1: Network components and their connections.

26

dedicated components e.g. probes which are attached to the computational resources and
centralized control devices which are not necessarily required in the traffic management.

Depending on the purpose, requirements and operational principles the monitoring
system can have centralized, clustered, distributed or localized structure. The structure
of the monitoring system defines how the monitoring data are delivered to the other
components in the system and which of the components are able to access this informa-
tion. Monitoring structure defines the number and type of monitors and probes, their
placement, connections and tasks. A centralized monitoring structure has one central
monitor and several probes that observe the data and deliver it to the monitor. In cen-
tralized structure, the central monitor has complete overall knowledge of the network
but it causes significant amount of monitoring related traffic in the network. A clustered
monitoring structure has a few cluster monitors and several probes. The network is
divided into subnetworks, clusters, each of them having a cluster monitor and several
probes. The complete network knowledge can be reached using inter-cluster commu-
nication but most of the tasks can be executed inside a cluster. However, a clustered
structure still causes a considerable amount of monitoring traffic. [55]

Our research focuses on a scalable NoC monitoring structures where the knowledge
of network status is spread widely enough over the network. There are two main factors
taken into account while designing our NoC architecture. First, the structure should
be not only aware of traffic but also aware of network faults so that network-level fault
tolerance can be actively maintained during routing. Second, the structure should also
be fully scalable to any mesh size. All the probes and monitors are identical and they
work autonomously without any centralized control. The structure should also be easily
reconfigurable for new applications which could turn up later on. The presented ideas
can be adapted to NoC topologies of a different kind but due to its popularity, we have
decided to concentrate on the mesh topology.

3.2.1 Centralized Monitoring

In a system with centralized monitoring there is a central monitoring unit and a number
of probes which are attached to the network components. Probes deliver the data to the
central monitor which collects the monitoring data and delivers information all around
the system. Centralized monitoring has advantages on performance monitoring and on
collecting statistical information from the system. Resource allocation for computational
tasks may also require centralized control. However, a centralized monitoring system is
inflexible and scales poorly. When the size of a system increases the average distance
between the probes and the central monitoring component increases as well. Long dis-
tances between the probes and monitors increase the probability of network faults and
cause more traffic to the network especially if the monitoring system uses shared com-
munication resources. In a highly loaded network, this additional traffic can increase the
probability of congestion. In centrally monitored systems, all the monitoring is carried
out in a single component which makes it very susceptible to faults.

NoC monitoring systems have been presented in several papers. A dedicated control

27

network is used in a centralized operating system controlled NoC [47]. It has separate
data NoC and control NoC from which the latter is used for centralized monitoring and
control. An operating system controls the network management through the dedicated
control NoC by collecting data from the processing elements (PE).

Another centralized NoC monitoring implementation is presented in [44] where a
dedicated embedded processor is used to observe FIFO occupancies and packet transfer
latencies. The monitoring processor is connected to routers with dedicated links. The
collected data are used for partial dynamic reconfiguration purposes.

In [13] a transaction monitoring system for Æthereal NoC [24] has been presented.
This system, which monitors transactions in NoC components, can be configured to
shared or dedicated communication resources. The probes monitor bit-level data which
have been interpreted as transactions and forwarded to a centralized monitor (Monitoring
Service Access point).

A congestion control system which monitors links and uses shared communication
resources is presented in [69]. It measures the amount of congestion by monitoring link
utilization and adjusts data sources to control congestion. All these systems include a
centralized monitoring unit which collects the observed data and controls the system
operation.

All the above implementations are meant for traffic management while a monitoring
system for run-time optimization and resource allocation was presented in [23]. The
probes are implemented within NIs and they observe throughput, latency and event
occurrences in PEs.

3.2.2 Clustered Monitoring

In clustered and distributed NoC monitoring there is no centralized monitoring unit
where the global monitoring data are collected. In the clustered approach the system
is divided into subsystems, clusters, each of which has a cluster monitoring unit where
the monitoring data from the probes in the cluster is collected. The cluster monitors
can exchange information with each other. A clustered monitoring structure with the
cluster size of four is presented in Figure 3.2. If the cluster size is relatively large the
number of monitors can be kept low. However, the smaller the cluster is, the less effect
a faulty monitor has on the system operation. Communication distances are naturally
also shorter when cluster size is small.

ROAdNoC is a runtime observability infrastructure which uses shared communica-
tion resources and basically has a clustered structure but can also utilize centralized
control if necessary. It observes routers and NIs and collects error, run-time and func-
tional information. [2] A notably similar structure is presented in [12]. Both of these
structures utilize event-based communication and the latter can be used to monitor all
the NoC components. On event-based communication, the probes generate events from
the monitoring data which allows the monitoring data abstraction and leads to com-
munication overhead reduction. A clustered monitoring structure is presented also in
[41]. It collects information from the routers, identifies which senders cause the conges-

28

tion, and does traffic shaping by restraining these sender cores. The control data have
dedicated communication resources.

3.2.3 Localized Monitoring

Localized monitoring is the simplest monitoring scheme to be implemented in an NoC.
Typically there are no actual monitor components but the probed values are used locally
without further processing or they are delivered to the neighboring routers. The localized
monitoring is typically used in adaptive routing where the probes observe output channel
reservation or the router utilization levels.

Localized monitoring systems have been presented in several papers as a part of
adaptive routing mechanism; for example for Nostrum NoC [46]. In the basic version of
the Nostrum NoC there is a probe on each router. Those provide traffic level information
for the neighboring routers. The difference from distributed structures is that there are
no separate monitors which collect the information and exchange it with each other.

RM

P

RM

P

RM

P

RM

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

R

P

Cluster2

Cluster4Cluster3

Cluster1

@@@@

@@ @@

@@@@

@@ @@

@@@@

@@ @@

@@@@

@@ @@

Figure 3.2: Clustered monitoring (cluster size: 4). Probes (P) and monitors (M) are
integrated into the routers (R).

29

Probe

Router

Monitor

Probe

Router

Monitor

Probe

Router

Monitor

Probe

Router

Monitor

@
@

@
@

@
@

@
@

Figure 3.3: Distributed monitoring in NoC with 4 routers. Probes and monitors are
integrated into the routers.

3.2.4 Distributed Monitoring

In a distributed monitoring structure the monitoring system is distributed over the
system. There is a monitor unit at each router in the network and the monitors commu-
nicate directly with each other. This should have positive impact on the communication
overhead because the monitoring related communication is done straight from a monitor
to another monitor without circulating it through any central unit which could possibly
be located relatively far away from both of the communicating monitors. A distributed
monitoring system is presented in Figure 3.3. In a distributed monitoring system, each
monitor does not necessarily need complete knowledge of the current network state, but
a good knowledge of the status in its neighborhood and the resources near it. Complete
knowledge may not be essential in large NoCs where there are functionally consistent
resources situated in different locations around the system. A scalable monitoring with
regional congestion awareness is presented in [25]. It is aimed to balance the workload
in the network based on the amount of congestion.

When the monitoring is highly distributed, the impact of faulty monitoring units
is minimal to the overall functionality of the system. Faultiness of a single monitor or
probe has direct impact only to the router to which the faulty component is attached
and to some extent to the neighbors of the router which cannot get valid information
from its faulty neighbor.

30

3.3 Monitoring Trade-offs

In a Network-on-Chip the monitoring is essentially not a vital part but a major addi-
tional service. Having a monitoring system is not absolutely crucial in terms of system
functionality but it can have notable positive influence on system performance. A mon-
itoring system brings several advantages to the monitored system. However, arising
trade-offs should be taken into account as well.

Optimal network monitoring coverage requires monitoring of every single component
of the system. However, this implicates high monitoring overhead in area, energy con-
sumption and communication. In our research, the network monitoring is implemented
by monitoring the load of routers. Monitoring of every single link would multiply the
monitoring overhead. One weakness in a router monitoring based network monitoring
is the link status and traffic flow direction uncertainty. By monitoring only routers, the
observer cannot be sure which channels of a router are loaded and which are free to use.
However, regardless of the routing direction, a traffic flow loads the routing decision and
switching logic. This reduces the significance of traffic flow direction awareness.

3.3.1 Resource Allocation

Implementation of the monitoring services affects the system to be monitored. The
resource allocation should be taken into account when balancing between manufacturing
costs, area overhead, intrusiveness and system performance. [3, 30, 33]

A monitoring system with dedicated resources is separated from the actual system
and built separately of the data NoC [73]. The monitoring components and the com-
munication resources, used to move the monitoring data, are only in the use of the
monitoring system. A monitoring system with dedicated resources is straightforward
to design and it has a minimal impact on system performance. However, this approach
increases the area overhead and the complexity of the system, which typically also means
an increment in power consumption.

If the system does not include dedicated resources for monitoring, a monitoring sys-
tem can be integrated into the communication system. The monitoring data are trans-
ferred in the same communication infrastructure with the actual data. The resource
sharing requires virtual channels in the routers to guarantee monitoring system func-
tionality under congested network conditions [15]. A monitoring probe can be connected
to the network through a dedicated network interface or it can share a network interface
of a processing element.

The intrusiveness of a monitoring system defines how much the monitoring process
disturbs the functionality of the system which is monitored. The objective is to de-
sign as non-intrusive monitoring system as possible. The probes should operate without
disturbing the devices which they are probing and the traffic overhead on shared com-
munication resources should be kept low. A monitoring system using shared resources
does not require additional communication resources, which limits the area overhead.
However, resource sharing can affect communication performance and that way interfere

31

with the actual operation of the system. Shared-resource monitoring systems are fas-
cinating because of their minimal added complexity. Nevertheless, due to intrusiveness
aspects, shared-resource monitoring systems have to be designed carefully. [13]

3.4 Fault Tolerance of Monitoring Systems

The monitoring systems can be used to improve the fault tolerance of NoCs as was de-
scribed in Section 3.1.2. However, the monitoring systems themselves are also vulnerable
to faults which has to be taken into account in the design process.

The faults can occur in the data moved between monitors or they can affect to
the functionality of the actual monitor components. If a monitoring system shares the
resources with an NoC, the fault tolerance methods utilized to the actual data can be
applied also to the monitoring data. Otherwise, if a monitoring system has dedicated
communication resources there should be separate fault tolerance mechanisms for these.
The fault tolerance mechanisms for data could be e.g. triple modular redundancy, or
error control codes [10, 31, 36, 45].

To ensure the intended functionality of the actual monitor components a built-in
self-test mechanism could be implemented [72]. Self-test mechanism regularly checks
the functionality of a component so that faulty components can be recognized, disabled
and possibly replaced with spare resources. Similar mechanisms for NoC routers and
links have been implemented previously in [22] and [27] correspondingly.

3.5 Summary

Introduction to monitoring in Networks-on-Chip were given in this chapter. At first,
the purposes of network monitoring were studied. Different monitoring structures were
presented. Finally, trade-offs of monitoring and fault tolerance of monitoring systems
were discussed.

32

Chapter 4

Dynamically Clustered
Distributed Monitoring

Scalability is an essential feature of Networks-on-Chip [9]. The distributed approach
makes it possible to scale the monitoring system similarly as the actual NoC can be
scaled. Centralized monitoring solutions scale poorly and are built separately with the
NoC. While a centralized structure can be feasible on a small system the limited scal-
ability is against the main principles of the NoC paradigm: an NoC should be fully
scalable in any size and its performance should not be weakened when the size of the
system is increased. Our hypothesis is that the use of distributed monitoring systems
has a positive impact on traffic overhead caused by network monitoring, which decreases
the demand for dedicated resources. The distributed monitoring structure has poten-
tial to be more fault tolerant than the centralized and clustered systems because the
faultiness of a single component has an immediate influence only to just a few other
components. Faultiness of a centralized component may endanger the functionality of
the whole system.

The distributed monitoring system has several potential advantages when compared
with the centralized and clustered monitoring. In centralized and clustered monitoring
the monitoring data have to be moved to the monitoring unit for processing and then
back to the routers before the information can be exploited. In a distributed system,
the monitor receives information from its local probe and its neighbors and performs the
required processing. It is also possible to implement centralized control at the operating
system level while the traffic management, for instance, uses distributed monitoring.

4.1 Dynamically Clustered Monitoring Structure

We propose an NoC monitoring structure which is originally focused on traffic man-
agement, including routing reconfiguration and traffic load balancing, but can also be
utilized for system reconfiguration and problem recovery for instance in the case of
faults or congestion. Fortunately, the origin of a problem is not relevant from the traffic

33

management point of view.

Scalable NoC monitoring is based on an idea that there is no need for comprehen-
sive status information of the whole network in a single centralized monitoring unit. To
guarantee high and predictable performance the congestion should be avoided before-
hand. We propose that efficient traffic management can be achieved without centralized
network monitoring. When the traffic overhead of the traffic management is minimized,
the remaining bandwidth can be used for normal data traffic as well as essential centrally
controlled features which cannot be realized with a distributed structure. Most of the
traffic management tasks can be executed without centralized control, thus, there is no
reason to waste resources on these purposes.

In our monitoring approach every router has its own status which is based on the
utilization level of the router and its neighbors. Every router has up-to-date informa-
tion about the statuses of five or the twelve closest neighbor routers around it. This
monitoring protocol can be implemented in centralized, clustered or distributed moni-
toring systems. The distributed version of this monitoring structure is also called the
dynamically clustered structure.

A dynamic cluster is the area around a router from where the router status have been
collected and to where the status of the router has been delivered. In statically clustered
systems (see Section 3.2.2) the cluster borders are fixed and that way the routers near
the cluster borders have unequal amount of status information from neighbor routers
because some neighbors are in the same cluster and others in a different cluster as the
router itself. In dynamically clustered structure the router is always placed in the middle
of its own dynamic cluster which balances the amount of neighbor status data.

Figure 4.1 illustrates an NoC with 100 routers. Every router has a dynamic cluster
but only three of them are illustrated to keep the presentation readable. A router has
the status information of the components in its own dynamic cluster. This information
drifts from the network components to a monitor along simple neighbor to neighbor
information exchange. The clustered structures, presented earlier in the Section 3.2.2
are statically clustered, which means that the borders of the clusters are fixed.

In statically clustered systems, the cluster monitor defines an overall status of its local
cluster. This overall status is delivered to the neighboring clusters where it is forwarded
to the routers. In a dynamically clustered structure, every router has an equal amount
of neighbor status information. This differs from statically clustered structures where
the amount of neighbor data depends on the location of a router in a cluster. The
routers which are situated near the edges and corners of static clusters have inaccurate
neighbor status knowledge compared to the routers situated in the middle of a cluster.
In a centralized implementation, the accuracy of monitoring statuses is on the same level
with the distributed implementations. The difference is that in the centralized systems
the status update requires a large amount of data to be transferred between routers and
the central monitoring unit (see Section 3.2.1).

The presented monitoring systems can be also used on small system reconfiguration
tasks which do not require centralized control. Reconfiguration messages can be broad-
casted over the monitoring system all around the network. The traffic diffusion analysis,

34

A

B

C

Figure 4.1: Dynamic clusters of three routers, A, B and C. Each of the 100 routers in
this network has a similar dynamic cluster around it.

35

Core

NI

Core

NI

Core

NI

Core

NI

P

M

P

M

P

M

P

M

Router Router

RouterRouter

Figure 4.2: Network topology showing the connections between routers, networks inter-
faces (NI), monitors (M), probes (P) and cores in a part of mesh shaped Network-on-
Chip.

which is strongly related with broadcasted reconfiguration messages, is presented later.
Dynamically clustered monitoring (DCM) can be considered as distributed monitor-

ing because it does not require any centralized control. There is a simple monitor and
a probe attached to each router in the network. The used mesh topology is illustrated
in Figure 4.2. Centralized control is not required but the monitors exchange informa-
tion autonomously with each other. The delivery of router status is called status data
diffusion. The dynamic clusters of different routers overlap with each other. The sim-
plest dynamic cluster includes 4 closest neighbors of a router but it can be expanded to
neighbors’ neighbors and so on. A system which uses DCM for traffic management could
have for instance operating system level control for tasks that need complete knowledge
of the system. When traffic management is implemented with a DCM structure the load
of the network can be optimized.

4.2 Principles of Analysis

We analyzed and compared the different monitoring structures and their features at
conceptual level as well as at transaction level. The conceptual analysis, presented in this
chapter, is based on calculations made by hand and with MATLAB. Network-on-Chip
simulation environment, which is presented in Chapter 5, makes possible to analyze NoC
designs on transaction level. The analysis based on the simulation results is presented
in Chapter 6. The conceptual level analysis is sufficient in terms of monitoring structure

36

comparison. In our analysis, we use widely exploited mesh topology and assume that in
every case there is an equal amount of network status data on every router and the data
update frequency is constant [14, 42].

