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Statistical characteristics of the envelope in diversity combining of two
correlated Rayleigh fading channels

Abstract
Performance of diversity systems is often evaluated under the assumption of perfect interleaving and
characterised in terms of long-term parameters such as the average bit-error rate, which does not capture the
dynamics of fading channels. Statistical characteristics (static and dynamic) of the envelope of two correlated
Rayleigh fading channels are explored using a physical model. For two popular diversity-combining schemes,
maximal ratio combining and selection combining, both static and dynamic (level-crossing rate) properties of
correlated fading channels are derived. These results are very useful for performance evaluation of diversity
systems without bit-level simulations. The results can also provide very useful characteristics such as average
duration of fades, fading rate and outage probability for two-channel diversity systems and can be extended to
multiple fading channels.
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Statistical characteristics of the envelope
in diversity combining of two correlated
Rayleigh fading channels

W. Tang and S.A. Kassam

Abstract: Performance of diversity systems is often evaluated under the assumption of perfect
interleaving and characterised in terms of long-term parameters such as the average bit-error
rate, which does not capture the dynamics of fading channels. Statistical characteristics (static
and dynamic) of the envelope of two correlated Rayleigh fading channels are explored using a
physical model. For two popular diversity-combining schemes, maximal ratio combining and
selection combining, both static and dynamic (level-crossing rate) properties of correlated
fading channels are derived. These results are very useful for performance evaluation of diversity
systems without bit-level simulations. The results can also provide very useful characteristics such
as average duration of fades, fading rate and outage probability for two-channel diversity systems
and can be extended to multiple fading channels.

1 Introduction

Effect and mitigation of fading is of prime concern in wire-
less transmission [1, 2]. The performance of wireless links
is often evaluated under an assumption of perfect interleav-
ing and characterised in terms of long-term parameters such
as the average bit-error rate (BER). To capture the dynamic
characteristics of a fading channel, the joint probability
density function (pdf) pðr1; _r1Þ of the fading envelope r1
and its derivative _r1 may be used [2]. From this, information
may be obtained on parameters such as level-crossing rate
(LCR), average fade duration and outage probability, and
used to evaluate more explicitly the performance of wireless
links. In [3, 4], this approach was used to characterise per-
formance of a single-path transmission link.
Various diversity schemes have been used as counter-

measures for fading in wireless links. These include
spatial (path) diversity and frequency diversity. Two com-
monly used diversity combining schemes are maximal
ratio combining (MRC) and selection combining. For the
evaluation of diversity-systems performance, it is typically
assumed that the fading envelopes of diversity branches
are independent of each other, but in practice they may be
correlated. Examples of performance analyses of diversity
system for correlated fading channels can be found in [5].
However, these analyses under such fading are based on
long-term averages such as the average BER. For some
systems [e.g. systems that utilise an automatic-repeat-
request (ARQ) scheme], the system performance depends
on the dynamics of the fading channel. The long-term

average BER performance is then not adequate for perform-
ance analysis. Procedures for generating correlated fading
envelopes are discussed in [6] and can be used to perform
bit-level performance simulations. However, bit-level simu-
lations of the performance can be very time-consuming and
do not lead to a fundamental understanding of dependence
of performance on the fading dynamics.

In this paper, we explore both the static and dynamic stat-
istical characteristics of the envelope resulting from diver-
sity combining of two correlated Rayleigh fading signals.
Specifically, we obtain the joint pdf pðr1; r2; _r1; _r2Þ for the
fading envelopes and their derivatives, and then derive
LCR and average fade duration of the diversity-combined
signal envelope. The results we obtain are useful in charac-
terising the statistical properties of a signal obtained from a
diversity-combining scheme such as MRC or selection
combing. These statistical characterisations can be used to
obtain more detailed performance characteristics for diver-
sity reception over fading channels in specific cases. For
example, an ARQ scheme may be analysed for performance
using the dynamics of the diversity combined signal. This is
facilitated through the use of a finite-state Markov model, as
in [3, 4] for the single-fading channel with no diversity. The
results in this paper can be used to construct finite-state
Markov models for correlated-path diversity schemes and
applied to analyse the performance of ARQ schemes [7].

To derive the joint pdf pðr1; r2; _r1; _r2Þ, we construct a
physical model to investigate the covariance between the
components of two correlated Rayleigh fading envelopes.
We can then obtain the covariance matrix of the four
Gaussian components and their derivatives for the two cor-
related Rayleigh fading envelopes. From this, we are able to
derive the pdf pðr1; r2; _r1; _r2Þ of the two correlated fading
envelopes and their derivatives. We then consider specifi-
cally two popular diversity combining schemes. First the
MRC, in which the receiver combines the diversity
branches by weighting them using the complex conjugates
of their respective signal amplitudes before adding them.
Therefore the ‘total received power’ from these diversity
branches determines the performance of the diversity
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system. Second, the ‘selection combining’, in which the
receiver chooses the branch with maximum received
power for use in signal detection. Hence, the ‘maximum
power’ from these diversity branches determines the
performance of this diversity system.

We show how pðr1; r2; _r1; _r2Þ can be used to obtain useful
statistics such as LCR and average fade duration for the
total power and maximum power. This is done through
the joint pdf for the random process of total or maximum
power and its derivative. Then, we can find LCR for total
power and maximum power using level-crossing analysis
for a single random process, and we can also obtain the
average fade duration of total power and maximum
power. Related work is presented in [8], in which a different
approach is used to obtain the LCR in MRC. The develop-
ment in [8] starts with independent envelopes and extends
the results using an eigendecomposition of the envelope
correlation matrix. Our LCR results are functions of the
cross-correlation coefficient of fading envelopes. Our
approach starts from a physical model and uses the corre-
lation function of the fading envelopes directly, and we
obtain explicit results, that can be directly interpreted
and applied in performance analysis. The results in [8]
are for the LCR for the case of MRC only and are
expressed as functions of the eigenvalues of a correlation
matrix for which there is no explicit physical model.
Without a physical model, it is difficult to apply these
results because the correlation matrix and its eigenvalues
must be available.

