178 research outputs found

    Statistical characteristics of the envelope in diversity combining of two correlated Rayleigh fading channels

    Get PDF
    Performance of diversity systems is often evaluated under the assumption of perfect interleaving and characterised in terms of long-term parameters such as the average bit-error rate, which does not capture the dynamics of fading channels. Statistical characteristics (static and dynamic) of the envelope of two correlated Rayleigh fading channels are explored using a physical model. For two popular diversity-combining schemes, maximal ratio combining and selection combining, both static and dynamic (level-crossing rate) properties of correlated fading channels are derived. These results are very useful for performance evaluation of diversity systems without bit-level simulations. The results can also provide very useful characteristics such as average duration of fades, fading rate and outage probability for two-channel diversity systems and can be extended to multiple fading channels

    Design and development of mobile channel simulators using digital signal processing techniques

    Get PDF
    A mobile channel simulator can be constructed either in the time domain using a tapped delay line filter or in the frequency domain using the time variant transfer function of the channel. Transfer function modelling has many advantages over impulse response modelling. Although the transfer function channel model has been envisaged by several researchers as an alternative to the commonly employed tapped delay line model, so far it has not been implemented. In this work, channel simulators for single carrier and multicarrier OFDM system based on time variant transfer function of the channel have been designed and implemented using DSP techniques in SIMULINK. For a single carrier system, the simulator was based on Bello's transfer function channel model. Bello speculated that about 10Βτ(_MAX) frequency domain branches might result in a very good approximation of the channel (where в is the signal bandwidth and τ(_MAX) is the maximum excess delay of the multi-path channel). The simulation results showed that 10Bτ(_MAX) branches gave close agreement with the tapped delay line model(where Be is the coherence bandwidth). This number is π times higher than the previously speculated 10Bτ(_MAX).For multicarrier OFDM system, the simulator was based on the physical (PHY) layer standard for IEEE 802.16-2004 Wireless Metropolitan Area Network (WirelessMAN) and employed measured channel transfer functions at the 2.5 GHz and 3.5 GHz bands in the simulations. The channel was implemented in the frequency domain by carrying out point wise multiplication of the spectrum of OFDM time The simulator was employed to study BER performance of rate 1/2 and rate 3/4 coded systems with QPSK and 16-QAM constellations under a variety of measured channel transfer functions. The performance over the frequency selective channel mainly depended upon the frequency domain fading and the channel coding rate

    Narrow band digital modulation for land mobile radio.

    Get PDF

    Statistical characteristics of the envelope in diversity combining of two correlated Rayleigh fading channels

    Full text link

    A novel-iterative simulation method for performance analysis of non-coherent FSK/ASK systems over rice/rayleigh channels using the wolfram language

    Get PDF
    In this paper, a new approach in solving and analysing the performances of the digital telecommunication non-coherent FSK/ASK system in the presence of noise is derived, by using a computer algebra system. So far, most previous solutions cannot be obtained in closed form, which can be a problem for detailed analysis of complex communication systems. In this case, there is no insight into the influence of certain parameters on the performance of the system. The analysis, modelling and design can be time-consuming. One of the main reasons is that these solutions are obtained by utilising traditional numerical tools in the shape of closed-form expressions. Our results were obtained in closed-form solutions. They are resolved by the introduction of an iteration-based simulation method. The Wolfram language is used for describing applied symbolic tools, and Schematic Solver application package has been used for designing. In a new way, the probability density function and the impact of the newly introduced parameter of iteration are performed when errors are calculated. Analyses of the new method are applied to several scenarios: Without fading, in the presence of Rayleigh fading, Rician fading, and in cases when the signals are correlated and uncorrelated

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    Frame synchronization for PSAM in AWGN and Rayleigh fading channels

    Get PDF
    Pilot Symbol Assisted Modulation (PSAM) is a good method to compensate for the channel fading effect in wireless mobile communications. In PSAM, known pilot symbols are periodically inserted into the transmitted data symbol stream and the receiver uses these symbols to derive amplitude and phase reference. One aspect of this procedure, which has not received much attention yet, is the frame synchronization, i.e. the method used by the receiver to locate the time position of the pilot symbols. In this study, two novel non-coherent frame synchronization methods are introduced in which only the magnitude of received signal is used to obtain the timing of the pilot symbol. The methods are evaluated for both AWGN and frequency non-selective slow Rayleigh fading channels. One synchronization technique is derived by standard maximum likelihood (ML) estimation formulation, and the other is obtained by using maximum a Posteriori probability (MAP) with a threshold test. Signal processing in the receiver uses simplifying approximations that rely on relatively high signal-to-noise ratio (SNR) as consistent with the reception of 16-QAM. Computer simulation has been used to test the acquisition time performance and the probability of false acquisition. Several lengths and patterns of pilot symbol sequences were tested where every 10th symbol was a pilot symbol and all other symbols were randomly selected data symbols. When compared with the other published synchronizers, results from this study show better performance in both AWGN and fading channels. Significantly better performance is observed in the presence of receiver frequency offsets

    Investigation and analysis of time codes Quarterly report

    Get PDF
    Optimum time code system analysis including characterization of transmission channels, and signal desig
    • …
    corecore