A monitor is always attached to a router. Therefore, the transfer of the status data
between router and its local monitor does not load the network. We also assume that

Nwidth = Nheight (4.1)

which means that an NoC has an equal number of rows and columns. The NoC width
and height represent the number of routers next to each other in horizontal and vertical
dimensions, respectively. The corresponding assumption for clusters is

Cwidth = Cheight (4.2)

which defines that clusters are squares. The number of routers in an NoC is depicted
using term Nsize and the number of routers in a cluster using term Csize. The last
assumption is that

Nsize = kCsize k ∈ N (4.3)

which defines that an NoC consists of one or many complete clusters. The assumptions
define the typical features of mesh Networks-on-Chip. They are carefully defined to
enable structure comparison and analysis without remarkable inaccuracy. The metrics
to be analyzed are traffic overhead caused by the monitoring system, the diffusion of the
data in the network, maximum path lengths on monitoring data transfers and at a coarse
level the cost of centralized, clustered and distributed NoC monitoring systems. The
traffic overhead analysis is essential when estimating the intrusiveness of a monitoring
system. The rate of the information diffusion in the network has an influence on the
reaction speed and it is closely related with the maximum path length analysis. The
maximum path length analysis is to some extent also related with monitoring system
fault tolerance because the probability of fault related problems increases when the
information transfer paths get longer. Additional challenges can be inflicted by the
utilized fault tolerance mechanisms which may slow the system operation down at some
point for instance due to retransmissions.

4.3 Monitoring Traffic Overhead

In a shared-resource NoC the monitoring system uses the same communication resources
that are used for the actual data transfer. In terms of intrusiveness of the monitoring,
the amount of monitoring traffic is an essential detail. This amount of monitoring related
traffic is called monitoring traffic overhead.

The size and structure of the monitoring system, the monitoring cluster size and the
number of clusters have an effect on the traffic overhead caused by the monitoring service.
In statically clustered structures, there is communication (a) from probes to a monitor,

37

(b) between monitors and (c) from a monitor to routers. Because the distributed system
can be seen as a clustered system with the cluster size of 1, there is no communication
inside a cluster, only between them (b). In centralized structures there is only one large
cluster which means that the communication is only between probes and monitors (a)
as well as between monitors and routers (c) It is assumed that the amount of data on a
traffic status update between two network components is so small that a single packet
can hold all the information which is transferred. One transaction in this analysis means
moving a packet from a router to its neighboring router, from a probe to a monitor or
from a monitor to a router. The number of transactions required in a complete network
status update in a centralized monitoring structure is represented with equation

Tcent = 2Havg

(
Nsize − 1

)
(4.4)

where Havg is the average hop count between the monitor and any router and Nsize

is the size of the NoC that is the number of routers in the NoC. The multiplier 2
depicts bidirectional traffic between the routers and the monitor. The average hop count
can be calculated if a deterministic routing algorithm is used but may vary in systems
using adaptive routing with non-minimal routes. In a clustered monitoring structure
the number of required transactions in a complete status update is represented with
equation

Tclust = 2

(
Havg

(
Csize − 1

)Nsize

Csize
+ Cborders

√
Csize

)
(4.5)

where the multiplier of 2 illustrates bidirectional traffic in and between clusters. Havg

is the average hop count between any router and the monitor of the same cluster. Nsize

and Csize are sizes of an NoC and a cluster, respectively. Hence, the ratio of these is the
number of clusters. The first term of the sum represents the traffic inside clusters and the
second term between the monitors of neighboring clusters. The square root depicts the
distance between the monitors. Cborders is the number of borderlines between clusters
and is calculated using equation

Cborders = 2

((√
Nsize

Csize
− 1

)√
Nsize

Csize

)
(4.6)

where the second square root represents the number of rows in the network which is
multiplied with the term representing the number of cluster borderlines in a row. The
multiplier of 2 completes the equation to include also the borderlines in the other di-
mension, that is horizontal and vertical borderlines. In distributed monitoring structure
there is traffic only between neighboring routers and the number of transactions is cal-
culated using equation

Tdist = 4Nsize − 4
√
Nsize. (4.7)

38

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Number of routers

T
ra

n
s
a
c
ti
o
n
s

Number of transactions

Centralized

Clustered (25)

Clustered (16)

Clustered (9)

Clustered (4)

Distributed

Clustered (2)

Figure 4.3: Number of transactions required in complete network status update.

The first term of the difference represents the traffic which is sent from each router
in four directions. The second term corrects the amount of traffic in the edges of the
network where there is traffic only in two or three directions. Note that Tdist = Tclust
when Csize = 1 and Tcent = Tclust when Csize = Nsize.

The amount of monitoring communication in NoCs of different sizes and with differ-
ent cluster sizes is illustrated in Figure 4.3. The figure shows that larger cluster sizes
cause more traffic and the centralized system clearly causes the largest traffic overhead.
The cluster size of two is also analyzed to complete the analysis. One can notice that it
causes the lowest overhead while the overhead caused by the distributed structure and
the clustered one with the cluster size of four is just slightly higher. However, clusters
with two routers are not well suited to symmetrically structured networks because they
spread the traffic information unevenly.

The lengths of paths between routers, probes and monitors affect the delay of a
complete update process. The comparison of the longest packet transfer paths was made
by calculating the longest productive paths between the possible positions of routers
and monitors. A productive path is the shortest routing path between two nodes in a
network. This comparison is presented in Figure 4.4. The figure shows the longest, or

39

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Number of routers

T
ra

n
s
a

c
ti
o

n
s

Maximum monitoring packet traverse lengths

Centralized

Clustered (25)

Clustered (16)

Clustered (9)

Clustered (4)

Clustered (2)

Distributed

Figure 4.4: Comparison of the maximum traverse lengths of a packet on a monitoring
status update.

40

5 10 15 20 25 30 35 40
0

50

100

Centralized

Distributed

5 10 15 20 25 30 35 40
0

50

100

A
m

o
u
n
t
o

f
m

o
n
it
o
ri
n

g
 t
ra

ff
ic

Clustered (4)

Distributed

5 10 15 20 25 30 35 40
0

50

100

Clustered (9)

Distributed

5 10 15 20 25 30 35 40
0

50

100

Time [transaction cycles]

Clustered (16)

Distributed

Figure 4.5: Distribution of monitoring traffic load in time.

41

worst case, distances between routers and monitors or two neighboring monitors (which
one is longer) in different structures. Lengths of the information transfer paths have
to be taken into account because the monitoring data transfer delay has a significant
impact on the monitoring system performance.

The influence of congestion and other problems cannot be seen in this analysis. If
the paths of the monitoring packets are significantly rerouted due to problems in the
network, the traverse lengths and hop counts can increase. The severity of a problem
for a short path is relatively significant and may completely disable the path. However,
the probability of problems is higher for the longer paths and that way the longer the
path, the more vulnerable to faults it is.

One thing to note is how the added monitoring communication overhead is dis-
tributed over the time. The amount of monitoring traffic in a network during a complete
network status data update is presented as a function of time in Figure 4.5. The anal-
ysis includes centralized monitoring structure as well as statically clustered structures
with cluster sizes 4, 9 and 16. Each of these structures is separately compared with the
distributed monitoring structure. As can be seen from the Figure 4.5 the load caused
by centralized and statically clustered monitoring structures is not only relatively high
but also distributed uneven over time while distributed monitoring systems are able to
cause a lot more even load as shown in Figure 4.5. The peaks are caused by varying
distances between communicating units. At the beginning the amount of traffic is in its
maximum and it decreases while the data reach the destinations closer to the sender.
Two peaks exist because of the bidirectional nature of the traffic. The traffic between
these two peaks is the caused by the communication between clusters. However, a dis-

� -SESW

?

6

EN

ES

-�
NW NE

6

?

WN

WS

6

-

?

� RouterW

S

E

N

Figure 4.6: Routing directions. The abbreviations stand for N : north, S : south, E : east,
W : west and R: router.

42

D
is

ta
n

c
e

 b
e

tw
e

e
n

 c
u

rr
e

n
t

ro
u

te
r

a
n

d

d
e

s
ti
n

a
ti
o

n
 i
n

 Y
−

d
ir
e

c
ti
o

n
.

destination in X−direction.

Distance between current router and

Current

router

0 1−1

1

0

−1 76

1 2 3 4 5

8 9 10

11 12 13 14

15 16 17 18 19

20 21 22 23 24

−1 1

−1

1

Figure 4.7: Routing directions in our experimental routing algorithm.

tributed monitoring system can be also configured to use the communication resources
when the resources are free. This way there could be high monitoring communication
peaks in the network but without caused interference against data communication.

4.4 Routing Algorithms

The Network-on-Chip simulation environment utilizes an adaptive routing algorithm
[14]. The algorithm determines the routing direction among the twelve candidates which
include four main directions (north, south, east and west) and the intermediate directions
(for example north-west and south-east and their counterparts west-north and east-
south). These directions are illustrated in Figure 4.6. The algorithm chooses an output
port to be used among the actual routing direction and its nearest neighbor directions.
The decision is based on the traffic status values and the link statuses in potential
directions. A packet which cannot be delivered is put back in the router’s memory
and rerouted. A packet lifetime is also utilized to prevent undeliverable packets from
blocking the network. To prevent congestion, the packets are not sent in directions where
receivers’ buffers are fully occupied.

43

We also propose an experimental routing algorithm where the destination’s distances
to the core in different routing directions are taken into account. In this algorithm the
destinations are classified to 24 different routing directions which differ in varying dis-
tances in different routing dimensions (X and Y dimension). These directions are inde-
pendent of the network but naturally more advantage is gained in large networks. These
routing directions are illustrated in Figure 4.7. The idea behind this algorithm is that
a packet should be routed always in a dimension where the distance to the destination
is longer. This way the possibility to change the dimension remains making it possible
to evade problematic areas without extending the routing path. The distance resolution
in this experimental routing algorithm has three levels. The algorithm distinguishes the
routing directions based on the following criteria: the destination is (1) in the current
row/column, (2) in the next row/column in some direction or (3) further away. Hence,
there are altogether 24 different routing directions. These routing directions enable ex-
tensive classification of different routing cases and that way each case can be handled
optimally.

In each of these 24 routing directions we have ranked the possible output ports based
on the destination and network conditions. Every time a packet is routed the algorithm
identifies the routing direction and uses available traffic status and fault information to
select the appropriate output port.

4.5 Monitoring Algorithms and Communication

The router statuses in the DCM structure are represented with two binary numbers, one
for traffic status and another for fault information. In the DCM structure the status of
a router is based on the occupancy of the FIFO buffer where packets are waiting to be
routed forward. The status (S) of a router is calculated using Equation

S =
Bocc

Bsize
G (4.8)

where Bsize is the size of the buffer, Bocc the number of packets currently stored in the
buffer and G is the used status data granularity. The status data granularity defines the
maximum value of the status data while the minimum value is always zero.

In centralized and clustered monitoring structures the monitoring packets are trans-
ferred in a network similarly as the data packets. The dynamically clustered approach
simplifies the monitoring communication because the routing of the monitoring packets
is not needed but substituted with a packet type recognition. Every monitor sends its
status data and the neighbor status data it is forwarding to all its neighbors. The re-
ceiver recognizes these packets as monitoring packets and does not send them forward.
A monitor stores the status data from received monitoring packets to its memory and
provides the received information forward to its own neighbors. This way the routers are
able to receive information not only from their neighbors but also from the neighbors
of their neighbors. In dynamically clustered monitoring structure the network status

44

...

1 bit n bits

...

Traffic status dataFault data

Own

(a) Payload when cluster size is 5.

...

Fault data

1 bit n bits

...

Traffic status data

Neighbor1 Neighbor2 Neighbor3 Neighbor4Own

(b) Payload when cluster size is 13.

Figure 4.8: Structure of monitoring packet payload with cluster sizes 5 and 13. n is the
number of bits required to represent a traffic status value with a certain granularity.

data spread over the network without centralized control and without routing related
processing.

In the basic DCM structure the monitoring data are transferred in packets using
the actual data network. These packets are called monitoring packets. The monitoring
packets have a higher priority in the routers so that they can be transferred even when
there is congestion in the network. Monitoring packets are used to adjust the function-
ality of the network in critical situations so the delivery of monitored data has to be
guaranteed. The monitoring packets are sent from a monitor to a monitor, but because
the monitors are not directly connected to each other, the packets are transferred via
routers and links.

The router statuses in the DCM structure are represented with two binary numbers,
one for traffic status and another for fault information. The status of a router is based on
the occupancy of the FIFO buffer where packets are waiting to be routed forward. The
faultiness of a single component can be represented using a single bit while number of
bits in the traffic status values is related to the size of the FIFO buffer, required accuracy
as well as the used additional status data processing (see Section 6.2.1). The resolution
of the traffic status data is defined with status data granularity. The granularity defines
the number of different values which can be used to illustrate the level of traffic load.
For instance, when the status granularity of a router is 4 there are 4 different levels of
traffic (1: no or just a little traffic, 4: highly loaded and cannot receive new packets,
2-3: scaled linearly between the edge values). The finer the granularity the better the

45

accuracy of the status values is.
In the DCM structure the monitors exchange their own and their neighbors’ statuses

with each other. Typically monitoring packets include fault statuses of nearby links and
one or more traffic statuses of routers depending on the size of the monitoring cluster.
The structure of a monitoring packet payload in systems with monitoring cluster sizes
5 and 13 is presented in Figure 4.8. The contents of a monitoring packet payload are
discussed in Section 6.2.

In centralized and clustered monitoring structures the monitoring packets are trans-
ferred in a network in the same way as the data packets (see Section 4.1). The dynam-
ically clustered approach simplifies the monitoring communication because the routing
of the monitoring packets is not needed but substituted with a packet type recogni-
tion. Every monitor sends its own status data and the neighbor status data, which it
has received from its neighbors, to all other neighbors. The receiver recognizes these
packets as monitoring packets and does not send them forward. The transfer distance
of a monitoring packet is always one hop, from a router to its neighbor router. This
simplicity of monitoring packet transferring combined with the simple routing procedure
of monitoring packets makes possible to keep the latency overhead on tolerable level for
most applications. The presented DCM structure is targeted for applications without
strict real-time constraints because the in-time delivery of packets cannot always be
guaranteed. This is a trade-off of the improved fault tolerance.

A monitor stores the status data from received monitoring packets to its memory
and provides this information forward to its own neighbors. This way the routers are
able to receive information not only from their neighbors but also from the neighbors
of their neighbors. In dynamically clustered monitoring structure the network status
data spread over the network without centralized control and without routing related
processing.

4.6 Summary

This chapter presented the dynamically clustered distributed monitoring structure. The
structure was analyzed on conceptual level concentrating on the traffic overhead caused
by the monitoring system. Routing and monitoring algorithms, which are used with the
presented monitoring structure, were studied and monitoring related communication
discussed.

46

Chapter 5

Simulation Environment

SystemC based simulation environment has been implemented to enable extensive anal-
ysis of Networks-on-Chip. The simulation environment is required to model and analyze
Network-on-Chip (NoC) architectures in terms of functionality, performance and fault
tolerance.

SystemC is an extension of C++ programming language [63]. It makes possible to
model concurrent systems using standard C++ language. The simulation environment
is designed for transaction-level modeling and it utilizes transaction-level modeling li-
braries of SystemC (TLM 1.0). [1] Transaction-level simulation environment is suitable
for Network-on-Chip architecture simulations especially in the early phases of system
development. The environment is easily reconfigurable to model different architectural
solutions and features without complex immersion to physical implementation for exam-
ple using hardware description languages.

The simulation environment includes models of Networks-on-Chip with centralized,
clustered and distributed traffic monitoring. In the first phase the simulation environ-
ment was designed to model NoCs utilizing shared-resource communication where the
resources are shared between the data packets and the monitoring packets. Later the
environment was further developed to model NoCs with dedicated communication re-
sources. These dedicated resources are utilized for serial monitoring communication.

The essence of the simulation environment is the simulation mechanism which is
able to execute transient analysis. In transient simulation the cores are sending packets
following a specific traffic pattern and the key figures are recorded during the simulation.
These figures include, among others, the numbers of sent and received packets, the
transfer delay and the number of dropped packets from each node separately. The
simulation duration can be customized and it is possible to run simulation in multiple
NoCs simultaneously with identical simulation parameters. In this case, the results can
be represented as averages from the simultaneously running NoCs. The amount of traffic
during the simulation can be adjusted with the traffic pattern. There is also an option
to put faults in the network. This feature enables the fault tolerance analysis of NoC.
All the network faults are modeled using the link faults. For instance, a faulty router

47

can be modeled with a bunch of faulty links. Faults can be put in the system randomly
or manually so that modeling of larger uniform fault areas is also possible.

5.1 Architecture

The simulation architecture consists of architectural components and simulator specific
components. Architectural components include models of the components which are in-
cluded in real NoC implementations: a router, a link, a network interface, a monitor and
a core. The core is used to model components which include for instance computational
cores, memories and I/O components. The simulation environment is designed for NoC
communication infrastructure analysis so the core model includes functionality which is
reasonable from the communication point of view.

The simulator specific components do not have physical equivalents but are required
in the simulation environment. In real implementations a data packet is an abstract
concept but in the simulation environment it is modeled with a standard C++ class.
Furthermore, there is terminator components which are used for debugging and misrout-
ing detection during simulation.

5.2 Architectural Components

The architectural components of the NoC simulation environment are implemented with
SystemC modules (sc module) and the communication between them uses standard
SystemC ports (sc port) as well as transaction-level communication defined in TLM
1.0. The components and their connections are presented in Figure 5.1 which represents
a 2x2 mesh-shaped NoC. The topology and size of the simulated architecture are fully
configurable. The structures of the simulator components are presented below. Each
component has operational functions to model the actual run-time behavior, as well as
reporting functions to collect the simulation results.

The simulation environment has multiple clocks to control different features. There
are four independent clocks to control the network components: a core, a router, a link
and a monitor. There are also two slow clocks to control the simulation process: a report
clock (report clk) and a configuration clock (conf clk). These are used to trigger
simulation data collection and simulation parameter reconfiguration during simulation.