We have shown the validity of our statistical results for
two correlated fading channels in [7], through simulations
generated using the method described in [6]. The prelimi-
nary work of Tang and Kassam [7] also gives a finite-state
Markov model representing correlated fading channels and
demonstrates its use in analysing the performance of ARQ
schemes.

2 Physical model for two correlated
fading channels

2.1 Received signal

A multipath model for two correlated Rayleigh fading chan-
nels in spatial diversity is shown in Fig. 1. The same trans-
mitted signal A exp½ jðv1t þ c1Þ� is reflected by N
scatterers, and then received by two receivers R1 and R2.
The two receivers are separated by a distance d. A is the
amplitude of the transmitted signal, v1 the carrier frequency
and c1 the unknown phase of the transmitted signal. We
assume that c1 is uniformly distributed on ½0; 2p�. The
transmitted signal arrives at the nth scatterer with a phase
fn, which depends on the distance between the transmitter
and the nth scatterer. We assume that the fn are indepen-
dent of each other and of c1, and fn are uniformly distrib-
uted on [0, 2p]. n ¼ 1; 2; . . . ;N .

Let an, Tn and un be the set of parameters associated with
the nth path for R1, where an is the attenuation factor. Tn is
the time delay for the path, and un is the angle between the
receiver’s direction of motion and the direction of arrival of
the nth path signal (Figs. 1 and 2). The nth delayed signal
component, arriving at an angle un, will contribute to a
Doppler shift equal to

vdn
¼ vd cos un ð1Þ

where vd ¼ 2pfm and fm is the maximum Doppler fre-
quency, v/l. Here l is the wavelength corresponding to

the transmitted carrier frequency, and v is the speed of the
receiver. The received complex waveform at the first
receiver is

A
XN
n¼1

ane
j ½ðv1þvdn

Þðt�TnÞþfnþc1�

¼ A
XN
n¼1

ane
jðv1tþvdn

ðt�TnÞ�v1Tnþfnþc1Þ ð2Þ

The real part of the received signal is [2]

R1ðtÞ ¼ X1 cosv1t � Y1 sinv1t ð3Þ

where

X1 ¼ A
XN
n¼1

an cosðvdn
ðt � TnÞ � v1Tn þ fn þ c1Þ ð4aÞ

Y1 ¼ A
XN
n¼1

an sinðvdn
ðt � TnÞ � v1Tn þ fn þ c1Þ ð4bÞ

The two receivers are separated by a distance d. We assume
that the separation d of the receivers is very small compared
with the distance between the scatterer and the receiver.
Thus, the angle of incidence un for the nth path, as shown
in Fig. 2, is the same for the two receivers. Let

Fig. 1 Multipath channel model for spatial diversity

Fig. 2 Multipath channel model for spatial diversity

Illustration of the angle u0 between direction of motion and orientation
of receivers
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(bn;Qn; un) be the amplitude, time delay and the angle
associated with the nth path for receiver R2, respectively.
Then, the in-phase and quadrature components at R2 are

X2 ¼ A
XN
n¼1

bn cosðvdn
ðt � QnÞ � v1Qn þ fn þ c1Þ ð4cÞ

Y2 ¼ A
XN
n¼1

bn sinðvdn
ðt � QnÞ � v1Qn þ fn þ c1Þ ð4dÞ

From ((4a))–((4d)), we find the corresponding derivatives
of the four components to be

_X 1¼vdA
XN
n¼1

�ansinðvdn
ðt�TnÞ

�v1Tnþfnþc1Þcosun ð4eÞ

_Y 1¼vdA
XN
n¼1

ancosðvdn
ðt�TnÞ

�v1Tnþfnþc1Þcosun ð4f Þ

_X 2¼vdA
XN
n¼1

�bnsinðvdn
ðt�QnÞ

�v1Qnþfnþc1Þcosun ð4gÞ

_Y 2¼vdA
XN
n¼1

bncosðvdn
ðt�QnÞ

�v1Qnþfnþc1Þcosun ð4hÞ

Note that the differential delay tn¼Qn�Tn depends on the
orientation of the line connecting R1 and R2. We will use
this later in obtaining the covariance matrix.

2.2 Covariance between components of two
equal-power fading envelopes

We define the eight-component vector Z ¼ ðX1;Y1; _X 1; _Y 1;
X2;Y2; _X 2; _Y 2Þ

T, which contains the I, Q components and
component derivatives at the two receivers. We now
discuss the mean value and covariance matrix for Z. The
mean value of each of these eight random variables is
zero. This is because the random phases fn are uniformly
distributed in [0, 2p]. Since these eight random variables
have zero mean, we have Cov½Gj;Gk � ¼ E½Gj Gk �, where
Gj and Gk represent any two of these eight random
variables.
Now we assume (i) the number N of scatterers is large,

and (ii) the scattering amplitudes an and bn are sequences
of independent random amplitudes with non-vanishing
and bounded moments of order up to three. Then we can
approximate the X1, Y1, X2 and Y2 as jointly Gaussian
random variables with zero means. We can also easily
show that X1 and Y1 are uncorrelated, and therefore inde-
pendent under the Gaussian approximation, with equal
variances. Therefore the envelope r1 ¼ ðX 2

1 þ Y 2
1 Þ is

assumed to have a Rayleigh distribution. Similarly, the
second envelope r2 ¼ ðX 2

2 þ Y 2
2 Þ has a Rayleigh distri-

bution. However, r1 and r2 are in general correlated.
Using (4a)–(4h), we can obtain the pairwise covariances

for the eight variables in Z. The zero covariance matrix
elements turn out to be [we obtain (5b) and (5c) with an

assumption of uniform scatterer]

Cov½X1;Y1� ¼ Cov½X2; Y2� ¼ 0 ð5aÞ

Cov½X1; _Y 1� ¼ Cov½ _X 1; Y1� ¼ 0 ð5bÞ

Cov½X2; _Y 2� ¼ Cov½ _X 2; Y2� ¼ 0 ð5cÞ

Cov½ _X 1; _Y 1� ¼ Cov½ _X 2; _Y 2� ¼ 0 ð5dÞ

Cov½X1; _X 1� ¼ Cov½Y1; _Y 1� ¼ Cov½X2; _X 2�

¼ Cov½Y2; _Y 2� ¼ 0 ð5eÞ

Cov½ _X 1;X1� ¼ Cov½ _Y 1; Y1� ¼ Cov½ _X 2;X2�

¼ Cov½ _Y 2; Y2� ¼ 0 ð5f Þ

The other covariance matrix elements come from 13 poss-
ible non-zero values (including four pairs of+ values),
which are as follows

Cov½X1;X1� ¼ Cov½X2;X2� ¼ Cov½Y1; Y1�

¼ Cov½Y2;Y2� W s2
ð5gÞ

Cov½ _X 1; _X 1� ¼ Cov½ _Y 1; _Y 1� W ṡ2
1 ð5hÞ

Cov½ _X 2; _X 2� ¼ Cov½ _Y 2; _Y 2� W ṡ2
2 ð5iÞ

Cov½X1;X2� ¼ Cov½X2;X1� ¼ Cov½Y1; Y2�

¼ Cov½Y2;Y1� W m1 ð5jÞ

Cov½X1; Y2� ¼ Cov½Y2;X1� ¼ �Cov½Y1;X2�

¼ �Cov½X2;Y1� W m2 ð5kÞ

Cov½X1; _X 2� ¼ Cov½ _X 2;X1� ¼ Cov½Y1; _Y 2�

¼ Cov½ _Y 2;Y1� ¼ �Cov½ _X 1;X2�

¼ �Cov½X2; _X 1� ¼ �Cov½ _Y 1; Y2�

¼ �Cov½Y2; _Y 1� W m3 ð5lÞ

Cov½X1; _Y 2� ¼ Cov½ _Y 2;X1� ¼ �Cov½Y1; _X 2�

¼ �Cov½ _X 2;Y1� ¼ �Cov½ _X 1; Y2�

¼ �Cov½Y2; _X 1� ¼ Cov½ _Y 1;X2�

¼ Cov½X2; _Y 1� W m4 ð5mÞ

Cov½ _X 1; _X 2� ¼ Cov½ _X 2; _X 1� ¼ Cov½ _Y 1; _Y 2�

¼ Cov½ _Y 2; _Y 1� W m5 ð5nÞ

Cov½ _X 1; _Y 2� ¼ Cov½ _Y 2; _X 1� ¼ �Cov½ _Y 1; _X 2�

¼ �Cov½ _X 2; _Y 1� W m6 ð5oÞ

The set of parameters s2, _s2
1, _s

2
2, m1, m2, m3, m4, m5 and m6

is given by

s2
¼

A2

2
� E

XN
n¼1

a2
n

" #
¼

A2

2
� E

XN
n¼1

b2
n

" #
ð6aÞ
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ṡ2
1 ¼

A2v2
d

2
� E

XN
n¼1

a2
n cos

2 un

" #
ð6bÞ

ṡ2
2 ¼

A2v2
d

2
� E

XN
n¼1

b2
n cos

2 un

" #
ð6cÞ

m1 ¼
A2

2
� E

XN
n¼1

anbn cosððvdn
þ v1ÞtnÞ

" #
ð6dÞ

m2 ¼ �
A
2

2
� E

XN
n¼1

anbn sinððvdn
þ v1ÞtnÞ

" #
ð6eÞ

m3 ¼
A
2vd

2
� E

XN
n¼1

anbn sinððvdn
þ v1ÞtnÞ cos un

" #
ð6f Þ

m4 ¼
A
2vd

2
� E

XN
n¼1

anbn cosððvdn
þ v1ÞtnÞ cos un

" #
ð6gÞ

m5 ¼
A2v2

d

2
� E

XN
n¼1

anbn cosððvdn
þ v1ÞtnÞ cos

2 un

" #
ð6hÞ

m6 ¼ �
A2v2

d

2
� E

XN
n¼1

anbn sinððvdn
þ v1ÞtnÞ cos

2 un

" #
ð6iÞ

where vd and vdn
are given by (1), and

tn ¼ Qn � Tn ð7Þ

2.2.1 Covariance matrix L: From (5a)–(5o), the (8 � 8)
covariance matrix L of the Gaussian components and com-
ponent derivatives of the two Rayleigh fading channels can
be written as

L ¼ EfZZ
T
g

¼

s2 0 0 0 m1 m2 m3 m4

0 s2 0 0 �m2 m1 �m4 m3

0 0 ṡ2
1 0 �m3 �m4 m5 m6

0 0 0 ṡ2
1 m4 �m3 �m6 m5

m1 �m2 �m3 m4 s2 0 0 0

m2 m1 �m4 �m3 0 s2 0 0

m3 �m4 m5 �m6 0 0 ṡ2
2 0

m4 m3 m6 m5 0 0 0 ṡ2
2

2
66666666666664

3
77777777777775

ð8Þ

where s2; _s2
1; _s

2
2;m1;m2;m3;m4;m5 and m6 are defined in

(5g)–(5o). The covariance matrix has an interesting block
structure with diagonal and symmetric blocks.