5.2.1 Router

A router is a network component which forwards traffic in a network. The task of a router
is to direct incoming packets in an appropriate direction. The router has multiple input
and output ports through which it is connected to other routers and cores. Structure
of a router was presented in Figure 2.1 on page 6. The three main parts of a router
are switch, routing logic and arbitration logic. The routing logic controls the switch to

48

@@ @@

@@@@

Link

Terminator

Router

NI

Core

Router

RouterRouter

Core Core

Core
M

M M

M

NI NI

NI

Terminator

TerminatorTerminator

T
erm

inator
T
erm

inatorT
er
m
in
at
or

T
er
m
in
at
or

Figure 5.1: Structure of a 2x2 NoC as modeled in the simulation environment. NI
denotes network interface and M is integrated monitor and probe. In distributed mon-
itoring all the monitors are similar, otherwise there are central or cluster monitors and
other monitors are simple components which send, receive and store the monitoring
information.

forward incoming packets to correct output ports and the arbitration logic decides in
which order the incoming packets are forwarded.

The router model is designed for mesh networks and so it has five ports, four for
traffic to and from the neighboring routers and one for traffic to and from the local
core. The number of ports can be modified. There is a FIFO (first-in-first-out) buffer
in each input port and a centralized reroute FIFO for packets which cannot be routed
at the first attempt but can be rerouted later. There is also input FIFO buffers for
special packets: monitoring packets and mapping packets. These special FIFO buffers
have implemented to enable packet type prioritization. If the routing fails constantly
the packet is dropped, which means that it is removed from the network and not de-
livered to its destination. The router should notify the sender when dropping a packet.
However, the reporting feature is not implemented in this simulation environment. The
packet dropping typically happens in severe situations where routing is inhibited due
to permanently faulty network resources making a destination unreachable. Sizes of
the FIFO buffers are customizable as well as the packet lifetime before dropping. The

49

Input FIFOs

routing fifo

?

?

?

?

-
�- route packet

write

routing arb

Router

do status

packets from network

packets to network

Figure 5.2: Structure of a router including the functions other than the report functions.

router model includes several different routing algorithms. The used algorithm can be
chosen with the simulation parameters. The implemented routing algorithms have been
discussed in Section 4.4.

To enable traffic monitoring there is a traffic monitoring probe whose functionality
is implemented partly in router and monitor components. This probe measures the fill
rate of router FIFOs real time, scales the measured value to the used scale and delivers
this scaled value to the local monitor which is optionally attached to the router.

The routing algorithm is defined in the router module in the function route packet.
The current implementation utilizes a dimension order routing algorithm which is able
to customize the routing based on the networks status information and link statuses.

The input and output ports for packets are named as target port# and initiator port#

respectively. For monitoring purposes there is

initiator port m and target port m to move monitoring packets between the router
and the local monitor. Input ports link status# and min# are used to transfer neighbor
link and router status data from the local monitor to the router. The traffic status of the
local router is moved to the local monitor through output port mout#. Functions of the
router component are presented below. The functions, other than the report functions,
and their relationships are represented in Figure 5.2.

write Write function is executed when a packet is sent to the router through one of the
target ports. The router identifies the type of the packet. If the packet is a monitoring
or a mapping packet, it is stored to the corresponding FIFO. Otherwise the packet is
stored in the input FIFO of the port from where the packet arrived. If the corresponding
FIFO in any case is fully occupied, the router rejects the incoming packet and the sender
can try to send it to some other router or resend the packet to the current router later
on.

In the system with distributed monitoring, there is a special feature for the monitor-
ing packets. Incoming monitoring packets are forwarded straight to the local monitor

50

6

�
���

�
��	

@
@@R

?

-�

@
@@I

Router

S
SESW

W E

N
NW NE

Figure 5.3: Productive routing directions. Letters N, S. E and W denote directions
north, south, east and west, correspondingly.

and the packets, sent by the local monitor, are automatically sent to all neighbor routers.

routing arb Routing arbitration function is sensitive to the router clock. The function
takes packets from the FIFOs and calls the route packet function to route packets
forward. If the routing was successful, the function would remove the packet from the
FIFO and increases the processed variable. If the routing failed, the function puts the
packet in the reroute FIFO or if the packet has reached the maximum lifetime (defined
with variable lifetime) the packet is dropped and the variable dropped is incremented
by one. The arbitration algorithm goes through the FIFOs one after another so that
every FIFO has equal opportunities to get the packets routed forward.

The usage of separate FIFOs for mapping and monitoring packets makes possible
to prioritize these packets over data packets. Reroute FIFO is also prioritized over
input port FIFOs when the reroute FIFO is fully occupied. This is done to prevent the
blockage of the router. The simulation environment is configured so that the FIFOs are
prioritized in the following order: 1) monitoring packet FIFO, 2) mapping packet FIFO,
3) reroute FIFO, 4) input port FIFOs.

route packet The route packet function does the routing decision and tries to send
the packet to this direction. After the routing the function returns the result of the
routing procedure, which are 1) routing succeeded, 2) routing failed, reroute packet and
3) routing failed, drop packet. Other results are marks of errors.

In the first phase the function determines the productive directions in x- and y-
dimension, which means the direction which leads towards the destination. The routing
algorithm can be also configured to use non-productive directions in problematic situa-
tions.

51

� -

6

?

� -

6

?

-�

?

6

1 3

N

E

S

W

2

4

5

6 7

8

9

1011

12

Figure 5.4: Routing directions. Letters N, S. E and W denote directions north, south,
east and west, correspondingly.

In the second phase the function defines the routing direction. There is nine possible
directions: local, north, north-east, east, south-east, south, south-west, west and north-
west (see Figure 5.3). The intermediate direction (north-east, south-east, etc.) can
be reached through two output ports, in these cases north or east, and south or east,
respectively, as shown in Figure 5.4.

In the third phase, the algorithm compares the traffic and link statuses and tries to
send the packet in the direction which it finds the best of the alternatives. The direction
options are presented in Figure 5.4. Several routing algorithms have been implemented
which are all based on the basic dimension order routing. The algorithm is selected
using variable algo. The implemented algorithms include versions of minimal and non-
minimal dimension order routing. [14]

do status The do status function calculates the current status of the router. The
status is based on the number of packets on the rerouting FIFO, router fifo, but can
be configured to take the other FIFOs in the account too. The status is scaled to the
used status granularity scale. The status data granularity is discussed in Section 6.3.1.
The current status of a router is calculated using equation

Statusrouter = Fifoocc
Granularity

F ifomax
(5.1)

where Fifoocc is the current number of packets in the FIFO buffer or buffers, Granularity
is the used status data granularity and Fifomax is the maximum number of packets which
can be stored to the measured FIFO buffers. This status is sent to the monitor through

52

port mout0.

reset A reset function is implemented to enable the possibility to reset a router during
a simulation. The reset function empties the FIFO buffers.

Reporting Functions Report functions get processed and get dropped are used
to collect statistical data in the end of a simulation. The functions return the total
numbers of processed and dropped packets during a simulation, respectively. There is
also a FIFO related reporting function get fifosize which returns the number of the
packets which are stored to the router fifo at that moment.

5.2.2 Network Interface

A network interface (NI) is an interface between a core and a router. The purpose of a
network interface is to wrap the data in packets before sending the data to the network
and unwrap the data from received packets before delivering the data to the local core.

Due to lack of fully functional cores the NI of the simulation environment has only
the necessary functionality implemented. The component has a write function which is
executed when a packet is sent to the NI and it directs the packet to the core or to the
network. At this point, the simulator does not include specific network interface features
but the NIs are combinations of two modules which move the packets to and from the
cores. The packet wrapping and unwrapping features can be later added to the NI if
fully functional cores are used.

5.2.3 Link

The model of a link in the NoC simulation environment is unidirectional. Links are
used in bunches of two in between two routers, one in each direction. The link is a
simple component which forwards the incoming packets. A link can be individually set
in unusable or faulty state to disable it temporarily or model faults in the network.
Unusable and faulty states are similar from the functional point of view. In both states
the link is disabled and the data are not transferred through the link. A link has a
variable direction which shows the direction of a link in the network. When a packet
arrives at a link the link calls packet function set sourcedir with its own direction as
a parameter. The direction of the previous link on the journey of a packet is stored to
a packet to be able to prevent U-turns in routing. The functions and their relationships
of a link are represented in Figure 5.5.

write Packets are sent to a link by calling the write function. The function stores
incoming packets to a FIFO buffer link fifo which is of type queue. The size of the
FIFO buffer is parametrized and can be adjusted with the simulation parameters.

53

?

?

?

?

Link

set faultless
set faulty

is faulty

is usable
set unusable
set usable

link fifo

send packet

write

a router
packets from

packets to
a router

Figure 5.5: Structure of a link including the functions other than the report functions.

send packet A packet sending function is sensitive to the positive clock edge of the
link clock and sends a packet from the link fifo once in a clock cycle to the next router.
The delay of a link can be adjusted with the link clock.

Usability and Faultiness Functions A link can be set in faulty or unusable state
when it cannot be used for data transfer. The link has an built-in model of a link usability
monitor so that the usability of the link can be read from port link status. The link
has functions set faulty, set faultless, set unusable and set usable to modify
usability and faultiness. Usability and faultiness are modeled separately so that a link
can be set in unusable state temporarily while the faulty state is permanent. When a
link is faulty it is always also unusable, but a link can be unusable without being faulty.
This has been implemented to be able to separate temporary and permanent unusability.
There is also functions is usable and is faulty which return the status of the link.

reset The reset function is sensitive to the configuration clock (conf clk). The func-
tion clears the link fifo and puts the link to the usable and faultless state.

5.2.4 Core

Cores are used to model computational cores and memories which are connected to the
network through network interfaces and routers. A core sends packets to and receives
packets from the network. Computational features are not modeled in this simulation
environment but the cores are used to generate traffic which imitates real traffic schemes
on a Network-on-Chip. The computational load of a core is modeled using core load
status values baseload and additionalload. The computational status of a core is
calculated using equation

CoreLoad = BaseLoad+AdditionalLoad. (5.2)

54

-

?

?

6

generate traffic sendctrl

write
set interval

do status

process load
set additionalload
set baseload

run

Core

packets from
network network

packets to

Figure 5.6: Structure of a core including the functions except the report functions.

The base load models static load while additional load can be changed during the sim-
ulation. The core load is utilized especially when task mapping features are simulated.
The load values are set using functions set baseload and set additionalload. A
function process load calculates the total coreload from the base load and additional
load values. A process do status calculates the current core status using equation

CoreStatus = CoreCapacity − CoreLoad. (5.3)

Core capacity is the maximum capacity of a core. In this context it is an abstract
concept which is related to the core load. The core status is delivered to a monitor
component for monitoring purposes especially for task mapping. The functions, other
than the report functions, and their relationships are represented in Figure 5.6. A core
has three different modes to send packets. In the first mode a core sends a data packet
to a randomly chosen destination once in a period which is defined with a parameter
interval. The interval is run-time reconfigurable using function set interval. In the
second mode a core sends multiple packets to a receiving core. The receiver is chosen
randomly and packets are sent to the receiver once in an interval during specific time.
The receiver core is selected randomly once in a reconfiguration clock cycle. The two
first modes can be used together so that a function sendctrl randomly chooses which
mode is used. The third mode is related to the core load modeling. A packet is sent
once in an interval similarly as in the first mode. However, the used interval is based on
the current core load value. The receiver core, which in here is called as a slave core, is
set using function set slave. If the third mode is used, the slave core replies to every
packet sending the packet back to the original sender. The remaining functions of the
core component are presented below.

generate traffic Generate traffic function is used to generate destination addresses
for packets which are sent to the network. Variable
traffic pattern defines which traffic pattern is used. The different traffic patterns
are presented in Section 5.4.3.

55

run Run function controls the operation of the core module. The function is sensitive
to a positive edge of the core clock. The function generates packets, and depending on
the used mode, defines the destination addresses and sends packets to the network.

write Write function is executed when packets are written from the network to the
core. The function puts the received packet to a
received packets vector, increases the counters of received packets, latency and hops,
rec count, total latency, total hops.

Report Functions The core component has several report functions. get hops()

returns a sum of hop counts of all the received packets in a core. Hop count is the
number of routers which a packet goes through during its route from a sender to a
receiver. get latency() returns the sum of transfer latencies of all the received pack-
ets. get rec count() returns the number of received packets in a core so the aver-
age hop count and latency values can be calculated the results from get hops() and
get latency() by dividing them with the result from function get latency(). A func-
tion get tried returns the number of packets which have been tried to send from the
core. However, if the network is highly congested the sending could not be possible,
the actual number of sent packets is returned by function get sent. The core also has
a function get load which returns the current core load of the core. reset counters

function resets all the statistic values and packet counters.

Mapping Functions The core component includes functions to model task mapping
process which is presented later in Chapter 7. do mapping function is used to initialize
task mapping process. It calls
send mapping packet function with desired parameters, generates a mapping packet
and sends it to a currently best core in the known neighborhood. The best neighbor is
defined by the monitor component. When a mapping packet is received at a core a func-
tion receive mapping packet is executed. The function does a mapping decision, and
depending on the decision, calls functions set additionalload, send mapping packet

or return mapping packet. The return mapping packet function sends the mapping
packet back to the original initiator of the mapping process.

5.2.5 Monitor

The monitors are used to observe the functionality and status of the system. The mon-
itor component in our NoC simulation environment includes both a probe to collect
the monitoring data as well as the actual monitor to process the collected data. The
monitor component can be also configured to act only as a probe or a monitor. This is
useful for instance when analyzing centralized monitoring structures [55]. The monitors
communicate with each other using shared or dedicated resources. The NoC simulation
environment includes both implementations. When shared resources are used, the mon-
itors send packets in the data network. When dedicated resources are used the resources

56

R

12

11

10

95

6 2 8

7

3

4

1

Figure 5.7: Indexes of the neighbors. R denotes the local router of which neighbors are
indexed.

for the monitoring network are typically limited. Therefore, the serial communication
is utilized. The dedicated resources are not separately implemented in the simulation
model but their functionality is modeled using the existing models of links and routers.
When the monitoring traffic is switched to serial mode the routers handle the monitoring
packets so that they do not interfere with the data packets and the utilization of the
monitoring data are delayed with time corresponding the delay of corresponding serial
transfer of the data.

Monitor components have input ports for collected status data and outputs to deliver
the data to the local router and core. A monitor component has four lstin# ports, an
in0 port and a core in0 port for probed data from links towards other routers, a local
router and a local core, respectively. The input ports also include a target port which
can receive monitoring packets which include network status information. Output ports
out#, lstout# and core out# are used to deliver neighbor router, link and core status
information to the local router. The indexes of the neighbor routers are presented in
Figure 5.7 while the indexes of different output directions were presented in Figure 5.4
on page 52.

In the NoC simulation environment there is a monitor component attached to every
router regardless of the used monitoring structure (see Section 3.2). In distributed
monitoring every monitor has similar functionality while in clustered and centralized
structures there are few cluster monitors or a central monitor, respectively, while other
monitors simply store the received monitoring information to be used by the local router.
In these cases the monitoring components can be configured to work as monitor, probe
or both.

The collected status data are stored in arrays. The link statuses are stored in an array
linkstatus and the network status data in arrays status i and status o. Received
statuses are stored to status i array. The monitor can do some processing and store the

57

*status i *status o

?

?
- -

?

?

?
update

send mpacket

write

from local router

Monitor

from monitors

Figure 5.8: Structure of a monitor including the functions other than the report func-
tions.

processed values to the status o array before they are utilized to optimize the routing
in the local router. There are also arrays corestatus i and corestatus o, for the
core load values. The variable m counter is used to adjust the monitoring packet send
interval. The functionality of monitor components for different monitoring structures
are presented below. The simulation environment includes three separate models of
monitors to be used in distributed, centralized and clustered monitoring structures.
The core load monitoring features are implemented only in the distributed monitor
component. The functions of a monitor component, other than the report functions,
and their relationships are represented in Figure 5.8.

Distributed Monitor

In a distributed monitoring structure a monitor is connected to every router in the
network and all the monitors have similar functionality including both monitor and probe
features. A distributed monitor receives link and traffic status information from the local
router and core load information from the local core. It provides the collected information
to the neighbor monitors. That way the information spreads over the network.

write A write function is executed when a neighbor monitor sends a monitor packet
to the monitor. The function reads the data from the packet and stores data to the
status i, corestatus i and linkstatus arrays.

update An update function reads the statuses of the local router and core to the arrays
status i and corestatus i. The function also calculates processed status data from
the status i and corestatus i values and stores them to the arrays status o and
corestatus o. The status data processing is done following the guidelines of an utilized
status data processing algorithm. The algorithm can, for instance, calculate a status
value of a component as a weighted average of the component’s own and its neighbors’
statuses. These status values are written to the output ports out# and coreout#. The
update function also writes the link status values from the linkstatus array to lstout#

ports. These values are not processed.

58

send mpacket A send mpacket function generates a monitoring packet once in a status
data update interval. The length of the interval can be defined as a static duration with
the variable m counter. The length of the interval can be also based on the variation
in the status values. The current status value is compared to the previous status value
and to a threshold value. This threshold defines the required difference between current
and previous status until a new monitoring packet is generated and sent. The status
update intervals are discussed later in Section 6.1. The send mpacket function stores
the neighbor status data and link status data to the packet and sends it to the router
which sends it to all its neighbors.

Report Functions The report functions of a monitor component include get sentmpackets

and reset counters. Former function returns the number of sent monitoring packets
and the latter function resets the monitoring packet counter.

Central Monitor

The central monitor module is used in centralized monitoring structures. There is one
central monitor in the system where the statuses of all the links and routers are stored.
Monitors, which are attached to each router in the network, operate as probes. These
probes send their local router’s status to the central monitor which processes the collected
information and delivers it to the other routers. Simple probe modules send, receive and
store the monitoring data at the routers but do not do any processing. In the simulation
environment the central monitor and the probes are modeled using the same monitor
component which is configured for different tasks. This operation mode is selected using
variable textttmode (0: local monitor, 1: central monitor). The address of the central
monitor is stored to variable m addr in every probe. This is required when sending
observed status data to the central monitor.

update In the local monitors working as probes the update function reads the current
statuses from local network components so that they can be sent to the central monitor.
In the central monitor mode this function also does the status data processing. It
reads the received raw status data values from the status i array, does the status
data processing and stores the processed values to the status o array. The status data
processing is based on the utilized monitoring algorithm. In both modes the function
also writes the network and link status data from the arrays to the output ports out#

and lstout#.

send mpacket In the local monitor mode the send mpacket generates a monitoring
packet and stores the traffic status of the local router and the statuses of the outgoing
links to the packet and sends it to the central monitor. In the central monitor mode
this function sends a monitoring packet to a router and its local monitor one after
another. After the sending the function calculates the address of the next router and
uses this address during the following cycle. During every cycle the function takes the

59

corresponding network and link status values from the arrays and does the required
calculations before storing them to a packet which is sent to a router.

The functionalities of the write and the report functions are identical to the corre-
sponding functions in a distributed monitor.

Cluster Monitor

The cluster monitor is used in clustered monitoring structures. There is a cluster monitor
in every cluster and simple monitors attached to all the other routers to send, receive
and store network information. The simple monitors operate as probes. They send
the statuses from the routers to the cluster monitors which store them, exchange the
information with other cluster monitors and deliver the data to the simple monitors in
its own cluster.

A variable m addr defines the address of the cluster monitor while variables nm#

are used to store the addresses of the cluster monitors of the neighboring clusters.
sendingmode variable defines if the monitor is 1) sending monitoring data to the routers
in its own cluster or 2) sending monitoring data to the cluster monitors of the neighboring
clusters.

update In a local monitor the update function reads the status values from local com-
ponents so that they can be sent to the cluster monitor. In the cluster monitor the
update function works similarly as in the central monitor. When defining the statuses
of routers on the borders of the clusters the algorithm takes into account the status of
the neighbor cluster behind the border. The update function also takes care of putting
status data to the output ports out# and lstout# so that they can be read and utilized
by other local components.

write When a monitoring packet is sent to a cluster monitor the write function is
executed and the network and link status data are written from the packet to the cor-
responding variables and arrays in the monitor. The status values of the neighboring
clusters are also stored to the status i array.

send mpacket The send mpacket function in a cluster monitor has five different send-
ing modes (defined with variable sendingmode). Mode 1 is for sending monitoring
packets to the routers in its own cluster. Modes 2-5 are for sending monitoring packets
to the cluster monitors in the neighboring clusters in west, north, east and south. In
mode 1 the cluster monitor operates similarly as a centralized monitor. In a simple local
monitor the send mpacket function sends the router status and the nearest link statuses
to the cluster monitor.

60

5.3 Simulator Components

Simulator components in the simulation environment are not actually implemented on
real Network-on-Chip realizations but necessary to model the system on a simulation
environment. They can be abstract concepts or components which are implemented for
debugging and monitoring the simulation environment.

5.3.1 Packet

In real implementations a packet is a concept how the data have been structured when
it is transferred in a network. In the simulation environment a packet is a simple C++
class which represents the data packets that are moved in the network. Main information
stored in a packet includes source and destination addresses and data payload. This
information is stored in variables source and dest, and data# arrays, respectively.
There is also a variable packet type, which indicates the type of the packet. The
type can be data packet (0), monitoring packet (1), reply packet (2) or mapping packet
(3). The reply packets are used when the traffic pattern utilizes automatic replying to
received packets. The packet type can be read using function get type.

Initialization The initialization function initialize is executed when a packet is
created. The function sets the current time as the send time of the packet (variable
sendtime) and resets the hop count calculator. The hop count calculator counts the
transfer distance of a packet and it is incremented every time the packet is routed by
calling function add hop.

Address Functions Functions get source and get dest return the addresses of the
sender and destination of the packet respectively. Every time a packet goes through a
link the link sets its direction using function set sourcedir (possible directions: towards
north, south, east, or west). A router can read this value using function get sourcedir

when it needs to know from which direction a packet has arrived to a router.

Data Functions The packet can have several arrays which are used to store data
(data#). These vectors can be written and read using functions set data# and get data#.

Mapping Functions When a packet is used as a mapping packet, there are specific
variables including variables for caused load, mapper’s address and id, and mapping
distance. The caused load variable represents the size of task which is mapped with
the mapping packet. The unit of the task size is left undefined at this point. Mapping
distance is the distance in hops from the original mapper. A packet includes functions
to read and manipulate these values.

61

Report Functions When a packet arrives at its destination the receiver calls function
set rectime. This function sets the current time as a receiving time of the packet. The
time of sending and receiving of a packet can be read using functions get sendtime,
get rectime. There is also function to read the total latency of a packet, get latency.
To read the total hop count of a packet, there is a function get hopcount.

5.3.2 Terminator

A terminator is a component which is implemented only for debug purposes. Terminators
are connected to the output ports of the routers on the borders of the network so that
packets which are going outside of the network end to the terminator components. The
terminator is not implemented to real NoC implementations but it can be used detect
misrouted packets in the borders of the network.

5.4 Simulator Functionality

The simulation flow starts from NoC architecture configuration. The simulated Network-
on-Chip is structured from separate components which are connected together. The
components are configured with desired parameters and the simulation is started. After
the simulation is finished the simulation environment executes result collection functions
and the results are stored for analysis.

The architecture of an NoC is defined in top level class noc. It includes representation
of the NoC architecture, its components and how they are connected. The noc class is
controlled through a main class. All the simulation parameters are defined in the main

class.

5.4.1 Architecture

The noc class generates vectors where the components of the NoC are stored. The
components and the NoC itself are C++ objects. The NoC class connects its components
to each other. At this time the simulation environment includes only the mesh topology
but the implementation of other topologies is not limited.

The NoC class has functions to generate errors to the system, to control task mapping
simulations and to collect results from the components. For the cases when a static
packet sending interval is used, there is a function set interval which is sensitive to
the report clock and changes the packet interval based on an interval plan which defines
the intervals used in different phases of the simulation.

generate errors This function generates link faults to the system in random locations.
The function puts the chosen links in faulty state so that they are not usable. The
randomization can be overridden so that the faults can be put to certain locations
without randomization. The number of errors is defined with the variable e in the NoC
parameters. The function is sensitive to the reconfiguration clock (conf clk). Each

62

time the generate errors function is executed it resets the links and randomizes new
locations for the link faults in the system.

mapping control This function initiates task mapping process during a simulation.
The function is sensitive to the router clock and the designer can choose at which clock
cycle a task mapping process is initiated. Two parameters in the process are 1) the
address of the mapper core and 2) the size of the task.

Reporting Functions The NoC class includes the reporting functions to return key
figures as total latency, average latency, processed and received packets, packets tried
to sent, packets actually sent, sent monitoring packets, total hop count, average hop
count and dropped packets. The statistics are printed out using functions init report

and report. init report is called from inside the report and it calls the report func-
tions of the components. The initialization function collects the results from the NoC
components and the report function prints them out or saves in a file.

5.4.2 Top Level Control

The top level control of the simulation environment is implemented in main class which
is a mandatory part of every C++ implementation. The class has all the simulation
parameters as variables and uses these when creating NoC objects from the noc class.
The main class includes a loop where multiple NoCs can be generated with varying
parameters. The top level class initiates the simulation and when it has been completed,
collects overall results from the simulated system.

5.4.3 Traffic Pattern

The traffic on a simulated NoC can be based on core load values or a traffic pattern. The
NoC simulation environment has three traffic patterns which are based on randomization.
The simplest pattern is a fully random traffic pattern which randomizes the packet
destinations among all the cores in the network. A new destination is randomized for
every sent packet. A weighted random traffic pattern is adjusted so that a one third
of traffic is between neighboring cores, another third between neighbor’s neighbors and
the last part between all the other cores in the network. This pattern roughly imitates
a traffic pattern in a real NoC implementation where most of the traffic takes place
between cores near each other.

The third implemented traffic pattern is a two-level pattern which includes uniform
random traffic and varying hot spots each of which sends a relatively large number of
packets to a single receiver during a certain time interval. A relatively small number
of cores operate as hot spots simultaneously and send packets to a statically chosen
receiver cores. At the same time, other cores are sending relatively smaller amount of
traffic to random destinations. This two-level traffic pattern imitates real applications
where most of the traffic takes place between certain cores at a time. It is aimed for even

63

more realistic performance simulations. The traffic management simulations, presented
in this thesis, are done using this two-level traffic pattern.

5.4.4 Fault Injection

During simulation the network links can be set faulty. In Network-on-Chip simulations
the fault information can be simplified by using only the information on faulty links and
representing other faulty components by marking the links around these components to
be faulty. In the simulation environment the number of faults is defined by the user and
the simulator places the faults randomly in the network. The simulation is executed
several times with different fault patterns and the results are averaged from the original
simulation results. This procedure gives overall insight of the operation of the system
when parts of the network are faulty.

5.4.5 Task Mapping

To enable run-time task mapping the simulation model of a monitoring packet was
improved to contain required core load status information and a counter for mapping
decision attempts. The simulation environment is able to report the load of separate
cores in any report point (defined by the report clock) during the simulation. It also
reports the successful task mapping including the IDs of the mapping initiator, assignee
and the number of performed mapping decision attempts.

The simulation environment makes it possible to adjust initial mapping schemes,
simulate task mappings and collect results concerning the task mapping processes. Sim-
ulation reports include detailed descriptions of each mapping initialization, decision at-
tempt and executed mappings. The details include identifiers of the original mapper and
the core where the mapping decision attempt has been carried out. Number of decision
attempts is also presented. The simulation environment is able to illustrate how the core
load is distributed over the system.

5.5 Summary

The SystemC based Network-on-Chip simulation environment was presented in this
chapter. The simulation environment includes models of different NoC components
and it can be configured to simulate features of distinct NoC architectures.

In the following chapters the simulation environment is utilized to model an NoC with
the presented DCM structure (see Chapter 4). In Chapter 6 the simulation environment
is used to model task management features of the DCM structure while in Chapter 7 a
case study concerning distributed lightweight task mapping is examined.

The simulation environment is implemented modularly so that in future works it
can be utilized to model Network-on-Chip architectures with new and varying features
comprehensively.

64

Chapter 6

Traffic Management

The dynamically clustered Network-on-Chip monitoring structure, which was presented
in Chapter 4, is mainly targeted and designed for traffic management purposes. Traf-
fic management aims to balance the utilization of network resources so that maximum
performance can be achieved. Essentially, traffic management tries to avoid the develop-
ment of highly loaded traffic hot spots in the network. Traffic management should also
keep the network functioning even though if there are some faulty components. Traffic
management related issues are studied in this chapter.

The results presented in this chapter are based on simulations which were carried
out using the simulation environment presented in Chapter 5. Exception to this is the
basic analysis of network status data diffusion in the beginning of Section 6.2 (Figure
6.6 on page 75) which is based on conceptual analysis and is carried out similarly as the
analysis presented in Chapter 4.

6.1 Status Update Interval

A status update interval defines how often or in which circumstances a monitor sends
the updated status data to its neighbors. There are two different approaches: static and
dynamic. When a static update interval is used every monitor sends the updated status
data to its neighbors after a certain time interval regardless of the changes in the data
after the previous update. The only parameter in the static update is the time between
the updates (IntervalStatic). The unit the interval is the minimum time between two
sent packets from one source. The time interval parameter should be adjusted in a way
that the network components have up to date status information but the update traffic
does not strain the communication resources too much.

A dynamic update interval is based on the variation of the status values. The monitor
sends the up to date status values to the neighbors when the difference between current
and previous values is more than a pre-defined update threshold (ThresholdDynamic).
The unit of the threshold is the same as the unit of the network status values. This
threshold is the essential parameter of the dynamic update which is adjusted corre-

65

spondingly as the time interval parameter in the static update procedure. Static and
dynamic status update intervals have certain weaknesses. When the network status is
changing rapidly, the static status update misses a fraction of the changes. Surely it can
be configured to be short enough to detect every change but then it would cause futile
overhead during changeless periods. However, after a predefined time interval the status
data will be exactly up-to-date for a moment. The weaknesses of the dynamic status
update interval are opposite to that of the static update interval. When the network
status is changing slowly, the status values can be slightly out of date for a relatively
long time before the status value variation reaches the update threshold and will be
updated.

The weaknesses can be compensated by combining these two procedures to an en-
hanced dynamic status update interval. This interval type has two parameters which
are familiar from the static and dynamic intervals: time interval (IntervalEnhanced) and
threshold (ThresholdEnhanced). This method works similarly as the dynamic status up-
date interval but there is also a time interval parameter which defines the maximum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

D
e

liv
e

re
d

 p
a

c
k
e

ts
 [

fr
a

ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, no faults

Static

Dynamic

Enhanced

No monitoring

Figure 6.1: Throughput with different status update interval procedures and iden-
tical traffic pattern. No faults. IntervalStatic = 23, ThresholdDynamic = 3,
IntervalEnhanced = 50, ThresholdEnhanced = 5

66

time between two status updates regardless of the variation of these values. When the
enhanced dynamic status update interval is used, larger threshold and time interval pa-
rameters can be applied than in static or a dynamic update interval. This can be used
to decrease the number of monitoring packets while performance is improved.

6.1.1 Status Update Interval Analysis

The influence of the different status update intervals on the network throughput were
compared. Figure 6.1 and Figure 6.2 present the throughput of a 64-router NoC with
static, dynamic and enhanced dynamic status update interval protocols in faultless net-
work and when 10% of links in the network are faulty, respectively. The throughput of
a corresponding NoC without monitoring and routing adaptivity is also presented. The
update interval parameters are adjusted so that the numbers of sent monitoring packets
during the simulations are at the same range with each other. Status data granularity
is 32 which means that the network status values are in range of 0–31.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

D
e

liv
e

re
d

 p
a

c
k
e

ts
 [

fr
a

ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, 10% of links faulty

Static

Dynamic

Enhanced

No monitoring

Figure 6.2: Throughput with different status update interval procedures and identical
traffic pattern. 10% of the links are faulty. IntervalStatic = 23, ThresholdDynamic = 3,
IntervalEnhanced = 50, ThresholdEnhanced = 5

67

The obtained performance values with different status update intervals were com-
pared in a point where the throughput has been saturated. The point, where 60% of
the maximum capacity of packets were sent during a routing cycle, was used for the
measurements. As can be seen in Figure 6.1 and Figure 6.2, the dynamic and enhanced
dynamic update intervals improve network performance significantly while the improve-
ment with the static status update interval is slightly lower. In a faultless network the
static interval causes 21% improvement when compared to a system without any mon-
itoring. At the same time the dynamic and the enhanced update intervals reach 29%
performance improvement. In a faulty network the throughput increase of 70% has been
reached using the dynamic and the enhanced dynamic status update intervals. The
corresponding performance improvement with the static update interval is 63%. These
proposed methods make it possible to gain major improvements in the overall perfor-
mance especially when parts of the network resources are faulty or unusable. When the
results from the faultless and the faulty network are compared, one can note that in the
system without monitoring the performance drops 40% when faults are added to the
network. The corresponding drop when monitoring with static update interval is used

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent data packets [fraction of capacity]

S
e

n
t

m
o

n
it
o

ri
n

g
 p

a
c
k
e

ts
 [

fr
a

ti
o

n
 o

f
c
a

p
a

c
it
y
]

Sent monitoring packets, no faults

Static

Dynamic

Enhanced

Figure 6.3: Number of sent monitoring packets. No faults. IntervalStatic = 23,
ThresholdDynamic = 3, IntervalEnhanced = 50, ThresholdEnhanced = 5

68

is 20% and with dynamic or enhanced update interval 21%.

The numbers of sent monitoring packets in these faultless and faulty networks are
illustrated in Figure 6.3 and Figure 6.4. As can be noted the number of packets increases
with the amount of traffic when dynamic or enhanced dynamic update intervals are used.