2.3 Evaluation of covariance between
components of two fading envelopes

Each element in the covariance matrixL can be written as a
function of the basic parameters of the model, and explicit
results will allow us to obtain the joint pdf pðr1; r2; _r1; _r2Þ
for the correlated fading envelopes and their time deriva-
tives. We are able to compute the expectations in (6a)–
(6i) for the covariance matrix elements under the following
three assumptions: (i) the distances between receivers and
scatterers are much larger than the separation d of the recei-
vers, (ii) the scatterers are located around the receivers, with
incident power to the receivers arriving uniformly from

all directions [0, 2p] and (iii) an ¼ bn. We discuss some
extensions in [9].
As an example, consider the evaluation of covariance

element m5 of (5n) and (6h). We start evaluating m5 by exam-
ining the phase term ðvdn þ v1Þtn in (6h). Note that usually

ðv1 þ vdn
Þtn ’ v1tn ð9aÞ

This is because in most cases vdn
tn is very small compared to

2p. For example, for a speed 50 km/h and carrier frequency
1.9 GHz, the maximum Doppler shift fm ¼ vd=2p is 88 Hz.
Also note that tn ¼ Qn � Tn, which represents the delay
difference of the nth path seen by the two receivers, is nor-
mally much smaller than 1ms. Now consider the term v1tn.
With the first assumption, and from Fig. 2, we have
ctn ¼ d cos jn, where c is the speed of light and jn the
angle between the propagation path from the nth scatterer
and the line R1R2. Then, we have v1tn ¼ ð2pd=lÞ cos jn.
From Fig. 2, we have jn ¼ p � un þ u0, where u0 is the
angle between the receivers’ direction of motion and R1R2.
Thus, v1tn ¼ �ð2pd=lÞ cosðun � u0Þ. Using (9a), we obtain

ðvdn
þ v1Þtn ’ �

2pd

l
cosðun � u0Þ ð9bÞ

From (6h) and (9b), also with the assumption that an ¼ bn,
we find that m5 is given by

m5 ¼
A
2v2

d

2
�E

XN
n¼1

a2
n cos

2pd

l
cosðun�u0Þ

� �
cos2un

" #

ð10aÞ

Note that we may express a2
n as a2

n ¼ pðunÞdu, the term
pðunÞdu representing the fraction of the normalised incoming
power within du of the angle un in the case of a large number
N of scatterers, with pðuÞ being the normalised concentration
of scatterer power in angle. In the limit N !1, (10a) takes
the integral form

m5 ¼
A2v2

d

2

ð2p
0

cos
2pd

l
cosðu�u0Þ

� �
cos2upðuÞdu ð10bÞ

where pðuÞ is the normalised incident power density function
at the receivers as function of the angle u. If the incident
power from the scatterers is uniformly distributed, that is,
pðuÞ¼ 1=2p, then after a change of variables in the right-
hand side of (10b) and a series of simplifications, we arrive
at the final result

m5 ¼
v2
dA

2

4
� J0

2p

l
d

� �
�J2

2p

l
d

� �� �
cos2 u0

�

þ J0
2p

l
d

� �
þJ2

2p

l
d

� �� �
sin2u0

�

¼
v2
dA

2

4
� J0

2p

l
d

� �
� cos2u0J2

2p

l
d

� �� �
ð10cÞ

Here, Jnð�Þ is the Bessel function of the first kind of order n.
Similarly, we can evaluate all the other covariance elements
(6a)–(6i) to obtain the following results

s2
¼
A2

2
ð11aÞ

_s 2
1 ¼ _s 2

2 ¼ð2pfmÞ
2
�
s 2

2
W _s2

ð11bÞ
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m1 ¼ s2
� J0

2p

l
d

� �
ð11cÞ

m2 ¼ m4 ¼ m6 ¼ 0 ð11dÞ

m3 ¼ 2pfms
2J1

2p

l
d

� �
cos u0 ð11eÞ

m5 ¼
ð2pfmÞ

2s2

2
J0

2p

l
d

� �
� J2

2p

l
d

� �
cos 2u0

� �
ð11f Þ

From(11a)–(11f), the covariance values between components
of the two Rayleigh fading envelopes in our model depend
on (i) the maximum Doppler frequency shift fm, (ii) the
separation d of two receivers and (iii) the angle u0 between
their direction ofmotion and the line connecting the two recei-
vers. From the properties of the Bessel functions of the first
kind of order n ¼ 0; 1; 2,weobserve that for a spatial diversity
model, as the separation d becomes larger, the covariance
matrixL approaches a diagonal matrix as we expect.

2.3.1 Justification for ignoring m3: We can, in prin-
ciple, derive the pdf pðr1; r2; _r1; _r2Þ using the covariance
matrix L. For this, we need the inverse of the 8 � 8 covari-
ance matrix of (8) in closed form. For the spatial diversity
model, m4 is zero by (11d), but m3 is not always zero. If
m3 is small enough and can be set equal to 0, we are able
to find the inverse of covariance matrix in closed form.
The assumption needed is that the absolute value of
element m3 in the covariance matrix L is very small
compared to the diagonal elements in the matrix.
The ratio of m3 and the diagonal elements ðs2; _s2

1; ṡ
2
2Þ in

the covariance matrix depends on fm and on
J1ð2pd=lÞ cos u0, from (11a), (11b) and (11e). One case
of interest for which m3 ¼ 0 is when u0 ¼ p=2. This
means that two receivers are moving in a direction perpen-
dicular to the line connecting them. This is the case for a
vehicle with an antenna mounted on each side. In general,
if the angle u0 is close to p/2 and the speed is not very
high, then m3 can be assumed to be negligible. In addition,
the function J1ð2pd=lÞ has multiple zeros, that is, m3 ¼ 0.
For any wavelength l, there is a sequence of increasing sep-
arations d for which J1ð2pd=lÞ ¼ 0, and therefore m3 ¼ 0.
For example, at a centre frequency of 1.9 GHz, m3 ¼ 0 for a
minimum non-zero value of d ¼ 9.6 cm and for other values
of d spaced by �8 cm after this.
It is possible to extend the result for the covariance matrix

inverse and obtain an approximation that holds when m3 is
not negligible. However, this gives a more complex result,
which does not allow for easy further analysis. Note that
the condition m3 ¼ 0 simplifies the analysis, but is not a
design preference.
It is interesting to note that in [9] we also considered the

frequency diversity case of a single receiver, and obtained
for this case very similar results for the covariance matrix
elements. In particular, for frequency diversity the value
of m3 is always 0, so no further assumptions are needed to
the covariance matrix inverse to be established.