The number of monitoring packets is high related to the number of data packets.
However, each monitoring packet has the hop count (the distance the packet is trans-
ferred in a network) of 1 and they do not require routing decisions but only a simple
routing packet recognition when they are moved in the network. Thus, the amount of
monitoring packets is negligible in comparison with the obtained performance improve-
ment. One should also note that the number of monitoring packets in a highly loaded
network with the enhanced dynamic status update interval is smaller than with the dy-
namic status update interval although the throughput is equal. This difference implies
lower energy consumption in a highly loaded system when the enhanced status update
interval is utilized and also shows that the enhanced interval works well even though it
uses less communication resources in a highly loaded network.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent data packets [fraction of capacity]

S
e

n
t

m
o

n
it
o

ri
n

g
 p

a
c
k
e

ts
 [

fr
a

ti
o

n
 o

f
c
a

p
a

c
it
y
]

Sent monitoring packets, 10% of links faulty

Static

Dynamic

Enhanced

Figure 6.4: Number of sent monitoring packets. 10% of the links are
faulty. IntervalStatic = 23, ThresholdDynamic = 3, IntervalEnhanced = 50,
ThresholdEnhanced = 5

69

Table 6.1: Status update implementation complexity.

Static Dynamic Enhanced dynamic

Cells 99 461 581
(+366%) (+487%)

Area 1362 µm2 3780 µm2 5081 µm2

(+178%) (+273%)

6.1.2 Cost of Implementations

The complexities of the different status update interval implementations were analyzed
using VHDL models. The status update interval control units were modeled with static,
dynamic and enhanced dynamic mechanisms. These VHDL models were synthesized to
90 nm technology and the results are presented in Table 6.1. The modeled part is just
a small piece of a monitor and a very small part of the whole system which means that
the presented size differences may not be prominent. However, in some implementations
a designer could choose a dynamic status update interval to do a compromise between
complexity and performance.

The cost of a monitoring system implementation is related to the number and size of
required probes and monitor logic and registers in the monitors. In every system, there is
at least one probe for each router and registers for their own and their neighbors’ statuses.
The number of registers in a router is not related to the used monitoring structure
so they are not taken into account in this analysis. The probes in the distributed
monitoring system are simpler than in the clustered and centralized versions because
they do not have to communicate over the network with the monitoring unit. The simple
probes could be used also in clustered and centralized systems if there are dedicated
communication resources between the probes and the monitors, and if the probe is
connected to the router to which the monitor is attached. Furthermore, monitors in
distributed systems are simpler because they handle smaller amounts of data.

A monitor in a centralized structure needs registers to store the statuses of all the
routers in the network. In clustered systems there have to be registers in monitors to store
the statuses of the routers in a local cluster and the overall statuses of the neighboring
clusters. A monitoring unit of the distributed monitoring system requires registers for the
status of the local router and the statuses of the neighbors. In clustered and distributed
systems the number of neighbor statuses to be stored is defined during the design process.
Here we assume that the statuses of 12 neighbors are stored (the closest neighbors and
their neighbors). If the routing algorithm uses raw (i.e. unprocessed) neighbor status
data, a monitor in distributed and clustered structures may use these data from the
router’s memory and that way the amount of required registers in monitors is decreased.

A cost comparison is presented in Table 6.2. Autonomous probes are probes which
can communicate with a monitoring unit over the NoC while simple probes are directly

70

Table 6.2: Monitoring system cost comparison.

Distributed Clustered Centralized

Autonomous probes 0 n− dn/me n− 1
Simple probes n dn/me 1

Cluster monitors 0 dn/me 1
Simple monitors n 0 0

Registers in a monitor 1 . . . (q + 1) m. . . (m+ q) n

n = routers in the network

m = routers in a cluster

q = neighboring monitors/clusters whose overall statuses are stored in a monitor

connected to a monitor with dedicated communication resources. Cluster monitors are
monitors that take care of several probes and routers. Those are used in centralized
and clustered systems while simple monitors, which just take care of a single probe
and communicate with their neighboring monitors, are used in distributed monitoring
systems. The required amount of memory in the monitors is defined as the number
of registers where one register is able to store the status of one router. The number
of required registers is listed on the table. The number of registers in distributed and
clustered structures depends on how efficiently the registers of the local router can be
utilized for the purposes of the monitor.

Exact cost comparison is impossible without circuit implementations but some esti-
mations of the component sizes and especially of their mutual ratios can be made. At
first we define the units; the size of a simple probe: SP , and the unit cost for monitors:
SM . An autonomous probe is a simple probe with capability to communicate over an
NoC. The probe and the communication part of a probe are assumed to be roughly the
same size which leads to an assumption that the size of an autonomous probe is 2SP . An-
other assumption is the ratio of the different monitor sizes. The approximated monitor
sizes are related to the number of direct connections from a monitor to probes, routers
and other monitors. SM is equivalent to the cost of logic required for one connection,
for instance the size of a monitor in the middle of a distributed monitoring system is
6SM because the monitor is connected to a probe, a router and four neighbor monitors.
In addition we denote the size of a register with SR.

By using the above assumptions, we can carry out a cost comparison of monitoring
systems for an NoC with 100 routers (Table 6.3). Note that there are no assumptions on
the relations between units SP , SM and SR which means that they are not comparable
with each other.

The approximations in Table 6.3 show that the distributed implementation is the
least complex in terms of probes. The number of registers depends on the used moni-

71

Table 6.3: Cost of 100-router NoC with different monitoring structures.

Distributed Centralized

Probes 100SP 199SP
Monitors 560SM 200SM
Registers 100SR...1096SR 100SR

Clustered (4) Clustered (16) Clustered (25)

Probes 175SP 191SP 196SP
Monitors 280SM 224SM 208SM
Registers 100SR...284SR 100SR...152SR 100SR...112SR

Size of a cluster in parentheses.

toring algorithm but is at least equal to the number of routers and increases when the
size of a cluster decreases. The analysis shows that when using distributed monitoring
structure it is strongly recommended to integrate the router and the monitor and share
the status registers among them. This can be done also when the cluster size is rela-
tively small and raw monitoring data are stored to the status registers of the routers. In
large clusters, the neighbor cluster statuses are stored to the routers far away from the
monitor, which makes the register sharing difficult. Table 6.3 also shows that the total
cost of monitors decreases when the size of a cluster increases.

It has to be noted that in distributed implementations the computation is done in
smaller parts by simple components working at the same speed with the larger monitors.
That way the distributed system may reach significantly higher performance because the
amount of data to be processed in a monitor is substantially smaller, or they can be op-
timized for low power consumption and area. Furthermore, the distributed monitoring
system can be more fault tolerant because the computation is divided into the small
monitoring units and each of them is much less critical in terms of overall system func-
tionality than the larger monitors in clustered and centralized systems.

6.2 Status Data Diffusion

The network status data diffusion defines how far the status of a network component (in
our analysis router) spreads in the network. A wider diffusion area makes it possible to
react to problems early and avoid routing packets to the worst hot spots or faulty areas.

Network information diffusion in distributed and statically clustered network mon-
itoring is illustrated in Figure 6.5. Diffusion of information in a monitoring system is
divided into phases so that a phase consists of traffic information collection inside a

72

R

R

R R

Router under investigation.

Local cluster. Updated at

the first update phase.

Neighboring clusters. Updated

at the second update phase.

Neighbors of the neighboring

clusters. Updated at the

third update phase.

Figure 6.5: Diffusion of network status information.

73

monitoring cluster, information exchange between neighboring clusters and information
delivery to the routers in the local cluster. The local cluster is reached during the first
phase, neighbor clusters during the second phase and during the third phase the infor-
mation spreads to the neighbors of the neighboring clusters. Still, it has to be noted
that the durations of the update phases are proportional to the cluster size. The figure
shows that a larger cluster size makes diffusion coarser because the information reaches
one cluster at a time.

As Figure 6.5 shows, the shape of the monitoring cluster should be the same as
the shape of the whole network. This guarantees that the data spread evenly over the
network and approaches each side of the network with the same rate. If the cluster size
is two, for example, the data diffuse to the other dimension with half the rate. The area
or the number of routers where the network status data diffuse during a certain time
frame is represented with equation

Darea =


0 when p = 0,

Csize when p = 1,

Csize +
∑p

i=2 4(i− 1)Csize when p > 1

(6.1)

where p is the number of update phases (see Figure 6.5). At the first update phase
(p = 1) the information diffuses to the local cluster. During the next phases, the data
diffuse to the neighboring clusters of the cluster or clusters which were updated at the
previous phase. This additional area increases by the size of four clusters during every
phase. This is represented with the sum term. The duration of an update process can
be calculated using equation

t = (p− 1)
√
Csize + 4

⌊√
Csize

2

⌋
when p > 0 (6.2)

where the first term represents the time consumed to move data from one monitor to
another while the second term depicts the time used to collect the data from routers
and finally to deliver the data to routers on another cluster. The floor function gives the
maximum hop count between a router and a monitor in a cluster.

Figure 6.6 shows how fast the information diffuses in the network. The distributed
system outperforms other candidates. We can note that the structure with the cluster
size of nine is faster than the structure with the cluster size of four. Respectively, the
structure with the cluster size of 25 spreads the data faster than the system with the
cluster size of 16. This is due to the more optimal structure of the clusters with the
sizes of 9 and 25. When Cwidth and Cheight of a cluster are odd numbers the cluster
monitor can be placed exactly in the middle of the cluster which minimized the theoret-
ical average hop counts (Havg) in a cluster. Figure 6.6 also shows that when a message
needs to be delivered to the whole system immediately, the distributed monitoring sys-
tem accomplishes this with the highest rate. This may be useful if immediate system
reconfiguration is required.

74

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Time [transaction cycles]

D
if
fu

s
io

n
 [
ro

u
te

rs
]

Diffusion of status information

Distributed

Clustered (4)

Clustered (9)

Clustered (16)

Clustered (25)

Figure 6.6: Diffusion of network status information as a function of time (size of a cluster
in parentheses).

There are two factors which affect the status data diffusion: the size of a dynamic
cluster and status data processing. The cluster size defines how far the status data diffuse
from a router and the amount of neighbor status data a router has. The cluster size has
an effect on the quantity of neighbor status data to be transferred in a monitoring packet.
If the size of a dynamic cluster is 5, it contains the neighbors of a router and the router
itself. In this case it is enough to send only the router’s own status to the neighbors.
If the size of a cluster is 13, it also includes the neighbors of the neighbors and then
four neighbor statuses should be included in every monitoring packet. In larger dynamic
clusters the amount of monitoring data which has to be included in a monitoring packet
increases to a level which is not practical. Therefore, we have limited our analysis to the
dynamic cluster sizes of 5 and 13.

6.2.1 Additional Status Data Processing

In DCM structure the network traffic status values are based on the load of the routers.
When additional status data processing is used, each router status value is based on

75

� -SESW

?

6

EN

ES

-�
NW NE

6

?

WN

WS

6

-

?

� RouterW

S

E

N

Figure 6.7: Routing directions. The abbreviations N, S, E and W stand for directions
north, south, east and west, correspondingly.

the state of the router itself and the state of its neighbors. When the neighbor routers’
status is defined using also its own neighbors, the status data diffuse over the network.

A processed status of a router (S), which represents the traffic load in a router and
its surroundings, is calculated using Equation 6.3 where Sx, x ∈ {L,N, S,E,W} is the
status of a neighboring router in a specific direction (Local router, or a neighbor in
N orth, South, East or W est direction).

S = αSL +
1− α

4
(SN + SS + SE + SW) (6.3)

where α is a factor which defines which part of the router status is related to its own
utilization level. When the status data of twelve neighbors is used the statuses of different
routing directions are calculated using for example Equation 6.5 and Equation 6.6, where

Dx, x ∈ {N,S,E,W,NW,WN,NE,EN, SW,WS, SE,ES}, (6.4)

represents the status of a routing direction and Ni where 1 ≤ i ≤ CSize− 1 is the status
of a neighboring router in a specific index. Other ten statuses are calculated using
corresponding equations. The routing directions are represented in Figure 6.7 and the
used indexes of the neighbor routers in Figure 6.8.

DN = βN2 + (1− β)N7 (6.5)

DES = γN3 +
1− γ

2
(N9 +N10) (6.6)

76

R

12

11

10

95

6 2 8

7

3

4

1

Figure 6.8: Indexes of the neighbor routers. R denotes the local router of which neighbors
are indexed.

where β and γ are factors which define at which intensity the status of a neighboring
router affects to the status of a direction. Coefficients α, β and γ (0 ≤ α, β, γ ≤ 1) are in
here defined experimentally, but can be individually adjusted to avoid or favor routing
packets to certain routing directions. β, γ = 1 when the size of a dynamic cluster is four.
Therefore, Equation 6.5 and Equation 6.6 are simplified in that case and the complexity
of the system is reduced.

6.2.2 Status Data Diffusion Analysis

The analysis of network status diffusion is presented in Figure 6.9, Figure 6.10, Figure
6.11 and Figure 6.12. The same simulation was executed with two different dynamic
cluster sizes without faults and with 10% of network links being faulty. The analysis
was not done with larger cluster sizes because the amount of transferred monitoring data
then increases to intolerable level, as was described in Section 6.2. If the cluster size
is increased another time further the size of it would became 25 and each monitoring
packet would include 13 different router statuses. The additional status data processing
was used in the cases presented in Figure 6.9 and Figure 6.11. The processing coefficients
were experimentally chosen to obtain maximal throughput so that α = 0.5, β = 0.6 and
γ = 0.6. When the additional processing was not utilized (Figure 6.10 and Figure 6.12)
the raw monitored status data were used and the statuses of neighbor routers did not
have influence on the router status values.

The differences in network performance appear when the throughput has been fully or
nearly saturated. The figures show that in a faultless network the performance differences
are notable. The proportional differences were measured at the point where 60% (0.6 on
the x-axis) of the maximum capacity of packets were sent during a routing cycle. The
60%-point was chosen because it is clearly after the saturation point but still far from

77

the maximum load.

All the following performance increment percentages are in proportion to the perfor-
mance of an NoC with similar fault pattern, deterministic routing algorithm and without
network monitoring. In a faultless network (see Figure 6.9 and Figure 6.10) the perfor-
mance increase is 19% when status data processing is used, regardless of the monitoring
cluster size. Surprisingly, when status data processing is turned off the throughput in-
creases 23% and 21% in systems with monitoring cluster sizes 5 and 13, respectively.
Simulations were also executed in faulty networks where 10% of the links are set to
unusable state (see Figure 6.11 and Figure 6.12). These links were randomly chosen and
simulations were run with several different random fault patterns. When status data
processing is used, the performance increases are 78% and 74% in networks with cluster
sizes 5 and 13, respectively. Without status data processing, the corresponding values
are 78% and 72%.

The analysis shows that DCM with small cluster size improves network performance
significantly. An especially notable feature is its ability to maintain the network through-
put in a faulty network. Without network monitoring, the throughput decreases 41%
when 10% of the links become faulty. However, if the presented monitoring is used the
decrement is only 11%. Furthermore, the throughput in a faulty network with monitor-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, no faults

No monitoring
C

size
=5

C
size

=13

Figure 6.9: Throughput with different sized clusters (Csize) without network faults and
with additional status data processing.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e

c
e

iv
e

d
 p

a
c
k
e

ts
 [

fr
a

c
ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, no faults

No monitoring
C

size
=5

C
size

=13

Figure 6.10: Throughput with different sized clusters (Csize) without network faults and
without additional status data processing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e

c
e

iv
e

d
 p

a
c
k
e

ts
 [

fr
a

c
ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, 10% of links faulty

No monitoring
C

size
=5

C
size

=13

Figure 6.11: Throughput with different sized clusters (Csize). 10% of links are faulty
and additional status data processing is enabled.

79

ing is 6% higher than it of a faultless network without monitoring.

A noteworthy observation is that a larger cluster size does not have positive impact
on the performance but actually reduces it. This phenomenon can have multiple reasons.
One reason for the inefficiency can be that too much data processing leads to inaccurate
status data. The network status values are based on the status of the current router
as well as the statuses of its neighbor routers. Too much of averaging between the
status values equalizes the status values over the network and dissolves the differences
between them. Another reason could be the latency in the status data propagation which
makes it outdated before it is utilized. The monitored status data are transferred using
the shared network resources in the actual data network. Even though the monitoring
data are prioritized and passes all the other data in the router buffers, the transfer
latency especially between the current router and the neighbors of the neighbors is
present. When the traffic pattern in the network is rapidly changing the network with
large monitoring cluster size possibly cannot react to the change quick enough. A large
cluster could work in networks with more static traffic pattern. However, the need
for routing reconfiguration and extensive network monitoring is lower in these kind of
systems. Therefore, rapid reacting to change in the traffic pattern is necessary.

The influence of the additional status data processing is small or even non-existent.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

No monitoring
C

size
=5

C
size

=13

Figure 6.12: Throughput with different sized clusters (Csize). 10% of links are faulty
and additional status data processing is disabled.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

With processing

Without processing

Figure 6.13: Throughput with and without additional status data processing. Csize = 5,
10% of links are faulty.

In a faulty network there is a very small increase in the throughput. However, in a
faultless network the impact is even negative. For example, Figure 6.13 shows the
difference in throughput in a faulty network with CSize = 5. As can be seen in this
specific comparison the difference is negligible.

The inefficiency of the status data processing may stem from the same factors as
that of the large cluster size. The differences between status values dissolve and are not
on display so that the routing algorithm could make right decisions.

6.3 Format of Network Status Data

The network status data are used to deliver the information of the state of the network
and it can be used to different purposes. When the main purpose of use is traffic
management the data typically include information concerning network load and faults.
Faults are simply denoted using binary values which indicate if a component of the
network is usable or faulty. In more complex systems multi-level fault indicators could
be considered. The network load is denoted using a scale where different values represent
different amounts of load on a network component. In our simulations, the network load

81

representation is linear. Different scales can be considered in some specific applications.

6.3.1 Granularity of the Router Status Values

The status data granularity defines the resolution of the status data values which is
how many different values there are on the scale which is used to represent the load
on a network component. The smallest used value indicates that the load of a network
component is very low and the highest value represents a high load of the component.
The rest of the values indicate component load linearly between the extreme values. An
example of the status data granularity was given in Section 4.5. In physical implementa-
tions, the status data values are represented as binary numbers which means that finer
granularity requires more bits and that way increases the size of monitoring packet pay-
load. The status data granularity impacts on to the amount of the monitoring data to
be transferred as well as to the required computational resources in the monitoring com-
ponents. The granularity should be chosen so that the required data transfer and status
data processing resources are adequate in the framework of the NoC implementation in
question.

The 64-core NoC has been simulated with different granularity alternatives. 32 was
defined to the maximum possible granularity because of the limited size of payload in
the monitoring packets. A status value with 32-level granularity can be indicated with 5
bits. When monitoring cluster size is 13 a monitoring packet should include information
on router’s status and statuses of its four neighbors. With the granularity of 32, this
takes 25 bits which can be considered a realistic amount of data in a monitoring packet.
The same data granularity is also used between probes and monitors.

The throughput of a 64-core NoC with diverse status granularity is presented in
Figure 6.14, Figure 6.15, Figure 6.16 and Figure 6.17. The simulations were carried
out in a faultless network and in a network where 10% of the links were faulty. The
results show that in a fully functional network the performance is only slightly improved
when granularity is larger than eight. It can be also noted that in a faulty network the
granularity should be at least 16. In both cases 4-level granularity leads to significantly
lower performance which means 7% decrement in the faultless and 4% in the faulty
network compared with the 16-level granularity. This supports the use of at least 16-
level granularity. The performance of the system without monitoring is illustrated as a
reference.

6.3.2 Combining Router and Link Statuses

Unification of traffic and fault information is a method to simplify monitoring status
data. In the original status data format (see Figure 4.8) there is a binary number to
represent the traffic load and a bit to indicate the resource faultiness. To decrease
the monitoring complexity and the size of monitoring data payload we analyzed two
approaches where the monitoring data are combined to hybrid forms. These two hybrid
data formats are presented below.

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, no faults

4

8

16

32

No monitoring

Figure 6.14: Throughput with different traffic status granularity alternatives. CSize = 5
and data processing is enabled. No faults.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

4

8

16

32

No monitoring

Figure 6.15: Throughput with different traffic status granularity alternatives. CSize = 5
and data processing is enabled. 10% of links are faulty.

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e

c
e

iv
e

d
 p

a
c
k
e

ts
 [

fr
a

c
ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, no faults

4

8

16

32

No monitoring

Figure 6.16: Throughput with different traffic status granularity alternatives. CSize = 13
and data processing is enabled. No faults.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e

c
e

iv
e

d
 p

a
c
k
e

ts
 [

fr
a

c
ti
o

n
 o

f
c
a

p
a

c
it
y
]

Throughput, 10% of links faulty

4

8

16

32

No monitoring

Figure 6.17: Throughput with different traffic status granularity alternatives. CSize = 13
and data processing is enabled. 10% of links are faulty.

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, no faults

Separate data

Hybrid data: traffic

Hybrid data: faults

No monitoring

Figure 6.18: Throughput with separate traffic and fault data as well as with the hybrid
formats. CSize = 5 and data processing is enabled. No faults.

Hybrid Status Data Using Status Values

Traffic status values can be used to indicate faults by defining that the maximum status
value does not only indicate high traffic load but also faulty resources. If there is a
faulty component in some direction, the traffic status value of that direction is set to
its maximum value. In this case the payload of a monitoring packet (see Figure 4.8) is
reduced by 4 bits because the fault values are not included. When this format is utilized,
the routing algorithm has to be configured to totally avoid the routing directions with
maximum traffic values.

Hybrid Status Data Fault Indicator Values

The monitoring data are simplified even further when all the status data are combined
to the boolean fault indicator values. In this approach, a routing direction is marked as
faulty when there is high traffic load. The status can be restored when the traffic load
decreases. This way packets are not routed in highly loaded directions. A drawback in
this approach is the loss of knowledge about differences between routing directions with
low and medium traffic load. Because the traffic status values are not used, the reduction
of the monitoring packet payload is n bits if CSize = 5 and 5n bits if CSize = 13.

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

Separate data

Hybrid data: traffic

Hybrid data: faults

No monitoring

Figure 6.19: Throughput with separate traffic and fault data as well as with the hybrid
formats. CSize = 5 and data processing is enabled. 10% of links are faulty.

The monitoring data combination approaches were simulated with the NoC model
and the results are presented in Figure 6.18 and Figure 6.19. Obviously, in a faultless
network the traffic status based combination works similarly as separate data. When
the traffic data have been integrated into the fault statuses, the decrease in throughput
is 8%. However, the performance is still 12% better than without monitoring. In a
faulty network separated status data are notably the best solution. The traffic data
based hybrid format causes 24% performance loss which is even larger with the fault
data based format, 40%. Nevertheless, these hybrid formats increase the performance
by 36% and 8%, correspondingly, compared with the system without traffic monitoring.

The presented analysis leads to a resolution that both monitoring data classes are
necessary in a system where faults are a realistic threat. In less vital applications, the
hybrid formats could be a good compromise.

6.4 Serial Monitor Communication

In the DCM structure the monitoring data are transferred in the same network which is
used by the original data packets. It is a straightforward solution which minimizes the
requirement of additional resources. However, a shared-resource structure is always at

86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

4

8

16

32

No monitoring

Monitoring packets

Figure 6.20: Throughput with different granularity alternatives using serial communica-
tion. 10% of links are faulty and data processing is enabled. CSize = 5.

least somewhat intrusive and it consumes the network resources which otherwise could
be used by the actual data packets.

An alternative solution to the inter-monitor communication is serial communication
which is implemented with dedicated channels. It can be realized with relatively small
amount of additional resources. A drawback in the serial communication is the increased
transfer delay. However, because the serial communication resources are dedicated to
the monitoring communication there can be a non-stop status update without paying
attention to update intervals. [56]

Serial monitor communication was simulated with the SystemC based NoC simula-
tion model. Throughput with different status data granularities and serial communica-
tion is presented in Figure 6.20 and Figure 6.21. The serial transmitter operates at the
same clock frequency as the maximum frequency of the monitoring packet transmitter.
However, the latter rarely works on its maximum frequency because of the status update
interval conditions.

Essentially serial communication is slower than the earlier discussed parallel, packet
based communication and the theoretical delays of the serial communication are even
more increased when there is large amount of data to be transferred for example in
systems with relatively large monitoring clusters. However, in contrast the serial com-

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

4

8

16

32

No monitoring

Monitoring packets

Figure 6.21: Throughput with different granularity alternatives using serial communica-
tion. 10% of links are faulty and data processing is enabled. CSize = 13.

munication is operating in dedicated communication resources which can be used only to
this purpose all the time. This way the status values can be updated actually more often
than when the monitoring packets are transferred in the shared resources. Somewhat
surprisingly the system with CSize = 13 works well also for coarser status granularities
when serial communication is utilized. This is a result of a shorter traffic status update
interval even though in this case the amount of serially transferred data is quite large.
In this case the granularity of 4 clearly stands out. Possibly the granularity of 4 is
simply too rough to be used with the data amount of a system with large monitoring
clusters. Figure 6.20 shows that when serial communication and small cluster size are
used the performance differences are more notable also between granularities 8, 16 and
32. When serial communication is used, in a system with CSize = 5 the performance
with the granularity of 32 is 11% less than with a corresponding system using monitoring
packets. Respectively, the performance of a system with serial communication and the
granularity of 4 is 39% better than the performance of a system without monitoring.
The corresponding percentages for system with CSize = 13 are 6% and 42%.

The serial communication could be a useful option when a designer wants to keep
the communication resources of the actual data and the control system separately. The
serial approach guarantees that the monitoring communication does not disturb the

88

actual data which are transferred in the network. It may be possible to increase the
clock frequency of the serial transmitter from what was used in the presented analysis.
In this case, the performance differences should shrink.

6.5 Reduction of Monitors

The DCM system is based on a structure where there is an identical monitor attached
to each router. These monitors include both monitoring and probing components. One
potential way to reduce monitoring structure complexity is to decrease the number of
monitors systematically by removing every nth monitor. In this approach there is a
probe attached to every router but a monitor is attached only to a limited number
of routers. This means that there is still complete knowledge of the network state in
the monitors because there are probes attached to every router. Two monitor removal
patterns are illustrated in Figure 6.22. The monitors receive probed data, process it
and deliver it to the local router. The routers, that do not have own monitor, should
utilize a deterministic routing algorithm because they do not have access to the probed
status data from the neighboring routers. An adaptive algorithm is utilized in the
other routers [14]. The simplified deterministic routers forward packets based on a
deterministic routing algorithm. In problematic traffic or fault cases a simplified router
could route packets randomly just directing them to some of its neighbors. In any case
the neighbors of a deterministic router are adaptive routers which can route the packet
forward adaptively.

In addition to performance, the reduction of monitors affects the complexity of the
NoC implementation. Routers which do not have own monitoring component could
have less complex routing logic which decreases the router area. This is due to the
deterministic routing algorithm which substitutes the adaptive routing algorithm in the

X X

X X X

X X X

X X

X X X

X

X

X

X

X

X

X

X
Every 3rd monitor removed.

X

X

X

X

X

X

X

X

X

X
Every 6th monitor removed.

Figure 6.22: Two patterns of removed monitors. Removed monitors are marked with X.

89

routers which do not have a monitoring component. However, the probing components
cannot be simplified because they have still have to offer status data to other monitors.

This approach was analyzed using our SystemC based NoC simulation model and the
results are presented in Figure 6.23 and Figure 6.24. The simulation cases were chosen
so that the un-monitored routers are placed as evenly as possible in the network. This
way we defined four simulation cases where every second, every third, every sixth and
every twelfth monitor was removed from the network.

The figure shows that the removal of a monitor, even if it is just every 12th, has
notable influence on network throughput and the influence is even more remarkable when
there are faults in the network. Removal of every second monitor causes 18% performance
decrement in faultless network and 43% in the network with 10% of faulty links. In a
faultless network the performance is equal with the performance of a system without
traffic monitoring. In a faulty network there is 2% performance increase compared
with the unmonitored system. If just every 12th monitor is removed, the performance
decreases by 3% and 10%, respectively.

The removal of monitors has positive impact on area and traffic overheads caused by
the monitoring system. However, the total area of the monitoring system is almost neg-
ligible in comparison with the area of a 64-core NoC. This way the removal of monitors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, no faults

Reference

Every 2nd removed

Every 3rd removed

Every 6th removed

Every 12th removed

No monitoring

Figure 6.23: Throughput with fewer monitors. Csize = 5 and data processing is enabled.
No faults.

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sent packets [fraction of capacity]

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

 [
fr

a
c
ti
o
n
 o

f
c
a
p
a
c
it
y
]

Throughput, 10% of links faulty

Reference

Every 2nd removed

Every 3rd removed

Every 6th removed

Every 12th removed

No monitoring

Figure 6.24: Throughput with fewer monitors. Csize = 5 and data processing is enabled.
10% of links are faulty.

cannot be justified with the reduced complexity when the performance decrement is as
large as presented here. In application specific NoCs it could be reasonable to remove
monitors from areas where traffic is predictable so that the resources can be sized prop-
erly during the design phase and adaptivity is not necessary. However, in our work the
focus is on homogeneous general purpose NoCs so the monitors are placed evenly over
the network.

6.6 Summary

This chapter discussed and analyzed traffic management related issues in the dynamically
clustered distributed NoC monitoring structure. At first, different status data update
interval approaches were presented and their impact to overall performance and cost were
analyzed. Then, the diffusion of status data was studied and the effects of additional
status data processing were analyzed. Format of status data was studied and usage of
serial communication between monitors was analyzed. Finally, the effects of reduction
of the number of monitors was analyzed.

91

92

Chapter 7

Lightweight Task Mapping

Task mapping is an essential part of management of a multiprocessor
Network-on-Chip. In conventional processor systems tasks can be assigned statically
to processor cores during the design phase of the system. However, when there are tens
or hundreds of cores static mapping cannot exploit the full potential of the NoC in terms
of flexibility, scalability and performance. A large NoC is able to accommodate a lot of
different kind of tasks in various sizes. This capability is strongly limited if mapping has
to be carried out once and it cannot be reconfigured run time. An obvious solution to
this is dynamic task mapping which customizes task mapping during operation of the
system. The goal of task mapping is to find the trade-off between maximal processor
utilization and minimum communication resource utilization [74].

The task mapping methods can be roughly categorized in terms of three factors. The
first factor is the used system metrics that affect the mapping decisions. These metrics
are basically computational load of cores and traffic load of the network. The load
metrics show how much there are free computational and communication resources that
can be assigned for new tasks. These metrics can be used individually or in conjunction.
The second factor is the type of mapping implementation which can be centralized or
distributed. In the centralized approach there is a mapping processor which has complete
overall knowledge of the status of the system and makes all the mapping decisions. In
a distributed approach the mapping process is distributed in several units around the
system and it is carried out without centralized control. Finally, the third categorization
factor is the type of the mapping itself. The mapping can be static or dynamic. Static
mapping is done once and it remains unchanged during the operation of the system.
Dynamic mapping has a starting point when the tasks are mapped during the system
initialization, but the mapping can change and new tasks may be mapped during run
time.

Centralized mapping shares the same strengths and weaknesses as any centralized
system. They are relatively easy to implement and control because all the information is
collected into one place in the system. It is also good in terms of area overhead because
only one mapping processor is required. On the other hand, a centralized mapping is

93

fragile for faults and causes high monitoring and mapping traffic load especially around
the central controller.

Some characteristics, used in distributed run-time task mapping, are previously pre-
sented in different research articles. A run-time agent-based distributed application
mapping for on-chip communication has been presented in [4]. It is designed for hetero-
geneous multiprocessor systems. The approach presented in [4] uses fixed virtual clusters
and cluster agents which take care of task mapping in a cluster. There are also global
agents which map applications to different clusters.

Communication-aware heuristics for run-time task mapping on NoC-based MPSoC
(multiprocessor System-on-Chip) has been presented in [61]. Four run-time mapping
heuristics have been presented including mapping strategies which map a new task for
example to their nearest neighbor systematically or by choosing the best neighbor avail-
able. The mapping can be also communication-aware in a way that the distance between
two communicating tasks is tried to be minimized.

A decentralized task mapping approach for homogeneous multiprocessor NoCs has
been presented in [74]. The mapping is based on local information on processor workload,
task size, communication requirements and link contention. This information is collected
only from a close vicinity of a core. The presented task mapping algorithm tries to find
better mapping for current task scheme in the system.

Our goal is to extend the previously presented dynamically clustered network mon-
itoring structure to be used as a part of a lightweight task mapping mechanism. The
cores of the system should be able to independently assign tasks to other cores. The
proposed task mapping mechanism is based on the idea of mapping tasks to the best
available neighbor core. The idea behind our solution is that a core initiates task map-
ping by sending a mapping packet to another core which seems to be the best from its
own point of view. Mapping packets are discussed in Section 7.2. Finally, the task ends
up mapped to a core. The task can be mapped to a core where the initiator core sent the
mapping packet at the beginning or the task can be remapped further to a less loaded
core. The initiator core is only interested about the fact that the task will be executed
properly with a reasonable performance, without regarding which core does it.

7.1 Lightweight Distributed Task Mapping

Our lightweight distributed task mapping is based on the dynamically clustered monitor-
ing (DCM) structure (see Chapter 4). The DCM structure [55, 58] is originally designed
for traffic management purposes to collect traffic status and fault data from a network.
In this chapter the monitoring structure is enhanced and applied for dynamic run-time
task mapping purposes.

The task mapping mechanism is designed to be as lightweight as possible so that
acceptable performance can be reached with minimal area overhead. Intrusiveness of
run-time task mapping is also taken into account because any run-time management
operation should not interfere with the main operations of the system. The lightweight

94

task mapping is distributed to the monitors all around the network, which makes it
flexible and highly scalable. As the system is distributed, the added energy consumption
and heat generation are also distributed over the whole system. The communication
overhead is also moderate due to the lack of centralized control and long-distance control
related communication. Task mapping functionality is allocated into monitors and cores
so that the monitors take care of the neighbor core evaluation and the cores make the
mapping decisions. The system does not try to pursue optimal task mapping schemes but
good mapping schemes which lead to acceptable overall performance while maintaining
the other goals including flexibility, scalability and low intrusiveness.

Monitoring and mapping processes are distributed to cores and to separate monitor-
ing components which are directly connected to the cores. The monitors collect network
and computational load information from their neighborhood and offer this data, com-
bined with their own statuses, to their own neighbors. This way the cores do not only
have knowledge of their neighbors’ statuses but also wider overall knowledge of net-
work and computational load in different directions in the network. The neighbor data
collection and the monitoring principles were presented in Chapter 3.

Typically, tasks are mapped to the processors in the initialization phase of the system
and the execution of these initial tasks begins. This initial mapping can be done statically
during the design phase of the system or it can be left to the responsibility of an operating
system. The idea of the dynamic run-time task mapping is that while the initial task
mapping has been carried out at the initialization phase, the computational cores are
able to map new tasks at run-time independently without centralized control. This way
the operation of the system is flexible and the run-time reconfiguration does not cause
significant load to the system.