3 Derivation of joint pdf p(r1,r2,ṙ1,ṙ2)

In this section, we derive the joint pdf pðr1; r2; _r1; _r2Þ of the
two fading envelopes and their derivatives. We proceed as
follows. First, based on the covariance matrix L for
Gaussian variables ðX1; Y1; _X 1; _Y 1;X2;Y2; _X 2; _Y 2Þ, we find
the eight-dimensional Gaussian pdf for variables
ðX1;Y1; _X 1; _Y 1;X2; Y2; _X 2; _Y 2Þ. By change of variables
from Gaussian components of the two Rayleigh fading

signals to envelopes, phases and their corresponding deriva-
tives ðR1;R2; _R1; _R2;F1;F2; _F1; _F2Þ, we obtain the pdf
pðr1; r2; _r1; _r2;f1;f2; _f1; _f2Þ. Finally, by integrating
pðr1; r2; _r1; _r2;f1;f2; _f1; _f2Þ over the phase and phase
derivative terms, we obtain the pdf pðr1; r2; _r1; _r2Þ. Note
that we use the notation pðr1; r2; _r1; _r2Þ to represent
pR1;R2; _R1; _R2

ðr1; r2; _r1; _r2Þ and so on. Once the covariance
matrix is obtained, the pdf pðx1; y1; _x1; _y1; x2; y2; _x2; _y2Þ can
be written down in principle. However, it is difficult to find
the inverse of the general 8 � 8 covariance matrix (8) in
closed form, and even if it could be found the inverse matrix
would have fewer zero terms and would be much harder to
use. On the other hand, ifm3 is zero, we can obtain the covari-
ance matrix as follows, where we also use the fact that
ṡ2

1 ¼ ṡ2
2 W ṡ2 for two envelopes with equal power

L ¼

s2 0 0 0 m1 m2 0 0

0 s2 0 0 �m2 m1 0 0

0 0 _s2 0 0 0 m5 m6

0 0 0 _s2 0 0 �m6 m5

m1 �m2 0 0 s2 0 0 0

m2 m1 0 0 0 s2 0 0

0 0 m5 �m6 0 0 _s2 0

0 0 m6 m5 0 0 0 _s2

2
66666666664

3
77777777775
ð12Þ

3.1 Inverse of covariance matrix, L21

For the 8 � 8 covariance matrix in (12), the inverse is

L�1
¼

1

s2ð1� r2Þ
0 0 0

0
1

s2ð1� r2Þ
0 0

0 0
1

_s2ð1� _r2Þ
0

0 0 0
1

_s2ð1� _r2Þ
�m1

s4ð1� r2Þ

m2

s4ð1� r2Þ
0 0

�m2

s4ð1� r2Þ

�m1

s4ð1� r2Þ
0 0

0 0
�m5

_s4ð1� ṙ2Þ

m6

_s4ð1� _r2Þ

0 0
�m6

_s4ð1� ṙ2Þ

�m5

_s4ð1� _r2Þ

2
666666666666666666666666664
�m1

s4ð1� r2Þ

�m2

s4ð1� r2Þ
0 0

m2

s4ð1� r2Þ

�m1

s4ð1� r2Þ
0 0

0 0
�m5

_s4ð1� _r2Þ

�m6

_s4ð1� ṙ2Þ

0 0
m6

_s4ð1� _r2Þ

�m5

_s4ð1� _r2Þ
1

s2ð1� r2Þ
0 0 0

0
1

s2ð1� r2Þ
0 0

0 0
1

_s2ð1� _r2Þ
0

0 0 0
1

_s2ð1� _r2Þ

3
777777777777777777777777775
ð13Þ
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where

r2 W
m2
1 þm2

2

s4
; _r2 W

m2
5 þm2

6

_s4
ð14Þ

Note that _r is a notation, which is defined in (14), and not
the derivative of r. From (11b)–(11d), (11f) and (14), we
have

_r2

r2
¼

½J0ðð2p=lÞdÞ � J2ðð2p=lÞdÞ cos 2u0�
2

½J0ðð2p=lÞdÞ�
2

ð15Þ

We find also that the determinant of the covariance matrix
(12) is given by

jLj ¼ ½s4
ð1� r2Þ�2½ _s4

ð1� _r2Þ�2 ð16Þ

3.2 Pdf p(r1,r2,ṙ1,ṙ2)

Once the inverse (13) and the determinant (16) of the
covariance matrix are known, the joint pdf
pðx1; y1; _x1; _y1; x2; y2; _x2; _y2Þ for the eight Gaussian
random variables can be written down. With the transform-
ation of variables from Gaussian components of the two
fading channels to the two Rayleigh envelopes ðr1; r2Þ and
phases ðf1;f2Þ and their derivatives, we can obtain the
joint pdf pðr1; r2; _r1; _r2;f1;f2; _f1; _f2Þ. Finally, we are
able to obtain the joint probability density function
pðr1; r2; _r1; _r2Þ by integrating out the f1;f2; _f1 and _f1

terms. We have the following main result

pðr1; r2; _r1; _r2Þ ¼
r1r2

ð2pÞ2s4 _s2ð1� r2Þ

� exp �
1

2

r21 þ r22
s2ð1� r2Þ

� �� �

�

ð2p
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _r2 sin2 a

p
� exp �

1

2

�2r1r2jrj sinðaþ f0 �
_f0Þ

s2ð1� r2Þ

"(

þ
_r21 þ _r22 � 2_r1_r2j_rj sina

_s2ð1� _r2 sin2 aÞ

��
da ð17Þ

where r1; r2 [ ð0;þ1Þ; _r1; _r2 [ ð�1;þ1Þ and f0;
_f0 are

defined as follows

sinf0 W
m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ m2

2

p ; sin _f0 W
m5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
5 þ m2

6

p ð18Þ

From (18), (11c), (11d), and (11f), we have

f0 �
_f0 ¼ kp; k ¼ 0; 1

ðk ¼ 0whenm1;m5 have the same signsÞ ð19Þ

3.2.1 Envelope cross-correlation coefficient
renvelope: The envelope cross-correlation coefficient
between the two Rayleigh fading envelopes r1 and r2,
denoted by renvelope, is defined as

renvelope ¼
Covðr1; r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðr1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðr2Þ
p

Using the joint pdf pðr1; r2Þ (which can be obtained from
(17) but is also available in [1]), and tables of integrals
[10], we find that this envelope cross-correlation coefficient

is (see also [11])

renvelope ¼
ðp=2Þs2Fð�1=2;�1=2; 1; r2Þ � ðp=2Þs2

ð2� ðp=2ÞÞs2

¼
p

2
�

ð1=2Þ2r2 þ ð1=2Þ6r4 þ ð1=2Þ9r6 þ � � �

2� ðp=2Þ

ð20Þ

where Fð�1=2;�1=2; 1; r2Þ is the hypergeometric func-
tion. Note that another equivalent expression for the envel-
ope cross-correlation coefficient is given in [1], where the
complete elliptic integral is used instead of the hypergeo-
metric function. Note that in (20), the coefficients in front
of powers of r are decreasing exponentially, and neglecting
powers of r beyond r2, we find that renvelope ’ r2.

4 Envelope statistics after diversity combining

A receiver with MRC will coherently combine the diversity
branches by weighting them using the complex conjugate of
their respective fading gains and adding them. Thus, the
instantaneous signal-to-noise-ratio (SNR) at the output of
the combiner is the sum of the SNRs from diversity
branches. It is also known [12] that for diversity systems
using post-detection product detector combiner, the instan-
taneous SNR at the output of the combiner equals the sum of
SNRs from diversity branches. Therefore the fading chan-
nels’ effect on performance of these diversity systems can
be characterised by the total power. Another diversity com-
bining scheme, called selection combining, is commonly
used to avoid the high implementation complexity of the
MRC. The diversity branch with maximum received
power is selected as the output of this diversity combiner.
Therefore the fading channels’ effect on performance of
such diversity systems can be characterised by the
maximum power.
In this section, we study the statistical characteristics of

the diversity combined output with MRC (total power)
and selection combining (maximum power). In particular,
for the case of two correlated equal power fading signals,
we derive the distribution and LCR of the envelope
arising from each of these two diversity combining
schemes. This provides not only the steady-state properties
but also transition properties of the equivalent fading chan-
nels for the diversity output, and is useful in further work on
finite-state Markov models for these cases. On the basis of
the results of this section, we can obtain further statistical
characteristics such as fading rate and average fade dur-
ation, which are related to system characteristics such as
handoff and outage probability.

4.1 Distribution and LCR for total power

On the basis of the joint pdf pðr1; r2; _r1; _r2Þ of the two
correlated envelopes and their derivatives, the pdf of total
power and its derivative can be obtained by a change of
variables to square root of total power r, angle u and their
derivatives. Fig. 3a illustrates the transformation. We have

r1 ¼ r cos u ð21aÞ

r2 ¼ r sin u ð21bÞ

r
2
¼ r

2
1 þ r

2
2; where r � 0; 0 � u � p=2 ð21cÞ

where r2 represents the instantaneous total received signal
power from the two Rayleigh fading channels.

IET Commun., Vol. 1, No. 3, June 2007410



From this, we have

_r1 ¼ _r cos u� r sin u_u

_r2 ¼ _r sin uþ r cos u_u
ð21dÞ

Using the above transformation, the joint pdf for the new set
of variables can be found as

pðr; _r; u; _uÞ ¼ jJ jpðr1; r2; _r1; _r2Þ ð22Þ

where the determinant of the Jacobian J for the transform-
ation can be shown to be r2. We can obtain the pdf pðr; _rÞ
from pðr; _r; u; _uÞ by integrating over u from 0 to p=2 and
_u from �1 to þ1. Using (22) and (17), we obtain the fol-
lowing important result

pðr; _rÞ ¼

ffiffiffiffiffiffi
2p

p
r3

2ð2pÞ2s4ð1� r2Þ _s
exp �

1

2

r2

s2ð1� r2Þ

� �

�

ðp=2
0

ð2p
0

sin 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r sin 2u sina

p

� exp �
1

2

�rr2 sin 2u sinðaþ f0 �
_f0Þ

s2ð1� r2Þ

"(

þ
_r2

_s2ð1þ _r sin 2u sinaÞ

��
da du ð23Þ

where r and _r are defined in (14), and f0 �
_f0 is given in

(19).
From the pdf pðr; _rÞ, we can obtain pðrÞ ¼

Ð1
�1

pðr; _rÞ d_r,
the steady-state statistics for the total power random
process. We use the instantaneous SNR g ¼ r2=2s2

0 from
two diversity branches to represent the fading channel con-
dition, where s2

0 is the additive Gaussian noise variance.
From (23), the distribution of g can be obtained as

pðgÞ ¼
8g

g20ð1� r2Þ

1

4p

ðp=2
0

ð2p
0

sinf

� exp �
1

2

4gð1� r sinf cosaÞ

g0ð1� r2Þ

� �� �
da df ð24Þ

where g0 ¼ 4s2=2s2
0 is the average SNR. The pdf pðgÞ

implicitly depends on renvelope through (20) or its approxi-
mation renvelope ’ r2. We observe the following from (24)
(i) when renvelope ! 1, that is the two fading channels are
almost identical, the pdf pðgÞ approaches the pdf of the
SNR in a single Rayleigh envelope case, that is the pdf
pðg1Þ ¼ 1=g10 expð�g1=g10Þ with g1 and g10 representing
the instantaneous and the average SNR for the single
Rayleigh envelope (ii) when renvelope ! 0, that is the two

fading channels are almost uncorrelated, the pdf pðgÞ will
approach the chi-square pdf with four degrees of freedom:
pðgÞ ¼ 4g=g20 expð�2g=g0Þ.