The status data in the distributed monitoring are collected from the neighbors and
the received data can also include data from the neighbors’ neighbors. Therefore, a
monitor does not have complete knowledge of the network but only the status of the
cores and routers in its own dynamic cluster (see Chapter 4). Complete knowledge is
not essential because one of the main principles of the lightweight task mapping is to
minimize the distance between tasks which are communicating with each other. Lower
computing performance could be beneficial if higher computing performance causes a
lot of long-distance communication, because overall performance is the joint effect of
computational and communication performance. Mapping to a remote core on the other
side of the network is possible if necessary. This has been made possible by a task
remapping mechanism which can forward a mapping packet until a suitable core has
been found. The remapping is discussed later in this chapter.

One essential principle in the lightweight task mapping mechanism is that the initial
mapper does not know in the beginning where its task will finally be mapped. This
knowledge is irrelevant. All that a core has to know is that the task will end up to a
core where it can be executed with acceptable performance. When the task has been
mapped, the original mapper is informed where the task resides. This information is not
needed prior to completion of the mapping.

95

7.1.1 Core Load Monitoring and Reporting

The lightweight task mapping mechanism is designed as a part of the dynamically clus-
tered monitoring structure where the cluster size of 13 is utilized. In a dynamically
clustered structure each core has knowledge of the cores in its own dynamic cluster
which comprises the 12 nearest neighbors around the core. The data collection is carried
out similarly as in the network status data collection (see Chapters 4 and 6). Each mon-
itor has a table where it stores values which illustrate free computational capacity in the
neighboring cores. The table is kept up to date as new monitoring packets arrive. The
monitoring packet arrival frequency is determined by the used update interval, which
has been discussed in Section 6.1.

The monitor reports the index of the currently best neighbor core to the local core.
The selection of the best core is discussed in Section 7.2.1. The absolute value of the free
capacity in the best core can be reported with the index of the core if it is required by
the used mapping decision strategy. Mapping decision strategies are discussed in Section
7.2.2.

7.2 Mapping Decision Process

The mapping decision process is implemented in cores and monitors and the process is
divided into four steps which are illustrated in Figure 7.1. The process starts when a
master core decides to map a task. It generates a task mapping packet which is notably
similar to a monitoring packet (see Chapter 3) but the packet type indicator indicates
that it is a task mapping related control packet. A mapping packet includes the definition
of the task, the size of the task and the address of the original mapper. The monitor
defines which of the cores in the know neighborhood is currently the best candidate
and the core sends the mapping packet to this core. The phases, described above,
are executed in the initialization phase. When the chosen destination core receives a
mapping packet, it has two options how to deal with the packet. The core can decide to
execute the task by itself or it can remap the task to some other core. When the core
decides to remap, it can choose the best neighbor from its neighborhood or return the
task to the original mapper.

7.2.1 Neighbor Evaluation

The monitor decides which core in its known neighborhood is currently the best one to
receive new tasks to be executed. In our task mapping method, the evaluation is based
on computational load (core load), communication resource load or a combination of
these two load metrics. Maximum core load is the core capacity which in here is an
abstractly defined concept. It represents a size of a typical task which can be assigned
at a time to a core. The core capacity can be overloaded which basically means that
the overloading task waits for the previous task to be completed. The communication

96

- Choose the best neighbor.
- Send mapping packet.

- Define task properties.

- Notify mapping core.
- Establish communication between cores.

- Increase mapping distance counter.
- Choose the best neighbor.
- Send mapping packet.

?

-

?

�

NOYES

Initialization.

Mapping packet received.
- Move mapping packet to core.

Is it feasible to execute the task at this core?

Task mapped.

Remapping.

Figure 7.1: Mapping decision process.

97

resource load is the same metric which is used in traffic management to reconfigure
adaptive routing at run-time (see Chapter 6).

Core-Load-Aware Evaluation

Core-load-aware neighbor evaluation is the simplest evaluation option. The monitor
compares the core load values of its neighbors and chooses the one with the highest free
capacity as the currently best neighbor core. The core load values are defined so that a
core measures its current load (Cused) and subtracts it from its maximum computational
capacity (Cmax). This result is the current free capacity (Cfree) of the core and it is
used as a core status value in the core-load-aware evaluation.

Cfree = Cmax − Cused (7.1)

Communication-Aware Evaluation

Communication in the network is mainly caused by the tasks which communicate with
each other. If we define that memory accesses and I/O communication are also essen-
tially tasks, all communication takes place between tasks. Therefore, there should be
a relation between the computational core load and communication resource load. A
simple communication-aware neighbor evaluation uses only the traffic monitoring data
and chooses the best neighbor core based on this traffic information. The traffic status
(Straffic) is calculated using Equation 6.3 (see Section 6.2.1). This is a very lightweight
mapping solution because there is no need for the core load monitoring at all. However,
one can assume that the accuracy suffers when the decisions are based on secondary
information, the communication load information in this case.

Core-Load- and Communication-Aware Evaluation

The third neighbor evaluation approach is a combination of the above evaluation ap-
proaches. It is both core-load- and communication-aware. The core load and commu-
nication statuses are combined to a single status value which represents both the free
computational capacity and the status of the communication resources. The core load
status values show the amount of free capacity so that a larger value represents smaller
core load and that way a larger amount of free capacity. The traffic status values, which
are used to measure the load of communication resources, represent the traffic status so
that a larger value corresponds to a larger load in the network. A combined core load
and communication status value (Ccombined) is calculated using equation

Ccombined = Cfree − Straffic, (7.2)

where Cfree is calculated using Equation 7.1 and Straffic is the traffic status value in
the direction of the core. Finally, the selection of the best neighbor core is based on the
ranking of these combined core load and communication values. An additional weight

98

factor can be utilized to adjust the significance of the traffic status in Equation 7.2. In the
presented communication-aware evaluation approaches the available fault information is
utilized so that tasks are not mapped in directions where a fault has been observed.

7.2.2 Mapping Decision Strategies

The task mapping decision strategy defines what a core does when it receives a task
mapping packet. There are three procedures to select from: the core can take over the
task and the mapping is completed, the core can do a remapping and map the task
forward to a core which seems the best from its point of view, or the core can return the
mapping packet to the original mapper. This study includes four different task mapping
decision strategies which execute these three procedures based on the defined strategy.
These strategies are presented below.

1. Remapping forward if there is not enough free capacity for the task in the current
core. The task is remapped as long as it ends up to a suitable core. The disad-
vantage of this decision strategy is that the mapping distance is unbounded. The
tasks can be mapped far away from the mapper and if there is no suitable core in
the network, the mapping packet is finally dropped similarly as un-routable data
packets. If the mapping packet is dropped the task will not be completed and the
orginator of the task has to initiate another instance of the same task mapping.

2. Core capacity overloading if mapping distance exceeds a statically defined distance
threshold even if there is not enough free capacity in the current core. There is
a counter in a mapping packet which shows how many times the mapping has
been tried. Naturally this has a negative impact on the system performance. This
decision strategy eliminates the disadvantage of the mapping strategy 1. However,
the core overloading has a negative influence to the system performance. The
mapping distance is bounded with the distance threshold and thus it can be kept
moderate.

3. Capacity overloading if there is not enough free capacity in the known neighbor-
hood. This strategy requires knowledge of the amount of free capacity in the
neighboring cores so that the monitor has to report not only the ID of the best
neighbor but also the amount of its free capacity. Performance-wise this is a good
strategy because when a core is overloaded the distance between the mapper core
and the mapped tasks remains moderate. The mapping distances can be kept
even shorter than in decision strategy 2. However, this strategy requires higher
monitoring complexity due to detailed capacity reporting.

4. Remapping backwards if not enough free capacity in the known neighborhood or
in the current core. This strategy is similar to the previous (3) strategy. The
difference is that when enough free capacity cannot be found, the current core
is not overloaded but the mapping packet is returned to the mapper. In this

99

case the original mapper core recognizes that the packet is returned and overloads
itself. In terms of performance there is a compromise that when core overloading
is required the communication between cores is eliminated. The elimination of
inter-core communication increases performance by lowering the communication
resource load. However, packet returning and identification of returned mapping
packets requires even more complex logic than the decision strategy 3.

7.3 Enhanced Monitoring System

Several modifications to the monitoring system are made to enable the task mapping in
the dynamically clustered Network-on-Chip. The main improvements concern core and
monitor modules while there are also smaller modifications in the router attributes and
packet structure.

Each core has two new parameters, capacity and load. Capacity represents the com-
putational capability of a core while load indicates how many units of the capacity is
currently used. Capacity in this framework is an abstract concept (see Section 7.2.1).
It can be seen as a typical maximum size of the task queue in a core. However, there is
a possibility to overload a core by extending the size of the task queue. The core also
has mechanisms to initiate task mapping, to assign a task to itself and to remap a task
further.

Monitor components have been developed further to be able to collect also the core
load data in addition to the network status information. An enhanced monitor also
includes neighbor evaluation mechanisms which rank the neighbors and chooses the
currently best neighbor core based on the used evaluation approach.

The routers are modified so that the task mapping packets have the second highest
priority after monitoring packets. The prioritization is required to prevent mapping
packets to get stuck in the network. However, the priority is not seen as important as
the priority of the monitoring packets because in a highly loaded network the mapping
of new tasks is arguable. The implementation of task mapping features in the simulation
environment has been discussed in Section 5.4.5.

7.4 Case Study: Mapping Tasks

The functionality of the lightweight distributed task mapping algorithm was demon-
strated as a case study. The demonstration was carried out using the presented NoC
simulation environment (see Chapter 5). A mesh-shaped NoC containing 64 cores and
routers (8 x 8) was modeled. The details to be examined concern the number of mapping
decision attempts, distances between the mappers and the mapped tasks as well as the
amount of failed mappings. The distribution of the computational core load was also
examined. The used neighbor evaluation approaches are denoted as in Table 7.1. The
notation of mapping decision strategies was presented in Section 7.2.

100

Table 7.1: Neighbor evaluation approaches.

Description

a Core load based evaluation.

b Communication based evaluation.

c Combined core load and communication based evaluation.

The purpose of this demonstration is not to find an absolute answer to which of
these presented mapping strategies and evaluation approaches are the best in any given
application. The case study is based on comparison of the mapping approaches and it
is realized using examples showing how their functionality differs in a specific situation.
The demonstration scheme has been chosen so that it would show the essential properties
of different mapping approaches when the system is loaded with new tasks. The mapper
cores are located in a large area in the middle of the network so that balanced task
mapping is possible. To imitate mapping schemes of real systems the mapper area is
not symmetric.

The starting point for the simulations is a 64-core NoC without any traffic or com-
putational load on any core. During the simulation 14 cores initiate a task mapping
one after another. These 14 cores are shown in Figure 7.2. This is repeated 4 times so
that each of these cores initiates and sends 4 mapping packets totalling 56 tasks to be
mapped. The example system consists of identical multipurposes cores so that each task

Figure 7.2: Task mapping initiator cores marked with gray.

101

Table 7.2: Task mapping results.

MDS NEA Task distance Mapping decisions Drop-%

1 a 1.74 1.23 16.07
1 b 2.00 2.10 64.29
1 c 1.87 1,38 16.07

2 a 1.91 1.42 0.00
2 b 1.91 2.11 0.00
2 c 1.98 1.43 0.00

3 a 1.71 1.13 0.00
3 b 1.09 1.07 0.00
3 c 1.79 1.18 0.00

4 a 1.48 1.23 0.00
4 b 0.32 1.75 0.00
4 c 1.34 1.25 0.00

MDS: Mapping

decision strategy.
NEA: Neighbor evaluation approach.

Task distances and mapping decisions are average values.

can be executed in any of the cores. Communication in the network is modelled so that
there is continuous communication between a mapper and the related core in which the
task is mapped.

The results of the case study demonstration are collected into Table 7.2. Notice,
that when using the decision strategy 1 the mapping packet drop percentage is very
large especially when the communication-aware neighbor evaluation is used (64,29 %).
High drop rate indicates that simple communication-aware neighbor evaluation does not
reflect the computational status well enough. Because of the core overload mechanism
of the other decision strategies, the mapping packet drop does not exist when those
strategies are used.

The differences in the task distances and mapping decision attempt counts are not
that prominent. The minimum of the task distances is reached using the decision strategy
4. The short task distances are explained by the mapping returning mechanism which
eliminates the communication completely in some of the cases.

The computational core load at the end of each simulation is illustrated in Figure
7.3, Figure 7.4, Figure 7.5 and Figure 7.6. The color of the core shows the amount of the
load. White cores are not loaded at all while black cores are highly overloaded. As can be
noticed the purely communication-aware evaluation approach causes significantly uneven
core load distribution. As was mentioned previously, there is a correlation between
core load and communication resource load even though the relation is not perfect.
An obvious uncertainty is caused by the fact that communication between two cores
distributes the communication load evenly on the network path between these cores.

102

Core capacity Communication capacity Combined

Figure 7.3: Core load with mapping decision strategy 1.

Core capacity Communication capacity Combined

Figure 7.4: Core load with mapping decision strategy 2.

Core capacity Communication capacity Combined

Figure 7.5: Core load with mapping decision strategy 3.

Core capacity Communication capacity Combined

Figure 7.6: Core load with mapping decision strategy 4.

103

External observer cannot separate routers which are connected to a highly loaded core
from routers which are just situated along a highly loaded network path. Network status
data are also partly inaccurate because it shows the load of a router and not the exact
load of a link. This inaccuracy has been discussed in Chapter 3.

Other evaluation approaches lead to moderately even load distribution. One can note
that when decision strategy 4 is applied the number of overloaded cores is somewhat
higher than with the other strategies. These overloaded cores are mostly situated in the
middle of the network and middle of the area of mapper cores (see Figure 7.2). The
tasks which are initialized from the middle of the loaded area end up more probably
in situation where the task cannot be mapped. In this kind of situation the strategy 4
returns the mapping packet to the mapper core. This causes concentrated overloading
in the middle of the highly loaded area.

While the strategy 1 causes unacceptable mapping packet dropping it seems that
the decision strategies 2 and 3 with core-load-aware or combined neighbor evaluation
approach (a or c) are the considerable alternatives. In this case study, the usage of
communication status information in the combined neighbor evaluation approach does
not cause notable load distribution differences in one direction or another. However, the
overhead of combined evaluation related to the core-load-aware evaluation is minimal
because the communication status information is anyway available in monitors.

7.5 Summary and Future Work

A task mapping approach applying the previously presented DCM structure was pre-
sented and its functionality demonstrated in this chapter. The presented demonstration
shows that an enhanced DCM structure is suitable for lightweight task mapping pur-
poses. Lightweight task mapping does not aim for perfect mapping results but schemes
with acceptable performance so that run-time task mapping is enabled. The mechanism
is lightweight so that reasonable mapping performance can be reached with minimal
complexity, energy and area overhead. Four different mapping decision processes and
three neighbor evaluation approaches were studied. The demonstration shows that core
load monitoring is essential in task mapping and it cannot be fully replaced with com-
munication monitoring even though core load and communication load are related to
each other.

The core load monitoring protocol steers tasks to the best cores in the known neigh-
borhood. The goal is to make the process as simple and lightweight as possible. The
optimal solution would choose not the best but the most suitable core, taking into ac-
count that it is not always profitable to accommodate small tasks to the cores with the
largest free capacity. Then, for instance, small task would be mapped on a core which
has free capacity just for a small task and it cannot accommodate larger tasks. However,
if the task sizes are equalized the difference between lightweight and optimal solutions
decreases.

In this chapter the basic functionality of the presented task mapping algorithm was

104

demonstrated in a form of a case study. In future works a more comprehensive analysis
should be carried out to generalize the results and adjust the features of the presented
algorithm.

105

106

Chapter 8

Conclusions

Dynamic monitoring methods for Networks-on-Chip were studied and a dynamically
clustered distributed monitoring approach was presented and analyzed in this thesis. Es-
sential background information concerning principles of Networks-on-Chip were studied
including different topologies, routing algorithms, network flow control as well as com-
mon problems on NoCs. Monitoring of Networks-on-Chip was discussed and different
monitoring structures were studied. Finally, issues concerning the presented dynamically
clustered monitoring structure (DCM) were discussed and analyzed using an in-house
simulation environment.

Our analysis shows that centralized monitoring is slow and causes significant com-
munication overhead to the system while there are tasks, especially related to traffic
management, which can be implemented without centralized control. A selection be-
tween dedicated and shared resources is an essential decision in terms of intrusiveness,
performance and area overhead of a monitoring system. If the designer decides to use
dedicated resources, it could be reasonable to use centralized monitoring. Otherwise,
if shared resources are used, at least network management should be distributed to
minimize the need for centralized control and the complexity of centralized monitors.
In a large, complex system it may also be reasonable to use hybrid monitoring struc-
tures. A hybrid monitoring structure has both distributed and centralized monitoring
services, possibly also clustered services, in the same system. Relatively simple and fre-
quently repeated network monitoring tasks are carried out using distributed monitoring
which optimizes the network resource utilization. The centralized monitoring is typically
needed for system diagnostic purposes and for tasks which cannot be executed without
centralized control. Traffic management is basically quite regional which means that
most of the traffic related problems can be solved using the resources near the prob-
lematic areas. In most of the cases there is no need to know the situation at the other
side of the network but the status of the neighbors, their neighbors and so on as far as
required. This decreases the need for centralized control and releases resources for other
tasks, for instance load balancing, optimization and reconfiguration.