We now derive the LCR for total power by applying
results for level crossings of random processes [13]. The
LCR (average number of upcrossings of a level per unit
time, or average number of downcrossings of a level per
unit time) for the random process r at a given level
r ¼ R0 is given by

N ðR0Þ ¼

ð1
0

_rpðr; _rÞjr¼R0
d_r ð25Þ

Using (23), (11b) and carrying out the integral in (25), we
obtain

N ðR0Þ ¼
fmðR0=sÞ

3

8
ffiffiffiffi
p

p
ð1� r2Þ

ðp
0

ð2p
0

sinf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r sinf sina

p

� exp �

ð1� r sinf sinðaþ f0 �
_f0ÞÞ

ðR0=sÞ
2

2ð1� r2Þ

8>>><
>>>:

9>>>=
>>>;
da df

ð26Þ

For two correlated fading envelopes, the pdf in (24) and the
LCR in (26) are expressed in terms of double integrals.
However, in the case of two uncorrelated fading envelopes
ðrenvelope ¼ 0Þ, closed form results can be obtained. In
particular,

NðR0Þ¼

ffiffiffiffi
p

p

2
fm

R0

s

� �3

exp �
1

2

R0

s

� �2
" #

when renvelope¼0 ð27Þ

From (27), we can find further that the maximum LCR
occurs at R0¼3s (or R0=2s¼0:866) when two fading
channels are uncorrelated. Simulations reported in [7]
show very good agreement with the analytical result of
(26) for the LCR for total power.

The LCR is in general proportional to the maximum
Doppler shift fm from (26). In Fig. 4, we show the normal-
ised LCR NðR0Þ=2pfm against the normalised level R0=2s
for different renvelope values ðrenvelope ¼ 0; 0:25; 0:40;
0:75; 0:90Þ. Note that the root mean square (rms) value of
r is 2s. Fig. 4 is an example case where d=l ¼ 1:33 and

Fig. 4 Normalised LCR N(R0)/(2p)fm against R0/2s for differ-
ent renvelope, total power

Fig. 3 Illustration of level crossing at level R0 for r and variable
changes

a r2 ¼ r1
2
þ r2

2 for total power
b r ¼ max(r1, r2) for maximum power
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u0 ¼ p=2 in (15), thus r2 ¼ 0:7908_r2. The result is obtained
for k ¼ 0 in (19) (for u0 ¼ p=2, most of time k ¼ 0, i.e. m1

and m5 have the same signs, from numerical calculation).
We observe the following: (i) The LCR increases with
renvelope in the low level as well as high-level region. This
is because as the fading signals become more uncorrelated,
their total power is more likely to remain near its mean. (ii)
For independent fading envelopes (renvelope ¼ 0), the
maximum LCR occurs at R0=2s ¼ 0:866. As an example,
suppose fm ¼ 8:7963Hz. Then, the LCR N ðR0Þ is �8 s21

at the rms value 2s of the equivalent received envelope r.
In general, the LCR reaches a maximum near
R0=2s ’ 0:7. (iii) For renvelope approaching 1, the LCR
for total power approaches the result of the LCR for a
single channel [2].

Given a SNR level g ¼ G0, the average duration of fades
is the ratio of the total time the SNR is below G0 and the
total number of fades, both measured during a certain
large time interval T. Let t be the average duration of
fades and ti, the duration of each fade. Then
t ¼

P
ti=ðN ðG0ÞT Þ. The ratio

P
ti=T corresponds to the

probability that g is below G0. Hence

t ¼
1

N ðG0Þ
Prob½g � G0� ¼

1

N ðG0Þ

ðG0

0

pðgÞ dg ð28Þ

where pðgÞ is given by (24). NðG0Þ can be obtained from
(26) and is given by

N ðG0Þ¼
fmð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G0=g0

p
Þ
3

8
ffiffiffiffi
p

p
ð1�r2Þ

ðp
0

ð2p
0

sinf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _rsinfsina

p

�exp
�ð1�rsinfsinðaþf0�

_f0ÞÞ

2ð1�r2Þ
�
4G0

g0

( )
da df

ð29Þ

where g0¼4s2=2s2
0 is the average SNR.

4.2 Distribution and LCR for maximum power

In a diversity system with selection combining, the
maximum power from different diversity branches deter-
mines the diversity system performance [5]. Therefore
the fading channels’ effect on the performance of selec-
tion diversity can be characterised by the maximum
power. On the basis of the joint pdf pðr1; r2; _r1; _r2Þ of
two correlated envelopes and their derivatives, we can
obtain the distribution of the maximum-power random
process and its LCR characteristic. Let r ¼ maxðr1; r2Þ,
where r1 and r2 are the envelopes of the two received cor-
related Rayleigh fading signals. From (17) or [1], we can
obtain the pdf pðr1; r2Þ of the two correlated fading envel-
opes. Then, we find the distribution function for the
maximum to be

PðrÞ ¼

ðr
0

ðr
0

pðr1; r2Þ dr1 dr2 ð30Þ

Let g ¼ r2=2s2
0 be the instantaneous SNR for maximum

power diversity combining (where s2
0 is the variance of

additive Gaussian noise). From (30), the pdf pðgÞ of the

SNR can be obtained as

pðgÞ ¼
1

pg10

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2g=g10 ð1�r2Þ

p

0

ð2p
0

y exp

(
�
1

2

"
y2 � 2yr

� sin u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

g10 ð1� r2Þ

s
þ

2g

g10 ð1� r2Þ

#)
du dy ð31Þ

where g10 is the average SNR for the first channel, that
is g10 ¼ 2s2=2s2

0. When renvelope approaches 1, which
means r ! 1 from (20), the pdf pðgÞ becomes the pdf
of the SNR for a single Rayleigh envelope.
Note that in [5], the pdf of maximum power was obtained

by a different approach from ours, and we can show that the
two results are equivalent. We can also find the average
maximum power to be 2s2ð1þ ð1� r2Þ=2Þ, where 2s2 is
the average power for a single channel. As noted earlier,
the average error probability performance with selection
combining has been investigated [14]. However, [14] does
not consider a dynamic channel model and therefore does
not characterise functions such as the LCR.
We now derive the LCR for maximum power based on

the pdf pðr1; r2; _r1; _r2Þ of two correlated envelopes and
their derivatives. Fig. 3b illustrates the (positive direction
only) level crossings of the maximum envelope r at level
r ¼ R0. The LCR NðR0Þ consists of two components
N1ðR0Þ and N2ðR0Þ as shown in the figure

N ðR0Þ ¼ N1ðR0Þ þ N2ðR0Þ ð32Þ

N1ðR0Þ represents the crossing rate due to the event
fr1 crosses the boundary r1 ¼ R0 conditioned on r2 , R0g.
N2(R0) represents the crossing rate due to the event
fr2 crosses the boundary r2 ¼ R0 conditioned on r1 , R0g.
On the basis of standard results for level crossings of a
random process [13], we have

N1ðR0Þ ¼

ð1
0

ðR0

0

_r1pðr1; r2; _r1Þjr1¼R0
dr2 d_r1 ð33Þ

where the marginal pdf pðr1; r2; _r1Þ can be obtained from
pðr1; r2; _r1; _r2Þ given by (17). Similarly, we can obtain
N2ðR0Þ. From (32) and (33), we can obtain the following
LCR for the maximum envelope

N ðR0Þ ¼
2fm

ffiffiffiffi
p

p

pð1� r2Þ

R0

s3

ðp=2
�p=2

ðR0

0

r2

exp �
1

2

r22 � 2rr2R0 sinaþ R2
0

s2ð1� r2Þ

� �� �
dr2 da ð34Þ

Further, we obtain for the LCR of the received instan-
taneous SNR ratio g ¼ r

2=2s2
0 at level g ¼ G0

N ðG0Þ ¼
2fm

ffiffiffiffi
p

p

pð1� r2Þ

ffiffiffiffiffiffiffiffi
2G0

g10

s ðp=2
�p=2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2G0=g10

p
Þ

0

x

exp �
1

2

x2 � 2rx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2G0=g10Þ

q
sinaþ ð2G0=g10 Þ

1� r2

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
dx da ð35Þ

where g10 ¼ 2s2=2s2
0 is the average SNR of one channel. In

Fig. 5, we show the normalised LCR N ðR0Þ=ð2pÞfm against
the normalised level R0=2s for different renvelope values. We
observe that for maximum power selection combining, an
increase in correlation leads to an increase in the LCR at
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low levels and to a reduction in the LCR at high levels.
Simulations reported in [9] show very good agreement
with the analytical result of (35) for the LCR for
maximum power. In the case of two uncorrelated fading
envelopes ðrenvelope ¼ 0Þ, the pdf in (31) and LCR in (35)
become the following

pðgÞ ¼
2

g10
exp �

g

g10

" #
1� exp �

g

g10

" # !
ð36Þ

NðG0Þ ¼ 2
ffiffiffiffi
p

p
fm

ffiffiffiffiffiffiffiffi
2G0

g10

s
exp �

G0

g10

" #
1� exp �

G0

g10

" # !
ð37Þ

As in the total power case, the average duration t of fades
for maximum power can be obtained using (28), with pðgÞ
given by (31) and N ðG0Þ given by (35).

5 Conclusion

We have built a physical multipath model to represent two
correlated Rayleigh fading channels in spatial diversity
reception. We have explored and evaluated the covariance
matrix elements for the Gaussian components and their
time derivatives in the description of the two Rayleigh
fading envelopes. The joint pdf of the two correlated
fading envelopes and their derivatives was derived, and
from this we obtained other statistical characteristics of
interest. For the total power in MRC diversity combining,
we obtained the joint pdf pðr; _rÞ for total power and its
derivative, as well as the LCR. This allows both static
and dynamic characterisations for a wireless link.
Corresponding results on the distribution and LCR for
maximum power (selection combining) were also given.
It is possible to obtain useful characteristics such as
average duration of fades, fading rate, outage probability

and so on from these results. In addition to the results
we have given in this paper, we have applied our con-
siderations for the more general case of two correlated
envelopes with unequal powers, as well as the case of
multiple uncorrelated envelopes. These results have been
presented in [9].

The statistical characteristics we have given for total
power and maximum power have been validated through
simulations of fading channels as reported our previous
works [7, 9]. An important application of our results is in
the design of finite-state Markov models representing corre-
lated Rayleigh fading channels in diversity systems; we
have used such models quite successfully to analyse the per-
formance of ARQ schemes [7, 9]. The results of this paper
are also broadly useful in understanding the origin and
strength of correlation between diversity channels and its
specific effects on performance. In general, these results
provide means for performance analysis of diversity
schemes in correlated fading channels and reduce
dependence on bit-level simulations.
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