The work, presented in this thesis, includes extensive analysis of the dynamically

107

clustered distributed monitoring approach. To make the analysis possible an in-house
SystemC based NoC simulation environment was designed and implemented. It has
been proved to be an efficient tool for analyzing and simulating different aspects in
Networks-on-Chip. The simulation environment can be easily configured for analysis of
different features which makes it a flexible tool for early phase analysis. The simulation
environment was used to analyze monitoring algorithms, monitoring data diffusion areas,
the format of monitoring data and communication as well as the number of monitors.
The presented research shows that in most cases simple monitoring algorithms and small
monitoring cluster areas perform at least as well as more complex implementations. In
this thesis the added value of more complex monitoring structures was found small or
negligible in terms of performance. Thus, acceptable monitoring performance can be
reached using relatively simple monitoring structures. Another observation is that even
small adjustments in the system parameters, such as monitoring data update frequencies
or numbers of used monitors, can have a significant influence to the overall performance.
Therefore the parameters should be chosen carefully while designing complex distributed
monitoring structures.

The presented DCM structure was applied for task management to analyze its flexibil-
ity for purposes other than traffic management. The presented distributed task mapping
method was analyzed with the NoC simulation environment using different mapping deci-
sion strategies and various neighbor evaluation approaches. The analysis showed that the
dynamically clustered monitoring structure can be utilized for autonomous distributed
task mapping. It was also noted that proper functionality of the distributed task map-
ping requires accurate information about computational load of cores. Even though the
communication resource load is related to computational load, it is not accurate enough
to be applied for task mapping purpose.

The proposed distributed monitoring system is flexible and scalable, which makes is
suitable for Networks-on-Chip because flexibility and scalability are natural characteris-
tics of these on-chip networks. Distributing the functionality and partitioning the system
into smaller parts improves system level fault tolerance because then a faulty component
cannot have severe influence on the overall functionality of the system. The presented
analysis shows that distributed monitoring systems load the network less than typical
centralized systems. Fault tolerance, communication overhead and diffusion of monitor-
ing data can be improved by clustering a system into smaller parts. However, clustered
structures do not reach the performance of totally distributed monitoring systems. The
main drawback of distributed monitoring is the lack of global status information which
may be required in reconfiguration tasks such as system-level energy consumption opti-
mization. The outcome is that in large and complex systems it can be beneficial to have
both centralized and distributed structures.

Performance of the DCM structure could be adjusted by using different sized mon-
itoring clusters in different areas in the network. Areas with low traffic load may work
at reasonable performance using very simple deterministic routing algorithms. At the
same time in the same system, there could be performance critical areas with high
traffic loads and strict quality of service requirements. Larger monitoring clusters and

108

adaptive routing algorithms are suitable for these critical areas. The cluster sizes and
routing algorithms can be made run time reconfigurable to enable extensive optimization
capability.

In design of complex multiprocessor systems, the focus should be kept on the compu-
tational features while the implementation of the communication infrastructure should
be straightforward without time consuming design of essential structures. Reusable and
fully scalable distributed monitoring structures can be utilized in systems of different
sizes without complicated customization processes. The structures should be developed
towards general communication platforms which conform to different systems with vary-
ing performance and operational requirements.

The work presented in this thesis has notable potential for further development. The
presented NoC simulation environment can be extended and developed for analysis of
distinct new systems and features. The foundations of dynamically clustered network
monitoring have been presented and analyzed in this thesis. Future work should lead
the DCM structure towards physical implementations as parts of high performance mul-
tiprocessor systems.

109

110

Bibliography

[1] SystemC. http://www.accellera.org/.

[2] M.A. Al Faruque, T. Ebi, and J. Henkel. ROAdNoC: Runtime observability for an
adaptive Network on Chip architecture. In IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2008, pages 543–548, November 2008.

[3] M.A. Al Faruque, T. Ebi, and J. Henkel. AdNoC: Runtime adaptive network-
on-chip architecture. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 20(2):257–269, February 2012.

[4] M.A. Al Faruque, R. Krist, and J. Henkel. Adam: Run-time agent-based distributed
application mapping for on-chip communication. In 45th ACM/IEEE Design Au-
tomation Conference, DAC 2008, pages 760–765, June 2008.

[5] M. Ali, M. Welzl, and S. Hellebrand. A dynamic routing mechanism for network
on chip. In 23rd NORCHIP Conference, pages 70–73, November 2005.

[6] S. Amstutz. A new store and forward message switching system. IEEE Transactions
on Communication Technology, 19(4):528 –529, August 1971.

[7] D. Andreasson and S. Kumar. Slack-time aware routing in noc systems. In IEEE
International Symposium on Circuits and Systems, pages 2353–2356, May 2005.

[8] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Online oblivious routing. In
Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, pages 44–49, 2003.

[9] L. Benini and G. De Micheli. Networks on Chip: a new paradigm for Systems on
Chip design. In Design, Automation & Test in Europe, DATE ’02, pages 418–419,
2002.

[10] D. Bertozzi, L. Benini, and G. De Micheli. Error control schemes for on-chip com-
munication links: the energy-reliability tradeoff. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24(6):818–831, June 2005.

111

[11] A. Borella, G. Cancellieri, F. Chiaraluce, and F. Meschini. Tree topologies in atm
networks. In Singapore ICCS/ISITA ’92. ’Communications on the Move’, volume 1,
pages 162–166, November 1992.

[12] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. Van Meerbergen. An
event-based monitoring service for Networks on Chip. ACM Transactions on Design
Automation of Electronic Systems, 10(4):702–723, 2005.

[13] C. Ciordas, K. Goossens, A. Radulescu, and T. Basten. NoC monitoring: impact
on the design flow. In IEEE International Symposium on Circuits and Systems,
ISCAS 2006, pages 1981–1984, 2006.

[14] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann, 2004.

[15] W.J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Dis-
tributed Systems, 3(2):194 –205, March 1992.

[16] W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection
networks. In Design Automation Conference, pages 684–689, 2001.

[17] M. Dehyadgari, M. Nickray, A. Afzali-kusha, and Z. Navabi. Evaluation of pseudo
adaptive xy routing using an object oriented model for noc. In The 17th Interna-
tional Conference on Microelectronics, December 2005.

[18] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks, an Engineering
Approach. Morgan Kaufmann, 2003.

[19] T. Dumitras and R. Marculescu. On-chip stochastic communication. In Design,
Automation and Test in Europe Conference and Exhibition, 2003, pages 790 – 795,
2003.

[20] R. Farivar, M. Fazeli, and S.G. Miremadi. Directed flooding: a fault-tolerant routing
protocol for wireless sensor networks. In Proceedings of Systems Communications,
pages 395 – 399, August 2005.

[21] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In 33rd Annual
Symposium on Foundations of Computer Science, pages 553–562, October 1992.

[22] D. Fick, A. DeOrio, Jin Hu, V. Bertacco, D. Blaauw, and D. Sylvester. Vicis:
A reliable network for unreliable silicon. In 46th ACM/IEEE Design Automation
Conference, DAC ’09, pages 812–817, July 2009.

[23] L. Fiorin, G. Palermo, and C. Silvano. MPSoCs run-time monitoring through
Networks-on-Chip. In Design, Automation & Test in Europe, DATE ’09, pages
558–561, April 2009.

112

[24] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal Network on Chip: Con-
cepts, architectures and implementations. In IEEE Design & Test of Computers,
volume 22, pages 414–421, 2005.

[25] P. Gratz, B. Grot, and S.W. Keckler. Regional congestion awareness for load balance
in networks-on-chip. In IEEE 14th International Symposium on High Performance
Computer Architecture, HPCA 2008, pages 203–214, February 2008.

[26] C. Grecu, A. Ivanov, R. Saleh, and P.P. Pande. Testing network-on-chip communi-
cation fabrics. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26(12):2201–2214, December 2007.

[27] C. Grecu, P. Pande, A. Ivanov, and R. Saleh. BIST for network-on-chip interconnect
infrastructures. In 24th IEEE VLSI Test Symposium, pages 30–35, May 2006.

[28] K. Hamwi and O. Hammami. Design and implementation of mpsoc single chip with
butterfly network. In 18th IEEE/IFIP VLSI System on Chip Conference (VLSI-
SoC), pages 143–148, September 2010.

[29] J. Hu and R. Marculescu. DyAD – smart routing for networks-on-chip. In Proceed-
ings, 41st Design Automation Conference, pages 260–263, 2004.

[30] P. Ituero, M. Lopez-Vallejo, M.A.S. Marcos, and C.G. Osuna. On-chip monitoring:
A light-weight interconnection network approach. In 14th Euromicro Conference
on Digital System Design (DSD), pages 619–625, September 2011.

[31] B. W. Johnson. Design and Analysis of Fault-Tolerant Digital Systems. Addison-
Wesley, 1989.

[32] H. Kariniemi and J. Nurmi. Arbitration and routing schemes for on-chip packet net-
works. In J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, editors, Interconnect-
Centric Design for Advanced SoC and NoC, pages 253–282. Kluwer Academic Pub-
lishers, 2004.

[33] W. Karl, M. Leberecht, and M. Oberhuber. SCI monitoring hardware and software:
Supporting performance evaluation and debugging. In Hermann Hellwagner and
Alexander Reinefeld, editors, SCI: Scalable Coherent Interface, volume 1734, pages
417–432. Springer Berlin, Heidelberg, 1999.

[34] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A new computer
communication switching technique. Computer Networks, 3:267–286, 1979.

[35] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C.R. Das. A low latency
router supporting adaptivity for on-chip interconnects. In Proceedings, 42. Design
Automation Conference, pages 559–564, June 2005.

[36] T. Lehtonen. On Fault Tolerant Methods for Networks-on-Chip. PhD thesis, Turku
Centre for Computer Science (TUCS), Turku, Finland, October 2009.

113

[37] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu. Self-adaptive
system for addressing permanent errors in on-chip interconnects. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 18(4):527–540, April 2010.

[38] H. Li and M. Maresca. Polymorphic-torus network. Computers, IEEE Transactions
on, 38(9):1345–1351, September 1989.

[39] Zhonghai Lu and Axel Jantsch. Tdm virtual-circuit configuration for network-on-
chip. IEEE Transactions on Very Large Scale Integration Systesms, 16(8):1021–
1034, August 2008.

[40] M. Majer, C. Bobda, A. Ahmadinia, and J. Teich. Packet routing in dynamically
changing networks on chip. In Proceedings, 19th IEEE International Parallel and
Distributed Processing Symposium, April 2005.

[41] T. Marescaux, A. R̊angevall, V. Nollet, A. Bartic, and H. Corporaal. Distributed
congestion control for packet switched Networks on Chip. In International Confer-
ence ParCo 2005, pages 761–768, 2005.

[42] G. De Micheli and L. Benini. Networks on Chips. Morgan Kaufmann, 2006.

[43] J.M. Montanana, M. Koibuchi, H. Matsutani, and H. Amano. Balanced dimension-
order routing for k-ary n-cubes. In International Conference on Parallel Processing
Workshops, ICPPW ’09., pages 499 –506, September 2009.

[44] R.B. Mouhoub and O. Hammami. NoC monitoring hardware support for fast NoC
design space exploration and potential NoC partial dynamic reconfiguration. In
International Symposium on Industrial Embedded Systems, IES ’06, pages 1–10,
October 2006.

[45] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini, and G. De
Micheli. Analysis of error recovery schemes for networks on chips. IEEE Design &
Test of Computers, 22(5):434–442, September-October 2005.

[46] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. Load distribution with the
proximity congestion awareness in a Network on Chip. In Design, Automation &
Test in Europe, DATE ’03, 2003.

[47] V. Nollet, T. Marescaux, and D. Verkest. Operating-system controlled Network on
Chip. In 41st Design Automation Conference, pages 256–259, 2004.

[48] J. Nurmi. Network-on-chip: A new paradigm for system-on-chip design. In Proceed-
ings 2005 International Symposium on System-on-Chip, pages 2–6, August 2005.

[49] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, editors. Interconnect-centric De-
sign for Advanced SoC and NoC. Kluwer Academic Publishers, Dordrecht, Nether-
lands, 2004.

114

[50] K. Oommen and D. Harle. Hardware emulation of a network on chip architecture
based on a clockwork routed manhattan street network. In International Conference
on Field Programmable Logic and Applications, pages 727–728, August 2005.

[51] S. Pasricha and N. Dutt. On-Chip Communication Architectures: System on Chip
Interconnect. Morgan Kaufmann, 2008.

[52] R. J. Perlman. Fault-tolerant broadcast of routing information. In INFOCOM,
pages 93–102, 1983.

[53] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir, and M.J.
Irwin. Fault tolerant algorithms for network-on-chip interconnect. In Proceedings of
IEEE Computer society Annual Symposium on VLSI, 2004., pages 46 – 51, February
2004.

[54] J. M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice Hall, Inc,
Upper Saddle River, NJ, 1996.

[55] V. Rantala, T. Lehtonen, P Liljeberg, and J. Plosila. Analysis of monitoring struc-
tures for network-on-chip – a distributed approach. IGI International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), 2(1):49–67, 2011.

[56] V. Rantala, T. Lehtonen, P. Liljeberg, and J. Plosila. Analysis of status data
update in dynamically clustered network-on-chip monitoring. In 1st International
Conference on Pervasive and Embedded Computing and Communication Systems,
PECCS 2011, March 2011.

[57] V. Rantala, T. Lehtonen, and J. Plosila. Network on chip routing algorithms.
Technical Report 779, TUCS Technical Report, August 2006.

[58] V. Rantala, P. Liljeberg, and J. Plosila. Status data and communication aspects
in dynamically clustered network-on-chip monitoring. Journal of Electrical and
Computer Engineering, 2012(2012), 2012.

[59] E. Rijpkema, K. Goossens, and P. Wielage. A router architecture for networks on
silicon. In Proceedings of Progress 2001, 2nd Workshop on Embedded Systems, 2001.

[60] L. G. Roberts and B. D. Wessler. Computer network development to achieve re-
source sharing. In Proceedings of the Spring Joint Computer Conference, AFIPS
’70 (Spring), pages 543–549, 1970.

[61] A.K. Singh, T. Srikanthan, A. Kumar, and W. Jigang. Communication-aware
heuristics for run-time task mapping on noc-based mpsoc platforms. Journal of
Systems Architecture, 56:242–255, July 2010.

[62] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The case for lifetime reliability-
aware microprocessors. In 31st Annual International Symposium on Computer Ar-
chitecture, pages 276 – 287, June 2004.

115

[63] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.

[64] M. Tagel, P. Ellervee, and G. Jervan. Scheduling framework for real-time dependable
noc-based systems. In Proceedings of the International Symposium on System-on-
Chip (SOC 2009), pages 95–99, October 2009.

[65] K.-C. Tai. Definitions and detection of deadlock, livelock, and starvation in con-
current programs. In International Conference on Parallel Processing, ICPP 1994.,
volume 2, pages 69 –72, August 1994.

[66] Z. Tianxu and D. Xuchao. Reliability estimation model of ic’s interconnect based
on uniform distribution of defects on a chip. In Proceedings of the 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, pages
11–17, November 2003.

[67] B. Towles, W. J. Dally, and S. Boyd. Throughput-centric routing algorithm de-
sign. In Proceedings, 15th ACM symposium on Parallel algorithms and architectures,
pages 200–209, 2003.

[68] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proceedings of the thirteenth annual ACM symposium on Theory of computing,
STOC ’81, pages 263–277, New York, NY, USA, 1981. ACM.

[69] J.W. van den Brand, C. Ciordas, K. Goossens, and T. Basten. Congestion-controlled
best-effort communication for Networks-on-Chip. In Design, Automation & Test in
Europe, DATE ’07, pages 1–6, April 2007.

[70] H.-S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser.
Emerging Nanoelectronics: Life with and after CMOS (Vol. 1), chapter Nanoscale
CMOS, pages 46–83. Kluwer Academic Publishers, Norwell, MA, 2005.

[71] M. Yang, T. Li, Y. Jiang, and Y. Yang. Fault-tolerant routing schemes in
rdt(2,2,1)/α-based interconnection network for networks-on-chip designs. In Pro-
ceedings, 8th International Symposium on Parallel Architectures, Algorithms and
Networks, December 2005.

[72] Zhang Ying, Wu Ning, Wan Yu Peng, Ge Fen, and Zhou Fang. Fault-tolerant
schemes for NoC with a network monitor. In International Symposium on Commu-
nications and Information Technologies (ISCIT), pages 1083 –1086, October 2010.

[73] Jia Zhao, S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier. A dedicated
monitoring infrastructure for multicore processors. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 19(6):1011–1022, June 2011.

[74] P. Zipf, G. Sassatelli, N. Utlu, N. Saint-Jean, P. Benoit, and M. Glesner. A decen-
tralized task mapping approach for homogeneous multiprocessor network-on-chips.
International Journal of Reconfigurable Computing, 2009, 2009.

116

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2823-0
ISSN 1239-1883

V
ille R

antala

V
ille R

antala
O

n D
ynam

ic M
onitoring M

ethods for N
etw

orks-on-C
hip

O
n D

ynam
ic M

onitoring M
ethods for N

etw
orks-on-C

hip

